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Theme

Software is of increasing importance in guidance and control systems and indeed 1n many cascs is the pacing item in
development. Guidance and control software, while embracing a wide range of software, has emphases which include high
integnty considerations, hard real-time constraints, the implications of a still evolving hardware and systems architecture, and
the need 10 meet delivery schedules with high productivity under the constraints of onerous customer requirements for
documentation and visibility, and in the light of strong defence and air worthiness standards and requirements Time schedules
are frequently short since much guidance and control software is required early in the flight testing, and typically software

./dgdnpwken n the context of still evolving requirements and developing programme phases. D,

.

The software climate in which this takes prace is one in which there is a general trend towards high level languages, integration of
support tools, intioduction of mathematical formahisms into the design and verification processes, control of software sizing
and better cost estimating, and frequently a rapid turnover of prw)

< There is often a wide gap between concept and practice, and organizations will succeed which can bridae the gap effectively,

bringing modern methodologies, well supported by software tools, to bear on the problem and understanding how to apply
these methodologies and use the tools-.)

T st T Srdere g T sy

- To assist this understanding the symposium covered gencral requirements on the software, software requirements capture,
design methods and support environments for real-time software, coding techniques, and vertfication vahidation and
certification,
S
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Theéme

Les logiciels revétent de plus en plus dimportance dans les systémes de gurdage et de pilotage. En effet, le logiciel est souvent
Pélément critique pour ie développement des systemes.

Bien qu'il existe une large gamme de logiciels de guidage et de pitotage, I'accent est nus pnincipalement sur les. considerations
suvantes: la haute intégrité, les contraintes temps réel du matériel, les conséquences de I'évolution permanente des
architectures systémes et matériel, le respect des délats de livraison pour des volumes de production élevés, la demande
onéreuse de documentation de la part du client, les contraintes d'intelligibilité du logiciel, et la rigueur des spéeifications et
normes militaires et aéronautiques. Les délais sont souvent courts, puisque bon nombre des logiciels de guidage et de pilotage
sont demandés des la premiére phase des essais en vol; typiquement, le logiciel est crée pendant que les besoins continuent a
évoluer dans le contexte des différentes phases évolutives du programme.

L'environnement logiciel de ce processus est caractérisé par les langages évolués, l'intégration des vutils de développement,
I'emploi de formalismes mathématiques dans les méthodes de conception et de vérification, le contréle du dimenstionnement
des logiciels, la recherche d’une meilleure estimation des colts et le renouvellement fréquent des programmeurs.

Il exsste souvent un grand pas a franchir pour passer du concept a la pratique. Les organisations qui réussiront a avenir seront
celles qui szaront franchir ce pas de fagon efficace, en se servant de méthodologies modernes, bien appuyées par des outtls de
développement, et qui auront compris I'application de ces méthodologies et la mise en oeuvre de ces ounls.

Afin de faciliter cetie compréhension, le symposium a examiné les sujets suivants: conditions générales requises pour les

logrceels, élaboration des spéctfications, méthodes de conception et environnenients de soutien pour les logiciels temps reel,
techmques de codage, et vérification, validation et certification,
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A Survey of Available Tools and Methods for
Software Requirements Capture and Design

b

)
D.).Thewlis
GEC Marconi Ltd..
The Grove, Warren Lane,
Stanmore,Middlesex,
HA7 4LY,
England.

1. Introduction

In this paper 1 discuss the contribution to software
development of the tools and methods currently
available to assist with the early part of the
software development life cycle - that is tools and
methods for Requirements Capture and design. For
all parts of the life cycle the requirement for
Quality, that is Quality Assurance and Quality
Control is fundamental. 1f it is lacking then, at
werst, the software will never achieve a deliverable
state, if delivered it will not work well and will
probably not be maintainable. The word 'Quality’
is used in an informal sense, this paper is not about
Quality Management or Quality Control so these
requirements are not discussed in detail;
nevertheless, the case is made that the tools and
methods used determine the achievable quality of
the delivered system. There is a sense in which the
output from these tools is part of the delivered
system, In general, the quality requirements for a
large or complex system are greater than those for
a small or simple system, so the tools and methods
now available make it feasible to build systems of a
size or complexity which would be impossible
without them. The newer tools which are emerging
should enable the inevitable demand for even
bigger systems to be met.

Although the methods emerged before tools were
created to instantiate them, the words "method’ and
"tool” are effectively interchangeable. Taking a
simple example from a related area; critical path
analysis of a network is a project planaing method.
it would be practically impossible to apply this
method to even quite a small project without the
use of a network analysis programme - the tool. To
the (r)(()lpect manager his project management

me! is the tool which he uses. It is so with
software design methods and tools. Methods on
their own are of little use: fortunately, we now
have tools.

My company has used the MASCOT method and is
experienced in the use of the following tools:

Teamwork (Yourdon)
Software through Pictures  (Yourdon)
Speedbuilder (Jackson)
PDF (Jackson)

We are experimenting with the use of a
Hierarchical Object Oriental Design (HOOD) tool,
so in this paper the discussion of methods and their

contribution to software development comes from
this experience.

2. Requirements and Design.

Current Dogma is that we collect together a
complete specification of the customers
requirements before embarking on design. Further,
we should easure that this specification is not
contaminated by design or implementation
considerations. The arguments for this are
powerful. One such is that: if we approach
requirement capture with preconceived ideas on
implementation; we shall try to make the
requirements fit the design rather than the design fit
the requirements. At worst we fail to capture
important parts of the requirement, at best we bave
a less than optimal design. Ward and Mellor [1],
amongst others, have developed this argumernt.
‘They argue that technology is now so developed
that technology limits are now irrelevant and we
can, so should, deliver exactly what the customer
requires.

‘That technology limits are irrelevant is debatable
and is covered in section 3. Equally debatable is
whether it is possible to acquire the full
requirement prior to starting the design. In practice
the design process uncovers S0 many questions
about the requirement that it becomes impossible to
separate the processes of requirement capture and
(hllgh level) design. The Starts Guide [2] to
sottware methods and tools accepts this, treating
both requirements and design in the same chapter
and reporting that many of the tools they cover
apply to both parts of the life cycle.

Computers have existed for about forty years and
have been widely used for twenty. There must be
few situations left where computers are being used
for the first time. Most projects are to produce a
system which is in some ways better than an
already existing system. The customers perception
of his requirements is coloured by his knowledtge of
current implementations. And considerations of cost
and risk reduction constrain the supplier to use
existing ideas, designs and code wgerever possible.
Thus the ideal, establishing a requirement free from
implementation considerations, is rarely achievable,
_hjos‘t writers on methods and tools assume the
ideal.

There are few projects where the .cquirements
established at the beginning of development are still




valid at the time of delivery. Requirements change
with time, so the methods and tools have to be
robust enough to cope with changes 1n the
requirement. Fortunately, the tools which have
emerged in the last few years do seem to work well
in the real world.

Although the methods discussed have features
which apply particularly to the imtial requirements
capture, such features are not discussed in this
paper as they are not televant to the main argument
and, n the author’s opmion, of less importance
than the facilities which assist design and the
control of design.

3. The Software Problem.

Computer hardware performarce ncreases at a
formidable rate Some years ago the 1IBM UK
Research Director stated that processors were
getting "better” at a rate of 45% compound per
year. Memory and data storage were not doing so
well;  for them the rate was 25% compound per

car "Better” means almost any ratio which is
ikely to interest system developers. that i MIPs or
bytes as the numerator and such things as price,
s$17¢ or power consumption as the denominator.
These rates have applied since the early days of
computing and are hikely to apply for the
foreseeable future

it has fong been the hope of software developers
that some of this "surplus’ power couid be used to
aid the task of software engineering. The statement
that the industry has developed to an extent that we
are problem limited rather than technology himuied
n reference [ 1) is one in a sequence of sinmlar
statements going back to the early days ot
computing In practice, the technology himts
continue to apply; the demands for speed and
functionahity which systems engineers are piacing
on computer system designers are increasing as
quickly as the hardware technology improves

It therefore seems likely that the size of system that
developers are nvited to construct will increase at a
rate stnular to that at which hardware improves.
Experience within our organisation supports this
Examination of similar projects, one started four
Kcars later than the other, showed that each project

ad a similar size team working for about the same
tme, but the later project produced 2'4 times more
software than the earlier project The methods and
tools used by developers have to keep pace with the
ncreasing size of software projects.

4. Quality.

A tew men with buckets and shovels can mix
concrete and lay a garden path or the foundations
for a garage Perhaps a large number of men with
the same tools could mix and lay the concrete for a
bridge or a nuclear seactor shield. No doubt
problems, such as delivering the concrete to the
right place at the right time, could be volved. so tt

is in principle feasible  In practice, the bridge
would fall down and the reactor shield leak because
the quality and consistency of concrete sufficient
for a garden path would not be sufficient for a
larger structure,

It 15 s0 with software Although many large
systems were produced in assembly code; even
more were attempted but never used because their
quality was too low The size and sophistication of
the systems we can build 15 constrained by the tools
we have available,

Tools or methods for producing software,
potentially have two aspects.

Chunking. that 15 the ability to 'see’

the software or a part of the software
as a small enough number of chunks
to be understandable.

b oXity: that 15 the connectivity

between the chunks is of low enough
complexity to be understandable

High level languages, eg FORTRAN 2, were the
first tools, they enabled a number of machine code
stitements to be created by one high level tanguage
wnstruction. Further chunking was achieved by the
concept of a subroutine.  For mathematical
software that, together with some ad hoc rules to
control complexity, has been sufficient to produce
large systems of high quality.  For other types of
software this was necessary but not sufficient. New
high level languages such as PASCAL and,
fohowing that, Ada were devised. These give more
chunking than FORTRAN permits with data
structure and control complexity by the introduction
of composite data types which can be manipulated
as a whole and encouraging, almost enforcing,
structured programming as defined by Dijkstra The
methods and tools discussed in this paper take these
concepts further

There are a number of methods which have evolved
over the last 10 years They are proven, i that
nurmerous systems have been developed using them,
and they are supported by tools, available in the
market place, which can themielves be regarded as
proven

After high level languages the next step was
modular programming, initially an undefined term
until Stevens, Myers and Constantine |3} and
Parnas {4] developed the following qualities which
defined a good module.

High coliesivn - related activities are

grouped together,

OW C - minimum data
transfer between modules

Dyta hiding - modules require no
(or httle) knowledge of how data is
structured in other modules




The current generation of methods and tools
support the concepts of low coupling and data
hiding. They are not enforced, so it is possible to
produce a poor design; but their use is encouraged.
The design is made visible in the diagrams created
by the tools, so it is casty to inspect the design to
discover whether it is of sufficiently high quality.

The Yourdon and the Mascot methods assume a
"top down’ design process. They are, for reasons
discussed in paragraph 8, less good at supporting
the concept of high cohesion.

In addition to the aid they give in supporting good
design principles, the tools have two other function
which affect quality: they record the current state
of the design and assist with reviewing the design.
They present the design in a way that is easy to
understand and update when the design has to
change because of requirement change or
iplementation considerations.

For many companics in our group the improvement
in documentation and design control brought by the
design tool is the main reason for using the tool.
We may or may not design "top down’: we do
review “top down’,

Since these methods were defined ideas on system
development have evolved.  These develop further
the wdea of a module. They assume that a system
can be decomposed into a number of objects.
Object is a technical term. It means a pece of
software which delivers a service when requested
by other objects but whose internal structuwe and
data 1s hidden from other objects.  These Ohject
Oriented Design methods, in effect, enforce the
creation of modules which are good 1n the sense
described above.

5. Current Design Methods and Tools.

Thiee methods, Yourdon, Jackson System Design
and Mascot scem the most popular amongst
designers of real time systems. The main part of
cach system is a diagram consisting of boxes joined
by arrows thus:-

\

L‘T

Figure 1

Boxes are places in which data is transformed.
Arrows are routes along which data or signals
travel. This is called a data flow diagram. Each
method has its own vocabulary and systems. Some
of the boxes have a specialised function and
different types of information flow are marked by
some device such as double arrows or dotted lines.

Two of the methods have a significant feature:
there is one type of box which is recursively
defined. That 1s, it can itself contain boxes and
arrows. This gives great chunking power. A large
system can be described by few (less than 10)
boxes with arrows. Each box, itself containing
fusther boxes and arrows and so on to whatever
level of detail is necessary. The Jackson tools tend
not to support this feature. Jackson is a "Middle
out’ rather than a top down method.

——

Figure 2

The methods support good design principles. With
one exception, (SISCUSSC(I below, no box can get at
the data belonging to another box, except via the
arrowed routes, using the appropriate syntax for
that route. Thus, the Parnas |4) concept of
*information hiding’ is enforced to the extent that
no box can change the data held by another box.
Although not enforced, the principle of low
coupling is encouraged. A design failing to meet
this criteria would have too many arrows, and so
be recognisable as a bad design.  Composite data
types are supported by all methods.  Only data of
pre defined types can ?&w along the arrowed
routes.  Application of these metheds vsing pencil
and paper would be difficult, tools are necessary,
‘They maintain a data base of the design, check that
each arrow both starts and finishes in an
appropriate place, and preserve consistency. A
most important feature of the tools is that when a
change is made to the design, they bring to the
attention of the designer the consequential design
changes which are required.

A vital feature of all three methods is that they all
go beyond the Von Neuman model of computing,
The boxes operate asynchronously. That is each
box could, in principle, be a separate processor
Thus, in the early part of the work, the design is
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independent of the detail of the hardware on which
the system will run. If, when implemented, the
system runs too slowly, the same design can be
used to create a system which uses more or
different processors.

In the Yourdon Method this concept of
"implementaticn free design” is taken further. A
designer using Yourdon is instructed to build his
data flow diagram without considering how data
will be transferred or processed. For example, a
data flow might well be "reactor temperature and
pressure”. In this form the data flow diagram is
called the essential model. The next stage in the
design is to refine the essential model to create the
implementation model. At this stage data types are
made explicit - in the above example reactor
temperature might be defined as a three digit
decimal number. The transter medium and protocol
would also be defined. This distinction between
essential and implementation models is a feature of
the ‘Courdon Method. The other methods could be
used that way. In some, perhaps most, situations
the distinction is valuable - details of the
implementation can be changed without affecting
the essential model and the designer is
concentrating on one kind of thing at a time. In the
essential model he is working on what has to be
done; in the implementation model he concentrates
on how it will be done.

6. Full Constituents of a design method.
There are three main elements

A description of how the system
interfaces with its environment.

The destgn diagrams - (data flow
diagrams)

Translation of the design into a
computer program,

Producing the design diagrams is the cieative part
of design and is discussed below  The Jackson
method tor the other two activities iy the casiest o
describe. Taking the translation into code first. The
method is callej' Jackson System Programming,
[7]. 1t is based on the Dijkstra concepts of
structured programiming; sequence, iteration and
selection are the only control structures permitted.

It uses boxes connected as follows. They form a
tree. that is each of the boxes A, B and C can
themselves have boxes beneath them to whatever
depth iy appropriate,

A B c

Figure 3

This means X is A followed by B followed by C.

X

AC B’

Figurc 4

This means X is either A or B

X

A B C

Figure §

And this is X is A then g number of Bs tollowed
by C.

Yhe program code 15 then created by following
through the tree n a logical order. The other
methods go through a similar process tor code
ISP, Jackson System Programming, was the
precursol to JSD. A mayor step in the creation ot
JSD was the recognition that the systems’
interaction with its environment could be described
using a similar structure to that of JSP The data
which a computer system processes can be
descnibed using the concepts of sequence, iteration
and selecuon. For example, a data sequence could
be an "A’ followed by 4 number ot "B’s, then a *C’
or an 'A’ followed by either a °'B* or a "C", then a
D. The diagram wed to describe the data input to
a system are essentially the same as those used to
describe processing at the code level  Although
they use a 1ather different method from JSP 1o
describe code, users of the Yourdon method are
tending to use the JSD method of describing data
inputs from a systems’ environment.




7. Differences between the methods.

Differences between the methods are apparent in
the way they handle information flow between
processor boxes. The essentials are summarised
below.

7.1 Mascot.

Of the three methods the communications are most
well defined in Mascot. Necessarily so, for Mascot
originally had run time environment as well as
being a design method. No activity box can
communicate directly with any other activity box.
Communication 15 via an IDA, intercommunication
data area, Originally there were two of these,
channel and pool, the current version of MASCOT,
MASCOT 3 permits more complex 1DAs.

e S, [P

e -

Figure 6

A channel is a buffered, first in, first out store.
Such facilities are common to other methods.  This
enables activities to progress asynchronously.  The
sending activity can send it down to the <hannel
then continue with its work. The receiving activity
collects the data from the channel when it is ready
to do so.

A pool is more complex. It always contains some
data. A number of activities can update the
information held by the pool. A number of
activities can read the data in the pool. The
difference between a channel and a pool is that,
data is destroyed when read in a channel; data
remains in a pool until overwritten. A full
description of Mascot is in reference |5).

7.2 Jackson System Design.

Like MASCOT, JSD has communication methods
which enable activities to progress asynchronously.
There are two methods.  One, called a data
stream, is similar to a MASCOT channel. The
other enables one activity to inspect (but not write
to) the state vector of another activity. This is the
same sort of facility as a MASCOT pool. A purist
may argue that it seems less safe but the facility
can be used to create an activity which duplicates
the action of a MASCOT pool.

With a data stream the initiator 1s the activity

(30— owwem
O e
inspection

Figure 7

supplying the data. The activity requiring data
initiates a state vector inspection. The Jackson
methods, both for design and programming are in
reference |6].

7.3 Yourdon.

This method has a philosophy different from the
other two methods. The Yourdon method
distinguishes between different kinds of
information. There are two kinds, data and signals.
Signals announce that an event hay taken nlace or
issue a command. Yourdon has one tyre of data
store, which is more like 4 MASCOT pool than a
channel, although the effect of a channe! can be
created using control signals.

D-—-——D Data flow
D . D Evext flow
D..___ " Flow to store

Figure 8

“The facility of separating control signals from data
15 powerful. It is enhanced by the provision of
finite state machine models to sort out the
consequences of complex interactions between
control signals. For some types of real time
systems this facility alone makes Yourdon the
metuod of choice,

8. Weakness of these methods.

A top down design methodology assists the
designer in achieving two of the three criteria of
good design, data hiding and low coupling. 1t
contributes less towards the aim of lugh cohesion.
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There is little assistance to the designer in
identifying and implementing modules which
provide Common services. Especiallf' 0 on 4 large
project when, following the top level design, the
rest of the work is partitioned amongst a number of
different designers. A middle out approach, for the
reasons given below, enables a balance to be struck
between Jow coupling and high cohesion, it does
not neccessarily achieve both.

One of our companies, which uses the Yourdon
method, finds the methods® poor support fer “high
cohesion’ so much of a problem that they have
drastically revised the way they operate the

method. They make little use of the tool as a
design aid because, having tried to use it that way,
they found that they were creating unsatisfactory
designs. The problem seemed to be that the
decomposition of the system coming from the top
down methodology was not resulting in a good
system ‘The top fevel diagrams when first produce:d
seemed satisfactory but, as the design proceeded to
lower levels, and the designers understanding of
what was necessary improved, the design became
less satisfactory. Either the number of data flows in
the data flow rJiagrams increased; or a fot of similar
things were done in different parts of the system.
Either high cohesion or low coupling coul«{ be
achieved, but not both. For the kinds of system this
company is producing, large radar systems, they
find that a better design route is to identity the low
level modules which will be required. These ae
then put into groups, then groups into larger groups
and so on. Although the Yourdon tool 18 not used
as a design method; it is used to record the design,
maintain it as the requirement evolves and to
support design review,

This is the experience of one company in our
group. Some other companies are following their
lead.  Other companies find the top down
approach satisfactory for the kind of software they
produce, s0 use the tools both as a design ad and a
method of recording the design,

‘The newer methods, Object Onented Design,
preserve the advantages of current methods whilst
encouraging high cohesion They are discussed
below.

9. Objected Oriented Methods.

Although not entirely a new idea, their precursor -
SIMULA emerged in the 1960s, Object Oriented
Methods have surged in popularity in recent years.
Smalltalk, followed by C+ + have contributed at
the programming level, so has Ada which has many
of the teatures of an object oriented language.

The Object Oriented approach considers a system to
be a set of interacting objects. Each object provides
a service or services to other objects. Objects
request a service of other objects by .send’ing a
message to that object. A message consists of 4
request for a service together with any necessary
data. Objects have access to one anotf‘;er only via

messages.  This is the heart of the matter.
Reference [8] contains a full description of object
oriented programming including those aspects not
covered in this paper. These programming ideas
have beea carried into the requirement capture and
design part of the life cycle. In Europe the
development of HOOD, hierarchical object oriented
design, by the European Space Agency and its
adoption by the European Fighter Aircraft
consortium have supported and encouraged the
move towards object oriented methods. There are
now at least two HOOD tool sets which are being
sold in the open market and supported.

Like the other methods discussed, HOOD has
diagrams with boxes and arrows. It also has the
recursive principle, that i, a box can itself contain
boxes and arrows: this is why “hicrarchical” is part
of its title  But the HOOD diagrams are not data
flow diagrams, the arvows indicate which objects
use the services of other objects. In HOOD there
are four ditferent message types and two ditferent
object types to provide the synchromsation and
parallel operation required in a high performance
real time system. Such detail 18 not relevant to this
paper, it 15 in Reterence |9].

A Hood Object
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Restriction of communications between modules to
tequests for service is a powerful concept. Objects
give a greater amount of encapsulation than the
processor boxes in other methods; so, once its
services have been defined, the design and
implementation of an object can be carried out
independently of the rest of the project It retains
and reinforces the gains made by earlier methods in
data luiding and low couphing and the demigner
naturally tends to put rc,:neé> services in the same
object. 1t therefore supports high cohesion and so
adds to the gains in quality provided by carlier
methods.

An additional advantage of object oriented methods
15 that they promote software reuse. ‘The

encapsulation provided by the concept of an object
15 50 strong that it enables objects to be transferred




from one project to another unchanged if they
provide appropriate services. If changes have to be
made the change process is controllable, as it is
restricted to changing the services provided by the
object.

10. Formal Methods in Requircments and
Design.

1t has been known for more than ten years that the
requirement for a computer system can, in

rinciple, be encapsulated in a formal mathematical
anguage. The requirement can then be proven
complete and consistent  Further, the
transformation to design and code can also be, in
principle, formalised to ensure that the eventual
code 15 proven to instantiate the requirement. This
is most attractive It suggests the possibility of
proving that programs are correct  Testing does not
do this, at best testing proves that the software 1s
not incorrect in the aspect which is being tested
Yet, in practice, formal methods are rarely used.
Many reasons have been advanced to explam this,
From the pomt of view of this paper the relevant
reason 1y that of scaling  Formal methods work
well for small systems but the time and cttort
required to apply formal methods seems not to have
a hnear relanonship with system size, it increases
much more tapidly

Cunient design methods give the designer great
ficedom 1n the way he chooses to decompose the
system into activities and data flows so, it formal
methods are to be applied, they have to be apphed

12 References.

to the whole system as a single entity. At the
current state of development of formal methods that
is, in practice, inipossible.

In an Object Oriented Design the objects have more
solid boundaries and communication between them
is more formalised than activities and the
communication between them in current methods.
This ameliorates the scaling problem. An object
could be proven correct independently of the rest of
the system. Then, since the inside of an object is
hidden, a system or subsystem could be proven as a
set of interacting objects.

11, Summary and Conclusion.

Software Quality is 10 a large extent determined by
how well the developers follow the principle of
Data Hiding, Low Coupling and High Cohesion.
Current design tools provide good support for the
tust two ot these concepts; support for high
cohesion 1s fess good  The newer methods, based
on object oriented principles, retain the advantages
ganed by current methods and support high
cohesion,

Formal methods, which (o date have promised
much more than they have produced, may gain a
new lease of life as object orented methods
become more popular.  The greater encapsulation
provided by these methods may make the use of
formal methods feasible on quite reasonably sized
systems.
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EFA is a multanational project. As to pertinent data processing support, agreement had to be reached
between the partner nations (both industry and government) The paper will show that, generally agreements
were worked out by arriving at the lowest common denominator since none of the participating nations was
prepared to accept standards established by another partner nation, which would have meant giving up its

own standard.

The paper will address important additional information as well as experience gained to date:
* some general information on the EFA Project, including important determinations made

* the status of the software tool selection and procurement in the EFA Project

* a comparison between required and actual availability of software tools in the EFA Project

The paper will conclude by trying to point out what could be done in order to preclude the problems

mentioned.

1. INTROUCTORY RENRKS

EFA 1s a nmultinational project., As to
pertinent data processing support, one could
therefore not simply apply national standards and
procedures. Rather, agreement had to be reached
between the partner nations (both 1industry and
governaent) .

The following wi1ll show that important
determinations have becn nmade within the
multinational framework at a very early stage.
However, these were generally agreements worked
out by arriving at the lowest common denominator
since none of the participating nations was
prepared to accept standards established by
another partner nation which would have meant
giving up 1its own standard, Later on, I am goiny
to describe what comes of snch a course of action.

Since these facts alcne are not very
meaningful, I will address important adiitional
information as well as experience gained to date,
Te begin with, T am going to offer some general
tnformation on the EFA Project, 1including
1aportant determinations made. Followang that, I
v1ll explain the status of the software tool
selection and procurement 1in the project. After
drawing a comparison between required and actual
avdilability of software tools, I will conclude by
trying to point out what could be done in order to
preclude the probleas mentioned.

2. REUIKEMONTS ESTABLISHED BY THE NATIONS
2.1 BACKGOUND

EFA 18 a quadrinational programme which 1s
jointly carried out by the United Kingdonm, Italy,
Spain and Germany. Early on, France had also
participated in the prograame.

Due to the fact that the United Kingdom,
Italy and Germany have been implementing the
Tornado Progranze together, the course of the EFA
Project has already been set to a certain degree,
which also shows 1n formulations of the earliest
documents.

The requirements to be met by the developzent
tools have been considerably 1inrfluenced by
Tornado. What had been agreed on trinationally,
was now agreed by five nations or four,
respectively.

2.2 EURPEN STAYY TARGET (RST, 11.10,84)

The ESR formulations have been kept in fairly
general terms and, actually require only
* in para 4.2.1 the use of a High Order
Language, and
* 1n para 6.2.1 the use of development tools.

Para 4.2.1
"The coamon use of a High Order Language and
a Bus-System 1s regquired.”

Annex Q of the EST lists the following detail
requirements:

* while France demands LTR

* the other nations call for Ada, and

* the United Kingdom also for Coral 66.

Para 6.2.1

"To build confidence in the ultimate quality
of the hardware/software system the contractor 1s
to submit a detailed proposal for a System
Development Environment (SDE) for approval before
installation. This should cover the following
aspects:

* codes of practice
software tools
test and integration
use of language
documentation standards.”

2.3 EURPEAN STAFY REQUIRDMENT (ESR, 09.12.85)

In the next phase (meanwhile without France)
the formulations become considerably more precise:

* Ada 1s the preferred High Order Language

* In case of non-availability of an Ada
Programming Support Envircneent (APSE).
CORE/EPOS, a combination of tools, which
had been agreea on in the case of Tornado,
should be used.
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Para 6.3.2.1

"Software 1s to be written in the HOL Ada
throughout; exceptions may be made 1n particular
areas ... all such exceptions are to be agreed
with the Air Staffs.”

Para 6.3.3

"To build confidence in the ultimate quality
of the bhardvare and software system and the
related documentation the contractor 1s to submit
a detailed proposal for a System Development
Environment (SDE) for approval by the nations.
This 15 to cover the following aspects:

* standards and procedures

* software tools and methods
* use of language
*

Para 6.3.3.1

"In the absence of a full Ada Programming
Support Environment (APSE) an EPOS/CORE system for
all aspects related to:

* design and development

* project management
* configuration management
* computer generated software documentation
* "

2.4 EUNPEAN STAFY R KR_D! ESR~D
18.09.87)

Now, the formulations are becoming
* more precise on the one hand
1t 1s stated
~ when exceptions to using Ada are
petmitted, and
~ who has to approve the waiver (the
Nations, rather than the Air Staffs)

* and more cautious on the other hand.
as to the development tools, there is only
1n case of non-availabilaity of an Ada
Pcogramming Support Environment a require-
ment that a tool combination be used like
the one which had been agreed on in the
case of Tornado {(CORE/EPOS),

Para 6.3.2.1

"Software 1S to be written in an HOL. For all
systems Ada shall be used, restrictions on the use
of Ada or some of 1ts features will have to be
agreed between Industry and Nations."

Para 6.3.3

"To build confidence 1in the ultimate quality
of the hardware and software system and the
related documentation the contractor 1s to subzit
a detailed proposal for a System Development
Environment (SDE) for approval by the nations.
This 1s to cover the following aspects:

* standards and procedures

t software tools and methods
* use of language
*

Para 6.3.3.1

“In the absence of a full Ada Programming
Support Environment (APSE) the SDE concept shall
be based on the use of tools such as CORE/EPOS for
all aspects related to:

* system requirement specirfications/interface

specificatzons

* design and developument

* configuration managenent

* computer generated software documentation.”

2.5 VEARCN SYSTEM DESIGN MO PERFORMANCE SPECIFICATION
¥SDPS, 01.10.88

The WSDPS - the development contract
technical specification - does not directly
specify the tools to be used. Rather, 1t says
under "Software Design Principles”

Para 1.3.4.1
“Software shall be designed and developed
using the SDE (see part IiI, para 2.6.6)"

and there, the following 1s stated:

Para 2.6.6
“The SDE shall provide a complete environment
for system/software design and development.

It comprases:

a. CORE/EPOS and other tools agreed by the
customer to be used for system/software
design and documentation.

b. Configuration Management and Modifica-

tion procedures and tools... .

EFA Software Standards ...

d. Programme support environment for Ada
and any othss language ...

e The tools/software to support Ssoftware
verification, testing, integration,
validation and certificatron (including
analysis tools).

f. Generation of design documentation and
cross reference between documentation
levels.”

o

While 1industry has thus to propose the tools
to be used, the Nations - particularly because of
the influence on the 1in-service phase (Software
Maintenance) - will have to accept that proposal.

2.6 PROJECT SPECIFICS

Before addressing data processing details
regarding the EFA Project, let me mention a few
project specifics,

The companies Eurofighter (EF) for the
aircratt and EureJet (EJ) for the engine are
consortia tormed by national companies. In the
following, I restrict myself to the atrcraft
consortium, the Eurofighter Company, which 1s made
up of the following national companies:

* Alenia (Italy)

* BAe {United Kingdom)

* CASA (Spain) and

* MBB/Dornier (Germany).

Each Eurof:ighter Partner Company (EPC) 1s
within EF responsible {System Design Responsible
Company = SDR Company), for specific tasks. Joint
Teans consisting of personnel of all companies {(in
the case of avionic design such as the Avionic
Joint Tean (AvJT) based with BAe at Warton, which
15 also the leading office for all data processing
matters) were formed which are responsible for the
design of the various EFA systeas.

There 1s an 1important project characteristic
in that all docvnments (for exampie, also tender
specifications) prepared by the SDR Company or the
responsible team, have to be endorsed oy the other
companies, that 1s, having been prepared, they are
forwvarded to the partner companies for comments.
Subsequently, Eurofighter Co. must approve and
issue the documents.




This course of action 1s very time-consuming
and 1t has happened that a report took nearly one
year after preparation to arrive at the Nations
and at NEFMA {(our "NATO EFA Development,
Production and Logistic Management Agency"). One
reason for that procedure may well be that each
EPC wants “to have a say"” 1in each area - among
other thangs, because of the national
responsibility vis-a-vis 1ts own government - and
that the EPC 1s probably expected to do that on
account of requirements established by the
respective nations.

3.  SHECTION AND PROCUREMENT OF SOFTMARE TOULS

Work on EFA data processing aspects between
the Nations, including NEFMA, and industry is done
in the Systems Integration and Scftware Group
(SISG) which held its first meeting from 17 to 19
September 1986, that 1s, more than two vyears
before the development contract was signed.

3.1 PREOONDITIONS

Initially, basic matters had to be clarified
and settled before the actual selection and
procurement of tools could be tackled.

3.1.1  POLICY STATRMENT
The first activity engaged in by the data
processing specialists of the four nations (from
both, government and 1industry) was to determine
data processing guidelines, according to which
systea/software design and development was to be
acconplished. By the spring of 1987, a Policy
Statement had been prepared and agreed, which,
among other things, specified
* 1ts applicabilaity to specific software
1tems (that 1s, all those required for the
weapons system and the weapons, Ssystem
development) .

* which significant management tools ({plaus,
documents) were to be prepared (detailed
plans 1in accordance w:th the EFA Software
Standards), and

* on which standards these management tools
were to be based ({(agreement was reached
that system/software design and development
be execvted in accordance with DobD-STD-2167
thereby tiking into account RTCA-DO 178/R).

3.1.2 [EFA_SOFNARE STANDARDS
In line with the above determination and
subsequent to the Policy Statement whereby the
latter's requirements are taken into account, the
EFA Software Standards were established beginning
in spring 1987. They must be applied to all
software including equipment software and by all
equipment suppliers. Since 1989/1990, these
standards have be~n available as binding Project
Standards, and they also define
* the course of action to be taken by the
software configurations management in the
Burofighter Software Configuration Manage-
went Plan (PL~J-019-E-~1003) (SCMP, Issue 1
of March 1989)

* the development documents to be prepared,
as well as the course of action to be taken
1n software development and certification,
1ncluding software safety, 1 the
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Eurofighter Software Development Standard
(PL-C-019-E-1006) (SDS, 1Issue 1 of March
1990))

* the us2 of tools agreed in the Eurofighter
Software Methods and Tools Applications
Standard (PL-J-019-E-1010) (SKTAS). This
document will be prepared according to the
project progress made. While the pertinent
parts for System Design (Annex A) and
Software Design (Annex B) have been
available so far as Issue 2 of June 1990,
we are still waiting for the first drafts
for Software Coding (Annex C) and Software
Testing (Annex D).

* the documentation of software development
1n the EFA Software Documentaticn Standard
(PL-J-019-E-1011) (SDOS, Issue 2 of March
1990).This standard contains - in annexes -
the model texts for the documents to be
prepared according to the SDS. These model
texts are prepared according to the project
progress made. At this point 1in time, about
75 percent of them are available.

3.1.3 HIGH ORDER LANGUAGE

Right from the start the requirement was
established by the participating Nations to use a
High Order Language (HoL), and also which one -
namely, Ada. In line with that determination, and
beginning 1n 1987, that is, parallel with the EFA
Software Standards, another Policy Statement was
prepared by data processing specialists of the
four nations (from both government and industry)
which addresses the Ada compiler. With that Policy
Statement, entitled "The use of Ada Compilers in
the EFA Project” and dated 10 February 198%2, among
other things

* sgelection (procedure)

* development (course of action)

* validation matters, and

* use (updates, version control)
were determined.

It was an 1mportant task for the System
Integration and Software Group to decide which
compiler should be used. Prior to that, however, a
decision had to be made as to which u-processor
should be used and which measures were to be taken
1n order to meet the reliability requirements for
flight safety critical software.

In early 1988 Eurofighter Co. presented a
study entitled "The Use of Ada for Safety Critical
Applications”.

This study demonstrated that Ada can be used
for all safety «critical applications. The
reliability of Ada programs 1s comparable to that
of assembler programs, 1f not greater, if

* any restriction on the use of the Ada

language 1s strictly adhered to (Safe Ada),
and

* the static code analysis at source code

level (= Ada) 1s made.

Any reliability probleas have been mainly
seen 1n the compirler area. In order to preclude
any possible compilation error as well as
unforeseeable run-time behavior, a certain
restriction on tne use of the Ada language was
agreed, together with 1nitial target code
verification.
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3.1.4 STAOARD p-PROCESSOR

In early 1988, Eurofighter Co. presented the
results of a market survey in the form of a p-
Processor Report. In it, the Motorola
MC68020/68881 was proposed to become the standard
p-processor for the EFA Project.

This n-processor (and this is why we speak of
a "standard p-processor") will invariably be used
by all subcontractors, that 1is, only one
programming  environment {compaler, run~time
System, debugger, etc.) 1is vrequired for the
project.

Eurofighter and Motorola have yet to agree on
a conditions, 1in which Motorola Co. would, among
other things, guarantee
* supportability for a period of 25 years,
beginning on the date the last aircraft
enters into service, and
* enhanced radiation hardening.

In this connection, the main problem 1is that
Kotorola Co. 1s not prepared {(and probably just
cannot guarantee) that some years from now, the
required production would still be based on the
old technologies and old masks, when - 1in the
neantine ~ production would have been modernized
and the masks reduced in size,

3.2 THEEFA_SYSTEM DESIGN ENVIRONMMENT (SDE)
SDE includes tools for

systen design

software design/developnent

Ada compiler, and

static and dynamic test tools

as well as

* IPSE with 1ts standard tools.

* % % %

3.2.1 TOOLS FOR SYST®M DESIGN

The basic weapon systenm perfornance
requirements had been known to industry already
with the first phase documents, that 1is, very
early. And the same documents also specified the
tools to be used for weapons system design and
development: CORE and EPOS. They could certainly
have been used also 1n the early stages of the
project in a meaningful way.

Whereas EPOS 1s mainly used

* to analyze and 1identify 1ndividual
requirenents from "plain english" texts

* to ensure requirement traceability

% to compile the Interface Requirement
Documents

COGRE 1s mainly used for the design process,
1.e. to decompose high level requirements in a
logical and consistent manner until a level 1s
reached where the requirements are expressed 1n
such  sufficiently, precise detarl to allow
software design to begin.

Already on 21 October 1985, industry thus
stated 1n a restrictive manner:
“It 15 anticipated that full facilities, both
hardware and software, allowing direct eantry fronm
EPOS to CORE w11l be available to all partners not
before August 1966."

The reason for this restriction was that the
interface routines between the existing tools CORE
(BAe Company) and EPOS (GPP Company), the so-

called CORE-EPOS transformer, still had to be
developed. The contract for that development was
awarded in October 1983.

3.2.2 TOUS KR SOFYWARE DESTGN

As to software design and development tools,
industry had conducted a market survey in 1987/88.
An important task to be performed by that narket
survey was to determine the method to be used for
software development. Following an analysis of the
documents/proposals received, Eurofighter Co.
recommended the Hierarchical Object Oriented
Design, 1n short HOOD, to the Nations as method to
be used for software development.

Here again, the market survey had shown that
the tools required were pot yet available in the
confiquration required by the project. Making use
of the resul.s of the market survey, a tender
specification was prepared and - following
evaluation of the proposals -~ in November 1989 the
Braitish company Integra Software (IPSYS) PLC (on
behalf of Software Sciences) was awarded the
contract to supply 1ts "HOOD Toolset" as Hood
tool,

Adaptation developments were also required in
the following arcas:
* traceability to CORE/EPO5 and vice versa
* Ada code extraction
* security classification attribute for
objects and 1ts printout on documents and
diagrans,

3.2.3 ADA-CONTLIR

The Project Baselined Cowpiler to be employed
according to the Policy Statement will be procured
by both Eurofighter and Eurojet, and its use by
the equipment suppliers - that is, for those who
need 1t - has been ensurad.

As to the Ada Compiler, industry conducted a
marxet survey an 1987/38, whose results were
tncorporated intn» the tender specification.
Subsequent to the request for proposal in early
1989 and their evaluation, the contract was
awarded in Feoruary 1990 to SD-Scicon Company for
XD-Ada

Adaptaticn developments were also required 1in
the following areas:

* Target Run Time System for multi-p-
processor systens

* eaulation of basic floating point
operations (1n case no mathematical co-
processor is used)

* library of mathesatical fixed and floating
point functions.

3.2.4 STATIC MDD DYWNGC TEST YOS

As already shown, the reliability of Ada
prograns - vwhere compiler errors are critical,
rather than prograrming errors - 1s comparable to
that of assembler programs, 1f not greater,
provided that

* any restriction on the use of the Ada

language 1s strictly adhered to (Safe Ada),
and that

* the static code analysis at source code

level (= Ada) i3 made.

As said before, target code verification will
be applied as long as the compiler stability has
not beea proven.




Thus, when testing, appropriate tools must be
used to check whether the programmer has observed
the restrictions agreed.

Vhile the SPARK Examiner (by PVL) is used to
make the static code analysis, TESTBED (by
tiverpool Data Research Limited (LDRA)) 1s used
for the dynamic analysis. These tools, however,
are only required to be used for "Risk Class 1
Software”, that 1s, Flight Safety Cratical
Software.

The license agreements for these "off the
shelf” tools were signed in mid 1990, following a
market survey.

3.2.5 INTEGRATED PROGRAMMING SUPFORT ENVIROENT (IPSE)

The aim had been to find an Integrated
Programping Support Environment, into which
possibly all of these tools listed under
paragraphs  3.2.1  through 3.2.4 could be
integrated. 1In add.tion, it was to 1include
standard tools, such as those for

* documentation

* configuration control.

As to the Integrated Programming Support
Environment, 1ndustry had conducted an 1inmitial
market survey at the end of 1987/in early 1988, to
be followed later by the request for proposals. In
the spring of 1990, Eurofighter Co. selected the
tool "Perspective", offered by the British company
System Designers. Since significant parts of the
IPSE were not available as required, here again, a
contract had to be awarded for adaptation
developments also in the following areas:

* user interface (format of terminal windows)

* data management facilities

* database protection facilities

» configuration control

* 1ntegration of the interface control tool

"Ingres".

4. AVAILARTLIYY VRRSUS REQUIRENINTS
4.1 GHERAL

As can be seen from the observations, the
entire system and software design and development
of the EFA Project was to be carried out tool-
supported and top-down. In this conncction, a
distinction 1s being made between tools for
systen design
software design
compiler, as well as for
miscellaneous purposes, such as standards,
test tools and IPSE.
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Regarding all these tools, a decision has
been taken 1in the neantime as to what is to be
used by the aircraft consortium (EF) and 1ts
equipment suppliers, namely

* CORE/EPOS for system design

* the HOOD Toolset by IPSYS for software

desagn

* SPARK Examiner by PVL for static code

analyses

* TESTBED by LDRA for dynamic tests/Analyses

* XD-Ada by SD-Scicon as Ada compiler

* IPSE by System Designers hased on

Perspective.

4.2 THE TOUS IN DEDAIL

Let me now reverse the above sequence, that
1s, start with IPSE and finish with the CORE/EPOS
system design tools.

4.2.1 IPSE

An 1initial version of IPSE should have been
available in autumn 1990, but the acceptance tests
for this version failed because of problems
maintaining database integraty due to hardware
problems. It was planned, that IPSE should be
available in 1ts entirety about mid 1991 but this
vill no longer be possible. Nevertheless, while
this is not the optimum, it will not result in any
significant problems or delays in the programme
especially as the IPSE 1s only used by the EPCs.

4.2.2 STATIC AND DYWAMIC TEST TOOLS

Currently available versions of these test
tools (SPARK Examiner and TESTBED) have been
available 3ince November 1990. This seeas to be
fully sufficient since the software tests - even
those conducted by equipment suppliers - did not
begin before late 1990. Updates of these
comrmercially available tools are required.

4.2.3 THE ADA COMPILER

First versions of the Ada Compiler have been
available since May 1990 for the standard u-
processor. In 1ts entirety 1t will be available
about 12 months later. This 18 fully sufficient
since the equipment suppliers started coding not
before the middle of 1990, and since the compiler
versions available at that time had been
sufficient for the initial work.

4.2.4 HOOD-TON,

vhile first versions of the HOOD Tool have
been available since December 1989, 1t will be
available in 1ts entirety in the middle of 1991,
Here again, the tool has been available in good
tise for the develope:nt of both aircraft and
equipment software.

4.2.5 CORE/EPOS

Even though the CORE and EPOS tools had
already been released since 1987 for project use,
their actual use had been limited since the CORE-
EPOS transformer - just like the associated
versions of COKE and EPOS - could not be used.

The development, which was started 1n
October 1988, had taken =much longer than was
expected 1in the Eurofighter letter referred io
earlier. It was not until the 16th meeting of the
Systems Integration and Siftware Group held on
12/13 November 1990 that industry reported
“now the transformer can be successfully used on
the project”.

But due to the necessary paperwork 1its
release for use on the project only took place in
early December 1990.

4.2.5.1 REASONS FOR LATE AVAULABILITY

The first quadrilateral document, the ESR,
was signed in late 1985, This vas the beginning of
the joint definition phase. However, some time
passed - although the participating nations and
industry had reached early agreement on the




tools - until CORE/EPOS, and even parts of them,
had been available to all developnent teams of the
aircraft coapaniecs, to say nothing of the sub-
contractors. Apart from the implementation of
desired/required =~ but as yet not released -
requirements, there were also general commercial
issues that hindered the rapid use of the tools by
all participants, such as

* individual or project license

* which version

* how many "systems" per company

* how many users per "system”,

Regarding the EFA project, industry has thus
worked for a long time either without the tools or
with the tools, but only to a very limited extent.

4.2.5.2 YHE _CONSAQRENCES (F LATE AVAIIABILITY

According to the basic documents, such as
EST, ESR, ESR-D and WSDPS, the whole system design
should have been carried out tool-supported and
top-down; that 1s, all concept and definition work
should have already been accomplished with data
processing support. This, howvever, was not the
case.

The technical requirements to be met by the
weapon system were laid down in the Weapon Systen
Design and Performance Specification; naturally,
in "plain language" saince this was an annex to the
main developrent contract.

A conversion to EPOS was not carried out
unt:l one year 1later (1989). Thus, the main
requirenents to be met by the weapon system had
not yet been specified for the first Functional
Requiremeant Documents (FRDs), such as Avionic
Systerx FRD and Subsystem FRDs, 1n a Requirement
Data Base. It was not until preparation of later
versions of these FRDs, that the Requirement Data
Base could be assessed.

Whether or not systex development could have
been carried out that rapidly and smoothly given
early availability of the transformer, so that one
really could speak of a top-down design, cannot be
determined by this briefer. In this connection,
the top-down design means to make the following
approach:

4 At first, preparation of the System FRDs
for the avionic, flight control and utility
control systems on the basis of the Wea,on
Systea Design and Perforaance Specification
(18t level)

* subsequently, preparation of the Subsysten
FRDs (229 level)

& based on that, preparation of the LRI
Processing/Softwars Requirement Spacifica-
tions and of the equipaent specifications
{3re level).

Abcve all, the determination as to which
requirement/task 1s to be met or carried out by
hardware, and which one by software, will be
decided not before the 2*9 system decign level.

I consider the late availability of all parts
of the system design tools CORE/EPOS {that 1s,
including the transformer, the “problem child" of
that tool coabination) as the main reason that
departure froa this ideal top-down design.

Parallel to the preparation of the design
documents (Avionic Systea FRD and Subsystem FRDs),
that 1s, before system design of the 22¢ level

(Subsysten FRDs) had been completed, the equipment
specifications were established. Otherwise - as
stated by Eurofighter Co. - the fixed target dates
of the development programme - particularly the
first flight of the first prototype (PO1) and/or
that of the first avionic prototype (P05) - could
not be met.

At an Design Review, held in January 1989,
the Avionic Joint Team explained in detail how the
basic documents {ESR, WSDPS) and the design
documents (FRDs, LRI Processing Specifications)
should serve to carry out system design and
development of both hardware and software by means
of

* a3 market survey (based on ESR)

* preliminary equipment design requirements
(based on logistic requirements of the
WSDPS and "initial unit functions” of the
System FRDs)

* tender specitications {among other things
based on the detailed functions of the
Subsystem FRDs)

* contract specifications.

The customer (NEFMA/Nations) L] not
enthusi1astic about this course of action since 1t
represents "rather an equipment specification loop
than an equipment specification route”. and since
the proposals may have a strong impact on the
system/sudsystem design.

5.  “LESSONS LENGEY

When considering all tools, one thing becomes
very clear: the design tool is most critical. All
other tools are needed later on 1in the project
11fe cycle; that 1s, there 1s usually sufficient
tige for their

* selection

* procurement, and

* any adaptation developments, 1f required.

fspecially in the case ot system design
tools, their absolutely necessary use wmay be
7as1ly put at risk as ieportant developnent steps
are initially taken without them, thus maXing
early decisions, which could be corrected, not at
all or only with great difficulty (and usually
turning out to be also very costly). To maka 1t
clear, use of tools will not prevent design
errors. But if the designer 1s using such tools,
his attention is 1n many cases called early enough
to inconsistencies and other deficiencies in his
design that correction will be possible without
too great difficulties {and usually also not great
cost).

The experiences gained from the EFA Project
to date, clearly show that
* 1nternational (NATO) standards for system-
and software developament, 1including docu-
mentation and tools, as well as
% early decisions on the design tools to be
used (that 1s, already at the start of
multinational cooperation; however, not
ouly between the naticns, but also between
the participating industrial coapanies)
are urgently required.

Noreover, a top-dovn design as described
earlier would certainly be desirable. This,
however, may be possible only if - at the time of
signing the main development contract

* the market survey has been conpleted




* the system design has bezen completed, 1if
possible down to the LRI Processing
Specification level, but at least to the
Subsystem FRD level, and

* the teuder specifications have been
prepared for all equipments/subsystems/
systenms.

This, bhowever, will not be realizable since
the basis of system design - that s, the
technical specification (in our case, the WSDPS) ~
18 usually agreed in a binding manner together
with the main development contract.

This dilemma could probably be evaded only 1if
developrent 1s carried out in stages, that is
* at fairst, system desigr unt:il the above
preconditions have been met, and
% then development with the invatation to
tender for the equipments, 15 not started
before the second stage.

However, 1 cannot really say whether such a
course of action would actually be possible and,
1f so, whether it would also help to resolve the
problems described.
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SUMMARY

The two most widely used standards
covering the development of software in
the military and civil avionics
industries are DOD-STD-2167A and RTCA
DO.178A/EUROCAE ED-12A respectively.
This latter document is currently
undergoing extensive update by RTCA
Special Committee 167 and EUROCAE
Working Group 12, with a planned
document re-issue date of the end of
1991, This paper compares DOD-STD-2167A
with the work currently being undertaken
by SC.167/%G.12.

1.  INTRODUCTION

As a direct consequence of the size of
the US defence market, the most commonly
used standard covering the development
of milijtary guidance and control
software is DOD-STD-2167A, ‘Military
Standard, Defence System Software
Development’, (Ref. 1).

RTCA DO-~178A/EUROCAE ED-12A, ‘Software
Considerations in Airborne Systems and
Equipment Certification’, (Ref. 9), has
been used by the world’s civil aviation
certification authorities as the basis
for clearing avionic equipment and
systems containing software, since 1985.
It should be noted that software is only
certificated as an integral part of
equipment or a system, never stand
alone. The document is currently
undergoing an extensive revision by RTCA
Special Committee 167 and EUROCAE
Working Group 12. The current target
date for the publication of DO-178B/ED-
12B is December 1991.

This paper compares the requirements
contained in DOD-STD-2167A with the
discussions taking place within SC-
167/WG 12, It must be emphasised that
the revised DO-178A/ED-12A guidelines,
discussed in the text, are based on the
author’s understanding of the status of
the activities within SC-167/WG 12 as at
the end of January 1991.

Note: The terms SC-167 and LO-17€3 are
used subsequently in the text to
reflect the activities jointly
being undertaken by SC-167 and WG
12, and the current working
position of the revision to DO-
178A/ED-12A, respectively.

UK DEF STAN 00-55, ‘Requirements for the
Procurement of Safety Critical Software
in Defence Equipment’, was issued in May
1989 as a draft interim sgtandard. A
number of its requirements, includin

mandatory use of formal mathematica

methods, and use of an organisationally
independent verification and validation
team, gave rise to strong reaction from

UK industry. As a consequence of the
large number of commeals received, the
document has been undergoing, what 1is
believed to be, significant
modification, It had been intended that
this paper would compare the contents of
the reviged standard with the
requirements of DOD-STD-2167A and DO-
1788B. However, at the time of writing,
the revised document has not been
released, the comparison has therefore
not been possible.

2. HISTORY
DOD-STD-2167

DOD-STD-2167 was initially released in
June 1985 with the aim of reducing the
occurrence of programme cost and
schedule overruns and at improving the
quality and maintainability of software
products.

Revision A of the standard was released
in February 1988 in orxder to take
account of the comments and criticisms
received following the practical
application of the requirements
specified in the original document. In
particular, the new 1issue addresses the
identified deficienciu:s with respect to
incompatibilities with the use of Ada
and with new and evolving software
engineering technologies.

RTCA DO-178

RTCA DO-178 was first published in
January 1982 following agreement,
between the certification authcrities
and industry, on the need for guidelines
covering the certification of avionic
equipment containing digital computers.
The document was specifically aimed at
providing guidance on hew the
authorities’ requirements, particularly
with respect to safety, might be
satisfied,

In 1983 it was decided that the document
should be revised to reflect the
experience gained during the initial
period of field application. Revision A
ogsghe document was published in March
1 .

Following the circulation of a
questionnaire by the FAA to industry,
requesting information on the experience
gained and problems identified with
using DO-178A, RTCA established SC-1€7

in October 1989. SC-167 was tasked
updating the document with the aim of
making software production more

effective and efficient, and at the same
time, enable a more consistent
interpretation,
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A copy of the Terms of Reference for SC-
167 are included as Appendix 1.

3. PURPOSE AND SCOPE

DOD-STD-2167A

The main purpose of the document is to
provide a procurement specification for
deliverable software in the fosm of
Computer Software Configuration Items
(CSCI’s). However, the requirements may
also be applied to the development of
software delivered as part of Hardware
Configuration Items, firmware and non-
deliverable software.

The document defines the software
development process as shown in Figure
1. The fact that the process begins and
ends with system related activities,
emphasises the importance of the need to
control the interface between the system
and software development activities.

DOD-STD-2167A, in addition to the
specific requirements it contains, calls
up five further standards covering
configuration control, specification
practices, management and technical
reviews and audits.

RTCA DO-178B

The purpose of the document is to
identify and describe software
development and management methods and
techniques, whose application will
result in software products which
perform their intended functlion in
compliance with airworthiness safety
requirements.

The guidelines axe intended for use in
either the development, modificaticn or
approval of systems and equipment. They
may also be used for the qualification
of software tools and methodologies,
used in the certification process. The
guidelines are not intended to Dbe
applied to user selectable databases or
to support software which is not safety
related.

The document only provides guidance on
software considerations, it is not
within the scope of DO-178B to provide
guidance on systems processes. The
document only refers to items of
information which are expected to be
transmitted between the system and
software processes.

4. MANAGEMENT OF THE SOFTWARE
PROCE

DOD-STD-2167A

The equipment supplier is required to
establish a project software development
life-cycle consisting of the activities
identified in Figure 1. The activities
are permitted to overlap and be
performed iteratively or re-cursively.

Details of how the identified activities
are to be performed and how they relate
to the formal reviews and audits,
required by the contract, are documented
in the project Software Development Plan

(SDP) . With the exception of scheduling
data, all updates to the SDP require
customer approval. Any specific ascects
of the proposed development programme
which are considered to be a potential
source of technical, cost or schedule
risk, must be identified, analyzed,
prioritised and monitored.

The potential need for subcontractor
management, establishing an interface to
an Independent Verification and
Validation body and security are also
identified.

The supplier is required to monitor the
utilisation of processing resources
throughout the programme and to re-
allocate resources as required in order
to meet the reserve requirements.

If use of a High Order Language is not
mandated in the contract, the choice of
language to be wused is subject to
approval by the customer.

The need to plan the transfer of the
product from a development to a support
environment is identified together with
the associated requirements for
maintenance and documentation specific
to the support activity,

RTCA DO-178B

The primary purpose of the guidance
material which will be provided in
relation to the management process, is
aimed at providing the certification
authorities with confidence that the
software products meet their
requirements with respect to safety.

The software development process model
likely to be adopted by the document
will be based on a subset of the
proposals made by the IEEE, (Ref 2).
This defines the software lifecycle as a
sequence of processes, see Figure
Each process includes a number of
activities which must be completed in
order to complete the 1lifecycle,
however, activities need not be
completed in a single ‘pass’ through the
process.

The appropriate software lifecycle is
determined for each software development
task. Large developments could be
broken down into separate tasks, each
having a distinct lifecycle.

A software lifecycle is made up of
software development and integral
processes. Development processes are
product orientated activities, i.e.
planning, requirements analysis, design,
code and  integration. Integral
processes provide engineering support
and assurance functions such  as
verification, configuration management,
quality assurance, etc. These latter
processes are required to ensure the
completion of the 1lifecycle and the
quality of the end product.

The planning process is fundamental to
the development of good quality
software, it is during this phase that
the specific lifecycle(s} for the




project is (are) defined, This planning
activity only relates to software
development and is subset of overall
project management.

Note: Business or commercially related
prcgramme management activities
arxe currently being addressed by
the ARINC/AEEC Software
Management Sub-Committee which is
developing Project Paper 652
'Guidance for Avionics Software
Management’ .,

5. SYSTEM DEFINITION

DOD-STD-2167A

The standaxd divides the  System
Definition phase into two separate
activities. System Requirements
Analysis, which involves a review of the
{customer) system specification to
remove any deficiencies eg ambiguities,
omissions, inconsistencies, etc., and
System Design, where the requirements
are allocated between hardware, software
and the ‘user’. This latter activity
results in the system being partitioned
in to hardware and software
configuration items, and, where
appropriate, manual operations.

In order to minimise the chances of the
system entering a hazardous state during
operation, the supplier is required to
pe-form a safety analysis. Any
potentially hazardous events must be
clearly identified and documented.

As part of this phase the supplier is
required to develop preliminary software
and interface requirements for each
CsCI.

The output of the System Definition
process provides a ‘tunctional baseline’
on which the software requirements will
be based.

RICA DO-1788

As stated in section 3, systems related
activities are outside the scope of DO~
178B, SC-167 is only addressing those
items of information which pass between
the systems and software processes.

Note: SAE, at the request of the FAA,
has established a group tasked
with developing system
integration requirements. This
group is working closely with SC-
167 to establish an interface
between the two activities.

The purpuse of the system/software
interface is to identify the input
requirements, necessary to enable the
software development process to proceed,
and the outputs of the process, needed
for use in system validation. One of
the major issues being addressed is the
traceability and accountability to those
system requirements which are related to
system safety. The aim being to
establish safety directed software
development process. Figure 3 contains
an overview of the flow of information
between system safety related processes
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and the currently proposed software
development processes.

System safety requirements may be
satisfied in two ways, namely, preclude
by design oxr prove absence through
verification. All safety requirements
allocated to software will be documented
in the software requirements. The
requirements will also specify the
software criticality level.

S§C-167 has currently identified five
levels of software criticality, A
through E. The levels are tied to the
failure condition categories as defined
in AMJ 25-1309 i.e. Catastrophic,
Severe/Major (Hazardous), Major and
Minor, plus a category corresponding to
the case where there are no safety
implications. The selection of software
level will be based on the potential
contribution of software to a failure
condition, as delermined by a system
safety assessment activity. Appendix 2
contains defizitions of the failure
condition categories and the
corresponding software levels.

6. SOFTWARE REQUIREMENTS ANALYSIS
DOD-STD-216T7A

The purpose of this phase is identified
as an analysis of the system
requirements allocated to each CSCI and
the definition of a complete set of
software and interface requirements.
Included in the analysis are the
processing resource and reserve
requirements for each configuration item
including throughput, memory and I/0
port loading.

The resultant CSCI software and
interface requirements form the
‘allocated baseline’ for the software
design process.

RICA DO-178B

The irputs to this activity are
identified as system requirements
allocated tu software, specific safety
related requirements, software
criticality level, project standards and
the approved project approaches to
software development, quality assurance
and configuration management.
Subsequent to the initial pass through
the process, inputs will take the form
of requirement changes and feedback from
latexr processes.

The activities associated with this
process are aimed at generating a well
defined and traceablc set of software
requirements for use Dby subsequent
processes. Any deficiencies identified
during this process must be fed back
into the system process.

The only impact of software criticality
level on this prccess is likely to be in
the level of detail provided by the
documentation.
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7.  SOETWARE DESIGN
DOD-STD-2167A

The standard separates this activity
into Preliminary and Detailed Design.
The process involves the partitioning of
each CSCI into Computer Software
Component s (CSC’s) and Computer Software
Units (CSU’s). An example of a
‘typical’ decomposition of a CSCI is
shown in Figure 4.

The prellmznary design act1v1ty results
in the definition of the high 1level
design of each CSCI and allocates
software and interface requirements to
CSC’s This activity also involves the
prelxmxnary design of the interfaces
external to the CSCI,

The detailed design activity involves
the breakdown of the high level design
to unit level, by allocating software
requirements from the CSC’s to the
CSU’s The detailed design of the
interfaces external to the CSCI is also
developed during this phase.

There is a requirement to consider the
use of Non-Developmental Software (NDS)
ie re-usable software, commercial off-

the-ghelf (COTS) software, and
Government furnished software, during
the software design process. Any use of

NDS software must be agreed by the
customer, identified in the prOJect
plans and documented in accordance with
the requirements of (he standard.

In order to assist the future
understanding of both the high level and
detailed design, supporting information,
such as rationale, results of analyses
and trade-off studies, etc., must be
retained and documented.

RTCA DO-178B

The design process is divided into two
parts, high-level architecture
definition and detailed software design.
The architecture definition activity
involves the allocation of requirements
to high level software functions, plus
the definition and design of the
hardware/software and software/software
interfaces. The detailed design process
includes definition of the low-level
structure of the software tasks and che
allocation of requirements to software
units.

The inputs to the process, in addition
to the software and interface
re irements, include design standards

the approved project approach to
tools, verification, configuration
management and quality assurance.
Following the initial pass, inputs also
arise as a result of requirement changes
and feedback from subsequent processes.

The document will also address the use
of software developed as part of anothex
project i.e. re-used software, and
software supplied by a third party e.q.

Ada run-time libraries and  COTS
software. Consicevation will be given
tc the consequential impact on the

design process of including software not
necessarily developed to the same
standards and procedures.

Guidelines are also being developed to
cover special design requirements for
developing ‘User Modifiable’ software.

This is defined as software which may be
modified, within fixe( constraints, by
the end user, without any requirement
for re-certification, The limits,
within which, the user is permitted to
change the software, are identified and
approved by the certification
authorities, at the txme the equipment
is cleared to enter service.

The process product is a  design
description, including traceability back
to the softwire requirements. The only
impact of software criticality level on
this process is 1likely to be in the
level of detail provided by the
documentation generated.

8. SOFTWARE IMPLEMENTATION
DOD-STD-2167A

The standard specifies language
independent coding standards and the
supplier is responsible for developing
project spe01f1c codes of practlce in
accordance with these requirements.

Following acceptance by the customer,
the standards are employed in the
implementation of the requirements of
each CSU.

RTC2 DO-178B

The coding process involves the
production of source code based on the
software design and requirements. It
will be generated in accordance with
project coding standards and subject to
the approved quality assurance and
configuration management procedures.

Any deficiencies identified in the
requirements handed down must be fed
back to the precedlng processes for
correction or clarification.

9. SOFTWARE VERIFICATION

DOD~STD-2167A

The verification requirements contained
within the standard are distributed over
a number of activities and involve
reviews, product evaluations,
development testlng and formal
qualification teatlng An important
aspect of the verification process is
the need to provide documented
traceability of the system requirements
allocated to each CSCI, its CSC’s and
CSU’s and to formal test cases.

The supplier is required to conduct or
support formal reviews at various stages
of the project as indicated in Figure 1
All technical reviews are required to be
performed in accordance with MIL-STD-
1521 (Ref. 8). The standard does allow«
sufticient flexibility to enable reviews
to be planned and scheduled to mee:z
project needs, multiple reviews (e.q.
PDR’s and CDR's) are also permitted.




Evaluations are required to be performed
on all deliverable software and
dccuments at specified stages in the
development life-cycle. In orxder to
ensure adequate objectivily, personnel
involved in the development of a
product, may not conduct its evaluation,
but, members of the engineering team are
permitted to participate in the
activity. All records associated with
evaluations, including problem
identification and corrective action,
must be retained and available for
review by the customer. Details of
default evaluation criteria are provided
by the standard, but the supplier is
free to propose alternate or additional
criteria, subject to customer approval.

The supplier is required to perform
development testing on all CSU’s and
integration testing on all CSC’s to
ensure that they satisfy their
gpecifications. In both cases the test
procedures and results must be recorded
and retained.

Following completion of the integration
testing activity, the process by which
the CSU’s and CSC’s are combined to form
an integrated software product i.e. a
CSCI, the product together with its
associated formal test documentation, is
reviewed to determine its readiness for
Formal Qualification Testing (FQT).

The supplier is required to develop and
document plans and procedures for
performing FQT in a Software Test Plan
{STP) . Following its acceptance by the
customer, with the exception of
scheduling information, all changes to
the STP must be subject to customer
approval.

The STP is required to contain details
of the software development environment

to be used, including information
relating to its verification,
configuration management and
maintenance. Further, in oxder to
ensure the required deqgree of
objectivity, persons involved in the
development of the software, may not

conduct the FQT, however, members of the
engineering team may Yarticipate in the
activity. "The STP will contain details
of how the stipulated 1level of
independence is to be achieved.

FQT activities related to each step in
the software development life cycle,
shown in Figure 1, are identified within
the standard.

when the CSCI testing activity has been
completed, the software product must be
integrated into the system and the
system validated agair st the
requirements identified and documented
during the system requirement analysis
phase.

Functional and Physical Configuration
Audits must be performed on each CSCI on
completion of either the CSCI, or system
integration activities. The product of
this activity provides the ‘product
baseline’ for all subsequent activities,
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On completion, all documentation
associated with the FQT and audit
activities is required to be reviewed
prior to deliveiry to the customer.

RTCA DO-178

The document will identify verification
as an integral process and as such,

verification related activities are
carried out as part of, or in parallel
with, the development processes. The

guidelines will divide the verification
process into two principle activities ie
reviews and analyses, and testing.
Emphasis will be on the importance of
reviews during the requirements
analysis, design and coding processes
and on testing during the integration
process. The need to perform analyses
during all phases of the life-cycle will
also be emphasised.

Reviews and analyses are required to

ensure the correct and complete
translation of, system requirements to
software requirements, software

reguirements to design and eventually to
code. At each stage, any requirements
related to safety must be identified and
addressed specifically. The review
activity must include checks to assure
adherence to the appropriate project
standards, whilst the analyses verify
compliance with, and traceability, to
higher level requirements.

The guidelines will identify the fact
that since the design process make take
the form of a number of iterative steps
the verification activity itself may
also be iterative.

The results of the verification
activities must be recorded and
retained, details of problems

identified, logged and corrective action
tracked. Traceability is also required
from system requirements to the
verification products. 1In some cases,
particularly where the software is
classified as safety critical, a review
of the verification products may be
required, in order to provide assurance

of the completeness i.e.
comgrehensiveness, of each verification
activity.

Testing 1is identified as providing
evidence that a function has Dbeen
implemented correctly, and as a means of
identifying interface definition
deficiencies. The benefits ot

addressing the specific needs of the
testing activity during the requirements
analysis and design phases will be
identified, as will the need to test for
both normal and error conditions.

The document will identify three
categories of testing ie low-level,
software integration and
hardware/software integration., It will

also emphasise that the majority of the
test procedures should be developed fron
the software requirements. There will
be a requirement to carry out e
structural coverage analysis on the
requirement based test procedures anc
source code, to demonstrate that the
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code structure has been adequately
exercised. This latter activity may
identify the need for additional test
cases.

The guidelines will identify that the
depth and scope of the verification

rocess is governed by the criticality
gevel of the software. The document
will provide guidelines on the minimum
verification ~requirements for each
software criticality level.

In order to ensure that the right level
of objectivity in the various
verification activities, the
verification of the individual products
of the software development process,
must be performed by someone other than
the person(s) who developed the product.

10. SOFTWARE CONFIGURATION MANAGEMENT
DO-STD-2167A

The supplier is required to establish
and maintain a software development
libraxy together with the necessary
supporting plans and procedures. The
latter are required to enable the
software and related documentation
produced during the development process,
to be identifled and controlled. All
problems identified with software and/or
documentation placed under configuration
control, or with the development life-
cycle processes, are required to be
subject to a corrective action
procedure. This process will include an
analysis to detect any adverse trends in
the problems identified.

Minimum requirements with respect to
configuration identification, control
and status accounting are provided,
together with category and priority
clasaifications for froblem reporting.
The standazd also calls up DOD~STD's 430
and 481 (Refs. 6 and 7 respectively).

The specific configuration management
zeguirementa related to each step of the
software development life cycle, shown
in Figure 1, are identified within the
standard.

RTCA DO-178B

To date, SC-167 has not reached any firm
conclusions with respect to guidelines
for software configuration management.

It has been agreed that there is a need
for a disciplined configuration
management  approach throughout the
software product 1life-cycle, It is
considered important that identifiabile
confiquration items and baselines are
established to enable the software to be
controlled, documented, verified,
maintained, reviewed and audited.

It is also accepted that there is a
requirement for a formal change control
procedure to be in place which includes
a method of recording problems and
tracking their resolution.

11. SOFTWARE QUALITY ASSURANCE
DOD-STD-21673

The standard does not address the
requirements for quality assurance
explicitly, however, the need for
independence in carrying out the
evaluation and testing activities can be
classified as a quality assurance
requirement. Also, a number of the
default product evaluation criteria,
identified in the docurent, can be
considered to be quality assurance
related.

Military project software quality
assurance requirements are provided by
other documents such as DOD-STD-2168 and
AQAP 13 (Refs. 4 and 5 respectively).

RTCA DO-178B

SC-167 has yet to reach any firm
conclusions on guidelines for software
quality assurance.

The objectives of software quality
assurance process have been identified
as:

(a) to assure that plans, standards and
procedures are established and ’fit
for purpose’,

(b) to assure that approved plans,
standards and procedures are being
complied with,

(¢) to assure that the evidence eg
records, etc., provide confidence
that the software products conform
to the established technical,
procedural and safety requirements,

(d) to ensure that the entire
development life-cycle process is
reviewed and any deficiencies
identified and corrected.

The above will be achieved by closely
monitoring and auditing the project
activities, whilst maintaining the
independence of the quality assurance
function.

12. DOCUMENTATION
DOD-STD-2167A

The content and format of each
deliverable document is defined in e
Pata Item Description, (DID), which is
considered to form part of the standard.
A list of the deliverable documents is
provided in Figure 5.

The standard requires more documentation
to be made available for review or audit
than is identified as deliverable. The
project specific deliverable
documentation requirements are provided
in the Contract Data Requirement List
(CDRL) . The SDP must include the
justification for not producing non-
deliverable documentation identified irn
the standard. The format and content oI
all non-deliverable documentation to be
generated must also be specified in the
SPD.



Each document DID provides very detailed
information on layout, sub-paragraph
content, the applicable sections of
relevant  standards, and at which
review(s) the document should be
presented for approval.

In order to nminimise unnecessary
overheads MIL-HDBK-287, (Ref. 3), has
been produced to assist projects to
’tailor’ the documentation generated to
their specific needs. Tailoring may be
used to eliminate either non-applicable
sections of individual documents or
complete documents. Project specific
instructions for tailoring DOD-STD-2167A
requirements will normally be specified
in the Statement of Work (SOW), whilst
tailoring instructions for the DID’s
will be specified in the CDRL, The
extent to which project specific
tailoring has occurred — must be
identified in the SDP.

RICA DO-1788

The document will identif the
information which will be re ¥red to
support system/equipment certification.
The information needed can be
categorised as follows:

(a) Process Definitions
These will take the form of plans
and standards which will detail the
strategies to be followed and the
methods and tools to be employed.
Information relating to the

configuration of the
su gort/development environment
will also be required.

(b) Process Outputs
These may take the form of

requirements and desiga
documentation, source code, and
verification procedures and

results. The information supplied
will provide the evidence required
to prove that an activit¥ has been
completed satisfactorily, in
compliance with its plans and
standards. Also, to enable the
software products to be controlled
and maintained, configuration
Index’s must be produced.

(¢) Summary Information
Both the certification plan and the
accomplishment summary are used to
optimise the certification process.

DO-178B will only provide guidelines on
the information to be supplied. Apart
from grouping the information under
headings eg Software Quality Assurance
Plan, Software Requirements, etc., no
gpecific requirements with respect to
format and structure will be provided.
The information may be made available in
a number of forms such as individual
documents, combined into larger
documentg, distributed across several
documents, or on magnetic media. The
only requirements are that it must be
available in form which can be reviewed
efficiently, and that the mechanism
chosen must be identified in the
Certification Plan.

13. CERTIFICATION
DOD-STD-2167A

The standard has been developed to
establish a common interxface between
customers, suppliers and maintainers.
As such, it is not intended to be used
directly, to provide a third party, such
as the civil aviation certification
authorities, with the level of
visibility they require. The document
therefore does not contain any specific
requirements related to this activity,

RTCA DO-178B

The primary Eurpose of the guidelines is
to enable the supplier to provide the
certification authorities with proof
that the software content of the system
or equipment has been developed in a
structured manner. This proof may
involve an audit of the development
process employed, a review of the
project documentation, concurrence with
the suppliers statement of compliance,
or some combination of all three.

The 1level of dinvolvement by the
certification authorities will be
dependent on the system safety
assessment and the resultant criticality
level given to the software functions.
The level of rigor to be applied,
particularly in relation to the
verification process, and the amount of
data required as deliverables, will be
dependent on the potential impact of any
software errors on the safety of the
alrcraftt.

Based on knowledge of the software
level(s), the supplier is required to
develop plans covering certification,
quality assurance, configuration
management and verification. These
plans will be wused to inform the
certification authorities of the
methods, tools and techniques which will
be used to design, implement, verify and
control the software development
process., The plans should be prepared
in advance of the software development
life~cycle activities.

As a minimum, the certification
authorities will require delivery of the
following plans. Software Aspects of
Certification, Software Quality
Assurance and Software Configuration
Management, together with a Software
Accomplishment =~ Summary. Additional
documentation deliveries will depend on
the criticality of the software. The
supplier will be required to propose a
set of deliverables as part of the
Certification Plan.

Any documentation submitted as evidence
of compliance must be that which
controls, or results from, the software
development process. With the exception
of the Accomplishment Summary, ao
document should bhe produced solely for
use by the authorities.

If a supplier wishes to reduce or
eliminate particular verification
activities by using a software tool, the
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certification authorities will require
the tool to be ‘qualified’. Guidelines
will be provided for determining if
software tool qualification should be
sought and, if so, the process to be
followed in order to obtain
certification authority approval.

14. CONCLUSIONS

DOD-STD-2167A was developed principally
as a procurement standard and as such,
it provides detailed requirements with
respect to the scoftware development
documentation required as deliverables.
It also identifies deliverable documents
which are specific to the needs of users
and software support personnel.
Although there is a requirement to carry
out a safety analysis to identify any
safety related risks, no specific hazard
classification related wvariation in
requirements is identified. Variation
maX be possible by means of the
tailoring information contained in MIL=~
HDBK-287.

The guidelines provided by RTCA DO-178B
are primarily aimed at giving the
certification authorities the assurance
that the software has been developed in
accordance with the regulations,
particularly those related to safety. A
great deal of emphasis will therefore be
placed on the verification, assurance
and control related activities.
Information will also be provided on how
the requirements may be modified for the
different software criticality levels,

It should be emphasised that the civil
certification authorities do not
certificate software stand-alone,
software will only be certificated as an
integral part of equipment or a system.
DOD-STD-2167A does cover the situation
where the procured item is a software
product ie a CSCI.

Provided the additional documents
required by RTCA DO-178B are available
eg Accomplishment  Summary, Quality
Assvrance Plan, etc., and the supplier
can 2monstrate that the contents of the
documents, produced in accordance with
DOD-STD=-2167A, comply with the RTCA DO-
1788 guidelines, then it should be
possible to obtain certification
authority approval for a CSCI as part of
a system or piece of equipment.

However, due to the degree of document
format and content flaxibility likely to
be available within the guidelines of
RTCA DO-178B, the probability of it
being acceptable for a procurement
against the requirements of DOD-STD-
2167A is not high.

As stated previously the comments on the
likely contents of D0O-178B are based on
the author’s understanding of the status
of the discussion at the end of January
1991. The content and structure of the
document may change significantly by the
time it is finally issued.
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APPENDIX 1

TERMS OF REFERENCE
Spacial Committee 167
DIGITAL AVIONICS SOFTWARE

Special Committee 167 shall review and
revigse, as necessary, RTCA Document DO~
1784, "Software Considerations in

Airborne Systems and Equipment
Certification®™.
GUIDANCE:

In acconmplishing its work the Special
Committee should recognise the dynamic,
evolving  environment for software
requirements, software design,
generation, testing and documentation,
and formulate a revised document that
can accommodate this environment while
recommending suitably rigorous
techniques. To accomplish  this
revisior, the Special Committee should
consider the experience gained through
the field application of the guidance
material contained in DO-178, and DO-
178A, as well as the results of recent
research in software engineering. 8C167
should also recognise the international
implications of this document and,
therefore, should establish a close
working relationship with EUROCAE (which
has become the normal practice in RTCA
Committees). An objective should be to
achieve a common/parallel RTCA/EUROCAE
document. The Special Committee should
focus this review to address the
following areas:

1. Examine existing industry and
government standards and consider
for possible adaptation or
reference, where relevant.

2. Assess the adequacy of existing
software levels and the associated
nature and degree of analysis,
verification, test and assurance
activities. The revised process
criteria should be structured to
support objective compliance
demonstration.

3. Examine the criteria for tools to
be used for certification credit
{e.g. development, configuration
management and verification tools).

4. Examine the certification criteria
for reusable software, off-the-
shelf software, databases, and
user-modifiable software for the
system to be certified.

5. Examine the certification criteria
for architectural and
methodological approaches used to
reduce the software level or to
provide verification coverage (e.g.

partitioning and dissimilar
software).

6. Examine configuration control
guidelines, quality assurance
guidelines, and  1identification
conventions, and their
compatibility with existing
regulatory requirements for type
certification, in-service
modificatioas, and equipment

10.

11.

approval.

Consider che impact of new
technology such as modular
architecture, data loading,
packaging and memory technology.

Examine the need, content, and
delivery requirements of all
documents, with special emphasis on
the accomplishment summary.

Define and consider the interfaces
between the software and systems
development life cycles.

Review the criteria associated with
making pre- and post-certification
changes to a system.

Consider the impact of evolutionary
development and other alternative
life cycles to the model implied by
DO-178A.
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APPENDIX 2

RTCA DO-178B (DRAFT)

SYSTEM CRITICALITY CATEGORY AND SOFTWARE
LEVEL FAILURE CONDITION CATEGORIES

The failure condition categories
described below are those accepted by
the aviation communlty and the
certification authorities for use in
equlpment and system certification. The
categories are based upon the severity
of the effects of failures or design
errors on the aircraft, crew, and
occupants, The categories are:

a. Catastrophic ~ Failure conditions
which would prevent continued safe
flight and landing.

b. Hazardousg/Severe-Major -~ Failure
conditions which would reduce the
cagability of the aircraft or the

bility of the crew to cope uith
adverse operating conditions to the
extent that there would be:

* a large reduction in safety
margins or functional
capabilities.

* physical stress or hlgher

workload such that the flight
crew could not be relied on to
perform their tasks accurately or
completely; or

* serious or fatal injury to a
relatively small number of the
occupants’,

¢. Major - Failure conditions which
wou reduce the capability of the
aircraft or the ability of the crew
to cope with adverse operating
conditions to the extent that there
would be, for example, a
sxgnxfxcant reduction in safety
margins or functional capabilities,
a gsignificant increase in crew
workload or in conditions impairing
crew efficiency, or some discomfort
to occupants.

d. Minor - Failure conditions which
would not significantly reduce
aircraft safety, and which involve
crew actions that are well within
their capabilities. Minor failure
conditions may include, for
example, a slight increase in crew
workload, such as routine flxght
plan changes, or some inconvenience
to occupants.

e. No Effect - Falilure conditions
which do not effect the operational
capability of the aircraft or
increase pilot workload.

SOFTWARE LEVELS

a.

Level A -~ Software who anomalous
behaviour, as shown by a system
safety assessment, would lead to a
failure of system function
resulting in a catastrophic failure
condition for the aircraft.

Level B - Software whose anomalous
behaviour, as shown by a system
safety assessment, would lead to a
failure of system function
resultlng in a hazardous/severe-
major failure condition for the
aircraft.

Level C - Software whose ancmalous

ehaviour, as shown by a system
safety assessment, would lead to a
failure system function resulting
in a major failure condition for
the aircraft.

Leval D - Software whose anomalous

ehaviour, as shown by a system
safety assessment, would lead to a
failure of system function
resulting in a minor failure

condition for the aircraft,

Level E - Software whose anomalous

ehaviour, as shown by a system
safety assessment, would lead to a
failure of system function with no
consequences for the aircraft.
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DOCUMENT REFERENCE NUMBER
PLANS
Software Development Plan (SDP) DI-MCCR-80030A
Software Test Plan (STP) DI-MCCR-80014A
SOFTWARE DEVELOPMENT DOCUMENTATION
System/Segment Specification (SSS) O1-CMAN-80008A
System/Segment Design Document (SSDD) DI-CMAN-80534
Interface Requirement Specification (IRS) DI-MCCR-80026A
Software Requirement Specilication (SRS) Di-MCCR-80025A
Sottware Design Document (SDD) DI-MCCR-80012A
Interface Design Document (IDD) DI-MCCR-80027A
Software Test Description (STD) DI-MCCR-80015A
Software Test Report (STR) DI-MCCR-80017A
Software Product Specilication (SPS) DI-MCCR-80029A
CONFIGURATION CONTROL
Version Descuption Document (VDD) DI-MCCR-80013A
Engineering Change Proposat (ECP) DI-CMAN-80639
Specification Change Nolice (SCN) DI-CMAN-80642
SUPPORT
Computer System Operators Manual (CSOM) DI-MCCR-80018A
Software Users Manuat (SUM) DI-MCCR-80019A
Software Programmers Manual (SPM) DI-MCCR-80021A
Firmcare Support Manual (FSM) DI-MCCR-80022A

Computer Resources Interface Support

Document (CRISD)

PLANS

DI-MCCR-80024A

FIG.5 DELIVERABLE DOCUMENTS DOD-STD-2167A

Software Aspects of Certification Plan
Sottware Quality Assurance Plan
Software Confrguration Management Plan
Software Venfication Plan

SOFTWARE DEVELOPMENT

System Requrements Document
Software Requirements Documeiit
Software Design Descrption Document

Source Code

Software Venfication Procedures and Results Document

CONFIGURATION MANAGEMENT

Unit Configuration Identification Document
System Contiguration ldenthication Document

SUPPORT

SuppoctDevelopment System Configuration Document

STANDARDS

Software Design Standards

CERTIFICATION

Accomplishmeat Summary

F1G.6 SOFTWARE DEVELOPMENT DOCUMENTS RTCA D0-178 B (DRAFT)




REQUIREMENTS AND TRACEABILITY MANAGEMENT

Author: G M Cross, Marconi Underwater Systems Limited
Station Road, Weybridge, SURREY, KT15 2PW, ENGLAND

ABSTRACT

This paper explains the contribution of requirements
traceability to the system development process in risk
reduction and rework avoidance and the impact on all
phases of project development from requirements
capture through to customer acceptance and
subsequent maintenance. By update of the traditionat
lifecycle model, the paper shows how the RTM!
(Requirements and Traceability Management) product
builds a system development environment addressing
these issues and improving the benefits to Users of many
of todays leading CASE tools by more effective
integration, with a total lifecycle coveraye.

Introduction and background to the work
Traditionally, the processes involved in System
Development have relied heavily upon decisions made on
tha basis of experience and intuition. In particular, these
dacisions are predominantly made in the earliest, most
critical phases of the project, where any errors have
maximum cost impact. Furthermore, these critical
decisions are often made arbitrarily and are rarely
recorded in a formal manner. The traditional system
development process therefore lacks traceability. The
resuit of such an approach is a system which cannot
easily be shown fo meaet the customer requirements.

As part of the investment by Marconi Underwater
Systems Limited (MUSL) into producing high quality
systems and software, MUSL have performed a careful
analysis of the activities to be supported during the
systems development lifecycle. Research started
soveral years ago, whan it became apparent to MUSL as
an early adopter of CASE that some of these tools had
serious deficiencies and were difficult to manage
effectively over multiple projects. For example, poor
integratior meant excessive Engineer interaction to
produce consolidated documentation, leading in turn to
low maintainabiiity as source dalu changed. In particuiar,
the issues of technical control and management of
traceabilty and configuration were poorly addressed, and
Ifecycle support was incomplete and fragmented.

In order to better understand these problems, MUSL
produced a system development process model (SDPM}
using the Yourdon method. This model considers system
development as a series of transforming processes
operating on the customer's requirements, to produce
different representations of the system under
development and resulting in the finished product offered
for acceptance. An important result from the model is that
management of the customer requirement, its detailed
analysis and understanding, and traceability through to
acceptance are key lifecycle activties.

Requirements Traceabllity

In the classic V-Diagram (Figure 1) we have
historically underated the role of traceability in
establishing early lifecycle verification as the design
evolves.

E

ANALYSIS

APPLICATION

SYSTEMS
ANALYSIS

----------

Fig 1 The V-Diagram

As we move out of the bottom of the V from code
production we are all too often merely testing that the
coded and integrated system accurately reproduces the
errors lying undetected in the products of the preceding
analysis and design phases. Then eventually, as we
coma to acceptance and we measure the system against
the input requirement, the painful truth is finally revealed!
It is a "standard result"2 that almost two thirds of defects
detected at integration and acceptance result from latent
analysis errors.

Clearly what is needed is to establish a much earlier
confidence in the quality of the requirement, followed by
traceability into the analysis phase and beyond, and a
comparison between the products of each phase tc
check for consistency. Traceability is "good common
sense”, and most technical managers will basically
recognise that they use this approach informally in
attempting to manage the risk in their projects, for
example, as part of their design review activities It is
also required by standard DOD-STD-2167A However, the
full benefit can only be realised by rigorous application,
and this demands effective tool support.

Traceabllity Tooiset requirements

The results of the MUSL SDPM work also suggested
that a standard model for traceability was impossible to
agree, and that one ought to allow tailoring of the process
model to optimise it for a given project. This in turn needs
to be reflected by flexible configuration of the toolset.

In order to get the best return from traceability we
need to examine the total system development process,
as MUSL did with the SDPM, and then fabricate an IPSE
where traceabillly is the underlying strategy tor tool data
integration. We thus identify the bridges which need to be
built detween the co-operating CASE tools in order to
provide design traceability throughout the Iifecycle. All of
this has to be achieved of course, in the environment of a
dynamically changing system requirement as the project
proceeds. A successful implementation must provide
facilities for:

* Total lifecycle support “Cradle to Grave®

+ Initial requirement spaecification capture and
subsequent configuration management

» Clarifying and refining pootly spacified customer
requirement statements
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» Updating of Customer originated specifications,
preserving Customer's format for meaningful
dialogue

» Dynamic traceability, linking to all lifecycle phase
products, and linking phase to phase

» Contigurable traceability map to reflect local project
needs

« Partitioning and managing designs, thus enabling
sub-contractors to demonstrate compliancy at every
phase

» Generation of compliancy reports supporting
verification eg to DOD-STD-2167A

» Acceptance specification production facilities for
system validation

+ Audit trails of design history to support design review
and maintenance

+ Impact analysis for change management

These were some of the objectives of MUSL's RTM,
and the rest of the paper explains the relevance and
bensefit of these objectives in an effective, high
productivity total Systems Development Environment
(SDE). The motivation behind the production of this
environment and underlying method is to maximise
support in the early phases of design for the scarce
system designer resource, and to encourage rational and
explicit decision-making by provision of a consistent set
of guidelines for decision-making and recording of those
decisions.

Components of an RTM based SDE

At the heart of RTM is the Project Database. This
database holds information pertaining to all phases of the
project, but focuses primarily upon the system
requirements and the tracking of these through the
project development cycle.

PROJECT TEAM

Yourdon Docum-
Requivements Modeling Codrg entation
Engineenng & Design

—r———-————_—__ﬁocsss
suppoited by

RTM Project RTSASD ‘
Database support

RTM Integration Kernal

Electronic

— 1 TOOLS
[ Networkad UNIX Worksiabons ] II
{HARDWARE

PHYSICAL SDE

Fig 2. RTM based System Development Environment

This type of database is often referred to as a Verfication
Cross-Reference Index (VCRI), and is used to audit the
compliancy of the project to the User requirement through
the successive phases of development, culminating 1n

Customer acceptance. Figure 2 shows the basic
elements of a System Development Environment
constructed around RTM, in the context of the software
development tasks on a project. An upgradable
architecture of UNIX workstations forms the platform for
the tools.

Requirements Capture

In real world situations the requirements to be
captured by RTM will come from various sources. Most
commonly they will be presented as a Customer supplied
document, or they may be presented as requirements
assembled from a number of different documents, Under
some circumstances they may be a set of derived
requirements resulting from the reverse engineering of an
existing system. The first step in the RTM process is to
capture this information electronically. Those items which
are not supplied by the Customer in an electronic form
can be captured by scanning the Customer supplied
document or if necessary typed directly into RTM afresh.
Once this information Is aelectronically captured the full
facilities of RTM can be applied. To maintain and ensure
the integrity of the original captured requirements they
are made available to the RTM toolset in read-only mode.

Requirements Stripping

All documents which contain requirements relating to
the proposed system are systematically transferred into
the Project Database in a process known as requirement
stripping. Typical examples of these documents would be
documents defining the contractual standards, and
documents defining system specific requirements. As
each requirement statemment is exiracted from these
documents and inserted into the database, the document
identity and paragraph number from which it was
extracted is recorded in the database. Any newly derived
requirements which result from points of clarification or
the like are documented and approved before being
added to the project database as configuration items.
After subsequent clarification and refinement as
described below, it is then possible to reconstruct all of
the original documents automatically to allow customer
approval of the updates as valid interpretations of their
needs. A browse facility in RTM enables users to scan
the original requirements document either on a line by line
basis or by using “string searches". The desired
requirements text is interactively identified and
transferred to a database, accompanied by a record of
;Nhich saction of the customer document it was extracted
rom,

Requirements Engineering

Once all the requirements have been extracted from
the Custorner's source documents it is necessary to
examine and engineer them so that any ambiguities
errors or duplicates are identified and addressed.
Normally this activity would be performed by a small
group of subject matter experts who are able to
communicate directly with one another. The aim is to
inject as much subject matter knowledge as possible into
the requirements at the earliest stage, so that
requirements are well defined before requiroments
subsets are passed on to the analysis teams. The
analysis teams are then able lo concentrate mainly on
grouping and partitioning the requirements in a logical
manner, using the specific subject matter knowledge
which has already been injected. RTM provides facilities
to enable the following requirements enginearing
functions to be performed whilst at all times maintaining
the necessary links to provide an audit trail back to the
functional requirements as stated by the customer:
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One to One Substituticri This is basically a simple
edit of the requrement.

One to Many Substitution Allows a complex
requirement to be broken down into iis component
parts theraby generating “child” requirements.

Many to One Substitution Allows duplicate or
similar requirements to be focused down into a single
requirements statement.

Clarification of Requirements Allows additional
notes to be added (Engineers note pad) and
associated with the requirement for use by analysts
or designers later in the project's lifecycle. These
notes are not normally produced or included in any
automated reporting to the customer. The notes do
not affect the text of the requirement.

Requirements Questions Provides for questions
on spacific requiraments to be raised and fed back to
the customer (points of clarification) with the
updated specification.

It is not uncommon that a customer statement of
functional requirements, for 2 medium sized system will
generate many thousands of enginesring requirements, i
is easier and more efficient to manage large volumes of
requirements if they are broken down into categorised
subsets. Within RTM this is achieved by classiying the
requiremants by keywords:

Detinitlon of Keywords Any cnaracter string can
be delfined as a keyword. Keywords can be linked to
requirements either manually or by automatically
searching through the requirements for the keyword
character string. For example use of the string
"Engineer® would result in all requirements where that
string appears in the text being identifiad and linked
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to the keyword. Also a pseudonym text string can be
used. In this case the requirements are searched for
the pseudonym text string and those reguirements
linked to the keyword.

Keyword Reports Having grouped requirements
together under keywords, reports can automatically
be generated identifying which requirements are
associated with what keyword.

Keyword Vlewpoints Keywords can also be
grouped together in sophisticated hierarchies
allowing the selection and identification of
requirements by a related group of keywords. This
can be used as initial partitioning of the requirements
as we move into the analysis phase.

Litecycls Traceabllity

Having captured, understood and enginesred the
requirements, it is important to ensure that each
requirement is correctly designed for and implemented,
and that the impact of any future changes in the
requirements Is fully understood and traceable.

A high tevel view of the System Design Process
model is shown at Fig 3 in a waterlall layout. It shows how
RTM relates to the major project phases and how the
major inputs to each phase are the outputs of the
previous one. The outputs of each phase are basslines of
the evolving design of the product, together with the
design compliancy data against the requirements. From
the figure it can be seen that RTM supports traceability
through the entire project lifacycle from the initial capture
of customer requirements through to delivery of the
accepted systems and subsequent maintenance
support.
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With traceability links in place to all the products of
design, it is then possible to see the impact of a specific
requirements change down through analysis, design,
implementation and testing.

The project phases are supported by the following tools:

Requirements RM

Analysis Teamwork or SIP
Design Teamwork or StP
Coding User Specified

™ PCMS

Documaentation Framemaker or interloaf

Analysis and Design

As we move into structured analysis and design
(SASD) using for instance Yourdon, we first build an
assontial model which is equivalent to a Functional
Baseline. This is a sacure basis for progressing to the
stage of allocating functions to hardware and software
architectures in the implementation model. To provide
traceability links to any elements of SASD models,
integration modules are provided for industry standard
SASD tools. Note that the analysis phase will typically
cause some update to requirements, and with RTM, these
can now be kept in track.

Because each object in the model is tied to the
requirements it can be demanstrated that there is nothing
supaerfluous or missing and full compliance can be readily
demonstrated by a simple report from the Project
Database.

In the design phase we are concerned with reviewing
candidate solutions,to arrive at an optimum approach
before producing the coded system. The candidate
solutions are represented as "distortions” of the essential
model. Distortion in this context means that extra
functions may need to be added to establish
communication between items of “off-tha-sheif”
equipment or software. Another example would ba where
an essential function is split between two processors for
reasons of cost, performance, space or customer
constraint, These constraints can be tied into the system
design using RTM. Allocation of ubjects in the essential
mode! can be mapped on to the implementation model
objects to assure consistency of the two inodels.

Testing and Acceptance

A number of trials specifications are produced
directly from the requirements in the database. These will
detal the tests necessary to demonstrate to the
satisfaction of the customer that a set of requirements
have baen {ulfilied.

An acceptance test plan and record is drawn up
which shows the manner in which the trials are conducted
and records the outcome of those trials. Requirements
are marked as having been accepted upon successtul
completion of their associated trial. A full audit of where
the project is praving the implementation of requirements
is available from the VCRI (Vertication and Cross
Referencing Index) repon.

Traceabllity Schema Conflguration

RTM provides facilities which allow entties and
relationships to be defined to suit the particular
requirements of a project and to be stored in the
database. An example of such a schema to support a
project is shown Figure 4.
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Figure 4- Example Data Schema supponted by RTM

The user can define any objact type which is required
to support the project's lifecycls, for exampls, Event
Lists, Essential Model Objects, Implementational Model
Objects, Test spacifications, aetc. In addition the user
can define any links (relationships) between the object
types. These relationships can then be associated with a
requirement. Where supported by the systems analysis
and design tool in use, these objects and relationships
can be described graphically by creating an entity
relationship diagram trom which information is captured
and automatically entered into the controlling database.

Traceabllity to non Integrated tools

Centain development tasks will be performed with
tools which may not be integrated fully with RTM, for
exampie reliability modalling. in such cases, the
appropriate requirements are selected from the Oracle
database using keyword classification. The teams
responsible for addressing those requirements make
compliancy statements against each of the selected
requitements, indicating for each concept which
requirements are fuffilied. In this way, full traceability is
assured.

Impact Analysis

RTM provides standard reporting features which wilt
identify objects which are linked to requirements,
requirements which are linked to objects, and objects
which are linked to other objects. These reports enable
the impact of requests for changes to original
requirements to be comprehensively analysed and
assessed.

Compliancy Reporting and Audit

RTM also provides standard reports which will
identify requirements not supported by analysis or
implementational objects, which thus indicate
deficiencies in the analysis or ot the implementaticn
design. Conversely reports can also be generated which
will show analysis or implementation objects which do not
support a specilic requireme.t, which may indicate over
design or the provision of functionality not requested by
the customer. This also documents design decisions
taken by engineers ensuring that project continuity is
maintained even with stalt turnover.

Automated Documentation

The ability to automatically generate meaningful,
quality documentation in support of the requirements
caplure, design and implementation phases of the




lifecycle is very important. It improves project
communication and enhances reporting and
communication between the customer and project. When
all the captured requirement have been enginesred as
descnbed above, a complete report can be presented to
the customer. This report wili conidin tie customer's
requirements mapped to the resultant enginesred
requirements, to any questions (points of clarification) as
described above, and to the evolving design that
satisties the engineered requirements. These reports are
fully automated, so that latest document versions can be
produced with high productivity.

CONCLUSIONS

The Benefits of Requirements and Traceability
Management

Throughout the project development lifecycle, the
database will provide accurate and concise information
relating to many aspects of the project:

* Risk Management. Resolving the ambiguities n
the requirement specification as part of a meaningful
dialogue with the customer, minimises the risk to
both parties. Subsequently, through life traceability
ensures we build the system we have contracted to
build, and plan acceptance at the earliest stage
possible.

Project Management. It is possible to obtain an
instant statement of the degree of compliancy in
terms of those requirements which have been
enginesred, analysed, designed, implemented,
tested and accepted. This provides the project
manager with an objective indicator of the progress
of the project.

Requirement Change Control. When a
requirement changes, it is possible immediately 1o
determine which project lasks are attected either
directly or indirectly, and how many hardware and
software modules may have to be modified.

« Testing. When producing a test specification for a
particular module, the Project Database will provide a
list of all tha requirements which the modute should
fultil. The test can then be conducted on the basis of
these requirements, and does not merely confirm
that design errors have been faithfully reproduced by
the implementation!

+ integration/Acceptance If during trials a
requirement does not appear 1o have been
implemented correctly, the Project Database will
identify the module or modules which purpont 1o
implemant the requirement in question, along with the
analysis and design objects from which they ware
derived. This greatly reduces the extent and cost of
the investigation which needs to be performed.

Dacumentatiun, Because the majority of the
system development tasks are performed using
software tools, it is possible to automate the
generation of high quality, consistent documantation
to spacified standards at the appropriate time.

Maintenance. Several of the traditional difficuities
encountered during maintenance are reduced due to
the recording of traceability data in the project
database. This reduces relianca on project experts,
and aliows areas likely to be affected by proposed
changes to be more easily identified.

-
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SUMMARY

The purpose of this paper is to propose the basic
clements of a real-time clock that would be suitable
for use with the tasking mechanism of the Ada
programming language and other real-time
concurrency management systems. A real-time
application needs such a clock for several reasons:

1. To relieve the processor of some of the
overhead burden of time and task management.

2. To provide adequate granularity for the
representation of time.

3. To provide sufficient range for the
representation of time (References 1 and 2).

This paper also suggests a more complete
solution to the overhead problem—move both the
clock and the task scheduling functions normaily
implemented in software into a concurrency
management coprocessor.

BACKGROUND

One of the main purposes envisioned for the
Ada language was the programming of real-time
embedded systems (Reference 2). A real-time
system is a system containing real-time tasks. A
real-time task is a task that has timing constraints
(e.g., a deadline). Timing constraints may be hard
or soft. A hard timing constraint must always be
met (otherwise the system would fail). A soft
timing constraint should be met if possible, but
missing the constraint does not cause system failure,
Fundamental to real-time systems is the concept of
time. Real-time systems operate in an environment
of severe timing constraints, with hard deadlines
imposed on computations and input/output (1/0).

Some a; , :v -tions require very high periodic
procest _.a" v In Equation 1, the parameter U(n)
represe ¢ - -ocessor utilization. (When the
utilizat” <15y, the processor is 100% utilized.)

2 C

where € and T; are the execution time (including
overhead) and peniod of task ¢, respectively. It is
clear that processor utilization increases with either
mereasing compute time or decreasing period. If an

overhead function (e.g., rendezvous) has a short
compute time, a sufficiently short period may yield
100% utilization, For this reason, missile
applications, with their short periods, require
extremely short compute time for both application
and overhead functions. High rates in the
application may also require a finer resolution in the
representation of time and, consequently, require a
higher overhead cost to maintain the representation
of time.

Because of inadequate hardware support and a
marketing imperative to cover the largest set of
target computers, existing Ada run-time systems are
software intensive. As a result, a large portion of
the time available for the application on the
processor must be spent updating the real-time
clock, managing the various scheduling queues, and
scheduling tasks. Many hard real-time applications,
such as misstles and robotics (Reference 3),
generally use all of the time that the processor
provides. If a significant portion of the processor's
time would be devoted to managing Ada tasking, it
could make the diffcrence between using Ada
tasking and writing a custom concurrency
management system or a cyclic executive.

Some specific overhead functions that may
require a large percentage of the processos's time
are related to time and scheduling. For one Ada
implementation, I found that the interrupt required
to support package CALENDAR's notion of time-
of-day and the delay statement, with 0.1 millisecond
granularity imposed by the application, required
greater than 30% of the processor's time.
Addressing time management with software alone
can consume a significant percentage of the total
processor utilization. As task rawes, tolerances on
task rates (Reference 4), and the application
utilization of the processor become more severe, a
solution must be found to free more time for
applications. One author (Reference 4) suggests,
“With the ongoing interchanges in
hardware/software trade-offs for improved
performance, the future may reveal specialized
hardware to alleviate some of these (real-time
performance) problems.” Although the importance
of hardware support was recognized early by some
(Reference 5), general recognition of this need is
growing slowly in the real-time community as
evidenced by papers appearing in journals
(References 6 and 7), by papers presented at real-
time workshops (Reference 1), and by some
products directed toward ree!-time (Reference 8)
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TIME MANAGEMENT COPROCESSOR

Fundamental to the management of tasks are
data structures, such as delay queues and ready
queues, and functions, such as reading time, setting
alarms, and queue management. One way to reduce
the time spent by the processor on overhead
functions is to off-load the bulk of the run-time
system's time management oveinead onto a
coprocessor. The time management coprocessor
would be a hardware clock that would not need to
interrupt the processor at a high rate to provide a
fine granularity software clock. Because this device
would contain a delay queue, the run-time would not
need to implement or maintain a delay queue. The
coprocessor would contain a priority-sorted ready
queue and would not need to interrupt the processor
to signal an expired delay unless the delayed task has
a higher priority than the currently active task. For
example, if a delay interval is requested, the interval
would be added in the coprocessor to the current
time, and the event identifier and resulting time
would be placed automatically on the Delay queue.
Upon expiration of the delay, the event identifier
and priority would be moved automatically to the
priority-sorted Ready queue. These capabilities
would replace the software delay queue and some
ready queue management with simple memory
references. They could also reduce the number of
intcrrupts required to support overhead functions.

MAJOR COMPONENTS

Figure 1 depicts the major functional blocks and
general interfaces required for the time management

COprocessor,
L 64-bit Timer !
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Interrupt Control
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Figure 1. Time Management Coprocessor.

‘The major components of the device would be
the following:

64-bit Timer—The least significant bit represents 1
nanosecond. The count represents the number
of nanoseconds since 00:00, 1 January of some
user-defined year (see the section titled
Representation of Time) or a count of
nanoseconds since initialization of the timer.

Time Queue—The Time queue is a time-ordered
queue that contains the scheduled event time, an
event identifier (usually the task identifier), and
the task priority (see the section titled Periodic
Execution).

Ready Queue—The Ready queue is a priority-
ordered queue of events for which the scheduled
time has expired. This queue contains the event
identifier and the task priority for each expired
event.

Time Registers—This section contains all the
registers required for operations within the
device:

CURRENT PRIORITY—set by the run-time
system to the priority of the currently
executing task (see the section titled Delay
Scheduling). Because this register is, as are
all registers, memory mapped, the time
required to update the priority is the same as
writing an integer to a memory location
during a task switch.

YEAR_NUMBER—as derived from the 64-bit
representation of time (see the section titled
Representation of ‘l'ime).

MONTH_NUMBER-—as derived from the 64-
bit representation of time (sce the section
titled Representation of Time).

DAY_NUMBER—as derived from the 64-bit
representation of time (see the section titled
Representation of Time).

SECONDS_NUMBER~as derived from the 64-
bit representation of time (see the section
titled Representation of Time),

NANOSECONDS_NUMBER—-as derived from
the 64-bit representation of time (see the
section titled Representation of Time).

TIME_NUMBER~—for the 64-bit representation
of time (see the section titled Representation
of Time).

STATUS REGISTER-—indicates overflow,
underflow, sign, zero, a negative or zero
delay, or a delay_urtil scheduled for a time
that has passed (see the sections titled Time-
Related uperations and Delay Scheduling).

COMMAND REGISTER—commands to control
and set the mode of the coprocessor are
written to this register by the processor (see
the section titled Time Management
Coprocessor Functions).

SAMPLE CLOCK REGISTER—for the current
count when commanded under hardware
contro} (see the section titled Initial Setting).




UPDATE REGISTER—for a predetermined
number of the least significant bits to replace
the corresponding bits in the current time.
This is done under hardware control (see the
section titled Clock Synchronization).

ALU-~An arithmetic/logic unit (ALU) is used for
performing arithmetic time operations (see the
section titled Time-Related Operations).

Interrupt Control—Interrupts the processor if the
event at the top of the Ready queue is of a
higher priority than the priority in the
CURRENT PRIORITY register.

Internal Control—Executes commands and controls
the components of the time management
COpProcessor.

Host Processor Bus I/0—Controls communications
with the host processor.

REPRESENTATION OF TIME

Witk the time management coprocessor, time
would be internally represented as a 64-bit ~ount of
nanoseconds. There are two related reasons for the
coprocessor to use a count of nanoseconds. First, to
provide for a monotor ic clock during distributed
system clock synchronization, a finer timer
granularity may be required than for any
application task (see the section titled Clock
Synchronization). Second, although nanosecond
granularity is not required for most applications
today, I believe that any attempt at addressing
timing issues should address longer term
possibilities.

The time may come, with faster applications
(aircraft, missiles, etc.) and higher speed processors
{gallium arsenide (GaAs)-based processors
(References 9 and 10) for example), that nanosecond
granularity may be required. However, the device
could be designed to increment only those sub-
second bits that are appropriate for current
technology. For instance, if the hardware
technology supported a 1-megahertz clock rate (1
microsecond granularity), the ten least significant
bits of the nanosecond field from an applications
point of view would always be zero on output and
"don't care” on input (see the section titled Clock
Synchronization). This 64-bit representation would
support over 290 years of nanoseconds, which
should be enough for most Ada applications. The
run-time system or application could read or write
directly 1o the device using the 64-bit (nanosecond
count) representation of time. However, the most
commion representation would be the following:

nanoseconds—representing nanoseconds less
than a second (30 bits minimum)
seconds—representing second of the day (17 bits
minimum)

days—representing day of the month (5 bits
minimum)
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months—representing month of the year (4 bits
minimum)

years—representing absolute or relative years
(10 bits)

Each of these would be an integer value written
to a separate address on this memory-mapped
device. When the derived representation is written
to the appropriate address, the device would
internally convert the derived representation to the
64-bit nanosecond count representation for use in
setting the clock, setting a delay, or setting another
of the time-related functions. Time representation
could also be read from the device in the derived
(by automatic conversion) or the 64-bit nanosecond
count (direct) format.

TIME MANAGEMENT COPROCESSOR
FUNCTIONS

Several functions are required by this device to
support the run-time system. The following is not
intended to be an exhaustive list, but only to
represent some basic commands.

SETTING THE CLOCK
Initial Setting

To set the clock, the user would write the
current time in either the internal or the derived
format. It would be necessary to enter only the
parametcrs of time that are of interest to the
application. For example, in a missile application,
time of flight and not absolute time is the more
appropriate representation. The user could,
therefore, initialize the clock to zero time at the
start of the mission. For shipboard-, ground-, or
space-based applications, the user may require the
fu'l representation of time: a nanosecond count from
a user-specified time. Whether the time used is
relative or absolute would be determined by a mode
command issued to the coprocessor.

Clock Synchronization

In distributed applications, the need for clock
synchronization becomes apparent. Clock
synchronization takes two forms: start-up
synchronization and correction for drift. If the
application required setting the clock to the value of
a master clock, this could be done in one or two
stages, depending upon the application and 1ts
required accuracy. The first stage would involve
copying the time from a “standard” clock to the
coprocessor and then issuing the set clock command.
(This first stage should be nonpreemptable.) The
second stage is the synchronization process.

Stait-up synchronization and correction for drift
(Reference 4) could be accomplished in a similar
manner. If time were sensed to have drifted, the
user would have the ability to correct the time with
three levels of processor interaction, depending
upon the accuracy required.
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Full processor involvement—the processor is a
critical element in the accuracy of the
synchronization process. An example of this
type of synchronization is given in the
previous paragraph.

Partial processor involvement—the processor is
involved; however, processor timing is not
critical to the accuracy of the synchronization
process.

Processor independent—the processor is not
involved in the synchronization process on a
continuing real-time basis.

One method for partial processor involvement
would involve a hardware-based signal for the
coprocessor. The coprocessor would be equipped
with a sample clock input that would force the clock
to immediately copy the counter to the SAMPLE
CLOCK register. The processor would next copy
the SAMPLE CLOCK register of a masier clock lo
the coprocessor. The processor would then issue the
subtract and update command. This command
would cause the coprocessor to subtract the master
clock time sample from the value in the SAMPLE
CLOCK register and then add the result to the
current time. This method could incur an
unacceptably large processor overhead. Also, if the
clock were being used for timing measurements, the
results would not be acceptable.

A method to implement the third form of
synchronization would involve the processor only
during system initialization. During initialization,
the processor would enter a predetermined number
of the least significant bits into the UPDATE
register. At an appropriate interval, the master
clock would issue a hardware-based update
command to the coprocessor. The coprocessor,
upon receipt of this command, would copy the
UPDATE register into the least significant bits of
the current time. If the bits set in this process are
less significant than the granularity required by the
application, time monotonicity is assured.

‘These are some of the simpler clock
synchronization schemes that could be used.
However, the device should be compatible with
approaches taken in bus standards, such as
Futurebus+ (Reference 11).

Delay Scheduling

To implement the current Ada delay statement,
the run-time system would write the delay time (in
either representation of the section titled
Representation of Time), the task priority, and the
task identifier (TID) and then write the command to
set delay. Intemally, the device would add the delay
to the current time and then enter the absolute
expiration time into the Time queue along with the
priority and the TID associated with the event. If
the requested delay is zero or negative, this will be
flagged in the STATUS REGISTER (see the section
titled Major Components), and the information for
the task will be placeg directly in the Ready queue.

For each count of the 64-bit timer (which could
represent 1 nanosecond for a 1-gigahertz time-base
clock, 1 microsecond for a 1-megahertz time-base
oscillator, etc.), the device would compare the
earliest time on the Time queue with the current
time. When the current time is greater than or
equal to the scheduled time, the priority and TID
would be transferred to the Ready queue.

The priority and TID of the highest priority
runnable task would always be readable by the run-
time system, If the run-time system has written a
value to the CURRENT PRIORITY register, the
device will wait until the highest priority runnable
task has a priority greater than the CURRENT
PRIORITY register before it generates an interrupt.
To disable the interrupt, the run-time system would
write the vaiue of PRIORITY'LAST to the
CURRENT PRIORITY register. To always be
interrupted when a delay expires, the min-time
system would write the value of PRIORITY'FIRST
to thc CURRENT PRIORITY register.

A delay_until statement (Reference 12) operates
in a similar fashion. The difference is that the
absolute time for expiration is entered when a set
delay_until command is issued to the device. If the
scheduled time has passed, this will be flagged in the
STATUS REGISTER (see the section titled Major
Components), and the information for the task will
be placed directly in the Ready queue.

Other Scheduling Operations

If a task required removal from either the
Ready queue or the Time queue when a task
terminates, is aborted, or completes a timed entry
call, the run-time system would write the TID to the
device and then write a coprocessor command to
delete the Time queue entry or to delete the Ready
queue entry.

If a task priority must be changed, the run-time
system would write the TID, the new priority, and
the change priority command to the coprocessor.
This would change the priority of all occurrences of
that task in both queues.

Time-Related Operations

The following functions would be available from the
device:

» Convert a 64-bit representation, written by
the run-time system or application program,
to YEAR_NUMBER, MONTH_NUMBER,
DAY_NUMBER, SECONDS_NUMBER, and
NANOSECONDS_NUMBER (Reference 2).

» Convert YEAR_NUMBER,
MONTH_NUMBER, DAY_NUMBER,
SECONDS_NUMBER, and
NANOSECONDS_NUMBER to the 64-bit
representation.

« Add an interval to the current time, in either
the derived format or the 64-bit format, to




the current time. The output would be
available in either the derived format or the
64-bit format.

» Subtract the clock from a time in the future.
The input would be in either the derived
format or the 64-bit format. The output
would be available in either the derived
format or the 64-bit format. This operation
would also allow comparison of the current
time with a given time with the result
available from the STATUS REGISTER (see
the section titled Major Components).

OTHER OPERATIONS
Watchdog or Alarm Functions

A watchdog or alarm function would be treated
like a delay statement or delay_until statement by
the coprocessor; however, if no TID wouid
normally be associated with the watchdog or alarm
function, the run-time system would fabricate a
special identifier to flag the function. The
advantage of having the watchdog function as part
of the same device is that the priority of the
watchdog expiration would be sorted with the
priorities of the tasks in the Ready queue. Becausc
watchdog priorities are combined with task
priorities, the application will not have a high
priority event interrupted by a low priority event.
A user, for example, may not want the “fight fire"
task interrupted by the “"popcom ready” interrupt.

Periodic Execution

Through the addition of another ficld and more
control logic in the Time queue, automatic
rescheduling of periodic tasks could be supported.
The additional field in the Time queue would
represent the period of the associated task. On
expiration, the TID and priority would be moved to
the Ready quene. The device would, on finding a
nonzero period field, add the period to the expired
delay time for the task and then enter the new time,
the priority, and the TID into the Time queue. If
the periodic task terminated, the run-time system
would write the appropriate delete command to the
coprocessor (see the section titled Other
Operations).

IMPLEMENTATION OPTIONS
Reduced Capability Implementations

The discussion here has centered on producing a
device that has full capability to support run-time
system time-related functions. While this is
desirable, a device with less functionality could also
improve system performance. The basic timer
elements required to support the run-time system
(Figure 2) are the 64-bit timer, an expiration time
register, and a time comparator. With this basic
device, the run-time system would keep a time-
sorted queue of time events and write each event
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Figure 2. Time Management
Coprocessor Essentials.

time to the device immediately after the current
timer event expires or as a new event precedes the
current timer event. This simple implementation
would require an interrupt only when a scheduled
event expired. The run-time system or the
application could read the current time.

While the coprocessor’s requirements could be
implemented in today's gate array technology
(Reference 13), it is unlikely that a 1-nanosecond
clock granularity will be required for the processors
being designed into systems today. A granularity of
0.1 microsecond should be easily achieved and
should cover the majority of applications today. A
processor based upon VHSIC Phase IT or GaAs
technology could support 0.01 microsecond or less
granularity because of their 100+ megahertz clock
rates (References 9 and 13).

Other pieces of the full coprocessor may be
added to the basic timer depending upon their
relative contribution to run-time system overhead.
If the operations involved in combining various time
units into the nanosecond count and deriving those
time units from the nanosecond count are a larger
burden than queue management, they would then be
implemented. Coprocessor implementation with an
ALU could supersede implementation of a
comparator for signaling the expiration of a
scheduled event. It is also clear that many more
run-time system functions could be added to this
type of coprocessor and result in reduced overhead
in the run-time system (Reference 6).

Coprocessor Versus On-Chip

One question must be addressed to ensure
compiler vendor support and applicability to the
broadest number of systems. Should the time
management device be implemented as a
coprocessor in a separate package from the
processor (off-chip) or integrated with the
processor on a single chip? I believe the device
should initiaily be implemented off-chip.

The following are some technical advantages of
on-chip implementation.

» Signal propagation delays involved in
communicating with an off-chip device may
be ten times thosc of an on-chip device.
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* Less power would be required by an on-chip
device.

* A smaller footprint would be required for an
on-chip device.

* Potential performance gains exist from
integrating the timer registers and commands
with those of the processor.

The technical advantages of on-chip devices
must wait until experience with them 1s gained and
the market for them is developed. The following
are advantages of the off-chip time management
COPIocessor.

« The coprocessor device can be designed to
work with a variety of processors currently in
use for real-time applications. This flexibility
would provide a broader market base for the
device.

+ The selection of an appropriate timer could be
independent of the selection of an appropriate
processor.

Implementing the off-chip coprocessor first and
then following that with development of the on-chip
device was the approach taken successfully with the
floating-point coprocessor and memory management
units (see the section titled Summary and
Conclusions).

SUMMARY AND CONCLUSIONS

In the past, we have seen software floating-point
arithmetic performed to the detriment of real-time
system performance. Now we have hardware
floating-point coprocessors. In the past, we have
had software-intensive memory management
systems. We now have hardware memory manage-
ment coprocessors. Both of these devices have
relievad the processor of a computational burden
shared by many applications. At the present time,
we have software-intensive "time management” as
evidenced in the Ada run-time systems where
software manages the delay queues, ready queues,
time scheduled events, etc. We need similar
hardware support for real-time performance to
make Ada viable for a broader range of real-time
systems.

A time management coprocessor could be easily
implemented with today’s gate array technology,
although it would probably be limited to 0.1
microsecond granularity. The main issue in the
design of the coprocessor is to ensure that it
interfaces properly with a broad range of processors
(Reference 13).

A time management coprocessor should be only
a first step in moving more overhead functions into
the hardware. Iraplementations of this device could
range from the basic device in Figure 2 to the more
complete device shown in Figure 1. While this

coprocessor has the potential of relieving the
processor of some overhead, a more complete
solution is required. The more complete solution
includes moving time management functions,
scheduling algorithms, and other concurrency
managemeni functions from the run-time system and
conipiier-generated code into a concurrency
management coprocessor (References 4, 6, and 10).
Tuc concurrency management coprocessor has been
demorstraied by I zid University as a practical and
feasible way to build computer systems. This
solution will never be applied if the design of
computing systems is maintained as separate
hardware and software entities.

We are now entering an era that requires and
can support a new view of system design—a view
mspired by the need for higher speed and more
correct complex systems. The foundation for this
new view is based upon powerful hardware and
software tools that have developed along similar
lines (e.g., silicon compilers, VHDL, software
compilers, Ada). What appears to be lacking are
methods to support the work and system engineers
with appropriate expertise (Reference 10). The
work discussed here is dramatic evidence of the
potential of taking a new view of system design.
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0. Résumé

Les équipements de pilotage et guidage
développés par SEXTANT Avionique possédent
des architectures de plus en plus com-
plexes et la part du logiciel est sans
cesse croissante.

Pour répondre & ces nécessités, SEXTANT
Avionique a mis en oeuvre un atelier de
développement de logiciels de pilotage et
guirdage. Cet atelier est constitué
d’outils et de passerelles communicantes
assurant la cohérence sur tout le cycle du
développement.

VISA (Yalidation ]Interactive de
Spécifications Avioniques) permet la for-
mulation des spécifications et offre la
possibilité de les rendre exécutables,
pour d’une part, évaluer trés tot leur
comportement dynamique (maquettage) et
d’autre part, vérifier le comportement en
temps réel de l’équipement spécifié (pro-
totypage).

La conception et la réalisation du logi-~
ciel sont facilitées par 1l’emploi d’outils
de génération automatique de code de
1’atelier :

* GALA (Génération Automatique de
Logiciel Avionique) géndre le code
exécutable des fonctions de pilotage
et guidage & partir des spécif.cations
détaillées décrites dans le langoqge
graphique sous VISA.

GALI (Génération Automatique de
Logiciel d’Interface) géndére le code
exécutable de traitement des
entrées/sorties décrites dans le dic-
tionnaire de données sous VISA.
L’'intégration et la validation s’effec~-
tuent en plusieurs phases. Le Banc de
Validation Avionique (BVA) a pour objectif
de simplifier la mise en oeuvre et
1’exploitation des vésultats de ces tests.
Les outils de l’atelier sont placés dans
une structure d‘rccueil PALAS (Production
Assivtée de Log:iciel d’Application
Structurde) assurant la cohérence de
1’ensemble.

1. Introductien

La conduite du vel est un des métiers de
base de SEXTANT Avionique.

Dans le domaine de la conduite du vol
civil, la partic.pation de SEXTANT
Avionique & la gamme Airbus,commencée au
tout début des années 70,a été marquée par
certaines “premiéres” qui ont constitué
des avancées technologiques marquantes:

* systdmes d’'atterrissage automatique
tout temps avec une hauteur de déca-
sion (HD) progressivement amenée &
zéro,

développement sur A300-B4 du premier
FFCC (Facing Forward Crew Cockpit),
pirlotage & deux, basé sur un systéme
de conduite du vol numérique,
commandes de vol électriques d’abord
sur 1‘A310 pour les gouvernes secon-
daires, puis globalement sur 1’A320,
intégration des fonctions de conduite
et de gestion du vol pour A320, puis
A340 dans un seul calculateur.

Dans le domaine de la conduite du vol
militaire, SEXTANT Avionique participe &
la définition et & la réalisation des
pilotes automatiques de tous les avions
d’armes francais Les derniers équipements
fournis concernent les différentes ver-
sions du Mirage 2000 (Défense aérienne,
Export, N et D), les avions ATL-2
(patrouilleur maritime), le C135FR (ravi-
taillenr en vol de l’armée de 1’air fran-
caise) et l‘hélicoptére franco-allemand
TIGRE.

Pour le RAFALE, SEXTANT Avionique conduit
das travaux sur l’approche et 1’appontage
automatique, sur 1l‘approche et l’atterris-
sage sur terrain de fortune, fonctions de
pilotage automatique intégrées dans le CET
{Calculateur d/Elaboration de
Trajectoires).

Ces équipements se caractérisent

¢« par des architectures fonctionnelles
et matérielles de plus en plus com-
plexes,

par une numérisation quasi-totale,
induisant des volumes de logiciel en
accroissement permanent,

par des développements & délair
constant, impliquant une mattrise du
cycle de développement au travers
d’outils performants et d’une organi-
sation industrielle adéquate.




6-2

Tous ces programmas, développés de plus en
plus en large partenariat, repcsent sur
des technologies de pointe, des logiciels
et des équipements i haut niveau de sécu-
rité.

Cette communication insiste sur les exi-
gences en matiére de qualité de logiciels
qui ne peuvent &tre assurées qu’au travers
d’une méthodologae rigoureuse couvrant le
cycle de vie complet. La formalisation de
cette méthodologie & 1’aide d’outils
informatiques est un atout supplémentaire
4 la satisfaction de ces exigences.

La communication décrit dans 1’oxdre habi-
tuel du cycle de développement du produit
1’ensemble des méthodes et outils mis en
place par la société SEXTANT Avionique
pour la spécification, la conception, la
réalisation, l’intégration et la valida~
tion des équipements de conduite du vol et
soulagne la cohérence de l’ensemble au
travers de passerelles communicantes.

Les activités concernées par 1'élaboration
d’équipements avioniques sont réparties
classiquement dans un cycle en V et repré-
sentent successivement
» la formulation des exigences (spéci-
fication) et la recherche des solu-
tions permettant de les satisfaire
{conceptaon),
* la réalisation (matériel et logiciel)
1mplémentant les solutions,
+ 1l’intégration et la validation fonc-
tionnelle globale de 1’équipement.

La démarche entreprise a pour but d'arri-
ver au niveau de détail final selon une
méthode d’analyse descendante, en assurant
une tragabilité dans le développement et
de lier les différentes phases au travers
d’outils dédiés A& chaque téche et compa-
tibles entre eux :

VISA ( Validation Interactive de
Spécifications Avioniques) pour les
téches de spécification ,

GALA (Génération Automatique de
Logiciel Avionique) et GALY
(Génération Automatique de Logiciel
d’ Interface) pour les téches de
conception et de réalisation du logi-
ciel,

le Banc de Validation Avionique (BVA)
pour les téches d’intégration et de
validation fonctionnelle,

PALAS ™ (Production Assistée de
Logiciel d’Application Structuré)
pour l’organisation du projet et la
gestion de configuration.

Validation  de

saul
Féquip

PALAS Gestion de configuration

S
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2 Spécification, maquettage, prototypage

2.1 Spécification

VISA est un outil développé par SEXTANT
Avionique congu dans le cadre d’un métier
particulier dont le savoir~faire est par-
faitement stabilisé : le developpement de
logiciels de pilotage-guidage.Visa est
utilisé pour 1l'élaboration de la spécifi-
cation globale puis detaillée.Il a été
élaboré avec le soucr de satisfaire aux
contraintes imposées par les collabora-
tions industrielles multi-partenaires :

+ diversité des méthodes et outils de
rédaction du cahier des charges qui
peut se présenter sous forme de spéci-
fication globale ocu détaillée,

+ partage des tlches et communication
des spécirfications organisées dans un
cadre contractuel.

Les difficultés sont surmontées grice 4 la
modularité de 1l‘outil et & un support
méthodologique rigouroux.

VISA répond, de plus, aux besoins suivants

* accroltre la qualité et la fiabalité
de la spécification produite au tra-
vers d’une description structurée et
non ambigué,

* valider la spécification avant 1
phase de réal:isation,

* intégrer la documentation .

Analyse descendante

La spécification, fc:mulation des exi-
gences, se décompose en plusieurs phases,
avec un niveau de détail croissant. Ces
phases aboutissent 3 des formulations dif-
férentes,mais cohérentes entrxe elles,du
cahier des charges.




La spécification globale s’appuie sur une
méthode de décomposition fonctionnelle,
héritée de la méthode SART, suivant le
formalisme proposé par HATLEY. Le concep~-
teur affine progressivement les fonctions
nécessaires A la réalisation du cahier des
charges et précise les flux de données
associées.L’architecture générale du pro-
duit est ainsi mis en place et est utili-
sée pour construire une gestion de confi-
guration (entités et liens de dépendance
inter-entités) et initialiser les phases
suivantes du développement.

Spécification détaillée

La phase de spécaification détaillée est
précédée d’une étude préliminaire de la
structure des lois de pilotage et de la
mise au point des solutions répondant au
besoin, Cette t8che est réalisée avec
l'aide d’outils d’AAO (Automatique
Assistée par Ordinateur).

Les solutions sont ensuite formalisées
gr8ce & un langage graphique trds proche
de celuir de l’automaticien. Une biblio-
théque de fonctions standardisées est dis-
ponible et comprend, entre autres, des
fonctions de type arithmétique, trigonomé-
trique, logique et des fonctions plus com-
plexes telles que filtre, intégrateur,
retard, moyenne, limiteur. Ce langage sera
décrit plus précisément au §3.

Les solutions sont développées conformé-
ment au découpage fonctionnel et & la
définition des flots de données, iasus de
la phase de spécification globale. Elles
sont trds finement détaillées afin de per-
mettre un codage direct.

La représentation qraphique de l’ensemble
de la spécification est le vecteur privi-
1lég1é de la communication grace A& son for-
malisme clair, non ambigu et accessible &
différents niveaux d’abstraction (décompo-
sition hiérarchique descendante). Elle ast
rendue indispencable du fait de la diver-
sité des intervenants.

Base de données

L’analyse du cahier des charges débouche,
comme on l’a vu, sur l’élaboration d’une
spécification globale, puis détaillée,
finalisant ainsi la bonne compréhension du
probléme et l‘assurance de la faisabilité
théorique. Les informations susceptibles
d’étre utilisées dans plusieurs phases du
développement (types, natures, destina-
tions des flots de données, attiibuts des
éléments caractéristiques) sont extraites
de ces spécifications et sont ordonnées
dans une base de données (BD), appelée BD
1nterne, qui est exploitée pour assurer la
cohérence de la spécification et apporter
un complément pratique d’informaiions 3
celle-ci.
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La spécification est parallélement complé-
tée par la définition des entrées/sorties
de 1’équipement, également ordonnées dans
une deuxiéme BD, appelée BD externe. Son
exploitation permet d’élaborer un document
officiel, livré avec 1l’'équipement pour en
spécifier les connexions.

Ces deux BD sont utilisées conjointement
et des relations permettent d’en croiser
les informations.

Gestion et documentation intégrées

Il est indispensable de conserver &
1’ensemble une cohérence constante, tant
au niveau du contenu que de la configura-
tion. En phase de développement, les enri-~
chissements sont multiples et la charge de
travail imposée par les tdches de gestion
requiert une mobilisation importante.
Aussi, il est apparu indispensable d'y
associer un guide méthodologique précis,
reposant sur les principes suivants :

* centralisation et transmission verti-
cale des informations 4 travers
1’exploitation de la BD interne, lors
des différentes phases de spécifica~
tion (contr8les croisés sur le conte~
nu, analyse de cohérence et de complé-
tude, répercussion des modifications,
consultation ergonomique),
gestion de configuration globale,
définissant les liens de dépendance
entre éléments de différentes phases.

-

De méme, 1l’élaboration de la documenta-

tion, selon une norme précise, réclame la
plus grande rigueur méthodologique et est
avantageusement supportée par un outil de
PAO (Publication Assistée par Ordinateur).

Ces diverses tdches font partie intégrante
de l’atelier. Leur traitement en apparait
alors moins contraignant, laissant aux
intervenants plus de disponibilité pour
les té&ches afférentes & la recherche de
solut:ions répondant aux exigences fonc-
tionnelles.

Outils

Les méthodes présentées cir-dessus sont
mises en oeuvre par des progiciels qui
sont, chacun, dédiés & une partie distinc-
te de la spécification. Chaque outil pos-
séde un contrdle intégré de cohérence et
de syntaxe, de la partie qu‘il est chargé
de décrire, ainsi qu’une BD propre.
L‘out1l VISA posséde une structure modu-
laire, dont les composants de base, pour
la spécification, sont STP™ (sté IGL sup-
portant SART), un éditeur graphique
SAFIRS™ (sté ASSIGRAPH). Ces outils peu-
vent &tre remplacés par des outils équava-
lents pour satisfaire les besoins spéci-
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fiques d’actavités dans le cadre de coopé-
rations industrielles.

L’outil de gestion de configuration
(PALAS™ cf §5) et le gestionnaire des BD
1nterne et externe (ORACLE™) assurent la
cohérence de 1l’ensemble.

Ces outils sont intégrés dans une structu-
re d’accueil A interface conviviale et
1’ensemble constitue un atelier cohérent
et un vaste outil de communication infor-
matique graphique, précis, et efficace
pour les équipes d’études, les équipes
systémes et les équipes de développement
logiciel.

2.2 Haquettage

Les spécifications, aux différents niveaux
d’ abstraction, ne sauraient &tre finali-
séaes sans la possibilité d’évaluer leur
cycle de développement. Il est nécessaire
d’introduire dans le cycle de développe-
ment des mini-cycles de validation, asso-
ci1és aux phases qui le compesent, permet-
tant de s’assurer que les spécifications
1ssues d’une phase répondent aux besoins
pour lesquels elles ont é6té établies. Ces
opérations de validation s’appuient sur le
magquettage, pour lequel VISA assure la
traduction automatique de la spécification
dans un langage de simulation.

Ce maquettage, mené en paralléle & 1’é&cri=-
ture des spécifications, nécessite :

¢ une représentation logicielle de la
spécification, réalisée en grande par-
tie grdce & des traducteurs automa-
tiques, ce qui limite les risques
d’erreurs,

une modélisation de 1l’environnement

de 1’équipement ayant pour but de don-
ner un comportement réaliste aux
entrées/sorties des fonctions spéci-
fiées,

un environnement de conduite de simu-
lation et d’'analyse de résultats.

Un effort particulier est porté sur la
présentation des résultats des simula-
tions, ceux-ci étant insérables dans le
document d’ensemble de la spécification.
La gestion de configuration, plus souple
pour le maquettage que pour la spécifica-
ticn, est néanmoins sous-jacente et appor-
te & la phase de maquettage une démarche
rigoureuse et précise (une simulation est
réalisée A partir d’un certain état de la
spécification, dans un contexte précis
etc...; la gestion de configuration permet.
d’en retrouver et d’identifier le domaine
de couverture théorique).

F Codage automatique de l1a spécilication
pour le maquetiage
Spécification image fogicielie
lenctiennele
LU B NV T Déctaraions

=] Oscermioms privies

Obisitiée = = = ] Coms qu pregramme

Le code image de la spécification est éla-~
boré A 1’aide, principalement, de traduc-
teurs automatiques développés & SEXTANT
Avionique :

SART/ADA pour la spécification globa-
le,

GALA pour la spécification détaillée
dont chaque élément représente un élé-
ment terminal de la représentation
fonctionnelle (une PSPEC dans le for-
malisme SART ),

un générateur de code exploitant les
informations des BD interne et exter-
ne, pour les déclarations
d’entrées/sorties,

La conduite de simuvlation est conviviale:
* interface graphique (visualisation,
poste de commande...),
¢ i1nteractivité (lancement/arrdt des
essais, définition des enregistre-
ments/stimuli, modifications des para-
métres internes de la spécification).

Le dialogue entre les fonctions A tester
(1’image de la spécification) et leur
environnement se fait par envoi/réception
de messages inter-processus, ce qul permet
de faire communiquer des langages diffé-
rents tels que C, Le-Lisp, Fortran et ADA.

2.3 Prototypage

Ce terme désigne 1c: une opération qua
reléve de la méme démarche que le maquet-
tage avec la différence que l’animation
des fonctions est effectuée en temps réel.
Ceci se justifie pour les fonctions dont
la validation nécessite la présence d’élé-
ments réels ;

* certaines fonctions font intervenir
le pilote et ne peuvent étre validées
qu‘en présence d’un opérateur réagis-
sant en temps réel :

¢+ de méme, il peut &tre nécessarre de
valider une fonction dialoguant avec
une autre en la placant dans le
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contexte réaliste créé par la présen-—
ce d'un équipement réel supportant
cette autre fonctaon.

En phase de prototypage, VISA intégre les
contraintes temps-réel du logiciel. Ces
contraintes sont du ressort de la réalisa-~
tion logicielle, mais sont prises en
compte lors de la spécification détaillée.
Cecay souligne la nécessité de considérer
le projet dans son ensemble en liant
étroitement les différentes phases les
unes aux autres, tout en procédant & un
affinage progressif: le maquettage ayant
validé les contraintes amont (cahier des
charges), le prototypage prévoit le com-
portement de la spécification soumise aux
contraintes aval ou A& 1l'environnement
réel. Ces contraintes sont modélisées pour
cette tache.

Nous verrons au §4 que la validation quan-
titative s’appuie avantageusaement sur des
résultats de samulations, générés par
1’outi1l de prototypage.

YISA

Spbc':;:;lwn | _ Vahdation de
[ l e Téquipsment

pdcitication de simulation
délasiide

Spécilication
graphique,

T
1
i
Basece données | [Concepton logicisle
ot _intdgration

Les besoins pour le prototypage sont du
méme ordre que pour le maquettage : dispo-
ser d‘outils pour produire, A partir d‘une
spécification globale, un code exécutable
1mage de la fonction spécifiée, et pour
mettre en oceuvre ce code dans un contexte
temps réel. Ces outils utilisent les res-
sources du Banc de Validation (cf §4).

3. Conception et réalisation du logiciel

Les résultats des activités de spécifica-
tions, maquettage et prototypage sont
exploités dans les phases de conception et
de réalisation.

La conception et le schéma global dans
lequel se place la structuration logiciel-
le des équipements de pilotage-guidage
sont parfaitement maitrisés. Ces équipe-
ments entrent dans la catégorie des sys-
temes réactifs qui réagissent continQment
4 leurs ent:rées pour recalculer cyclique-
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ment leurs sorties. La phase de conception
de nes équipements peut se schématiser en
une répartition des éléments de la spéci-
fication détaillée dans des modules logi-
ciels en fonction de contraintes d’implan-
tation du logiciel.

Dans les équipements de pilotage et guida-
ge, une faible partie du volume de code
est constituée de logiciel commun réutila-
sé sur d’autres calculateurs. C’est le cas
du moniteur temps réel, d’une bibliothéque
de fonctions avioniques de base et d’une
partie des tests de sécurité et de mainte-
nance intégrée. La plus grande partie du
logiciel est trés spécifique d’'un calcula-
teur donné. Dans le cas du pilote automa-
tique de 1l’Airbus A320, la répartition en
volume des fonctions spécifiques du pilo-
tage automatique est la suivante :

* 45% pour les calculs de logique et
loxs de pirlotage,

« 30% pour la gestion des entrée/sor-~
ties,

* 20% pour les séquencements,

¢« 5% pour diverses fonctionnalités.

La part de logiciel est de plus en plus
importante dans les équipements, mais les
délars impartis A& la réalisation restent
constants. L‘utilisation d’outils de géné-~
ration automatique de code est donc un
moyen d’augmenter la productivité tout en
maltrisant la qualité du logiciel produit.

Il apparait judicieux de générer automati-
quement le code des fonctionnalités repré-~
sentant le plus fort pourcentage de volume
de code sujet 3 de fréquentes modifica-~
tions. Ainsi GALA est un outil générant
automatiquement le code du calcul de la
logique et des lois de pilotage, tandis
que GALI génére le code de la gestion des
entrées/sorties.

Les outils de génération de code GALA et
GALI développés par SEXTANT Avionique sont
fondés sur 1'approche suivante :

La génération automatique du code des
modules logiciels, nécessite la formalisa-
tion d‘un langage de spécification
détaillée. La génération automatique d’un
module logiciel est alors la transcription
exacte de la spécification de ce module,
décrit & l'aide de ce langage, en code
source acceptable par un compilateur.

3.1 GALA : Génération Automatique de
Logiciel Avionique

GALA (Génératicn Automatique de Logiciel
d’Avionique) génére automatiquement le
code source exécutable des modules logi-
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ciels spécifiés sous forme graphique ainsi
que la documentation associée.

3.1.1 Le langage

Le méme langage est utilisé pour la spéci-
fication détaillée sous VISA et pour la
programmation par GALA.

I1 s’apparente aux langages & flot de don-
nées synchrone, avec lesquels un systéme
est représenté par un réseau d’opérateurs
connectés par des liaisons.

Un opérateur (un symbole graphique) repré-
sente une fonction. Une liaison (un fil)
représente une donnée.

Ce formalisme présentent les avantages
suivants :

¢ Il oat particulidrement bien adapté a
la description des automatismes et de
la logique operationnelle,

La syntaxe est simple et bien Jdéfi~-
nie,

+ Les contraintes de séquencement dans
1’exécutaon d’un programme résultent
uniquement des dépendances fonction-
relles entre les variables,

Les temps de réaction des opérateurs
du réseau sont supposés négligeables
par rapport aux cadences de circula-
tion des données (cadences définies
par le cycle d’actaivation). Cette
hypothése permet de faire abstraction
des contraintes temporelles,

.

Chaque symbole graphique correspond a uns
fonction décrite par un algorithme validé
et certifié et 4 un sous-programme codé
dans le lanqage cible. L’ensemble des
fonctions esc regroupé dans une biblio-
théque.

Cette bibliothéque est extensible. Quand
un projet identifie un nouveau sous-pro-
gramme utilisé de fagon répétitive, 1l
suffit de créer un symbole graphique avec
la caractérisation de ses broches de
connexion, puis de le valider et de 1l’ins-
taller dans la bibliothéque.

Les informations complémentaires néces-
saires au codage sont prises en compte par
1’intermédiaire de paramétres assoclés aux
symboles.

3.1.2 L‘utilisation

Le processus de production de logiciel par
GALA se déroule en plusieurs phases

+ Edition des diagrammes. Dans le cadre
de 1l‘atelier, cette édition est
effectuée pendant la phase de spéci-
fication détaislée (VISA).

Analyse et contrdle de cohérence du
diagramme en accord avec un certain
nombre de régles syntaxiques (par
exemple, toute broche de symbole doit
8tre connectée) et sémantiques (par
exemple, si un chemin de données com-
porte une boucle, un opérateur de
mémorisation doit &tre obligatoirement
présent sur cette boucle). Une partie
de ces contrdles est effectuée sous
VISA en phase de spécification.

Génération automatique de code en
deux étapes : d’abord la génération de
code symbolique indépendant du langa-
ge, suivi de la traduction de ce code
symbolique dans le langage de program-
mation cible.

L’utilisation d’un nouveau langage de pro-
grammation cible pour un projet donné
implique seulement le changement du tra-
ducteur final. Les traducteurs disponibles
actuellement sont : PASCAL, PLM, FORTRAN
et ADA.

3.2 GALI : Génération Automatique de
Logiciel d’Interface

Le langage de spécification utilisé par
GALI est un langage textuel propre aux
traitements des entrées/sorties.

GALI s’appuie sur une base de données
contenant les caractéristiques de tous les
signaux en entrée et en sortie d’un équi-
pement. Cette base de données est renseir-
gnée en phase de spécification.

Le concepteur enrichit la d4finition des
signaux en y apportant des informations
complémentaire (des contraintes logi-
cielles par exemple). GALI assure alors la
définition et la mise 4 jour du découpage
fonctionnel en relation étroite avec
l’out1l de gestion de configuration, éla-
bore la documentation d’interface de

1’ équipement ot les spécifications de
codage dans le langage approprié .

GALI génére le code des modules de traite-
ments d‘entrées sorties en conformité avec
leur spécification de codage ainsi que les
modules de déclaration des données afin
d’en assurer la cohérence avec leur envi-
ronnement. GALI utilise les mémes traduc-
teurs que GALA.

3.3 Bilan d’utilisation

Les avantages apportés par la génération
automatique de code sont importants :

Les outils de codage automatique GALA et
GALI transcrivent fidélement la spécifi-
cation de codage en langage de programma-




tion. Aucune intexvention humaine n’est
nécessaire & ce stade.

Tout risque d’introduction de défaut de
codage est supprimé, ce quir permet d‘obte-
nir beaucoup plus rapidement.le niveau
requis de qualité du logiciel.Les tests
structurels (tests unitaires “boite
blanche”) des modules générés automatique-
ment peuvent &tre supprimés.

Ces outils utaliseat directement les
informations issues de la spécification et
apportent une facilité dans la tracgabilité
de ces informations ainsi qu’une bonne
cohérence sur l’ensemble de l’atelier de
développement, dans lequel chaque informa~
tion n'est définie qu’une seule fois, é&vi-
tant les risques d’incohérence d’une
double définition. La cohérence parfaite
entre documents de spécification et code
exécutable et la concentration du dévelop-
puvar sur les :caches de spécification sont
autant de facteurs supplémentaires de qua -
11té du logrciel produat.

La suppression de la phase de tests struc-
turels (tests “boite blanche”) des modules
générés autcmatiquement n’est autorisée
par les autorités de certification que
dans la mesure ol les outils ont été qua-
l1f1és, ce qui est le cas pour les pro-
grammes Alirbus A320 et A340.

4. Intégration et validation des équipe-
mants

4.1 Méthodes

Cette partie traite de 1l’ensemble des
essais fonctionnels réalisés aprés inté-
gration du matériel et du logiciel.

Ces essais font suite aux tests réalisés
par les équipes de développement matériel
at logiciel.

L'équipe matérielle aura intégré les daf-
férents éléments du calculateur, vérifié
les signaux d’alimentation, les diffé-
rentes fonctions des cartes, le cdblage de
fond de panier, effectué les auto-tests.
L’équipe logicizlle aura validé le moni~
teur temps réel, la bibliothéque avionique
GALA. Les tests unitaires auront été
effectués pour les modules codés manuelle-
ment.

L’object1f de ces essars fonctionnels est
de vérifier :

* l’intégrité du systéme, c’est & dire
que toutes les fonctions prévues pour
obtenir la sOreté de fonctionnement
cont correctement implantées,

* la conformité de l’équipement réalisé
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par rapport aux différents documents
de spécrfication (interxface, loxs de
pilotage, logique opérationnelle)

Les opérations d/intégration/validation
s’organisent en guatre phases :

Phase 1 : Intégration et Validation par
processeur

Les objectifs de cette phase sont de véra-
fier:

¢ 1l’intégration hard/soft processeur
par processeur sous l’aspect aintégraité
(tests de sécurité, auto-tests)

¢ les dialogues inter-processeurs.

Les outils utilisés sont les bancs de test
de 1’équipement et les moyens d’investiga-
tion associés, tels qu’analyseur logigue
et émulateur.

Phase 2 : Tests en boucle ouverte (1l avion
n‘est pas dans la boucle)

Les tests boucle ouverte s’'effectuent sur
un calculateur complet et fermé (tests
boite noire).

Dans cette phase de test, les sorties de
1’ équaipement (ordres gouvernes et manettes
des gaz) ne sont pas envoyées A 1l’environ-
nement simulé.

Les objectifs de cette phase sont de véri-
fier :

+ le comportement dynamique du systéme
sous les aspects architecture générale
et séquencement temps réel,

* les flots de données & l'intérieur du
systéme,

* globalement le monitoring.

Les tests boucle ouverte sont répartis en
deux sous-phases :

a) Tests de la_logique.

La logique comprend A la fois la logique
opérationnelle liée au contrdle du vol par
17équipage et la surveillance et reconfi-
guration des entrées/sorties de 1’équipe-
ment.

Sont testés dans cette phase les engage-
ments des modes et des sous-modes au moyen
des postes de commande de l’équipement
ainsi que les affichages des différentes
informations

b) Tests des lois de pilotage

Le but de cette phase de test est une
validation dynamique et gquantitative de la
fonction, par exemple : une tenue de cap,
d‘altitude ou d’ILS.
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Le calculateur recoit un ensemble de
signaux cohérents correspondant & une
configuration avion donnée sur lesquels se
superposent un ou plusieurs stimuli.

Le principe retenu est un recoupement
quantitatif par rapport 3 des simulations
effectuées sur un logiciel image implanté
sur un ordinateur sol (mainframe ou sta-
tion de travail).

Des sollicitations du type échelon, cré-
neau ou rampe sont appliquées sur les
entrées capteurs, & la fois sur 1l’équipe-
ment réel et la fonction simulée.

La mise en oeuvre est effectuée sur le
Banc de Validation Avionique (BVA).

Phase 3 : Tests en boucle fermée (l’avion
est dans la boucle)

L’objectif de cette phase est de tester le
comportement en dynamique de l’'équipement
dans les phases réelles de vol.

Dans cette phase, le calculateur regoat
les réponses de 1’avion aux commandes
générées par lui-méme au travers d'une
modélisation fine de l’environnement
(avion, moteur, capteurs, autres équipe-
ments en relation avec 1’'équipement en
test).

Le principa retenu est un recoupement
quantitatif par rapport & des simulations
effectuées sur un logiciel image implanté
sur un ordinateur sol.

Les stimuli sont maintenant issus des
postes de commande avion du pilote automs-
tique tels que le pilote peut les envoyer
“en situation” dans des conditions opéra-
tionnelles de vol,

Tous les modes sont ainsi testés : modes
de croisidre ou d’atterrissage automatique
ains: que la logique d’enchalnement des
modes et de leurs différents états (modes
armés, actifs,etc,...)

Dans cette phase l’ensemble de la fourni-
ture est présente sur le Banc de
Validation Avionique : postes de commande,
afficheurs de mode, contiguration multi-
calculateurs,

Phase 4 : Tests de non-régression des
états successifs du systéme

Des tests de non régression des états suc-
cessifs de 1l’équipement sont effectuds sur
des scénari: de vol complets. Les réponses
de 1‘état n+l sont comparées aux réponses
de 1’état n pour les fonctions non modi-
fiées entre les deux états., La mise en
oeuvre est effectuée de fagcon automatisée
sur le banc de Validation Avionique (BVA).

4.2 Evolution des méthodes de validation

Une évolution des t hodes orrentée vers
1’automatisation du passage des procédures

de test est en cours.

En effet, le passage des tests réclame un
ensemble d’actions de 1l’opérateur sur le
banc :

+ configuration de l’environnement de
samulation : choix de la version de
simulation, de ses conditions d’ini-
tialisation,

préparation du calculateur & tester :
reset, auto-tests,

actions sur les postes de commande
avion : engagement du calculateur,
engagement de modes, sélection de
consignes...,

commandes sur les moyens d’espionnage
et de sollicitation du banc.

Deux difficultés sont identifibes dans ce
processus manuel :

a) Le déterminisme

Lors d’un test rffectué manuellement, les
actions de l’opérateur interviennent a des
instants aléatoires.

Or certains tests (tests de recoupement
avec une simulation effectude sur un logi~
ciel image, tests de non régression)
nécessitent de respecter un chronogramme
précis d’enchalnement des act:ions.

b) _La_charge de travail des
machines et des hommas

La complexité croissante des fonctions des
calculateurs provoque une augmentation du
volume des tests de validation. Il devient
nécessarre de libérer 1'opérateur des
tiches répétitives afin qu’il puisse se
concentrer sur le contrdle des résultats.

Ces deux difficultés mettent en évidence
la nécessité de pouvoir, par ur automace,
“simuler” l‘opérateur, ou tout au moins
celles de ses actions :

* qui doivent &tre exécutées plus rapi-
dement que ne le permet le temps de
réaction d‘un opérateur,

¢ quil ne nécessitent pas un nivaau
d’expertise 1mportant.

Lfoutil en cours de mise au point répondra
aux deux objectifs :

+ dérouler automatiquement des
séyuences d’actions déterministes,
+ exécuter des tests en “batch”.

Ces deux niveaux d‘utilisation de 1’auto-
mate sont basés sur des mécanismes qui
s’appuilent sur la structure existante du
banc par ajout d‘une couche “simulacion de
1’opérateur” au dessus des entrées “clas-
si1ques” de 1l‘outal.




L’automate pourra agir sur tout le Banc,
constitué de matériels et de logiciels
hétérogénes : stations de travail, sta-~
tions graphiques, ordinateurs temps-réel,
moyens de tracé, boltiers de coupure...

4.3 L'outil : le Banc de Validation
Avionique (BVA)

Le BVA est un ensemble de matériels et de
logiciels permettant de tester les logi-
ciels des calculateurs embarqués. Il est
utilisé dans tous les programmes civils et
militaires majeurs dans lesquels SEXTANT
fournit des équipements de conduite du vol
: Airbus A310, A320, A340, hélicoptére
franco-allemand TIGRE, Mirage 2000,
C135FR, puis RAFALE. pour le CET
(Calculateur d’Elaboration de
Trajectoires).

Architecturs fonctionnelle
Un banc est constitué :

» d’une samulation temps xéel sur cal-
culateur de type GOULD/ENCORE compre-
nant :

-~ un moniteur de simulation char-
gé de la coordination
d’ensemble,

- les modéles avion, moteur, cap-
teurs,

~ une interface temps réel char-
gée des échanges avec les
autres constituants du banc.

v d‘une interface opérateur sur station
de travail en frontal du calculateur
prancipal supportant tout le dialogue
de conduite de simulation et de mise
en muvre des moyens d’essai avec fonc-
tions de stimulation, d’espionnage, et
de sélection des enregistrements,

+ d’instruments simulés sur station
graphique de type Silicon Graphics (en
l’abhsence de l'environnement réel),

+ d'un pupitre dans lequel viennent
s’insérer :

- une “planche de bord” avec les
éléments réels du poste de
 » lotage (postes de comuande
PA, visualisations électro-
niques)

- des commandes cockpit
{becs, volets, train, aéro-

freins, ...},
- des espionneurs d’entrées-sor-~
ties,

~ des traceurs rapides,

- des tiroirs de coupure d’'ali-
mentation,

~ les supports calculateurs.

+ d’une chalne d'entréeg-sorties per-
mettant le couplage de la simulat:on
temps réel avec le ou les équipements
4 valider d’une part et le pupitre
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d’autre part.

Le banc est relié & un poste de tracé et
d’arde & 1’analyse des résulrtats d'essai.

Evolutions vers un Banc pour systémes
intégrés

Deux axes d’évolution sont envisagés :

¢ élargir le nombre dféquipements quf:
peut accueirllir pour valider des sys—
teémes intégrés d'avionique comprenant
par exemple des capteurs et des visua-
lisat:ons,

* avoir la capacité de remplacer pro-
gressivement en cours d’aintégration
les éléments prototypés par les &lé-
ments réels.

5. Outil de gestion de configuration

PAIAS : Rroduction Assistée de Logiciel
d’Application Structuré

Le développement du logiciel d’un équipe-
ment de pilotage-guidage est confronté &
des contraintes importantes :

* le cycle de déveloprament est court
pour tenir des délais de plus en plus
réduits,

les fonctionnalités A& intégrer amé-
nent 4 embarquer un volume croissant
de logiciel,

le cycle de vie de l’équipement est
long et l’environnement de développe-
ment est susceptible d'évoluer,

la sécurité et la fiabilité du déve-
loppement sont prépondérants,

la nécessité de faire vivre plusieurs
variantes d‘un méme logiciel, au méme
rythme et en paralléle.

-

La prise en compte de ces contraintes rend
nécessaire l’'utilisation d’une structure
d’accuerl facilitant la gestion des évolu-
tions des projets et 1’intégration des
davers outils logiciels utilisés, tout au
long des phases de spécification, concep-
tion, codage, tests unitaires, intégra-
tion, validaticn et maintenance.

PALAS répond & l’ensemble de ces besoins.
Cfest une structure d*accueil de haut
niveau qui prend en compte l‘ensemble des
dimensions d’un développement logiciel.

Les principales fonctions oftertes par
PALAS sont :

¢ la structuration d‘un produit logi-
ciel en arborescence avec liens,

sle contrdle des accés et interrace
utilisateur,
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*la construction et le tests des confi-
gurataions,

*la mise en place de versions offi-
cielles,

¢le développement de versions de logi-
ciel en paralléle,

*le contrdle complet et l'enregistre-
ment des modifications,

*la gestion des historiques de tous les
composants logaciels,

*l’intégration des outils du projet.

5.1 Organisation du projet

PALAS permet d’une part d’organiser le
projet et de connaitre a tout instant
1/&tat d’évolution de celui-ci, d’autre
part de définir les tdches & réaliser par
chaque membre de 1l’équipe de développe-
ment.

PALAS permet également de synchroniser des
développements dans le cas d’un projet
partitionné en plusieurs sous-projets.
Chaque utilisateur PALAS travaille dans un
“espace privé” qui lui est propre, dans le
cadre d’une tdche préalablement définie
par le responsable projet.

Le responsable de projet peut définir des
auvtorisations d’accés & chaque membre d’un
projet. Le rdle de chacun est alors bien
défini, ce quir induit :

+ une organisation claire des équipes
de développement,

» une définition claire et complédte,
pour chaque membre de 1l‘équipe, de son
contexte de travail, ainsi que des
informations qui lui sont nécessaires,

¢ le masquage de certaines parties de
développement (par exemple dans le
cadre d’une coopération ou d’une sous-
traitance).

Chaque “ent:ité" définie avec PALAS posséde
un nombre variable “d’objets“ (de
fichiers) associés, principalement identi-
fiés par les outils s’appliquant sur
l’entité.

Une entité PALAS peut donc correspondre A
un modéle complet de spécification, 4 un
module logiciel (avec l’ensemble de ces
fichiers de documentation, code source,
code objet exécutable...), & un jeu de
tests, etc,... Ce concept permet de gérer
les composants produits lors des phases du
cycle de vie du logiciel.

5.2 Gestion de configuration

La description et 1l’explortation des
“liens” entre les différentes entités d'un
projet permettent de mettre en ceuvre des
mécanismes de configurations complétes ou
partielles de versions du logicrel et le

maintien d’intégrité entre plusieurs docu-
ments, par exemple entre la spécification,
un module logiciel et le résultat des
tests.

PALAS réalise entidrement et de facon
automatique toutes les tdches de gestion
de configuration et permet donc de mainte-
nir la cohérence entre 1’ensemble des
entités d’un projet, depuis l‘’expression
des besoins jusqu’ad la mise en exploita-
tion, pour laquelle il dispose d’un méca-
nisme de mise en place de versions offi-
cielles.

5.3 Développement en paralléle

Il est fréquemment nécessaire de faire
vivre simultanément plusieurs variantes
d’un méme logiciel. Ces variantes peuvent
étre liées A des configurations systéme
différentes ou 4 différents niveaux
d’intégration. Il est alors important de
conserver l: plus grande part de compo-
sants communs entre les diverse:s
variantes,

PALAS offre toutes les commandes pour
développer en paralléle et continuer le
développement en psralléle ou le faire
reconverger. Il autorise la gestion simul-
tanée du plusieurs configurat:ions d’un
méme sous-ensemble du logiciel, tout en
préservant des divergences les composants
communs & ces différentes versions.

5.4 Suivi des modifications

PALAS offre la possibilité d'établir des
procédures rigoureuses pour les modifica-
tions par l’intermédiaire des Décisions
d’Intervention logicielle (DIL). Les déci-
sions d'interventions logicielles, qui
résultent d’une analyse d’é&volution, sont
décrites sous PALAS en précisant les enti-
tés touchées par chaque évolution, et
regroupées au sein de Rapports de
Modification (RM) qui rythment 1’évolution
du logiciel d’un état stable 4 un autre.

PALAS réalise le suivi des évolut:ions et
gére l’historique de chaque composant du
projet ce qui permet d’en maitriser 1’‘état
4 tout instant du cycle de vie et de
garantlr ainsy la sécurité et la fiabilité
du développement.

5.5 L’intégration d’outils

PALAS offre un ensemble de services pour

intégrer les divers outils utilisé sur un
projet et contrdler le processus de déve-
loppement & travers la mise en oeuvre de

ces outils.




PALAS permet de réutiliser des procédures
mise en place sur d’autres projets, voire
des procédures standardisées au sein d’une
entreprlse.

L’intégration ¢‘outils de développement
logaiciel se fait par l’intermédiaire de
procédures de production ou “chaines de
production” qui peuvent aller du simple
appel & un outil, jusqu’d 1’'enchainement
complexe de plusieurs outils.

PALAS permet de définir des chaines de
production fonctionnant dans des environ-
nements spécifiques 1liés 3 l’environnement
cible (les bancs de validation par
exemple), ou & l’environnement d’un outil
(les stations de travail pour VISA par
exemple) .

PALAS permet de prendre en compte les
contraintes d’'hétérogénéité de matériels
de développement, at offre les mécanismes
nécessaires pour maintenir l’intégrité du
projet sans intervention manuelle de
l’utalisateur.

PALAS est un outil industriel utilisé dans
le cadre des grands programmes : A320,
A340, HAP, C135FR, ARIANE 1IV.

6.Conclusion

L’atelier de développement de logiciels de
pirlotage-guidage s’appule sur une méthodo-
logie stable, et éprouvée par SEXTANT
Avionique pour le développement d‘un grand
nombre d’équipements. L‘atelier permet de
mettre en oeuvre rigoureusement cette
méthodologie, 4 travers l’emplor d’outils
adaptés A chaque phase du cycle de déve-
loppement.. Il assure la communication des
informati-ns issues de ces outils pour
couvrir l’ensemble de la méthodologie sur
tout le cycle de vie du projet.

L’atelier est donc le garant d’un bon
niveau de qualité des équipements réali-
sés.,
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1. Introduction

Les systémes embarqués développés par la
Division Conduite du Vol de SEXTANT
Avionique évoluent sans cesse au niveau de
leurs fonctionnalités, des moyens de déve-
loppement et des techniques d’implémenta-
tion.

L’évolution des fonctionnalités peut étre
observée sur deux plans :
~ l’aytomatisation de la conduite du vol
correspond & 1’évolution du concept de
Pilote Automatique vers celui de
Systéme de Gestion du Vol : ces sys-
témes mettent 3 la disposition des
pilotes un ensemble de fonctions
d’aide au pilotage, depuis 1’automati-~
sation de la traditionnells tenue da
consigne jusqu’d l’aide & la reconfi-
guration du plan de vol par le pilote
en cours de mission, avec prise en
compte de la préparation de misaion au
sol,
~ de plus, 1l’intégration de nouvelles

fonctionnalités est rendue possible
par la communication avec les systémes
de détection et de contrdle (radars),
ces systémes pouvant &tre terrestres
ou aériens, statiques ou mobiles.

Au niveau des moyens de développement, le
logiciel joue un réle de plus en plus
important. Il compléte les techniques de
1’automatique principalement utilisées
pour les systémes de pilotage et guidage.

S1, aujourd’hui, les langages de program-—
mation de type ADA ainsi que les méthodes
de spécification et de conception sont
couramment mis en oeuvre, les technologies
du logiciel ne cessent d‘évoluer : les
langages orientés objets et les systémes
experts actuellement utilisés en phase
d’étude feront bientdt partie des techno-
logies embarquéses,

Le rythme important avec lequel ces évolu-
tions fonctaonnelles et techniques sont
menées nécessite de mettre en place des
moyeng pour maltriser et anticiper ces
évolutions. Au niveau de la définition des
fonctionnalités, ceci se traduit par un
renforcement du dialogue que SEXTANT
entretient avec ses différents interlocu-
teurs : les compagnies aériennes, les

pilotes et les avionneurs. Des méthodes
accompagnéas d’outils supports sont mises
en place pour formaliser ces dialogues
afin d’aboutir A des expressions de besoin
complétes et non amkigués.

Le département Avant-Projets de la
Division Conduite du Vol est responsable
de la définition des moyens de spécifica-
tion fonctionnelle utilisés dans les
phases amont du cycle de développement :
ces phases sont d’autant plus amportantes
qu’une erreur introduite 3 ce stade est
amplifiée au cours des phases aval et que
sa découverte tardive entralne des retours
en arriére toujours trés cofteux.

Ce document présente les différents
besoins qui apparaissent dans ces phases
amont ainsi que les divers environnements
mis en place & SEXTANT Avionique pour la
spécification et le maquettage des logi-
ciels de gestion du vol.

2. Les besoins en moyens de spécification

Les besoins sont issus du constat d’une
contradiction concernant les documents de
spécification :

- ils constituent les premiers documents
contractuels d’un projet et figurent
de ce fait parmi les documents les
plus importants,

-~ leur forme, des documents papier com-
posés d’un grand nombre de pages avec
des références croisées non structu-
rées, rend problématique voire parfois
impossible leur exploitation,

Ainsi, les outils d’aide A& la phase de
spécification doivent non seulement per-
mettre d’exprimer aisément les exigences
fonctionnelles, mais aussi de vérifier
rapidement et & posteriori la validité des
documents de spécification par rapport &
ces mémes exigences.

La solution consiste 4 mettre en oeuvre
des moyens de spécification formelle :
leur caractére formel, par opposition au
caractére informel inhérent aux langages
naturels souvent sujets & interprétation,
évite les ambiguités et les incomplétudes.



7-2

Ceci est parfois obtenu au détriment de la
lisibilité des spécifications. Une solu~
tion compléte consiste alors d associer
une activité de maquettage & l’'utilisation
de méthodes de spécification formelle. Il
devient ainsi possible de valider trés tét
dans le cycle de développement 1’expres-
sion des besoins, la phase intégrée de
spécification/maquettage apportant le
double avantage :

- de mettre & la disposition des clients
un document sans ambiguité ni incom-
plétude et des moyens permettant une
exploitation rapide et lisible,

- de mettre & la disposition des réali-
sateurs, une expression des besoins
claire et compldte pour les fonctions
4 réaliser : le caractdre formel des
spécifications permet de mettre en
place les moyens d’assurer la tragabi-
lité avec la phase de conception logi-
cielle et, lorsque cela est possible,
avec la phase de génération automa-
tique de code embarqué [13],

2.1.Intégration de la spécification et du
maquettage au sein d’un méme environnement

SEXTANT Avionique, considérant spécifi-
cation et maquettage comme indissociables,
a mis en place plusieurs environnements,
chacun basé sur une méthode de spécifica-
tion particuliére A laquelle ast associé
un générateur de code. La simulation obte-
nue par l’exécution du code généré se fait
dans le cadre d’un environnement de
maquettage pré-existant. Les fonctionnali-
tés communes 3 ces environnements de spé~
cification/maquettage sont décrites dans
la suite de ce document.

2.1.1.8Spécification et “vérifications sta-
tiques”

A une méthode de spécification formelle,
sont associées deux notations strictement
équivalentes : la premiére est graphique
et forme l’interface dont le spécifieur
dispose pour exprimer ses besoins. La
seconde est textuelle et constitue le lan-
gage intermédiaire & partir duquel les
vérifications liées A la méthode sont
faites.

ces vérifications sont au nombre de deux :
la premidre, purement syntaxique, vérifie
que tous les symboles utilisés par le spé-
cifieur pour sa description formelle sont
autorisés et que leur agencement les uns
avec l¢, autres correspond 4 la grammaire
du langage. Cette vérification est facili-
tée lorsqu’a partir de la saisie effectuée
4 l’aide d’un éditeur graphique dédié, la
représentation équivalente dans le langage

1ntermédiaire est automatiquement générae.

La seconde vérifie qu‘il n’y a pas d’inco-
hérence au niveau de la sémantique de la
méthode : par exemple, des cas de division
par zéro et les conflits de types peuvent
8tre détectés lors d’une phase d’analyse
sémantique. La mise en évidence de ces
ancohérences, dont l’implémentation peut
&tre trds complexe, est faite de manidze
dynamigue, c’est 3 dire lors de l’'exéca-
tion du code maquette.

2.1.2.Maquettage et “vérifications dyna-
miques”

2.1.2.1.Mise au point dae la spécification

L’animation ou la simulation d’une des-
cription formelle des spécifications a
pour but de les valider. Cette phase de
validation consiste a

- vérifier que la description est non
ambigué et compléte : c’est ce qu’on
appelle “le debuggage de la spécifica-
tion” qui consiste & détecter les
erreurs dues au non respect de la
méthode et qui n’ont pas pu étre
découvertes lors des vérifications
statiques,

- vérifier que la description formelle
exprime bien les besoins et que tous
les besoins y sont exprimés : c’est ce
qu’on appelle la “validation de la
spécirfication”.

Dans les deux cas, le spécifieur est amené
A modifier la description formelle si
1’exécution du code maquette associé ne
correspond pas & ce qu’il attend, que ce
soit du poant de vue “debuggage” ou du
point de wue “validation”.

Pour faciliter la détection des erreurs,
diftérents modes d’exécution du code
maquette sont implémentés : plusieurs
modes “pas 4 pas” (avec différentes
valeurs du pas) et un mode en continu avec
possibilité d’arrét sur événement.

Pour faciliter la correction des erreurs
dans la description formelle, la tracabi-
lité est assurée entre les é&léments de
spécafication et le code maquette.

2.1.2.2.Interface de simulation

L’interface de simulation constitue le
moyen de dialogue entre l‘/environnement de
spécification/maquettage et le spécifieur.

Outre les moyens d’édition nécessaires &
la formulation des exigences fonction-
nelles, le spécifieur dispose de moyens
lui perr tant de contrdler sa simulation:




~ en envoyant aussi bien des stimula
{(Run, Stop...) que des données,

- en visualisant des informations au
cours d’une simulation.

Ces moyens sont basés sur les res-
sources qu’offrent aujourd’hui les
stations de travail, en particulier
1‘utilisation de la souris, du multi-
fenétrage... (Cf. annexe 3).

La caractéristique principale de
1’1interface de simulation est d’étre
complétement dissociée de la descrip-
tion formelle. Pour chaque descrip-
tion on peut définair plusieurs inter-
faces pnssibles grlce & un langage de
définition d’ainterface,

2.2.1Intégration de plusieuxrs environne-
ments da spécification/maquettage au sein
d’un atelier

2.2.1.Position du probléme

La multiplacation d’environnements dédiés

4 des métiers trés spécialisés, tous uti-

lisés pour le développement d’un méme sys-
téme ce Gestion du Vol, nécessite d’inté-

grer ce3 environnements entre eux.

Un environnement donné, constitué d’une
méthode de spécification et d’'un environ-
nement de maguettage, est
- soit dédié A un métier particulaer
parmi lesquels on peut citer celui des
lois de pilotage, de la logique du
dralogue homme-machine,
- soit A vocation plus générale.

Chacun des métiers mis en oceuvre pour le
développement des fonctions de Gestion du
Vol doit faire face A une double évolu-
tion:

- du point de vue des moyens de spécifi-~
cation associés, comme par exemple
1’apparition de nouvelles méthodes,
les adaptations & apporter & 1l’inter-
face homme-machine des outils sup-
ports,

~ et du point de vue des domaines
d’1intervention des métiers qui sont de
plus en plus nombreux au fur et &
mesure de l’apparition de nouvelles
fonctionnalités dans les fonctions de
Gestion du Vol.

D’autre part, ces nouvelles fonctionnali-
tés générent de nouveaux métiers et néces-
sitent un environnement de
spécification/maquettage adapté : tel est
le cas pour 1'ELS dont la maltrise demande
la mise en oceuvre de techniques de type
“Hypertext” non utilisées jusqu’alors pour
le développement des systémes embarqués.

Des environnements de spécification/
maguettage A vocation “généraliste” peu-
vent aider & la formalisation d’'un métier
particulier : ainsi, l’environnement
OOA/KEE a permis de développer un environ-
nement de spécification/maquettage d’une
application ELS (cf. troisiéme partie de
ce document).

2.2.2.8tructure d’accueil

Les problémes d’intégration se posent A
plusieurs niveaux :

- intégration & un environnement d’une
nouvelle méthode de spécification,

- antégration A& un environnement d’une
nouvelle technique de maquettage,

- intégration de plusieurs environne-
ments de spécification/maquettage les
uns avec les autres : pour des mémes
environnements, l’intégration peut
8tre faite de différentes maniéres, en
fonction du mode de fonctionnement du
projet, de la répartaition des t&ches
entre les différents intervenants...

La solution consiste & disposer d’une
structure d’accueil constituée de méthedes
et d’outils permettant de spécifier les
différents impératifs d’intégration.

Cette structure d’accueil doit disposer de
trois types d'outils :

- outils de définition de 1‘intégration
de plusieurs méthodes entre elles,

- outils de définition de 1’intégration
des techniques de maquettage entre
elles,

- outils de définition de 1'intégration
d’une méthode avec une technique de
maquettage.

ingralisa des méthados
ke olios pour farmer un
Inldgre (K}

(M) ot d'uns lechalque de

Invdgration d'une métnede
maqueitage (1)

» dos
de maqueltage anire eliee

- Structuration en couches de la structure
d’accueirl -

A partir de définitions écrites avec ces
outils, la structure d’accueil implémente,
sans aucune intervention humaine supplé-
mentaire, un nouvel environnement intégré
de spécification/maquettage adapté.
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3. Réalisations

Deux environnements de
spécification/maquettage, destinés & la
formalisation des “fonctions nouvelles”,
ont &été mis en place au sean du
Département Avant-Projets de la Division
Conduite du Vol : le premier est basé sur
la méthode SART (Structured Analysis &
Real Tame) pour la spécification fonction-
nelle et le langage ADA pour le maquetta-
ge- Le second, gqui s’appule sur les lan-
gages orientés objets, a servi 4 formali-
ser la fonction ELS (Electronic Library
System) et a conduit 4 la mise en place
d’un environnement de
spécrfication/maquettage dédié A ce type
d’application.

3.1.Un environnement “classique”: SART/ADA

3.1.1.1a méthode SART considérée

La méthode SART est particuliérement
adaptée & la spécification fonctionnelle
des applications temps-réel. L’outal STP
(Software Through Pictures) {[1], un des
outils du marché supportant la méthode
SART, est largement diffusé 4 SEXTANT pour
la spécification des fonctions assurées
par les systémes de Conduite du Vol.

Le terme “SART” est générique et désigne
en fait deux méthodes particuliéres, celle
de “Ward & Mellor” ([3) et celle de
“Hatley” [4]. La méthode SART est semi-
formelle car certaines combinaisons syn-
taxiques n‘ont pas une sémantique suffi-
samment précise. La méthode considérée 1ci
est une extension formelle & celle de
“Ward & Mellor” : les ambiguités séman-
tiques ont été suppraimées.

3.1.1.1.Le modéle des traitements : SA

Le principe de SART consiste & décrire
les fonctions assurées par un logiciel
sous la forme d’une décomposition hiérar-
chique descendante, suivant le principe
d’Analyse Structurée de YOURDON/DEMARCO
[2]. Chaque niveau de description est com-
plet en lui-méme, mais la précision croit
avec la profondeur.

Une description SART est constituée d’une
arborescence de diagrammes, la racine
étant un diagramme de contexte et les
autres noeuds des diagrammes de flux de
données (DFD). Chaque diagramme contient
des éléments de type : FONCTION, PSPEC,
CSPEC, DATA-STORE, ENTITE-EXTERNE et
CONNEX1ON. Seuls les éléments de type
FONCTION se décomposent en un diagramme
fi1ls. Chacun de ces éléments posséde des
flux entrants et des flux sortants, ces

flux assurant la connectique d’un modéle
SART.

Deux types de flux sont définis : les flux
de données et les flux de contrbles (ou
événements) - La différence se situe au
niveau de la perception de ces flux par
les éléments qul les recoivent : les flux
de contr8le sont pergus immédiatement par
17 &lément receveur car son comportement
est susceptible d’étre modifié immédiate-
ment alors que les flux de données sont
considérés comme de simples supports de
données, données que l’élément receveur
peut aller chercher de lui-méme et quand
il le décide.

3.1.1.2. Le modéle das contrdles : RT

S1 le modeéle des traitements décrit de
maniére statique le logiciel & réaliser,
sous la forme de fonctions s’échangeant
des données, le moddle des contrdles
décrit la dynamique de ces fonctions les
unes par rapport aux autres. Les dia-
grammes états/transit:ions associés &
chaque CSPEC et les flux de contrdle
entrant et sortant de ces CSPEC permettent
de décrire cette logique.

Chaque DFD d'une spécification SART décrit
un élément FONCTION d’un diagramme de
niveau supérieur. La CSPEC est introduaite
sur un DFD pour décrire comment la fonc-
tion mére du DFD prend en compte les flux
de contrdle qu’elle percoit et comment
elle émet les flux de contrdle sortants

- Arborescence de DFD ~

La CSPEC C permet de décrire les change-
ments de comportement de la fonction B &
partir non seulement des événements
externes el et e2 mals aussi des événe-
ments internes (venant de B.2 ou émis vers
B.1). Les changements de comportement de B




correspondent en fait & des changements de
comportement des sous-fonctions B.1l, B.2
et B.3. Via la CSPEC C, un diagramme
états/transitions est associé & la fonc-
tion B. Il est tel que ¢
- l’ensemble des états correspond & un
ensemble de configurataions différentes
des sous~fonctions B.1, B.2 et B.3,
~ l'ensemble des événements conditions
de transition est constitué par les
flux de contrdle entrant dans la CSPEC
: ces événements sont soit externes
(el ) soit 1nternes (venant de B.2),
~ 1l’ensemble des événements émis lors
des transitions est constitué par les
flux de contréle sortant de la CSPEC :
ces événements sont solit externes (e2)
soit internes (émis vers B.1l).

3.1.2.1e traducteur SART/ADA

Les motivations qui ont conduit au choix
de ADA comme langage cible sont au nombre
de troas :

. les concepts du parallélisme mis en
oeuvre dans ADA (notion de tache, ren-
dez-vous) ont permis d’implémenter un
modéle SART comme un ensemble de pro-
cessus en paralléle s’échangeant des
données et se synchronisant.

. le concept de généricitéd permet de
définix, pour chaque type d’élément de
la méthode SART, un package générique
que le générateur de code instancie
pour chaque élément de chacun des dia-
grammes d’'une spécification SART.

Certains paramétres sont communs &
tous les packages génériques (par
exemple, la liste des flux sortants).
D’autres ont des paramétres particu-
liers dépendant du type de 1'élément
SART (par exemple, le package corres-
pondant & 1l’élément de type CSPEC a un
paramétre “automate”).

En annexe 1, est jointe la partie spé-
cification des six packages géné-
riques. En particulier, pour le packa-
ge correspondant aux éléments de type
PSPEC, cing t&ches sont générées pour
implémenter les deux types de flux :
les flux de contrdle sont pergus immé-
diatement par la PSPEC alors que la
consommation d’un flux de données est
complétement désynchronisée de sa pro-
duction. La communication entre ces
cingq tdches, décrite dans le formalis-
me HOOD [7), est jointe en annexe 2,

. le choix de ADA comme langage de
maquettage permet d’envisager une
réutilisation partielle du code de
maquettage dans la phase de codage :
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le code récupérable se situe au niveau
de la descraiption des PSPEC faite dans
un pseudo-langage de type ADA.

3.1.3.1'environnement de simulation mini-
mal

Dans un modéle SART, la descraiption du
dialogue entre la fonction spécifiée et
son environnement est entiérement regrou-
pée dans le diagramme de contexte : on y
précise les flux de données et les flux de
contr8les &échangés entre les entités
externes et la fonction que l’on spécifaie.

L’ 1dée de départ est de considérer que les
entités externes sont elles-m@mes issues
d’une spécification SART. Ceci permet de
considérer l’environnement de maquettage
comme pouvant &tre enrichi & chaque foirs
qu’une nouvelle fonction est spécifiée en
SART, celle-c1 devenant une entité externe
utilisable pour la spécification d’une
autre fonction.

Au départ, c’est 3 dire avant de disposer
d’entités externes 1ssues de spécifica-
tions SART, on dispose d’un environnement
minimal de simulation constitué d’un
ensemble d'entités externes de base & par-
tir desquelles on peut en construire de
nouvelles qui, elles, seront 1ssues de
maniére automatique d’'une spécification
SART. Ces entltés externes de base sont
auss1 bien de haut niveau et dépendent
alors d'une application (par exemple
“Guidage”, “Pilote”, “Paramétres avion”,
“Plan de vol” et “MCDU” pour la gestion du
vol) que plus générales comme par exemple
“clavier”, “visu”, “fichier” et destinées
4 plusieurs types d’application.

3.1.4.Environnement de simulation étendu

L'environnement de simulation, utilisé
pour valider la spécification, propose
deux modes d’exécution :

~ un mode “pas 3 pas” ol la valeur du

pas correspond a& 1'émission d’un flux
de contrble par un des éléments de la
spécrfication,

- et un mode en continu avec possibilité

d’arrét pour observer et 1nspecter
lrétat de la simulation.

L’'état de la saimulation correspond aux
états des différents éléments du moddle
SART :
- 1’état des PSPEC et des FONCTIONS
actif ou inactif,
- l'état courant de chaque diagramme
états/transations,
- la production et/ou la consommation
des flux de données,




- 1’émission des flux de contréle.

L’accés & toutes ces informations est pos-
sible grdce & une instrumentation du code

généré par du code permettant de garder, A
tout moment, la tragabilité entre la simu-
lation et la spécification SART.

Une extension prévue A cet environnement
est son intégration avec l’environnement
de spécification/maquettage dédié aux loas
de pilotage (VISA) : un type d’intégration
possible consiste & décrire les PSPECS non
plus directement par une procédure ADA
mais avec le formalisme de la méthode de
spécification des lois de pilotage : ceci
est d’autant plus facile que VISA permet
la généeration de code ADA.

D’autres extensions sont a 1l’'étude :

- prendre en compte les particularités
de la méthode de HATLEY, en particu-
lier les tables d'activation/désacti-
vation et les tables de décision,

- enrichir le modéle des contrdles par
des langages formels de type
Statecharts (8] et HMS [9],

- et le couplage avec 1l’environnement &
vocation “fonction nouvelle” OOA/KEE.

3.2.Un environnement “avancé” : OOA/KEE

L’approche fonctionnelle en phase de
spécification consiste & décrire le systé-
me 4 réaliser en listant les fonctions
qu’il doit assurer et les flux d’informa-
tion qu’elles s’échangent. Cette approche
fonctionnelle descendante est naturelle en
phase de spécification et correspond aux
habitudes des spécifieurs. L’approche
objet, qui favorise la réutilisation et la
fiabi1lité du logiciel, est une approche
ascendante plutdt utilisée en phase de
conception. lorsque les approches fonc~
tionnelle et objet sont retenues respecti-
vement en phase de spécification et en
phase de conception, un probléme de tran-
sition apparalit entre ces deux phases.

Pour éviter cet inconvénient, SEXTANT
Avionique a expérimenté l’utilisation de
1’approche objet dés la phase de spécifi-
cation dans le cadre de certains projets
de conduite du vol. Les résultats obtenus
s’avérent prometteurs : les spécifieurs se
sont treés vite adaptés et ont été treés
enthousiastes. Un environnement de spéci-
fication/maquettage basé sur 1’approche
objet a donc été mis en place pour aider A
la formalisation de certaines des nou-~
velles fonctions de gestion du vol.

3.2.1.La méthode OOA considérée

Une méthode de spécification décrit
auss1 bien l'aspect statique que dynamigue
d'un logiciel. La méthode considérée ica
est inspirée des travaux menés par Coad et
Yourdon (5) ainsi que par Schlaer et
Mellor [10] pour définir une approche
objet dans les phases amont du cycle de
développement.

Les concepts de base mis en ceuvre dans
ces méthodes sont ceux des Langages
Orientés Objets (LOO) dont le plus
1llustre est SMALLTALK.

3.2.1.1.Aspects statiques

La stratégie de descraption des aspects
statiques est issue de la méthode OOA
(Object Oriented Analysis) [5}. La straté-
gie globale de modélisation a été simpli-
fiée en ne retenant que quatre des princi-~
paux concepts de la méthode O0A : 1l
s’agit des concepts de CLASSE (identique 4
celui des LOO [11)), de STRUCTURE D‘ASSEM-
BLAGE, de GENERALISATION/SPECIALISATION et
de LIEN D’ INSTANCES.

3.2.1.1.1.Classe

Une classe est un type abstrait de don-
née défini par une liste d’attributs et de
services (ou méthodes) caractéristiques de
ses ingtances

clagse PLAN-DE-VOL

attributs  aéroport de départ
aéroport d’arrivée
liste ordonnée de L .ints de
passage

modifier
insérer-point-de-passage
(pornt_précédent,nouveau_point)
activer

fin_classe

-Définition de la classe des plans de vol-

L’ instance PARIS-ATHENES de la classe
PLAN-DE-VOL associe des valeurs particu-
liéres aux attributs

instance PARIS-ATHENES clagse-mere PLAN-
DE-VOL
aéroport de départ
= PARIS
aéroport d'arrivée
= ATHENES

liste ordonnée de points de passage

= (BERNE MILAN BARI)




fin i

- Définition de 1l’instance PARIS-ATHENES -

Chaque instance est susceptible de rendre
les services définis dans la classe mére
aux autres instances. Par exemple, si le
pilote sollicite le service “insérer-
point-de-passage (MILAN,ROME)” au plan de
vol PARIS-ATHENES, son attribut “liste
ordonnée de points de passage” sera modi-
fi16 de la facon suivante :

instance PARIS-ATHENES g¢lasse-mere PLAN-
DE-VOL :
aéroport de départ
= PARIS
aéroport d’arrivée
= ATHENES
liste ordonnée de points de passage
= (BERNE MILAN ROME BARI)
fin anstance

3.2.1.1.2.Lien d'instances

Le concept de lien d’instances (ou rela-
tion) s’ainspire des modéles relationnels
binaires de description des données (modé-
le entité-association en particulier) uti-
l1sés pour définixr les schémas conceptuels
des bases de données {12).

Un lien entre deux classes d’'objets est
unidirectionnel et met en relation une
instance de la classe de départ avec une
ou plusieurs instances de la classe
d’arrivée, ce nombre étant défini par la
cardinalité associée au lien par un couple
de valeurs : (cardinalité minimum, cardi-
nalité maximum).

Plusieurs types de relation existent :

- la relation “est composé de”,

- la relation “est composé d‘une collec-
tion de”,

- la relation “est composé d’une liste
ordonnée de”,

- et les relations définies par le spé-
cifieur.

| eonsigne  |trdelimlgd orare-gouvernee

- Lvens d’instancey -
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Sur le schéma, chaque instance de la clas-
se AVION est composée d’une collection
d’instances de la classe TRAJECTOIRE,
cette collection peut 8tre vide (la cardi-
nalité minamum est nulle) ou contenir un
nombre non borné d'instances (la cardina-
lité maximum est “m”). De la méme maniére,
chaque instance de la classe CONSIGNE est
composée d’une liste ordonnée d’instances
de la classe ORDRE-GOUVERNES, cette liste
doit contenir au moins une instance (la
cardinalité minimum est égale & 1).

Chaque instance de la classe AVION est, a
tout moment, en relation avec 0 ou 1 ins-
tance de la classe PLAN-DE-VOL, la rela-
tion “plan-de-vol-actif” a été définie par
le spécifieur.

3.2.1.1.3.Structure ao’assenblage

Le concept de structure d’assemblage
permet de défirir des classes d'objets
comme des n-uplets d’autres classes : 1l
se rapproche de la notion “d’enregistre-
ment” que l’on trouve dans les langages de
programmation structurée tels que PASCAL
et ADA. Pour illustrer l’emploi de ce
concept, supposons que la classe TRAJEC-
TOIRE est entiérement définie par le
simple fait que chaque instance est compo-
sée d’'une CONSIGNE et d’un PLAN-DE-VOL. La
classe TRAJECTOIRE ne dispose donc pas
d’attributs et de services propres et la
notation associée 3 la classe TRAJECTOIRE
devient :

trajectaire

TTILNC]

[ sensigne er1die gouveines I

- Liens d’instances entre structure
d’assemblage et classes -

3.2.1.1.4.Généralisation/spécialisation

Ce concept est en fait une autre forma-—
li1sation du concept d’héritage (simple et
multiple) des LOO. Il a l’avantage de sam-
plifier le graphe d‘héritage en ne faisant
apparaltre que les classes élémentaires.
Ce sont les cardinalatés associées aux
noeuds du graphe qui définissent les sous-
classes obtenues par héritage des classes
élémentairres et leur caractére d’instan~
ciabilité (le fait qu’une classe peut ou
ne peut pas avoir des instances dans le
“monde réel”, c‘est & dire celu:r qui
concerne le spécifieur)
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Ilvlon-oivll l Il'l'n-m"“lllq

avien-a-propulsien

-Graphe de généralisation/spécialisation-

La lecture de ce graphe permet de déduirre
les assertions suivantes :

- Les classes “avion-militaire”, “avion-
civil”, “jet” et “avion-d-propulsion”
héritent des caractéristiques (attri-
buts et services) de la classe
“avion”.

- Les cardinalités expriment les héri-
tages multiples ainsy que les classes
instanciables. Le graphe d’héritage
équivalent dans le formalisme habituel
serait le suivant (les classes instan-
ciables apparaissent en grisé) :

[uvlan-mquhuh-pmpulllnn] [lvlan'olvllvt-propwllonl

- Graphe d’'héritage équivalent au graphe
de généralisation/spéciralisation -

lLa cardinalité (1,2) permet de faire
remonter au niveau du noeud pére
{celui qui porte la cardinalaté
(2,2)), les classes “avion-militaire”,
“avion-civil” et la classe composée
“avion-militalre-civil”. Si cette car-~
dinalité avait été (1,1), les classes
remontées se serarent limitées aux
classes “avion-civil” et “avion-mili-
taire” : un avion n'aurait pas pu
avolr 4 la fois les caractéristiques
d’un avion civil et d’un avion mili-
taire. Le graphe équivalent dans le
formalisme habituel aurait été le suvi-
vant :

lulon elvll] [nvlon-mﬂllliul

avion « propsl.lon

Cvtonsiviigat Syipheolyltetrpropuision

favipn-mitiiafre-josi Tscion-militalra-s-propuision |

3.2.1.2.Aspects dynamiques

La stratégie de description des aspects
dynamiques est issue de la méthode OOSA
(Object Oriented Systems Analysis) [(10].
Il s’agit d’associer & chaque classe
d’objets un diagramme états/transitions
décrivant le “cycle de vie” des instances.

Ce diagramme décrit la logique d’envor de
messages entre objets en fonction des
changements de valeur des attrabuts.

La sollicitation d’un service d’un objet
receveur par un objet demandeur s’'appelle
“l’envoi de message”. Deux types de solli-
citations sont possibles : le premier est
bloquant, l’objet demandeur se bloque
jusqu’d ce que le service airt &té complé-
tement rendu (envoi de message synchrone),
le second permet d& l’objet demandeur de
solliciter un service d’un autre objet
sans attendre qu’il ait été rendu (envo:
de message asynchrone).

La logique de déclenchement des services,
décrite par les diagrammes états/transi-
tions, est spécifiée au niveau des classes

les sous-claeses et les instances héri-
tent de cette dynamique et en particulier
en cas d'héritage multiple, la sous-classe
hérite de chacun des diagrammes des
classes méres.

3.2.2.Le traducteur OOA/KEE

Le traducteur OCA/KEE a lui-méme été
écrit en KEE. KEE (Knowledge Engineering
Environment) est un environnement de déve-
loppement basé sur Commonlisp destiné aux
applications mettant en oeuvre un systéme
expert ralsonnant sur une hase de connais-
sance structurée gréce a une représenta-
tion objet. Outre les fonctionnalités d'un
langage de frames, l’interface trés convi-
viale (multi-fenétrage, affichaqge de
graphes,..) a facilité le développement du
traducteur,

Grdce 4 la similitude des concepts de
1’00A et de ceux des LOO, 1l'implémentation
des aspects statiques de la méthode n'a
pas posé de problémes particulier : par
exemple, la notion de “facette d‘attribut”
et en particulier celle de “valueclass”,
qui définit le(s) domaine(s) de valeur
d‘un attribut, a permis d’implémenter la
notion de lien d’instances.

Pour les aspects dynamiques de la méthode,
deux fenctionnalités de KEE/CommonLisp ont
été avantageusement utilisées : 1l s’aqgit
de la notion de “démon” (ou de “valeur
active”) et de la notion de parallélisme,




On “démon” est une action associée A un
attribuc et quia est déclenchée 3 chaque
accés A ce dernier (en lecture, en écritu~
re ou les deux). Dans l’environnement KEE,
un démon particulier, associé & chaque
attribut d’un objet, évalue les conditions
des transitions sortantes de 1l’état cou-
rant de 1’objet : si la nouvelle valeur
valide une condition de transition,
1‘action de transition associée est alors
effectuée. La dynamique est ainsi entiére-
ment dirigée par les changements de valeur
des attributs.

L’existence du “parallélisme” est néces-
saire pour implémenter la sollicitation de
service non bloguante pour l‘objet deman-~
deur : les fonctionnalités de “multi-tas-
king” offertes par CommonLisp ont permis
de réaliser une primitive d’envoi de mes-
sage asynchrone

“send(objet_destinataire, sexvice)”.

3.2.2.1L'environnement de maquettage

De la méme maniére que l’environnement
SART/ADA, l’environnement OOA/KEE offre au
spécifieur

~ das moyens de tracabilité du code
maquette par rapport & la description
OOA correspondante,

- différents modes d’exécution,

- un langage de définition de 1l’interfa-
ce de saimulation : 1l comporte un cer-
tain nombre de praimitives, dont la
primitive “DISPLAY” qui permet d’asso-
cier & un attribut une représentation
graphique (jauge, thermomdtre, comp-
teur...) qui visuvalise sa valeur. Un
autre primitave “DISPLAY 2D* permet de
visualiser dans un plan 1/évolution
des valeurs de deux attributs,

S1, comme pour l’environnement SART/ADA,
171nstrumentation du code généré a été une
des techniques d‘/implémentation de l’envi-~
ronnement de maquettage, le calcul symbo-
lique, foncement du langage Lisp, a accé-
léré le développement et réduit le code
généré.

Une des fonctionnalatés particuliédre
induite par la méthode est le mécanisme
d‘1instanciation. La méthode OOA définit
des classes d’objer et les relations entre
les futures instances de ces classes. Une
simulation comporte une premiére phase
d’initialisation qui consiste i créer les
instances et & 1initialiser les relat:ions
qu‘elles ont les unes avec les autres.
C’est grice aux cardinalités des relations
gue se fait la création des instances : la
puissance du m&canisme d’instanciation
permet. dés la phase d’initialisation, de
mettre en évidence les éventuels proklémes
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de cycle dans les liens entre instances et
d’y remédier par des modifications de la
spécification.

3.2.4.Un environnement “dédié” : Hypertext
et dialegue E/N

L‘environnement de spécification/maquet-
tage OOA/KEE, A vocation “fonction nouvel-~
le”, a été utilisé pour aider A formaliser
la fonction ELS (Electronic Library
System) : ce tcavail a abouti 3 un outil
de spécification/maquettage pour les
applications ELS.

Une application ELS consiste A automatiser
la consultation par le pilote des docu~
ments A& bord de l’avion. Une telle appli-
cation est destinée A 8tre spécifibe en
équipe intégrée avec la compagnie aérienne
et les pilotes, d‘ol la nécessité de dis-
poser d’un outil ol spécification et
maquettage sont indissociables.

L’outil permet de définir la structure
logique de toute la base de données docu-
mentaire embarquée et la logique d’accés
par le pilote A cette base de données. Le
concept clé est celui d’”hypertext” : les
documents sont reliés les uns aux autres
par des liens typus. Une application ELS
consiste en fait 4 naviguer dans la base
de données documentaire en suivant les
chemins d'accés définrs par ces liens.
Pour cela, le pilote dispose d’une inter~
face utilisateur lui permettant yrice a un
moyen de désignation (de type souris) de
sélectionner des portions de documents et
d’accéder A& ceux auxquels :ls sont reliés.

3.3.Atelier intégré de spécification /
maquettage

L’atelier de spécification/maquettage
regroupe différents environnements de spé-
cification/maquettage et met A la disposi-
tion des utilisateurs des moyens répondant
aux trois bescins d’intégration qui sont
intégration de techniques de maquettage
entre elles, intégration de méthodes de
spécification entre elles afan d‘en défi-
nir de nouvelles et intégration d’une
aéthode avec une technique de maquettage.

Les travaux d'implémentation effectués
jusqu’3d présent dans le cadre de l'atelaer
de “spécification/maquettage” et présentés
dans ce paragraphe ont conduit & des réa-
lisations logicielles qui doivent étre
considérées comme des maquettes destinées
4 valider les besoins., Elles ont été réa-
lisés directement sous UNIX alors que les
moyens d’intégration quir seront effective-
ment ratenus par la suite s'appuleront sur
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des normes et produits du marché ; parmi
ceux~ci, la norme PCTE et les outils sup-
ports (EMERAUDE), des environnements de
type EAST ou ENTREPRISE sont A 1’étude.

3.3.1.Structure d‘accueil
3.3.1.1.Couche da communication

La croissance des besoins en communica-
tion qui s’explique par 1l’hétérogénsité
des concepts 1iés aux méthodes de spécifi-
cation et aux techniques de maquettage
ainsi que par la distribution des outils
correspondants sur un réseau de stations
de travail, a nécessité la définition et
la réalisation d’'une couche de communica-
tion (14].

Gréce A cette couche, les moyens informa-
tiques, logiciels et matériels, sur les-
quels tournent les environnements de spé-
cification/maquettage, deviennent transpa-
rents et le nombre et la localisation des
stations de travail sur le réseau sont
masqués au spécafieur.

Cec: est rendu possible par la faculté de
faire communiquer des langages de program=-
mation entre eux : ainsi l'interface entre
ADA, KEE/Commonlisp, FORTRAN, C et LeLisp
est réalisée par des primitaves du type
SEND (destinataire, message) et

RECEIVE (émetteur, message). L'implémenta-—
tion de ces primitives fait appel aux
diverses fonctionnalités de la couche de
communication d’'UNIX, en particulier RPC
et les SOCKETS.

L’intégration des techniques de maquettage
consiste, A partir de la couche “communi-
cat:ion entre langages”, A définir des pri-
mitives de plus haut niveau : par exemple,
la pramitive ADA

“ADD_FACT (base_de_connaissance, fait)” met
3 jour la base de connaissance d’un systéd-
me expert tournant dans 1l‘environnement
KEE.

3.3.1.2.Repository commun

La structure d’accueil dispose d‘un
“repository” qui permet d‘avoir une base
de =tockage des données commune A tous les
environnements de spécirfication/maguetta-
ge. Dans cette base de données sont stoc-
kées des informations de tout niveau : on
y trouve aussi bien les différentes spéci-
fications et les maquettes associées que
des éléments d‘une granularité inférieure
comme ceux figurant sur une spécification
i par exemple, pour SART, on trouvera les
flux de données, les fonctions, les
PSPEC..., pour 1/00A, les classes, les
relations, les automates...

Ce “repository” permet de faciliter
1'intégration d'une méthode avec une tech-
nique de maquettage en disposant d‘une
représentation interne indépendante de la
notation graphique ou textuelle de la
méthode et A& partar de laquelle le généra-
teur de code est défana.

3.3.2.Intégration des mathodes

Lfintégration de différentes méthodes se
base sur l’existence, pour chaque méthode,
d‘une description formelle de sa syntaxe
et de sa sémantique.

C’est & partar de la description formelle
d’une méthode que sont définies :
~ la représentation interne dans le
repository commun des spécifications
établies en utilisant la méthode en
question,
- les vérafications, syntaxiques et
sémantiques, liées a cette méthode.

La description formelle d‘une méthode
définit donc un outil suppert & cette nou-
velle méthode.

L'intégration de deux méthodes consiste a
enrichir les descriptions formelles de
chacune des deux méthodes : on aura ainsi
définy une nouvelle méthode intégrée ains:
que 1l’outil support associé et, gréce A la
couche de communication, 1l'intégration des
techniques de maquettage liées aux deux
méthodes initiales sera assurée,

L'outil choisi pour supporter le travail
de description formelle des méthodes est
un outal du marché, GRAPHTALK réalisé par
XEROX. A partir d’une définition graphique
et textuelle d’'une méthode (graphique pour
la syntaxe et textuelle pour la séman-—
tique), 1l permet la mise A jour du “repo-
sitory” commun ol les descriptions for-
melles des différentes méthodes sont
elles~mémes stockées. Les vérifications
liées A& la méthode résultant de 1l‘intégra-
tion des méthodes exploitent ces descrip-
tions formelles enrichies.

SART/ADA OOAIKEE VISA
o
-]
»
ADA FORTRAN Lse SART 00A g
>
ot
x
he de icatl REPOSITORY
UNRIX

- Les différentes couches de i'atelier -




4. Conclusion

Ces travaux de définition et de mise en
place d’outils de spécification et de
maquettage ont, pour la plupart, &té
financés par des fonds propres SEXTANT.
Ils ont largement bénéficié du soutien de
plusieurs projets opérationnels, civils et
militaires, dans le domaine de la conduite
du vol : on peut citer le SOP (Systéme
d’Optimisation des Performances) pour
avions d'armes, la fonction ELMS
(Emergency Landing Managment System), le
projet PROFIL mené en collaboration avec
1’Aérospatiale, 1’ELS (Electronic Library
System) et plusieurs applications des sys-
témes experts aux logiciels de gestion du
vol.

Ceci a permis la définition de solutions
parfaitement adaptées aux besoins et les
outils associés sont mis en place selon un
calendrier qux autorive leur utilisation
dans le cadre d’aimportants projets actuels
tel que le CET (Calculateur ~’/Elaboration
de Trajectoires) du RAFALE.

De facon similaire & la phase de spécrfi-
cation/maquettage, une étude est menée
concernant la phase de prototypage. Cette
phase vise & valider une fonction dans son
dialogue avec les systdmes ex)rstants 4
bord de l‘’avion : le praincipal probléme
posé par ce type de validation est de
faire dialoguer une maquette fonctionnelle
(dont le développement a fait abstraction
des prob’émes de performance liés au maté-
riel) avec des équipements, réels ou simu~-
lés, nécessitant des temps de réponse
proches de ceux attendus en vou:.

Les deux principaux axes de cette étude
des moyens de prototypage sont le passage
automatique d’une spécification fonction-
nelle ou de la maquette associée 4 un code
exécutable en temps~-réel et 1l’évolution
des moyens matériels et logiciels pour
recevoirr le code et fournir l‘environne-
ment nécessaire a son exécution.

La compétence en spécification/maquettage,
acquise lors des études et travaux 1liés A
la mise en place de ces environnements, et
la verlle technoloyique assurxée en perma-
nence sur les techniques logicielles avan-
cées permettent & la Division Conduite du
Vol d’étre préte & mettre sur pled trés
rapidement, l’environnement dédié & la
spécification et 4 la validation par
naquettage et/ou prototypage de toute nou-
velle fonction que la division peut étre
amenée A développer.
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-- connexion et data store
with p _modele_sart;use p_ .odcle sacv: o TTTTTTmmmmmmmmmTmmmmmmmmmmmmmmmmmmmmemmmmee
qener:c

iisce_flux_sortant : liste_de_flux,
pacxage p_connexion is
task tache connexion is

entry récevoir_flux ( un_fiuwc : a1~ flum);
end tache conmnon.
end p_connexion;
- pspec
with p _modele_sart;use p_modele_sart;

generic
vith procedure trajitement pspec;
liste_flux_sortant : liste_de_flux;

package p_pspec {s

task gerer_sntrees is
entry Tecevoir_flux(un_flux :
end gerec_encress;

flux);

task traitement;
cask controleur_local is
entcy controler B D;
entry controler_TRIGGER:

encry r
entcy fing
end controlevr_locals

task gerer_donness is
entry receveir_donnees( un_ flux :
entry valeur_courante ( val :
entry valeur geelle ( val :
end qeres_donnees;

out fluu_de

task gerer_sorties i»
antty produireiun_flux
entry neuvel etatTetat

and qerer_sertied:

in flux):
tn etat_fonction);

end p_pspeci

flux_de_donnees);
out flux_de_donness);
de_donnees);

with p_moidelc_sacrt;use p sodele_sart;
Qqenezic
1 _avtomate : automats;
pacnw P_capec ls
task  tache_cspsc is
entry recevoic_flux { un_centrole : in (lux);
end tache_capec;

end p_cspec;

with p_sodele_sart;use p modsle_sart;
gunecic

flux_sertant_feactien : liste de_flux;

fluxentrant fils : Liste_de_Vlui;
nivesu_fenction : positive;

pachage p_fenction i3
task tache_fonctien ia

ontry Tecevelir flux ¢ le_flux : in flux);
ond t.ocho.tucu-l

ond p_fenction;

ANNEXE 1
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AGLAE - Atelier de Génie Logiciel de I'aerospatiale Engins

par

Jocelyne HAMON

aerospatiale
2, rue Béranger 92320 CHATILLON (FRANCE)

Résumé : La conception des systémes temps-réel est un probleme fortement combinatoire mais s contraint. Les experts
procedent par des transformations de la spécification technique de besoin en des systémes équivalents, satisfaisant les con-
traintes du temps-réel (fréquence, retard, priorité, communications). AGLAE est un atelier logiciel comprenant une base
de données orientée objets des composants et algorithmes utilisés ; une base de connaissances reproduisant le raisonne-
ment de nos meilleurs experts ; un systtme de simulation permettant la validation des architectures matériclles et logiciel-
les proposées. AGLAE est un programme de satisfaction de contraintes guidé par des heuristiques (relations de préférence
des experts). La spécification forme la racine d’un arbre ET/OU ol chaque necud (fonctionnellement équivalent) corres-
pond aI’application d’une transformation (ensemble de régles). Les fewlles de I'arbre final sont soumises A une simulation
temps-réel. La recherche est dingée par les dépendances qui sont générées comme dans un ATMS : les causes d'échec
sont analysées et les conditions minimales sont retenues pour éviter la répéution de ces causes lors des retours.

I INTRODUCTION :

Les systémes de conception et de validation contien-
nent généralement des outils (qui ne sont pas nécessaire-
ment séparés) de synthdse, d’analyse et de test
(simulation).

Un outil de synthese (de systeine temps-réel) aide le
concepteur dans la production d'une architecture maré-
riclle, et d'un ensemble de programmes A partir d’une
description de la fonction que doit remplir ce systéme et
des contraintes li€es aux données en entrée et ¢n sortie.

Un outil d'analyse permet au concepteur de vérifier
qu'un systéme remplit 1a fonction avec les performances
désirées (il contient un vérificateur de régles de construc-
tion ct de satisfaction de contraintes).

Un outil de simulation est indispensable pour s’assu-
rer du respect des contraintes temps-réel, car I'arrivée
des données peut avoir un caractére aléatoire (distribu-
tion dans le temps) que 'analyse ne peut pas toujours
prendre en compte : if s¢ peut que Ia simulation fasse ap-
paraitre des situations dans lesquelles une ou plusieurs
des contraintes temps-réel sont violdes. La spécification
technique de besoin précise si ces violations sont accep-
tables de manitre transitoire ou totalement prohibées.
Dans ce cas, un autre systtme doit &tre congu, puis simu-
16 et ainsi de suite ...

L atclier AGLAE ™! (Atelier de Génic Logiciel de

1. AGLAE est une marque déposée par la sociéte
aerospatiale.

aerospatiale Engins) décrit dans cet article, ¢st un
systeme expert qui reproduit le raisonnement d’un grou-
pe de concepteurs de systémes temps-réel. 11 a pour but
essentiel d’étre un systéme de conception et de valida-
tion pour calculateurs embarqués ou tout autre sysitme
temps-réel.

I1. LES ATELIERS DE GENIE LOGICIEL :

Les progrés enregistrés ces quinze dernidres années
sur la production de composants matériels ont considéra-
blement modifié le parc des systémes informatiques. Pa-
ralitlement, si I'on examine I'évolution du
développement du logciel?, on constate que I’cffort
s’est d’abord porté sur 'acuvité de codage, grace aux
langages de haut niveau et aux techriq ¢s de program-
mation structurée. Par contre, la qualité des documents
de spécification et de conception reflete le plus souvent
la valeur de I'analyste plutdt que la rigueur d’une métho-
dologie adaptée, ce qui conduit les chercheurs A aborder
le développement du logiciel sous un nouvel angle. C’est
ainsi qu’ont été identifiées puis mesurées les différentes
activités de production du logicicl. L’existence méme
d’un cycle de vie standard a €t reconnue et normalisée.

2. Le logiciel est 'ensemble des programmes,
procédés et régles, ct éventuellement de la documen-
tation, relaufs au foncionnement d*un ensemble de
traitement de Pinformation (arréte du 22.12.1981).
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La figure 1 planche 1 montre le cycle de vie du logi-
ciel propasé par 1" Association Frangaise pour Ie Contrdle
Industriel de Qualité (AFCIQ).

Cette approche Génie Logiciel de la fin des années 70
s’est traduite par des tentatives d’intégration (au niveau
de I'organisation du projct comme au niveau fonction-
nel) de procédures, méthodes, langages et outils qui fa-
vorisent la production et fa maintenance de composants
logiciels de qualité.

Sil'on s¢ réfere & 'arrété munistéricl du 30.12.1983,
on appelle Génie Logiciel : “I'ensemble des activités de
conception et de misc en ccuvre des produits ct des pro-
cédures tendant 2 rationaliser 12 production du logiciel et
son suiv..”

Arrété us important puisqu’il s’agissait alors de recon-
naitre I'existence du Gémie Logiciel', connu seulement
de quelques initiés. Vingt ans aprés, le Génic Logicicl
fait I'objet de nombreux programmes nationaux ct mter-
nationaux.

Sclon P JAULENT?, le Génic Logiciel est un ensem-

ble de “procédures, méthodes, langages, ateliers, tmpo-
sés ou préconisés par ies normes adaptées a
P’environncment d’ utilisauon, afin de favoriser la pro-
duction ct la maintenance de composants logicicls de
qualité.”

En ce qui concemne les procédures, la mise en place
d’une organisation de production de systémes, qui per-
mct au sein d'un cadre industriel, de maitriser la qualité
des produits, les codits et les délais de réalisation repose

sur le principe de découpage du processus de développe-

ment de systémes en plusicurs phases. Ce découpage
normahsé (DoD 2167, GAM T17, ...), appelé cycle de
vic d’un sysme, est constitué de six phases.

Phase 1 : Orientation - Faisabilié des besoins

Cette étape décnit Ies besoins formulés par le futur client,
et non comment les obtenir en tenant compte par exem-
ple, des contraintes de codt, de délai, de temps d’exécu-
tion, de précision des calculs.

Le document créé lors de cette phase est appelé Cahier
des Charges Fonctionnel (CACF-1 norme AFNOR
NFx50-151).

Phase 2 : Conception du systéme et validation des be-

soins

La concepuon d’un systéme suppose

- une analyse statique, faite & partrr du Cahier des Char-
ges Fonctionnel, formalisée par une Spécification
Technique de Besotns (STR),

- une analyse dynamique, faite & parur de Ia Spéeifica-

1 1968 : Conférence OTAN sur le Gémic Logicie! ,
¢’est I"année du constat de la cnise du logiciel et §'u-
uhsation pour la premidre fois de 1 expression “Soft-
ware Engineering”.

2. Patrick JAULENT, Gémie Logiciel les méthodes,
Editions COLIN, 1990

///

tion Technique de Besoins, formalisée par un prototy-
page.

L’analyse statique est composée de deux étapes : la con-

ception préliminare ct 1a conception détaillée d’un sys-
©me.

La conception préhminaire permet :
- d’énumérer et de décrire les travaux 2 effectuer,
- d"analyser les exigences de qualité,
- de définir la politique de maintenance,
- d’idenuficr les techmques de tolérance aux fautes 3
meltre en ceuvre et étudier leurs conséquences,
- d’étudier les conditions de recette du systéme,
- de procéder 2 I"analyse fonctionnelle des besoins & par-
ur du Cahier des Charges Fonctionnel, ceci afin de :
* préciser les fonctions techniques et d'identificr les
points critiques de chaque solution envisagée,
* d’éublir I'architecture du systéme (et des sous-syste-
mes).
D’un point de vue organisationnel, cetic étape permet de
définir 1a stratégie industrictle qu'il faudra appliquer sur
le programme.

Les taches cntreprises au cours de ’élape de conception
déwillée d’un systéme completent, affinent ct valident
les aspects entrevus A 1'étape précédente Celles-ci dé-
bouchent sur une nouvelle édition des Spéeifications
Techniques de Besoins

L’analyse dynamique des besons maintenant exprimés,
s¢ traduit par la réalisation d’un prototype. Celu-c1 dont
nous offrir la possibilité d’expérnimenter, rapidement ¢t 2
mowndres fras, le bien-fondé de certaines idées, qu'il
s’agisse d"tdées “fonctionnelles”, d'idées architectura-
les, ou simplement d'tdées concernant ' utilisation du
systéme que I’on doit développer.

1 faut savoir qu’1l existe deux types de prototypages : le
prototypage rapide ¢t le prototypage évolutif.

Le prototypage rapide consiste A réaliser tout ou partie
du futur systéme avec des méthodes et des outils dispo-
nibles, et a pour but de vérifier la cohérence des diverses
contraintes et de les préciser. Malheurcusement, le coiit
et le temps de développement d'un tel prototype appro-
chent souvent ceux d’une implémentation réelle.

Le prototypage évolutif est une partic intégrante du dé-
veloppement du systéme, quotque n'étant pas intégré au
modale classique de développement du logiciel, 1l se
substitue aux étapes de conception et permet de vérifier
les cohérences et les choix A ces niveaux.

Dans les deux cas, 'utilisateur du systéme peut évaluer
le comportement du prototype, et le comparer 3 celut
qu’il attendait. Si le prototype ne démontre pas les carac-
ténstiques attendues, 1l peut éventucllement, aprés avoir
1dentifié le probleme, modifier sa spécification. Tout cect
lui permet également de ne pas prendre le risque d’atien-
dre 1a fin de 1a réahisation du systéme pour s'apercevorr,



4 ce moment 13, que les idées en question sont peut-étre
sujettes & caution ou tout simplement inadéquates.

Phase 3 : Développement logiciel du systéme

Celte phase est critique, puisqu’il s’agit de construire (ce
qui n’est pas réalisable), suivant un cycle de vie normali-
sé, & partir des documents rédigés précédemment, I’en-
semble des composants matériels et logiciels qui
constitueront le systéme.

Sept sous-phases la composent :

- laspéeification fonctionnelle du logiciel, donnant lieu 2
P'analyse des besoins exprimés par Ie client afin de défi-
nir le futur logiciel.

- la conception préliminaire du logiciel dont I'objectif est
d’apporter une solution aux besoins exprimés cn identi-

fiant I’architecture du logiciel.

- la conception détaillée du logiciel ol chagque compo-
sant identifié & I’étape de conception préliminaire fait
I’objet d’une conception détaillée qui décrit les données
manipulées par les composants ct les algonthmes agis-
sant sw ¢cs données. Pour chaque composant, les tests
unitaires lvi afférant sont définis, afin de s’assurer que le
composant réalisé répond a la description qui en a é1¢
faite.

Pour chaque composant, un document de conception dé-
taillée et un document de tests unitaires sont élaborés.

- le codage du logiciel, oit chague composant logiciel,
données ou algorithmes, ¢st codé dans le langage de pro-

grammation choisi. Le code doit &tre compilé ou assem-
blé, puis “déverminé” soit par relectures, lectures
croisées ou tout autre moyen de vérification.

- les tests unitaires de logiciel. Ici, pour chaque compo-
sant logiciel, les jeux d’cssais définis dans la phase de
conception détaillée sont exéeutés. Les résultats sont en-
registrés de méme que tout €cart par rapport aux résultats
attendus.

- Pintégration et tests d'intégration du logiciel dont I’ob-
jectif est d’obtenir un ensemble intégré de composants
logiciels de fagon & constituer un produit final.

- la validation du logiciel, ou certification, dont le but est
de démontrer que le logiciel développé répond exacte-
ment aux besoins exprimés dans la spécification.

Phase 4 : Intégration matériel-logiciel

Chaque entité ayant &6 construnte et tesiée séparément,
1l est désormais possible de produire un systiéme, en inté-
grant matéricl et logiciel, de le tester et de le cerufier
conforme par rapport 2ux documents établis lors de la
conception détaillée, puis de le fabriquer en vue d'une
utilisation soutenue.

Phase § : Recette systéme - Validauon
L’objectf de cette phase cst de démontrer au client que
le syst¢me développé répond effectivement aux besoins
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exprimés par le Cahier des Charges Fonctionnel et par

les Spécifications Techniques de Besoins. Les tests de

recetie s’attachent A contrdler les caractéristiques telles

que:

- les fonctionnalités du systtme,

- I'interface homme-machine (présentation des écrans,
dialogues, résistance aux erreurs utilisateurs, ...),

- I'intégrité " ¢s données (protection),

- les tempe. Jde réponse,

- les reprises,

- les modes dégradés, ...

Phase 6 : Maintenance du sysitme

11 s’agit de définir une politique de maintenance fiable
pour le syst2me sous 1a forme d’un contrat, en tenant
comple des différentes catégories de maintenance (cor-
rective, évolutive, adaptative, ...).

En ce qui concerne les méthodes, produire et mainte-
nir un logiciel de qualité, en maitrisant les cofits et les
délais de développement, suppose 'utilisation d’une ou
plusicurs méthodes pour les différentes phases du cycle
de vic d’un systtme. Cependant, I'utilisation d’une mé-
thode nécessite de bien maitriser ses domaines d’appli-
cation, scs possibilités, mais également ses limites, ses
difficultés de mise en ccuvre, ...

11 est absolument nécessaire, si I'on veut qu'une métho-

de apporte les gains de productivité escomptés, de la

choisir en fonction de criteres tels que :

- les finalités et stratégies de I'entreprise,

- les acteurs concernés,

- le domaine d’application (geston, scientifique, contrd-
le de processus, ...),

- les étapes du cycle de vie du systtme couvertes par la
méthode,

- le niveau d’outillage de la méthode (papier, intégré, in-
dustrialisé, ...).

Les principales méthodes aujourd’hui sont :
- SADT : Structured Analysis Design Technique
(D.T. ROSS)
-SD  :Structured Design (Rapport IBM : STEVENS,
MYERS, CONSTANTINE)
- E-R : Entity-Relattonship model (P. CHEN)
-SA  :Structured Analysis
(E.YOURDON, T. DEMARCO)
-JSD  :Jackson Sysiem Development (M. JACKSON)
- SA-RT2 : Structured Analysis Real Time
(1. PIRBHAI, D. HATLEY)
- HOOD : Hierarchical Object Oriented Design
(BOOCH, MATRA, CRI, CISI)

Pour les langages, plusteurs tendances se dégagent
actucllement dans le monde informauque :

- la programmation algorithmique construite dans le do-
maine du procédural (FORTRAN, PASCAL, C) ou du
modulaire (ADA),

- 1a programmation purement fonctionnelle et déclarati-
ve (LISP),

- la programmation par objets (C++, SMALTALK),
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- Ia programmation logique (PROLOG).

Chaque entreprise, en fonction de son expérience ou de
ses objectifs choisit I'un ou I’autre langage. Mais il faut
noter, a I’heure actuelle, I'apparition doutils tels que des
générateurs de code permettant d'automatiser au maxi-
mum cette étape de programmation.

Les ateliers de Génie Logiciel, quant A eux, suppor-
tent 1a mise en place d’une organisation industrielle de
production et de maintenance de logiciels en regroupant
harmonicusement :

- les méthodes reconnues telles que SADT, SA-RT, JSD
- les procédures de développement normalisées comme
DoD 2167, GAM T17
- les générateurs de code PASCAL, C, ADA
- les outils tels que :
* des gestionnaires de projets,
* des interfaces avec un gestionnaire de configurations,
* des modeles d’estimation des cofits,
* des outils de qualimétrie et de mantenance du logi-
cel,
* des nterfaces PAO.

Ils poursuivent de nombreux objectifs dont les pnnci-

paux sont :

- d’augmenter la productivité d’une équipe de dévelop-
pement,

- d’améliorer la qualité des produns logicicls, ¢’est-a-
dire leur fiabihté, leur évolutivité, leur maintenabihité,

- d’ader I’équipe a appliquer les différentes normes et
procédures, incontournables étapes dans le processus
de développement,

- de soulager I'équipe de tches fastidicuses et répétiti-
ves telles que les vénfications de cohérence lors des
phases de spécification et de conception du logiciel, ...

111 LA CONCEPTION DES SYSTEMES TEMPS-
REEL :

La conception d'un systeme (conceptions préhminai-
re et détaillée) est I'étape la plus délicate du cycle de vie
d'un systtme, puisqu’elle suppose de la part de I'archi-
tecte, des compéiences sur les deux principales compo-
sanies en interaction ; Je matériel et le logiciel. En cffet,
c’est effectivement lors de cette étape que s’cffectuent
les choix de ce qui sera fait en maténiel et en logiciel,
mais également, avec quel type de matériel et de logiciel
sera construit le futur systéme,

Malgré les nombreux moyens qui permetient
aujourd’hui de concevorr I'architecture d'un sysiéme,
nous avons délibérément chossi de développer notre pro
pre méthode, et cect pour les raisons suivantes :

- les méthodes proposées sur le marché ne couvrent pas
suffisamment toutes les contraintes exprimées dans le
domaine du temps-réel,

- 1l nous faut un produit approchant au maximum le ra-
sonnement de nos experts dans ce domaine ¢t tenant
compte de leurs expériences et de leur saveir-faire.

La Durection des Etudes, au sein de la Division En-
gins Tactiques de aerospatiale, dans son Etablisse-
ment de Chatillon, a réalisé un prototype d’atelier de
Génie Logiciel répondant 2 ses besoins. Cet atelier, nom-
mé AGLAE (Atelier de Génie Logiciel de aerospatia-
le Engins) a pour objectif d’automatiser les étapes de
conceptions préliminarre et détaillée, en proposant au
concepteur un ensemble de solutions, architectures ma-
térielles et architectures logicielles, adaptées & son pro-
bigme : élaboration d’un calculaieur embarqué ou de tout
autre sysiéme soumis a des contraintes temps-réel.

$Si nous comparons notre démarche avec celle définic
dans le chapitre précédent, nous pouvons indiquer que
chacune des solutions proposées par I'atelier est en fait
un prototype évolutif de la partie fonctionnelle du syst2-
me (sans les interfaces ¢t I'environnement). L'utilisatcur
peut donc ainst valider sa spécification, & partir du com-
portement du systeme simulé par AGLAE. Si aucune so-
lation n’a pu &tre produute, alors, I’'utilisateur peut
modificr sa spécification et continuer sa recherche.

A partir de ces remarques, une vue plus détaillée du cy-
cle de vie s’impose (8§ figure 2 planche 1).

A Iorigine de cette phase de conception, ie document
relaut 2 la Spécification Fonctionnelle Technigue doit
¢tre rédigé. Celur-ct détient de nombreuscs informations
qu'tl nous unporte de connaiire avant i’ utiisation de I'a-
tcher AGLAE,

1. Spéeification Fonctionnelie Technique :

Tout systtme mformatique comprend une architectu-
re maténielle (processeurs, bus, mémoires, coupleurs, ...)
et un ensemble de logicicls qui, exécutés sur cette archi-
tecture, réalisent une fonction (au sens mathématique du
terme). Cette fonction est généralement décrite, dans la
Spéaification Technique de Besoins du systéme, comme
une composition d’autres fonctions (qui sont elles-mé-
mes des compositions de fonctions et ainsi de suite). Elle
est encore sppelée Spéeification Fonctionnelle Techm-
que du sysitme

Dans un systéme temps-réel, la fonction attendue est gé-
néralement de contrdler et de commander un processus.
Pour cela, 'exécution des programmes est toujours com-
mandée par les données ; certaines données en entrée
doivent &tre prises en compte dans un délai trés court (fe-
nétres d’entrée) ; certaines données en sortie dowvent étre
produites 3 un instant donné (fenétres de sortie). Les
contraintes, liées 3 la nature des données en entrée et en
sortie, peuvent amnsi s’exprimer en termes de fréquence,
de retard maximum 2 la prise ¢n compte,d’interruptions,
de date de production, de dates de consommation mini-
males et maximales, ... Par ailleurs, d’autres contraintes
peuvent étre imposées, comme la qualtié requise pour le
systéme (choix de composants, d’architectures, ...) et la
précision des calculs,




La conception de I'architecture matérielle est similaire 2
1a construction d"un circuit électrique ou électronique
simple, et est totalement pris en charge par AGLAE. Au
contraire, les logiciels, eux, ne sont pas congus par
AGLAE, le code des algorithmes de base (fonctions é1¢-
mentaires) figure dans la Spécification Fonctionnelle
Technique.

L'organisation du logiciel sur le matériel peut ainsi &tre
vu comme un ordonnancement, mais 4 la différence de
celui d'un atelier, les tiches sont interruptibles et du fait
des asservissements (boucles oit, pour deux program-
mes, les données produites par 1’un 3 un instant t sont
consommées par I'autre 3 un instant t', avec t supérieur &
1), il s’avére nécessaire de gérer des communications et
des rendez-vous a dates fixes. De plus, cette organisation
est telle qu'elle doit vérifier, 2 la fois la fonction deman-
dée, mais également les contraintes exprimées (le plus
souvent non relaxables).

Le probléme a é1€ étudi€ sous tous ses aspects (objets,
moniteurs, paraliélisme, ...). Les résultats sont utilisés
dans les connaissances d' AGLAE, soit pour décrire le
systeme, soit sous la forme de contraintes a respecter,
soit sous la forme de régles de transformation de syste-
mes.

2. Exemple :

Soit la Spécificaton Foncuonnelle Technique, figure
3 planche 2.

La fonction PHASE-VOL est définie comme une com-
position des fonctions PILOTAGE et RECALAGE.

La fonctton PILOTAGE est elle-méme décomposée en
deu. sous-fonctions :

- PILOTAGE-LENT,

- PILOTAGE-RAPIDE.

Ces deux fonctions se distinguent par leur fréquence
dont I'une est plus rapide que I'autre,

Les fonctions produisent et consomment différentes don-

nées ’

- PILOTAGE-LENT consomme la donnée POS-MACH
et produit la donnée GAIN,

- PILOTAGE-RAPIDE consomme les données :
* GAIN produite par PILOTAGE-LENT,
* ACC-COMM produite par la fonction RECALAGE,
* SOUS-CYCLE-0 et SOUS-CYCLE-1 produites par

les ressources externes (bus d’entrée-sorte).
Cette fonction produit la donnée nommée INCIDENCE,

La fonction de RECALAGE consomme les données ;
* SOUS-CYCLE-1 1ssue comme précédemment d’une
ressource exteme,
* INCIDENCE produite par PILOTAGE-RAPIDE.
I faut noter qu’INCIDENCE est une donnée asser-

vie, ¢’est-a-dire que la donnée uulisée par RECALA-

GE provient de la période précédente. Ceci se fait
généralement quand la mise A jour des données n’est
pas primordiale pour les nouveaux calculs, ou quand
cetie donnée n’a pas le temps d’&ire prise en comple
dans la période méme od elle est produste.
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Trois données sont produites par RECALAGE :
* SORTIE-1-COMM envoyée sur une ressource exter-
ne,
* ACC-COMM et POS-MACH absorbées par PILO-
TAGE.

Toutes ces données ne sont produites ou consommées
qu'a certains moments du cycle (période). Ces instants
sont appelés “fenétres” et sont matérialisés par les res-
sources externes ENTREE-0, ENTREE-1 et SORTIE-0.

Le probleme, pour une telle spécification, est de faire
exécuter 'ensemble des fonctions de telle sorte que tous
les rendez-vous soient tenus. Ce sont les contraintes du
temps-réel. Une solution possible, dépendante du temps
d’exécution de chaque fonction (matérialisé par un cré-
ncau grisé), est décrite dans les figures ci-apres.

(§ figure 4 planche 2 : Découpe du logiciel durant une
période courte)

Durant cette période courte, les deux fonctions RE-
CALAGE et PILOTAGE-RAPIDE sont exécutées I'unc
apres I"autre, la fonction PILOTAGE-RAPIDE nécessi-
tant la fourniture d'une donnée de RECALAGE.

Sur ce graphique, les instants d’entrée et sortie de don-
nées externes sont matérialisées par les pics en lecture (r)
cten éeriture (w).

Durant une période longue, égale dans cet exemple &
huit périodes courtes, 1a fonction PILOTAGE-LENT est
réalisée.

(§ figure 5 planche 2 : Découpe du logiciel durant une
pénode longue)

11 faut noter que le temps d’exécution de cette demidre
fonction a permis de 1'effectuet en deux fragments du-
rant la premiére période courte. 11 aurait 6té possible, s1
nécessaire, de la segmenter encore pour la réaliser sur
plusieurs pénodes courtes.

L’exemple décrit 1ci a permis de citer un petit échan-
tillon de contranies A prendre en comple lors de la réali-
satton d'un systéme temps-réel. 11 nous faut maintenant
aller plus loin et décrire non seulement la solution obte-
nue mais aussi le raisonnement appliqué par I'expert
pour I’obtenir, ce qu’ AGLAE reproduit automatique-
ment.

IV. L' ATELIER LOGICIEL AGLAE :
1. Sysiéme expert :

La réalisauon d'un sysi2me expert nécessite un im-
portant nvestissement (temps et codit). Aussi, pourquoi
avons-nous choist ceue solution ?

Les raisons sont les suivantes :
- réussir 3 conserver dans I’entreprise une connaissance
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et un savoir-faire. Le probléme est d’autant plus aigil
que les personnes détenant la connaissance sont dans
notre cas peu nombreuses. De plus, le systéme expert
n'est pas un stockage passif de la connaissance mais 1l
est constammeént remis 3 jour et enrichi,

- permettre aux experts de se décharger des tiches répéti-
tives et de se consacrer A d’autres travaux,

- diminuer les cofits de mise au point puis de maintenan-
ce d’une application, ...

Ces considérations sont trds générales et applicables 3
tout systeme expert. Maintenant, nous pouvons ajouter
que cette méthode nous permet dans le cas ’AGLAE de
résoudre des problémes fortement combinatoires (nom-
bre important de solutions possibles) et également trés
contraints (dii aux contraintes temps-réel).

D’un point de vue structure, les systémes experts se
caractérisent par leur architecture. A la différence de la
programmation classique qui oppose le programme aux
données, trois composantes sont idenufiées dans un sys-
t&me expert :

- 1a base de faits,

- 1a base de regles,

- le moteur d"inférence.

Une quatri¢me composante existe :

- I'interface homme/machine (§ chapire V Résultats).

Avant de décr're de fagon précise I'implémentation
d’AGLAE, donnons quelques définiuons :

- la base de fats contient I'ensemble des données pro-
pres au probleme A résoudre. Cet ensemble évolue au
cours de la résolution du probléme ¢n intégrant les ré-
sultats intermédiaires et la ou les solutions obtenues
par le systtme. La base peut s’enrichir en cours d’exé-
cution si le systéme fait appel & I'utitisateur pour qu'il
introdwise de nouvelles données.

- 1a base de régles, encore appelée base de connaissan-
ces, est constituée par I'ensemble des méthodes de ré-
solution du probleme déterminé. Pour communiquer
ces méthodes au systzme, I'expert unlise une techni-
que de représentation de la connaissance : le plus sou-
vent, il s’agira de rdgles ou productions de la forme *

Si conditions Alors actions
La base de connaissances st amsi constituée d'un en-
semble de ces entités €lémentaires : les rdgles. Celles-
c1 sont déclaratives, elles traduisent le savoir-fare et
I'expérience de nos experts et spécialistes du domaine
sans préjuger de leur utilisation,

le moteur d’inférence est un mécanisme général de 1ar-
sonnement chargé de résoudre le probléme spécifié par
la base de faits 2 I’aide des connaissances contenues
dans la base de régles. Le moteur d’inférence est un lo-
giciel accessible, 1 2 I'uulisateur final, m 3 ’expert.

A partir de ces définitions, reprenons chaque module
ct regardons comment il a é1é réalisé dans AGLAE,

2. Base de faits :

Dans AGLAE, la base de faits est décomposée en
deux sous-ensembles ;
- tout d’abord, une base de faits propres au probléme 3
résoudre, comme décrite précédemment, reprenant la
description de la Spécification Fonctionnelle Technique
(mission et contraintes du systéme),

- puis, la base de faits permanents, ou encore appelée
base de données, comprenant toutes les caracténstiques
techniques et commerciales des matériels utilisables
(composants du marché, composants militarisés, ...).

2.1. Spécification Fonctionnetle Technique :

2.1.1. Pratique des experts :

Les experts distnguent deux types d’objets, les
fonctions et les données :

- les fonctious, cricore appelées Machines Abstraites
(MA), représentent soit des éléments matériels, soit
des é1éments logicicls du futur systtme,

- les données forment P'ensemble des communications
virtuclles ou réelles entre les fonctions. Une donnée cst
produite pour une unique fonction mais peut &tre con-
sommée par plusicurs,

A chaque donnée sont associées des informations telles

que les fonctions qu'elle relie, sa précision, ...

A chaque fonction sont associées plusieurs informations,

telles que son entrée (données consommées), sa sortic

(données produtes), le traitement qu'elle réalise, sa fré-

quence, son temps d’exécution, sa précision, ...

Maintenant, les données et les fonctions énoncées 1ci, ne
suffisent pas A décrire toutes les contraintes dues au
temps-réel. Comme nous I’avons vu sur I’exemple pré-
cédent, 1 faut aussi décrire, A partir de la spécification,
des coupleurs d'entrée-sortie qui, & chaque période, re-
présentent des fenétres ouvertes 4 un certain moment
pendant une certaine durée.

Ces fenétres imposent que les fonctions qui prodursent
ou consomment ces données soient exécutées (pour faire
leurs entrées et sorties au moins) pendant la durée de ces
fenéures,

Ces fonctions seront représentées dans AGLAE comme
des machines abstraites, mais avec des caractéristiques
supplémentaires telles que les dates de début et de fin de
production, les dutes de début et de fin de consommation
de données.

2.1.2. Modélisation dans AGLAE :

L’ensemble de la Spécification Fonctionnelle
Technique est, comme nous venons de le vorr, composée
umquement de fonctions et de données, Ces deux é1¢-
ments sont considérés dans AGLAE comme des objets &
part entidre et matérialisés par des schémas compatibles




aveg le formalisme du générateur utilisé.

Pour les fonctions, un ensemble de machines abstraites
(MA) est créé. Chaque MA est une instance d'un objet
de la base de faits et est décrite sous Ia forme suivante :

Schéma PHASE-VOL

instance machine-sequ (pour machine décomposable)

décomposition-en ENTREE-0 ENTREE-1
PILOTAGE RECALAGE SORTIE-0

est-un-composé-de (nom de 1a machine parent)

unité-temps ms

nbre-unité/s 1000

entrée (pour données cn entrée)

sortie (pour données en sortie)

Une des machines la composant est RECALAGE :

Schéma RECALAGE
instance machine-base (pour machine abstraite)
est-un-composé-de PHASE-VOL
temps-exécution-maximum 10 (pour 10 ms)
entrée (SOUS-CYCLE-1 0) (SOUS-CYCLE-1 -1)
sortic (POS-MACH 0) (ACC-COMM 0)
(SORTIE-1-COMM 0)
(0 pour standard, -1 pour asservissement)
fréquence 60 (en Hertz)

Une des données produite par RECALAGE est POS-
MACH :

Schéma POS-MACH
instance paquets-donnees
prod-paquet RECALAGE (fonction productrice)
cons-paquet PILOTAGE-LENT
(fonction consommatrice)

Tous ces objets sont réunis dans des fichiers modifiables
par 'utilisateur, soit de fagon textuclle (éditcur ASCII),
soit sous forme graphique (interface spécifique).

2.2, Base de données Maiériel :

2.2.1, Pratique des expents :

Le sccond sous-ensemble composant la base de
faits est chargé de détenir I'ensemble des informations
matérielles.

11 s’agit & la fois :

- des types d'architectures, mono ct multi processeurs,
simples et complexes avec mémoires couplées, DMA3,
12N bus extemes, ...

Celles-ci ont 1€ recensées parmi les architectures les
plus communément utilisées dans I'entreprise mais
aussi parmi celles connues A ce jour.

- des différents composants matériels (bus, processeurs,

3. DMA : Direct Access Memory ou Accés direct i
la mémoire.
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mémoires, coupleurs, ...). Ces composants sont, ou
bien spécifiques (développés en inteme 2 aerospa-
tiale, ou bien du commerce). Dans ce dernier cas, tou-
tes les informations sont accessibles  partir des
documentations des divers fournisseurs.

2.2.2. Modélisation dans AGLAE :

De la méme fagon que la base de faits relative 2
la spécification, les différentes architectures et compo-
sants sont entrés dans AGLAE sous la forme d’objets.
Par exemple, 'architecture ARCHI-MONO-COUPLEE
(architecture mono-processeur avec mémoires couplées)
se présente sous la forme d’un schéma ;

Schéma ARCHI-MONO-COUPLEE
is-a mono-processeur
processeur (nombre de processcurs)
bus-interne (nombre de bus)
mémoire-donnée (nombre de mémoires de données)
mémoire-programme (nc.nbre de mémoires de code)
transfert-données-int

(pour temps de transfert des données en interne)
transfert-programme (temps de transfert du code)
majoration-accés-mémoire (temps accds mémoire
cstimé s"1l n'est pas connu exactement)

Quant aux matériels, la description d’un processeur se
fait de 1a fagon suivante :

Schéma PROCESSEUR-X

153 processeur (apparticnt 2 la classe des processeurs)
fréquence 1E6 (pour 1 Méga-Hertz)

+ 4 (I'opération addition dure 4 cycles de basc)

... (temps respectifs pour les avtres opérations)
coprocesseur (liste des coprocesscurs associés)

... (liste dcs autres composants associ€s)

Pour les autres composants, les caracténstiques propres
sont inscrites sous la forme de propriéiés relatives 2 1'ob-
jet déerit,

Globalement, tous les objets composant les deux
sous-cnsembles de la base de faits sont réumis dans une
structure arborescente comprenant, A partir d’une racine,
différentes classes :

- la classe RACINE-MATERIEL ou base de données
Matériel constituée de 'ensemble des types d’architectu-
res et des composants matéricls,

- la classe RACINE-LOGICIEL décrivant la Spécifica-
tion Fonctionnelle Technique composée des machines
abstraites et des données,

- laclasse RACINE-SOLUTION o sont créés, durant la
résolution, les objets relatifs aux solutions proposées
(matériel et logiciel).

(§ figure 6 planche 3)
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“3. Base de connaissances :

Si le moteur d’inférence (§ paragraphe 4 Moteur d'in-
férence) représente “'intelligence” d' AGLAE, les re-
gles, elles, représentent son unique “connaissance”.
Extraites de ’expérience des experts et spécialistes du
domatne, ellcs permettent au systéme de trouver, par ité-
rations successives la solution recherchée.

Elles sont formalisées de la fagon suivante :
Si conditions Alors actions

Aujourd'hui AGLAE conticnt onze classes de regles

- architecture : choix d’une architecture matérielle en
fonction des contraintes de la spécification,

- composants : complétion de ['architecture matériclle
choisic grice 2 1a base de données des composants,

- durée : calcul du temps d’exécution de toutes les fonc-
tions a partir de la durée des opérations éiémentaires
du processeur choisi,

- cofit : respect du seuil imposé par 1'utihisateur concer-

nant le calcul du coiit des composants chosis,

- chemins : recherche des chemins de données prioritai-
rcs,

- comamunications : création des machines abstraiies de
communications sur tous les chemins de données,

- séquencialisation : création d’une chaine temporelle re-
groupant 'ensemble des machines abstraites,

- datation : calcul des temps relatifs A chaque fonction
dans la chaine temporelle,

- découpage : segmentation des fonctions Ientes sur plu-
sicurs périodes courtes,

- déplacement : en cas d'échee, on effectue une modifi-
cation de ’emplacement d"une fonction dans la chaine
temporelle,

- déphasage : en cas d’échec, les fonctions ne pouvant
etre exécutées dans la période impartie devront accep-
ter les données de la pénode précédente.

Par exemple, nous aurons :

Une régle de gestion temporelle des ressources :
Si deux machines abstraites ont des fréquences diffé-
rentes,
Alors la machine abstraue de fréquence la plus rapide
est prioritaire,

ou encore une rgle de regroupement :
Si1 deux machines abstraies ont 1a méme fréquence et

que I'une provuit des données exclusivement pour

P'autre,
Alors créer une machine abstraite les regroupant.

4, Moteur d'inférence :

4.1, Principe :

Pour AGLAE, un moteur d’inférence spéeifique a
é1¢ construit.
Les sysiémes fonctionnant en chainage arridre (comme
PROLOG) sont inadéquats pour le genre de probleémes
traités par AGLAE (construction ou synthase).
Les systémes classiques en chainage avant (comme
OPS) sont peu efficaces et posent de nombreux probl2-
mes liés 3 Ia non-monotonic (une régle peut détruire un
fait sur lequel reposent d’autees faits).
Les probldmes de construction étant des problémes dans
lesquels les choix sont nombreus, il est plus aisé de tra-
vailler sur des contextes séparés (un par choix) et de
maintenir, d’un contexte pere & ses fils, 1a cohérence des
informations au moyen d'un programme spécial : un
™S,
Or, 1a complexité d'une tiche de résoluti~n de problimes
est fonction, A 1a fois du nombre de 1t gles excoutées, ct
du nombre de contextes considérés cans la recherche.

L. une des prenmdres raisons qui a motivé la construction
d’un nouveau moteur pour AGLAE a 616 1a nécessité de
spécificr le contrdle du besoin expnmé par Pordre de dé-
clenchement des regles, et exprimant lc raisonnement
des experts. Un tel contréle, réalisé par un programme
procédural classique, diminue la flexibilité de 'outil et
complique sa maintenance.
Dans AGLAE, le contréle est traduit par la réunion de
certaines régles en classes (sources de connaissances), ¢t
par 'utilisation de méta-régles pour le choix de ces sour-
ces de connaissances dans un contexte donné.
Les contextes forment ainsi un graphe (arbre) qui est ex-
ploré snivant unc grocédurc BRANCH AND BOUND
généralisée (GBB”). Celle-ci incorpore 2 la fois I'utilisa-
tion :
- d'un ordre de préférence sur les sources de connaissan-
ces et les régles,
- d’un “backiracking” intelligent (DDBS),
- d'un ATMS’ pour maintenir la cohérence de chaque
contexte.
En effet, un résolveur de probi2me contrlé par DDB a
tendance 2 €ire plus efficace pour des problmes dans
lesquels queldques solutions parmi toutes celles possibles
sont désirées. L'efficacité est obtenue en organisant la re-
cherche, de manitre A ne trouver qu'une solution spécifi-
que d’abord. La combinaison d'un ATMS et de DDB, a
la fois, réduit le nombre de contexics examinés et de -
gles exécutées, et permet d*obtenir efficacement une so-
lution spécifique en premuier.

4. TMS : Truth Maintenance System

5. GBB : Generalized Branch and Bound

6. DDB : Dependency Directed Backiracking

7. ATMS . Assumption Truth Maintenance System




Quand une contradiction est rencontrée, le retour (back-
tracking) est effectué jusqu’au premier “générateur”
contribuant 2 la contradiction (c'est-2-dire la génération
de Ia premitre cause d’échec). Toutes les raisons pour
¢liminer des valeurs sont combinées pour former une
contradiction. Mais le systtme ne se souvient pas de ces
contradictions quand une autre branche est trouvée. Cer-
taines d’entre elles peuvent donc &tre calculées plusieurs
fois de suite. Dans AGLAE, chaque cause d’erreur (con-
jonction minimale) est retcnue de manitre permanente
pendant la recherche,

4.2. Modélisation dans AGLAE :

En s’appuyant sur I'algorithme précédent,
AGLAE, 2 partir de la spécification fonctionnelle, doit
commencer par construire un systéme fonctionnellement
équivalent. L'architecture matériclle est, soit cclle qui est
imposée, soit la plus simple possible. L'organisation lo-
gicielle correspond exactement 2 la spécification : pas
d’interruptions, exécution des taches entitrement sé-
quentielle. S1, aprés simulation, le résultat est acceptable
selon les contraintes temporelles, il est proposé. -

Dans le cas contraire, cette architecture constitue alors la
racine de 'arbre des solutions. Les transformations entre
un nccud pere et ses fils résident dans I'organisation tem-
porelle des tAches et 1a suppression ou I'ajout éventucl
de composants maténels.

La réorganisation temporelle se fait par découpage ¢t re-
groupement des sous-fonctions de la spéeification, Ie but
final étant de :

- respecter les retards sur les données,

- diminuer le temps global de calcul.

Tout necud est alors testé comme une solution éventuelle
du systtme. En cas d’échec, on isole la cause minimale
de I'échec et on supprime tous les neeuds de Parbre véri-
fiant cette cause,

Si aucune des organisations essayées ne satisfait 1’en-
semble des contraintes, une autre architecture matérielle
est recherchée, ou ur.. modification des fréquences est
imposée.

V. RESULTATS :

Les figures ci-aprés montrent pour I’exemple décrit
au début du document, la solution propesée par AGLAE.
On retrouve sur la planche 4, la Spécificauon Fonction-
nelle Technique sous forme graphique.

Puis, sur cette méme planche, les chronogrammes résul-
tats sur une période courte ¢t une période longue.

En plus des fonctions, dont I'exécution est matérialisée
par des créneaux, les chronogrammes indiquent :

- le nom des fonctions de communications créées,

- I'instant od elles sont utilisées a des fins de mémorisa-
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tion de données (en écriture ou en lecture),

- les fonctions de gestion de contextes permettant la sau-
vegarde et la restauration de 'environnement lors d’in-
terruptions ou de reprises de fonctions lentes.

La dernigre planche indique I'ensemble des composants

choisis, leur cofit, I"architecture matérielle adoptée ainsi

que le résultat complet de 1a simulation du systéme avec,

pour la tiche rapide (période courte) et 1a tiche lente (pé-
riode longue) :

- le temps total d’exécution,

- le temps tolal de communications interne et externe,

- le temps total de gestion des contextes,

- le taux de charge du processeur choisi.

1 faut noter que cette dernidre information est primor-
diale pour le concepteur, car elle le renseigne sur les li-
mites du sysi2me en ce qui concerne les modifications de
maintenance (possibilité d’augmentation de la taille des
logicicls, de la vitesse des processeurs, du changement
de composants, ...).

Tous ces résultats sont présentés sur 'écran AGLAE,
Afin de rester le plus convivial possible, aucune com-
mande n’est entrée sous forme textuclle. Toute demande
de traitement se réalise grice 2 la souris en “cliquant” sur
une icone 2 droite de I'écran,

Six icones sont représentées :
- la premire permet ['affichage d’un texte de présenta-
tion du logiciel,

- GEST pour Gestion
* LOAD : chargement d'une spécification,
* SAVE : sauvegarde sur disque d’une spécification,
* CHECK : vérification syntaxique et sémantique

d'une spécification,

* KILL : effaccment d’une spécification en mémoire,
* RUN : résolution et recherche de solutions,
* QUIT ; sortie d'AGLAE.

.

VIEW pour fonctions de Visualisation

* OVERVIEW : spécification complte sur la page
écran,

* ZOOM : vue limitée d'une partie de la spécification
avec déplacements grice 4 des ascenseurs verucaux
et horizontaux le long de la fenétre de visualisation,

* TRAME : Trame de fond ou écran d’attente.

EDIT pour Edition de la base de données

* EDIT : édition des objets stockés dans AGLAE,

* TREE : visualisation des objets et des classes sous la
forme d’arbres.

.

GRAPH pour éditeur Graphique de la spéeification

* COMPOSE : crée des fonctions décomposables,

* FUNCTION : créc une machine abstraite de base,

* WINDOW : crée une fenétre d’entrée-sortie,

* DATA : crée une donnée,

* ARCHITECTURE : crée 1'objet descripteur de I'ar-
chitecture choisie si elle existe,
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* DELETE : permet d’effacer une boite ou une don-
née,

* MOVE : permet de déplacer une boite ou unc donnée
sur I’écran.

- LASER pour impression sur un périphérique externe
* ECRAN : image écran en format POSCRIPT,
* SOLUTION : texte associé 2 la résolution avec pro-
positions de solutions,
* ECHEC : texte associé au refus de solutions avec le
diagnostic prononcé.

VI. CONCLUSION :
1, Validation :

Plusicurs systtmes opérationnels sont utilisés pour la
validation des connaissances contenucs dans AGLAE,
ceci dans le but de vérifier :

- qu'avec la seule description de la Spécification Fonc-
tionnelle Technique, AGLAE cst 2 méme de proposer
unc voire plusicurs solutions,

- qu'avec un m&me choix de composants, les solutions
proposées sont similaires A celles retenues par les con-
cepteurs humains.

11 est important de préciscr que ces solutions sont obte-
nues en quelques minutes (aprés ’entrée des données),
alors que 1'élaboration ct la vaiidation d'unc autre solu-
tion prerait auparavent plusicurs jours aux ingénicurs,

2. Evolutions :

AGLAE est écrit en Common LISP ¢t s’appuic sur le
générateur de systeme expert KNOWLEDGE
CRAFT™3 V3 3, Les objets sont des schémas CRLT™,
tandis que les autres connaissances (régles) et le moteur
d’inférence sont des fonctions de Common LISP,

Le matériel utilisé est un SUN 3/260™1° sous environ-

nement UNIXT™™ V4,031,

Malgré les quelques 110 objets répartis dans les bases
de faits, et les 11 grands sous-cnscmbles de régles de la
base de connaissances, AGLAE est encore loin de résou-
dre tous les problemes wemps-réel rencontrés dans notre
Division.

Les évolutions prochaines du produit pernetiront par

exemple :

- Penrichissement de la base de données pour prendre en
compte un nombre plus important de composants du
marché et de nouvelles architectures,

- Penrichissement de ta base de connaissances pour of-

8. KNOWLEDGE CRAFT est une marque déposée
par CARNEGIE GROUP INC.

9. CRL : CARNEGIE Representation Language est
une marque déposée par CARNEGIE GROUP INC.
10, SUN est wie marque déposée par SUN MICRO-
SYSTEMS.

11. UNIX est une marque déposée par AT&T BELL
LABORATORIES,

frir des solutions 2 base de multi-processeurs. Ceci im-
plique I’analy< fine des différents parall€lismes
possibles (étuge des grains),

- le couplage avec des ateliers de Génie Logiciel du com-
merce qui permettra de couvrir I’ensemble des phases
du cycle de vie d’un systéme notamment :

* la phase de codage du logiciel (ADA, C, ...),

* Ja phase de test automatique du logiciel codé,

* la phase de documentation sous des formats normali-
sés tels que AQAP 13, GAM T17, DoD 2167B, ...

Quant 2 la phase de spécification, une étude est en
cours afin de faciliter le travail du concepteur humain.
En cffct, AGLAE devra lui-méme afficher la Spécifica-
tion Fonctionnelle Techmque sous forme graphique, a
partir d’un texte en langage naturel, ceci pour limiter au
maximum les manipulations d’éditcurs toujours fasti-
dieuscs pour I'utilisateur final,

Enfin, un portage en langage C++ est envisagé avec
un générateur d’interfaces suffisamment normalisé pour
cnvisager une utilisation de I'atelicr AGLAE sur des ty-
pes de console et d’environnement quelconques.
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SOFTWARE DESIGN CONSIDERATIONS FOR AN %IRBORNE COMMAND AND CONTROL WORKSTATION

P. Kielhorn, P. Kuhl,yB. Muth, R. Vissers
Dornier Luftfahrt GmbH
Postfach 13 03
7990 Friedrichshafen 1
Germany

Summsry

Within this gaper we present some
basic concepts of the software design
for a command and control workstation
for airborne applications. We report
not only on theoretical considerations
but also on gractical experience,
which was %a ned during the
development process of a prototype
command and control workstation at
DORNIER. Special emphasis is put on
software archtitecture, data
structures and tasking with respect to
Ada. In order to get a firm basis and
to ease understanding the paper starts
with a description of the tasks and
components of a command and control
workstation, which includes a short
description of the afore mentioned
DORNIE prototXpe workstation MODOS.
The paper concludes with some issues
on software "-ilities™.

1. Incroduction

Airborne command and control (C?)

workstations will be used in a variety
of different applications, will range
from maritime patrol to border patrol,
from military missions to civil

missions, and include different flying
latforms, i.e. aircrafts as well as
elicopters.

A C* workstation operates as a link
between a human operator and an
environment (fig. 1), which normall¥
consists of a suite of sensors and in
some cases also of effectors2
Basically, emploKment of a C
workstation may be as a stand-alone
unit connected to a single sensor
in a more effective wa¥ as a singie
station controlling multiple
sensors{effectors. or within a network
of multiple sensors/effectors and
workstations, which in adcition
groyides the ability of a redundant
esign of the system,

2. C* Workstation vescription
2.1 Capabilities

or

The following main capabilities have
to be provided by a C* workstation

man/machine interface

sensor [effector management and
sensor data acquisition

- data processing

- data storage

t

These capabilities will be used for
appiications as for example

antisubmarine warfare (ASW)
signal intelligence (SIGINT)
search and rescue (SAR)
pollution control

coast guard

fishery patrol
photo§rammetry

verification

Fig. 2 shows the environment for an
ASW mission, certainly re%uiring more
than one workstation, whilst the
pollution control example in fig. 3
may well manage with a single station.

2.2 Components

From a sistem point of view a
workstation consists of a multitude of
arts, from a software point of view

owever there are only a few
components, that have to be mentioned
(fig. 4). These components which host
the software or work together with the
software are as follows

- the workstation processor (main
processor),
the heart of the workstation

- the workstation add-on processors,
additional or specialized processing
power

~ the graphic engine with one or more
display screens,
output generation and presentation
to the operator

- the operator input devices, .
the means of human input interaction

~ the system interfaces,
the various connections to the
outside world

It is obvious that a modular design
will ease workstation adaption to
special needs.

2.3 MODOS

Por the afore mentioned tasks DORNIER
have developed a workstation based on
a set of requirements of which
modularity was one of the most
important. Therefore the name of that
station was chosen as MODOS standing
for MODular Operator Station, The
workstation shown in fig. 5 is
installed into a Do228 aircraft, which
acts as a small maritime patrol
aircraft, eguipped with a
SUPERSEARCHER radar, a KESTREL ESM and
a8 secondary L1NS navigation system.
The software of this system and the
experience gathered during the course
of its development is subject and
basis of the following design
considerations.
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3. Software Design Considerations

A command and control workstation is a
real-time embedded computer system
because of its connection to a real-
time process, real-time information
gathering and procgssini and
immediate interaction. ithough not
extremely demanding, we have to tackle
with interrupts, concurrency,
multiprocessing and time dependency. A
well structured software may help to
meet these challenges.

3.1 Architecture

As explained before one of our most
stringent requirements was modularity
in hardware and software, because
modularity is seen as the key to
flexibility and adaptability.
Modularity should also helg to build
up an open archtitecture (fig. 6). The
first step in this direction is the
separation between apglication
dependent software and application
independent software. In this way we
introduce some kind of structurin%.
which is of course reasonable, but it
is merely suitable for an overview. In
order to get a useful architecture, we
have to get a deeper,insight into the
functionality of a C° workstation.

Starting with the context diagram of
fig. 7a as the first level we achieve
by means of usual stepwise
decomposition on the second level what
we call platforms (fig, 7b) and on the
third level what we call buildin§
blocks (fig. 7c¢). A group of bui dins
blocks forms a platform. As indicate
in fig. 7b we distinguish a man-
machine platform, a sensor platform, a
data storage platform, and a specia
processing platform, Fig. 7c gives
more detail by showinﬁ the building
blocks of the man-machine platform,
including the operator input/output
devices.

3.2 Standards

Another design goal was to rely on
standards whenever possible. ere
formal standards were not available we
appliad quasi-standards, i.e. widel
gied conventions or agreements (tab{e

Table i: SW-Standards & Quasi-
Standards

Programming Language Ada
y

- Operating System ARTX

- Graphics GKS

- Symbol Set national
- Files IFX

- Data Base SQL

- Libraries NAG

- Presentation X-Window

Ada as a programming language standard
is of course the most significent
standard for this project., Ada is now
a "must" in the military market-place,
but the benefits of Ada are also
attractive for the civilian area. And
because we want to serve both markets

we adopted the military standard to
the civil product. .

ARTX, the real-time executive, is the
operating system which is used for our
workstation in conjunction with Ada.
ARTX is widely accepted in industry,
it is a quasi-standard.

GKS stands for Graphical Kernel .
System, it is one of several %raphlc
standards in use. We use GKS level 2C
with standardized Ada language
binding.

The symbol set to generate tactical
situation presentations is adopted
from the German Navy. The symbol set
is realized as a data structure and is
therefore easily interchangeable.

IFX as an amendment to ARTX is the
file handlin§ system. It provides a
MS-DOS-1like file structure, which is
also regarded as a quasi-standard.

We have applied no database standard,
no library standard and no
presentation standard, mainly because
relevant standards were not available
when we started our develoxment. A
math library standard as NAG (Numeric
Algorithm Group) or AGL (Ada Generic
Library) was not necessary and not
applicable resp. Maybe we will use SQL
or X-Window in the future.

3.3 Data strucures

Data flow and data structures are also
areas which have to be considered
during software design. Whilst data
flow is muce a global matter to be
examined during the analysis phases,
data structures have to be determined
during the software design steps.

Generally we have to deal with two
kinds of data flows

o sensor -> processing -> presentation
or
-> storage
o operator -> processing -> sensor

or

-> presen-
tation
or

~> storage

whereat the second flow is mainl% a
control flow, only sometimes combined
with data.

One of the problems that arise when
developing a software structure are
the synchronous and asynchronous
aspects of the environment, i.e. we
have to handle
synchronous/asynchronous input and
output.

Asynchronous input means that the time
when data input occurs cannot. be
redicted. For example all operator
input is asynchronous. Also some
sensor types are designed to deliver
data only by event, because for
embedded’ computer systems often




intertugts are used to decrease CPU
overhead.

Asyanchronous output is output of which
the amount of generated data is
variable. As a result the time needed
to generate these data is variable.
For example the amount of graphic
output data depends on the number of
objects to be displayed or refreshed.
Qutput data generated only when a
certain event occurs is also
asynchronous (e.g. operator action to
provide effector data).

Synchronous input is data received

with a constant frequency and constant

data block size. Most of the sensors

with a data bus interface according to

Mil-S5td-1553B need to be polled within
? constant time period to prevent data
oss.,

Synchronous output is data generated
with a fixed time period and block
size. For example update/refresh data
for intelligent sensors needing actual
aircraft position for calculating
course or direction is synchronous
output.

Data has to be structured in order to
be handled properly and effectively.
One measure is to create types, but
what we want to use is a somewhat
higher level of abstraction, This is
clarified in fig. 8. This figure shows
a section of the input data flow of a
distinct sensor, in this case a radar.
Incoming data (the messages) is held
in different structures according to
the relevant grocessing stage. The
structures, which are used here, are
called queue and pool resp. similar to
this we have to provide further data
structures for other processing
purposes. The structures we have used
within MODOS are

- fifo for buffering of single data

- queue  for buffering of messages

- pool for data base

- tree for describing a hierarchy
of commands

- menu for operator command choice

- form for operator generated data
entry

- window for data or image
presentation

The first 4 structures are of more
general character, whilst the last 3
are special for the workstation
application.

3.4 Tasks

In an embedded computer system where
synchronous and asynchronous data is
processed the software design has to
guarantee that all events are
groqessed in time independent of the
asic processor workload., It is
extremely difficult to achieve this
within a’ purely sequential program
structure, if there is a number of
concurrent processes. One may easily
derive concurrency between for example
data acquisition, data processing,
data presentation, and the various

operator inputs. In other words one
has to establish a tasking concept.

Our MODOS software design comprises

38 tasks, a fairly high number, and it
has to be explained which
considerations led to this number. To
begin with, these tasks may be sorted
ingg 3 categories, which are shown in
table 2.

Table 2: Task classification

Type Qty Characteristics

Actor 7 cyclic with delay,

Task free-running, no entry
initial start synchro-
nized by initialisation
routine
main purpose to
transport data

Manager 13 cyclic with delay,

Task free-running,

with entries

initial start synchro-
nized by initialisation
routine

main Eurpose to perform
high level system
functions

Server 18

non-cyclic
Task

initial start synchro-
nized by initiaiisation
routine

main purpose to provide
abstract data types

The first category contains the so
called actor tasks. These tasks
correspond with all cyclic aata
transfer, internally as well as
externaliy. The second category,
called manager tasks, provides high
level system functions. Most of these
tasks control the various system modes
of the workstation and the
environment. The third category is
built uY by server tasks, whic
encapsulate a data structure and the
associated functions to operate on, in
other words an abstract data type.

While the design as a task is
judicious for both the first and
second category namel{ concurrency,
the decision for the third categoly
has to be explained. An abstract data
type may be realized of course bz a
set of procedures which permit the
necessary operations. Now, when
different tasks access the same
operation, one has to provide some
means of protection against
intermixing. A task with entries
according to the various operations
and performing these operations during
rendezvous is a very suitable
solution.

Tasks of the first and second category
are called active tasks. The structure
of these tasks may vary, whereat CPU
time consumption may be a drivinﬁ
deszgn conslderation., Fig. 10a shows
the basic active task t{pe, it is not
waiting for any external event or
rendezvous. Fig. 10b shows a slight
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modification to allow for additional
communication with other tasks or
procedures via entry-calls. Fig. 1l0c
shows a further modification to allow
for switch on/off on request. If
switched off this task will not
consume CPU time until switched on
aﬁain. The state of the task can be
changed by different events (external
interrupt, rendezvous, self-
deactivation). A last example with
respect to task design is given in
fig. 10d and shows the combination of
a server task and an active task, used
for the handling of Mil-Std 1553B data
bus. The combination provides for the
possibility to use different task
priorities. Communication between the
two tasks is realized by a fifo
buffer.

Designing a task based program
structure implies also to take care of
deadlocks. Using the full repertoire
of Ada language constructs as "select
... or", "select ... else", timed or
conditional entry calls, "delay"
statement, and watch-dog timers in
conjunction with appropriate transfer
protocols in the case of multi-
grocessor systems may helg to avoid
eadlocks. For our MODOS design we did
some Petri-net modeling, but because
of deficiencies of the tool used, we
finally relied on more empirical
methods.

3.5 Interfaces

A c? workstation is part of a more
comprehensive system, i.e. there are
interfaces to the environment, which
of course should also be based on
standards (table 3).

Table 3: Interface Standards

Hardware: STANAG 3838 (Mil-Std 1553B)
RS232C/RS422
SCSI
RS 485
ARINC 429
others

GKS Level 2C
SQL

others

Software:

The first kind of interfaces is the
connection to the external environment
and to the workstation’s peripheral
devices. From a software point of view
the only consideration is whether the
necessary drivers have to be written
in high order language or in assembly
language. The next consideration
refers to the man-machine interface.
But this interface, although software-
driven, denends on system
considerations. The third kind of
interface is the software interface.
Relevant standards we have mentioned
in the beginning. Beside these one has
to pay attention to the required open
architecture. The software structure
should be designed in such a way, that
new applications, i.e. new software
modules may be built in easily.

4. Assessment

We would like to pick up again some of
the before addressed aspects, in order
to assess their relevance within the
MODOS workstation software design.
These are

- Open architecture/modularity
Reusability

Portability . .
Testability/maintainability
Real time processing capability/
tasking

In addition also some asgects of
object oriented design (OOD) will be
discussed.

4.1 Open architecture/modularity

An open architecture shall allow an
ease expansion by new modules to
obtain additional features. As shown
before the hardware is designed for
add-on processors thus giving the
capability of a separate database
processor, an extra signal processor
or something like that. This implies
the distribution of software. One of
the expected expansions may be the
employment of a new sensor. In this
case not only the addition of new
modules is necessary, but also changes
in the existing software have to be
made. As long as data structures as
menus or forms are concerned, they may
easily exchanged. The incorporation of
new commands into the control task is
shown in fig. 9. Modularity gives us
still more flexibility: exchangeable
symbol sets, exchangeable maps,
variable function key assignment for
example.

4.2 Reusability

Modularity and exchangeable data
structurés promote also reuseability.
For new a prlcations almost all of the
basic software represented by the
inner shells of the formerly shown
software layers diagram (fig. 6) may
be reused. All abstract data tyges are
candidates for reuse. For example
within MODOS there are 14 instances of
the abstract data type "queue".

4.3 Portability

Portability is widely supported,
because only a small amount of code
less than 5 I, is written in assembiy
language. With one exception no
services of the underlying operating
system are used directly by the
software, Of course a new environment
has to provide a GKS interface.

4.4 Testability/Maintainability

Both "-ilities" are strongly supported
by modularisation and standardisation.
Furthermore a clear architecture and
identical or similar instances of
software components assist in
testability and maintainability resp.
That means, that both will be achieved
automaticaily at least partly if the
basic design considerations are obeyed




(besides such means as comments,
programming style etc.). Of course
testability will be complicated by
concurrency.

4.5 Real time processing capability/
tasking

The extensive use of tasks may cause
groblems with real time processinﬁ
ecause of accumulated task switching
time overhead. We have experienced no
detrimental effects, which is of
course owning to the ARTX operating
system. The Do228 MPA example
mentioned at the beginning shows a
balanced behaviour between processing
capacity and data transport cagacity.
Furthermore the tasking concept is
helpfull when distributing software in
multiprocessor systems.

4.6 00D

Because object oriented design (0OD)
is now the favorite software design
method, we are caused to make some
remarks on it.

For the software design of MODOS no
special OOD method and tool were
applied. Nevertheless the software
architecture was built up in
accordance with the 00D philosophy of
Grady Booch. Furthermore the
application of the Ada langua%e
supports the implementation of 0OD by
providing of implementation features
as follows

structured constructs
typxn%

interface specifications
information hiding and data
abstraction

[eReloNe]

The MODOS software architecture is
implemented by an Ada packa%e
hierarchy which is defined by the use
relationship. The objects of the MODOS
software are represented b¥ Ada
packages or compositions of Ada
packages.

The top level objects like (see also
fig. 7?

o Environment I/F Management
o Sensor Management

o Data Storage

o Data Fusion/Tactics

o MMI

are created in accordance with the
real-world objects of the MODOS
system. Those objects group only lower
level objects to one object which
represents a real-world entity.

From the software engineering point of
view more efficient objects are the
low level objects of the MODOS
software architecture. These objects
are implemented as an Abstract Data
Type. Most of them are multiple used.

3. Conclusion

Some considerations concerning
software design of a command and
control workstation have been
presented and their realisation
explained and discusged. The .
requirements for a C° workstation lie
above all in adaptability to different
kinds of employment. This is achieved
by the current software design. Far-
reaching requirements as hard real
time processing or extreme data
throughgut may be satisfied by add-oms
to the basic design. Because of the
principles of modularisation and
standardisation for software as well
as for hardware stronger requirements
will easily be met.
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task body actor_task is

-~ local declarations

begin

Before the task can run it must be
explicitly started.

accept start (...) do

-- initialize variables and return
-- initialisation status.

end start;

Now the task is active and can run
except when the delay-statement
is executed.

loop

statements;

-- allow other tasks to run
delay specific_time;
statements;

end loop;
end normal_task_type 1

Fig. 10: Active Tasks Examples

a: free-running with delay

freely
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task body manager_ task is

-~ local declarations

begin

-- Before the task can run it must be
-- explicitly started.

accept start (...) do
-~ initialize variables and return
-~ initialisation status.

end start;
~-- Now the task is active and can run freely
-- except when the delay-statement
-- is executed.
loop
select
accept entry a (...) do
-~ perform rendezvous
end entry a;
[ statements; ]
or
accept entry b (...) do
-~ perform rendezvous
end entry b;
{ statements; ]
or
[ when boolean_expression => ]
accept entry c (...) do
-~ perform rendezvous
end entry c;
[ statements; ]

else
[ statements; |}

-

-- allow other tasks to run
delay specific_time;
end. select;
end loop;
end normal_task_type_2

Fig. 10 (cont.): Active Tasks Examples
b: free-running with delay and entries
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task body switching_task is

-- local declarations

begin
-~ Before the task can run it must be
-- explicitly started.

accept start (...) do
-- initialize variables and return
-- initialisation status.

end start;

inactive:
loop
accept activate_entry (...) do
-~ perform rendezvous
end activate_entry;
active:
loop
select
accept deactivate_entry (...) do
-- perform rendezvous
end deactivate_entry;
[ statements; ]
or
accept entry b (...) do
~- perform- rendezvous
end entry b;
[ statements; ]
or
([ when boolean_expression => ]}
accept entry _c (...) do
-~ perform rendezvous
end entry_c;
[ statements; ]

.

else
[ statements; ]
-- possibility for the task to
-- deactivate itself

exit active when ....;

-- allow other tasks to run
delay specific_time;
end select;
end loop active;
end loop inactive;
end switching task;

Fig. 10 (cont.): Active Tasks Examples
c: same as 10b plus switching capability




package body milbus is

task body maneger is
-~ this task has the default task priority

task driver is
pragma priority (system.priority’last);
-- highest priority

entry start (frame_time : in duration);
entry milbus_interrupt;
for milbus_interrupt use at ...;
end driver;

task body driver is
fr_time : duration;
begin
accept start (frame_tiwe : in duration) do
-~ perform rendezvous
fr time := frame_time;
[ statements; ]
end start;
loop
[ statements; ]
accept milbus_interrupt;
[ statements; ]
delay fr_time;
end loop;
end driver;

begin -- of milbus.manager
accept phase_0 (...) do
[ statements: ]
end phase_0;
-~ begin of phase 0
phase0:
loop
select
accept enter_message {...) dvu
[ statements; )
and enter_message;
or
accept phase_l;
exit phase(;
end select;
end loop phase0;

-~ begin of phase 1

phasel:
loop
select
accept new_frame (...) do
[ statements; ]
end new_frame;

(to be continued)
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or
accept enter_message_descriptor (...) do
[ statements; ]
end enter_message_descriptor;
or
accept phase_2
(frame_time : in duration ) do
[ statements; ]
end phase_2;
exit phasel;
end select;
end loop phasel;

-- begin of phase 2

driver.start (frame_time); -

~- now the driver task is activated
phase2:
loop
select
accept available_messages
(count : out natural) do
[ statements; }
end available messages;
or
accept get_message (msg : out message) d
[ statements;
end get_message;
or
accept send_extra_message
(msg : in message) do
[ statements; )
end send_extra_message;
or
accept change_message (...) do
{ statements; )
end change_message;
end select;
end loop phase2;
end manager;
end milbus;

Fig. 10 (concl.): Active Tasks Examples
d: Combination of active task and

o

passive task
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Abstract

We expose an exj-crience of using formal algebraic
specifications, conducted in collaboration with an
aeronautic industry. The objective is to provide a
reusable specification of processing telemetry results.
This family of spatial applications is described by
means of generic formal specifications, and each
telemetry could be built from them. Reuse
possibilities are supported by our framework In this
paper, we give a general survey of this experience,
including its “story”, the method followed for
establishing the generic specifications which are the
system core, and reuse aspects provided.

Keywords: formal specification, telemetry
decommutation, design and software reuse, fast
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Introduction

It is obvious to say that software becomes more and
more complex and of course as a direct consequence
more and more expensive to develop. Too much
work, too much time are necessary to get an
operational version of a software product, Among the
reasons responsible of such difficulties in the software
production, at least two are of first importance.

First of all, the development process activity 1s
slowed down each time the description of the system
to be produced is not precise enough and requires to
make decisions all along development. Unfortunately,
this appears any time the requirements document is
expressed in a natural language. It is impossible to
guarantee that such a document describes, in an
unambiguous way, what the system has to do. How
to know whether or not the document is complete
(has everything been said?) and consistent (is there
no contradiction)?

*This work was supported by a contract between CNES
and GRECO-PRC PROGRAMMATION. This action of tech-
nology transfer has been managed by two teams' in Grenoble
(IMAG/LIFIA) and Toulouse (ONERA-CERT/DERI).

The second reason is the origin of the reuse notion.
Many studies have shown that a lot of functionalities
are repeated from one application to another. What
about reusing at least final codes? It is clear that the
ability to reuse software is a maimn key to the software
success: the gains we can expect are of course
important from the viewpoint of economy in terms of
work and time But another perhaps more important
gain is obtained if the reused and/or adapted parts
have been proved correct once and for ever

A means to decrease the underlymg difficulties 1s to
start the development process-—befere beginmng the
coding phase~-by a first description of the
application in a very high level formalism. The goal
of this description we call specificalion is to express
the application in a formal language. By formal 1s
meant a language for which the mathematical
foundations are precisely established both from the
viewpoint of its syntax and semantics. Because the
use of a formal language requires a precise
description of all the wished functionalities, any
problem expressed with such a formahsm wil} have
one and only one interpretation, the same for all
kind of users (men and computers).

Among the precise specification formalisms, one
seems quite interesting. it is called algebraic
specification because it is based on specifying types
as value sets and functions in an equational way to
express function behaviour. Moreover, it 1s possible
to paramelerize an algebraic specification by another
which represents hypotheses Such parameterized
specifications are also called generic speaifications
At the last, let us remark that under certan
conventions, some algebraic specifications can be run
and play the role of a prototype. (Concerning this
specification formalism, its theoretical notions can be
found in (4}.)

In all the cases, the specification activity obliges to
ask ourselves the right questions and to give the
right answers by fixing—in a not necessarily
definitive way-—the choices related to the
functionalities to provide. This step is compatible
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with the reuse problem. Indeed when we consider
related applications, the use of absfraction for
synonymous functionalities allows a better
obviousness of common parts.

In this paper, we present an experience of using
formal specifications within the context of an
industrial and spatial application: telemetry
systems. As it will be mentioned later, the reuse
ohjective is always present. A complete description
of this experience is available in [9]. [10] points out
the didactic results of this operation aad also gives
the CNES (Centre National d'Etudes Spatiales:
National French Space Agency) viewpoint. In this
paper, we emphasize more the followed process and
the main results considered from a methodological
viewpoint. In Section 1, we quickly recall the study
evolution. Section 2 points out our principles for
writing this specification. Section 3 summarizes the
lessons and perspectives this work opens.

1  “Story” of the study—The
chosen approach

The telecommunication division of the CNES 1s in
charge (among others) of writing the requirement
documents relative to the telemetry systems. Then 1t
asks software houses to develop the corresponding
software system Up to now, all the telemetry
systems were developed independently each others
even if obviously some phases of the telemetry
processing are similar from one telemetry to another
Here is the starting point of our study: to show that
some (supposed) reusable parts can be eflectively
reused for any kind of telemetry systems by means of
reusable software components.

Our basic idea was to develop an only and formal
requirement document from the informal ones which
described a few existing telemetry systems. Instead
of this, another approach should have been to
develop more or less directly reusable software
components. This second approach has not been
achieved for assessment reasons and also to
guarantee that the reusable software can be keep free
from any implementation language.

The study was started with five diderent telemetry
systems. We tried to exhibit all the common
functionahties between them. This top dovn
approach was abandoned because.

e the difficulty to understand the informal
documents. indeed, there are so many
incompletenesses, too much implicit that only a
specialist of this domain was able to understand
such docum ats;

o each document was specific to a given telemetry
system: in other words, each document reflects
the description of one telemetry system outside
any global consideration—for instance, the used

terminology was often different from one sj ‘“en.
to another.

It might have been possible to isolate in a very hand
fashion the common functionalities but without any
warranty of keeping consistent the overall
understanding of what a telemetry system was.
Another point to be rem. *mber is the fact that the
Gocuments we hud in hanls were about yet ezisiing
telemetry systems and that we were it > .seed in
developing a general and formal telemetry
description for future systems. What should have
been the adequacy of a new system in such a
context? What credibility should have been given?
This problem has been mentioned many times: what
has not been developed wnth a reusability aspect 1s
difficult, even smpossible to reuse! Here was the
main reason we started in another direction.

First of all we asked the telemetry specialists to
describe in an informal but rigorous manner what a
telemetry system is from an abstract viewpoint.
Then after several inspections, this document [5) was
formalized in terms of generic specifications we will
call generic telemetry in the rest of the paper. Of
course, all the problems were not solved in [5).
Nevertheless, its main advantage was that it was
independent on any existing or future telemetry
system and it was readable enough for non specialists
of the field as we were.

The generic telemetry gathers the description of all
the entities involved in any telemetry system. It
looks like & general framework from which any
telemetry specification could be built. It is evident
that the informal general document was not aole to
take into account all the cases. Thus the generic
telemetry is open {e.g. new clements can be easily
added) and very abstract in order not to be too
restrictive or too dependent on any particular case.
In practice to the contrary of the first approach, this
second one is definitively bottom up. Indeed, it is
more simple to enrich a generic specification with
new clements (not yet considered as generic enough)
than to suppress peculiar characteristics that had
unfortunately been considered general.

Having written the generic telemetry during the first
part of this operation, it was iutetesting to test it on
a real case. We have done this work with a telemetry
of the scientific project INTERBALL. As mentioned
above, 1t was necessary to enrich the generic
telemetry. The example has been fully developed for
its main difficult parts: generation and storage of
embedded information according to an INTERBALL
format, and decommutation of the received data at
ground.

A few remarks:
o due to the chosen specification language we have

been able to run parts of this instantiated
specification. This point is very comfortable.
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Indeed, it is not necessary to wait for the end of
the project to get some results allowing the
specifier to prove the project under
consideration is really effective;

the internal and external presentations of
information are similar: this improves the
readability of the formal specification and allows
updating it easily in case of any modification to
the external view;

the enrichment of an instance of the generic
telemetry must be done with in the mind the
reuse goal of the added information (we will go
thoroughly this point in §3.1).

2 Specifying telemetries: tool
and method

Now we are going to tackle more technical features.
First, we describe any telemetry process succinctly.
Then we explain how we have specified is as the
generic telemetry using generic specifications. We
illustrate our method by an excerpt from these
specifications, from which we take some examples
At the last, we briefly show an example of its use

2.1 General description of telemetries

The aim of any telemetry process is to make up the
measurement results effected by a scientific satellite
The data of each experiment must be provided n
chronological order to the organization which
manages it.

Any telemetry system is divided in two subsystems:
an on-board system and a ground one, as shown in
Figure 1. The on-board system includes a
transmitter which sends telemetry results to ground
stations. If the satellite is geostationary,
transmissions are direct and purely sequential. In the
general case, the satellite moves. There are several
stations, and the satellite faces one of them only
during a little while. While the satellite does not face
any station, it records telemetry results to be
transmitted in a storage zone. When it is within
sight of one, it transmits both direct and recorded
telemetries. That is why it is necessary to order
results according to their dates afterwards.

Information provided inside satellites is constituted
by bit strings, according to a specific format for each
embedded experiment Before transmission to
ground, the satellite mixes these bit strings into byte
matrices according to a distribution called
telemetry format. Such a forinat depends on the
considered satellite. On the ground, separating data
according to their origin among the received byte
matrices, in order to reconstruct original bit strings,
is called telemetry decommutation.
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2.2 Our approach
2.2.1 Frame

As we have exposed in Section 1, our approach
proceeds by using parameterized specifications. For
any telemetry, our framework for specifying is
divided in two parts:

o the generic telemetry specification: it
includes, on the one hand, the operations which
are present in all the telemetries (e.g. a sort
according to a time base), on the other hand,
the description of all the entities which
participate in any telemetry and functionalities
which equip these entities.

the instantiation, i.e. the bindings of formal

parameters to actual values. These actual values
are supposed to be specified: they represent the
specific conventions for the considered telemetry.

In order that modularity of our specification respects
the telemetry organization given in Figure 1, we have
written one module for one entity. These modules are
parameter specifications: because of their generalness
character, they do not represent the entities of a
patticular telemetry, but they must be templates,
such that the specification of any telemetry entities
can be obtained by replacing the module parameters
by the conventions of this telemetry.

2.2.2 A limitation

For any telemetry, the number nb-exp of embedded
experiments and nb-ts of technologic sets

(cf. Figure 1) depends on the considered telemetry.
Let us recall that any experiment and technologic set
are represented by a parameter specification in our
framework, according to the principles we have
stated in the previous subsection. If we consider any
telemetry process in a global way, we obtain
parameter specifications which are parameterized
themselves--they are parameterized respectively by
the natural numbers nb-ezp and nb-ts.

As far as we know, any algebraic specification
language provides neither theoretical nor practical
tools to describe such a specification. Some ways to
cope this limitation exist. Since we are interested in
providing a very readable specification especially, we
have chosen the solution we think it is the simplest
in a didactic way: we consider one experiment, and
one technologic set. Generalizing these two
specifications to describing nb-exp xperiments and
nb-ts would make them more complex, hut does not
constitute a real problem. In order to be exhaustive,
it seems important to us to report this limitation but
we claim it is the only actual limitation we come up
against while specifying these spatial applications.
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nb-exp experiments,
each has its specific
experiment format

nb-ts technologic sets,
each has its specific
technologic format

Satellite
format

Direct
telemetry

Recorded
telemetry

Multiplexing

B
0]
A
R
D Transmitter for telemetry data
5
G 52
g . Extracting
' and ordering  }-—————— v
U : telemetry results Output of
N telemetry results
D ! in the chronological

order

nb-st stations

Figure 1: Advancing data during any telemetry (according to [5]).




2.2.3 Method

Now we are going to explamn the principles which
have guided us in writing the modules of the generic
telemetry specification Figure 2 gives one of
representative excerpts. Readers interested in the
complete text can find 1t 1n [8] Some technical
notions about our notations are given in Annex.

Because of their algebraic character, the
specifications we propose comprise both types and
functionalitscs. In these parameter specifications, we
understand types as possible value sets: for example,
the modes of a telemetry, which give access to the
different telemetry formats, form a specific type for
this telemetry (In Figure 2, we note tm-mode this
type which depends on the considered telemetry )

Functionahties are actions on types: they are
characterized by their inputs and outputs, and they
are represented by means of operators For example,
reception of data from the experiment 1s made by
means of the operator

receive-exp

whose domain is

tm-mode
X

Seq[Fized-Array Fiype-and-Nat{Bit [ exp-dim, ]}
X

Seq{Matriz Ftype-and-2-Nat{Byte

/
nb-rows, nb-bytes})
and codomain 1s.

Seq{Matriz Ftype-and-2-Nat{Byte

nb-rows, nb-bytes)]

(For more details about these type expressions and
meaning of our 1dentifiers, see the commentaries
Figure 2 and Annex.}

In a concrete way, the argument of sort tm-mode 1s
the current working mode when the data are
received These data are organized in an array
sequence using the experiment format, and this
operation takes also a matrix sequence using the
telemetry format—obtained from tm-mode—in which
information is put in the appropnate places In
another way, the “new” matrices are obtained from
the “0ld” ones by addition of experiment data (Let
us recall that there cannot be side effect since we
consider functions wm a purely mathematical sense )

According to [5], a telemetry format is a byve matrix
whose dimensions are specific to the considered
telemetry. In such a way, the distribution inside this
matrix depends on the telemetry, too. And ne
additional information is provided. Principles for
these distnbutions may be very different from one
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telemetry to another. Let us cite two examples
here—cf. {8] for more details.

The formats of the UARS-WINDII telemetry 1s
divided in vertical sections corresponding to the
different kinds of data which they contain As
another way, the INTERBALL telemetry formats are
described byte by byte

Since no unified approach for describing any
telemetry format exists, our solution is to consider a
telemetry format as an object, according to the
object-oriented approach. We do not know its
representation and we have access to it only by
methods. In our case, the methods are:

¢ storing data into telemetry formats—it is done
by means of:

* the operator receive-exp for the telemetry
experiment,

* the operator receive-techno for the
technologic set

¢ decommutation of formats wn order to provide
the different kinds of data these two operators
(for the experiment of the telemetry and its
technclogic set) are included 1n the specification
of ground operations.

some additional information bound to the
format—e g. the synchronization words' they are
used to control the rehability of the data flows

This point ends the presentation of the principles we
have followed for exhibiting types and operators from
the informal document [5]. We cannot go thoroughly
the specification of storing and decommutation since
1t narrowly depends on the considered telemetry
format. Thus our generic telemetry is a framework
for formally specifying how to built any telemetry
specification from it Applications to reuse objective
will be seen in §3 1, after a short survey about the
instantiation we have studied during the second part
of this work

2.3 Instantiating the generic
telemetry

As mentioned already, the distribution of the
INTERBALL telemetry formats is given byte by
byte, according to the different kinds of data. An
umportant point fo- our specification 1s that our way
for describing the format conventions is very near to
what 1s depicted in the project documents. For
storing and decommutation, the different bytes are
used as a grid m which holes indicate places for
deposing or extracting information [9). We do not
detail this feature here, and are going to be rather
interested in replacing some elements of the generic
telemetry For example, some dimensions are
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-- This is a commentary. See Annex for more details about some technical notions.

prop Satellite- Features{tm-mode, -~ Working mode: it provides access to each
-- telemetry format used.
bit-rate ~-- Type of all different bit rates for
-- transmissions.

/

~- How to receive the results...

ezp-dim,, receive-exp, -— ...of one experiment (cf. §2.2.2) whose format
-- dimension is exp-dim,,
techno-dimy, receive-techno, ~- ...of one technologic set whose format

~- dimension is techno-dim,.

—~ In these two cases, let us recall that the used
-=- telemetry format depends on the working

-- mode tm-mode.

nb-rows, nb-bytes, -~ Dimensions for the matrices of telemetry
-- formats.
dimy, dimgy, corr, -- Data enrichment by an error-correcting code.

-~ dim; and dimy are respectively the
~- dimensions of the original array and the
-- enriched one. corr is the coding operator.

mode-rate, -~ Bindings: working mode — corresponding bit
-= rate.
oblain-time, -- How to get dates.
lg-synchro, -- Common length of synchronization words.
synchro) -- The synchronization words themselves.
opns ~- Domains and codomains of the operators:
exp-dimy, techno-dimy, nb-rows, nb-bytes, dimy , dims, lg-synchro * — —
Nat
receive-exp » tm-mode x Seq[Fired-Array.Ftype-and-Nat[Bit [ exp-dim;]} x
Seq{Matriz.Ftype-and-2-Nat[Byte [ nb-rows, nb-bytes)] -

Seq[Matriz Ftype-and-2-Nat{Byte [ nb-rows, nb-bytes)
receive-techno * tm-mode x Seq[Fized-Array.Fiype-and-Nat{Bit [ techno-dim]] x

Seq|Matriz. Ftype-and-2-Nat[Byte [ nb-rows, nb-bytes]}) —
Seg{Matriz.Ftype-and-2-Nat[Byle [ nb-rows, nb-bytes)]

corr i Fized-Array.Ftype-and-Nal[Bit [ dim,] -
Fized-Array. Ftype-and-Nat[Bit | dim,}

mode-rate 1 im-mode —
bit-rate

obtain-time . Nat —
Time

synchro -

Seq[Fized-Array. Ftype-and-Nat(Byte [ lg-synchro))
~- No specific axiom in these module (cf. §2.2.3).

includes -~ Using the specification of any error-cotrecting code:
Using- Error-Codes| [ dimy, dimy, corr],
-~ General binding of modes to rates:
Bit- Rates-and-Modes[tm-mode, bit-rate [ mode-rate}

endprop

Figure 2: Data reception inside any scientific satellite.




instantiated as follows:

nb-rows — 32
nb-bytes — 16
ig-synchro — 7

and the synchronization words are—they are given
using hexadecimal codes—:

[(»F5n, ”FG”, »Cou, ”Cl", »Czn, ncs”, 7)C4”),
(”CS”, ”C6”, ”DO”, ”Dl”, ”D2”, » Dan, ”D4"),
(stn, ”D6”, » EO”, ”El”, ”E2”, ”ES", ”E4”),
(» Esn’ "EG”, » FO”, ”Fl”, ”F?”, nF3»’ ”F4”)]

3 Specifying an application
family

3.1 The ways to reuse

By using our framework for developing telemetries,
an environment for this comprises the generic
telemetry and instantiations for obtaining some
telemetries. Each instantiation leads to a
specification which is implemented using a
programming language. This global situation is
depicted in Figure 3. Two possibilities tor reusing
exist.

Reuse of the generic part If the used
programming language supports genericity (like
Ada), the operators of which we give the
behaviour (e.g. the chronological sort) can be
implemented once and reused for each new
telemetry.

Reuse of implementations If we find out—when
we integrating it —that the instantiation of a
new telemetry is the same as a previous one,
then reuse of implementation of this previous
telemetry is allowed,

‘This second case can be extended when only entiltes
are identical, but the implementaiion process must
have respected the specafication modularity m order
that reuse is possible.

In order to guarantee reuse, it is crucial that the
consistence are maintained. As a consequence,
modifying generic telemetsry— for correcting an error,
adding a forgotten functionality, or reporting a
standard change—should be followed by an

up- to-date about all the instantiations. Otherwise, it
is desirable to consider the “new” generic telemetry
specification as a core of a new tool.

3.2 Lessons

If we try to sminmarize the presented apphication,
several lessons have been learned. According to what
has been done, we can affirm that using a very high
formalism for expressing of real problem is
mandatory for many reasons'
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o the establishment of a real specification in which
every thing is explained and where no ambiguity
remains;

o an efficient means for developing a software
family where the main keyword is reuse;

a first prototype of the system has been
developed;

e writing a formal document which represents
what the order wanis in a very clear manner.
This document may be considered as well as a
reference document for the following steps of the
Software Life Cycle. As main consequence, this
document can also be reused along the
development piocess for verification and
validation purposes

Moreover we have shown that using a peculiar
formalism such as an algebraic specification language
1s not too difficelt if the semantic distance between
the application and the chosen formalism is not too
high

We have been very surprised from our viewpoint to

see that telemetry specialists have accepted Lo learn
the (very strange) formal language and are now able
to read our telemnetry specifications.

Conclusion

Now wnting a formal specification 1s becoming a
feasible task at the industrial level. Some large
applications have been described with algebraic
specification. As an example, a specification of the
File Management System of UNIX 1s described in [3].
The purpose of that specification was to study the
ambiguities, contradictions, incompletenesses,
inconsistencies of part of an operating system such as
UNIX We will say that kind of formal specifications
have been writton in order to evaluate all the power
of formal specifications on a concrete example.

In our context, the CNES which 1s more a client
than a developer had put the main emphasize about
maintenance and reuse of software systems. The
formal generai specification—describing an
apphication family—it is not too difficult to maintain
and in case of any modification at the highest level,
It is easy to measure the consequence on the final
codes waen these codes have been implemented by
following the specification modularity. In case of
development of a new but sunilar system an
instantiation 1s straightforward.

Nevertheless a few drawbacks do exist.

The first one is about the kind of languages we can
use. These languages are generally based on
mathematical notions They are not readable enough
as should be dedicated interfaces.
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( implementation of generic subprograms )
. L. Telemetry Program
instantiation no. 1 im- no. 1
ple-
mentation
GENERIC “General”
TELEMETRY -1 programs
instant= Telemetry Program /
iation no. 2 no. 2
same
instantiation reuse
as Telemetry no. 2. "
Telemetry
no. n

Figure 3: Integrating a new telemetry with reuse.

The second drawback is related to the lack of
industrial environment supporting formal languages
and formal methods. Indeed, even if formal methods
such as VDM [11) do exist and are in practice, they
suffer from a lack of support tools.

The third one is about the expressive power of
formal languages. As it can be read in this paper,
functionalities are easily described. What about the
operational properties of a system? By operational
properties is meant real time constraint such as {ime
and space but also other properties such as
friendhiness of the interfaces.

All the drawbacks will be overridden very soon.

‘The first point is currently being solved by
education. The academia has started teaching formal
languages and formal metheds as well a few years
ago. The new generation of computer scientist will
be able to tackle the problem of specifying formally.

The second point is fully considered by the industrial
world. A few environments have been developed in
large European project such as PROSPECTRA [12)
and are reacdy for industrial use.

The third point is the only one for which only partial
solutions exist.

Finally, we have shown that algebraic specifications
could be successfully used within spatial domain to

describe an application famly in a precise and
reusable way. Consequently, we can think we have
answered the preoccupations of the CNES,

Annex

Hereafter we briefly expose our notations about
genericity. The foundations of this theory can be
found in [4]. Since 1t increases the expression
powerful, it has been integrated i most of present
algebraic specification languages, e.g ACT ONE [4],
OBI3 [7), PLUSS [2}, LPG (1} ..

For the specifications we have written, we have used
FP2 (Functional Parallel Programming.), or more
exactly a subset described in [8] and in [9, Annex B]
(This generic specification language mcludes also
some aspects of parallelism {13].)

In FP2, parameter specifications are expressed by
means of property modules The types and operators
wtroduced inside this module are given after the
module name, e.g.—*“/” is a syntactic separator
between types and operations—-

Total-Order(t [ rel, eq]

where t is any totally ordered set, rel 1s a total order
relation, and eq is an equivalence one (eq is needed




to specify the antisymmetry of rel). For any
instantiation, the lexical order is used to substitute
formal parameters by actual values, e.g.:

Total-Order[Nat | <,=]

which points that the type Nat of the natural
numbers, equipped with the boolean operators “<”
and “=" is a totally ordered set.

Three types which appear in the Satellite- Feature
property (cf. Figure 2) are generic.

o The fixed arrays: they are parameterized by the
property Ftype-and-Nat which comprises the
constituent type and the natural number which
represents the dimension. Thus, the expression:

Fized-Array.Fiype-and-Nat[Bit / 10)
denotes the fixed arrays whose constituents are

bits and dimension 1s 10 (decimal integers are
allowed).

In the same way, matrices are parameterized by
a property which includes the constituent type,
the number of rows, and the number of columns,

e.g.’
Matriz.Flype-and-2-Nat(Byte [ 32,16}

which is a type expression used for specifying
the INTERBALL telemetry format.

o “Seq” denotes the generic sequences. They are
parameterized by a property which includes one
type. Such sequence types can be noted i an
abridged way, e.g. “Seq[Bat]”.

(All the rules about the conventions for these type
expressions provided by FP2 can be found in (8] )

Let us note also that parameter specification can
import another parameter specification by means of
an inclusion mechanism, as exists in object-oriented
languages. (We use this feature in Figure 2.)
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SUMMARY

This paper describes work on mathematical formal
verification of a redundancy management algorithm
that was carried out in two stages. The first stage
used the specification language Z and venfied the
specifications with hand wntten ngorous proofi. The
gecond stage used a proof tool to produce formal proofs
and specified the system with the language of that
proof tool. The system speafied was part of a safety
cnitical software section of an avionc system.

The paper includes a section that presents the
theoretical concapts of formal methods, concentrating
on specification and proof. These ideas are illustrated
in the paper with extracts from the formal
specifications. Some of the benefits and problems of
using mathematical proof for verification are described
in the illustration of the redundancy management
example.

INTRODUCTION

This paper is divided into two main se:tions: the first
on theoretical concepts and the second describing the
work done with the examples. The conclusions of the

work are given at the end of the paper.

The first section of the paper starts by defining the
terms verification and validation. It continues by
describing the main ideas of formal methods: formal
languages, formal specifications, formal requirements,
formal refinement and proof.

The second section of the paper reports on the two
stagee of work done on the example - the redundancy
management algorithm, The different results of the
stages are discussed.

FORMAL TECHNIQUES
Validation and Verification

Validation and verification are processes that
demonstrate the correctness of a design. However, as
there are many definitions of these terms, the
definitions used in this paper are given below.

Validation is the checking of a design against the real
world: does the system performance satisfy the
customer? An example of vahidation is the inspection
of a high level requirements document. The ideas
expressed in the requirements documents are
validated, for compliance, against the customer’s
ideas.

Venfication is the checking of one level of design

against another level: does the lower leva] of design
satisfy the requirements of the higher level of design?
An example of venfication 18 the review of code
against a low level design document. The algorithms
used 1n the code are verified against thie algorithms
required by the low level design.

Vahdation of a detailed low level design is often
performed 1n two stages: verification against a higher
level of design; and then validation of that higher level
of design. This 18 donc because validation of the higher
level of design is easier as the requirements are not
being obscured by implementation detail. For example
consider the vahidation of code, the low level
specification, using pseudo code, the high level
specification. The code can be verified against the
pseudo code by review. Thus the problem of vahdating
the code directly has been simplified to validating the
higher level pseudo code.

Thus formal verification 1s used to show the
compliance of a (detailed) low level design with an
(abstract) high level document that can itself be
validated as containing all the important properties
required of the system. This is an idea that will be
used later, with the levels of design specified formally
and the verification performed with mathematical
proofs.

Specification

A formal specification is a description of the design of
a system at a given level of detail. It is written in a
language with a mathematically forma) definition of
both the syntax and semantics. Examples of formal
languages are VDM or Z but also include subsets of
most programming languages. The description is
usually of the functional aspects of the system, but
may include non-functional details such as temporal
requirements. Tools can be used to check that
specifications obey the syntactic rules of the
opecification language, and can also check some of the
semantic rules, such as type matches. The levels of
design that are specified can range from the highest
level safety requirements down to the executable
program cede.

The initial advantage of formally specifying a level of
design 18 that it forces choices to be made, and
recorded, about unclear aspects of the design. The
formal specification itself is precise, and can be made
abstract. Precision is useful as it removes ambiguity -
all the choices that are being left to lower levels of
design are made clear. Abstraction is useful in high
level speafications, as it allows important properties
to stand out.
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Where two levels of design are formally specified then
formal verification techniques can be used to encure
that one is a correct representation of the other. This
leads to an approach where successive formal
specifications are written, and each is checked against
its predecessor. This approach is known as formal
refinement or reification. During this approach the
formal specifications of the design becomes more
detailed and explicit. Thus, the abstract requirements
that were clear in the high level specification may be
obscured by this detail. Hence, the need to verify the
final refined design, using mathematical proof, against
the higher level designs.

Proof

Mathematical proof is a formal verification technique.
It can be used to show that one mathematical
statement follows logically from another. Thus it can
be used to verify that a low level formal specification
meets a high leve] formal specification. It can also be
used to help validate a specification showing
mathematically that a design has desired properties.
Proof is used to verify that the specification meets this
property; then the mathematical statement of the
property can be validated.

A mathematical proof can be presented in either a
rigorous or a formal style.

A rigorous proof is an outline of the major points of a
proof. It should provide enough detail to enable a
formal proof to be conatructed. However, the drawback
with rigorous proofs is that they are difficult to check,
since a mathematician is needed to construct the
missing steps and check that the proof 1s correct.

A formal proof has all the details of the proof at every
stage - this includes the proof rules used and the

statements they were used on. The steps of a formal
proof are exceedingly small (such as the rule in Figure
1) and checking is a simple pattern matching exercise.
This can be carried out by non-mathematicians or a
simple tool. However, because of the extra detail, more
effort is needed initially to write the formal proof.

More advanced tools can help write proofs by:

. Displaying clearly the current stage in the
formal proof.

. Applying a rule chosen by the user,
calculating the next stage of the proof.

. Storing a library of rules, to allow the user to
gearch for rules that may be useful.

o Let the user define new rules from a
combination of old rules and store these in
the library.

. Allow the user to write functions that try sets

of rules and apply them if they are useful.

A completed proof will have analysed the theorem for
every possible combination of inputs and states. This
car. be contrasted to testing where only a
representative, finite set of cases is analysed.
However, the theorem may have explicitly excluded
certain cases, and the analysis with proof only checks
that the theorem is correct in the cases that have not
been explicitly excluded.

EXPERIENCE OF FORMAL VERIFICATION

Having described the theoretical ideas bshind formal
specification and proof, the paper now discusses the
formal verification of an example redundancy
management algorithm.

the conclusion.

such rules can prove useful statements.

This is an example of a top-down proof rule. The rules states how the correctness of the current
goal, above the line, can be simplified to the subgoal below the line. Each goal is a list of
hypothesis and a conclusion: the goal is true if the iruth of the hypothesis entails the truth of

In the rule given below, B and C are general predicates, while I" stands for all other predicates
in the hypothesis list. The rule states that to show that “if the hypotheses in I' are true then the
statement B = C is true” it is sufficient, because of the rule, to show that “if the hypotheses in
I" are true and B is true then C is true”. The rule is extremely simple, but a large number of

NB=C
r,B¢

Figure 1: Proof Rule

W




Overview of System

After an initial study of formal verification on a small
subsystem, it was decided to apply the formal
verification techniques o a much larger sub-system.
The initial work was specified in Z with hand wntten
rigorous proofs. The subsequent work used a proof tool
to write formal proofs and specified the system in the
language used by that proof tool. This language is
based on the functional language ML.

Redundancy management of duplicate resources is an
essential part of many safety-cnitical systems, and this
aspect of the system was chosen as an example to
study the results of formal verification techniques.
Safety critical systems are viewed as a natural
applhication area for formal venfication. In particular
the algonthms used in safety critical systems must
also be conmdered ae safety critical, and it is the
algorithm that the formal verification was
concentrated on.

With the benefits of the imitial study 1t was decided to
use formal verification over a larger area of the
system, to specify more algorithms. The main benefits
expected were an unambiguous specification of the
algorithm and better analysis of the algorithms than
testing alone can provide.

Redundancy management, as the name suggests,
chooses between redundant elements of a syatem in
the event of failure. The illustrative example chosen is
a triplex digital system. There are three lanes, each of
which generates commands and quahfies these
commands with binary flags. Redundancy
management 18 performed by the comparison of these
commands together with exchange of opinions between
lanes on the correctness of the other lanes. Ultimately
these opinions can cause one of the lanes to stop
generating commands. It is the function that
generates these opinions that we have specified and
validated, and 1t is clear that such switching of
resources is critical tu the safe operation of the
system.

Overview of Process

Formal venfication techniques were used together
with informal techniques. Important parts of the
algorithm were formally specified, and an informal hst
of specification assumptins produced. High level
requirements were stated initially as broad
mathematical theoreme. These were modified after
analysis to provide a record of the cove.age of the
formal verification.
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Specification

The specification approach emgloyed can be divided
nto three parts: the framework, the requirements,
and the algorithm. The framework and algorithm form
the main specification, describing the functional
behaviour of the redundancy management subsystem.
The requirements are of the higher level behavioural
properties that are desired for the system. For
example a property may state that once a lane has
been isolated it will never transmit any commands.
Alternatively, the framework and requirements can be
thought of as a high level specification, and the
framework and algorithm as a lower level refinement
of this specification.

The speaification framework describes the interface of
the redundancy management subsystem to the rest of
the system. This includes listing the variables that are
input and output, and a definition of their types. The
framework also defines how the inputs and outputs
are externally linked in the rest of the system. A
simple temporal framework 18 also defiued using
functions mapping time to the values of the system
states. This framework allows the sequences of the
inputs and outputr to be defined and can be used to
mode} some of the effects of the asynchronous aspects
of the system.

In describing the structure of the rest of the system,
abstractions have been used and assumptions made.
Abstractions are used to hide details not relevant to
the redundancy management and to simplify the
syster to make analysis easier. For example the
redundancy management does not need to know the
exact datatype of the commands it is comparing, only
that the commands can be compared, and can use an
abstract datatype with this property. Also there are
many commands that the redundancy manager..ent
compares but abstractly only one command need be
described and the results of the analysis of the one
command generahsed to the others.

The assumptions that had been made in the
specification were recorded and form part of the
specification document. The assumptions covered
areas such as: the accuracy of the temporal model; the
generalisation of analysis performed on one to the
other commands, and the correctness of the
simplifying abstraction used on the datatypes. An
example of an assumption is given in Figure 2.

disjunction (A or B) of the flags.”

The assumption is in two parts: the first half of the sentence describes the assumption; the second half give
scme justification for the assumption. This will be reviewed when the specification is reviewed.

“It 18 assumed that the flags A and B can be modelled as a single boolean value, as all processes use the

Figure 2: Example Assumption I




This 18 an English paraphrasing of a Z schema that describes part of the redundancy
management algorithm. The algorithm is defined on the part of the framework describing the
inputs and outputs of a lane. This information is contained in the schema ALaneState, formally
defined elsewhere in the specification. The A symbol is the standard Z notation of defining an
operation with two copies of the system state: one is used to represent the system before the
operation, the other represents the system after the operation, the variables of the state afier
the operation are shown with a dash after the variable name. The operation is defined by
specifying how the final state is related to the before state

It can be seen that the new value of ownAfe, that is ownAfe’, 18 defined explicitly in terms of the
other variables. (OTHERLANE has only two values 8o the forall statements can be simplified.)
Thus the value of owndfc’ can be calculated from the inputs. This calculation still uses abstract
datatypes and operations (operations that are not directly available in programming langnages),

such as the relation “does not compare with",

~— QwnAFCGQGeneration

ALaneState

ownAfe’ = notAvailable if and only if

(forall lane of type OTHERLANE*
(inputs(lane)).dataSent = sent and (inputs(lane)).afc = available and
threatToSelfllane) = threat) or

(forall lane of type OTHERLANE»
(inprtslane)) dataSent = sent and (inputs(lane)).afc = available and
(oldCommand, ownCommand) does not compare with

{(inputs(lane)).command)

The hst of assumptions was found to be useful as a
checklist to be used when the specification was
reviewed. As the specification is claimed to accurately
model the system apart from the assumptions,
vahdating the specification can concentrate on the
closeneas of the model. The assumptions can be
justified informally, complementing the formal
analysis that is validating the system.

The framework is wntten from informal documents
that descnbed the system, and validated against these
documents by inspections.

The specification of the algorithm describes the
internal operation of each lane, in contrast to the
framework which contains the external hnks of the
lanes Together with the framework specification, the
algorithmic specification provides a complete
description of the aspects of the system that are
relevant te the redundancy management subsystem.

The algorithmic specification describes how the
outputs defined in the framework can be calculated
from the inputs defined in the framework. The
algorithm 18 usually defined explicitly but still uses
abstract datatypes, such as hsts and sets, and abstract
operations. ( An example of part of an algorithmic
specification is given in Figure 3). The use of abstract
datatypes allows the algorithm to be described clearly

Figure 3: Specification of Design

and concigely, and helps with the reviewing of the
specification. The explicit nature uf the specification
also helps reviewing, and allows the use of simple
animations, where the specification is translated into
a very high level programming language (e.g ML or
Smalltalk) and executed.

The algorithm is formally specified from an outline
given 1n an informal document. One of the benefits of
formal specification is that 1t 18 easy to see the cases
that have been left out of the informal documents.

As with the framework, a hst of the assumptions made
in formally specifying the algorithm is written down.
This hst of assumption 1s very useful as a checkhist
because it includes the basic assumptions that have
been made about the system when designing the
algonthm.

The specification 18 used as a requirements document
for the software, the lower level design and the final
code can be verified, formally or informally, against
the specification

The algorithmic specification itself is validated:
partially by formal venfication against the
requirements specification; and partially by review
against the informal descriptions of the algorithms.




deliberately shut down.”

gystem;

they must be.

This is an English paraphrasing of a Z specification of a requirement. The original English
requirement was “If one or more lanes have been shut down, then no other lane will be

Note that the specification uses some previous definitions: LifeCycle contains the state of the
NotTransmittingAfter and Shutdown define some of the functions used in the
specification. The specification is very precise about when the conditions must hold, and what

- Requirement3

LifeCycle
NotTransmittingAfter
Shutdown

forall frame of type natural number and laneNumber of type LANEIDENT'®
laneNumber notTransmittingAfter frame implies
(forall otherlane of type LANEIDENT and
subseqFrame of type natural number |
otherlane # laneNumber and subseqFrame > frame®
not (otherlane ehutdownOn subseqFrame))

The requirementa specification is a collection of high
level functional requirements. any of the
requirements aie fundamental to the safe operation of
the system. The requirements are defined on the
tnputs ard outputs of the lanes defined in the
framework, but at a higher level of abstraction than
the algonthm (eg Figure 4). Most of the requirements
include a set of conditions; the requirement only
applies if these conditions hold.

The requirements are written functionally wath two
levels of functions. The higher level is almost a
paraphrasing of an informal requirement, and uses
the lower level functions to link the inputs and
outputs. The conditions for the requirement are also
clearly specified at this level. Then the lower level
functions are defined to give an exact defimtion This
form of definition is used to help vahdation by
separating the overall requirements from the
definitions of specific terms.

The requirements were originally written from the
informal high level philosophy documents and after
discussions with the system designers. The
requirement were later modified after analysis with
mathematical proofs. The modifications added
constraints to remove cases that are not important to
the operation of the system and are hard to prove. The
final requirements provide a clear record of the cases
1hat have been proved, and, in the constraints, a clear
record of the cases which have not been proved. When
the requirements are reviewed the exception cases
must be covered by informal arguments.

Figure 4: Specification of Requirement

'M

Proof

Mathematical proof was used to verify that the
algonthmic and framework apecifications met the
requirements specification. A theorem (a mathematical
statement of an important property) was written for
each requirement and pro—:d to follow from the lower
level specifications.

For the initial study, which had been written in Z,
hand written rigorous proofs were used. The proofa
were presented in a formal style using small steps to
try and make the proofs easy to check. The final result
was a proof that alternated between a series of formal
steps and rigorous steps. It was found that the formal
steps were very tedious to check by hand, and the
rigorous steps were hard to check, thus the confidence
in the correctness of the proofs was low.

There were two methods to increase the confidence in
the proofs, the proofs could be v ritten with either
fully formal steps, or large rigorous steps. Fully formal
steps would allow a computer aided tool to check the
proof. Large rigorous steps would allow a
mathematician to check the proof.

As a computer proof too} was available it wes decided
to wnte formal proofs. The tool has a number of
advanced features, including tactics which
automatically combine simple rules, and the tool has
an extensive library of basic rules. The proofs were
built from many formal steps although, as many of
these steps were chosen automatically by the tool,
there is not a record of every step. Thus the record of
the proof has & rigorous look and can be reviewed by
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mathematicians. But the main confidence in the proof
is provided by rerunning the proof on the tool using
the proof records.

One of the benefits of using proof as a verification
technique was that before writing a proof the author
would thoroughly informally analyse the theorem.
This would often lead to the theorem being altered
into a form that was provable. This often took the
form of defining exceptional cases where the theorem
does not apply. The proof then provided evidence that
the anslysis had been performed and checked that it
was correct.

The verification of the algorithm against the
requirements is completed by informally justifying the
cases that have been excluded by the theorem. Either
the cases are so unlikely that they can be ignored, or
effects that are lost because of the assumptions can be
used to show the correct bshaviour.

CONCLUSIONS

Overall the role of formal verification in the project
can be thought of as similar to that of the role of the
reinforcing ateel rois in reinforced concrete. The
formal verification is very strong in the areas it
covers, and the informal analysis gives wide coverage
but at a lower level of confidence. Together the

combination of formal and informal analysis gives
higher confidence in the system.

Specific conclusions from the study of formal
verification are:

. Formal specification produces a clear precise
description of the system, and highlights any
ambiguous parts of the informal description.

. A list of assumptions made during formal
specification is useful as a checklist both for
the formal specification and the original
description.

. Formal proofs should be written using some
tool support. Hand written proofs shouid be
as informal as possible while atill being
rigorous.

. The theorems should be written with a wide
coverage originally, then exceptions added
during the proof stage. These exceptions must
be informally analysed.

. Proofs ensure that the algorithms are
analysed thoroughly, and provides a good
record of these analysis.
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SUMMARY

This paper discusses the methodology presently
used for specification and development of
guidance and control software (GCS) refered to as
the phased approach. This mcthodology is shown
to present basic shortcomings in relation with the
requirements specification phase: long
development time, reverse cngineering tasks and
inadequat~ handling of errors.

In order to solve these problems, a new
mcthodology, the simulation based approach, ts
presented. This new methodology is bascd on the
fact that any requirements specification for control
software 15 preceded by a simulation task, that
includes the design, code and test of the GCS. As
a conscquence, the GCS 1s developed twice, once
in the simulation, and then in the flight software

The new methodology proposes to build the GCS
only once, and through the use of two basic tools:
simulation and rapid prototyping, cuts through the
main shoricomings of the phased approach.

1. INTRODUCTION

The aim of this paper 1s 1o discuss a new
methodology for specification and development of
guwidance and control softwarc ( GCS ). This
methodology is based on the fact that any GCS i
built upon a detailed stmulation, which includes ¢
funcuonally correct version of the GCS.

This methodology was tested 1n the SBG program
[1] and 1s now been applied to a subsct of the
EJ-200 DECU (2], in parallel with the phased
approach based in the DOD-STD-2167A. This
software is actually in the coding and untt testing
phase,

The new methodology, referred o as simuiation
based development, proposes as a core principle to
reuse the GCS built for the simulation into the real
ume target. The key term s reuse. If the GCS
extsls in two versions functionally 1dentical, one
in the simulation and one in the target, and both
need to be developed, documented and marntained
throughou: the life of the equipment, why not to
produce a single version ?

Advantages are numerous, including shorter
development time - code 1s developed
simultaneously with the control laws -, while
disadvantages are minor.

In the following lines we will present more in
depth those ideas. Section 2 will discuss the
phased approach - based on DOD-STD-2167A -
used for the complete DECU software development,

Section 3 will present the simulation based
approach.

Section 4 will address the application of the
simulation based approach to a subset of the
EJ-200 DECU SW.

Section 5 will finally present the conclusions.

SPAIN

2. EJ-200 DECU PHASED APPROACH
2.1 GENERAL

The EJ-200 DECU is a digital electronic box,
whose function is to control the EJ-200, the engine
to power the European Fighter Aircraf ( EFA ).
The DECU softwarc is in the flight critical
category ( Level 1 SW according to
RTCA/DG-178A ).

As a consequence, a sct of stringent software
standards have been built, an line with
DOD-STD-2167A. This specification incorporales
a mecthodology for SW development, that we cal
the phased approach, based in a sequential serics
of tasks: specification, design, code and up:t
testing, and formal testing.

The CASE environment 1s based on EPOS (3],
which includes two basic tools: EPOS-R, used for
formulation of the requirements, and EPOS-S,
uscd for the design phase. EPOS-R is a
semi-formal specification language, while EPOS-S
15 a formal design language. EPOS-S allows for
automatic partial gencration of code. Factlitics
such as requirements tracing or consistency
analyss are included.

Those tools will not be discussed further, since
their exact nature is incidental to the new
methodoly. But a CASE environmen! is an
tmportany help, since requirements traccabihity,
and case of documentation generation is a must.

2.2 PHASED APPROACH METHODOLOGY

The top level requirements for the engine control
system are included tn the document ™ Engine
Control and Monitoring System ". Requirements
are expressed in purely functional terms, for
example: * Overshoot shall not exceed X% of the
demand ". Actual Control Algorithms ( CA ) are
not mentioned. Preparation of this document doces
not require a prior detatled simulation work. It is
based mainly on experience, extrapolation of state
of the art techniques and equipments, judgement
and conceptual design.

The foilowing document to be produced s the

* Electronics System Requirements Document ”

( FRD ). This document not only includes
functional requisements, but also all the CA
defined in an 1 .formal language. It cannot be
written without a detailed simulation of the
engine, its sensors and acwuators, and ali the
required control loops, including analogue - if any
- and digital, It is the last contribution of systems
and control engineering to the development, and
from it the software engineering phases begin:
Software Requirements Specification ( SRS ),
Software Design Document ( SDD ), etc.

Let us study how the Control part of the FRD 1s
built.
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2.3 FRD GENERATION

The process of producing the control part of the
FRD 1s as follows: The engine, its sensors and
actuators are modelled to a level of accuracy
which is a compromise between fidelity and time -
both exccution and development -. From this
simulation a series of lineal or at least simplified
sets of cquations are derived, and from those the
CA arc designed. They are then coded, tested and
refined within the simulation. Oncc a satisfactory
solution is found, the CA arc translated from the
simulation to the FRD.

So, the task of praducing the control part of the
FRD can be itemised as follows:

+ Simulation build up.

* An iterative process of design, code and test
of the CA until an adequate solution is found
within the simulation.

* A reverse engincering process, through which
we transform the GCS in the simulation into
requircments in the FRD.

This process imphics translating a formal language
( the simulation code ) into an informal onc ( FRD
rcqusrcments ). Thus, we obtain the result that the
very formal and apparently clegant methodology
of the phased approach for software development
is 1n fact based on a reverse engincering process.
The documert 1o be obtained in the first phasc of
the developmaent, the FRD, must be preceded by
the design, code and test of the same software we
are trying to obtain.

And this result not only applies for development,
1t 18 also required for software maintenance, 1f any
control characteristics are to be modificd during
the life of the cngine, thosc arc first tested 1n the
simulation environment, and so the CA have to be
coded before the new requirements are
incorporated into the FRD.

2.4 PHASED APPROACH APPRAISAL

The phascd approach to SW development was a
mijor wumprovement when it was introduced some
filteen years ago, and has increased considerably
softwarc quality. Nonetheless, in the casc of
control SW, it has several shortcomings. The main
ones we have identified are:

» The simulation, which is the basis of the
control requirements within the FRD, is
usually developed with a set of software
standards well betow those of the flight code.
The result is a significant risk of an error
been introduced, either in the simalaton of
the engimne, the accesorics, the cnvironment,
cle, cither in the CA themselves, The
complexity of the configuration contro! tn
this kind of program tncreases the chance of a
simulation induced error taking place,

+ Lenghtly development times. The CA have to
be transformed into software at least twice (
in the simulation and in the embedded
software ).

+ Some errors which can be introduced carly in
the development process can only be detecied
m its very late stages, creating potential
hazards. We call those errors open loop
ecrors, due to the following:

- In th2 phascd approach, part of the
development is tied up within a closed
loop: the code produced can be tested
against its requirements, and as a result
any error introduced from the SRS
downwards will be detected and
consequently corrected before
hardwarc-software integration.

~ Open loop crrors are those introduced when
producing the FRD or the SRS. They
cannot be corrected in the SW tests,
whatever the severity of those migh: be.
They can only be foud in the system tests,
after hardwarc-software integration. The
phased approach docs not provide any 1dca
on how to solve the open loop errors,
except to look for them in the system tests,
This solution is inadcquate from a program
point of view, since the cost of correcting
an crror incrcascs as an cxponcntial
function of the time it takes to be found.

+ Open loop crrors not only exist in the phased
approach, since for example any crror in the
modclling of the engine might Icad to it under
any devclopment methodology. But the
phased approach has a tendency o increase
them through two cffects:

~ The phased approach results in
requirements expressed in a formal
language in the simulatton ( Fortran for
cxample ), being translated into an
informal onc in the FRD, and then back
again into a different formal language (
specification language ) in the SRS. Those
converstons are a high risk arca.

The phased approach does not provide any

mcan for checking simulation CA, FRD and
SRS consistency before hardware-software

wtegration.

3. SIMULATION BASED APPROACH

The simulation based approach places some
requircments on the development of the simulation
usclf. We will study those in the first place, and
then we will proceed to the flight SW development.

3.1 SIMULATION REQUIREMENTS

The simulation includes at least two different
Computer Software Configuration ltems ( CSCI ).
The first one, which we will discuss in length
thereafter, and inctudes the GCS, is the " common
sitmulation-embedded SW ", The second one,
which we call ™ other stmulation SW ", contains
everything clse, and is made up by the following
Computer Software Components ( CSC ):

+ CSCl: Environment ( atmosphere, engine and
accessorices, including hardware of the
clectronic box, cte ).

+ CSC2: Simulation of the embedded SW non
included in the CSCI " common
simulation-embedded SW ", This CSC is very
dependent on the extension of the CSCI "
commom simulation-cmbedded SW ", and in
the limit it can be reduced to a simulation of
the run-time system of the electronic box. In
most cases it will also mclude hardware
dependent features, such as the drivers and
the Built-In-Test { BIT ). If the CSCI "
common simulation-cmbedded SW " is
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reduced as much as possible, it will include
everything except the GCS, as for example
the input signal conditioning or the
supervisory logic.

+ CSC3: Analysis tools. Those tools help the
developer in its use of the simulation, and
includes elements such as data presentation,
noise cvaluation, transfer functions
identification, statistical data analysis, etc.

The requirements for the CSCI " other simulation
SW " are as follows:

+ It should be considcred as a Level 2 software
according to RTCA/DO-178A. This
requircment comes from the fact that errors in
the embedded code duce to simulation
inadequacics can only be detected in the test
bed trials with a rcal engine. The costs - duc
mainly to program delays - gencrated by such
late errors can be considerable, and are best
avoided by raising the simulation quality.

+ CSC1 (environment simulation ) shall be
developed with the aim of been as complete
as possible. This results in two favourable
effects: on onc hand, the GCS can be tested
1 a more realistic environment, and the side
cffects not usually accounted for can be
cxplored. On the other hand, the CSCI ™
common simulation-cmbedded SW " can only
be made larger if the environment expands
itsclf accordingly. For cxample, the BIT can
only be including in the " common
simulation-embedded SW " if the hardware
failures are simulated 1n the CSCI.

Requirements for the CSCI " common
stmulation-embedded SW " are different. It 15 1o
be line to line identical in the simulation and in
the embedded SW. It shall be built to the same
standards as the flight SW, and 1ts documentation,
configuration control and (1ualily evaluation are
dircctly applicable to the flight SW.

In fact, until the point where hardware-software
intcgration begins, development of this CSCI for
both the simulation computer and the flight
computer is only one activity. From now on, we
will consider it as a flight SW task, its use for the
simulation been just a by-product. Let us proceed
into how this SW is dcveloped.

3.2 FLIGHT SW DEVELOPMENT

The embedded SW is made up of two CSCI. The
first one has already been mentioned, it is the "
common simulation-embedded SW ”, and includes
the GCS. The other CSCl is " other embedded SW
", and is made up of all SW modules not contained
in the first one. It includes at least the run-time
system, and probably the drivers, SW related to
HW such as BIT, and in general all SW not
developed nor tested with the help of the
simulation.

The CSCIL " other embedded SW " is to be
produced according to the rules of the phased
development approach, and in particular
DOD-STD-2167A. The new methodology does not
wtroduce in it any modification, except the
requirement that cach embedded box SW has to
have at least two CSCI, one developed within the
stmulation and the second external 1o it.
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The development of the CSCI " common
simulation-embedded SW " implies a new
methodology. Two aparently opposite
requirements are to be met ( see ref {3) ):

« SW should be generic enough such that
- nanges typically required by control design (
gain modifications, inclusion or elimination
of a specific feddback variable, ctc ) could be
casily implemented.

+ SW should be adequate for a real time
application. This usually implies climination
of unnecessary operations, such as
multiplication by zero.

The main difficulty is of course not only to solve
those requirements, but to develop control SW
according to class 1 standards without a well
defined FRD to begin with.

Our answer has been to develop an iterative
process, which can be detailed as follows:

* All the SW development process, from FRD
to CSCI testing, 1s redone continuously, with
a ncw SW issuce been produced cvery few
weeks.

» Each issue is formaly developed in the sense
that changes are first introduced at FRD
level, and then implemented down through all
the stages of the phased approach until (,gSCI
testing. All basic documents: FRD, SRS, and
SDD arc kept 1n EPOS and are traceable.

* SWs divided into two different arcas: code
itscif and what we call " initial paramecters *
i.c., initialisation valucs of control and logic
variables. Those arc kept within an assigned
memory arca, and can be modified without
reissutng the SW itself. In this way the
system engineers can modify the control laws
without continuously changing the SW. The
value of those " inttial parameters " allows
not only to change the numeric value of
gains, limits, etc, but also to feedback or not
any specific variable, or to switch from a Pl
feedback to a PID, etc.

» Every SW issuc has an original set of values
for " initial parameters " which is subject to
configuration control. Changes made to these
parameters within each issue are not subject
to configuration control, and are only
recorded through technical notes. Those
might lead, when consolidated, to a change
request incorporated into the following FRD
issue.

Thas iterative process is in our opinion within the
spirit of DOD-STD-2167A, which n its foreword
explicitel{ states that " The contractor is
responsible for selecting software development
methods ( for example, rapid prototyping ) that
best support the achievement of contract
requirements ”.

The iterative activity we have just described 1s
performed by two work teams, The first one is
made up by an agregate of different specialists:
system and control engineers, fluidodynamicists
and safety experts. Their first task is to prepare
the prehminary issue of the FRD. From lﬁen on,
they receive the succesive 1ssues of the SW, test it
with different values of the " initial parameters ”
and prepare the following revisions of the FRD.
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The second team is made up of software engineers
who prepare, as in the phased approach, the SW
i(scll{) Due to the CASE tools used, an important
part of this task is done automatically, once the
first SW version is implemented.

3.3 SIMULATION APPROACH APPRAISAL

The simulation approach methodology for control
SW solves most of the shortcomings we foui:d in
the phased approach. Its advantages are as follows:

- Simulation induced errors decrease, as morc
dcvelopment effort is put into this tool. This
result 1s important since those errors tend to
be expensive to solve, as they appear only in
the tests with the real engine.

« Open loop errors gencrated when translating
simulation GCS to the FRD and then to the
SRS arc eliminated, since the flight SW is
tested with the simulation from the initial
stages of the program. The only errors that
can survive undctected through SW testing
arc those due to simulation inacuracies and
crrors found in the CSCI " other embedded
SW ",

* Development time decreases, due to a
combinztion of factors:

- Flight SW prototypes arc available very
carly in thc program.

- Less crrors are produced, specially those
lengthly to solve.

- "he CSCI " common simulation-¢mbedded
SW "is only produced once.

This approach has also several shortcommings.
Those we have found are the following:

* As more quality is required from the
simulation, more effort has to be put into it.

+ The very formal precedure for producing the
CSCI " common simulation-embedded SW
even before the CA are well defined might
appear as a disproportionate effort.

+ The embedded SW produced maintains some
characteristics of simulation SW and is not
optimized from an execution time point of
view.

From our experience, advantages ar¢ considerably
more important than disadvantages. In fact, some
effects which might appear as shortcommings have
also favorable aspects, For example, the fact that
the embedded SW retains some characteristics of
the simulation SW implies, among other things,
that it is easier to modify than typical flight SW.
This might prove of considerable advantage during
the life of the engine.

4. APPLICATION

This methodology has been applied to a small
subset of the EJ-200 DECU, the control of the
Main Metering Valve ( MMV ) of the Main Fuel
Metering Unit ( MFMU ). The following steps
where followed:

* An initial FRD for the MMV was written.

* The interface definition between the
simulation SW and the "common
simulation-embedded SW " was defined.

* As the simulation was coded in Fortran, and
the " common simulation-embedded SW " was
in ADA, a pragma construct was implemented.

The first version of the " common
simulation-embedded SW " was produced and
running before the initial FRD for the complete
DECU, using the EJ-200 SW standards was
written. An up to date version was in place,
documented and tested during the SRS phase.

Changes were casily introduced into the MMV
FRD, such as those required by rcliability
considerations. The MMV SRS went through
further improvements, such as eliminating real
number multiplications, or more detailed
interfaces definition. An important result was
nonctheless negative, as we found that developing
through the new methndology a small subsct of a
CSCI was impractical, since many general purpose
procedures ( such as table interpolation, for
example ), not originally intented to be part of the
module had to be incorporated in it, as those
modules where not yet available.

On the other hand, we found, as expected, that the
GCS development time could be considerably
reduced.

Another important result was that the simulation
task ttself, though much more formal than in
previous programs, was not slowed down, and 1t
cven seemed to be actually faster. One possibic
interpretation is that the system engineers, been
freed from the software task of building the
simulation, could concentrate on the control
algorithms themselves.

5. CONCLUSIONS
The main results we have obtained are as follows:

» In the phased approach development
methodology for control software, the FRD is
the result otya reverse engineering process:
from simulation to requirements,

+ In the phased approach development
methodology, any error produced when
translating the FRD into the SRS or before,
will not be found until the real time
stmulation test takes place, or even later,

» Embedded SW can be split into two CSCI:
one of them, which includes the GCS, can be
developed through a new methodology which
we have called simulation based approach.

+ The simulation based approach uses a
common SW in the simulation and in the
flight computer.

+ The simulation based approach has two basic
advantages over the phased approach: shorter
development time and avoidance of most open
foop errors.
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Summary: Network Programming is a
methodology for the evolutionary develop-
ment and life cycle support of large data
processing systems. It utilizes a fully decen-
tralized approach. A given DP task is first re-
alized as an operable network of sequential
processes, communicating via typed chan-
nels. It serves as a base for logical testing,
data flow measurements, and assessment of
system behaviour. Runtime requirements
and the mapping of processes to processors
are taken care of in a separate final step. A
remote procedure call illustrates the concept
of a channel’s operation mode, The Network
Programming method is neither confined toa

certain programming language nor to a cer-
tain kind of machinery. Here we will first
give a short introduction to Network Pro-
gramming and its main features. Then the
Network Programmer’s Workbench will be
shown in some detail and some of its tools
will be described. Particular attention will be
paid to the Network Monitor. An example
will illustrate the use of these software instru-
ments. Finally, we will have a look on a de-
fense oriented simulation,

Keywords: evolutionary software develop-
ment, communicating sequential processes,
typed channels, OSI application layer, Net-
work Monitor.

1. The situation to cope with

Systems for guidance and control are fre-
quently integrated systems with heterogene-
ous components. Software makes the indi-
vidual components accessible by describing
their interface, and software makes them
communicate, thus describing the essence of
the system. Software for guidance and con-
trol, embedded software, for short, is there-
fore of considerable complexity. We focus
our contribution on large software systems of
this kind, which, in addition, have a long pe-
riod in service,

Large software systems are subject to chzg-
es: of the machinery involved, or changes in
requirements, or of design goals. Those
changes take place usually and should be tak-
en account of from the very beginning of a
project. Network Programming (NWP) is a
method to construct large software systems
upon autonomous comnunicating processes.
NWP helps to cope with all three kinds of
changes because it

+ supports the implementation of well-
defined processes,

+ allows processes written in different
languages to communicate effectively,

+ makes processes communicate
effectively, which run on different
machines under different operating
systems and

* supports changing programs, adding
processes to the system, and removing
processes from the system at minimal
costs in terms of implementation and
test times.

The concept of Network Programming has
been outlined in [1). Basic work and an im-
plementation have been reported in [2]. It
could easily be used in defense oriented sim-
ulations as described in [3). As a develop-
ment tool for greater systems was needed, an
Ada - oriented workbench had been devel-
oped [4]. The use of Network Programmer’s
Workbench to design, implementation, and
test of process networks is described in [5].
In this contribution, the main concept is de-




typed channels

autonomous processes

Figure 1: NWP inventory

rived from certain needs when programming
large systems,

2.1 Modular mming: distribution of
workload upon dedicated machines

It is a commonplace idea to distribute parts of
a complex task to pieces of hardware, which
each matches best the details of work to be
performed. In reality, i.e. in our context of
guidance and control, systems get composed
of suitable hardware, and are to be glued to-
gether by means of software, later on. It is
conceptually no great step to imagine tasks,
completely separated one from the other,
which communicate by rather simple mes-
sages. Each task may be written in its proper
programming language, i.e. that optimal me-
dium to describe and effectively attain the in-
dividual portion of the general aim.

2.2 Communicating processes by
mes._age passin

We regard systems as composed of processes
and directed channels (Fig. 1) resulting in a
process network, which can be represented as
a system communication graph (Fig. 2).
Each process executes sequentially and in
mutual independence. Currently, it may be
described in e.g. Ada, Pascal, C, or Prolog.
Other languages may be included by writing
an interface in that language and linking it to
the application programs.

Each channel connects at least one process to
at least another one. It transmits messages of
a certain type or of some corresponding struc-
ture. The senders and receivers on both ends
of each channel command co-operatively the
message transfer and must agree upon that
message type or structure (e.g. cf. Figure 5).

Figure 2: System communication graph
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The channels are buffers connecting the re-
spective communication partners. Depend-

= eecoe

This approach induces the concept of a sepa-
rate manager: Local Communication System

ing on buffer management, there are three (LCS), to create and maintain the communi-

connection modes to be distinguished:

+ synchronous mode (S mode), buffer is a
0-element queue, the sender waits for
receiver,;

»  buffer-synchronous mode (BS mode),
buffer is a k-element queue (cf. Fig. 3),
the sendec fills up the buffer without hes-
itation and then waits until at least one
clement has been removed (read out) by
a receiver;

+ asynchronous mode (AS mode), the buff-

er contains one element, which may be
overwritten by the sender.

application
process

channel -
managemem . languagqe interface ]

~<g-}———————pt LCS communication part

LCS1 : . .
Monitor LCS2
process
C interface
LCS communication part

Figure 4: LCS - process connections

cation ways between the processes, to furnish
these channels with appropriate buffer capac-
ity, and to establish the necessary translation
between language interfaces. Regarding the
last point, we ultimately split the manager.
Each process contains a language-dependent
part, which wansforms language-dependent
communication calls to a common communi-
cation interface, This part of a process com-
municates with the LCS and hands messages
to and fro.

The communication between different ma-
chines takes place as message passing by
means of the respective vperating systems
between the LCSes involved (Fig. 4).
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2.3 An example: simulating RPC

Nowadays® operating systems comprise re-
mote procedure call (RPC) facilities, and oth-
er means to make processes communicate.
Fig. 5 illustrates the simulation of a remote
procedure call by means of NWP features and
their corresponding Ada constructs. The
complete listings wiil be given in the appen-
dix. The lower part of Fig. 5 shows the re-
spective transport comrands and their line
numbers in these Ada listings.

The subsequent series of Monitor pictures il-

lustrates a process network with one server
and three clients under different aspects:

il
!
o
o
T

TO_SERVER
S mode

The network is spread over three ma-
chines, the server and one client reside on
SUN workstation "rspsunl4", while the
two other clients run on different SUN
workstations, each.

The clients use the channel in synchro-
nous mode, the access is "give_wait".
Client_14 has given a message, which the
server has not taken, yet.

Another state: client_12 has delivered a
message, which has pot yet been accept-
ed, the flow is 52/22 messages per sec-
ond.

The other channel ist FROM_SERVER,
it displays again the networks
distribution.

FROM_SERVER |
S mode

R

Client, Client,
Chent:
40 C.GIVE(TO_SERVER,ORDER); e Hin
42  C.TAKE( FROM_SERVER,RESULT,SENDER }); ——

............... e

B T

Figure 5: RPC Simulation

Server: loop

S.TAKE( TO_SERVER,ORDER );
" S GIVE( FROM_SERVER RESULT );
end loop
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Environment of channel ?TO_SERVER’.

a

RECEIVER

CLIENT_14
O\ TO_SERVER ]
CLIENT_13 - O SERVER
0" m—
CLIENT.12 CLIENT_14 .\
] TO_SERVER
CLIENT_13 O - O Eﬁvsn

—'o/
CLIENT_12

CLIENT 14
18 Nessages
TO_SERVER
CLIENT_13 -~ O SERVER
17 Messages ‘/ 52 Messages
CLIENT_12

15 Nessages

52 Messages in 22 seconds

Environment of channel ’FROM_SERVER’,

RECEIVER

Y
CLIENT_ 14
FROM_SERVER
SERVER O — CLIENT_13
\O
CLIENT_ 12

Figure 6: The channels TO_SERVER (above) and FROM_SERVER (below) and
their respective environments, access modes, and buffer repletion.
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2.4 Systems with different machines under
different operating systems

The same idea applies when no common op-
erating system or system family can be as-
suned: Given a transmission control proto-
col, the LCSes must adopt the greatest com-
mon portion of the protocols shared by the
different machines. Our experience compris-
es:

+ processes on different SUN workstations
under UNIX

e+ written in the same programming laguage
( Pascal, or C, or Ada, or Prolog )

s+ written in different programming lan-
guages ( Pascal, and C, and Ada, and
Prolog)

O Lcs

® process
m .
T monitor

3. Su nvironment;
the NWP programmer’s workbench

Nowadays’ operating systems contain virtual
file systems, remote procedure call facilities,
and other means to make processes commu-
nicate. Thus they fulfill OSI specifications
on the application layer and encourage the
development of distributed data processing
upplications. To strengthen this gradient of
development is one purpose of Network Pro-
gramming,.

Frequently, the partition of work is a major
point of concern, be it not to loose human
control or understanding, be it to apply spe-
cialized hardware, or to avoid waiting situa-
tions. If a large system is composed of well
fit hardware to fulfill the partitions of task, it

SUN ( UNIX)

VAX (VMS)

Figure 7: A heterogeneous network example

and

+ processes on SUN workstations under
UNIX and on DEC VAX780 under VMS

o+ written in VAX-Ada and using the
VERDIX Ada Development System,

they all communicate by message exchange.
Fig. 7 shows as example a machine configu-
ration in operation at our site.

may occur that in "typical” situations individ-
ual components are overloaded and their
companions have already finished their part
and must wait. Probably the duplication of
one dedicated piece of hardware would
speed-up the overall performance, or to apply
another kind of algorithm, or to build in an-
other switch to discriminate types of situa-
tions or of workload. The analogue may arise
under conditions near the limit of a system’s

PV |




area of applicability: in the very beginning, or
near system overload, or due to damages. In
any case, one will need an embedding sys-
temn, where the whole object can be run with
well defined parameter sets, and can be ob-
served, logged, (statically) reconfigured, and
rerun again.

The NWP programmer’s workbench was de-
veloped to support these doings. The struc-
ture of its curreni Ada oriented realization is
outlined i Fig. 8. It currently supports the

» development of process networks
and
» run time analysis of process networks.
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The NWP Monitor uses SunViews, the
graphics and windows interface of SUN
workstations.  This notwithstanding, the
Monitor can "look" beyond the limits of the
SUN subnet of a heterogeneous network. Itis
language-independent in that all its analysing
and evaluating capabilities cover process net-
works, of which the components are written
in every supported language. The construc-
tive means were needed in an Ada centered
project, therefore the tools to handle commu-
nication channels are Ada directed, and the
generator for test environments is Ada direct-
ed, as well and for the same reason.

NWP Ada workbench

#

!

i

development support
for process networks

support for
network optimization

run-time analysis
of process networks

P

maintenance of test environment
communication interfaces generators

Monitor

'
]

Figure 8: Components of the NWP workbench

For the first kind of work, it offers tools to
handle communication channels in Ada and
generators for Ada test environments. The
second kind of work benefits from NWP
workbench’s run time support and its Moni-
tor.

The Monitor provides (see Fig. 9):

+ static analysis of the network definition,

+ recognition of deadlocks and wait situa-
tions,

+ run time observation of process networks,

+ recording and calculation of a commu-
nication density,

» process loading support.

run-time

supports
It is in terms of the above mentioned "waiting
situation” that the enhancement of system
performance can be indicated. Thus, in the
prototyping phases of developing a large dis-
tributed system, the Monitor can supply re'a-
tive gradients for different configurations of
participating processes over a heterogeneous
network.

Classical methods of design and analysis are
often strictly top down. On the one hand, this
causes considerable overhead. On the other
hand, it does not lead itself very well to sys-
tem changes. In fact: each change is likely to
modify the original top down structure, giv-
ing rise to a respectable increase of system
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Monitor

static analysis of
network definition

process loading
support

process network
runtime control

4///recognition of

recording and calculation
of communication density

deadlocks and
wait situations

Figure 9: Features of the NWP Monitor

complexity, because maintenance induces
degradation of structure [6]. Therefore, the
NWP programmer’s workbench supports an
evolutionary approach and facilitates "rapid

prototyping”.

To cope with complexity, it is recommended
to tailor the component processes of a net-
work to a moderate size and such that bugs
can be assumed to be absent. Thus the prob-
ability of bugs is moved from the internal
structure to the communication of processes,
i.e. into the network. Here, because there is
no common memory, and because all com-
munication is performed by message passing,
debugging is a question of process interfaces,
to which the NWP workbench provides auto-
matic support. In addition, since communi-
cation is exclusively done by messages, it is
unlikely ihat a bug in one process causes se-
vere effects in another.

The NWP workbench has a toolkit which
contains automatic generation of program
frames, and a syntax dirccted editor to declare
Ada types and channel masks. Thus we can
manipulate processes in order to either
change an existing net, or to expand it, or to
merge it with another net. The toolkit con-
tains also definition tools for "test cases" or
“test scenarios”.

By test case we understand a subnet of a proc-
ess network, of which the communicative be-
haviour is to be tested. To do that, data sourc-
es and data sinks will be generated automati-
cally, so-called stubs, to shut the open
channels after separating the subnet from its
surrounding, cf. Fig. 10 a&b.

A test scenario describes the circumstances of
performing a test case. The allocation of
processes to computers will be defined here,
and the co-ordination of stubs, computers,
and sets of test data to be run, additionally
different operating modes for stubs can be de-
fined here. Syntax directed editors for test
data can be generated automatically, which
allow to input structured Ada types. Based
on the internal representation of Ada data
types, such an editor produces an ASCII rep-
resentation, and thus assures portability of
data. A “normalisator” will be generated con-
currently as a means to produce an ASCII -
file of test data. On the top of this part, a too}
to easily produce files of test data is provided.
Fig. 10c sketches the test configuration, i.e.
the subnet and its interconnection to the test
environment, which fully simulates the inter-
tace of the original surrounding.
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4. Modelling naval anti-missile defence

To get an impression of the ability of the
NWP workbench, have a look on a Pascal-
written subnet of a naval weapons guidancs
system [7]. This subnet is tasked to detect po-
tential mutual destruction and deflection of
own effectors, which are aimed at hostile
anti-ship missiles. Different algorithms are
to be applied, whether destruction of an anti-
missile missile by another one or by gun fire
is to be foreseen, and another kind of algo-
rithms, in order to avoid one missile deviating
another one, in case the second has a pro-
grammed or seeking sensor. Here, the ques-
tion of parallel computation according to dif-
ferent algorithms, arises.

Project: ww
static: 11 Processes.
dynamic: 9 Processes.

Process net.

The Monitor depicts the network and the
clustering device can be helpful to judge ap-
propiate grouping of computers and their
connection to different sensors. The whole
model finds practical application in the deci-
sion process to upgrade resp. re-design naval
weapons guidance systems.

The first part of the Monitor’s screen, Fig. 11,
shows the project’s name: WW, gives the
number of all possible network participants:
11, while already 9 of them have introduced
themselves to the LCS, or have been men-
tioned by some other participant. Ninety
channels are foreseen within the process net.
Below this window, the whole process net-
work is depicted as a connection graph, with

90 Channels.

nowhere
nowhere Ww34
wWW24 CANVAS
CLUSTER 1 nowhere
ww23 L.CS_MONITOR,
nowhere CLUSTER 1
Wwig INIT
nowhere CLUSTER 3
wwi3 AAFT
nowhere CLUSTER 2
Ww12 o USTER 1 EMEM
KSKS

Figure 11: Monitor’s state indicating window, and connection graph of project WW




— ey -

named nodes (processes) and edges to indi-
cate the connections. Solid circles indicate
that these processes have already started their
computing activity.

The top-left part of Fig. 12 shows a grouping
recommendation, after the Monitor has eval-
uated the communication intensity under the
network’s initial phase: the process WW23,
which has been initialized by INIT, and re-
porting to the man-machine-interface KSKS,
should be run in close connection to INIT and
KSKS, on the same machine, if possible. The
process EMEM represents the sensors of the
weapons system, and AAFT reads an anti-air-
craft fire table. The Monitor’s cluster analy-
sis proposes to locate them on remote ma-
chines, apart from the first process cluster.
The lower-right part of that picture shows the
table of process affinities (i.e.numbers of
channels weighted with communications fre-
quency), which the above recommendation is
based upon. This grouping is depicted with-
in Fig. 11, and additionally that network state,

KSKS -
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when WW23 has been told from KSKS to
communicate data to CANVAS, in order to
sketch details of a possible influence of one
own missile upon the target-seeking sensor of
another own missile. Heavy circles mark the
already active processes. CANVAS, in it’s
turn, using SUN View’s graphical facilities,
must be resident on a SUN workstation: rsp-
sunl4, in this case, it has not yet begun its ac-
tivity and its circle is still empty. Because
none of the other WW - processes has been
started by INIT, their border circles are also
empty, and they reside "nowhere"”. INIT has
done it’s job and has withdrawn, thus it’s bor-
der line is empty, too. The Monitor is not 2
member of the process network, therefore it is
also flagged to reside nowhere(with respect
to the project WW).

Though we did not perform specific time
measurements, we may say that the process
communication under LCSes enables fire
control to dispose in time over the boat’s re-
sources and to avoid own missiles’ "fratri-
cide".

=’ EMEM

Process net in clusters with affinity over 9.

=7 AAFT

w23, O—w—0 K3K3,
KSKS, <:>“""2“""(:>1"1E
KSKS, (:>"""5"“"<:)enag
w23, O———0 EMEM,
w23, O——O0 INIT,
INIT, O—Z—O AFT,
INIT, O——O0 EMEM,

Figure 12: Monitor’s grouping recommendation based on process communicatior history




14-12

References:

(1] H. von Issendorff:
Netzwerkprogrammierung - Eine uni-
verselle Programmiermethodik
FFM - Bericht Nr.328, Wachtberg,
January 1983

[2] W. J. Griinewald:

Netz - Pascal unter BS2000
FFM - Bericht Nr. 352, Wachtberg,
July 1985

[3] L. Schuberth: Ein ProzeBnetzwerk zur
Vermeidung von Waffen-Wechsel-
wirkungen bei der Verteidigung gegen
Seeziel-Flugkdrper
FFM - Bericht Nr. 380, Wachtberg,
February 1988

[4] W.-J. Grilnewald, J, Kutscher, Th, Schell:

Ein Arbeitsplatz zur Programmierung
verteilter System in Ada
Wehrtechnisches Ada Symposium,
Mannheim, November 1988

(5] 1. Kutscher:
Das Entwickeln und Testen von Prozes-
netzen mit dem Netzwerk-Program-
mierungsarbeitsplatz.
Fachtagung Softwareentwicklung,
Informatik Fachberichte 212,
Springer Verlag, Juni 1989

[6] M. Hallmann;
Eine transaktionsorientierte operationale
Methode zur Anforderungserfassung
fiir das Prototyping (Diss.)
Dortmund, 1988

[7]1 MTG Marinetechnik GmbH:
FUWES Strukturen --
Operationeller Einsatz Ej genschiffs-
fithrung -- Uberwasserbekmptbarkeit
Berechnung der Wechselwirkungen beim
Einsatz von HardkillmaBnahmen,
Hamburg, 1987



Appendix:

14-13

Subsequently, the listings of our RPC-simulation example are given. Because this example is
coded in Ada, first the language interface for Ada is partly listed, as an example high level lan-

guage interface.

LCS_INTERFACE 1-Mar-1991 19:07:34
1 -- LCS_INTERFACE for Ada, 12.12.88

3 package LCS_INTERFACE is

4 type CHANNEL_ID is private;

5 type CHANNEL_SET is private;

6 INVALID_MEMBER : constant CHANNEL_ID;
7 LCS_SYSTEM ERROR,

8 LCS_USER_ERROR,

9 LCS_SIZE_ERROR,
10 NOT _IMPLEMENTED,

11 CHANNEL_CLOSED : exception;
12 type COMMUNICATION KIND is

VAX Ada V1.5-44

13 ( give_to, give_wait_to, give, give_wait,
14 write_to, write,
15 take_from, take, read_from, read );

oee

19 procedure LOGON_PROCESS ( PROCESS:STRING

}:

20 procedure LOGOFF_PROCESS( PROCESS:STRING );

21 procedure SELECT_CHANNEL( CHOICE :
22 WAITING SET:

in CHANNEL_SET;
out CHANNEL_ SET;

23 COUNT ¢ out INTEGER )i

24  procedure SELECT_CHANNEL( CHANNEL :
25 WAITING_SET:

in CHANNEL_ID;
out CHANNEL_SET;

26 COUNT ¢ out INTEGER )i

32 generic type message_type is private;
33 package INTERFACE is

34 procedure GIVE( CHANNEL : in CHANNEL_ID;

35 MESSAGE : in MESSAGE_TYPE);

51 procedure TAKE( CHANNEL : in CHANNEL_ID;

52 MESSAGE : out MESSAGE_TYPE;

53 SENDER ¢ out STRING

63 procedure CREATE_CHANNEL

64 ( MODE : in
(3] SENDER : in
6t RECEIVER : in
67 CHANNEL_NAME : in
68 CAPACITY tin
69 CHANNEL

)i

COMMUNICATION_KIND;
STRING :="";

STRING :=""%;
STRING;

INTEGER:=1;

¢ out CHANNEL_ID )

70 procedure CLOSE_CHANNEL( CHANNEL : in CHANNEL_ID );

71 end INTERFACE:;

72 memm e

73 =-- Functions to handle channel sets
90 private

96 end LCS_INTERFACE;
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SERVER

1-Mar-1991 18:21:03 VAX Ada V1.,5-44

1 with TEXT_IO, INTEGER_TEXT IO, LCS_INTERFACE;
2 use TEXT_IO, INTEGER_TEXT IO, LCS_INTERFACE;

@ o v;-.

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

procedure SERVER is

SENDERNAME : STRING(1l..32);

NUMBER : INTEGER;

TO_SERVER  : CHANNEL_ID;
FROM_SERVER : CHANNEL ID;

package S is new INTERFACE (INTEGER);

begin

Start communication with local LCS:

LOGON_PROCESS( "SERVER" );

Define a channel from client processes to this one,
channel’s name is to be "TO_SERVER",
its handle is TO_SERVER, here:

S.CREATE_CHANNEL( MODE => take,

CHANNEL_NAME => "TO_SERVER",
CHANNEL => TO_SERVER );

Define a channel to client processes,
of buffer-synchronous mode and
channel’s name is to be "FROM_SERVER",
its handle is FROM_SERVER, here:

S.CREATE_CHANNEL{ MODE => give_wait,

CHANNEL_NAME => "FROM_SERVER",
CHANNEL => FROM_SERVER )i

NEW_LINE;

Listen:

loop

accept a message from a client

S.TAKE( TO_SERVER, NUMBER, SENDERNAME ) ;

Print the client’s name and the message:

PUT( SENDERNAME ); PUT( "™ : " ); PUT( NUMBER,S );

NEW_LINE;

Respond by sending back the message to it’s sender:

S§.GiVE( FROM_SERVER, NUMBER );

Here an exit should take place if a condition holds
end loop;

Good-bye! to LCS

LOGOFF_PROCESS ( "SERVER" );

end SERVER;

O
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

CLIENT

@ -3 RN L.

1-Marx-1991 18:20:29
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with TEXT_IO, INTEGER TEXT I0, LCS_INTERFACE;
use TEXT_ IO, INTEGER TEXT IO, LCS_INTERFACE;

procedure CLIENT is

SENDERNAME :
NCLIENT
LC, NUMBER, ERGEBNIS :
T0_SERVER :
FROM_SERVER :

STRING(1..32);

: INTEGER;

INTEGER := 1;
CHANNEL_ID;
CHANNEL_ID;

package C 1s new INTERFACE (INTEGER) *

begin

-~ Individualization: ask user for a (unique) number
PUT( "CLIENT X: GIVE ME A NUMBER X:" ); NEW_LINE;

GET( NCLIENT );

-- Start communication with local LCS:
LOGON_PROCESS ( "CLIENT"&integex’ IMAGE (NCLIENT) );
~- Define a channel to server process,
- of synchronous mode,
- with this process as sender,
-- channel’s name is to be "TO_SERVER",
- its handle is TO_SERVER, here:
C.CREATE_CHANNEL( MODE => give_wait,
SENDER => "CLIENT"&integer’ IMAGE (NCLIENT),
CHANNEL_NAME => "TO_SERVER",
CHANNEL => TO_SERVER )z
-- Define a channel from server process to this one,
- with this process as receiver,
- channel’s name is to be "FROM SERVER",
- its handle is FROM_SERVER:
C.CREATE_CHANNEL( MODE => take,
RECEIVER => “CLIENT"&integer’ IMAGE (NCLIENT),
CHANNEL_NAME => "FROM_SERVER",
CHANNEL => FROM_SERVER )y:

~- Activity: ask user,

how many actions consisting in

- sending the action number should be undertaken?
PUT( “GIVE LOOPCOUNT:" ); NEW_LINE; GET( LC );

for I in 1.,LC loop

-- set action number

C.GIVE( TO_SERVER, I ); -- Send number to server
- Accept answer from scrver and print it:

C.TAKE( FROM_SERVER, ERGEBNIS, SENDERNAME );

PUT( ERGEBNIS,S5 ); PUT( “ from " ); PUT( SENDERNAME );
- Flag an error, if server didn’t answer properly:

if @I /= ERGEBNIS then PUT( "ERROR" ); end if;

+ EW_LINE;
~m. loop;

-~ h.v.ag sent LC action numbers, "Good-bye!" to LCS:
1 30FF_PROCESS( "CLIENT"¢integer’ IMAGE (NCLIENT) );
.xception =-- In case of an error, print its class and

give farewell to LCS at any case:

when LCS_USER_ERROR => PUT( "USER_ERROR" );
LOGOFF_PROCESS ("CLIENT"&integer’ IMAGE (NCLIENT));

when OTHERS => PUT( "“OTHER EXCEPTION" );
LOGOFF_PROCESS ( "CLIENT"&integex’ IMAGE (NCLIENT) );

end CLIENT;
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1 Abstract

A need has been identified for a
generalised approach to the
specification, design and development
of real time embedded systems. There
are many tools that cover different
parts of the life cycle. Some of these
are integrated to various degrees, but
for real time systems it is probably
true to say that there is not a set of
integrated tools which covers all
phases of the life cycle. This paper
describes the way that the Data
Oriented Requirements Implementation
Scheme (DORIS) attempts to remedy this
gsituation. DORIS is an applied
research project at British Aerospace
(Dynamics) Ltd, United Kingdom.

2 Introduction

DORIS is a set of integrated methods
and asgsociated tools for the
development of real time, embedded,
multiprocessor systems. It covers the
whole of the development life cycle
from the requirements analysis through
to implementation in software and
hardware. The main aim of DORIS is to
support the development of safe and
reliable systems. Particular emphasis
has been placed on direct support for
the development of multiprocessor
systems, reducing timing
indeterminancies and supporting the
traceability of requirements.

Figure 1 shows the fundamental steps
that have to be made when developing a
system. DORIS uses two existing
nethods based on the idea of dataflow:
the Controlled Requirements Expression

(CORE) [1] is used for the definition
phase, and a method known as Modular
Approach to Software Construction,
Operation and Test (MASCOT) [3] is used
for the design phase. These methods
have to be extended and adapted so that
they can be integrated into the DORIS
scheme

Implementation is achieved using a new
architecture known as the Data
Interaction Architecture (DIA) (6].

The DIA is based around shared memory
and offers fully controlled
asynchronous communication (in addition
to the more conventional synchronous
communication). It uses two speclally
designed chips to support
multiprocessor applications.

Many existing proprietary tool sets and
methods tie the user into a specific
language, host or target, British
Aerospace has such a large variety of
projects that standardization on any of
these is impractical. One of the main
aims of the DORIS approach is that it
will be language, host and processor
independent. This will lead to a
standardization across products, which
in turn will leed to improved
productivity.

3 Requirements Analysis

CORE is both a method and a tool
designed specifically for the
requirements phase of the development
life cycle. The metnod has been
developed by British Aerospace
(Military Aircraft) Ltd and System
Designers Ltd in the United Kingdom.
CORE establishes the actual problem to




be solved, and reduces ambiguities and
inconsistencies in the customer’s
requirements. It also highlights the
effects produced by changing the system
specifications and formalises these
system specitications so that they are
understood and agreed by all involved
in the p.oject. [2]

CORE consists of a set of defined steps
for the dever.>mzat of systems
requirements models. It encourages
structure and therefore modularity, and
identifies the data flow between the
elements.

The main concept of CORE is that of
'viewpoints'. These describe the
nature and content of the problem as
seen from particular points of view.
Each viewpoint looks at the problem in
terms of the information acquired, the
processing of this information and the
generation of output results,

CORE avoids using complex mathematical
notation, and yet still achieves the
necegsary degree of formality required
for requirements analysis. This makes
CORE more acceptable to the engineering
community.

Once the behaviour of the system is
described, this information can be used
as the requirements document for the
design teams.

4 Design

Figure 2 shows the structure of the
design tool sec. Three languages have
been provided for the design phase of
DORIS. Thesge are:

- DORIS Design Language (DDL)
Specifies the software design of
the system (based on MASCOT).

~ Hardware Description Language
(HDL)
Describes the configuration of
the processors, the memories and
the interfaces between the
memories.

- Mapping Description Language
(MDL)
Maps the designer’s MASCOT
activities into specific
processors.

The DDL is an adapted form of MASCOT
[3, 4, 5). MASCOT was developed at the
Royal Signals and Radar Establishment
in the United Kingdom and has been
adopted by the United Kingdom Ministry
of Defence as a standard approach for
the development of embedded systems.
MASCOT is a network approach to
software design suitable for multi-
processor systems. It gives
independence from specific processors
and provides a framework for specifying
interconnections and interfaces between
different software (and indeed
hardware) components in the system. It
has both a graphical and a textual
form, each of which can be derived from
the other.

In MASCOT, activities are sequential
processes, concerned primarily with
performing a single function. Each
activity is ccnceptually independent,
i.e, it runs concurrently with all
other activities. Activities
communicate with each other through
shared data areas, known as
Intercommunication Data Areas (IDAs).

Certain extensions have been made to
MASCOT so that communication between
the MASCOT elements in independent of
both the hardware configuration and the
type of the data being communicated.
This has been achieved by adding th.
idea of a Route to MASCOT. A Routr is
a gpecialised form of an
Intercommunication Data Area, with one
input and one output. It enables
information to be passed from one
activity to another, unchanged. It can
be used to provide either asynchrono s
or synchronous cormunication between
the two processes,

To allow this to be implemented, the

concept of type-independence has been
added to MASCOT. This allows the data
type to be specified at instantiation.




In MASCOT, a template a standard
pattern for the design of a component
in the system. When the designer wants
to use a component of that design, he
creates an instance of the template.

As part of the DORIS system, it is
intended that standard templates will
be provided to help communication
between activities in the system,

These templates will provide four
methods of communication from a sending
process (the writer) to a receiving
process (the reader). These are:

- Fully Asynchronous
This method of communication
allows the reader and the writer
to operate independently of each
other.

- Conditionally Asynchronous
This form of communication is a
limited form of the fully
asynchronous mechanism. It is
guaranteed to work satisfactorily
if the interval between
successive writes is always
greater than the duration of any
read.

- Loosely Synchronous
This does not require that the
two processes are at the same
place at the same time to
exchange information. It does
however, exercise some constraint
over the relative operation of
the two processes by limiting the
extent to which the production of
information can get ahead of its
consumption. In effect, it is a
bounded buffer.

- Fully Synchronous
This is a rendezvous, which locks
together the operation of the two
processes at or during the
exchange of information. There
must be a point in time at which
the two processes meet. Data can
then be passed between the two
and they can then carry on
independently.

In addition, three distribution
possibilities will be provided for a

Route:

-~ Private
The activities using the route
are both in the same processor

- Shared
The activities using the Route
are in different processors,
connected by shared memory.

- Remote
The activities using the Route
are in different processors, not
connected by shared memory.

The software designer will be able to
define a Route between two activities,
regardless of their mapping into
hardware. At build time, the builder
will determine the relative
distribution of the activities, and
will substitute a Route with the
necessary distribution. This allows
the software to be designed without
needing to know how the activities are
mapped into the processors. One
benefit of this is that the software
can be tested in the host, using a
private distribution, and then the
activities can be mapped into different
processors, without requiring a
corresponding software design change.

The design tools provided with DORIS
will allow the software design and the
hardware configuration to be easily
changed. It is intended that the basic
toolset will contain:

- Graphical Design Tools

- Timing Analysis Tools (SPIRITS)

- Textual Analysis and Checking
Tools (DAN, HAN, MAN)

- Build/link tools (Builder)

- Loader/Monitor (DEMON)

- Run-time development tools

It is intended that the DDL, HDL and
MDL will have graphical front ends to
simplify the network design. There is
also a textual form of all three
languages. One possible front end to
DDL is MADGE (MASCOT Design GEnerator).
This has been developed by British
Aerospace (Dynamics) Ltd and supports a
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graphical form of MASCOT.

The problems of timing analysis are
being addressed by a Department of
Trade and Industry sponsored initiative
called SPIRITS (Supporting Predictable
Implementation of Requirements In
Timing and Safety). This is
investigating the need to develop hard
real time systems whose timing and
safety properties are known and can be
shown to satisfy the existing
requirements.

Figure 2 shows the relationship of the
textual analysis and checking tools.
The DDL Analyser (DAN) checks the DDL
text (either generated by the user or
by MADGE or similar tool). If the
syntax is correct, it places the
network connectivity information
contained in the text (how the
components in the system are connected)
into the template database, and creates
source files in the selected target
language for syntax checking using
commercially available compilers. This
use of propriety compilers aids the
language independence of DORIS.

The Mapping Description Language
Analyser (MAN) and Hardware Description
Language Analyser (HAN) both store the
information contained in the MDL and
the HDL into appropriate databases for
use by the builder.

The Builder checks that all the
activities specified in the DDL are
mapped to processors specified in the
HDL. It also checks that for all IDAs,
an IDA template suitable for the
appropriate mapping is available in the
database. It generates instances of
the templates with the correct
connection between activities and IDAs.
For each processor in the system, the
builder generates a list of activities
resident in the processor, and presents
the instances of activities and IDAs to
the compiler and linker.

The loader/monitor (DEMON) provides
facilities to allow multiprocessor
loading and host/multitarget
communications.

DORIS run time development tools will
be provided that provide:

- Detection and reporting of run
time errors

- Breakpoint handling

- Memory examination

- User Defined Debug Messages
(MASCOT record primitive)

- MASCOT primitive monitoring

~ MASCOT execution control

- Timing data collection

5 Implementation - The Data
Interaction Architecture

The aim of the Data Interaction
Architecture (DIA} is tu provide a
mechanism to support multi-tasking and
multi-processing systems. It uses
simple hardware elements, giving
predictable behaviour for high
integrity systems. The DIA provides
direct hardware support for MASCOT
designs.

Figure 3 shows the basic configuration
of an element in the DIA. Ideally the
Central Processing Unit (CPU) is a
relatively simple form of Reduced
Instruction Set Computer (RISC) in
which no use is made of features that
introduce non deterministic timing
effects including interrupts and
caching. More complex computers can be
used, but this will make it more
difficult to analyse run time
properties. [6)

The CPU has a private bus that allows
it to be connected to:

- private memory (containing
activities and private IDAs)

- Asynchronous devices (polled
peripheral devices)

- Synchronous devices (peripheral
device generating a stimulus)

- Asynchrorous Dual Port Memory
(ADPM, containing
Intercommunication Data Areas
shared with activities in an
ad jacent processor)

- Two sorts of specially develcned
VLSI device, the Kernel
Integrated Circuit (KERIC) and




the Communication Integrated
Circuit (COMIC).

The Kernel Integrated Circuit supports
low level scheduling, providing the
multi-tasking facilities needed when
many activities are mapped onto a
single processor, as well as handling
external stimuli (from timers etc.)
without using interrupts. It selects
which activity is to be scheduled by
using built in priority and polling
rules. It supports cooperative
scheduling in preference to pre-emptive
(or interrupt driven) scheduling. Use
of the Kernel Integrated Circuit avoids
the timing overheads normally found in
software based executives.

A processor communicates with an
adjacent processor via shared memory.
The aim of this is to remove the need
for buses, thus eliminating the risk of
a "single point of failure". It is
intended that the shared memory used in
DORIS should be Asynchronous Dual Port
Memory (ADPM), although other devices
can be used. The Communication
Integrated Circuit is used to control
the access to the shared memory,
allowing activities in adjacent
processors to pass data from one to
another. An Asynchronous Dual Port
Memory without arbitration “as
currently been selented, wi..ch avoids
any timing interference. Four
different forms of communication are
supported: fully asynchronous;
conditionally asynchronous; loosely
synchronous; fully synchronous.

A facility is provided that allows the
COMIC to signal to the KERIC in the
destination processor that data has
arrived for it, and that the
appropriate activity can be
rescheduled.

6 Conclusion

DORIS aims to provide support for the
development of safe and reliable
systems. It does this by:

- Reducing timing indeterminancies
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Co-operative scheduling will be
used instead of interrupts.

No inter-processor buses will be
used .

No caching will be used.
Asynchronous Communication will
be ased.

Multiprocessor Support

Design, Mapping and Hardware
Description languages will be
provided.

The substitution of templates in
the builder allows the software
design to be mapped as
appropriate to the hardware
available.

Traceability of Requirements

The use of CORE and MASCOT will
provide the means of tracing the
requirements through to
implementation.
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PROCESS/OBJECT-ORIENTED ADA SOFTWARE DESIGN
FOR AN EXPERIMENTAL HELICOPTER

K. Grambow
ESG Elektronik-System-GmbH
Postfach 80 05 69
8000 Miinchen 80
Germany

Summary

This paper discusses a software design method
for real-time applications written in Ada. It proves _
that even time critical systems can be implemented in
pure Ada.

The design method is based on the Ada tasking
model in conjunction with object-oriented design
SOOD) principles. Special purpose graphs, derved
rom Yourdon/De Marco data flow diagrams
SDFD'S), illustrate the method, while Ada program

esign language (PDL), as a counterpart to the
graphs, serves as a basis for the software imple-
mentation.

No global cyclical executive is used to schedule
the concurrent threads of cxecution. Instead, a
rendezvous-based interaction of Ada tasks provides
the scheduling. This is automatically generated from
an Ada comptler,

This software design technique is illustrated by
the development of the operational flight software for
an experimental helicopter.

1. Introduction

In the past, real-time systems were implemented
using a dedicated operating system on the target
computer or using a higher level programming
language with real-time extensions. Since the intro-
duction of Ada, a widely accepted programming
language is available which incorporates real-time
features such as tasking or interrupt handling in the
language itself.

Morcover, complex real-time software deve-
lopment demands a language with design features,
modularity concepts and precautions for team-effort
implementation. Therefore, Ada was equipped with
such features as packages, generics and separate
compilation.

These two aspects prove Ada to be a very good
tool, both for the design and for the implementation
of complex real-time systems.

In this paper 1 comprehensive design metho-
dology, which strongly utilize Ada’s design and real-
time features, is presented. The methodology focuses
on large real-time systems, giving a practical, step-by-
step design approach, which is documented in several
%raphic illustrations and can be canonically trans-

ormed to Ada program design language.

_As an example, the design methodology is
applied to an experimental helicopter ([’Jrojecl which
is currently under development at ESG.

In the following chapter, we bricfly describe the
example project. Chapter 3 ex%lains the methodology
and applies il to the project. Chapter 4 continues the
description of the design, concentrating on refinement
stc(fs under utilization of OOD techniques. Chapter 5
is dedicated to real-time scheduling and software
performance issues, discussing the question of
whether the scheduling based on the Ada tasking
model is applicable in time critical systems. The final
chait&; summarizes the experiences with the design
method,

2. A typical real-time project

At ESG, a project is currently under deve-
lopment which equips a helicopter with ex‘)erimcn!al
avionic instrumentation. The helicopter will facilitate
the analyses of advanced equipment components and
of the man-machine interface aspects of a modern
cockpit in the course of flight trials, Modern
computer-controlled displays and sensors are at the
pilots disposal to gain flight experience in a realistic
environment. The results of these flight experiments
are a valuable input for and can prove the feasibility of
later helicopter products like the German/Freach
“Tiger" anti-tank helicopter.

Due to the experimental character of the project,
the system and software design should be flexible and
easy to alter or extend. Clearness, ease of change and
reusability are important demands on the software
development effort. All software for the avionic
system is implemented ir Ada,

Figure 1 shows the system architecture of this
cxample project:
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Figure 1: System architecture of the experimental helicopter

The avionic computer is a multiprocessor system,

based on Motorola 68030 boards, with an intcgrated
graphic symbol generator. All display and control
units, and the sensors, are electrically connected to
special input/output boards of the avionic computer.

The pilot controls the avicnic instrumentation
with a menu guided terminal and with the help of a
topographical map device.

All important flight information (flight routes,
danger areas, helicopter attitude and velocities) is
displayed and continually updated on special multi-
color graphic devices.

In addition to the usual inertial navigation
system, a very precise satellite controlled navigation
system (GPg 1s utilized,

Last but not least, the pilot wears a helmet
mounted sight/display device: digital information is
mixed with the video image of the forward looking
infrared camera and can be projected on the screen
of the helmet. The camera is controlled through
movements of the pilot’s head.

3. The Ada software design method

The software design for the helico%ler roject is
derived from a methodology developed by Ig Nielsen
and K. Shumate at Hughes Aircraft Company (see
[1]). 1t is based on the Ada tasking mode! in con-
junction with object oriented design (OOD) features.
Graphics illustrate the global design steps and can be
canonically transfered into Ada program design

language (PDL). The global design is process orien-
ted, leading to the identification of all concurrent
processes and their interactions. In Ada, these are
described as tasks and rendczvous. In a refinement
step of the design, Ada PDL is further developed to
outline the single threads of execution of each task
using OOD methods.

In the following, the methodology will be
explained step-by-step and illustrated through
examples from the experimental helicopter project.

At first, one tries to identify the main software
functions and their real-time executions, i.e. whether
they perform event-driven or execute periodically. A
textual description of the requirements for the project
will normally be the basis for this step. As discussed in
more detail in chapter 5, no global cyclical scheduler
will be used in this kind of design, but all the real-time
issues will be handled with the Ada tasking model.
Therefore, it is important to fit the main software
functions in concurrent processes which will be
described as Ada tasks. The real-time execution of
these tasks is provided implicitly by the Ada compiler,
their interaction is controlled by Ada rendezvous.

But how does one find these tasks? They should
be combinations of cohesive software functions. Some
will execute Keriodically. others event-driven, In the
latter case, they may be triggered by interrupt. The
design methodology defines a comprehensive
procedure for the identification of these tasks:

The so-called "edges-in approach” assigns a
concurrent process to each of the interface handlers
which connect the external hardware devices with the
main avionic application. Here, the main part is not
yet specified, only its data flows to the outside world.
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Figure 2: Top levzi data flow diagram

This first step is illustrated in the top-level data flow
diagram (DFD). Sec figure 2 for a mapping of the
helicopter system architecture onto a top level
software DFD. The interaction with the hardware
devices (navigation systems, pilot controls, ...) is
controlled by concurrent handler processes. In the
case of functional cohesion, some of these handler
processes may be combined to one process in order to
reduce the number of different tasks in the system.

In the next steps, the main avionic application
(middle part) is decor posed using a hierarchy of
DFD?s. The tool for thss step is the good old
Yourdon/De Marco DFD, applied not for functional
analysis of the project but for software design, Hence,
one cannot just map the transforms and data flows of
the requirement description onto software modules. It
is necessary 1o set up a new, shallow leveled DFD
structure with the aim to combine transforms to
concurrent software processes. During this procedure,
one has to consider tge resulting interactions of the
so-formed concurrent processes. They run in parallel
and interact with each other. Therefore, one carefully
has 1o avoid mutual waiting situations, i.e. dead-locks.
Sometimes intermediary processes ﬁbuffers, queues,
...} have to be introduced to decouple applications.
For the process identification, i.e. the combination of
certain DFD functions, functional cohesion, as well as
temporal dependencies, are to be considered. Typical
reusable objects, such as monitors for a critical data
region, servers or periodic modules, are examples of
such processes.

Figures 3 and 4 illustrate the software DFD
structure and process identification in the experi-
mental helicopter project: Figure 3 shows that the
AVT middle part consists of four major software
functions (termina!, flight and graphics management,

as well as moding conlrolz. For performing process
identification, this level of DFD hierarchy 1s not suffi-
cient. As an example, in figure 4, the flight manage-
ment is further relined to a level where one can iden-
tify the concurrent processes: helicopter control, flight
control, navigation and obstacle warning should run
concurrently, The navigation process is a combination
of the software functions navigational computation
and height warning, and the data storage for NAV-
data and height limits. Its real-time performance is
event driven, Whenever new navigational data arrives
in the system (through certain handlers, sec figure 2),
the process becomes active, Only in the case of new
hei%it data the height warning function will be
?er ormed. Hence, the height warning software
unction is integrated into the navigation process. The
flight control Yroccss monitors the routes, guaran-
teeing mutually exclusive access to these flight routes.
The obstacle warning is a typical periodic task. Every
second, possible obstacles along the flight track are
checked.

Now, all processes are determined and can be
graphically illustrated in a single-level process
structure chart. At this stage, a textual representation
of the software can begin. Because of the excellent
design features of Ada, this will result in readily
compilable Ada PDL which corresponds directly to
the graphical representation and is easily readable.
The concurrent processes are described as Ada tasks.
A hierarchical dependency of tasks must be avoided.
All concurrency must be visible at the top level. In
order to support separate compilation and seadability,
the tasks will be embedded in Ada packages, strictly
separating the specification from the implementation
(body) part. Thus, even in this early software design
stage, the results can be expressed with Ada code.




w‘

Terminal
Management

\

Helicopter
Data

Fiight
Data

Master
Mode

Mode

Flight

Management Take off / Touch down

Navigation
Data
/ Warnings

Graphic
Management

Graphic
Update

/

Device
Status

Moding
Control

Figure 3: The middle part of the top level DFD

............................................................... 3 S
: ' : :
: NAV Dat : : - :
: o H Take off / i
N0 e ) H .+ Touch down !
H Ko H '
: Navigation _/ o : Obstacle H
: Data e vgfég‘,’,;' : Warning :
: : i :
; J : Warning :
. ' ~
: et remee s cee e e et :
N N TV T T T N .
: Heught Flight H :
: :
E ; Control I‘. al E

s

! Helght Umits H ' Wamng :
H { \ H
: ! i\ [ Hellcopter :
! ;o Routes Voo Control :
. Dol Updale Vo :

h Helght [ v Data kr :

; Warning - Vo A(;;iph'c :

H [ Y . H

: P Vo I ma

: [ Flight Routes Vo :

H o ‘.‘ | Hohcopter :

! Warning i vy D :

! £ new Routes Vo I «

: / ;! Roue for Oispray 4 '

! \ i

s '-' :’ / F Y H

et icttimrceenanrieace e nn—n RS S

Figure 4: Refinement of the "flight management" with process identification

In order to conclude the global design, the

interactions of the tasks have to be specified. The data
flows between the concurrent processes are a basis for
the Ada rendezve, . between these tasks. In this

design step, a careful decision has to be made as to
which task issues an entry-call and which task is called,
to avoid waiting tasks and dead-locks (caller-called
decisions).
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Figure 5: Ada task graph of the main CPU

The final result of such a %::bal design is an Ada
task graph (ATG) which describes the network of all
concurrent processes and their intcractions. I an
ATG, bubbles now represent tasks, their connection
arrows represent the call directions and the small
arrows describe the data flows. See figure S for an
example ATG from the helicopter project. All pre-
viously identified processes appear here on a single
level (;10 hierarchy). The handler processes of the first
design step now fit into the gradually identified pro-
cesses of the main avionic part, The sometimes com-
licated distribution of the processes onto processors
in a multiprocessor environment is beyond the scope
of this paper. For an extension of this design
methodology to distributed environments, see {2].
In the expenimental helicopter project, the multi-
processor setup was straightforward: the main CPU
(master) performs all applications while two other
progessors are dedicated to graphics management and
report writing. In general, it should be possible to
represent all processes of a single processor in a single
level ATG. Otherwise, too much concurrency (too
many Ada tasks) will occur. As an example of the
caller-called decision, consider the interactions of the
flight control and the terminal management process of
figure 5: the flight control process is a pure server, i.e.
is always called in order to be in an accept mode for
its various jobs at any time (in Ada, this corresponds
to a selective wait construct). On the other hand, the
terminal management process is a pure caller. It
performs lenglﬁy computations accessing lots of data.
Therefore, it always actively issues Ada entry calls. In
conclusion, both interactions between the flight
control and the termina! management process are
called from the terminal management side, although

the data flow is in one case "in" and in the other case
"out".

4. Detailed design

As already mentioned, compilable, top-level Ada
code can easily be deduced from the ATG by descri-
bing concurrent processes with Ada tasks and their
interactions with Ada rendezvous. Performing the
detailed design, the Ada package construct is applied
in conjunction with OOD ideas.

In a first step, the Ada tasks are encapsulated in Ada
packages. So-called “entrance procedures” are the only
visible parts of the concurrent processes in the
package specifications. Not until the package bodies
are the tasks themselves declared ang their entries
identified with the entrance grocedures. Hence, the
tasks are treated as typical objects in an OOD
manner: their detailed definition, or even their
implementation is not visible. Only the operations
which influence them, i.c. the entrance proceduses,
are visible, Figure 6 shows this OOD concept applied
to the moding part of the ATG of figure 5.

In the following steps, the sequential flow of each task
is furthe: decomposed using separate Ada sub-
programs (which describe some DFD-transforms of
the task) and again using Ada packages and proce-
dures / functions to represent objects/operaticns
from OOD theory. For example, the height warning
(figure 4) will be implemented as a separate sub-
program in the task "navigation”.




16-6

package MODING is )
type MASTER_.MODE is

end MODING;

Spec: with DEVICES; - - Defimition of devices and therr status
{(OFF, DAY, NIGHT, .. );
type MODES is...
function GET_MODES return MODES; - ~ access to data store

- - entrance procedures:
procedure NE‘\;V_MASTEFLMODE (VALUE : in MASTER_MODE)

Body: package body MODING is
task MODING 15

end MODING;

end MODING;

entry NEW_MASTER_MODE (VALUE : in MASTER_MODE);

procedure NEW_MASTER_MODE (VALUE : n MASTER_MODE) 15

begin
9 MODING.NEW_MASTER_MODE (VALUE);
aend NEW_MASTER_MODE;

task body MODING is separate:

Figure 6: An example for using OOD techniques in Ada

This concludes the discussion about the design
method. The further stepwise refinement, towards a
full Ada implementation is generally straightforward
and heavily depends on the specifics of the appli-
cation. The next chapter returns to the discussion
of the most dominant feature of this design method:
the real-time scheduling aspect.

5. Scheduling with the Ada tasking model

Earlier avionic projects, especially those where
strict real-time requirements with short cycle times
dominated, were typically realized using a é;loba.l
cyclical scheduler. All functional modules had to be

itted into time slots of a cyclical exccutive in order to
guarantee their periodicity and to ensure that the
critical =ections of different tasks do not interleave.
With larges applications, this mapping process, from a
functional aspect to time slice begaviour, became
more and more complicated, The average, or better
the worst case duration of each function, had to be
estimated to ensure that all applications fit into their
time slots. An overrun would destroy the whole global
execution scheme. Such an approach often confused
clear program structure, viofating functional cohesion
and locality principles for the sake of timing con-
siderations. Typically, such schedulers were imple-
mented using special operating system routines or
real-time extensions to the implementation language.

The Ada tasking model citers a fundamentally
different approach. As obs.rved in the previous
chapters, the language itself ‘frovidcs all the features
necessary for ceal-time scheduling, Whenever a task
completes an execution part, has to wait for infor-
mation from other tasks, or a higher priority task
becomes ready to exccute, the system automatically
reschedules, This dynamic precmption of tasks at run-
time is a direct outcome of the Ada compiler. It
generates non-deterministic timelines, at odds with
the very idea of the classical fixed execution time slots.

As we have observed, the design of real-time
systems using Ada is guided by functional cohesion.
Only those software modules whose applications are
related, comprise a common task. Each task locally
determines its real-time behaviour, Some execute
event-driven, others periodicall[\;, locally setting up
their cyclical behaviour. No global scheduler d%ter-
mines the system flow, only the rendezvous mecha-
nism between the tasks guides the flow of execution.
Each task schedules itself, either cyclically with the
Ada constructs "delay” and "calendyar.cloc * or on
event per rendezvous "accept” or call. Therefore,
(c;yclical behaviour is naturally integrated with event
riven processes. Overall, such an Ada design can be

easily extended and with the help of the locality
rinciple and OOD constructs many modules
packages) are reusable.

Eariy criticism of Ada’s real-timc features argued
that the non-determinism of the Ada tasking model




was in contradiction to fixed real-time deadlines.
But, extensive studics have proved that certain bounds
on CPU utilization, in cgi?unctlou_wnth Ada priority
licies, guarantee that all tasks will meet their dead-
ﬁgcs without knowing exactly when any given task will
be running (see [3]). Without going into details of this
study here, the principle ideas of the study [3] are the
"rate monotonic scheduling algorithm”, which gives
each task a fixed priority assigning higher prioritics to
tasks with shorter periodicity, and the "priority ceiling
protocol®, which prevents dead-lock situations and
unwanted priority inversions. Nevertheless, the
present definition of the Ada language has some
drawbacks related to the priority inversion issues
(which are caused by using FIFO rather then prioril
queues for tasking). Hopefully, future versions of Ada,
and perhaps even the next official release, Ada9X, will
address this matter,

A second important criticism regarding Ada’s
real-time exccution was the unsatisfactory quality of
the Ada compilers. How big of an overhead does an
Ada compiler impose on the scheduling (task switch
times)? What is the accuracy of the delay and timer
constructs in Ada? Benchmark tests initialized by
SIGAda’s performance issues working group show
that the latest generation of compilers now have quite
satisfactory results (see [4]). Our own experience in
the experimental helicopter project was also quite
satisfying, The Ada tasking model, under the rate
monotonic scheduling policy, i.e. a special policy of
assigning priorities to tasks, works well. Nevertheless,
a few features of an Ada runtime system outside the
scope of the language were used, especially to over-
come the inaccuracy of the Ada timer resolution,

6. Conclusion

The experimental helicopter project, as a typical
real-time system, has been completely dcgigned and
implemented with Ada, The design method derived
from Nielsen / Shumate has proved to be a practical,
comprehensive guideline utilizing the powerful Ada
features to define and implement a complex real-time
software system.

The functional decomposition served as a basis
to build the Ada tasks and their rendezvous. In this
process, non-cyclical modules and periodic tasks were
casily combined. Hence, no painful fitting of func-
tional applications in time slots of a cyclical executive
had to be performed. The Ada compiler itself pro-
vided the rcal-time scheduling.

Currently, the project is undergoing a restruc-
turing phase leading to some new or changing func-
tionality and requirements. But, because of the well
structured design and the modular, clear and reusable
software implementation, due to Ada, we are
convinced that we can easily cope with these new
aspects,
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Summary. Digital single-chip signal processors (DSP) are
powerful devices to implement closed-loop controllers for
highly dynamic mechanisms. Code production is however not
that easy, particularly with DSP offering only fixed-point
arithmetic. This paper describes key issues and a toolset which
builds on automatic code generation to complement existing
control design tools so as to close the gap between design and
implementation or experiment.

Introduction

An integral part of many guidance and control tasks is the
lower level embedded closed-loop control of mechanisms
(Fig. 1).

reference and
feedforward signals

-—-"l c?)ht}bllor ; l—’l actuators ]
3
| mechamsm I

| Sensors l

controlled and auxihary vanables

Fig. 1: closed-loop control

The mechanisms controlled may range from microminiature
actuators to huge flexible space structures. Tasks include
motion control, vibration damping, and stabilization. Tech-
miques include classical multiloop PID-contro), state-space
contiol with Kalman-Filters and observers, gain-scheduling,
and adaptive control.

Fixed-point and floating-point digital signal processots (DSP)
are very powerful devices for implementation of such con-
trollers for fast systems. They are also available in high-relia-
bility versions suitable for avionics and similar apphcations.

Traditionally, the code for such devices is developed on the
assembly language level which has well-known disadvantages.
For fixed-point DSP there has been virtally no alternative.
There are HLL (high level language) compilers for some DSP,
but they lack adequate data types for dealing with fixed-point
arithmetic other than integer. They are also not tailored to the
architecture of DSP. Furthermore, producing code for such
processors means miore than just programming. There 1s much
10 be done between a completed controller design and the point
where actual code can be produced. Crucial steps are structure
selection and scaling.

For the newer floating-point DSP thete are quite good C
compilers and the specifics of fixed-point arithmetic no longer
dominate the task of code production. More complex nonlinear
control can be envisioned to be implemented fully automatical-

ly, whereas for fixed-point chips fully automatic implementa-
tion is currently limited to linear (though arbitrarily high-order)
controllers, with semi-automatic treatment of nonlinearities and
logic.

This paper descnbes key 1ssues and a powerful commercially
available toolset (DSP-CITpro) for generating code for re-
al-time DSP-based control. This toolset has also proven to be
very useful for real-time simulation (hardware-in-the-loop
simulation).

DSP Chip Categories

The largest DSP family 1s available from Texas Instruments.
This family roughly divides into three groups (Fig. 2).

Floating Point OSP
@ Fixed Point DSP ) C Fixed Point DSP Microcontrolier ))

Fig. 2: DSP categories

‘The DSP microcontroller 1s just a fixed-pomnt DSP with on-chip
peripherals such as: bit /o port, watchdog, 6 high-speed
pulse-width-modutated outputs, 4 capture inputs, The latter two
features belong to a so-called event manager, a very important
subsystem which 1s also available in many modem non-DSP
mucrocontrollers

The most impontant points of a DSP’s architecture regarding
code generation are:

- the type of arithmetic offered,
- the support for HLLs (high level languages),
- memory limitations.

The current floating-potnt DSPs are most suitable for standard
HLLs such as C. They have virtually no mnemory hnutations,
software stack support, and very efficiently implement the
floating-point anthmetic of standard HLLs.

Standard HLLSs are not generally suited to fixed-point DSP
primarily because they do not offer a suitable data type and
arithmetic concept for efficient and accurate fixed-point signal
processing. The DSPL ianguage as descnbed below is designed
specifically to fill this gap. It also addresses other issues of
efficient use of the DSP’s special architecture and nstruction
set/1l/

Fwed-point DSP Arithmetic

The anthmeuc used throughout DSP-CITpro for fixed-point
DSP is fractional arithmenc where the binary point is just right
of the “sign’ bit (Fag. 3),
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The central anthmetic operation 1n most signal processing tasks
1s the scalar (or dot) product

r=c-di+cy-dyt - 4c,d, 2
It is crucal to have a clear methodology as to how this

operation is to be implemented on a DSP, with respect to
number range violations, accuracy, and efficiency.

Key Issues of Control Implementation

From a system dynamics viewpoint some key 1ssues when
implementing a closed-loop controller are /2/-

(8)]
@
(3
G

mintmization of computational load,
insensitivity to coefficient and signal quantization,
minumuzation of input/output delay,

good discretization if controller prototype design 1s
analog,

(&)
©

adequate scaling for fixed-pomnt anthmetic,

overflow handling with fixed-point arithmenc.

From a coding viewpoint some key 1ssues are

(7) avoiding assembly language coding, yet exploiting pro-

cessor architecture,

®)

avording loops, subroutines, or indexing for maximum
speed,

(O]
(10)

control over memory allocation,

ensuring tmely execution even for worst-case control
flow mn the program,

(11) avoiding extended precision anthmetic

Remark (8) may seem to contradict good programming prac-
tice, but need not have the unwanted effects normally associat-
ed with such programmuing style For DSPL compilers as
described below the level where this style becomes visible is
the assembly language output, not the DSPL program. For
generated C code the generated code 1s still easy to read.

The vanious pornts histed above will now be explained in some
detail first for a linear controlier. It 1s assumed that the
controller 1s available 1n the form of matnices A, 8, C, D of the
ume-invanant difference equation

Xy FAX + By,

¢))
¥i=Cx+ Dy,

where x 15 the intemal state vector of tne controller (which 1s
assumed to have dynamics, not just gains), ¥ comprises all
nput signals to the controller (1 e. from sensors or reference
generators / path planning modules), and y compnses all

external outputs of the controller (i ¢ at least the control signals
going to the actuators).

If the controller 15 a connection of subsystems then 1t1s
assumed for simplicity that all subsystems and connections are
combined into one big *monoblock’ system (1). An example
would be the connection of a state feedback gain matrix,
feedforward gain matrix and a plant observer or stationary
Kalman-Filter. A great deal of what 1s explained below would
also apply if only a linear subsystem of a nonlinear controller
would be considered.

(1} munimization of computational load

If matrices A, B, C, D are taken directly from a control design
software package, then all matrices may be totally dense in the
worst case. Mimimization of the computational load means
reducing the number of nonzero entries (cocfficients) in those
matrices, without altening anything mn the dynamic input/out-
put-behaviour of the controller This can be achieved by
sutable transiormations based on hinear algebra theory Matn-
ces A, B, C are affected Totally dense matrices A, C may for
cxample be changed into

000 0 0 ~gq

1 00 00 -gq

010 00 =~-aq
A= ,

000 .. 10 -a_,

000 ..01 -a,,
C=(0 00 00n

The various forms of the matrices are also called structures due
to thear different block diagrams when represented graphically

Unfortunately, such transformations n 1y have an adverse effect
on sensitivity {0 quantization in the processor. It 1s important to
have tools which provide adequate structures, and can analyse
sources of potential or real trouble with quantization

2)

Dufferent structures in the above sense normally exibit differ-
ent sensthivity to coefficient and signal quantization Quite
frequently the structures with the least number of nonzero
coefficients behave very badly n this respect. With such a
structure one may be forced 1o use extended precision arith-
metic somewhere, which quickly outweighs any gain from
reducing the number of nonzero coefficients

insensinvity to coefficient and signal quantization

(3)  mmmization of inputloutput delay

If the control signal instantly depends on current sensor mput
samples, which 1s nonnally the case with controllers, then there
1§ some inevitable delay between the theoretical output instant
and the real one (Fig. 4).

Some of the delay may be due to A/D- or D/A-converters and 15
unavoidable The delay resulting from the fimte computation
time 1n the processor however can be munimzcd by proper
arrangement of the code (Fig 5)
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(4) good discretization if controller prototype design is
analog

If control design is carried out in the continous doman (1.¢. for
analog implementation) the controller will normally be dis-
cretized, 1e. the differential equations will be translated into
difference equations. Much can be gained by using methods
which have proven to produce good discretizations. A good
discretization is one which does not alter the controller’s, or
more importantly, the closed-loop's behaviour when compared
10 the analog one. Experience has shown that a good method
can yeld as much as a factor of five reduction in the required
sampling rate over a standard discretization.

(5) adequate scaling for fixed-point arithmetic

Controller implementation on fixed-point DSP requires proper
scaling of coefficients and vanables. Coefficients must be
representable. V-.jables (signals) must be scaled in order to
avoid both excessive guantization for small signals and over-
tlow for large signal excunsions.

Scaling of u, y in (1) 15 nomally derived from the gains of
A/D- and D/A-converters and sensor and actuator amplifier
gains. Proper scaling of x . be determned by various means.
One particularly attractive methed is the so-called |,-scaling. It
can be camed out by an algorithm (in DSP-CiTpro) completely
automatically.

Scaling of nonlinear expressions (as may be attached to an
otherwase linear controller) s presently carried out manually
along the same lines as known to some from analog computing,
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i.¢. by introduction of normalized variables after determining
maximum values.

Even with scaling of variables it is not guaranteed that the
cocfficients of scalar products are ail fractional numbers. For
matrices A, B in (1) this can however normally be expected with
certain structures (which are often anyway the preferable ones),
such as the so-called real-modal form. For C. D this is often not
the case. The frequently high gains of a controller are repre-
sented in these matrices, and coefficients three urders of
magnitude greater than one (the fractional number himit) have
been expenienced. Scalar-product handling as mentioned below
helps.

(6) overflow handling with fixed-point arithmetic

With a scalar product (2) there is the potential of overflow.
Even with proper scaling of variables such as x, y in (1) there
may still be some vanables which may overflow occasionally,
and this may even be intentional. An example 15 the control
signal to the actuator of a position control system. With large
commanded position changes the control signal is nomally
expected to saturate for a while This means that this compo-
nent of y must be able to go 1nto saturation overflow. The same
may hold for components of x if they are associated with
integrators 1n the controller

Unfortunately wrap-around will occur if no provision for
overtlow saturation 1s made (Fig 6).
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Fig. 6: overflow handling

The ccde generation for fixed-point DSP in DSP-CITpro via
the DSPL language provides a systematic method called
scaiar-product scaling at compile tume to guarantee

- accommodation of coefficient: outside the fractional number
range,

- efficient and accurate execution of the scalar-product opera-
tion in the extended accumulator of the DSP,

- creation of logical *guard’ bits to ensure proper saturation on
overflow, if desired.

(7) avoiding assembly language coding, but still exploiting
processor architecture;
avoiding loops, subroutines, or indexing for maximum

speed,

8

A. Floating-Pant. For floating-point DSP, which offer 32-bit
single-precision computation without speed penalty, the pre-
dominant HLL 1s C, but there are also compilers for other
languages. For the TMS 320C30 there is even an Ada compiler
available. So there is normally no need for assembly language
progranuning except maybe for increased speed or in case of
very tight memory limstations of the target hardware.

Svandard HLL compilers naturally lack special constructs
useful for mapping signal processing operations onto the
special architecture of a DSP. Oy, nzations avatlabie in
modern compilers can however coisiderably improve runtime
efficiency /3/.
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As an example a FIR filter operation is considered which is
descnibed by the equation below, where y 1s the filter output, g,
are the coefficients, and « holds the current and previously
stored values of the sampled input signal.

Ye=0dhtaly yt...tau, .,
The tasks to be performed are

- computation of the output by the scalar product, as a
sequence of coefficient-times-input-vanable multiplications
and partial product accumulations,

moving the stored input values u, so as to introduce the
newest input sample and discarding the oldest.

A DSP such as the TMS 320C30 can perform this operation in
one cycle, although there 1s some setup and pipeliming overhead
which 1s sigmficant for short filter lengths. Fag. 7 shows the
assembly language code which makes use of parallel execution
of 3-operand muluply and add plus addres: generation for both
coefficients and input samples n one cycle (the code shown in
the box)

LDI filter_order + 1, BK ; block sizen+1
LDI ARQ, address_of_last _coeffi- ,a,
cient
LDI AR, bottom_of_sample_buffer ;u,_,
L LDF u_newest, R3
STF R3, *AR1++% , u_newest -> buf
LDF 0.0,R0
LDF 00,R2
RPTS filter_order in
MPYF3  *ARO++(1)%, *AR1++(1)%, RO
I ADDF3 RO,R2,R2
ADDF  RO,R2 ; accumulate Jast product
STF R2,y k
B L

Fig. 7 optimal FIR filter assembly code for TMS 320C30

A problem with a HLL hke C is that the comptler is not
intelligent enough to detect that a piece of C code actually
represents a FIR filter and could be compiled 1nto the above
code With optimizations enabled, the Texas Instruments C
compiler produces code which 1s approximately 4 times slower
than the above assembly program. The compler 1s unable to
generate parallel multiply and add operations (factor 2) and the
*update’ operation (1, - - 4, ,) 1s executed separately. This1s
because the "update’ must be fonmulated 1n a separate statement
in C, whereas at the assembly language level a special DSP
addressing mode (cireular addressing) can be exploited The
compiler 1s however intelhgent enough to introduce zero-penal-
ty looping, parallel address increment, and a delayed branch.
For less structured operations the speed penalty of such a
modern opumizing HLL compiler should be rather low.

In general there are some basic rules to follow for maximum
efficiency, such as

@)
(b)
©
@)
(e)

Some of these rules can normally not be met with *general’
subroutines using loops and amrays So-called "straight-code’
should be used, which 1s best produced by generating programs
from higher level descriptions of the tasks. Violating these rules

to avoid calculating with 1nsignificant coefficients,
to avoud loops,

to avoid vanable indices,

to avoid pornters,

to avoid unnecessary function calls

may result in severe degrading of execution speed. The
computing power of a DSP can quickly be turned into a
fraction of the peak MFLOPS rate by not leting the DSP
compute, and doing address computation, stack administration
and branching instead.

B. Fixed-Point For fixed-point DSP there are only few
offerings of HLL compulers. The newer generations are some-
times supported by C compilers too. The statements on C
compilers for floating-point DSP hold again, but there 15 one
very important additional pont to make: Standard C compilers
have no support for doing signal processing anthmetic effi-
ciently, 1. there 15 no support for fractional number arithmetic
and scalar product computation

There 15 one C compiler available from Analog Devices for
thewr own line of fixed-point DSP which offers ’fractional’ as a
non-standard data type. But 1t still lacks features for optimal
scalar product computation as built into DSP-CITpro’s DSPL
compilers It is not uncommon to see a C programming effort
on a fixed-point DSP ending up in 80% (hand-written) assem-
bly language code.

The approach taken 1n DSP-CITpro is to provide a sustable
intermediate language, called DSPL. Details on syntax and
semantics of DSPL can be found in /1/. Cede examples are
found below. A short characterization of DSPL and its compil-
ers 1s

+

emphasis on efficient and accurate fixed-point scalar product
arithmetic,

.

self-documentation, Ada/Pascal like syntax,

- strongly typed language,
assembly language code 1s generated without loops, subrou-
tines and address calculations for maximum speed,

includes scalar product scaling mechanism,

hides mechanisms for low-level operations such as details of
signal i/o,

looping, decisionmaking, and boolean mnstructions available,

interrupt servicing on language level,

compilers are processor dependent but not hardware environ-
ment dependent (1.e. target hardware may vary),

compiler output 1s comprehensively commented assembly
language program,

global and statement-wise execution time profiles and
memory statistics generated by compiler (see below).

DSPL compilers are available for first and second generation
Texas Instruments DSPs

(10) ensure imely execution even for worst-case control flow
in the program

A closed-loop controller or similar signal processing system
must normally run exactly at a fixed sampling rate. It is an
1ssue to determune the minimum execution time necessary. It1s
also interesting to have profile tnformation to see which parts
of the program are the most ume-consuming and could possibly
be improved.

The DSPL complers automatically provide this information.
For each task a global worst-case execution time is computed
There are some very rare circumstances where the compiler
cannot compute such information One example is a loop where
the repeat count 1s a variable. In most cases encountered 1n
contro} implementation the calculaion 15 vahd. It even takes
nto account that a DSP may have quite comphcated nstruction



cycle tables with dependencies on memory layout.

In addition the DSPL compilers also provide execution cycle
information statement by statement (DSPL), embedded as
comments in the generated assembly Janguage source.

With the C compiler for the floating-point DSP there is
unfortunately no such mechanism. The code must be executed
for real-time profiling. A DSP-CITpro module called TRACE
can however be used to gather such information from the
running DSP program quite casily. A graph of the execution
time history versus time can be produced, clearly showing
possible fluctuations in execution time. Fluctuations occur
when operations depend on the actual numencal values of
operands, of if the program control flow varies. Worst-case
paths in the program control flow can however only be assessed
if they are actually executed.

*Executing’ a program on a DSP software simulator (instruc-
tion level) could be considered an option, but is usually
impractical because 1t is extremely time-consuming.

(11) avoiding exiended precision arithmetic

A DSPs computational power can be defeated if large parts of a
program require extended prectsion over what 1s provided
directly by the architecture. Accumulation (such as in (2)) is
normally performed already in extended precision at no penal-
ty, but results stored for later use in the program should be at
the standard wordlength.

There is one notable case in control where 1t may be absolutely
necessary to carry out extended precision arithmetic, High-pre-
cision motion control may for instance require 24 bit position
values on a 16-bit DSP. Using double-word arithmetic through-
out the control algorithm must however be avoided. Fortunately
there is a systematic way of kecping high-precision position
values out of the control computation /4/, except at onc
easy-to-handle place. It works equally well whether the control
algorithm 1s of simple error-driven PID type or a sophisticated
optimal state variable controller including a stationary
Kalman-Filter or observer.

Difference Equations or on-line Integration

In control implementation it is understood by most engineers
that the algorithm has to be brought into difference equation
form. Control design in the discrete domain delivers this
directly. Control design in the continuous domain requires
discretization. In that case 1t may be a viable option to
implement fixed-stepsize on-line integration of the differential
equations, for example with Euler or Runge-Kutta-type integra-
tors. Advantages are:

Parameters of the continuous system are directly reflected as
program variables, and thus can easily be changed on-line,
e.g for gan-scheduling.

By contrast such parameters arc normally spread out by
nonlinear expressions onto the coefficients of a difference
equation,

Nonlinear parts of the differential equation are naturally
represented on the right-hand side of the first-order dfferen-
t1al equation system to be integrated.

By contrast such parts need to be separated before discretiza-
tion and be attached later, making the situation somewhat
more complicated

Sparseness of coefficient matrices of a continuous system 1s
reproduced.
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With discretization sparseness must normally be separately
generated by transforming into a suitable structure (see
above section on minimization of computational load).

Disadvantages with on-line integrators are:

* Stucture transformation and automatic scaling are not
directly available for fixed-point DSP.

« Stability problems may occur for larger step-sizes or stiff
systems.

» Integration accuracy may be more limited, and the fidelity of
the digital version of the continuous system may be signifi-
cantly worse than with a good discretization of the linear
part.,

It is worth mentioning that there are discretization methods for
the linear part which correspond to an implicit on-line integra-
tor with respect to dynamics. Such algorithms are interesting
because they do not suffer from stability problems with stiff
systems. Implicit on-linc integrators however are totally im-
practical for real-time use.

On-hne integration today is the first choice for real-time
simulation of big nonlinear mechanical systems /5/ on float-
ing-point DSP, where particularly the first above-mentioned
advantages count.

Control Implementation with DSP-CITpro

The modules of DSP-CITpro and their interplay are depicted in
Fig. 8.

=B masg
PC-AT Boards
Fig. 8: DSP-CITpro modules
A bnef description of the modules is now given:

Interface Software. DSP-CITpro does not cover control design
or postprocessing of signals taken from the real-time experi-
ments which may follow code generation. For these purposes
there are well-known packages available such as MATRIXx or
MATLAB. DSP-CITpro interfaces to these packages.

IMPAC. Impac consists of IMPEX and a C or DSPL compiler.
IMPEX covers the preparation of a linear controller and
analysis of implementation effects, and also generates a DSPL
or C program for the controller. Such programs are then
compiled by the appropriate compiler.

IMPEX. In detail IMPEX provides the following services:
discretization,

combination of subsystem blocks into a complete controller,
- transformation into a suitable structure,
automatic corzection for A/D- and D/A- gains,

- automatic scaling of controller states for fixed-point imple-
mentation,
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- analysis of signal and coefficient quantization by simulation,

- A/D- and D/A- range entry and assignment of physical to
logical i/o channels,

- code generation specifications (meniory layout, scalar prod-
uct scaling etc.).

The IMPEX services are available for linear blocks (1) includ-
ing saturation where desired.

MERGE. MERGE is a kind of a batch editor. Its primary use 1s
to make modifications and insertions into code which was
automatically generated by IMPEX. A typical situation follows

A control design will normally be repeated and improved many
times based on experiment results. Current control design
technology is focusing on linear control. So in one design/im-
plementation/experiment project a lot of versions of a linear
controller are generated. Frequently the linear controller alone
is not sufficient, and must be enhanced by logic or nonlinear
parts. Such parts are currently beyond the code generation
scope of IMPEX, so they have to be added at the language level
(DSPL or C) This editing 1s what MERGE can automate. A
suitable controt file tells MERGE how to modify or enhance
the input code. Manual editing can be avoided and very quick
turn-around times can be achieved even if the logic and
nonlincar control code finally 1s much larger than the code for
the linear block.

NMAC. NMAC s currently only available for the fixed-point
DSP. It produces DSPL-callable assembly code for nonlinear
umvariate functions NMAC reads a file describing arbitrarily
spaced and arbitrarily many sample points of a desired func-
tion. It then produces table-lookup code which is optimized for
accuracy and speed. Various parameters specified by the user
can talor the code towards speed, accuracy, and memory
consumption tradeoffs

DSPL Compiler. The important features have already been
discussed 1n the general section on code generation. More
information 1s embedded in the examples below. The code
output of the DSPL compiler 15 fully commented assembly
code including exccution time profile information. The assem-
bly code is assembled by a standard assembler.

C Compler. The Texas Instruments ANSI C compler is used

MON and SED MON is an object code loader. It also loads
setup information into the DSP-CITpro hardware Such setup
nformation (A/D-ranges etc.) is bound to the object code so
that loaded ccde and loaded setups are always consistent, SED
is a setup editor. 1t is normally only used for static hardware
setup data. Setup data for individual controllers are normally
produced at the vode generation stage of IMPEX.

TRACE. TRACE :. the module used to record all desired
variables in the DSP while the control application is running. It
could be deseribed as a virtually non-intrusive software tran-
sient recorder. Sophisticated wriggering features allow captuning
the relevant data. Such data can be displayed graphically or
turned over to signal analysts or system identification packages
(MATLARB for example)

In sununary, the DSP-CITpro modules fill the gap between
theoretical control design and the real experiment Turnaround
times are very short due 1o sophisticated tools for making a
controtler suitable for implementation and due to code genera-
uon. It need not take more than a couple of minutes 1o
reimplement a redesigned high-order state controller including
a stationary Kalman-Filter up to and including the actual
expenment.

DSP-ClTpro has been used in many fields of application and
for various control techniques A selection of such applications

with relevance to aerospace is

- high-bandwidth suspension control for ground-based flexible
structure experiment,

- lightweight compliant robot joint control,

stabilization of head-up display mirror,

gyro equipment control,

servohydraulics for radar systems,

active suspension,

active vibration damping of flexible structures.

Control techniques involved range from simple PID control
over lgg-type state controllers, observers and Kalman-Filters up
to robust He controllers. Gam-scheduling, selftuning, and
adaptive control can also easily be implemented even on 2
fixed-point DSP.
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Appendix
Control Implementation Example

A motion controller for an electromechantcal actuatur is
considered (Fig. 9). The actuator model 1s of 7th order duc to
structural mechanical resonances around 1.5 and 2 kHz. The
actuator’s posttion and the electrical driving current are mea-
sured by sensors.

CONTROLLER
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Fig. 9: controller example

The lqg-type (linear-quadratic-gaussian) controller is assumed
1o be designed ac a linear quadratic optimal (lg) state feedback
with a stationary Kalman-Futer as an observer. The design has
been performed with MATLAB, A rate-limiter will be added in
the reference path, making the controller nonlinear, The




rate-limiter prevents touching signal saturation at one of the
sensors and thereby greatly improves medium-to-large signal
behaviour.

The steps are:
(1) Ilqgdesignin MATLAB

The sampling rate is set to 10 kHz. First results withi
MATLARB are the state-feedback vector (including the refer-

ence feedforward gain), plus the constant Kalman-Gain matrix.

From the state-feedback and Kalman-Filter the complete con-
troller can be constructed within MATLAB, wnitten to disk,
and converted into a format expected by IMPEX. An alterna-
tive is to write the state-feedback and Kalman-Filter to disk
separately, convert them, and then use IMPEX for combining
these into one single controller block.

(2) Create basic block readable by IMPEX (first alernative,
excerpt only):

basic_block 8

-- file C:\NICE\SEMC25\LQGDES\LINX,BBL
== 20 Dec 30 1:30:54 pm

sanpling_period i= 1,0E-04;

system_inputs is
name => u_x_ref, unit => v,
lower_bound => -1 0E+01,
upper_bound => 1.0E+01;
name => u_x, unit => V,
lower_bound => -1.0E401,
upper_bound => 1.0E+01;
name => u_I, unit => V,
lower_bound => -1.0E+01,
upper_bound => 1.0E+01;
end system inputs;

system _outputs is
name => u_M, unit => v,
lower_bound => =1.0E+01,
upper_bound => 1.0E+01;
end system_outputs;

system_equations ssd is
system_representation := PHYSICAL;
system _states is
name => x1;
name => x2;

name => x7;

end system_states;

dynamic_matrix is
a( 1, 1) = =5.13340703582052E-01;
a{ 2, 1) "= 4.15508858506746E-05,

row_output _matrix u_M is
c{ 1) = ~3,41575795865014E+01;
c( 2) := =1.73899220842727E+0S;
c( 3) = ~2.72461533485298E+01;
c{ 4) = 3,72279499287142E+05;
c{ 5) = ~3.05696777635724E+00;
c{ €) := -2 41915412951632E+05;
cl 7) := 1.36757999529863E+00;
end row_output_matrix;
direct_link u_x_ref to u M is
d i 1.42651871551162E+401;
end direct_link;
direct_link u x to u_M is
d i+ -9.98336393716665E+00,
end direct link;
direct_link u I to u_M 1is
d -~ -3.0473936899C223E-01,
end direct_link,
end systen_equations:
end basic_block;
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The above description cames all information on the controller
dimension, numerical values of the matrices 1n (1), signal
names and their optional ranges and umts. This controller has a
total of 80 nonzero coefficients, 494,21 mB,7inC, 3in D.

(3) Application of IMPEX

The following main steps are performed:

- Structure transformation, reducing the number of coefficients
in4 from 49 to U1,

- Automatic state scaling for fixed-point implementation.

- Specification of i/o for code generation.

- Specification of scalar product handling as to be realized by
DSPL compiler.

- DSPL source code generation.
The following DSPL program is produced (excerpt only):

scptype statel is fix’ (acculength «> 32,
round => on,
scale => on,
saturation => off),

scptype outl s fia’ (acculength => 32,
round => on,
scale => common,
saturation => on);

xk 1 vector (7) of fractional:
xkl : vector (7) of fractional;
u : vector (3) of frantional;
input is u;

Y : vector (1) of fractional;

output is y,
temp]l : rawaccumulator;
begin
every 1.0E-04 do
update (xkl, xk):
input (u);
accumulate prescalpro (outl)
y(1) = templ + dl * u;
end accumulate;
output (y): == line 152
accumulate acalpro (statel)
xk1(1) := al * xk + bl * u;
end accumulate;

(4) Compilation and download (first without rate-hmter)

The linear controller’s DSPL code is first compiled for a TMS
320C25 second gencration fixed-point DSP, the assembly
language output assembled, and the object file loaded onto the
hardware if it is attached. All that can be done by invoking just
one batch file.

Compilation yields the following processor foad info fife,
which shows that at maximum 27.6 ps are needed:

execution time requirements

task | cycles | rate (kHz) | time (us) | rgst (us)

11 276 | 3€.232 | 27.600 | 100.000
total processor load 27.60 %
303 words of code (off-chip).

37 words of data (on-chip).
32 woxds stack {on~-chip)
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An cxcerpt of the assembly code produced highlights the
automatically generated comments and DSPL statement-wise
execution cycle profile information. Line 152 of the DSPL

s source is marked in the above DSPL excerpt for reference.
addh _cl15
rovm ; disable HW satur
sfl ; rescale
sach _v2, 7 ; oy
; ==== 19 cycles
; line 152
ds2101 0,2, _v2,080h,2 ; output y(1)
; ==== 7 cycles
: line 153
zac
it _v8 : xk(1)
mpyk 3172 ; al(l)
lta _v8+1 ; xk(2)
mpy _¢3 ; al(2)
lta 2! ; u(l)
mpyk =-76 ; bl{l)
lta _vi+l ; u(2)
mpyk =3660 : bl(2)
lta  _wvl#2 7 u(3)
mpyk -23 : b1(3)
apac

adlk 1, 14 - 0 perform rounding
; no overflow test, roscaling 0 bit
sach _v9, 1 . xk1(1)

., ==== 15 c¢ycles

(5) Merging-n the rate-hmnter code

The following file instructs MERGE so as to include the
rate-limiter code:

@ #begin# - 1 insert

*

r_last : fractional,

delta * fractional,

max_delta : constant fractional ‘= 0.008;#

@ #update# +1 insert # r_last := u(dy; 4

@ faccumulate# insert
$omcmwrmmmeacm—enaa. [
delta := u(l)-r_last,
if delta > max_delta then
u(l) := r_last + max_delta;
elsif -dolta > mas clta then
u(l) i« r_last - max_delta;
end if;
i et bt b =-~#

The first line of this merge control file for mstance contains the
following merge instructions: look for the string "begin’, go up
one line, then insen the 3 lines of declarations bracketed in by
the # character. One executable statement and a sequence of 6
executable statements are inserted by the next two merge
nstructions.

Invoking MERGE for the above DSPL source and merge
control file, compiling, assembling and download can again all
be performed by just invoking one batch file.

(6) Ccode generation

If the same controller 15 1o be implemented on the TMS
320C30 floaung-point DSP C code generation has to be
selected in IMPEX. The same MERGE utility can then be used

to insert the rate-limiter. An excerpt of the resulting code is
shown below:
/* declaration of input / output functions */

void start();
float ds2001();
void ds2101();

/* declaration of coefficients */
/* dynamic matrix */

float al_l = 9.6813219E-02;
float al_2 ~ 8.8771683E-01;

/* input matxix */
float bl_1 = -1,4816430E+00;

/* declaration of varxiables */
/* state variables */

float x1_modal = 0.0000000E+00;
float xk1_1 = 0.0000000E+00;

/* input variables */

float u_x_ref_scaled = 0.0000000E+00;
float u_x_scaled = 0.0000000E+00;
float u_I_scaled = 0.0000000E+00;

/* output variables */

float u_M_scaled = 0.0000000E+00;
/* temporary variables */

float temp_1 = 0.0000000E+00;

/*=== rate limiter =-==w=- et/
£loat r_last,

float delta,

float max_delta = 0.008;

/*em= @XEC tiMe -m-m--mow %/

long timer_new, timer_old;

long *timer_counter = (long *) 0x808034;
float exec_time;

float t_clock = 1,2012E-7;

c_int100)
{

timer_old = *timer_counter,
asm{"trapu 27"); /* call TRACE30 */

x1_modal = xk1_1;
x2_modal = xkl1_2;
x3_modal « xk1_3,
x4_modal = xkl_4;
x5_modal = xk1_5;
x6_modal = xkl_6;
x7_modal = xkl_7;

/*~=w rate limiter ==--=----- */f

r_last = u_x_ref_scaled;
JALL L -- */

start();

u_x_ref_scaled = ds2001(0x00000003, 0x00000001);
/*==- rate limiter ===w=-ce- */

delta = u_x_ref_ scaled-r last;
1f (delta > max_delza)
u_x_cef scaled = r_last + max_delta;
else 1f (~delta > max_delta)
u_»_ref_scaled =« r_last - max_delta,
/* - */

u_x_scaled = ds2001(0x00000000, 0x00000092);
u_I_scaled = ds2001(0x00000000, 0x00000003),
u_M_scaled =~

terp_1 +

dl_1 * u_x_ref scaled +

dl_2 * u_x_scaled r

dl_3 * u_I_scaled;




ds2101 (0x00000080, 0x00000001, u M scaled);
xkl_1 =

al_l * x1_modal +

al_2 * x2_modal +

bl_1 * u x_ref scaled +

bl_2 * u x_scaled ¢

bl_3 * u_I_scaled;
xkl_2 =

a2_1 * x1_modal +

a2_2 * x2_modal +

b2_1 * u x_ref_scaled +

b2_2 * u_x_scaled +

b2_3 * u_I_scaled;
xk1_3 =

a3 _3 * x3_modal +

a3_4 * x4_modal +

b3_1 * u_x_ref_scaled +

b3_2 * u_x_scaled +

b3_3 * u_I_scaled;
xk3_4 =

a4 3 * x3_modal +

a4_4 * x4_modal +

b4_1 * u_x_ ref_scaled +

b4_2 * u x_scaled +

b4_3 * u_I_scaled:
xk1_5 =

a5_5 * x5 _modal +

b5_1 * u_x_ref_ scaled +

b5_2 * u_x_scaled +

bS_3 * u_I_scaled,
xk1_6 <

ag_6 * x6_modal +

b6_1 * u_x_ref_scaled +

b6_2 * u_x_scaled +

b6_3 * u_I_scaled;
xkl 7 =

al_7 * x7_modal +

b7_1 * u_x_ref_scaled +

b7 _2 * u_x_scaled +

b7_3 * u_I_scaled,
temp_1 =

cl_1 * xkl 1 +

€1 2 * xkl1_2 +

€1_3 * xk1_3 +

€l 4 * xkl_4 +

c1_ 5 * xkl_ S +

c1_6 * xkl_6 +

c¢1_7 * xk1_7;

timer_new = *timer_counter;
exec_time = (timer_new - timer_old) * t_clock:

The C code as generated by IMPEX has been enhanced via
MERGE with some code for execution time measurement by
TRACE.

The code exhibits indexless (no-arrays) calculation for maxi-
mum speed The dsXXXX functions are Vo functions for the
specific hardware.

A comparison of 1st, 2nd and 3rd generation DSPs executing
the above controller including the rate-limiter programmed (or
better. code generated) 1n the approprate language is given in
the table below. The execution time figures are exclusive 1o,
which can take about a microsecond with the right penpheral
hardware architecture and components

processor language | clock | execution
TMS 320C14| DSPL. |25 MHz | 26 6115
TMS 320C25| DSPL. |40 MHz | 18.11s

TMS 320C30| C 33MHz |=15ps | about 5
MFLOPS

17-9
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Predictive Functional Control (P.F.C.), 8 Mode Based Predictive Control (MBPC) technique is a control strategy based on the
use of a model to predict the process output over a long range time period. This technique, fully compatible with the “CAD-
based integrated design", is presented here. The link between the specification and the control law tuning parameters is made
and the benefits of the use of a CAD tool is demonstrated. Two industrial applications are detailled. The first one concemns the
guidance law of an air defence short range missile. The second one consists in the contro! of the two axis turret of a very short

range air defence weapon system.

1. INTRODUCTION

Design of control laws for weapon systems are subject to
more and more severe constraints. These laws have to satisfy
high quality performance and have to be adapted to more and
more difficult environments (inter-changeability of sensors
and/or actuators, restricted and/or evolutive specifications,
processes with unusual behavior : delay, non-minimum
phase, non-linear, non-stationary, oscillatory, unstable,
..etc). In these conditions, tight correlation between the
parameters to be tuned and the required specifications have to
be established in order to allow rapid prototyping. A good
performance/cost ratio is thus necessary.

Predictive Functional Control (PFC) technique presents
interesting characteristics for this purpose. PFC is a model
based predictive control technique developed by ADERSA
and used by THOMSON-CSF in the last few years. The
contro} is designed according to a receding horizon strategy,
using explicitly a model to predict the process output over a
long-range time period. For linear models, this leads
analyt:cally to a linear regulator which can be easily
implemented in an on-board computer for real-time
applications.

The technical features of PFC are well appreciated : follow-up
servo  performances, robustness, simple constraints
handling, possibility of controlling difficult processes,
compensation of measured disturbances by a feedforward
action, inherent dead-time compensation, .... But the most
appreciated characteristic is its ease of tuning ; in fact PFC
design introduces specification parameters rather than tuning
parameters this allowing direct relation with performance.
This main feature makes the PFC technique fully compatible
with the "CAD-based integrated design” and “engineering
workstation” concepts.

PFC environment permits acceleration of the phase between
model identification and performance evaluation. Once the
model is obtained, the control strategy is straight-forward by
defining the setpoints nature and the required specifications.
In the PFC software, many procedures are dedicated to assist
the user in the parameters selection in relation with the
specifications. Simulation and behavior anaiysis (in both
time and frequency domains) of the process controlled by
PFC can also be accomphshed by the software.

An expert system has been added by THOMSON-CSF 1o the
PFC software in order to save experience of existing PFC
users and to help for rapid training of new personal. The PFC
concepts can thus be mastered in a short nme ; this is

particularly attractive for non-expert technical persons who
have a limited control background.

All the tools associated with the PFC sofiware increase
considerably the interest in the technique. PFC is wide-open
to further extensions.

The main characteristics of the PFC software are given in
section 2.

In the fields of air defence systems, in which we apply it,
this technique present moreover the advantage, with regard
to conventional techniques, to propose a package :

complete for the compultation of the control (it
includes both feedback and feedforward actions in the
case of unknown setpoint),

- independent in the case of temporary lack of measures
(setpoint or output process).

This technique has been used by THOMSON-CSF mainly in
the following two applications :

- in simulation (engineering simulator of short-range
weapon system) for all phases of line-of-sight
guidance (initial, pursuit and terminal) of a high
velocity missile. The missile characteristics are :
non-stationary, non-lincar and non-minimum phase,
This technique has proved to be very performant with
regard to a classic law (adaptative PID) in the case of
fast manoeuvring targets (aircraft evasive
manoeuvres, missile and aircraft helicoidal
manoeuvres) and it maintains very good
performances in the case of straight targets, radial or
not.

- in simulation and on the actual weapon system for the
turret homing to target phase of a very short range
weapon system, This turret presents many non-
linearities such as friction, free motion, hysteresis
and saturation. Its behavior depends on the amplitude
of the effective movement. The PFC technique with
its associated CAD tool, allowed, not only to
improve the dynamic performance with regard to
polynomials regulators (previously used) but also
rejects the effect of perturbations such as blast of
wind, noises and inertia variations. The looked for
robustness was not, in the past, achieved by other
technique.
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These two applications are treated in section 3.

2. PFCSOFIWARE

The general principles of the PFC technique are briefly
presented here, in the single input - single output case, then
the main characteristics of tite software are described and its
CAD-compatible nature is shown. Details on the PFC
algorithm which leads to a lincar control expression are
provided in the Appendix A.

2.1. PFC GENERAL PRINCIPLES

PFC is a particular long-range predictive control techmque.
The control variable is calculated on-line according to the
following receding horizon strategy.

At each sampling time (Figure 1) =

the process output has to rally a setpoint trajectory in
the future.

a reference trajectory initialized on the actual process
output defines the way to follow the sctpoint on a
prediction horizon ; the characteristics of this
trajectory are chosen in relation to the desired closed-
loop dynamics. A first order decay error between the
setpoint and the process output is generally used.

past ~#— present —— future

process output

_,J“H_ru—A

manipulated vanable

I
]

! SEtpoint

Prediction horizon

FIGURE 1 : PFC principle

The future control variable is structured as a linear
combination of a pre-specified set of functions called
base functions. The choice of these functions depends
on the nature of the process and the setpoint.
Gererally step, ramp, parabola, ... are used.

The process model allows expression of the output
prediction under the effect of the futurc control
sequence. The process output prediction is then
adjusted by taking into account the extrapolated
distance (in the future) between the process and mode}
outputs based on past observation, This is called the
self-compensation procedure,

The conwrol objective is o minimize the sum of the
squared errors between the predicted output and the
reference trajectory at centain points of the prediction
horizon called the coincidence points. The number of
these points is at least equal to that of the basc
functions. Adding a quadratic term in the control
variable or its variations to this criterion allows
control smoothing.

- The control variable computation consists of
determining the unknown coefficients of the linear
combination of the contro] expression. Only the first
value of the future control sequence is used to control
the process. The whole procedure is repeated at the
next sampling instant and so on.

2.2. PFCPARAMETERS AND THEIR PERFORMANCE
RELATION

It is assumed here that the reader is already acquainted with
the Appendix 1 in which details on the PFC algorithm are
given, We first present the list of the PFC tuning parameters
and then we indicate how they can be sclected.

The parameters are of two types : basic and optional =
- basic parameters, these are

the base functions
the reference trajectory (response ume)
the coincidence points

The nfluence of these basic parameters on the main
specifications is 1llustrated in the following table
where 0,1 and 2 mean weak, medium and high
influence respectively

Tuning
Base Reference {Coincidence
functions | trajectory | points

Specification

Steady-state

accuracy 2 0 0
Closed-loop

dynamics 0 2 1
Stabilty -
lrobuslness 0 1 2

The almost diagonal property of this matrix shows
that the basic parameters are specifications parameter
directly connected to the performance characteristics.

- Optional parameters, these are for :

sclf-compensation (extrapolation polynomial
degree, number of past observations and their
filtering)

setpoint extrapolation (degree of the polynomial,
number of past values)

criterion modification (weight of the quadratic
term added and order of the control variable
variation considered)

Concerning the nfluence of these optional
paramelers, we can give the following elements,

The self-compensation procedure is necessary when
the difference between the process and model output
causes & nol constant asymptolic tracking error if no
self-compensation is used.

The setpoint extrapolation in a polynomial form
ensures the steady-state accuracy when the setpoint is
not known in the future.




The criterion modification is intented to produce a
more regular control. It is particularly interesting 1n
the presence of noise.

2.3. TUNING

For some of the already listed PFC parameters the
specifications can guide their selection, this is the case of
the time response of the reference trajectory and the setpoint
extrapolation degree.

For some others, rules derived from theoretical results have
to be applied ; this is the case for the choice of the base
functions.

Unfortunately, for the remaining parameters, there is no
straight forward link between them and the performance
characteristics. Thus for the selection of these parameters,
no rules exist apart from some elementary ones, For these
parameters the software PFC provides many help procedures
to the user, through specific experimental results giving, for
different choices of the parameters, many performance
ctiteria (closed loop dynamics and robustness margins, ...).

The limited scope of the paper does not allow to give all the
details concerning the tuning of cach parameters.

But one can be said is that the possibilities 0. 2red by the
PFC software permits easy tuning and rapid prototyping.
PFC can be used by non-experts, it is a good candidate for
CAD-based Integrated Design.

2.4. ‘TUNING WITH AN EXPERT SYSTEM

An expert system, called PFC-EXPERT, has been built from
KIRK (developed by THOMSON-CSF). KIRK is an expert
system shell. Its principal functionalities are a forward
chaining capability, a prolog-based backward chaining
capaciiity, packet of rules to organize the knowledge base.

The PFC-EXPERT knowledge base contains the tuning rules
related to basic parameters (see section 2.3). In the case of
optional parameter, the rules are defined from experience of
existing PFC users acquired by interpretation of performance
criteria provided by the software PFC.

The PFC-EXPERT presante advantages to accumulate the
knowledge of the users and to help for rapid training of new
personal,

3. APPLICATIONS
3.1.  MISSILE GUIDANCE
3.1.1.  PROBLEM STATEMENT

Intercepion of a moving target (aircraft or missile) by a
remote control missile, launched from a fixed or moving
platform, is a complex dynamic problem composed of
several phases. Once the target is detected, the launching
platform is oriented such that initial conditions of the
missile flight are the most favorable. Simultaneously, the
weapon system compuler estimates the most appropriate
time to launch the missile. As soon as the missile is
launched, it is guided until the mterception of the target. In
the domain of short-range weapon systems, the type of
missile guidance is generally a L.O.S. guidance (Line of
Sight).

The L.O.S. concept ban be characterized by three points : the
posttion of the fire unit, of the target and of the missile. The
object of the L.O.S. guidance system is to consuain the
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missile to lie as nearly as possible on the line joining the
fire unit and the target called the line of sight.

The concept of THOMSON-CSF L.O.S. systems is automatic
using differential missile to target tracker (ex. CROTALE
system) where all the operations are executed at ground level
to correct imperfect target tracking in the guidance loop.

TRACKING RADAR COMMAND
S .}cummce -
AND LINK
COMPUTER nmsmrnnl

In
ALIGNMENT  UNIT

FIGURE 2 : Principle of the LOS command

The main research works on the missile guidance subject {2),
(31, [4] concem the "terminal” phase (see figure 2) because it
is a deciding factor in the presence of targets manoeuvres,
particularly during the hundredths of second preceding the
interception. Nevertheless, each phase of the missile
trajectory has a different objective which leads to the success
of the fire. The first phase is intented to counter the launch
disturbances. The second phase objective is to minimnize the
cnergy consumplion to preserve & high potential of
manoeuvrability. Finslly the "terminal” phase is concerned
with the miss distance mimmization. Generally, there exists
a guidance law structure adapted to cach phase and an
appropriate methodology for tuning the parameters of each
guidance law.

In the most general case, the inputs of the guidance law are
(see figure 3 ):

- €y, measures of the metric differential gap target to
missile,

- 03 et dBy/dt measures of position and speed binded to
the line of sight motion,

- Im, estimated value of fire unit o missile range.

The acceleration T (see figure 3) is the output of the control
cemputer and is calculated in the missile reference system of
coordinates.

The specifications required for the guidance law are

- to minimize the error €5 at the interception,
particularly in the case of fast manoeuvring targets,

- to mirimize the noises on the missile control
accele, ations,

- robustness with respect to the inaccurate knowledge
of the process (non stationary, non linear, non-
minimum phase, reference system change, ...etc).
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FIGURE 3 : Structure of guidance law




3.1.2. CONTROL LAW DETERMINATION WITH CAD
TOOLS

The following elements are needed for the predictive
guidance law :

the calculation of the future setpoint trajectory. The
more convenient way to do that, is to extrapolate
filtered past values in a fixed reference system,

the calculation of the position of the missile in the
selected reference system axes. It can be easily
reconstructed from the mesured error €y and the
estimated setpoint (sce figure 4 below),

a linear model that gives the realized position of the
missile from any control acceleration.

PREDICTIVE GUIDANCE LAW

[

4) of se¢ poiny
n the PEC
relerence system

Computauon
of metric gap
X

am tn e PEC

Telerence symem

FIGURE 4 : Structure of the predictive guidance law

The single input - singie output PFC control law elements are
described in figure 5 :

Where :on = current time,

g = lime t2 go, estimation of the
remaining time before intercep-
tion,

tmd = output of atarget manoecuvre
detector.

The internal model chosen is relatively simple in
comparison with the process complexity and does not result
from a very accurate identification procedure. It consists in a
transfer function which represents very approximatively the
missile for a given flight time, a total tme delay in the
guidance loop and a double integration. The parameters arc
considered time invariant.

In what follows, two PFC laws are described by mean of the
same set of equation. "PFC terminal” includes a terminal
phase with the time 1o go estimation tg and “PFC” is the
same with iz = 0 assumption. The passing over from "PFC"
law 1o “PFC terminal" 1aw is very easy.

"
+ Y
l of M S ———

Set pont Self.
*oeder ot w2 :otdum-i
* 20 past powzs 15 pax powts

* tker reponse ume 15 s

und Iu, :x\(\ ﬂ

. 1sternal model
EVOLUTION | )} LINEAK CONTROL, e
M LAW EQUATION | AM(n) S
for coefficients]| > - p2 (1+p 2 Uenvpliamd)
i 3ad vector v I\
T —/It j

FIGURE 5; PFC law
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The principle of "PFC terminal" law is to vary
simultaneously the coefficients (ki(i=0,1,2), v) of the PFC
regulator in function of two variables : the output tmd of the
target manoeuvre detector and the estimation of the
remaining time before the interception (tyg). This leads to
the following regulator equation :

Fn) = koftmd, 1g).(cotn) - yp(n)) +
2
T lki(tmd, tig).(ci(n) - ()} +
i=1
vT(umd, tig)xpm(n)

The evolution cxpressions for coefficients kj and v are given
by »

ki = Kyinit * (aj - bi*tmd) * cvk; fori=0,1,2
v = Vipjt * (a1 - b1*tmd) * cvk)
where :

- aj, bj and cvk; are positive,

- the values kij,injt (1 = 0, 1, 2) and vjpjy are those
corresponding to & tuning which requires a weak
dynamics (i.e. that the coincidence points are nearly
of the reponse time).

- for tmd : a law value is adapted to helicoidal and
evasive manocuvres requinng strong dynamics, a
high value is adapted to defiling targets which need
medium dynamics.

- cvkj = 1. + ckij*cvk fori= 0, 1, 2 where cvk is a
timited function of M.

The numerical values of a;, by, vk; for i =0, 1, 2 result, with
the PFC software, from analyzing the evolution of the
coefficients kj (i = 0, 1, 2) and v when the coincidence
points are chosen smaller and smaller. The PFC software
offers very great facilities for that. These variations are
lincar functions of tmd and tg.

3.1.3.  PERFORMANCES COMPARISONS

The 6 DOF (degree of frecdom) simulator used to evaluate the
performances of the different guidance laws, is representative
of an existing short-range weapon system. It encloses an
accurate modelisation (physical models) of each of 1ts
material components. The on-line software simulation of the
weapon system is according with the real time
implementation. The conditions in which the guidance laws
have been tested are thus among the more realistic ones.

The fire topics are

- R1 : aircraft target, radial straight target, constant
speed = 500 mys, interception range = 6.5 km,

- Hl : aircraft target, helicoidal manocuvring target,
constant speed = 300 m/s. around 4 parallel to X
with a 500 m cross range. interception

range = 7.4 km
- H2 » same as H! with missile target and constant
speed = 160 m/s

- D1 » aircraft target, straight and level a long A
altitude = 1000 m, horizontal cross range = 4500
m, constant speed = 350 m/s, interception
range = 4600 m.

- D2 : same as D1 with constant speed = 500 mys, A
altitude = 200 m, cross range = 3000 m,
interception range = 4200 m

- El : aircraft target, straight horizontal target,
constant speed = 500 m/s, escape manocuvre 5 g
before interception range 5 km.

- E2 : same as El with 10 g manocuvre.
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In what follows, we present synthetic results of the Monte-
Carlo simulations for the different laws evaluated :
"classical” law ("PID" type adaptative regulator with
feedforward action), "PFC" law and "PFC terminal” law.

Relative mean miss distance

~

0

1= 1

R H1 H2

E]CLASS!CAL - PFC

FIGURE 6 : Guidance laws comparisons

D1 D2 Et E2

- PFC TERMINAL

The superiority of the predictive guidance law is obvious in
the case of fast manoeuvring targets. It is clear that the
adding of a terminal phase improves the performances in
term of miss distance from 30 to 60 %. For the last laws and
from a real time point of view, realistic estimations of the
duration demonstrate the compliance with the on board
computer constraints.

3.2.  TOW AXIS TURRET CONTROL

3.2.1.  PROBLEM PRESENTATION

The objet of this application is to realize the control, using a
real time computer, of a two axis (elevation and bearing)
turret. The system allows the angular tracking of a
manoeuvring aerial target.

.

Line of sight

Elevaton

Plaiform

i
|
|

FIGURE 7 : Two axis optical turrel

Target type

Real-bime computer

Line of
PFC algorhm
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FIGURE 8 : Functional scheme of the turret control
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The system includes elsctromechanical structures and
electronic parts. It can be represented by a three dumb-bells
model. The main mechanical components of the chain are the
motor, the gear box assembly and the load. The chain
caracteristics are :

- the motor, gear box assembly and load incrtias

- the flexibility and the damping of the transmission
gear

- the free motions, frictions and hysteresis

- the gear ratio

Electronic loop are included in the turret assembly hardware »

- regulation loop for the mo.or current
- tachometer loop for regulation of the motor speed

Synchro-resolvers give the angular positions (clevation and
bearing) of the load compared with the platform.,

$yncheo
Resols et

TYachometer loop

Coroh - -
vanahle Tachometes Currens L] Mecor || ©*# Losd
(Speedy Eiactronn Electronic Bov

Current oop ' I

Lne ol
vt

(Purrinan)

FIGURE 9 : Turret assembly (one axis)

The control variable of the turret assembly chain is
representative of the load speed. The process output are the
angular positions of the load which represent the line of
sight for the tracking.

Now let us talk about constraints and required pertormances.

The most important constraint is that the control law has to
withstand :

- large system parameters variations (for example : the
range of the turret inertia is from 60 to 120 kg.m2).
These variations have an effect on the process time
response (30 %) and on the process time delay (50 %)

- non linear effects due to f{nction, threshold,
backlash...

For a tracked flying target, the set point trajectories are
unknown. Nevertheless, most of them correspond to a
rectilmear uniform flight at a constant altitude. The involved
setpoints are made of reversed trigonometric functions (see
figure 10) =




For example : O=arctg y‘f’

where V is the target speed
. d is the crossing range
t is the current time
@ is the bearing sctpoint

[
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Morever, the wrring parameters are the system required
specifications. This feature makes the PFC (the choosen
MBPC) technique fully compatible with the “CAD based
integrated design” and “engineering workstation” concepts.
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FIGURE 10 : Typical setpoints

The allowed tracking error in the previous conditions should
not exceed 5 mrad with 4 rallying time response as shorter as
possible.

In order to preseive the electromechanical parts, the control
is subject to the following constraints :

1 u hnax < 1.5 rad/s and %‘5 l < 1.6 rad/s?
U “max

As the real time computer 1s not only dedicated to the tunet
control, the samphing time cannot be less than 20 ms, which
is a severe restriction according to the system time response

As all these constraints and required performances are very
strict, a conventionnal control law (Signal Based Control
like P.L.D.) has revealed itself quite insufficient because :

- the set points to follow without tracking error look
like second order polynomials,

- the control variable constraints are very strict and are
often hit (the model evolves with constrained
control),

- the sampling time (20 ms) is very important with
respect o the process tume response (35 ms).

- the process is highly non lmnear (friction 1s an
important constraint) and a S3C control law would
not achieve the required robusiness performances.

A more claborate control law is needed. Among the Model
Basced Control techniques, the Predictive ones (MBPC) are
particularly well adapted to high evolutive setpoints.

3.2.2.  CONTROL LAW DETERMINATION

All the PFC parameters are listed in section 2.2, For same of
them, the specifications can actually guide their selection.
For example, the setpoint extrapolator degree is linked to
the typical observed setpoints most of which can be
approximated by second order polynomials.

The time response of the reference trajectory 1s related to the
process response. As the control law and its gradient are
himited, the time response of the reference trajectory depends
on the difference between the setpoint and the process output
which 15 to be compensated. Then this PFC parameter has
been tabulated according to the eror o compensate.

= f(C. Sp)

Others parameters tuning derives from theoretical results. It
15 the case for the number of base functions. If d is the degree
of the polynomial setpoints and nj is the number of
miegrators in the process to control then the number of base
functions is d - nj + 1 if the specification 1s to have no
tracking error. For this application, as the process is once
integrative and as typical setpoints look like second order
polynomials, two base functions were chosen : the step and
the ramp.

For an equation system 1esolution reason, the number of
coincidence points must at least be equal to the number of
base functions. If it is greater, the system is solved with a
least square method. Their positionning depends on the
desired robustness. It also has some effect on the control
dynamics. Situated near the current instant, the band pass is
large, far away, the dynamuc is quite poor.




18-8

Unfortunatly neither process behaviour specifications nor
theoretical results can be a way to determine the number of
comcidence points and their location.

Here is one of the main interest of the CAD tool. As soon as
the reference trajectory, the base functions and the number of
coincidence points are chosen, an on-line help gives to the
user the gan margin, the delay margin and the time response
for different locations of coincidence points. Results are
presented in a table in which the user can choose a tuning for
the coincidence points. An example of one of these on.line
help tables 1s given hereafter (figure 11) for a first order
reference trajectory (tr = 0,1 s), two base functions and twn
coincidences points.

T L T e A e T e

*Nol points coincidence | k0 Im.gainim retarditps. rep.*
PP T T T S L T R LR e AT R
* 11 0 0«00 0 1000 | 45.3 1 60§ 0 0600| 0 120+
* 2] 0 0600 0.1000 | 33 4 | 6.81 0 0600| 0 140"
* 3 00800 0.1000 § 27.7 1 7.41 0.0800( G 140
v 41 0 0400 0 0800 1 47.2 | 5.81 0.0600¢ 0,120
L1} 0 0600 0 0800 | 361 [ 6 6F 0 0600| 0 120
* 6]  0.0400 0.0600 1 S0 5 I 581 0.06001 0 120+

T T e e R R L A

FIGURE 11 : Example of coincidence points on-line help
results

As alrcady told above, most of the setpoints can be
considered as portions of second order polynomial. This
gives the degree of the setpoint extrapolating polynomial.
The number of past setpoints values used in the
extrapelation results from a trade-off between the following
considerations

The noise in the setpoint is quite mportant (¢ = 25
mrad). Considering a great past horizon will have a
filtenng and delay effect.

10 % of the setpoints correspond to very high
evolutive targets. If the filtering effect is important,
the extrapolation will be bad and will lead to the loss
of the tracked target.

All the MBPC techmiques use an internal and linear model of
the process. His goal is to predict the process behaviour in
the future Unfortunately, the model and the process cannot
be identical. The model only approximates the process. Iis
determination results from a global identification step based
on datas meseared on the real process to control. The chosen
models for this application are

1
Hgm(s) = s(1 +0.03) for beaning axis

Hm(s)=m for elevation axis

As the process and the model are not 1entical, the process
output prediction for the future instants will be biased. The
process and model mismatch is known m the past and at the
current instant. It can be then extrapolated in the future, that
15 the purpose of the self-compensator which parameters to
tune are &

- degree of the extrapolating polynomal
- number of past values used in the extrapolation
- time response of the process-model mismatch filter

The filter 1s necessary to smooth the extrapolated datas
because of the noise they carry with them.

For the tuning of these parameters, the CAD tool gives an
on-line help similar to the above one. Once given the degree
of the extrapolating polynomial, the user gets a table in
which are given the gain margin, the delay margin and the
time response for several values of the filter time response
and the number of past values used in the extrapolation. A
particular tuning can then easily be chosen. An example of
this on-line help is given below (figure 12) for a first order
extrapolating polynomial.

L L L T e e )

*No| nb.dom | tps.filtre | m gain | m retard | tps. rep. *

D T e e I T

* 1 2 i 0100 | 30 0.0200 1 0120 +
v 2l 2 | 0200 | 3.8 | 0.0200 | 0.120
v 3y 2 ' 0.500 | 48 0 0400 0,120 «
v 4y 2 | 1000 | s.2 | 0.0400 ) 0 120
* 51 5 { 0.100 | 5.0 | 0 0200 | 0120
* 64 b i 0.200 54 0 0200 | 0 120 «
N S 1 0 500 | $6 | 0.0400 | 0.120 »
* 8l 5 | 1000 | 58 | 0.0400 ¢ 120 *
* 9t 10 § 0.100 1 58 ¢ 0 0400 | 0120 «
*101 10 1 0.200 | 58 | 0 0400 | 0120 *
111 10 | 0 500 | $8 | 0.0600 | 0120 »
121 10 l 1.00C 1} 58 | 0 0600 ! 0120 »
*13t 20 1 0.100 1 58 0 0800 ) 0.120 »
*14) 20 1 0200 | $8 0.0800 | 0 120
*181 20 1 0 500 | 58 | 0 0600 | 0.120 *
*161 20 § 1.000 4 S 0.0600 } 0120
R Ry R R R L LR L T T T T ]

FIGURE 12 : Example of self-compensator on-line help
results

To tune all these parameters using the CAD, several steps are
necessary.

Process and model are identical, control variable 1s
not constrained. Reference trajectory, base funcuions,
coincidence points and setpoint extrapolation must
be chosen.

Process and model remain identical, contzol variable
1s constrained. Reference trajectory is then adjusted
according to the deviation to compensate.

Process and model are different, control vanable is
constrammed Choose the self-compensator
parameters.

During all the procedure, the CAD tool can generate the
behaviour of the different interesting datas showing them on
time depending graphics

Setpoint

Control vaniable

Process output

Model output

Difference between setpoint and process output
Difference between process and model outputs

For the tracking turret application, the selected parameters
are :

- First order trajectory :  ty=f{(c, sp)
~ Two base functons - step and ramp
- Two comncidence points : 13 =0.04s  12=0.08s
- Second order setpoint extrapolator with S past values




- First order self-compensator extrapolator with 10
past values
- Self<compensator time response filter = 0.5 s

The control law, written in ADA, is the following one.

u(n) = ko.(c(n), spm))-[co(n) - sp(n)] +
ki.Je1(n) - dj(n)] +k2.c2(n) + VI.XM(n)

Where »

n is the current instant

c 1s the setpoint

Sp is the process output

cj(n) are the setpoint polynomial extrapolator
d

constants such as

i)=Y oyfn).il
j=0

dy(n) is the first order constant of the difference

between process and model outputs polynomial

extrapolator

XM(n) is the current model state vector such as
XM(n) = FXM(n-1) + G.u(n-1)

kj(‘ off-line constants given by the CAD tool

v,  off-linc vector given by the CAD tool

The figure 13 shows P.F C. law implemented in the on-board
system real ime computer Resuits are shown in the next
section.

In appendix B 1s shown the hsting generated by the CAD
tool.

Process output
Linear model

“ ) : :
M §(1+0033)

Self-compensator
Filtered and extrapoiated
T oupuu difference l Model out, ut
set-poin Set-pownt Contral Control vanable
exuapolaior slaborauon
A PFC CONTROLLER
p| PROCESS b
Coatrok vatiabie
Process outpat

FIGURE 13: P.F.C. law

3.2.3.  RESULTS

The obtained results for a tracking sequence are presented
here. The figure 14 shows a step response of the turret and a
non moving target tracking. The tracking error remains n
the specified values. The rallying time (without overshoot)
1s very good.

The figurel$ shows the tracking of a rectilinear umform
flight a1 a constant altitude. Here, the target 1s more
evolutive, but the tracking error always remans 1n
accep:able values.

4. CONCLUSION

In this paper, it has been discussed of a new guidance and
control technique : Predictive Functional Control. It was
shown that this technique is fully compatible with CAD
integrated design and allows rapid control laws prototyping.
Two applications were presented. Obtained results are quite
significant. For the missile guidance law, the miss distance
was reduced of 30 o 60 %. For the turret control, it was
shown that good per srmance and robustness could be
obtained under wide operating conditions. Compared to the
previous SBC Control law, the robustness and the closed
loop dynamic have been increased by 50 % and 20 %
respectively.
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APPENDIX A
A.l. ON-LINE CONTROL COMPUTATION
The linear mode! of the process, in stage space form, is

introduced in the contro] elements :

PFC

u yF'

g

FIGURE 16

with the notations :

p 4 process

(o :  setpoint

u ®  contro) variable
M : model

y : output
The reference trajectory yR on the prediction horizon of

length h is & first order trajectory defined by :

clnti) - ye(nti) = al{c(n) - yp(m)}  0sish (A1)
with 0sasl

The future setpoint (known or extrapolated) is expressed
in a polynomial form :

n
o)=Y, cifmyil  0sish %)
j=0

The future control sequence is structured as & linear
combination of base functions :

"y
ulnt) = 2 px(n).ubk( i20 (A3)
k=1

At each instant, the control calculation is thus reduced to
the determination of the coefficients { pk(n)} k=l,np’

The predicted process output is given by &

§ptmi) = ym®nti) + &n+i) 0sish (Ad)

é(mi) denating the predicted difference between the
process and model outpuls, obtained through
observations on a past horizon, by a polynomiat
extrapolation «

P

e W A ea -

ne
Y =)+ 3, el 0sish (AS)

v

=t

¢(n) being the difference at instant n. The procedure of
predicting this difference with ne 2 1, i.e. by considering
&(n+i) # e(n), is called self-compensation.

The control is calculated by minimization of the
criterion :

np
2
Dn)= 2 { p(n+hy) - y,(n+hj)} (A.6)
j=1

{hj}j=1,np, being the coincidence points with hyy, = h.
The number of coincidence points must be at least equal
to the number of base functions,

The PFC algorithm yields, for the first value of the future
control sequence which is the value to be applied at
instant 0, the following linear control expression :

um) = ko.{co(®) - yp(m)} +
max(nc.ne)
_E;ij.{ cjm) - e} +¥ Xm (A
J!

Where the coefficients k0, kj and y. are calculated off-
line, X denoting the model state vector.

A2. EXTENSIONS TO THE BASIC ALGORITHM

Constraints on u, & and (i can be dealt with by applying &
particular strategy without modifying the linear control
expression. In this strategy, the part of the future model
output ym(n+i) depending on the past is calculated by
using the applied (i.e. constrained) control values.

Modification of the criterion (A.6) by adding a quadratic
term in u or its varistions can be used for control energy
reduction and smoother control. The modified criterion is
of the form

ny
D=, { Jptnehy) - ye(nsh) } % A aum ) 2 A8
)=l

This yields 1o the linear control expression :

um) = ko.{com) - yp(m)} +
max(nc.ne)
'zlkjl{ cj(n) - ej(m)} +
J:

oF Xm +Baln-1) (A9)

where kg, ky's, v and f are calculated off-line.

Feedforward compensation of a measured perturbation 5
is achieved by including z prediction of this perturbation
in the process output prediction ; in this case, PFC works
with an additional model M3 comesponding to the d —>
vp transfer as shown in the figure below

ke P A Tt P O M AR

e s




N B

PFC

FIGURE 17

There also, a linear regulator is obtained, its expression
is given by :

un) = ko.{co(n) - yp(n)} +
max(nc,neg)
_Elkj.( cj(n) - ej(n)} +¥T.Xm-
J'

ng
T
Y k8i3i(n) + L5 Xmg (A.10)
j=0
APPENDIX B

Example of CAD tool outputs for bearing axis.

e
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HARE AR AA RN N RNRN AN RIANRNFNRRN

PARAMETRES DE LA SIMULATION :

AR AR RN AR RN AR R AR T AR R AR

periode de simulation = 0.20000E-01 sec.

PROCESS :
retard ~ 0.00000 secondes
FONCTION DE TRANSFERT CONTINUE :
numerateur = 1.0000 * paw
denominateur =  0.00000 * prw
+ 1.0000 v oprw
+ 0.30000E-01 * pww

N - o o

PERTURBATION D’ETAT :

perturbation en entree « 0,00000 + 0.00000 v
bruit sur sortie : ecart-type =~ 0.00000 f.coupure « 0,00000 h

CONTRAINTES :

commande max. = 1,5000
commande min. = -1,5000
gradient max. = 1.6000

CONSIGNE :

consigne inconnue generee acus la forme :
consigne =  1.5700 + 0.00000 *t + 0,00000 *t2 + 0.00000

LA A e S R YIS 2RI

PARAMETRES DE LA COMMANDE :

AR A Ry 23222220

periode de commande = 0.20000E-01 sec.

MODELE :
retard = 0.00000 secondes
FONCTION DE TRANSFERT CONTINUE :
numerateur - 1.0000 * prx O
denominateur =  0.00000 * pxr O
+  1.0000 * pre )
+ 0.30000E-01 * px+ 2

MODELE DISCRETISE a : 0.20000E-01 s
matrice d’evolution F :

1.00000 0.145975e-01

0.000000 0.513417
matrice de commande G :

0.540251E-02

0.486583

matrice d’observation C :

z

*t3

e &% 1A = et AR may (e

e



1.00000 0.000000

BASE , REF. , COINCIDENCE :

nombre de fonctions de base = 2
echelon
rumpe

traj.de ref. du ler ordre : tps rep =
0.40000E-01 0.80000E-01

nbre de pts de coincidence = 2 :

EXTRAPOLATEUR DE CONSIGNE :

degre de 1’extrapolateur de consigne
nombre de consignes passees utilisees =

AUTO~COMPENSATEUR :

-

0.10000 sec.

2
S

degre du polynome extrapolateur de d.o.m. = 1
nombre de d.o.m. passees considerees
tps rep filtre de d.o.m. = 0,.50000

EQUATIONS DU REGULATEUR :

ufn) = k0 [ ¢0(n) - sp(n) )

+ k1 [ el(n) -dl(n) }J + k2 [ ¢2(n) - d2(n) ) + k3 [ e3(n) =~ d3(n) )

+ vx.xm{n)

kO = 47,1561 k1l = 124.841
vx = 0.000000 ~1.49681

EXTRAPOLATEUR DE CONSIGNE :

¢m = moyenne des ¢(n-i) pour { =
cl(n) = somme sur i de ([ yec(i,1)

k2

0., ...
{ cin-

=10
sec.

= 191.746 k3 = 0.000000
v horizon de consignes passoes
1) =em) )

€2(n) = somme sur i de { ycli,2) { c(n-i) - cm ) }
c3(n) = somme sur i de ( yc(i,3) ( ec(n-1) - cm ) ]
¢0(n} = cm - me(l) cl(n) - me(2) c2{n) - me(3) c3(n)

me = ~2.5000 9.1667
yel 0,.)= 0.58929

0.

0.89286E-01 0.

yc{ 1,.)= ~0,35715E-02 ~0.17857E-01 0.

yel 2,.)= -0,32857
yc( 3,.)= ~0.38571
yel 4,.)= =0,17500
ycf S..)= 0.30357

EXTRAPOLATEUR DE D.O.M. :

dm = moyenne des domf{n-i) pour { = 0, ...

~0,71429E~01 0.
~0.714298-01 O,
~0.178578-01 0.

0.89286E-01 0.

00000
00000
00000
00000
00000
00000
00000

, horizon de dom passees

dl(n) = somme sur i de [ yd(i,1) ( domf{(n-i) - dm | I |
dZ{n) = somme sur i de [ yd(1,2) ( domf(n-1) - dm ) ]
d3(n) = somme sur 1 de { yd(i,3) ( domf{n-1) - dm ) )

yd{ 0,.)= 0,45455E-01 0.00000
yd{ 1,.)» 0.36364E~01 0.00000
yd( 2,.)= 0.27273E-01 0.00000

~en T .

0.
0.
0.

00000
00000
00000

18-15
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yd{ 3,.)=
yd( 4,.)=
yd( S,.)=
yd{ 6,.)=
yd{( 7,.)=
yd( 8,.)=
yd( 9,.)=
yd (10, .)=

0.18182E-01

0.90909E-02

0.00000
~0.90909E-02
-0.18182E-01
-0.27273E-01
~0.36364E~01
-0.45455E-01

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
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ANALYST WORKBENCH

Thomas F. Reese, Frank Armogida
Naval Weapons Center
China Lake, CA 93555-6001, USA

SUMMARY

The Analyst Workbench was developed at the Naval
Weapons Center to provide analysts with the ability
to interactively visualize flight-test and simulation
results in the study of missile performance and
effcctiveness, This technology integrates tools and
utilities into one software package that not only
assists analysts in gathering data, but that provides
the means to analyze and assimilate the data.
Visualization technologies--such as the Analyst
Workbench--enhance communication between
computer and analyst, analyst and analyst, and analyst
and management, Current methods are an inefficient
use of analysts' time and talents. The Analyst
Workbench helps eliminate the large portion of time
analysts now spend just searching for the data so this
valuable time may be spent analyzing these data
instcad. Using these technologics to increase
personnel productivity and organization
communications will ensurc the rcliability and
eficctiveness of current and future guidance and
control systems throughout the North Atlantic Treaty
Organization (NATO).

INTRODUCTION

Analysts involved in the study of missile performance
and effectiveness require telemetry data and
simulations 10 conduct significant analyses. As a
result, these analysts are inundated with the data
gencrated, Using an exclusively numerical format,
the analysts cannot effectively interpret these valuable
data,

Analysts need an alternative to numbers. They need
the ability to visualize these data and the tools to
answer key questions, such as

Did the subsystems function satisfactorily?

Did the subsystems function at the proper time?
Did any evidence of unexpected or marginal
subsystem performance exist?

The Analyst Workbench, developed at the Naval
Weapons Center, provides analysts with the ability to

interactively visualize flight-test and simulation
results. The Analyst Workbench supplies the tools
needed to answer the key questions listed above,
These abilities are imperative to ascertain the
integrity of the analyses, to provide insights into
subsystem performance, and to share those insights
with others.

BACKGROUND

Missile system analysis has been conducted
traditionally by means of strip charts and computer
printouts, Analysts manually evaluats the strip
charts for anomalies for each data parameter on the
checklist and write the results on a chart for data-entry
personnel to place into the database. After
completing the cvaluation procedure for each item on
the checklist, the analyst conducts a statistical
analysis to detect trends within these data.  After ajl
the analyses are complete, a report is gencrated and
delivered to the appropriate program office.

Current methods are an inefficient use of the analyst's
time and talents. The strip charts and data tapes arc
never easily accessible. The analyst spends a large
portion of time just searching for the data rather than
interpreting them. The Analyst Workbench provides
the tools required to integrate and make the data
accessible so the analyst can conduct a complete and
full analysis within a reasonable time.

The interactivity of the Analyst Workbench provides
a natural means for an analyst to communicate with
data by manipulating their visual representation,
This method enables the analyst to control the
analysis and find anomalics. Simply, the Analyst
Workbench increascs the analyst's productivily.

OVERVIEW

The Analyst Workbench is a scries of interactive
utiliues integrated to form a software package. The
software components communicate through shared
memo.y and data files. Fig. 1 shows the software
components and their stage of development.
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Tape Operations
Dis- Data
Mount | mount ] Rewind | List Dump | extrac-
tape tape fape tape tape tion Save | Load | Modify | Delete
100 100 100 100 100 100 0 0 0 0
Database Teols
Data Telemetry Flight
reduction help Data trends objectives Test plan Test report
50 50 10 50 50 50
Plot Utilities
XvsY XY, Z Histogram Pie Bar
50 50 0 0 0
Statistical Utilities
Mean Variance Standard deviation Custom
70 70 70 0
NPSPANEL Data View
? Integration
100 30
Live Video
Hue Saturation Contrast VTR control
100 100 100 50
Analyst Workbook
Automatic
report writer | Propulsion | Mechanical | Electrical | Pneumatic | Ordnance | Guidance
25 15 15 15 15 15 15
Flight Number
L 95
Guidance
L 95 |
Vehicle
L 95 _

Fig. 1. Analyst Workbench Software Components and Percent Completed.




DATA EXTRACTION AND
REDUCTION UTILITIES

Before any analyses can be conducted, the analyst
needs to acquire telemetry data. Flight-test telemetry
data are normally stored on magnetic tape by test-
range personnel. The data tapes are then transferred to
the analyst for analyses. The data extraction and
reduction utilities select individual telemetry channels
from data tapes and install them into the database.
For some flight tests, the amount of data can reach up
into the gigabytes. Dealing with this "big data” by

— ———raman = e s
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and time-consuming storage-management techniques.
Currently. we only have hard disk drives available for
data storage. Future plans involve transferring the
data to a combination, erasable optical, and worm
(write once, read many) optical disk. This storage
strategy will provide for on-line access of telemetry
and simulaticn data for the analyst.

The data-extraction utilities are menu driven and
usually must be customized for each type cf telemetry
data set (Fig.2). Once a format is determined, a
computer scientist can write a routine to extract the

conventional means requires laborious tape transfers data and add them to the utility.
OPERATIONS ovggﬂ'rons ovggﬂgns REDUCTION
Mount tape XY plot Sort utility Frequency
Dismount tape XYZ plot System utility Redundancy
Tape format Pig chart Convert utility Manual
Unload tape Histogram Make flight path Automatic
Unload grp Bar plot Smooth Exit
Unload channel Print plot Exit
Exit __Exit

Fig. 2. Data Extraction and Reduction,

Currently, the reduction utility provides various tools
to reduce the amount of data stored. First, the utility
evaluates each telemetry channel's update frequency
and places the beginning time and update frequency in
the header of the file. This procedure eliminates the
need to store the time for cach time step.

Sccond, the reduction utility eliminates data
duplication. The utility determines if the telemetry
value is equal to the previous value, and if so, does
not store these data on disk. When the data value
does change, the time and value are stored in the
database. This simple process can reduce a file size
significantly.

Several data-smoothing algorithms were considered;
however, in some cases the algorithms eliminated key
data elements required for analyses. These algorithms
are still implemented, but very rarely are they used.
Analysts can usually tell noise from real data,

DATABASE UTILITIES

The database utilitics provide a series of interactive
information storage and retrieval routines that enable
the analyst to query the database for a group of
channels, an individual channel, documentaticn, and
overall data trends.

Currently, the database consists of FLTNO,
GUIDANCE, and VEHICLE parameters, Each of
these icons is shown in (Fig. 3).

When the analyst nceds data from a particular flight
test, the mouse is positioned above the FLTNO icon
and the left mouse is pressed (Fig. 4). At this point,
the utility searches the database for available flight-
test data sets. The analyst then reviews the list and
selects the appropriate data set. This process sets the
"current path” in the database and all data are retrieved
from this path. To alier the path, the analyst can
reselect the FLTNO icon and repeat the vrocess.
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Once the current path is set, the analyst can select the
GUIDANCE or VEHICLE icons. The GUIDANCE
icon accesses the telemetry data related to the guidance
systems, and the VEHICLE icon accesses the
telemetry data associated with the propulsion,
mechanical, electrical, pneumatics, fuel, and ordnance
subsystems. Additional icons can be added to suit the
analyst. Once selected, the utility searches the
database for available groups of telemetry data and
provides a popup menu of the groups. The analyst
can move the mouse over the selected group, roll over
the menu to get an additional menu of the telemetry
channels in that group (Fig. 5). The analyst may
now select a telemetry channel that assigns that
channcl to the "current file.” The current file is used
by many of the routines described in this paper.

Each of the telemetry channels has an associated
documentation file, This file is a text file that
discusses the particulars of each channel. The analyst
may access these files by selecting a channel by the
previous method, then selecting the TOOLS icon, and
making a select ion from the documentation menu.
The documentation utility then searches for
information on the current file and onens a window
that displays it to the uscr (Fig. 6).

Storcd in a separate part of the database are the data
trends for each of the analysis criteria, such as "fuel
bumn rate.” To review the data trends, the analyst
sclects the TOOLS icon and then selects TREND
ANALYSIS from the menu. The utility then
scarches the database for a list of available trend
studies and presents them to the analyst. At this
point, the analyst sclects a data-trend study and a
window is opened showing a plot of the current trend
and the equation used to calculate this value. In
addition, the analyst is provided with an additional
menu to add, delete, or modify the data in the
databasc.

To conduct a complete analyses, ari analyst needs
statistical tools to evaluale telemetry data, Currently,
the statistical tools available, although rather limited,
uo provide the basic statistical utilities like mean,
variance, and standard deviation.

A tool is currently under development to enable the
analyst to rapidly customize his or her own statistical
routines and add them to a popup menu (Fig. 7).

The aforementioned utilities and tools provide the
analyst with access to all the telemetry data to
evaluate flight-test and simulation results. However,
analysts need to see the data to conduct their analyses,

PLOT AND TIME UTILITIES

Analysts like to use strip charts and numbers.
However, spreading a strip chart over a conference

——— a——————— o
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table is not the most efficient means of evaluating the
data. The plot and time utilitics of the Analyst
Workbench provide an electronic strip chart of
telemetry channels and a digital readout of the
numbers.

The electronic strip chart depicted in Fig. 8 is used to
display a time segment of four selected telemetry
channels. Using the video tape recorder (VIR)
controls, the analyst can move time by pressing
REWIND, FFWD, STEP->, <-STEP, PAUSE, or
PLAY. This time is stored in sharcd memory for
other processes within the Analyst Workbench to
access,

The numerical readouts shown in the upper left corner
(Fig. 8) display the telemetry channels’ numeric
values in the center of the electronic strip chart. The
analyst may position the mouse over a readout until a
readout lights up and cnables the sliding scale for that
particular telemetry channel, Once a sliding scale has
been cnabled, a red light on the lower border of the
readout is turned on and the scale associated with that
telemetry channel tracks along the mouses horizontal
position on the screen. Attached to the left and right
sides of the scale's vertical linc are rectangles
containing the time and value of the telemetry
channel. The analyst may move the rectang:es by
pressing the left mouse button and moving the mouse
vertically. To disable the sliding scale, the analyst
presses the middle snouse button.

The labels on the left side of the utility display the
telemetry channels assigned to each data trace. The
analyst may turn a trace on or off by centering the
mouse over the rectangle until the rectangle lights up
and by then pressing the middle mouse button. To
display a different telemetry channel, the analyst
retrieves a current file from the database, as mentioned
previously, and positions the mouse over the desired
trace rectangle until that rectangle is lighted, then
presses the left mouse button. At this point the
software removes the existing traces data, notifics the
analyst of the file being loaded, and then loads the
new telemetry channcls file into memory (Fig. 9).

The beginning, ending, and current time digital
readouts depicted in Fig. 9 enable the analyst to
manually alter the time to rapidly increase, decrease
the time scale, or move current lime 1o a particular
telemetry segment. The “>" and "<" icons are used to
move the beginning and ending times incrementally,
The analyst positions the mouse over the icon until
that icon lights, then presses the right mouse button,
The longer the mouse button is pressed, the faster the
time scale changes.
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Fig. 9. Loading a New Telemetry Channel,

The vertical scales for each telemetry channel can be
modified individually. The UP and DOWN icons
shown in Fig. 9 are used 10 increase or decrease the
scales shown on the display. The scales that are
turned off are not modified. Again, the lenger the
mouse is pressed, the faster the scale changes.

The versatility of the plot and time utilities provide
many of the visualization tools necessary to analyze
tclemetry channels, The analyst can rapidly access,
display, and manipulate the data used for analysis.
The plot and time tool will not eliminate the need for
strip charts. Therefore, plans are underway to
implement an interface 1o a strip-chart recorder.
However, this utility does satisfy most of the strip-
chart needs of the analyst.

OUT-THE-WINDOW TOOL

The out-the-window tool provides a visual
representation of the missile flight parameters, seeker
characteristics, and physical test environment,
Fig. 10.

The U.S. Defense Mapping Agenda (DMA) provides
digital terrain clevation data (DTED) and digital
feature analysis data (DFAD) to U.S, Government
Agencies. This product is widely used throughout the
analysis community.

The DTED data are composed of a matrix of clevation
data within a 1-degree latitude by a 1-degree longiwde
quadrangle. The distance between ccll elements is
approximately 100 meters. Many attcmpts at
generating a realistic out-the-window view for flight
simulation have been stopped as a result of the large
amount of data. The Analyst Workbench does not
attempt 1o generate a realistic out-the-window view.
The out-the-window utility does a simple
representation of the terrain and target. The out-the-
window scene is a2 modified product produced at the
Naval Postgraduate School, Monterey, Calif.
(Reference 1).
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Fig. 10. Out-the-Window View.

The Naval Weapons Center needed to modify this
software to fit the needs of the Analyst Workbench.
First, the software needed to be driven by an autopilot
file and time from shared memory. An autopilot file
for cach flight test is created from the telemetry and
tracking data. The autopilot file is read in and creates
a linked list of time, x, y, z, heading, climb, roll, and
velocity in internal random-access memory (RAM).
Sccond, the Heads-Up display needs to be modified for
each missile type analyzed. This modification
includes sceker sigie varinbles and secker field of
view. Third, the targets and environment need to be
displayed as icons on the terrain,

As the time is modified by the VIR controls, the
out-the-window uulity alters the perspective of the
missile and updaies the Heads-Up display. This
procedure provides the analyst with visual cues of
anomalics within the test. Using the visual
reprasentation of the missile-body angles, seeker field
of view, and sceker state variables, the analyst can
understand and communicate better the cormplex
relationships between the target, environment, and the
missile.

When computer graphics, precessor, and memory
speeds increase, 2 more reafistic out-the-window view
will be considered, but now the Naval Postgraduate
School's software works fine.

PLAN VIEW UTILITY

The plan view utility provides a three-dimensional
perspective of the missile flight on the test rangs
An icon of the test vehicle depicts the location,
altitude, and seeker field-of-view. Icons of the targets
and key features are also displayed (Fig. 11).

Using this utility, the analyst can see & perspective
view of the missile, secker range, and field of view.
A popup menu is provided, which enables the analyst
to zoom and pan into the test area. These features
provide the analyst with a better understanding of the
seeker interactions with the target, such as several
RF-emitter sources.

DATA VIEW UTILITY

The data view utility provides an intcractive set of
utilities that enables the analyst to tie bar charts,
digial readouts, dials, and hisiograms 10 an individual
or group of telemetry channels. If a data parameter
exceeds the maximum or minimum threshold entered
by the analyst, the analyst is alerted.
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Fig. 11. Plan View Display.

When the analyst selects the data view tool from the
TOOLS icon, a window is opened that displays icons
for each graph type (Fig. 12). The analyst may then
sclects a telemetry channcl from the current file and
assigns it to a particular graph. After the selection is
complcte, the tool prompts the analyst to enter the
minimum and maximum values that are allowed.
Then the analyst may place the graph in the desired
spot in the window by moving the mousc to the
lower left-hand corner and pressing the right mouse
button. At this point, the data file is read into a
linked list in intemal memory, and the display is
initialized to the time in shared memory.

As time progresses, the data view tool accesses the
time and displays the telemetry value at that time. If
the value cxceeds the minimum and maximum value
input by the analyst the tool alerts the analyst, with a
flashing red light andfor a bell sound from the
keyboard,

AUTOMATIC REPORT WRITER

The automatic report writer (Fig. 13) is a
documcntation package customized for an individual
missile program office. An analyst interactively
accesses standardized forms that guide the analysis and
fulfill the laborious documentation requircments of

the analyst. After completing the analyses, the
analyst saves the completed forms in the database
with the data, keeping them together for future
reference.

LIVE VIDEO UTILITY

The live video utility provides the ability to display
live video in a window on the Workbench (Fig, 14),
The VTR-type controls in the plot and time tools
advance u. tape to synchronize the video with the
data. This utility enables the analyst to see and hear
the live flight test and help identify criucal data
segments within the test.

WARHEAD UTILITIES

The warhead utilitics provide the ability 1o study the
characteristics of warhead/iarget interactions. The
utilities require input of the missile-wrajectory data
just before impact, the target name, weapon fuze
type, and warhead type. The wtilities then smooth the
data into a flight path. Then the utility recreates the
missile endgame with the weapon/target fuze
interaction. The utility displays of the warhead-
detonation pattern on the target and calculation of the
probability of kill for the endgame geometry and
variations.
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Fig. 12. Daia View Graphs.

FUZE SPACE UTILITIES

The fuze space utilities provide the ability to study
the general characteristics of various fuze/warhead
intcractions with a target. These utilities were
developed both to understand the interactions and to
assist with fuze optimization studies, The utilities
display the fuze point, color coded for probability of
kill, for a sct of parallet trajectories around a target,
Multiple sets of data can be overlayed, or plots of
probability-of-kill-versus-miss-distance or circular
crror probable (CEP) can be displayed,
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A PRACTICAL EXPERIENCE OF ADA FOR DEVELOPING EMBEDDED SOFTWARE

Chrnistophe GOETHALS - Claude GRANDJEAN
DASSAULT ELECTRONIQUE
55,Quai Marcel DASSAULT
Saint-Cloud
92214
France

Many papers have already been written about the general
purpose programming language Ada. The authors of these
papers often draw & number of contradictory conclusions such
as "users running Ada keep complaining about Ada, but none
of them would drop Ada for another languuage”, or "Adu 1sn't
perfect, but it’s the best existing language®, ur "such &
language could never be used for embedded apphications with
stringent real-time constrants”,

In this paper we do not claun to draw any final conclusion
regarding Ada - 1t would be too presumptuous on our part to do
80 in u domain under full expansion - but we do propose some
important reflections regarding design methods, reai-time
aspects, and tools needed, considering our experience with

bat aircraft embedded software.

CHARACTERISTICS OF AN EMBEDDED
SOFTWARE

Prior to detuiling our reflections 1n subsequent chaplers, 1t1s
paramount to know the characteristics of the projects on which
our experience 1s based. In fact, the characterisuics of a
compiler, a configuration manager, or an embedded software
are very different.

There are {wo main types of charactensties »

¢ Those of the software stself.
®  Those of the software development process

Characteristics of the software

Quality Factors

The primary quahty factors in the development of combat
wircruft embedded software are (if only three are to be
retained):

®  Robustness: n fact, mission computer tasks have become
more and more complex and even criticul regarding pilot
safety tin the terrain-following and guidance phases, for
example). Thus, the software must be protected aganst its
own defects or an unforeseen behavior of its environment.

e Mumtamabihty and adaptabihity : un embedded software
evolves throughout the hfe cycle of an aircrafl, that is,
over roughly 20 years (for example, an average of five
modifications per working day during the first eight years
of the development pracess of the MIRAGE 2000 export
wasg experienced). The software's structure as well as the
assoctated documentation are essential elements for the
acceptance of such fuctors,

e  Efficiency :inspite of the tr dous tnprov tin
technologies the last few years, 1t s u must that the
memory occupation and computer throughput required by
the software be controlled and managed.

Real Time, Response Time, Memory and Throughput
Constraints

Because of the nature of the tasks that it has to perform,
mission computer software is subjected to such constraints that
the choice of the programming language is of utmost
importance.

Real Time canstraints impose, first, & real-time architecture
capable of handling periodic as well as random events and
assure & istency 1n the pr d data set. The choice of
what wil$ be called later on the real-time monitor s vital to
meet these requirements.

Response time requur ts also are fund tal, Indeed,
mussion computer software controls and manages the
information made available to the pilet. To do o, it must assure
that the response time between a pilot action, for example, and
1ts acknowledgment on the right-side multifunction display
takes less than X ms.

Memory and throughput conatraints will be discussed below
when the efficiency quality factor is detailed.

Recent Changes Calling Fore the Uge of Ada

Considering the more than 20 year life cycle of a combat
aircraft and the improvements made in the ct mputer
throughput field, a new quality factor has eraerged, and it will
have to be added to the previous ones : porability. Thisis
particularly true for RAFALE since the imtial operations were
carried out on a 68020-based PMF computer system, which will
be replaced by a SPARC-based CM¥F computer systam. Thus,
the necessity 15 apparent regarding the choice of language we
will have to make to assure portability. Ada was chosen over C
b of its higher-level pta confirmed after a series of
lests.

Characteristics of the software development
process

Software development process requirements, although they are
not significant 1n the choice of language, aresignificant in the
choice of software development resources iated with this
language.

Initial Development Time

The development of software for combat aircraft embedded
computersis characterized by a typical incremental
development process since the various operational functions
conatituting the Navigation and Attack System are
successively integrated. The development of such an
aperational function, which can be scaled on the average to ten
thousand Adu lines, takes approximately 11 months, as the
development process 15 understood to encompass the follewing
phases . functional defimtion, global and detailed design,
coding, unit tests, integration tests, functional tests, and
validation iests. The last two test phases are executed using
the target computer itself.
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Software Branches and Deliveries

The incremental software development process is concretized
by deliveries of the entire sofiware. These deliveries ure
normally scheduled at the rate of four to six a year. On the
MIRAGE 2000 Export we made 44 deliveries in 48 months !t in
addition, these deliveries were not made 1 a linear manner.
Indeed, starting from a software development trunk
we derive what we call soflware branches which have their own
specific lives and are used to debuy the vperativnal functions
independently of the new developments made un the common
trunk. The upgrades made on the software integrated on this
branch are integrated in parallel on the common trunk or are
only integrated when requested by the chent,

Modilications

B of the plexsity of weapous systems and the large
number of parttes involved (not only government agencies and
offices, prime contracturs, equipment vendors, but also
program managers and pilots), the imtial definition of an
operational function, and, as a result, everything subsequently
related Lo 1t, undergoes a vast number of modifications
throughout the life cycle, even during the development phase of
the function itself. On the average five to seven modifications
are made exch working day. Here Wwo the methods and the tools
must be adapted to these constraints.

SOFTWARE DEVELOPMENT
TECHNIQUES

In this chapter we sre going to detis! the chunges thal we were
led to make 1n sofiware development techmques t develop
embedded software using Ada

These evolutions concern the acceptance of the concept of
object, the orgamzation to be installed, and the soflware
programmung techniques

Object-oriented development

Ada language ofters vartous pussibilities for soltware quality
and preductivity enhancements (data typing, puckaging.
generics,...). But these are useless ifan Adu develvpment is not
supported by an adequate design method.

For this reason, we decided to study rnd then use 00D
techniques having 1n mtnd 2 major advantages they oay also
offer =

®  Reusabtlity because of the better stubility of un object over
a function, experienced through differem projects in the
same apphcation domarn (geronautics),

¢ Prototyping possibilities allowing fur early design
validation tAda specifications implementing a design
solution can be compiled, due W Adu separated
compilation capacity, and even executed if udequate
"stubs" are added)

Nevertheless, potential problems had o be solved before full
object orientation of our developments,

®  System constraints through software requirements
documents (our tnput for software developments) which
wome from a functional decomposition process and thus,
are very ltkely not to match with object decompusition,
through data orgamzation for digital buses exchanges (the
way data are gathered into messages and the eachange
conditions of these messages often do not correspond to our
object decomposition and our update or computation
conditions).

R B

®  Real-time aspects are most of the time not perfectly
handled by OOD methods.

®  Configuration management problems may arise from the
large amount of Ada units resulting from an object
oriented decomposition process.

Organization

To allow for dialog with our client and for techmical
management of the functions, the software development team
assigned to the RAFALE project, which is composed of more
than 30 members today, is organized following operational
functions criteria.

However, since the concept of object 18 taken into account 1n the
soflware’s architecture, it is necessary to organize the
interaction between the diverses parties acting on these
objects, Thus, a team member 15 assigned to make sure that
each object or group of objects 1s homogeneous in relation to the
development of the various operational functions using that
object.

In addition, we have defined & dictionary of operational objects,
and therr refinement at the software level. This dictionary is
currently being realized on an object oriented database. It is an
indispensable tool for facilitating the distribution of
operational knowledge 1n the objects and the transmission of
information to ali of the software development teams. In
addition, 1t will be an excellent training tool Lo discover combat
aircraft software from operational point of view as well as from
software architecture point of view.

Coding

As we noted at the beginning of this paper, the efficiency
quality factor 18 primary for the type of software which we are
interested 1n. On the other hand, Ada offers a wide range of
capabilities in terms of peulation, data typing, controls,
and so on.

As inother domains, we had to make & trade-offbetween Ada
advantages and efficiency We established Ada programming
rules for onboard software.

In particular, three points should be clarified :

e  The Ada built-tn controls are only used in the unit test and
integration test phases, 1 which we work in native
language on a workstation, as we can hardly affort the
resulting generated code.

o The exceptions are only used 1n some very special cases, as
the operational sofiware should have a well-defined
reaction on a whole host of events, even unexpected ones,

e  The generics should onlv be cautiously used, since the
advantage of parameterization provided by them is
thwarted tn the operational software by the generation of
large amount of code.

REAL-TIME STRUCTURE OF EMBEDDED
APPLICATIONS

Ada 18 considered to be weak in the real-time domain, but at
the same time Ada is one of the only languages directly
integrating real-time features.
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When Ada is used for embedded soRkware, und, thus essentially
under strong constraints, this problem has to be coped with ina
global manner regarding the uperationul charucteristics of the
application.

Real-Time Executive

The feasibility of using Ada, including tusking, wus one of our
major worries, Thus, we developed representative real-time
benchmarks of our applications in order to venify their
feasibility in Ada. We experimented with diverse typesof
possible architectures and esta! lished the minimal
specificalions under which the real-time executive we would
use, should comply to. These benchmarks permitted us to
decide, given a full knowledge of the situation, how to develop
mission computer software in full Ada.

The principal characteristic of our embedded applications is the
ability to respond very quickly to cyclic external events (a
recurrent frequency ranging from 1 Hertz to 160 Iertz) or
random external events, alung with the udditional
requirement that all the events are assured W bu tuken into
account. The processings Lo be execuled have aiverse prioritivs
and depend on the response time or uctivation frequency. The
internal and external consistency of the dute hundled and the
iated B g8 dre 4 ly fund Lal

The real-time executive that we developed and ure using for
our applications has the following churacteristics :

® ltiscomphant to the Ada Programmng Language
reference munual ANSI/MIL-STD) 1815 A,

o Itisessenunally written in Adn, or in usserbly language
for those parts linked to hardware or critical in terms of
execution time.

o jtisnotapecific to our applications, but 18 optimized for
our specific needs.

®  liisconfigurable according Lo the turget machine
asaure the portability of our applications.

¢ ltaunderlying real-time kerne! includes u scheduler
comphant to thy Rate Munotonic Scheduling (RMS8)
principles in order o comply W the hisrarchical
structuring of the tasks of the applications,

7 tion

Ada only has a single synchr tion
mechanism called the rendezvous, which allows a synchronous
interaction from n taaks to 1 task.

There is n. direct asynchronous mechanism (without blocking
the calling task) allowing n tasks o communicate with 1 task
or n tasks with n tasks in the Ada programming lunguage.
Writing such mechanisms in Ada requires the use of server
tasks, thug provoking penalties in memory occupation and
execution time.

Our active participation in the ExTRA working group
(Extensons for Real-Time Ada) enablod us W be the source of
the definition of such mechanisms, The resulis of this group
have been sent to the CIFO/ARTEWG. An effort o obtaina
convergence between the ExTRA specification ones is currently
under way und 1s planned for the CIFO 3.0

To satisfy our immediate needs and assure the portability of
our applications, we decided Lo implement the fullowing
mechanism :

®  The asynchronous rendezvous, thus pernutting a calling
task not to be blocked (SIGNAL snd GO BETWEEN).
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¢ The queueing mechanism (BUFFER).
®  The event and pulse mechanism (EVENT and PULSE).

These mechanisms are implementable in Ada, are compliant to
the Ada rationale, and acsure portability. For our specific
needs, we optimized them to cope with the problem of
performance by writing some parts in assembly language and
by using the internal mechanisms of the real-time kerne).

In order to promote the debugging and validation of software in
conjunction with the DEVISOR test tool, the monitor provides:

®  Atrace of task communications.
®  Theeffective execition time of each of the tasks.

® ‘Thestorage of the size of the stacks so they can be
appropriately sized.

Input/OQutput

An embedded application as deacribed right from the
beginning is strongly serviced by communication systems
imposing cyclic or random processings as described above. The
number and frequency of 1/0 are very high. Thus, the
communication systems were designed to limit the
computational workload induced in the application. To doso,a
part of the processings is handled by the coupling boards.

The /O requesta made by the application are :
o  Global (several requests are given in 2 single cali).

®  Asynchronous (the application does not wait for an
answer),

These actions permitted us to reduce the computational
workload supportad by the application due to 1/O facilities by s
third.

SOFTWARE DEVELOPMENT RESOURCES

The development of resl-time applications under stringent
software developmaent constraints such as described above
necessilates the availability of an adapted set of software
production tools integrated in a true software development
system.

Global definition and design tool

STP! (Software Through Picture T™®) is the specification tool
chosen for our onboard software development process. STPisa
software snalysis and specification environment which is both
complete and adaptable, STP allows the combined use of
several modsling tachniques, which is necessury to specify the
mulitiple sapects of a software system : structured analysis
(YOURDON/DEMARCO), structured design
(CONSTANTINE), structured real-time analysis (HATLEY),
entity-relationship model (CHEN).

In uddition, this tool integrates the srchitectural design phase
in which we define our software architecture (both ysal-time
and stutic architecture). it supports object-oriented design
method.

Detailed design, coding and unit testing tools
KEYONEZ?R is a tol supperting the detailed design and

coding phases (since it has a syntax editor). In addition, it
allows one to produce a standardized documentation,
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A set of consistent translators (Ada-ALSYS system, assembler)
allows one to construct an application from modules written in
diverse languages.

DEVISOR®! is u software debug and test system covering all
of the test phases both static (execution not in real-time) and
dynamic. Its principal characteristics are :

®  The tested software is not disturbed.

®  Thetestis formalized and automated, for easy non-
regression testing thanks to a high-level lang::.ze.

®  Independunce is assured between languages and target
machines.

®  The man/machine interface is user friendly and extended
use of symbolism is made.

®  The test program may be automatically generated.

DEVISOR® gperates in a static configuration on a host
machine (UNIX-based workstation)

Validation Tools

DEVISOR3R operates m a dynamic configuration connected to
a real target machine through a logic analyzer. Thus, it is used
for the software integration phases 1n which the software s
ntegrated in the turget computer and the real-ime
architecture 1s validated.

The SV (Software Validation Bench) 1s used w vahdate an
operational software. It simulates the computer environment
(1.¢. all the equip ts ted to Lthe computer in the
embedded system) while complying 1o real-time and data
conaistency aspects and allows for setling thuse states difficult
to obtain with real equipment (failures, trunsmission errors,
ste...). The principal functionalities are the simulation of the
environment, the graphical display of the behavior of the
woftware to be validated, the control of the target computer, the
automation of test procedures for nun-regression.

Need for an integrated software development
environment

In addition to the tool set that we were forced w develop in part,
a true software development environment in which these tools
are Intograted also was indispensable,

Thus, we developed 1LIADE2, which ofters the following three
functionalities:

® A configuration manager, which contruls and manages all
of the objects involved in the softwars development cyele,
that is, the documentation (specifications, design, test
files, otc...), the code tsource, binary, Ada hbraries, ete...),
the test object tsheets, data, programs, results, etc,..) and
documents exchanged hetween & priume contractor und &
sub-contractor.

® A production manuger, which automates the production
not only of the Ada software, but also the documentation,
test, and 80 on. This function also controls and manages
the software production servers und their resources ina
way transparent to the user.

e A methodological support, which ussists the sofiware
development teams, project managers, or buginess
executives assuring a presentation and ¢ methodological
tracking and follow-up process of the pruject through an
adequate synthesis level,

o o i .

ILIADE2 is a parameterizable tool, especially regarding
methodological support, and an open tool as well, since it allows
the integration of new tools.

CONCLUSION :"USING Ada?"

In conclusion, we are going to conclude about the experience we
have acquired using Ada, first in terms of productivity, and
then on more general aspects.

Ada and productivity

As we have been developing embedded software, we have
experienced a gain in productivity of approximately 30 percent,
since the development of a function given ( jual functionality
demands an effort of about 30 percent less.

However, in addition to this gain in productivity, we ocbserved a
significant increase in time for the architectural design phase.
We also cbserved the following distribution of the effort needed
by the diverse sotware development phases:

& 10 percent for the functional specification phase.
® 30 percent for the architectural design phase.

® 30 percent for the detailed design, coding, and unit test
phasos,

® 30 percent for the software integration, functional, and
global validation tests,

Ada:success or failure ?

We have seen that the development of embedded software and
the embeddud software itaelf are subject to a whole host of
constrainis and requirementa. At the same time the software
must be secure and have the lowest failure rate possible. In
addition, considering the evolutionary trend 1n technology,
portability is u key factor for long life-cycle software.

All of theso fuctora when combined are favorable or
unfavorable for the Ada programming language, which,
besides the coding aspects, impact on all of the software
development phases.

In hight of the experience we have acquired with Ada, it is
mandatory that all of the components characterizing embedded
software be controlled and managed corvectly. That is:

®  Thesoftware development methoda and the way of using
Adu to conserve indispensable officiency.

®  The real-time aspects while waiting fr future extensions.

¢ Thesoftware development resources te asi ure
productivity.

Only by complying to these conditions will the development of
embedded software for combat aircraft written in Ada prove to
be successful,

1 STPisatrademark of INTERACTIVE DEVELOPMENT

ENVIRONMENTS.

KEYONE is a registered trademark of LPS.

3 DEVISOR is a registered trademark of DASSAULT
ELECTRONIQUE.
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SUMMARY

In the field of hell ﬂldatoonwolmdhmdll ities, the
mmmmn-m ech?&l:.';l ’
considenable. To developmem of appropriate
Iundliu criteria and carefree manoeuvring festures, the UK
Royal A Establishment has been inthe

crospace
developmemofunAC!‘lymmfonmwch . As
cusrently envi thesylmniududuﬁlllwthoﬂtyﬂybywlre
M?fgmﬁun/mhdu:mmhlm The
impact functd on the systemt roquirements
dictated a noed for a precise yet versatile specifieation of the
system, and Jackson System Dcvelopment (ISD) was selected
as a design method since it provides a formal modelling of the
pliot interface, and also operates at & mufficient level of detail
necessary to ensure completeness and resolution of ambiguities.
The tools which luppon JSD include automatic code generation,
and for this work were further developed to accommodate
changes 0 system architecture in an efficient manoer, The code
produced mlduldlnddmuhﬂouoftheddmlndmulu
inali medﬂudonwnlhblcforvnllhﬂoumdmvwipﬂon
of the written specification.

1. INTRODUCTION

associsted sechnologies in
opdnut:tnhe:l‘lrﬂwm ln.tl:
: Betablishment, suention

controls

- 4 o s i, 0

different methods were applied by different team members inan
manptto formalise the requirements, to tackle design issucs
to provide a format compatible with the later stages of the
syuanllfecycle The Jacksor System Development (JSD)
methodology was selected for several reasons:

(2) The JSD modelling produces a formal specification of all

pllot/uymlntlelz‘alonmdnfmtheewmto
omlldenmnbeluvlwr from a constructional/design
rather than hierarchical description viewpoint,

(b) The JSD network provides a complete description of all
the external syatem interfaces required, plus a systematic
partitioning of the system functionality.

(c) Ambiguities in the textual material are naturally
identified.

(d) Tools were available to support the method including
automatic code genermtion.

Amoﬂhwotmfmnoﬁhupeclﬁwioahulthm

Adtmdobmada.!:l‘ymd tl:::o‘;ﬂ%d and
jon and,

whencombinedﬁthadmuhﬁouoﬁbeﬂw -mode] and

various peripheral
the system behaviour.

, becomes a living’ specification of

ADME
Figure 1 ACT Lyax System Elemonts

The secand cless of requirement involves the investigation of
mt«hmmahmmhﬁm

This rescarch is intinasiely coasecied with the aumber aad types

of processing clement, and the form of fsult monitoriag and

m}‘%
toletance.
and code
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description and realistion of the specifisd system using Ada.
This facility enables the investigation of various hardware
architectures, providing the vital reatism required to back up
more conceptual research.

‘This peper describes the development of the ACT Lynx
requirement specification, drawing on aspects of the sysiem
functionality to illustrate the JSD approach of modelting and
network analysis. Section 2 covers the evolution of the ACT
Lynx requirements leading to the need for & prototype

o the Adm siriacio, truing b vesdgaive pocatal.
of 3 ve N
Section § discusses the way forward mummmm
project as a whole.

mspcperhtheuoondlnawﬂuﬁmedngwidimm
vhlblmyouﬁuppmwhhebﬁnkenby for the ACT Lynx
project. The first covered the life cycle of a control law [4],
from conception to flight test, emphasising the validation aspects
and proposing a new that cahances the knowledge-
capture process while ensuring flight safety, Further papers are
lanned that will look at the performance verwus safety trade-offs

the flight cleamnce of sdvanced heticopter flight control laws
and software verification aspects prior to implementation in the
airborne system.

2. EVOLUTION OF THE SPECIFICATION

2.1 Background
In a series of technical memorands and reports [2,3,5,6] RAE
developed the rationale for a e of research based on
an ACT helicopter. Further um!a have demonstrated the
practical feasibility of modifying the RAE AH7 Lynx ZD 559
into & full authority ACT vehicle for such a pu: ; encoumged
by the foasibility of this spproach, RAE em onthe
prepartion of a specification for the aithome g_mm ( Airbome
System Requirements mﬂuﬁm) of the ACT Lynx
progmmme, Figure 1 il the concept where the
experimental pllot's conventional control runs are replaced with
an ACT system. The elomentary modules of the new system
are described more fully below, in section 2.3, but, in essence, a
flight control computer, with corresponding interface units,
connects a new set of inceptors and sensors to a group of
paraliel actuators driving the original actustion system. From
the outset RAE were determined that the specification should be
the basis of 2 well managed mnmem exercise, and as such,
should solve all of the signi design issucs of the system,
Potmi;l ;:en':ewv";}wnbcabktou%'mnwlyt{w
conls 0 ous components of the system, since
":ﬁ'a’ o.f‘telu involved in expensive open{'m!ed design
climinated. Also, by solving the outstanding
design problems ab /nitio, RAE would be sure that the system
could actually be supplied in accordance with the specification.

2.2 Adoption of Jackson Techniques

maintaining the
precision and ty of the apecification. For the partof
the total system, the methods could be applied directly but for

As a matter of delibemte policy the design team at RAE took
Issue 2.0 and subjected it $0 careful scrutiny in order o identify
those arcas where it could be significantly improved. In
particular, the possibility of using JSD was re-examined since in
the context of the ACT Lynx application a methodology biased
towards system development was considered to be more
appropriate than a decompositional, hierarchical, descriptive
technique. A strength of the Jackson method is that it spens the
full moge of activity from system definition to production of
code [11], so that at onc end it is concerned with modelling
correctly, for example, the actions of the pilot when he uses the
Pilots Control Panel (shown in Fig 2 and discussed fully in
section 2.5,below) and at the other end contains the level of
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Figure 2 ACT Lynx Control Panels (Schemutic)

detailed fication necessary to
Mlmwwuddu S ol
been addressed

to a of the specified s of

3.0 (scction 4). These two areas had not been given
sufficlent in the De Marco work, and the discipline of
JSD woyld force attention to them.

2,3 Specification structure.

1t was aleo felt necesary to adopt 8 modified structure for the
specification in order to give it more cobesion. The new
structure described the system in terms of its major functional
clements. This decomporition was the only one that was

The elements of the system are described in the order of the
primary flow of the signal lnformation:

e

etas i prerawy




Ground Flight Crew
Support Engineers Station
System Q‘ Element
Extemal System |
Support Element
Sensor
Element
Contro} Law Control Law Actuator Drive
Input Support L” g&':‘gthw Output Support L_’ & Monitoring Actuator
Element Element Element Element

Crew
Station
Element

Evaluation
Pilot

Figure 3 ACT Lynx Logical Elements

(i) Sensor Element (SE). This leading clement contains the

aircraft motion sensors - attitude and rate gyros and
accelerometers, and also the air data units for obtaining
velocity, pressure and temperature information.

(i) Crew Station Element (CSE). The other leading element

incorperates the conventional controls for the safety pilot and
a versatile side arm controller facility for the experimental or
evaluation pilot. The CSE also contains the vadious
interfaces for the pilot to engage, operate and be cued by the
ACT system, Figure 2, as follows:

(a) Pilots Control Panel (PCP) - used by the Experimental
Pilot for engagement and disengagement and also for
conducting the system-test sequence.

(b) Repeater Panel (RP) - provides a copy of the displays for
the Safety Pilot.

(c) Menu Panel (MP) - provides other ACT interactions,
such as selecting one of the available control laws and sets of
parameter vaiues, The same panel provides the interface for
injecting preprogrammed disturbances into the system, as
part of a flight-test facility used, for example, in the
validation of the helicopter mathematical models and in
demonstrating compliance with handiing qualities
requirements of new control laws.

(d) Mode Select Panel (MSP) - available for in-flight
selection of control modes.

Clearly the CSE would be expected to feature significantly in
any JSD modelling exercise, with the pilot assuming a
number of different roles as he interacts with different
components of the system. Some of the related modelling
issues are discussed in section 2.5, below.

(iii) Control Law Input Support Element (CLISE). The

following element has the main purpose of processing and
managing the information from the Crew Station and Senser
Elements. It also contains the scheduling of a
comprehensive system test.

(iv) Control Law Element (CLE). This next element is supplied

with inceptor, senscr, mode selection and related
information by the CLISE. The CLE is the raison d'etre of
the ACT Lynx since it hosts the experimental control laws
which are to be evaluated. It is this element that the user of
the ACT Lynx, the handing qualities enginecr or flight
dynamicist, will interact with. Carefully verified and
validated control law software [4] will be plugged into and
unplugged from this clement, Typically six control laws will
be selectable by the experimental pilot with an additional
choice of up to six sets of parameters within cach law. The
demands produced by the CLE for each of the four axes may
be separated into low and high frequency demands, if
required, which are destined for the parallel and series
actuators respectively (An option being currently evaluated).
Thfe separation algorithm is part of the uscr supplied CLE
software.

(v) Control Law Qutput Support Elenient (CLOSE). The element

followirg the CLE interfaces the demands produced by the
Control Law Element to the remainder of the system. It also
provides a selectable limiter on the rates and demands
produced by the control law as additional protection against
immature software.

(vi) Actua‘or Drive and Monitoring Element (ADME). The final

clement to provide processing takes the demands from the
CLOSE and produces drive signals for the parallel 2ctuators
resident in the Actuator Element, and the series actuators in
the Primary Flight Control Units (PFCU). The ADME also
manages the engagement of the ACT system ¢hrough the
energising of the parallel actuators, and supplies a normal
autostabilisation function when the ACT system is not
engaged.

(vii) Actuator Element. The parallel actuator system is last in the

sequence. When engaged, it drives the existing Lynx
PFCUs. The parallel actuators are connected to the
conventional control runs from the safety pilot, so that when
the actuators are engaged, the controls are back driven to
provide the safety pilot with essential control position cues
and toaid in recoveries.
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(viii) External System Support Element (ESSE). In support of
this network of elements is an element which essentially
provides a catchment for all of the significant data in the
system. It interfaces with the standard data acquisition
system MODAS [12] and also with the experimental displays
such as helmet mounted or head down d'splays. A record of
all system related events such as engagerent,
disengagement, and diagnostic messages is retained ina
System Joumal.

2.4 Element descriptions.

Issue 3.0 of the specification contains a detailed description of
each of the elements identified above. As far as possible, the
recommendations of the STARTS [13] guide have been
followed in the preparation of Issuc 3.0 [ 14). Each element is
described in detail under the headings Type, Function,
Operation, Performance, Inputs & Outputs, Interfaces, Testing,
and Failure Reporting & Recovery. Where a particular clement
is composed of replicated units, so that several units together
comprise an element, the replication of units in the element is
stated and the unit itself is described under the same headings.
For example, the CLISE is a triplex element composed of three
identical CLISUs (Control Law Input Support Units). In detail
the descriptions are:

TYPE - Some indication is given here of whether
implementation is anticipated as an analogue, digital,
mechanical, hydraulic, electro-mechanical or human process.
The suggested implementation is not intended to exclude
alternatives if a supplier possesses a particular specialism The
view was taken, after some deliberation, that it was better to
make specific reccommendations rather than to leave the ‘type’
issue open. A general allowance could then be allowed for
variations that nevertheless complied with the functionat aspects
of the specificaticn.

FUNCTION - Under this heading is a complete statement of the
tasks of the unit , that is,a statement of what the unit has to do.
For example, one of the tasks of the CLU (a unit of the CLISE)
is inceptor management; the entry reads: "The inceptor
displacements and inceptor switch pocitions shall be processed
to provide consolidated signals for the associated Control Law
Unit (CLU)”

OPERATION - This sub-section is concemned with how the unit
will achieve its functions. This is done by detailed description,
in text, of the processing, c(;uircd for each function. Forthe
CLISE examp!le above, the {ull details of the processing of the
triplex signals would be supplied, including the consolidation
algorithms for fault tolerance. The narrative under this heading is
used to build the JSD Specification; the full JSD is not hetd
within the text of Issue 3.0, but sufficient initial design work
was undertaken to be confident that a JSD specification could be
derived from the narrative.

PERFORMANCE - A statement of the times within which the
tasks must be completed and, where appropriate, the accuracy
that must be achieved. For example, a certain part of the system
test must be performed within a stipulated time The sampling
rates for the unit would be specified here. A defined constraint is
thai the total system transport delay should be 25 ms.

INCUTS & OUTPUTS - A list of all signals teceived by the unit
and those transmitted by it. It includes the source of a received
signal and the destination of a transtitted one. This information
is also presented in diagrammatic form, Figure 4, for example,
where the connections to neighbouring units are clearly visible
(The network notation is discussed in section 3). There is, of
course, a need to maintain consistency here, since for each input
listed there must be a corresponding output on some other unit
Such consistency is easily maintained by a CASE too! such as
Jackson Work Bench [15}.

INTERFACES - A list of the units and their types, both internal
and extemnal, to which the subject unit is connected. The
purpose of this information is to identify the interfacing
requirements between units - analogue to digital, for example.

TESTING - A statement of how the function, operation and
performance of the unit is verified. In particular this may be

7

CLISU : CLU L—<>\<—\—cmsu
cL
PCP (2 siblings) ADME

Figure 4 Connections to a CLISU

done at a system test invoked prior to take off, or by the inbuilt
monitoring.

FAILURE REPORTING AND RECOVERY- A statement of
how errors, produced by a fault, having been detected are
reperted within the system. Usually they are reported to the vilot
via the Menu Panel, and they are also sent to the system joumal
part of the ESSE. Cautions and Wamings may also be raised
through the Central Waming System. In addition, a statement of
the recovery of the system may be required, often this is by
returning to Standby via a controlled disengage - as would be the
case when one of the monitoring tolerances within the system
has been exceeded.

Once Issue 3.0 of the airbome system specification was
complete, it was decided to progress to a full JSD specification
in order to check out any residual ambiguity, vagueness or plain
error, The full JSI) would then be available to use as an adjunct
to the written specification. It would give a precise description
of the interfaces between the components of the system and
between the system and any extemal devices, to the benefit of
prospective suppliers.

A further decision was made to use the JSD to generate a
simulaticn of the ACT system, to produce, in effict, aliving
specification which could be used to exercise and examine the
specification dynamically. The noves features involved in this
step are described, in detail in section 3, but the six aims of the
simulation in relation to authenticating and potentially enhancing
the specification were:

(i) Control and human operation of the system. Pilot evaluation
of the procedures for operating the system, for example, the
arnV engage/ disengage sequence can be evaluated through
hands on experience. Also suppliers can directly examine the
nature of the interface between their equipment and the rest
of the system.

(ii) Synchronised control information. The techniques for
managing and synchronising control information within an
asynchronous system can be verified.

(jil) Establishing tolerances. An asynchronous system generally
must allow some tolerance in the monitoring of the
information from replicated units. Suitable tolerances can be
verified or even deduced.

(iv) Computational load. The processor power and memory
requirements of the system can be more confidently deduced
from a simulation than a specification. Alternative
implementations may be evaluated for processing efficiency.

(v) Fault management. The mechanisms for reconfiguration,
and the issuing of caution and warning signals may be
verified directly.

(vi) Design Evolution. Altemative designs for the components of
the system can be evaluated directly .

Before leaving this discussion or: the evolution of the
specification in order to consider the development of the
simulation in detail, there are two topics worthy of a special
note.
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2.5 The Supervisor as a modelling issue.

One area which, from the beginning, was subject to intense
srrutiny was the control or overall supervision of the ACT
system, including engagement and disengagement. Clearly this
is a critical area where it is essential to get the specification and
implementation correct. An example of an early model is shown
as the flow chart in Figure 5, where the System Test, initiated by
the pilot, if successful, is followed by a repetition of the arm,
engage, disengage sequence of actions. While useful for
conveying the general idea of the pilot’s interaction in this arca,
it was not sufficiently precise to base software directly upon.

¢

Power up
Syster
* ......... System powered up
Perform ;
wse System Test in progress
System Test s prog
* & vernes o Standby
Am
System | o Arming n progress
L ......... System armed
Engage
‘ ..... System engaged
Disengage

Figure 5 Possible System Control Flowchart

For example, it is possible in the specification, to return to
Standby through a disengage action without an engagement of
the system. This path is not shown in the flow chart. To
express the requirements in a precise manner finite state
machines (FSM) were mooted and proved a very useful
approach. That shown in Figure 6 included the additional
transitions to Standby omitted from the flowchart, but suffered
from a shared disadvantage that the system test, itself, included
arm, engage, disengage sequences. FSMs have the advantage
that they are readily transformed into software so they were
seriously considered as a basis for a ‘supervisor’ process, which
would have overall control and only permit allowed transitions
of the system to occut. The problems experienced with this
approach were twofold. First, incorporating all of the possible

Figure 6 Possible FSM for System Control

states and transitions afforded by the pilot resulted in a very
complex FSM, which was difficult to interpret and militated
against a correct implementation. Secondly, the engage or
disengage actions made within system test, gave different states
from those occurring afier a successful system sest.
Consequently, and very importantly, the system test did not
exercise that part of the controlling software which would
ultimately be used.
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These problems were resolved in the final SD modelling, part
of which is shown in structure diagram form in Figure 7 where
the system test and engage models are scparately treated but have
appropriate interlocks. In the structure diagram notation, which
is described more fully in section 3, the leaves of the tree
structure are actions (similar to transitions of the FSM) and in
Figure 7 there is a repetition, denoted by the **’ symbol, of the
alternatives, denoted by the ‘O’ symbol, of a normal engagement
cycle oran early disengage. The Am,Armed, Engage sequence
can be quitted, denoted by the "' symbol, at any stage to
continue with an carly disengage. The system test process isa
simple cycle of alternatives of a successful or unsuccessful test.

The example above has been discussed, for clarity, ina
simplified context, omitting such complications as control law
selection and disturbance injection, but the same principles
apply. The use of ISD in this area helped to achicve a
satisfactory modelling and, further, the model can be directly
implemented as a process, upon which the whole of the software
can begin to be constructed. It is also interesting to note that the
separation away from a monolithic supervisor was also guided
by the need for maintaining optimum integrity. The various roles
of the pilot are modelled separarely with appropriate interlocks
preventing inappropriate actions, ior example, a change of
control law when the ACT system is engaged.

Figure 7 Pilot Engage and System Test Processes

2.6 Fauit tolerance and redundancy management

Within the function and operation sections of the unit
descriptions consideration must be given to the redundancy
managment and fault monitoring issues of the multiplex
elements. The main criterion for tolerance is that the system
should be first fail operative, and the identification of a fault
should alert the pilot to return control to the safety pilot and
conventional inceptors, by a controlled disengagement of the
ACT System. Faults in a unit are detected by downstream
comparison of its outputs with those of its siblings (associated
units or lanes within the element - its partners within the
redundancy). This recognition is dealt with in three ways:

(i) The consohdation of the redundant signals must not be
affected by one signal being in error. There are two type of
information to consider here. The first type is "analogue’ or
continuous type of data where the median select is used for
triplex architectures, the second type is discrete data where a
majority vote is employed, both of these are passive fault
masking operations used to collect valid data for subsequent
processing.
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(ii) The error must be recognised and signalled to the system and
the pilot via the appropriate panel lamp - this is the
monitoring aspect.

(iiii) There must be a reconfiguration triggered by the signalling of
the error in order to isolate the faulty unit. Th. isolation is
done by ignoring all of the outputs of the faulty unit.

A duai-duplex arrangement operates in a different manner,
where cach pair of units carries a validity signal and outputs the
validity status alongside the functional data. The downstream
units can then mask the faulty unit by a tolerant behaviour or
reconfiguration. The ACT System has in its initial form, a dual
duplex ADME, originally to be compatible with the dual
hydraulics of the actuator, and the single fault tolerance arises
from the disconnection of a faulty pair of units from the drive to
the actuator; the performance of the drive being such that it can
tolerate such a reduction of input. The processing elements,
CLISE, CLE and CLOSE, are triplex, but have no cross
connections at their mutual interfaces .(There is a modicum of
sibling monitoring in the consolidation of discrete data.)
Consquently they effectively form a single triplex module. The
SE and the CSE are essentially triplex with a full number of
cross connections to the CLISE.

2.7 The adequacy of the Issue 3 Specification.

The ACT System elements and the functions they performed
were conceived and assembled from the combined engineering
experience of the project team. This included first hand
experience with design of conventional control systems and
direct exposure to the helicopter digital flight control system
programmes in foreign Industry and Goverament research
laboratories. The FOFS requirement for ACT Lynx combined
with the nieed for significant flexibility in operation created new
problems however. The completeness and validity of the
upgraded Issue 3 ACT Lynx specification had to be questioned.
Were the performance figures achievable in practice? Would
there be smooth operation through the PCP? Would the
redundancy management logic work? In many projects it is
apparent that answers to these kind of questions are deferred
until deep into the detached design phase, often when the
customer is no longer closely involved. RAE needed to increase
confidence and reduce the risk associated with these questions; it
was decided to embark on the development of a fully operational
prototype simulatior.. An incremental approach natucally
complemented the JSD methodology.

3. DEVELOPMENT OF AN ADA SIMULATION

This section describes the approach taken The organisation of
the section is based on the three major parts of the solution,
JSD, simulation and code generation. For cach thereisa
description of the approach and a justification for choosing it.
Finally, the solution is assessed against the initial requirements
for the project.

3.1 An Overview of the Approach

The approach, in brief, was to use the Jackson System
Development method (JSD), coupled with automatic code
generation in order to produce a simulation of the ACT system.
An LBMS CASE tool, Jackson Workbench (JWB) was used to
capture the spec.fication of the system, and subsequently to
generate the code. The simulation was delivered in six
increments, with consultation between RAE and LBMS
following cach increment.

JSD is used to provide a behavioural description, dedved from
the textual specification, which is expressed in cnough detai to
be executable. The whole description is expressed as a network
of communicating sequential processes connected via message
queues, and with read-onlv access to each other’s data. A
separate description is made of the hardware configuration on
which this network must run, in terms of hardware units and
connections between them, The two descriptions are then
mapped one to another by partitioning the processes in the
network onto particular hardware units. This mapping is used
as the basis for dctennixéi;g the fault detection and recovery
configuration. Finally code yeneration is used to take this
complete description and build a simulation which, besides
simulating the system, provides a mnge of facilities such as

injecting errors into the simulated hardware and producing
diagnostic information for off-line analysis.

The adoption of incremental delivery must be viewed asa
success. It was inevitable that RAE when presented with the
simulation should find discreparcies between their view of the
system and its behaviour, ¢ither through misinterpretation of the
specification by LBMS, or through inconsistency or ambiguity
in the specification. Incremental development and delivery
allowed thes: discrepancies to be identi“ed enrly and, if desired,
corrected.

3.2 Jackson System Development.

Jackson System Development is used in otder to analyse the
existing textual specification and provide a formal executable
specification. The method was jointly developed by Michaei
Jackson and John Cameron in the early 1980s (references 7 and
8). Since its release it has been used in the development of a
number of significant real time systems including’

(a) The control software for a torpedo.
(b) A submarine command and control system.
(c) A wind tunnel control system.

(d) An amy wide-area network command and control
system.

The technical method consists of three stages, model, nctwork
and implementation. These stages are described briefly below
illustrated by examples taken from the ACT Lynx project

3.2.1 Modelling. A JSD model is constructed of entities and
actions. It is a logical description about a "real world” with
which the system must deal. Actions are events which occut in
the "real world” which are interesting to the system being built.
Entities are the objects in the "real world” which perform. or
sometimes suffer, the actions. Figure 8 shows a typical list of
actions. Figure 9 describes the order in which a subset of those
actions must happen via a time ordering diagram.

Action & Cis Summary Attributes
AR The pilot requests that the aystem be
amed

FARMED The acruaior positions and the
control taw demands are 1 harmon:
ARV DEFAULT_MODE | Tl arming o] a dcTaolt O MODEID. TYPE
%lml mode
CANCEL_SYSTEH request (o canced the system test
TEST
[ EAPTORE TG G the Mgl omode 0 go 1D MODET5-TVPE |
] from ARM 10 ARM_AND IN_CAP
(COMPLETED_SYSTEM TAT tcata of the system teal have
1EST been successfuly completed
EBNINUE_HSIW current test of the
TEST system test has been successfully
DIERGACE The system has been disengaged
This may before
engagement (1) by the prlot pressing
the disengage button of (2) by the
system faling to get into the
ARMED or ENGAGED state.
1t may happen whulst FNGAGED
oa receipt of a signal from an
actuator relaying the fact that it has
become dise
) "The pilor wiskcs 10 be oitered the
_REQUEST previous valid disturbance, that 15
the first disturbance with a lower
wndex number (ID)
Thisu :quv:g(v)u to':hc prlot
resssing the DOWN bution
ENGAGE, m’ﬁ?ﬁ:«u Tsucoesstully)
that the sysiem be engaged
TAIL_TEST STAGE TRe Curtent aBIOMALC stge of the
system tes' has not been
successfully comeleted
[TNCEFTOR_VALOL A new value representing the
curent postion of an wceptor
amves

Figure 8 Typical List of Actions

Time ordering diagrams are tree diagrams which use JSP
notation. The root is named after the entity performing the
actions; the leaves (the lowest level boxes which are named
rather than numbered) contain the names of the actions
performed by this entity. The intemnal nodes of the tree, i.c.
those between the root and the leaves describe different ways uf
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streams), or by read-only access to cach others state vectors
(State vector inspections).

The example in Figure 10 shows the connections to the control
law algorithm, which inspects data from sensors and inceptors
{e.g. the state vector connection CLISE_AMSE_DATA,
providing data from the Air Motion Sensing Element),
computes new actuator values in the process
CONTROL_LAW_ALGORITHM, and then relays them, via the
data stream ACTUATOR_DEMANDS, to further processing
elements and eventually to the control surfaces.

Openuicns

10 SV.SYSTEM_STATE =ARMING,

11, SV.SYSTEM_STATE =ARMLN

12 SV SYSTEM_STATE.=ENGAGED,

13 SV SYSTEM_STATE -DISENGAGED

Figure 9 Pilot Engagement

ordering their children and are of three types: sequence, sclection
and iteration, identified by a symbol in the top right comer of the
box. Anasterisk (*) represents iteration, that is one or more
occurrences; & circle (o) represents selection, i.c mutually
exclusive choice, and the absence of a symbol represents
sequence, that is all of the children of the node read from left to
right. The numbered operations attached to the action leaves
indicate how the state of the object (or entity) is changed when it
receives the action.

Figure 8 shows a list of actions, that is events of interest to the
ACT Lynx system. Some of these actions occur in the time
ordering diagram for PILOT_ENGAGEMENT in figure 9; from
it, one can see that the standard sequence of events (under the
box NCRMAL CYCLE) consists of the pilot pressing the ARM
button, followed by the system ARMING itsel{, which is
followed by the pilot ENGAGING the system, and finally the
system is DISENGAGED. Note that there is an alternative to the
NORMAL CYCLE {indicated by the circle in the top right
comer); this is called EARLY DISENGAGE and corresponds to
:he possibility of the system being DISENCAGED at any point.
The entire ENGAGEMENT CYCLE can happen many times
(indicated by the asterisk in the top right comer).

In a completed model, the total set of tree diagrams describes all
of the time orderings of the actions plus the changes in system
state which they cause.

3.2.2 Network.In this stage a network of communicating

sequential processes is constructed. (Figure 10 provides an

example.) The three elements of the notation are processes

(boxes), data streams (circles) and state vector inspections

gilmnonds). The meaning and use of these symbols is described
ow,

The basis for the netwo. X is the set of entities defined during
modelling; the state of the entity is recorded in the local data of a
process, and the actions become messages passed to the process
viaan input data stream. Pilot Engagement (The entity described
in Figure 9) appears in Figure 10 where its state is inspected by
the control law algorithm precess. Processes derived from the
entities in the model are called model processes. During the
network stage new processes are added to take messages from
the system boundary and feed them into the model processes,
and to use data stored in the model processes in order to generate
system outputs.

A JSD process may have many instances, sach executing
concuniently and each possessing its own local data, collectively
known as the state vector of the process. The control flow of alt
instances of the process is identical, and is described by a tree
structure. Processes communicate via message queucs (data

parameters clise_beep_trim
P clise_beep
_sct | inm
clise_mode clise_amse_data
clise_amse
mode data
clise_adsc_data
cle_tgm clise_adse
P _data
control_law|
_algorithm cla_buttons
button_
buffer
current_set clise_inceptor
par_set_ clise_incep,
sclector tor_pos
current_cl :icm“:ir' engagement_status
emands
control_law| pilot_enga
_selector
disturbance
disturbance disturt
_imposer _generatot
disturbance_
demands
frequency
_splitter

Figure 10 The CLE Control Law

Lach process is described in detail using JSP notation; in fact the
JSP method can be used to develop the process descriptions.
Figure 11 gives as an example the process responsible for
interacting with the pilot when he is selecting control laws. The
process executes operations which store state as well as reading
from input data streams (READ), writing to output data streams
(WRITE), and inspecting other processes data (GET_SV). In
this way the process is available to gather data and provide
responses via its connections.

3.2.3 Implementation. The network which results from the
previous step is detailed enough to be executed, but rarely
matches the implementation environment: it ofien has more
concurrency than the target (each process instance in the
specification executes concurrently with every other), and data
stored in the processes sometimes has to be separated out into
files and databases.

The implementation step is about fitting the specification to the
target environment. It is
discussed in greater detail in the simulation section.

3.2.3 Summary The main aim of the JSD method is to provide a
specification which can be usefully viewed from both above and
below. The modelling stage is a1 object oriented analysis of the
real world which produces a description which users can readily
grasp, because the result is described in terms of objects familiar
to to the user. It also provides in an accessible form (tree
diagrams) impartant detail about the modet of the real world.
The network stage uses two descriptions, one, data flows,
which can be presented to the user to indicate the architecture of
the system, the other, tree diagrams, which the analyst can use
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(a) The CLE Control Law Selector Process

1 GWRITE 1 CL_OUTPUTS NEW_CUR ENT_CL
[({[»] ~>SV.CURRENT_CONTROL_TAW))
1 @WRITE 1 CL_OUTPUTS NEW_OFFERED_CL
{(ID => 8V OFFERED_CONTROL LAW))
12 BWRITE 1 NEW_CONTROL_LAW NEW_CONTROL_LAW
(1D => SV OF| FERED_CONTROL_LAW))
13 GWRITE | NEW_LAW NEW_CONTROL_[AW
((td => SV OF| FERED_CONTROL_LAW))

21 SVOFFEREC_CONTROL_LAW = CONTROL_LAW._ID,

22 SV CURRENT_CONTROL_LAW = -
SV OFFERED_CONTROL_LAW,

23 SVOFFERED_CONTROL_LAW = 1-

24 SV CURRENT_CONTROL_LAW = 1,

30  @READ CL_SELECTION_CMDS

40 GET_SV(CONTROL_LAW_(D, PARAMETE R_SET_SUBSET),
41 GET_SV( L.CL_PILOT_ENG_SUBSET),

50  CONTROL_LAW_ID .= SV OFFERED CONTROL_LAW;

51 CONTROL_LAWTID = CYCLIC_SUCTICONTROL_LAW_ (D),
52__CONTROL LAWID ~ CYCLIC PRED(CONTROL LAW D).

(b) The CLE Control Law Selector Operations
Figure 11

to express the design of a particular function. The resulting
specification can be viewed by users from above because itisin
terms of their real world and, simultancously, the specification
contains cnough detail for the implementers below to perform
their task. It is this general propenty that made JSD particularly
attractive for the ACT Lynx specification, although the
application was concerned with more than just software.
However when a simulation of the specification was envisaged
the established features of the JSD method became very relevant,
In particular:

(i) Formality and completeness.

(a) Modelling. The semantics of the modelling notation are
formal, which allows a formal description of the interaction
between the pilot and the system, in terms of the pilot actions
and the states inte which the system is driven, to be
produced from as a result of the modelling stage Figures 8
and 9 provide examples from the project.

(b) Network. The network, onice completed, describes the
entire functional behaviour of the system 1o a level of detail

which ensures that all functional issucs have been aired. In
addition, the specification network reaches to the boundary
of the system thus providing details of the system interface.

(ii) Fitness for Purpose

(a) Distribution/Concurrency. A completed JSD network is
highly distnbuted, which maps well onto this type of
application, where the processing is distributed over many
processors.

(b)Separation of Concems. The specification phase ends
with the network still not committed to a particular hardware
configuration. Not only does this provide a logical view of
the system uncluttered by hardware constraints, but it also
allows considerable flexibility when allocating processing to
available resources.

(c) Real Time Track Record. JSD has been, and is still
being, used on a number of large real-time projects, with
Ada as the target language.

(d) Evolutionary Delivery. JSDisa compositional method,
sometimes termed "middle-out”. InJSD terms, once a
model has been built, every new function added provides a
potential deliverable, working system. This allows the
system to be delivered in a truly incremental fashion.

3.3 Simulation.

Having prepared the JSD design, which in itself has
authenticated the textual specification, there is the opportunity to
progress to a full simulation by implementing the design This is
a definite additional step and it is worth identi fying the additionat
benefits which acerue:

(i) Dynamic and Static Analysis. The essence of building a
fepresentative, working simulation of a required system is
that it provides unequivocal feedback on the validity and
viability of the specification. This feedback is provided via
analysis of various forms.

(ii) Verification of Behaviour. The most obvious form of
feedback is in the behaviour of the system. Even good
textual specifications contain a great dea} of ambiguity, and
even it the system agrees with the original specification it
may not be acceptable. A running system that provides the
feed back required to verify the behaviour as described in the
original specification.

(iii) Estimation of Hardware Requirements. However good your
estimating; technique, the more representative data that you
can provide to it the better. A working system, even though
it may not be entirely representative of the final system
provides an excellent basis for estimation.

(iv) Cost and Flexibility (compared to the real system) The
obvious choice for an implementation of the specification of
the system is to build the system. However in this case that
would have been prohibitively expensive. In addition,
because of the experimental nature of the hardware
configuration, a one off solution did not meet requircments.
The obvious choice was simulation.

Given a detailed description of the behaviour of the system using
the first two steps of JSD, the final step is to implement the
system by fitting the specification network onto the hardware
architecture.The ACT system is to be implemented on 2 multiple
node, fault tolerant network of processors with the requirement
to perform fault monitoring, fault prevention and fault recovery
to provide FOFS system with respect to hardware errors. Both
the hardware and helicopter are simulated. The finished system
runs on a single IBM PC, or compatible.

3.3.1 Hardware/Infrastructure Description.In order to describe
the hardware configuration and the associated fault tolerant
infrastructure a new definition language has been created.
Descriptions in this language can be entered using JWB and
subsequently stored, in the same fashion as the JSD
descriptions. Figures 12(a) - (d) provide examples of the
descriptions used; Figures 12(a) and 12(b) describe what will
be hardware units in the final architecture. A number of options



UNIT IE UNIT CLE
STD-INFO STD-INFO
LONGNAME LONGNAME
REFERENCE IE REFERENCE CLE
[*ICLASSIFICATION-SET [*JCLASSIFICATION-SET
["ISUMMARY ["ISUMMARY
This unit is connected to the This unit houses the control
inceptors of the experimental law algonthm and associated
pilet. processing It 1s the middle processor
[oINARRATIVE in a three processor lane”.
NO [0]NARRATIVE
MAIN-PART NO
[oITYPE MAIN-PART
ANALOGUE [o]TYPE
{0]BASE-REDUNDANCY ANALOGUE
SIMPLEX [0IBASE-REDUNDANCY
REPLICATION 3 SIMPLEX
{OJUNIT-LVL-SYNCHRONISATION REPLICATION 3
ASYNCHRONOUS [oJUNIT-LVL-SYNCHRONISATION
FRAME-LAG ASYNCHRONOUS
{*INTRA-UNIT-CONNECTIONS FRAME-LAG
UNIT-SID [*IINTRA-UNIT-CONNECTIONS
UNIT-SID
(a) Unit Description
(b) Element Description
CONNECTION IE_CLISE
STD-INFO cLE
LONGNAME
REFERENCE IECLIS
['ICLASSIFICATION-SET / \
[*ISUMMARY TN
[ONARRATIVE 1 o CONTROL_LAW| | PARAMETER| |CONTROL
NO CLISE LALGORITHM || SET _LAW
MAIN-PART
SOURCE IE __J
DESTINATION CLISE
[OIDATA-TRANSMISSION
BROADCAST O DISTURBANCE
[}lSPEC-INTERFACE ADME -IMPOSER
NO
[oJCONSOLIDATION N’
YES
HISTORY_LENGTH 3
[0]SIBLING_ERROR_MONITORING FREQUENCY
YES _SPLITTER
HISTORY_LENGTH 3
(c) Connection Description (d) CLE Implementation Diagram
Figure 12.

are provided, including:

{a) The type of unit, analogue or digital (the CLE is one of
the main digital units in the system);

(b) How many units (the system is mainly triplex so most of
the units have a replication of 3);

() Whether the replicated units run in synchrony o¢not.

Figure 12(c) describes a connection between the CLISE and the
Inceptor Element. The options which govern connections are
largely concemed with fault tolerance (described below)
including:

(a) Whether consolidation is applied to the data, ard if so
over how many frames the consolidation is performed;

(b) Whether the multiple sources of the data are compared
for consistency (downstream monitoring);

(c) Whether the siblings of the current unit are tested for
agreement (sibling monitoring);

Figure 12(d) is a pictorial representation of the mapping between
the specification network, and a unit (in this case the CLE). The
tectangle at the top corresponds to a task type, with the network
processes converted via a standard transformation strategy into a
procedure calling hicrarchy; processes nearer the top call those
connected directly beneath them Data extemal to the CLE is
shown via the disk symbols, with access shown.

3.3.2 Jmplementation in Ada There are many possible mapping
schemes between JSD and Ada; References 16 and 17 describe
two. The mappings for this project is broadly on that described
in Reference 17. This mapping relies very heavily on packages,
the aim being to produce a set of Ada packages where each
correspond only to one specification object (¢.g. process or data
stream). This enhances the traceability from the JSD
specification to the Ada. The most obvious extensions to this
mapping scheme for ACT applications are:
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(a) cach unit type 1> mapped onto a task type. Figure 13
shows the Ada for the UNIT described in Figure 12(b). The
replication of units is achieved by declaring an array of the
task type for the unit with a m»itiplicity equal to the

. REPLICATION factor specified in the UNIT object, which
in the case of figure 12(a) is 3.

(b) the infrastructure which provides the fault tolerance is
described using a number of generic packages which are
instantiated based on the information in the connection
object.

3.3.3 i ult Tolerance Figures 14(a)and
14(b) describe the connections between the Inceptor Element
and the CLISE, and the fault tolerant software sited in the
CLISE to handle the data passing between the two units. The
fault tolerant strategy was based on that described in Reference
18. The connections between the IE and the CLISE are
BROADCAST as indicated in Figure 12(c), thatis every IE
sends to every CLISE. Figure 12(c) also indicates that each of
consolidation, downstream monitoring and sibling monitoring
are enabled. The schematic diagram in Figure 14(b) shows the
type of fault processing which takes place.Voting is always
present where there are many sources for the same data. The
voted value is obtained by cither majority vote, or median select
depending on the type of data. Downstream monitoring implies
comparing the values coming from each of the data sources with
the voted value. Ifany of the sources differs for more than a
given number of frames (HISTORY-LENGTH in figure 12(c)),
then an error is logged and the voter ignores all subsequent input
from that source. Consolidation is performed by comparing the
historical values from each sibling, gathered over previous
frames. A consolidater will only output a new value if it
perccives that all of its siblings agree with it. Sibling monitoring
implics companng the voted values coming from the siblings of
the unit, rather from upstream sources. Otherwise the
processing is identical, with an error being logged whena
discrepancy occurs. The sibling which is diagnosed as being in
ervor is then ignored by the consolidation process.

INCEPTOR ELEMENT (IE)
1U(1) 10(2) 10(3)
Y Y Y
CLISU(1) CLISU(2) CLISU(3)

CONTROL LAW SUPPORT ELEMENT (CLISE)
(a) 1E to CLISE interconnection

(1) 2) 1U(3)

Raw walues

with CLE_ID_TYPE_PACKAGE,
use CLE_ID_TYPE_PACKAGE,
wth SYSTEM,
package CLE_TASK_TYPE_PACK 15
functon CURRENT_ID retum CLE_ID_TYPE,
task type CLE_TASK_TYPE 1s
pragma PRIORITY (SYSTEM PRIORITYFIRST),
entry INITIALISE(ID. in CLE_ID_TYPE),
entry ENSURE_INITIALISATION,
entry FRAME_START(FRAME_NUMBER n NATURAL),
end CLE_TASK_TYPE;
end CLE_TASK_TYPE_PACK.

\ V \ / CLISU(2)
Voted values
DOWN
STREAM [ V87 sources] VOTER
MONITOR
Error log|
Voted values, CLISU(3)

Consohdation Data

SiBLING

CONSOLIDATER | 8= MONITOR

8

Consolidated values i Frror log ‘

CLISt(n

Figure 13 CLE Package Specification

3.3.4 The Choice entati vageThe
selection of Ada as the implementation language was determined
by the following considerations:

(1) DoD Language. Ada isa DoD mandated language, and is
also "highly recommended” by the British MoD, which has
provided a large, guarantied market for Ada compilers
ensuring a great deal of investment from compiler vendors.
This fact coupled with the extensive validation tests required
by the DoD has resulted in 2 number of very high quality
compilers.

(ii) Language features. As has been discussed above, packages
and tasks have been very important in implementing this
system. In addition the comprehensive data typing provided
through Ada has enabled a more precise specificatica to be
constructed with a resulting increase in quality.

(iri) Tool Availability. The code generation tool Adacode,
described below was already available in prototype form to
serve as a basis for the project, and as its name suggests
generated Ada.

(b) Schematic Diagram of Fault Processing

Figure 14
3.4 Code Generation,

A sigmficant contribution to the success of the project was the
use of code generation. Several factors encourage 1ts use in
projects of this nature including:

(1) Productivity. The most obvious gain 1s productivity, The
statistics concerning the number of lines of code and even
number of functions (counted using function point analysis
FPA)) wete very high. The figures obtained from the
second delivered increment were as follows:

(a) Function Points per man day 2.34
(b) Source Lines of Code per man day 204

This project could not have been completed within budget
and timescales without the use of code generation.

(i1) Ease of Instrumentation. The requirement for dynamic
analysis will doubtless change as the simulation is used.
Because the system is generated using code generation, the
instrumentation can be changed mercly by altering the form
of the Ada templates and regenerating.

(i11) Evolutionary Delivery. One of the important factors that
supports evolutionary delivery is for user feedback at the
specification level to be converted efficiently and accurately
nto implementation changes. With automatic code
generation directly from the s pecification this is assured




(iv) Living Specification. One of the major problems of
maintaining systems, especially computer systems, is that
the behaviour of the running system diverges very quickly
from the original specification of system behaviour once
maintenance begins. Code gencration provides the ability to
maintain a "living specification”, i.¢. one where changes to
the specification are automatically represented in the
implemented system.

This feature is especially important in the case of the ACT
system because we may wish to evaluate many hardware and
error monitoring combinations and even new functions in the
course of the planned ACT research.

(v) Re-Implementation. Another important benefit of code
generation is that, without changing the JSD specification of
the system, a completely different set of code can be
generated, for example to fit the system onto real hardware
or onto transputers. (This can sometimes be achicved
merely by changing the code generation macros, but may
require new implementation objects if the implementation is
significantly different.) Therefore the investment in a system
specification is not compromised when when evolving the
system towards greater realism.

Code generation is provided by a prototype Ada code generation
tool built by LBMS which has been significantly enhanced
during the life of this project. Figure 15 illustrates the workings
of the tool. It takes the description of the system, specified using
the Jackson Work Bench (JWB) CASE product and generates
the complete system from it. Data Extraction is done using built
in facilities of the CASE tool. The code templates are combined
with the specific parameters extracted from JWB by a
proprietary tool called JISP-MACRO. The code generation
approach provides a great deal of flexibility with respect to
changes in the implementation of the system. Many simple
changes can be achieved purely by amending the templates.
Even large changes may only require changes to the data
extraction, leaving specification of the system unchanged. As
well as tools to build the whole system, there are others which
rebuild the system regencrating a minimum of Ada based on
changes and still others which create test harnesses for any sub
network of the specification, providing a cost-effective way of
ensuring quality.

CLISE| {CLE
Unit Uit
JWB repository
Data Extraction
Template Template
Library Parameters
Template Processor
(JSP-MACRO)
Ada souwces

Figure 15 Operation of Code Generation Tool
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3.5 Requirements satisfaction.

This section concludes by taking the three major features of the
solution in tum, and for cach determines which of the initial
requirements have been addressed.

(i)ISD:

(a) Resolves Ambiguity - providing feedback which
enhances the quality of the original specification.

(b) Formalises Interfaces - so that prospective contractors for
specific devices have a precise specification.

(3i) Simulation:

(a) Provides Limited Hands On Experience - allowing pilots
to evaluate some aspects of the user interface.

(b) Allows Investigations of Control Mechanisms - to
resolve theoretical issues.

(c) Allows Verification of the Acceptability of an
Asynchronous Implementation - which is an important and
contentious issue.

(d) Allows Investigation of the Tolerance for Critical
Functions.

(c) Allows estimates to be made about required processor
power and memory usage - via static and dynamic analysis
of the system.

(0 Allows verification of the error handling mechanisms - in
particular reconfiguration and system test.

(iii) Code Generation:

{a) Allows altemnative designs to be verificd - including
significantly different hardware architectures. This
specifically includes a potential switch to a synchronous
architecture.

(b) Allows alterations to the testing mechanisms, including
monitoring, to be entered and implemented quickly.

4, EXERCISING OF THE SPECIFICATION

With any complex system the problem is always going to be
ensuring that the specification is complete in that it totally
describes the system behaviour for all eventualities, In addition
to complete, it must aiso be appropriate, correct, testable,
unambiguous, and substantiated - together forming the
CACTUS rules. This is virtually impossible for any
specification written in a non-formal language such as English.
The JSD design created from the English specification was to be
used to test , in particulas, the requirements for completeness
and unambiguity, and to clarify the interpretation of the
document. The structure of the JSD forces the simulation of the
specification to be complete within itself and therefore any
omissions in the functional specification must be corrected. Any
other inconsistencies become apparent when the simulation of
the system is used in a representative way. An example of
incompleteness came t~ right when the first increment of the
simulation was exercised. On disengage, the warning light on
the pilots control panel was to be illuminated. However, the
specification did not include any way to reset (i.c. extinguish the
waming light once lit). This omission has now been corrected
and, although the example may appear trivial, an important point
to note is that cven though the functional specification had been
read by several people, no-one had detected the absence of such
a requirement,

Once the deficiencies in the specification are resolved at the
incremental level, the simulation can be completed and
exercised. Itis in the exercising of the simulation that more
potential problems can be highlighted and solved. The first
objective of exercising of the svstem must be to check out the
compliance of the simulation with the original functional
specification. A thorough check cf the simulation is needed to
ensure that all the functionality required in a partio'%.. increment
is present. This is not an insignificant task and cai. «ul thought
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needs to be given as to how the compliance is to be
demonstrated. This task is slightly eased by the incremental
approach possible with JSD. The first increment will be fairly
simple, hence the correlation between the functional specification
and the simulation should be fairy straightforward. As the
increments progress, it is only the increased functionality and
any associated performance requirements that need to be
checked. So not only is the design done incrementally, the
compliance checking is done in a similar manner. Each
increment demonstrates some aspects of the proposed
functionality of the system and can be excrcised ina
representative way. There may not be same inteeface as in the
cockpit, but the basic pilot/ system interaction can be adequately
simulated using a keyboard. This ability to interact with the
simulation was particularly useful and resulted in some changes
to what can be referred to as the Pilot Vehicle Interface (PVI).
For example, the proposed system state lights on the pilots
control panel were changed becausc it was felt that the exact
status of the system at some points in time was not obvious.

Prototyping systems in order to optimise the PVI 1s of course
not new and several specific prototyping languages have been
developed to perform that role. In addition, however, because
the design includes the description of the functionality of the
system, using the JSD approach offers the opportunity for
examining the ability (o estimate of processor and memory
requirements. Instrumentation of the simulation means that
whilst exercising the system estimates of the computational
power of the required processors can be obtained. These results
can be fed back into the non-functional parts of the of the
original specification It has always been a contentious issue in
prototyping as to whether the software produced in this phase of
the development cycle should be used 1n the final version of the
system. The argument against using prototype software has
always been that during its life there will have been frequent
changes and patches so that, at the end of the prototyping phase,
the software 1s very unstructured. However, because the
changes to the prototype software under JSD are always donc a
the high level design and not at the code level, the code always
stays well structured and suitable for use in the final delivered
system.

One aspect of the specification writing which has been
particularly difficult to quantify is the specification of tolerances
In any redundant system, where the companisons are made for
fault checking purposes, tolerances need to be set against which
the system can check itself. If the tolerances are set too close
then the system will signal an error where none exists, if the
tolerance is to wide then the system may not detect an error
where one does exist - or alternatively may not react sufficiently
quickly toit. In complex systems, several tolerances need to be
set at various strategic points throughout the system. Without
putting those tolerances into a representative system and then
testing that system it is difficult to ascertain what level they need
to be to provide the right level of protection The simulation
allows the tolerances to be input and easily changed so that the
effect of various levels and combinations of tolerances can be
established. The simulation not only allows the examination of
tolerance levels with a correctly functicning system, but also
allows a representative selection of faults to be injected to
establish the behaviour of the system.

In a modular systein such as the one being developed here (see
Figure 1), it is vital to define rigorously the interfaces between
the various elements to enable changes and upgrades to be easily
made to the sytem. JSD enables each module to be treated
separately and the design method enforces a rigorous approach
1o the specification of the interfaces. This has the added
advantage that different system architectures can be tried for
parts of the system and still retain the integrity of the generated
executable code. Thus quadruplex systems can be substituted for
triplex, dual duplex substituted for triplex and so on. The
implication of such changes can be investigated by a further
exercising of the system This ahility is not only valuable during
the initial stages of the development cycle, but also later when
actual solutions are being proposed to meet the specification.
The simulation can be modified to represent, and then exercised
to ensure compliance of, any proposed solution; thus reducing
the development nsk

In summary, the abihty to exercise a ssmulation of the proposed
system confirms that the specification writers ideas and

assumptions are actually vahd. Itis a very valuable tool which
allows a rigorous checking of the completeness and consistency
of the original specification. The excrcising of the simulation
ensures the adequacy of the design and allows initial processor
performance estimates to be made. By running the simulation of
the proposed system, fault tolerances can be set - a task that is
virtually impossible to do purely from a theoreticat point of
view. Altemative architectures can be implemented, and due to
the modular nature of the design method, these altematives can
replace the original design and tested for compliance. Thus the
too! has a valuable role to play all through the development
cycle.

5. THE WAY FORWARD

At the time of writing the ACT Lynx project is at a hiatus.
Estimated procurement costs for the system and its certification
are high and are likely to require a multi-partner team to be
affordable. Both UK and intemational options are being
explored but no clear way forward curently presents itself.
Activaties in support of the project are continuing at

including the study of performance / trade-ofY issues associated
with trials in flight (safety) critical areas. The role of the safet
pilot is crucial to this work and ground-based simulations [ 18
have been conducted - and are planned - to address criticat
functional questions such as optimum location of disconnects,
backdriving frequencies, mismatch tolerances for failure
managment, and PCP ergonomics. In parallel with these topics,
the requirements specification will continue to be developed.
The current operation form is essentially complete in its
functionality. Future tasks include:

(a) Instrumentation of the simulation to evaluate end-to-end
and intemnal performance and behaviour.

(b) Production of a comprehensive user guide 1o the
simulation.

(c) Comprehensive exercise of the simulation to validate the
specification across the operating spectrum.

(d) Upgrading the requirements specification 1n line with the
results of (a) - (¢}

{e) Upgrading the requirements specification to include a
second level of JSD analysis, 1.c. network and process
diagrams together with text.

(f) Implementation of the Ada simulation 1n real time with
representative pilots’, engineer’s and software development
stations

Many of these tasks can be embarked upon concurrently and are
not specific to the implementation in the final system. The
results from these activities have generic value and can be used
to guide and support similar projects for example The current
Ada simulation has been developed n seven increments and the
approach has demonstrated the uiility of this approach. The
simulation has 'grown’ in a controlled manner with each
increment offering more functionality for review and revision tf
necessary. The approach has had the added advantage of
enabling the software engineers to develop their understanding
of the application incrementally. A top-down approach to the
design would have required considerably greater investment 1n
"application learning’ before any cieative work could have been
started. Itis recognised that there are contentious issues in
system development and that there are no right or wrong
approaches. JSD has exposed functional anomalies and forced
hidden issues into the open through its emphasis on design,
however, The behaviour of the ACT Lynx system, as currently
configured, is now well understood - the fight cnitical nature of
the application makes this an attractive position to be in.

6. CONCLUDING REMARKS

The handling qualites opportunities offered by active control
technology for helicopters require considerable research effort
using both ground and in-flight simulation before the final
potential is realised Much work has already been done but the
peculiar problem areas, such as carefree handling, of high
performance levels have yet to be explored in-flight. The safety-
caitical nature of such flight research demands that a fail-operate
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design concept be employed covering both system hardware and
software. In the UK, the Royal Acrospace Establishment has
proposed the procurement of an experimental ACT system for its
research Lynx. This paper a. ocribes the development of the
requirement specification for the airbome system including crew
station, sensors, processing clements, actuation etc. Inits
current form the requirement is a textual and diagramatic
description of the system behaviour covering functionality,
operation, performance, testing and interface requirements The
specification is supported by design using the JSD
methodology. An outcome of the design work is a prototype
Ada simulation of the system. Examples of the ISD modelling
and the mapping into Ada have been described. Initial results
from exercising the simulation have been presented. Although
the overall ACT Lynx project is on hold until an affordable
package is defined, the requirement specification continues to be
evolve, with an upgrading scheduled to follow from a
comprehensive instrumentation and exercise of the simulation.
A real time implementation is planned which could form the core
element of a ground system to support sHftware development.
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UK MOD(PE) identified Ada' as the single
preferred high level language for the
implementation of defence real-time
operational systems from 1 July 1987.
This meant that projects selecting an
implementation language after that time
must select Ada, unless there are sound
and documented reasons for using an
alternative.

UK (MOD)PE therefore decided to invite
proposals for the High Order Language
Demonstrator (HOLD) to examine the
applicability of Ada to an aerxo gas
turbine FALEC, and awarded the contract to
Lucas Aerospace Ltd, Birmingham. This
paper describes the work carried out to
date by Lucas Aerospace on this contract.

1, UCTIO

UK MOD(PE) identified Ada' as the single
preferred high level language for the
implementation of defence real-time
operational systems from 1 July 1987.
This meant that projects selecting an
implementation language after that time
must select Ada, unless there are sound
and documented reasons for using an
alternative.

The major potential benefit of the
application of Ada to military systems :s
the reduction of Life Cycle Costs (LCCs).
In addition Ada is a truly international
standard and as a result very wide
support, in terms of Programme Support
Environments (PSEs) and industry expertise
can be expected. Ada also provides
facilities for structured design which
holds the prospect for a modular approach
with verifiable and re-usable software
components.

UK MOD(PE)'s concern was that Ada was not
yet ready for incorporation into full
development of high integrity software
basad systems, such as flight safety
‘critical’' Full Authority Digital Engine
Control Systems (FADECSs).

A FADEC is a real-time control system.
The control requires a fast execution
time, typically in the order of 20ms, and
all of the functions must be computed
within this time frame. The main
functional activities are:

by

T.C.Moores
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i) Input handling, including
sampling, validation,
averaging/filtering and scaling.

ii) Control law computation.

iii) Output handling, possibly
including status and fault code
data.

iv) Fault monitoring and detection,
state input checks and Built In
Test (BIT).

v) Fault handling, take action to
implement fault procedures, for
example change control lane or set
the system to a safe state.

There are two main areas of concern:-

Firstly the lack of visibility of the
object code and its characteristics.

This is due to the way in which high order
language (HOL) sourced object code is
generated. Software is written in the
HOL, and then converted by an automated
process, compiled, into the object code
that will be loaded into and used by the
target system. Whilst Ada lays down
stringent requiremants for the design of
complilers, and the compilers have to be
formally validated, there remains a doubt
about their integrity, and certainty of
the object code produced actually
representing that required by the source,
and therefore their suitability for this
application.

Secondly the Size of code.

The use of the full Ada language with many
compilers was understood to be inefficient
in the production of object code, compared
to the specialised lower-level languages
being used for aero-engine control. This
would result in many times more computer
memory space and processing power being
used for a given function, and would be a
serious limitation to the use of Ada for
aero-engine control. However,
restrictions on the features used, and
careful optimisation of the source code
might greatly alleviate the problem. It
was expected that there would be a speed
and power penalty arising from the use of
Ada, but it was considered possible that
the penalties could be reduced to an

'Ada is a registered trademark of the US Government (Ada Joint
Program Office)
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acceptable level.

UK(MOD)PE therefore decided to invite
proposals for the High Order Language
Demonstrator (HOLD) to examine the
applicability of Ada to an aero gas
turbine FADEC, and awarded the contract to
Lucas Aerospace Ltd, Birmingham. This
paper describes the work carried out to
date by Lucas Aerospace on this contract.

2. PURPOSE AND SCOPE

The purpose of the HOLD programme is to
examine the applicability of Ada to a
military aero gas turbine FADEC. However,
it is clear that much more can be
undertaken whilst pursuing the top level
objective. To ensure that the programme
is as "real" as possible the contractor
has been required to base the programme on
an existing in-service UK military FADEC.

The programme therefore covers:-

i) The identification of those
features of the Ada language which
conflict with the requirements for
a flight safety "critical" aero-
engine control system.

ii) The utilisation and critical
assessment of design and
development methods that will
provide the best possible
application of the language to
this type of system, to meet both
performance and integrity
requirements.

iii) Re-programming of an exiwsting
flight certified Engine Electronic
Control (EEC) in Ada.

iv) Tha asseesment of the efficiency
of the executable code, and the
resulting system performance and
integrity, using the existing
flight certified EEC as a
benchmark.

Within these major activities the HOLD
programme will generate much valuable
information on topics such as:-

i) Considerations leading to the
gelection of the compiler.

ii) Considerations leading to the
selection of the support
environment.

iii) Development of the Ada solution.

iv) Simulator rig testing utilising a
reprogrammed EEC.

v) Assegement sctudies to identify the
benefits and penalties of
the use of Ada.

vi) Selection of processor/computing
power to implement an Ada
solution,

3. REQUIREMENTS OF A SAFETY CRITICAL
ENGINE CONTROL_SYSTEM

This section of the paper attempts to
describe the features and life cycle of an
Aircraft Engine Control System which may
set it apart from other avionic embedded
goftware systems. The .nain purpose is to
highlight the main differences so that
some of the decisions described later in
the paper can be better understood.

FADEC system software is generally set at
the critically level of "Level 1" goftware
as defined by RTCA/DO-178A. The "Radio
Technical Commission for Reronautics, DO~
178A Software Considerations in Airborne
Systems and Equipment Certification"
defines Level 1 software as:-

Functions for which the occurrence of
any failure condition or design error
would prevent the continued safe flight
and landing of the alircraft.

Although RTCA/DO-178A is a civil
certification standard recognised by bcth
che United States of America and European
caertification authorities, it is the
standard which was adopted for the flight
certified engine control system being used
in HOLD. Consequently, it was also
adopted for the HOLD programme so that
direct comparisons between the flight
cartified engine control and HOLD could
legitimately be made.

It is worth pointing out at this stage
that software, used for engine control,
requires a computer system plus the
associated input and output conditioning
for it to operate and communicate with the
outside world. The design of this system
is of paramount importance, as the split
of functions between hardware and
software, with the safety featurer embeded
in both, provides the safety critical
system. Software running in isolation
does not constitute the total safety
critical system, and consequently cannot
be considered in isolation.

3.1  Description of a FADEC
3.1.1 FADEC Functjonality

A FRADEC comprises all the sensors,
actuators and computing elements that
realise engine management. The (EEC) is a
major component of the FADEC. It is
beneficial to later sections of this paper
to segregate the 'essential' FADEC
functions from those functions arising as
a result of 'how' the system is
implemented.

3.1.2 Essential Functionsg

The primary purpose of the FADEC is to
control a gas turbine installed on an
aircraft throughout the flight envelope.
Thrust demands from the cockpit and flight
management computer are input to the EEC.
The EEC utilises a set of control laws and
schedules primarily based upon engine and




airframe measurements of pressures,
temperatures and speeds to control the
prime interfaces to the engine, including
fuel metering, variable guide vanes,
engine igniters, engine bleed valves and
thrust reversers.

Additional Fupctions

The FADEC design is required to meet
stringent integrity and reliability
requirements. The architecture of the
FADEC and of the EEC is designed to
maximise fault accommodation. The
additional functionality required of the
EEC is:

3.1.3

i) To condition, calibrate, validate
and select input signals (critical
inputs are normally duplicated).

ii) validate correct operation of and
select output drives.

iii) Dormant fault detection.

iv) Redundancy management.

v) Store all fault data for
subsequent retrieval so that the
status of the FADEC can be
established.

vi) Provide test features to aid  nit
development.

3.2 Development Life Cvcle

One of the major differences botween an
engine control system and other avionic
systems is the software life cycle. It isa
not vnusual for a development life cycle
to span 10 years or more and during this
time,t @ software process must be
sufficiently flexible to accommodate
numerous changes. Some of these changes
will be required to be carried out in
short time scales, posaibly less than 24
hours during particular stages of the
development life cycle such as engine test
cell operation. The EEC life cycle began
in 1979 and is still a live project with
gsoftware modifications being planned for
thia year. A typical project for civil
application can last as loug as 5 years
with modifications to the sottware taking
place after entry into passenger service.

The life cycle normally begins with
software requirements that are incomplete.
This is totally understandable as the life
cycle begins while the engine itself is
under development. The engine, in return,
requires a basic control system to operate
it so that the engine can he run and the
development process continue.

So we have a situation where both the
engine and its associated control system
are under development and continucus
modification. Thus the software teams do
not have the luxury of frozen, complete
and unambiguous requirements until quite
late in the project life cycle.

The majority of the development changes
are implemented in the software system due
to the fact that it is easier, but not
necessarily cheaper, than modifying the
hardware system. Therefore the software
environment employed must be flexible but
must provide a top quality product without
reliance upon formal verification, as this
task is impractical during the engine
development process.

3.3 Rea ime Control Svst

The term "real time" means many things to
many people, from data entry systems,
supermarket checkout systems, banking
systems to control aystems to name but a
few. The consequence of failure to carry
out a certain task in a certain time for a
real-time engine control is an error with
a significant consequence, not merely an
inconvenience. When this situation arises
it must be dealt with in a correct and
safe manner, not ignored. This feature of
engine control systems has a profound
effect on the hardware and software
aystems which must react quickly and
safely to a timing error. The
requirements for the engine control system
must contain the specific time
requirements and any system used to
provide and analyse these requirements
must have the ability to take time into
account.

3.4 twa c

The verification of software is a very
important, if not the most important,
stage vf a software life cycle. The
outcone uf the verification stage is to
show that the software meets the
reguirements and only meets the
raquirements. There are many facets of
verification including functional testing,
structural testing, code review, static
testing etc. To be able to meet the
safety levels required for safety critical
goftware the testing methodology employed
must be against the target code resident
in its target environment. If testing is
carried out against source code,
emulators, simulations etc then this will
only be acceptable if the following
conditions apply:-

i) The source code to target code
process has itself been verified
or is completely analysed.

ii) The tools used in the process are
themselves verified to the same
level as the software criticality
level.

3.5 coL!
The EEC currently in production was
programmed using the Lucas Aerospaca LUCOL

Programmiig system.

The basis of the system is a high level
application oriented language consisting

LUCOL! is a trademark of Lucas Industries Plc




of a series of LUCOL Modules representing
commonly used analogue control system
blocks together with sequential logic
operations, input, output and safety
routines. The control engineer solves his
problem by specifying an appropriately
ordered network of LUCOL Modules. These
LUCOL Modules are drawn from a library of
rigorously tested microprocessor targeted
assembler language programs.

Each LUCOL Module has a mnemonic identifer
and a standard functional diagram assigned
to it. The control engineer draws hig
sys.em block diagram using the LUCOL
Elements - this klock diagram then forms a
pictorial representation of the software.

The basic control source program is
generated simply by producing a calling
sequence listing the LUCOL Modules, in
mnemonic form, aud their associated
parameters. These parameters specify:-

i) The data flow between LUCOL
Modules (analogous to the signal
flow on a conventional block
diagram).

ii) The direct parameters such as
gains, time constants etc.

A feature of LUCOL is that a LUCOL Module
may use the output of the previous LUCOL
Module as an input automatically. This
method of transference, termed "signal
flow" is employed by most LUCOL kudules
and results in an improvement in the
efficiency and clarity of the resultant
control program. However, in a few cases,
explicit flow is used, the input or output
being defined in the calling sequence.
Typically this method is used in such
cagses as hardware interfacing LUCOL
Modules where several parallel operations
are likely. This again is to optimise
overall efficiency.

4. HOLD METHODOLOGY

The approach adopted for the development
of HOLD was to reprogram one lane of an
existing FADEC unit. The unit chosen was 1
dual lane EEC i.e. it had two identical
independent lanes of control. Each lane of
control was for dry engine control only,
there being a third common lane of control
for reheat. The advantage of choosing such
a unit was that we could replace one lane
with the code developed for HOLD whilst
retaining the original software of the
other lane. This meant that during testing
of the unit we could freely change lanes
between the two different versions of the
software to examine performance.

The starting point for the software
development was the software requirements
that had been used to develop the original
software. We could have started further
back along the development path at the
system requirements level but we felt that
this approach would lead to different
design implementations, that would throw
into doubt the result of any comparisons

made between the two systems. Likewise we
could have started further down the
development path using the design of the
origiral software as a template for the
Ada software. This approach was also
rejected. Although it would have given a
very good basis for a comparison of the
physical effects of the two systems, it
did not render sufficient flexibility in
the cdesign process to explore all cf the
1nherent structured design features of
Ada. So the middle road of choosing the
goftware requirements was chosen as the
optimum starting point, bearing in mind
that we would have to keep a close eye on
the design approach to ensure that the
resultant Ada software was consistent
functionally with the baseline software
implementation, and thus did not
inval.idate any results of the comparison.

Once this starting point was chosen, the
next stage was to decide on the
implementation approach to be adopted for
the specification and design of the Ada
software. As part of the HOLD programme we
wighed to investigate the impact that
Formal Methods would have on engine
control systems and to see where such
methodologies would yield benefits in
terms of improved software production and
integrity.

We considered implementing the whole of
the software requirements using a Formal
Method but decided that this approach was
too great a risk to the programma. The
time required to perform a full Fformal
Methods implementation was an unknown as
was the effect that it would have on the
subsequent production of Ada scftware. As
the other main aim of the programma was to
investigate the suitability of Ada in an
engine control environment we did not wish
to risk an approach that way fail at the
first hurdle.

There was also the unknown regarding how
well we could implement, using Formal
Methods, the present software requirements
due to their structure and layout. We had
to be sure that any new representation was
consistent with the present software
requirements and included the same
functionality.

The next step was thus the selection of
the approach to be taken to represent the
software requirements.

4.1 Requirements Capture

We decided that the most advantageous way
to proceed was to use some form of
computer aided software engineering (CASE)
tool to capture the existing software
requirements. This exercise could also be
uged to ensure that all the software
requirements were captured in such a way
that the subsequent design and
implementation of the Ada solution mirrors
the existing software. This will thus
provide reliable comparisons between the
two systems. There are many methodologies




available that come under the umbrella of
requirements capture or analysis and
design methods, such as CORE, MASCOT,
SSADM, OOD, Jackson etc, but we decided to
use Yourdon'. This choice was based mainly
on two factors. Firstly our knowledge and
experience with Yourdon over several years
and secondly the availability of in-house
tool support for this methodology. We had
available in-house the CASE tool Teamwork?
which implements a Yourdon based system
analysis methodology and also has support
for structured dee.gn.

4.1.1 System Analysis

The first task in the requirements capture
was the analysis of the system. This is
achieved in the Yourdon metiiodology by
creating the top level context diagram.
This defines the inputs and outputs of a
system and thus places bounds on the
extent of the system. This top level
diagram was defined by searching through
the software requirements for inputs and
outputs. This task was aided by the fact
that the hardware devices of the EEC were
fixed and thus could be tied to individual
software input and output functions. To
simplify the diagram the varicus inputs
and outputs were then collected together
into logically functional blocks. e.g.
collaction of all engine input data,
speeds, temperatures, pressures etc. into
one functional block. The aim was to
generats functional blocks that could be
identified with individual system
components. e.g. engine data, cockpit
signals, airframe signals, fuel valve
etc..

The resulting rc.atext diagram is shown in
figure 4.1.

4.1.2 System braakdown

The next phase of the requirements capture
process was to breakdown the context
diagram, through several steps, into
smaller, and logically independent,
functional tasks. The first stage of this
process was straightforward. As the EEC
performs two different functions, dry
engine control and reheat control, the
first level of partition was to split the
context diagram along this functional
boundary. Then as the dry engine control
cecnsists of a dual lane system the next
level of partition was to split the dry
engine control function into the functions
of the two lanes, termed lane A and lane
B. As the lanes are functionally identical
we then proceeded by continuing the
partition for just one of the lanes.

The breakdown is performed under the
Yourdon methodology by splitting an
overall function into smaller and smaller
component parts or processes as they are
termed. This hierarchy consists of a set
of what are termed dataflow diagrams. Each
dataflow diagram consists of a set of
process "bubbles”, a set of input and

output flows and a set of inter-process
flows. Each process "bubble" can be split
into component processes thus forming a
new dataflow diagram. At esach stage of the
decomposition the data flowing into and
out of a process must be maintained. To
perform this task data composites are used
to group together dataflow signals. A
dataflow composite is simply a collection
of dataflow items, which may be either
elemental dataflows or other dataflow
composites, that are grouped together
under a single name. Thus at one level of
the decomposition a process "bubble" as it
is termed will have several dataflow items
flowing into and out of it. When this
process "bubble" is broken down into
geveral component process “bubbles” the
composite dataflows can also be split and
each element associated with it's
component process. In this way diagrams at
the top of the hierarchy are not
complicated by a mass of dataflow but by
simple corposite dataflows. Figure 4.2
shows the breakdown of the tasks for lane
A.

For HOLD this process of gradually
splitting the overall task into smaller
and smaller items was terminated when
further partitioning yielded no benefits.
The decision as to where to stop the
process was to a large extent arbitrary.
The main goal was to reach a point that
did not over or under partition a
function. If the level is taken too low
then individval functions could be
fragmented and not easily assimilated. If
the luvel is too high then functions will
be too large and complex.

4.1.3 Process Definition

When the partition had been completied the
end procasses had to be defined. This was
achieved using the process specification
(P-Spec) feature of Teamwork. This allows
a process to be described in terms of text
and diagrams. The inputs and outputs are
defined to this P-Spec automatically from
the dataflow diagram. Figure 4.3 shows a
low level dataflow diagram for a part of
the control function of the EEC and figure
4.4 shows a typical P-Spec that wae shall
come across again later.

4.2 t es

The task of structural design can he
thought of as one of organisation. The
objective is to take a sut of specific
requirements and organise them into
coherent groups that will fit into the
chosen hardware environment. If this is
performed adequately then the task of the
software design for the individual
elements will, in concept, become trivial.

It is thus at this stage that the real
world environment has to be considered. In
esgence the Yourdon analysis of the
software requirements has no knowledge of
the real time aspects of the engine

'Yourdon is a registered trademark of Yourdon Inc
reamwork is a registered trademark of CADRE Technologias Inc




control functions, or of any physical
limitations such as size of memory
available.

So the structural design was tackled with
two different approaches. A bottom up
approach to create the structure charts
for the individual processes, and a top
down approach for the executive structure
controlling the order and sequence of
execution of the processes.

4.2.1 Procegs Structure Charts

The functionality of individual processes
withir the requirements analysis was
transferred to a structure chart format to
represent the software design of each
component. An example of a structure chart
is shown in figure 4.5. These structure
charts show the design tree of the
goftware and how it is arranged into
various blocks consisting of functional
modules and data only modules. Each
functional module is defined by a module
specification (M-Spec).

The starting point for these M-Specs and
data only modules is the P-Spec from the
requirements analysis. The way in which a
particular P-Spec is implemented will
depend upon the language to be used in the
implementation, as the M-Spec will have to
directly reflect the requirements for the
code. The data only modules may be defined
directly from the input/output list of the
P~Spec. Pigure 4.6 shows the structure
chart implementation of the P-Spec shown
in figure 4.4 and figure 4.7 shows the
M-Spec associated with this structure
chart.

4.2.2 Executjve Structure Charts

The executive astructure charts fall into
two types. Firstly there are the simple
ones that reflect the dataflow diagram
breakdown. Figure 4.8 shows the structure
chart for the datafiow diagram shown in
figure 4.3. This structure chart defines
the calling sequence of the various
modules which is not always obvious, or
defined, in the dataflow diagram
representation. This is an important
feature which cannot be overlooked even
though on the surface it seems to be a
trivial task.

The second kind of structure chart is the
orerall executive which is typical of an
engine control requirement. Thie 18 where
real world detail has to be added in the
form of power-up/initialisation
requirements and iteration rates for the
various processes. In the ideal world we
would be able to spevify the processing
power rejuirements to run all the softwars
functions together at the highest required
rate but in the real world the processing
power is often the limiting factor. This
means that we have to divide the software
functionality into elements which can be
executed at different iteration rates so
that only the most important functions are
executed at the highest rate,

Figure 4.9 shows how this has been
achieved for HOLD. This structure follows
the original software structure which is
only to be expected as the hardware is
fixed. The main split is between power-
up/initialise/base level functions which
are one off or non time dependent tasks,
and functions which are iterated at a
fixed rate. There are two rates used, a
fast level generated from a sample rate
clock interrupt and a slower level
generated at a multiple of the fast level.

It is this implementation of the software
requirements into real iteration levels
that causes problems with the structure
charts. The example quoted in figure 4.4
is typical of the problem. The major
portion ot this function is executed at
the slower rate but certain elements of it
have to be iterated at the fast rate. This
means that in designing the structure
charts there is not a one to one
relationship between a P-Spec and a
structure chart.

4.3 Formal Methods Integration

In considering the application of Formal
Methods to the HOLD programme, we decided
that the best level at which to introduce
such tachniques would be at the P-Spec
level.

We already had experience of the use of
Formal Methods, in terms of the use of
static analysis applied to small sections
of assembler code. The next logical atep
was to move this process up a level to a
small section of high level language code,
and as such the P-Spec seemed the most
appropriate.

There are many different functions within
an engine control system and we decided to
choose a representative sample of these
functions for investigation. Four P-Specs
were chosen. Two of these were engine
control functions, one of which fell into
the classical control area and involved
lead-lag compensation, gain, lowest and
highest wins elements etc., and the other
fell into the logic area and involved
sequencing functions. The third P-Spec was
chosen from the area of signal validation
involving range, rate of change and cross
checks on a signal. The fourth function
was selected from the area of the control
associated with fault lecjging and
diagnostics.

Our approach to the Formal Methods
representation of these functions was
firstly to select the language in which to
represent them. There are several Formal
Methoda available and in choosing one we
set out several criterion on which we
based our selection. One factor in our
choice was that the method should be
widely accepted and supported. We wanted a
metod that was in popular use by the rest
of the irdustry and one that was likely to
stay in use for the foreseeabl: future.
The method must also be supported in terms
of training and course availability and



1deally would also have tool support
available for automation of the Formal
Method specifications and proof checking.
For these reasons we chose the Vienna
Development Method (VDM) which aiso had
the added benefit of being the easiest to
integrate with our existing systems.

The next step was to look at the
implementation of the specifications from
a general point of view. This activity led
to the formulation of some general
definitions which would be useful in the
specification of discrete systems. These
general definitiona are based on the main
feature of a discrete system, that is the
periodic sampling of inputs and updating
of outputs.

Such discrete systems operate cyclically,
usually in responce to a sample rate clock
interrupt, and prossess state variables
which determine the operation of for
instancs timers, fault integrators and
integrators. Formal definition of the
outputs required where state variables are
involved is best specified in terms of the
nistory of the inputs, allowing a direct
spacification of the requirement to be
made without stating the precise
implementation ie what state variables are
to be involved.

The history of an input is described via a
map of cycle number to the signal's value.
Note that not all cycle numbers need be
represented in the domain of the map since
an input may be read, for instance, on
every sacond cycle.

Cycle Number = N;
Activation Cycle Set = Cycle Number-set

Booleans = Cycle Number ™ B;
e.g.

hist, = (l-false,2-false, 3»true,,..}
hist, = {3+false,5-true,7-falge,...)

domhist, = (1,2,3,...)
domhist, = (3,5,7,...)

hist,(2) = false

hist,(5) = true

hist,(6) is undefined

hist,!6 = true i.e. the value of hist,(5)

The application of this methodology may be
better seen when applied to an example.
Take for instance part of the P-Spec
referenced earlier in figure 4.4 for the
control of the IP blow of valve which
states :-

"The conditions for opening the IP Blow
Off Valve are as follows:

(1.0) Inmediately on receipt of a
leot BOV_Signal, and leld for a
period of "N" seconds after the
Pilot_BOV_Signal is removed.”

Let BOV Cycle be the set of cycle numbers
at which the required state of the Blow
Off Valve is determined. A function is
needed which cperates on the history of
the Pilot BOV sxgnal to produce a map from
cycle numbers in BOV_Cycle to a value of
true or false: true if an output value of
true can be found in

pilot_BOV_signal HISTORY within the last
"N" seconds, falSe otherwisge.

BOvCheck:Booleans-Booleans
BOVCheck (PTLOT_BOV_signal_HISTORY) 4
{c # 3d e dom PILOT_BOV_signal HISTORY
0s c~d s ("N" * CycleFrequancy)A
Pilot_BOV_signal HISTORZ(d) |
c € BOV_Cycle)
Cycle Frequency defines how many times per
second a control cycle occurs. BOV_Cycle
defines on which cycles the test is
carried out. Thus with :-
CycleFrequency = 100
BOV_Cycle = {1,2,3,...}
Pilot_BOV_signal = {1-false,...,
50-»false,...,
30000+t rue,
30001~false, ...}
the example would yield a result of :-
{1-+false, ...,
50-+false, ...,
30000~true,
30001-true, ...,
30000+"N"~+true,
30000+"N"+1-falge,...)

The VDM specification follows directly as:

ext rd current_cycle t Cycle Number
rd Pilot_BOV _Signal HISTORY: Booleans
wr Lane_ A Bov Control _Out : B

post lane A_BOV_Control Out~BOVcheck
(Pilot_| BOV S.gnal HISTORY)(current cycle)

Since out implementation is based on a
simple cyclic, scheduler what we require
is an implementation that maintains a
guitablo lcop invariant. However, we do
not want to implement an operation which
needs the complete history of the
Pilot_BOV_Signal. We want an
implementation that on each cycle
calculates the result of the check for
that cycle based only on the value of
Pilot_BOV_signal for that cycle and a
small amount of additional state.
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The obvious representation to use for the
additional state is a counter whose value
will be how many cycles ago the

Pilot BOV_Signal was last true. This
counter will be called BOV _timer count.

in order to place a bound on the value of
this counting when we reach the smallest
integer which is larger than
N*CycleFrequency. We will call this value
BOV_End_Count.

BOV_End_Count:N=round(N * CycieFrequency+
0.5)

After identifying the loop invariant we
can arrive at the specification of an
operation which calculates the result of
the blow off valve check. The role of
this operation is to re-establish the loop
invariant for each cycle.

ext rd current_cycle : CycleNumber
rd Pilot_BOV_Signal HISTORY:Booleans
wr lane_| A BOV Control Out : B
wr BOV txmer count s N

pre O s BOV_timer_count s BOV_End_CountA
~(3 d ¢ dom PIlot_BOV_Signal HISTORYe
current cycle~‘-BOV txmer count< d =
current cycle -2
A Pilot BOV_Signal HISTORY(d)) A
BoOVChack(PiTot_BOV
Signal HISTORY)(current _cycle-1)
» (BOV_ "timer _count<BOV_. End _Count A
Pilot_BOV Signal _HISTORY (current _cycle
~1- BOV timer-count))

post lane_ A_BOV_Control Out =

BoVCheck(Pilot BOV ngnal _HISTORY)
(current_cycle)A
0 s Bov_ timer countsBOV _End Count A
~{3 d e dom PTlot_BOV_SIgnal HISTORYe
current cycle-BOV c;mer count
<dscurrent _cycle
A pilot_BOV-Signal HISTORY(d)) A
BOVChecE(leot BOV Slqnal HISTORY)
(current cycle)

= (BOV_| timer _count<BOV_End_CountA
Pilot BOV ngnal HISTORY (current _cycle
~BOV__ timer count))

If we assume that there 18 a some
mechanism to maintain the relationship:

Pilot_BOV_Signal =
Pilot_BOV_Signal HISTORY(current_cycle)

tnen the implementation of the operations
will only reed to refer to Pilot_BOV-
signal, and in fact the variables

Prlot BOV-Signal HISTORY and current_cycle
will not appear anywhere in our executable
code (such variables are referred to as
proof variables). The mechanism that
maintains the relationship 18, of course,
the input routines.

From this VDM description the code may be
produced, but before this step can be

explained we have to look at the Ada
programming environment.

4.4 Proqramming Environmeat

In considering the appl:ication of Ada to a

real time engine control application there
were two main areas that we had to
investigate. Firstly thera were the safety
aspects of the language and secondly there
were the timing implications.

4.4.1 Safety Critical Langquage Features

In the use of any language there are
generally features of that language that
are not desirable in a safety critical
engine control software systems. As stated
earlier the failure of the software to
complete a function is a serious error not
merely an inconvenience. It is of critical
importance, therefore, that any function
in the software has an explicit entry and
exit condition. For this reason loop
constructs of the type DO-UNTIL, DO-FOR
and DO-WHILE are avoided especially where
the loop parameter is determined at the
run tims of the system. For a similar
reason the use of GO-TO type constructs
should be avoided as they permit ad-hoc
entry to and exit from functions.

Another major feature of safety critical
engine control systema is that in general
the hardware environment is composed of a
custom made unit. This means that any
software language used to program thaese
units must have the ability to interface
with the unique hardware of the unit. This
is available with Ada, and with other
languages, by means of an interface with
assembly language components. The hardware
constraints also limit in a system the
amount of memory available and for this
reason it is preferable to know in advance
how much storage is required. Thus
features which dynamically allocate memory
at run time must be avoided. Ideally all
the memory should be statically defined at
compile or link time, or in the case of a
atack for example the bounds of the memory
requirements should be calculable.

4.4.2 Time Critical Lanquage Features

A typical engine control system runs at an
iteration rate in the region of 20
milliseconds, the time being chosen to
achieve satisfactory engine control
raesponse. Thus time is critical in an
engine control environment as there is no
option available to increase the run time
of the software. For this reason the
efficiency of the language is of prime
importance. From experience we knew that
the run time system was going to be an
important area to investigate, not only in
respect of Ada itself but also in respect
of the particular compiler selected.

We required a run time system that could
provide a simple and quick interrupt
tranafer mechanism without the use of
tasking because of the time response
associated with this feature of Ada.

Another feature of Ada that we wished to
avoid was the use of exception handlers.
The main source of exceptions in an engine
control system is due to integer overflow.
As integer operations are widely used this




would need in theory an exception handler
for each operation as the result required
would be different in each case. This
approach would place a unacceptable
overhead on the execution time of the
code. The preferred method is to design
out or protect against overflow
conditions, so that exception handlers
become redundant.

4.4.3 Compiler Selection and Restrictions

As a result of the requirements set out in
the previous two sections we selected the
Ada compiler from SD-Scicon since it has a
minimal run time system, which could also
be tailored to our own individual
requirements. The selection was also
influenced by the needs to operate on our
own computer system in terms of
target/host configuration.

In considering the possible need to apply
restrictions to the Ada language we looked
for a way of providing a safe sub-set of
the language. Ideally we required some way
to automatically test code for illegal
construct usage. There is a very limited
get. of products in this field but one
which fitted not cnly our requirements for
a safe sub-set, but also our needs in the
integration of Formal Methods, was SPARK
(SPADE' Ada Run-time Kernal).

SPARK is a tool which checks Ada source
code for a variety of restricted features
and issues warnings if any code violates
these conditions. The tool also performs
tasks associated with the static analysis
of the code. This provides flow checking
of the code as well as verification
condition generation and proot checking.
These last two elements fitted well with
the integration of Formal Methods in the
generation of the code. We could thus use
the VDM specifications to generate pre and
post conditions in the Ada code which we
could then prove using SPARK.

5. I L_CONCLUSIONS

At present the HOLD programme is
approximately 75% complete. The analysis
and capture of the software requirements
and the software design phases are
eagentially complete. The main activities
at the moment are the coding and the
generation of the VDM specifications.

5.1 Softwareg Regquirements Document

The analysis of the software requirements
document using the Yourdon methodology has
resulted in a very easy to read document.
The way that the requirements are split
down into finer and finer detail means
that at each level of the hierarchy of
dataflow diagrams a comprehensible amount
of informat:on can be given. It must be
remembered, however, that the methodology
only serves as a tool to represent the
software requirements, it only helps to
gpecify the requirements in so far as
laying them out in a clear nanner so that
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§.2 Desjgn Description Document

As is the case with the software
requirements, the use of structure charts
generated from the dataflow diagram
breakdown has provided a clear description
of the software design. The main problem,
as with all systems, is that of the
transition from what is required to how it
is to be implemented. The addition of
implementation dependent features at the
software design stage can obscure the flow
of information from the analysis to the
design phase. This problem can be
overcome, however, if the analysis is
performed with the implementation in mind.
In the life cycle of any project there is
rarely just one iteration around the loop
from requirements to design to code. In
practice this loop is iterated around many
times. The software requirements at the
beginning of a project are seldom complete
and develop over the life cycle of the
project. In this way the Yourdon breakdown
may serve initially as a definition of the
requirements but as time progresses this
definition can be developed so that the
requirements are broken down in a manner
which suits the chosen implementation.
This will lead, eventually, to a closer
one to one relationship with the design
phase and thus simplify the software
development process.

5.3 Ppda Run Time Svystem

Our work done on the assessment of run
time systems suitable for this
application, as part of the selection of
an Ada compiler has shown that the area of
“bare micro" targets is being addressed by
compiler vendors. As recently as five
years ago it would have been impossible to
purchase anything other than a large run
time system aimed at a large computer
system target. Now more attention is being
focused on almost “bare micro" target
systems. The fact that we have beaen able
to take an off the shelf system, albsit
with some tailoring, is testimony tc this
development. Using this supplied system we
have so far developed a bare run time
system (interrupt servicing and test port
communication) which is working in the
target unit.

The timing and memory utilisation of this
system has been shown to be acceptable for
engine control applications.

5.4 Comparisons with Traditional
Methodology

The traditional development of software
has relied on English language
descriptiona for the software requirements
and design. Whilst this is still true in
part for HOLD, as most of the P-Specs are
still in English language, the application
of the new methodology has served to
present the requirements and design in a
clearer form. The work in hand at present

'SPADE is a registered trademark of Program Validation Ltd
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on the application of Formal Methods to
the P-Specs will show whether we can
replace the English language descriptions
with a rigorous mathematical description.

6. FUTURE WORK ON HOLD

once the work of completing the coding and
Formal Methods implementation of the
gelected P~Specs is complete the main task
of qualitative and quantitive assessment
can begin.

We have already been able to assess the
wmplication of using Yourdon and the
effects of the Ada run time system and
both have shown positive results for the
future of engine control software
development. The areas that have yet to be
assessed in the future are threefold.
Firstly there is the assessment of the Ada
code itself. Comparisons will be made
bhetween the Ada and original LUCOL
Software code. These comparisons will
address not only the efficiency of the two
languages, run time, memory utilisation
etc. but also the speed and ease of code
development. Secondly there is the
analysis of the effects that the use of
Formal Methods will have on software
development. Our work to date has shown
that application of Formal Methods should
lead to unambiguous specifications.
However, the practical application of such
methodologivs is not easily attainable by
engineers, because of the highly
mathematical nature of the system plus the
fact that experience of their use in real
word situations of this type is extremaly
limited. Thirdly there is the aspect of
validation of the system to be considered.
In the past critical engine control
software has been verified down at the
level of the target code resident in the
target environment. Using Formal Methods,
for example, will allow the mathematical
proof that a piece of Ada code meets 1ts
formal spacification. This proof relies on
the Ada compiler producing correct code.
Whether this is an acceptable system for
validating software has yet to be
agsessed.

6.1 conclusions of Project

The work completed so far on the HOLD
Project has emphasised that the
application of Ada, formal notations and
CASE tools to the flight safety critical
military gas turbine FADEC brings
particular problems.

However, we are also beginning to see the
potential benefits within the total
process that the application of a
structured, system level approach can
bring. It appears that if such an
approach is applied throughout the
process, from requirements capture through
to implementation, that:-

i) the likelihood of specification
errors will be reduced,

ii) the likelihood of
misinterpretation of functional
requirements will be reduced,

iii) the interface responsibilities
between the various partners
should be more easily identified,

iv) The functional interface between
the elements of the system should
be more easily identified,

v) programs monitoring and the
process to clear the system for
flight should be less difficult to
manage,

vi) the whole process will be more
effective in the use of all
rasources deployed.

HOLD will enable the miitary aero-gas
turbine community to mak3 a positive
contribution to the general understanding
of the topics that are being studied. We
will more clearly understand where it is
appropriate to use generalised techniques
and where we must be concerned because of
the application specific constraints.
Where we do identify clearly that a FADEC
does require particular considerations
then we will be able to present cogent
reasons for those considerations and
influence future standards and working
practices.

HOLD will improve our ability to identify
programme technical and financial risk and
hence improve UK MOD(PE)'s ability to
procure functionally capable systems on-
time and on-cost.
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NAME:
1Ll.ci ;1

TITLE:
PERFORM IP BOV CONTROL TASK

INPUT/OUTPUT:

Pto_sclected : data_in

Pilot_BOV _signal : data_in
lane_A_BOV_control_out : data_out

BODY:

Purpose.
n

o control the operation of the IP Blow Off Valve.

Function.

The conditions for opening the IP Blow Off Valve are as follows:
1.0 Immediately on the receipt of a Pilot_BOV _signal, and held for a
period of "N” seconds after the signal is removed.

OR

2.0 The following Pressure conditions are achieved

Pto < x Kpa  Pto decreasing
Pto < yKpa Pto increasing

Figure 4.4

denrn e
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1.1

LLL1

1.1.1.2

1.1.1.3

1L.1.14

LLLS

LLLG

STRUCTURE CHART EXPLANATION

Introduction

Each structure chart is composed of an arrangement of various graphic symbols these symbols are
described below.

Module MSPEC

Modules A B and C are Plain modules,they represent some detailed processing activity the name of
the module relates to the nature of the activity occurring within the module.

Associated with each module isan MSPEC which details the procedural aspects and actions performed
by the module.

Data Only Module
The Data Only Module represents Global data, that 1s data used Globally throughout the software,

and each data only module can represent a single instance of an item of data, or an aggregate of such
items stored 1n a particular location.

Offsheet Connector

The Offsheet Connector is used to represent the existence of a further structure chart, and allows
decomposition of more complex charts mto simpler subordmate structure charts.

Data Couple

The data couple represents data flow within the structure chart,they must be attached to an mvocation.
The couple can represent Global or Local data, the direction of the anow represents the direction of
the flow.

Control Couple

The control couple represents control flow within the structure chart,they must be attached to an
invocation. The couple can represent Global or Local control, the direction of the arrow represents
the direction of the flow.

Transaction Centre

Represents some decisionr making process, such as conditional invocation of a subordmate module.

Hat

Represents Textual inclusion, that is the body of the MSPEC and the action performed by 1t 1s meant
to be included within the calling module.

Textual inclusion only occurs between plain modules, and does not occur between offshee connectors
and or data only modules.

Invocation

The invocation line is symbolic of a call from a module to other symbolic items.
It should be noted that the philosophy adopted throughout this document 1s that only modules can
invoke other symbolic items.

The offsheet connector is used to connect invocations from a module to another structure chart, in
this case the interface between the corresponding connectors on each sheet must match exactly.

Figure 4.B
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The precedence of invocation is Left to Right and Down, with reference to Fig 1.
Offsheet connector 1 with a control parameter invokes

Module A
The module performs its required operation

Module A
Invokes
Module B
The invocation is terminated with a hat,
The module performs its required operation
Module A
Invokes
Module C which invokes (reads or writes) from the data only
modules X and Y, performs some action and then rcturns
the data couple Z

Module A conditionally invokes
Offsheet connector D which performs some action .

Figure 4.5C
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NAME:
IP_BOV_Controi;12

TITLE:
IP Blow off valve control procedures

PARAMETERS:

LOCALS:
Pre_condition_X
Pre_condition_Y
Pto_last
Pto_limit_1
Pto_limit_2

GLOBALS:

Pto_selected : data_in

Pilot_BOV _signal : data_in
lane_A_BOV_control_out : data_out

BODY:
Purpose/Description

IP_BOV_Control is a subordinate MSPEC on the Structure Chart of the same name.

Iv is invoked via the offsheet connector of the same on the Structure Chart
Open_Loop_Control.

1)Read in the Globals listed above in the GLOBALS list as data_in.
2)Evaluate the conditions for opening the IP BOV.
2.1 Pressure Limits.
Pto_limit_1 = x Kpa
Pto_limit_2 =~ y Kpa
2.2 Evaluate Pre_condition_X
If ((Pto_sclected < Pto_limit_1) and (Pto_selected < Pto_last) then
set Pre_condition_X = TRUE
else
set Pre_condition_X = FALSE
2.3 Evaluate Pre_condition_Y
If (Pto_selected < Pto_limit_2) and (Pto_selected < Pto_last)then
set Pre_condition_Y = TRUE
else
set Pre_condition_Y = FALSE
2.4 Determine new condition for lane_A_BOV _control_out
If (Pre_condition_X or Pre_condition_Y or Pilot_BOV _signal) = TRUE then
set lane_A_BOV _control_out =~ TRUE
else
set lane_A_BOV_control_out = FALSE
3) Pto_last = Pto_selected
4) Wnte out the Global lane_A_BOV_control_out

Figure 4.7
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COMMON ADA MISSILE PACKAGES
(CAMP)

Barry E. Mullins
Armament Directorate
Wright Laboratory
WL/MNAG
Eglin AFB, Florida 32542-5434

Abstract

The words "software crisis" should not be new
to anyone managing a program that involves
software. A shortage of skilled, software personnel
is adversely affecting the development and
subsequent maintenance of today’s and future
weapon systems. The Department of Defense
(DOD), as well as industry, acknowledge this crisis
and are taking bold measures to alleviate it. The
Common Ada Missile Packages (CAMP) program is
one such measure the DOD has undertaken to ease
the crisis via a high-payoff remedy -- reuse of real-
time embedded (RTE) software. CAMP is a
pathfinding effort designed to investigate the
feasibility of RTE software reuse by actually
developing reusable Ada parts, compiler
benchmarks and a parts engineering system (PES).
This paper describes the genesis of CAMP,
structure of the CAMP program, evaluation results
and CAMP products. McDonnell Douglas Migsile
Systems Company developed the CAMP products
under the sponsorship of the Armament
Directorate, Wright Laboratory at Eglin Air Force
Base, Florida.

The Software Crisis

The amount of software required to operate
weapon systems over the past 30 years has grown
tremendously. Where earlier F-4 fighter jets had no
software systems, today’'s B-1 bomber is saturated
with well over 1 million lines of code. This is just
one example of the insatiable demand for complex
software systems which are typically the major cost
driver of weapon systems. This demand has not
been matched by the education and acquisition of
gkilled software developers and maintainers. This
imbalance ultimately resulted in the use of out-
dated software methods and tools being applied to
highly complex, sophisticated applications thus
leading to sometimes inferior, unreliable weapon
systems being delivered late and almost always
over budget.

In 1983, the Air Force Software Technology
for Adaptable Reliable Systems (STARS) Task
Force published a report on the software crisis and
possible solutions. The report recommended
software reuse to ease current software problems.
Software reuse by itself is not the panacea to the
software ‘risis but seems to offer tremendous
returns. Potential benefits include increased
software development productivity of more reliable
software systems and more efficient use of software
engineering expertise. Furthermore, in 1983, the
DOD mandated the use of the Ada programming
language (ANSI/MIL-STD-1815A) in all new
embedded systems. Since the constructs of the Ada

language are extremely amenable to reuse, the Air
Force Armament Laboratory (now the Armament
Directorate, Wright Laboratory) initiated the
CAMP program to investigate software reuse for
conventional missiles using Ada (what else?).

The CAMP Solution

Although software reuse has been practiced
with varying levels of success prior to the STARS
report and the Ada mandate, it was almost always
ad hoc reuse and the application domains were
typically not as constrained by size and speed as
found in the conventicnal missile arena. It should
also be noted that prior to Ada, programming
languages were not equipped with the necessary
facilities to directly support software reusability nor
were they as highly standardized (i.e., supporting
software transportability between platforms).

The CAMP program was designed to address
these limitations, CAMP focused on three primary
areas a8 they relate to operational missile flight
software: (1) investigate the feasibility and
applicability of software reuse; (2) design and
develop reusable Ada parts, Ada compiler
benchmarks and a supporting environment for the
Ada parts; and (3) refine, productize and transition
the technology. To satisfy these goals, CAMP was
performed in three separate contracts all competed
and won by McDonnell Douglas Missile Systems
Company. The contracts satisfied a particular
phase of the program and were therefore called
phases,

CAMP-1: Feasibility Study

The first phase of the CAMP program, Phase
1 (CAMP-1), began in September 1984. CAMP-1
was a one year feasibility study designed to
determine the scope of commonality among missile
flight software. Assuming sufficient commonality
existed, the top-level design for common parts
would be developed. Also, the feasibility and value
of automating the process of building these software
systems using parts was to be investigated.

Before further discussion, it is important to
fully understand what constitutes a CAMP part.
The CAMP program used the following definition: A
part is an Ada software package, subprogram or
task that must be usable in a stand-alone fashion
(i.e., does not depend on external code for proper
execution). However, parts may “with" other parts.
The goal of CAMP-1 was to develop elementary,
flexible parts which provide a useful function to
more than one application while maintaining run-
time efficiency.
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Domain Analysis

The feasibility study included a domain
analysis that attempted to identify common
operations, objects and structures within a bounded
domain. Although a domain analysis is expensive
and laborious, it is imperative to verify domain
commonality exists before any attempt is made at
designing reusable parts. To attempt parts
development without a domain analysis would be a
waste of effort since the resulting parts would not
offer true commonality within the application area.

Ten existing missile systems were included in
the domain analysi which included at least two
missiles from the following classes: air-to-air, air-to-
surface, surface-to-air and surface-to-surface. By
studying documentation and source code for the
missiles, sufficient commonality was verified to
warrant the design of parts.

During the domain analysis it was discovered
that missile domain parts can be properly separated
into two types -- domain dependent and domain
independent. Domain dependent parts are
applicable only to the missile flight software
domain. Domain independent parts can be used in
other domains with few, if any, changes. An
example of domain independent parts include the
mathematical parts which are essential to missile
goftware but also may be used in other areas.

CAMP-1 successfully demonstrated
commonality existed within the missile domain. A
total of 219 reusable parts were identified. The
requirements and top-level design of cach part were
documented, and a software parts taxonomny was
created to facilitate parts classification and
organization. Part complexity ranged from simple
mathematical functions to complex processes and
structures.

Parts Engineering System and Cataloging
Scheme

The development of efficient reusable parts is
a major milestone in the fight against the software
crigis. However, parts alone are 1.0t the answer;
tools must be developed to organize, index, describe
and reference the parts to fully exploit software
reuse. Therefore, substantial effort was invested in
the CAMP tools. In CAMP-1 a top-level design for a
Parts Engineering System (PES) was developed.

The ultimate goal of the PES was to facilitate
storage and retrieval of relevant software parts for
use on other projects while increasing the
productivity of the parts user. The development of
the PES included the investigation of cataloging
schemes and documentation requirements. The
actual capabilities of the PES are discussed in the
CAMP-2 section.

The candidate cataloging scheme for CAMP
was studied in great detail. Realizing the role
effective catalogs play in successful software reuse,
the study included research into existing catalog
schew.es and philosophies. Without an adequate
cataloging scheme, the identification of particular
software parts becomes cumbersome at best and in
some instances virtually impossible. A successful

cataloging scheme must include sufficient
information to determine applicability of parts to
the user’s domain/problem and efficiently retrieve
parts without burdening the user with too much
data. An overload of information can be
counterproductive and ultimately lead to the failure
of the system due to lack of use. Figure 1 displays
the catalog attributes utilized in the CAMP PES
catalog.

A usable catalog system must take yet
another step to ensure success of the software reuse
effort -- complete documentation of the software
parts. Every part must be thoroughly documented
with standard data to provide future users with
necessary decision-making information. A standard
form should be developed for the catalog entry effort
to ensure all necessary information is supplied
when a part is entered into the catulog. In the
future, on-line data entry may elimir:a:e the need
for such a form.

ABSTRACT ORIGINAL DATE OF CATALOG ENTRY
BOOY FRLES PART NAME
CATALOG ENTRY REVISION DATE PART NUMBER
COMPILATION INSTRUCTIONS PERFORMANCE NOTES
CONSOLIDATED TEST CODE FRE REQUIREMENTS DOCUMENTATION
OEPENDENCKES RESTRICTIONS
DESIGN DOCUMENTATION REVISION HISTORY
DESIGN ISSUES REVISION NUMBER
DEVELOPER SAMPLE USAGE
DEVELOPER COMMENTS SPECFICATION FILE NAME
DEVELOPMENT DATE STATEMENT COUNT
DEVELOPED FOR TAXONOMIC CATEGORY
GOVT SENSITIVITY OF ENIRY/PART  TYPE
KEYWORDS USED BY
LINES OF CODE USER COMMENTS
TIONAL VITY OF
ENTRY/PART WITHS

Figure 1 CAMP PES Catalog Attributes

Automated Software Generation Using Parts

To facilitate the development of missile
software systems, a study into the feasibility and
value of developing an automated means of
generating software using existing parts was
performed.

The concept of automatic software generation
is not new. In fact, from the dawn of machine
language, researchers were devising mechanisms t
automate software generation by abstractio :
coding. At the time, they called this assembl,
language. As software technology advanced, so did
researchers’ expectations. They continued to expect
automatic software generation capabilities -- hence
the birth of higher order languages. Today, the
quest is turning towards VHOL (Very High Order
Languages). VHOL allows the user to enter
specifications and requirements at a high level of
abstraction.

The reward for automating software
generation is low-cost, quality software via reduced
development time and cost. This is attained by
requiring less detailed design knowledge of software
developers. Thus, & domain engineer would be able
to directly develop a software system by inputting
his domain requirements into the generation
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system thereby bypassing the software engineer
altogether resulting in overall cost savings. These
savings are enhanced by the use of existing parts.
In addition to the cost savings, the parts offer
grear‘aer reliability since they have been previously
tested.

After studying various automatic software
generation systems available at the time,
specification techniques, methods of operation, text
generation and expert system assistance, the CAMP
"constructors” were designed. Constructors are
software templates that when combined with user
input to customize the template results in the
generation of complex softwere components.
Constructors are supported by the PES expert
system and a limited natural language interface.

CAMP:-2; Development Effort

The beginning of CAMP’s second phase
(CAMP-2) coincided with the conclusion of CAMP-1
in September 1985 and finished 32 months later.
The primary goal of CAMP-2 was to complete the
development of the CAMP software and
demonstrate CAMP technologies in a credible,
demanding application. This included the
development and testing of the reusable Ada parts,
the parts engineering system and Ada compiler
benchmarks and the use of this software to build an
"11th missile" (8o named because it was not in the
original domain study from which the parts were
generated).

Development and Testing of CAMP Parts

The requirements and designs developed
during CAMP-1 formed the foundation of the actual
part implementations during CAMP-2. All 219
parts identified during CAMP-1 were coded, tested,
and documented during this phase. While
developing these parts, an additional 235 parts
were identified, designed, coded and tested during
CAMP-2 boosting the total number of parts to 454.

One of the design goals for the parts was to
keep them simple thus facilitating
understandability and reuse. Part simplicity was
enhanced by keeping their size small. The parts
ranged from 10 to 100 Ada statements. Another
way to enhance part simplicity was to ensure the
granularity of the parts were at the lowest possible
level. In other words, the missile tasks were broken
down iato the lowunt possible functions while
maintaini.yg undersindability of the part. Also,
complex parts were developed using a combination
of simple parts,

Another factor leading to the successful reuse
of software is adequate documentation. The CAMP
parts were documented extensively. Unfamiliarity
of the parts is the primary purpose for this
documentation. A new user of the CAMP parts will
be unfamiliar with them and require tremendous
information on their operation. Also, CAMP parts
use Ada's “generic units" which may be foreign to
most users. The documentation provides the
necessary information, including samples, to
properly instantiate and use the parts.
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During parts development, effort data were
carefully tracked to determine productivity. To
ensure an accurate and fair comparison with other
efforts, two metrics were used to calculate the size
of the parts -- lines of code and Ada statements. A
line of code was defined as any line in the source
code file which contained all or part of an Ada
statement. An Ada statement count is simply the
number of Ada statements in a source file (i.e., the
number of semicolons). Figure 2 illustrates the
total size of the CAMP parts. The figure also
reveals the enormous amount of documentation -- 9
comment lines per Ada statement.

UNESOF  ADA  LNESOF

ADACODE STATEMENTS COVMENTS
PARTCODE | 1a0pt | 10200 | svssa |
TesTeooe | zrses | 1709

TOTAL | 43878 I 20,194

Figure 2. CAMP Parts Sizing Data

Figures 3 and 4 provide the development
productivity and statistics respectively. As the
figure illustrates, the productivity experienced
during the CAMP parts development was 61%
greater than the predicted value from the
COCOMO model. Factors leading to this increase
included the use of the Ada language, well-trained
people, good tools and code reuse. Specifically,
Ada’s attributes (e.g., strong data typing) contribute
to increased productivity by allowing early
detection of errors. The CAMP team had some Ada
experience prior to the program and received
training in software engineering practices.
Utilizing software engineering tools also increased
productivity. Finally, productivity was increased by
reusing CAMP parts during the development of
other parts.

PART COOE ONLY PARY 8 TEST CODE
ocam [0 LOCAM [ oo

““::::"‘“ s [ i | | srmam [T,
MHAOC | 0407 MHLOC | 0150
wvstir | oss | [ wevstur oz
rocam [ 5, Locam [ e
siutame [ snram [

ALLEFFORT

wioc [ ows MWIOC | 0229
wwstur [_osss | | savstnar oz

Figure 3. CAMP Parts Productivity Data

The Parts Engineering System (PES)

With feasibility established and the
requirements and design completed during CAMP-
1, a prototype PES was coded, tested and
documented during CAMP-2. The PES consisted of
three integrated subsystems designed to provide
expert assistance to the user: a parts catalog, a
parts exploration system and component
constructors.
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REUSE

Figure 4, CAMP Parts Development Statistics

Catalog Subsystem

An extensive cataloging capability should be
the backbone of any parts engineering system. The
CAMP PES is no exception; the catalog subsystem
is the foundation of the PES. The goal of the parts
catalog is to help the PES user to clearly
understand the Ada parts and facilitate their
efficient retrieval and reuse. The catalog allows the
user to add, modify or delete reusable software
entries. If also provides the following functions:
searching for catalog entries based on various
attribute values, examining both catalog entries
and Ada part source code, and generating printed
versions of the catalog entries.

Exploration Subsystem

The exploration function provides the user,
typically a missile system engineer or a missile
software requirements engineer, with the ability to
identify potentially applicable parts for a software
system. The primary difference between the
cataloging function and the exploration function is
the latter deals with a higher level of abstraction.
The exploration function allows the user to specify
requirements while not concerning himself with
part specifics. This function actually maps the
missile system reyuirements to the parts.
Therefore, it is designed for use early in the
development cycle (i.e., requirements/design phase)
to drive the design towards maximum software
reuse, Used eerly in the development, the function
assists software cost estimate, sizing and timing
studies, and make-or-buy trade-off studies.

The PES uses two techniques for parts
exploration. The first is the application approach
and is designed to map high-level system
requirements to existing parts. Through a series of
questions, the application approach generates a list
of potentially applicable parts. Figure 5 depicts the
various types of information requested, as well as
the selected parts.

The second exploration te hnique is the
architectural approach which aliows the user to
walk through a hierarchical mode! of missile flight
software. The models were developed using
knowledge of the various missile systems and depict
the subsystems, functions, and applicable CAMP
parts. Based on user inputs, the appropriate model

is selected for further user examination and
subsequent part exploration. Figure 6 illustrates
the architectural approach.

Advanced Madum Pange Ar 1-Air Misyie (AMRAAM)

——
LAUNCH AR

TARGET AR

AANGE 250 NM Parts Selected
WARHEAD CONVENTIONAL NAYGATION

ARG N KALMAN FILTER
ROUTING AR AUTOPILOT

SEEKER ACTIVE RADAR COMMUNICATIONS
AERCDYNAMKCS  STANDARD ARDATA

NAVIGATION STANOARD COORDMVATE ViM ALGEBRA
INTERFACES DATALINK SIGNAL PROCESSING

Duta Source Jane s Weapon Systems, 1900.1987, pp 198-200

Figure 5. Application Exploration Example
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PARTID Pt #1
PARTID P5170
HIERARCHICAL MISSLE
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Figure 6. Missile Model Walkthrough
(Architectural Approach)

Component Construcior Subsystem

The objective of the ccmponent constructor is
to generate application-specific, tailored Ada code
based on user requirements. This allows the user to
perform "what if" exercises, as well as software
development, while decreasing development time
and effort.

The component constructors are based on
special parts called meta-parts. These parts are the
blueprint for the generated Ada code. They
facilitate requirements input and contain all
necessary construction information for the
development of the Ada code.

Twelve component constructors were
developed in CAMP-2 -- Kalman Filter, Finite State
Machine, Pitch Autopilot, Lateral/Directional
Autopilot, Navigation Subsystem, Navigation
Component, Data Bus Interface, Data Type, Task
Shell, Time-Driven Sequencer, Event-Driven
Seyuencer and Process Controller.

PES Environment

In CAMP-2 the prototype PES was developed
on a Symbolics 3620 computer (the PES was later
moved to & VAX in CAMP-3). This machine is a
single-user LISP workstation designed to support
the LISP programming langusge. An expert system
shell was used as the foundation for the PES. The
system was developed using ART (Automated
Reasoning Tool from Inference, Corp.) and Common
LISP. This environment was selected for several
reasons, paramount of which was the availability of
a production quality expert system shell. At the
time, ART was the most mature system available




on the mea-ket. This consequently mandated the
selection of the processor; ART was only available
on the LISP processor.

11th Missile Demonstration

One of the goals in CAMP-2 was to use the
CAMP software in its intended domain in the most
realistic situation possible. The true test of the
CAMP parts and the PES came when they were
used to build the 11th missile.

A cruise missile system originally
implemented in JOVIAL J73 was selected as the
11th Missile. This application utilized MIL-STD-
1750A (hereafter referred to as 1750A) processors
and a MIL-STD-1553B data bus. Navigation,
guidance and support functions of the 11th Missile
were re-implemented using the parts and the PES
to gauge the productivity improvement associated
with both.

To measure exzlusive productivity increases
associated with the CAMP parts and the PES, two
versions of the 11th Missile were written. Version
one was written using parts without the assistance
of the PES and was referred to as the parts method.
Version two, called the PES method, used the PES
and the parts to generate and unit test the Kalman
filter code for the system, The re-implementation of
the }lth Missile revealed impressive productivity
results.

The results of the parts method evaluation
were very promising. A productivity increase of
15% was observed implementing the 11th Missile
using only the parts (without the assistance of the
PES). In other words, a development team would
save 15% of their efforts if they were to implement
the 11th Missile using the CAMP parts instead of
developing from scratch, The parts accounted for
18.1% of the total 11th Missile.

The PES method resulted in an convincing
28% improvement in productivity using the PES
Kalman filter constructor. The constructor
generated code or instantiated parts to develop
70.1% of the Kalman filter component.

Another benefit of the 11th Missile
application ig the demonstration of Ada used in a
RTE application. At the time of the evaluation, Ada
was criticized for not being suitable for this domain.
The 11ith Missile wus e ’eloped using
approximately 21,000 lins 0 .»¢' code and only 21
lines of assembly code. ! . w k:d admirably and
is well suited for RTE ap, .o

AERMONICS _.chmarks

A benchmark suite was also developed during
CAMP-2 to measure the efficiency of compilers for
suitability for programming armonics (armament
electronics) software. The benchmarks also
facilitated the evaluation of the CAMP parts. The
suite contains benchmarks designed to gauge
compilation and run-time performance.

24-5

The CAMP compilation benchmarks
determine the ability of an Ada compiler to compile
and link complex Ada syntax and semantics
typically found in the CAMP parts and armonic
software. The applicability of these benchmarks is
not limited to the parts; the benchmarks could be
used for other domains as well,

The execution benchmarks include
mathematical functions and typical use missile
applications such as guidance, navigation, and
Kalman filtering as benchmarks. Run-time data
such as execution time and output are produced by
these benchmarks. Code size is also determined.

CAMP-3: Technology Transition

The third and final CAMP phase, CAMP-3,
began in July 1988 and will end in September 1991.
The CAMP-3 goals are to refine and transition the
technology demonstrated in CAMP-2. More
specifically, CAMP-3 involves parts maintenance
and enhancement, PES re-engineering, meta-
constructor development, and various technology
transition efforts.

Parts Maintenance

The primary goal of parts maintenance was
to correct possible errors discovered during the 11th
Missile application. Also, since the CAMP parts
have been distributed to nearly 300 agencies at
their request, these agencies were vieowed as a
valuable ecvaluation source. A questionnaire was
distributed to all recipients of the CAMP parts
requesting ideas for corrections, enhancements and
modifications. Meetings were also conducted to
solicit these inputs from McDonnell Douglas sister
organizations. Only one error in the CAMP parts
was reported.

Fifty-one new parts were identified, designed,
coded and added to the parts set as a result of this
maintenance effort. In addition, existing parts were
enhanced to make the CAMP parts more robust.
Consequently, the total number of parts increased
to over §00.

PES Catalog Re-engineering

The PES re-engineering goal was to develop 8
robust, all-Ada, production-quality version of the
PES. (While the meta-constructor is included in the
PES, it is still regarded as not production quality.)
As previously mentioned, the prototype PES was
implemented on a Symbolics LISP machine using
the ART expert system shell. While this is an
excellent environment for rapid development and
prototyping of a PES, it is not suitable for wide-
scale distribution of a production-quality PES. The
Symbolics environment is very specialized relying
on system dependencies for successful PES
operation which is a detriment to software reuse.
To maximize software reuse, the delivery
environment must be accessible to several
organizations. This eliminated a Symbolics delivery
system; few potential CAMP users had access to
this machine. Therefore, an Ada/microvax platform
was selected. All PES software is being re-
engineered to Ada thus exploiting Ada's portability
for maximum distribution. (Of course the parts
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were already written in Ada.) System dependencies
were isolated and site tailorable features were
added. All third-party software was removed to
eliminate the need for software licenses.

Meta-constructor

The component constructors developed
during CAMP-2 proved the feasibility of such Ada-
producing capabilities. However, these constructors
are very costly to dcvelop and maintain. Therefore,
a meta-constructor is being developed during
CAMP-3 to alleviate these problems. A meta-
constructor is a constructor designed to produce
other component constructors, This approach will
lower the overall cost of developing constructors
and, ultimately, tailored Ada code.

Technology Transition

Perhaps the most important responsibility of
a program manager is technology transition. A
successful program will benefit no one if it is not
made available to the intended user. CAMP’s
ultimate users are software engineers and weapon
systems developers. Therefore, the CAMP-3
program embarked on an aggressive technology
transition campaign which included the
development and distribution of a CAMP brochure,
& reuse manual and a videotape, as well as a
demonstration of CAMP in action at a national
conference -- Tri-Ada "30. The most significant
technology transition effort was the actual
distribution of the CAMP parts and catalog as
previously discussed.

A brochure was also developed to "spread the
word" about CAMP. It explains the entire CAMP
effort and contains a complete listing of all products
including the actual parts and documentation, A
partial list is provided at the end of this paper. The
brochure’s greatest asset is information on how to
obtain these products. This brochure is available
from either the McDonnell Douglas CAMP program
manager, (314) 232-0278, or the USAF CAMP
program manager, (904) 882-8264.

One of the most popular commodities is a
manual entitled "Developing and Using Ada Parts
in Real-Time Embedded Applications." The manual
embodies the overall CAMP experience and includes
informative te hniques and methods for developing
and using Ada parts in the real-time embedded
realm. The manual is available from the Defense
Technical Information Center (DTIC) by ordering
document number AFATL-TR-90-67.

An executive overview videotape was also
produced to describe Ada issues, software reuse
issues and how the CAMP program attempts to
alleviate them. The videotape has been distributed
to nearly 70 organizations to heighten awareness of
the CAMP approach to the software crisis,

Conclusions

CAMP has been a pathfinding program in
several respects. It demonstrated that software
reuse is feasible and valuable and that Ada can
effectively handle real-time embedded applications.
Throughout the CAMP program, one theme

emerged: Software reuse and the development of
software parts must be precisely planned. An ad
hoc approach to software reuse is destined to
failure.

The future of software reuse is bright. CAMP
took a tremendous step towards institutionalizing
software reuse as a standard way of doing business.
Indeed, industry must rely more and more on
software reuse to remain competitive in this era of
austere budgets.
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Other Readings/Materials

The following CAMP documents are available
through the Defense Technical Information Center:

Developing and Using Ada Parts in Real-
Time Embedded Applications: A manual that gives
guidance in how to develop and use reusable
software. Order AFATL-TR-90-67.

CAMP-1 Final Technical Report: Three
volumes covering domain analysis, parts
specification, parts composition system study.
Order AFATL-TR-85-93, Volumes 1-3.

CAMP-2 Final Technical Report: Three
volumes covering parts and parts composition
system development, 11th Missile Application
development, and Armonics Benchmarks
development. Order AFATL-TR-88-62, Volumes 1-3.

The CAMP sottware products listed below are
available through the Data & Analysis Center for
Software, P.O. Box 120, Utica, New York 13503; the
telephone number is (315) 336-0937.

CAMP Ada Parts: ANSI standard tapes
containing source code for the parts, test code and
utilities, and design documents in machine readable
form.

Parts Engineering System (PES) Catalog
Version 1.1: ANSI standard tapes containing the
CAMP catalog and the data needed to load it with
the CAMP parts. This is in Ada, uses no
commercial third-party software, and runs under
VAX/VMS.

Benchmark Tape: An ANSI standard tape
containing the benchmarks, standard data files,
and VAX command procedures for executing the
benchmarks on VAX hardware.




25-1

Development and Verification
of Software for
Flight Safety Critical Systems

H. Afzali and Dr.

A. Mattissek

LITEF GmbH
Lorracher Strafe, D7800 Freiburg, Germany

1. Summary

In Flight Safety Critical Systems where the
lives of people and/or mission success is
depending on, errors in the Computer
Software Components can have a catastrophic
impact on the safety.

The requirements for the software
development and maintenance of Flight
safety Critical systems differ in some
aspects from the systems which do not fall
into this category. The reason for these
requirement is to produce "the right
product" at the very beginiing of the
system's usage and <o ensure special
attention is paid throughout the whole
service life of the equipment.

The reliability and safety requirements can
reach a point where testing alone is not
sufficient. Consequently adequate control
mechanisms have to be applied. The software
configuration management, quality control,
verifacation and wvalidation must be
rigorously adhered to.

For the development of the equipment
software, a set of development standards
and additional procedures for the
implementation of Safety Criticai PFunctions
are defined.

LITEF applied the standards and procedures
for the development of the Inertial
Measurement Unit which is a part of the
Flight Control System and Seat Sequencer
Unit which 1s part of the Ejection Seat.

In this paper, some critical technology
needs are described for supporting the
development and verification process of
such systems and the activities which have
to be performed during the development
phases for identitying, assessing and
eliminating or minimizing hazards in a
systematic way.

2. Introduction

In recent years, software has gradually
been given more and more responsibility.
Today the software has complete control
over many Safety Cratical Functions on some
air vehicles. In fact, it would be
impossible for a human to manually fly
several of the modern aircrafts. This is
because they require complex control inputs
at faster than human speeds in order to
prevent loss of control leading to a crash.
However the question persists. Are we able
to verify that the software is sufficiently
free from errors which would have a
catastrophic impact on the safety?.

It would be fair to ask the questions:
"what are the risks incurred by using the
software?” and "what is the probability
that the plane will crash due to a fault in
the software?". From the point of view of
the pilot, who doesn't care if the problem
is the hardware or the software, the issue
may be rephrased and put into the bigger
context. "Given that I am going to fly that
airplane on a one-hour mission today, what
are my chances of returning safely?".

3. Knowledge Base

Nriginally each software system will be
considered as "unsafe". This label can be
only removed and replaced by a "safe" label
after sufficient knowledge about its safety
status exists.

A newly designed software for which there
is none or little knowledge in the way of
analysis and test results can not be
considered safe.

On the other hand, it could happen that the
entire analysis and testing of software
reveals no need for changes. At the end of
the qualification of the software which was
originally 1labelled “"unsafe", it is
determined to be "safe", even though
absolutely no changes were made. The only
thing that has changed since the initial
design release was our knowledge about the
entity in question.

As the figure above illustrates, the
quality of the established standards and
procedures, methods and tools, prepared
documentation, review reports, the results
of the verification, testing and software
safety analysis will impact the decision
making process related to the safety of the
software.

Not to forget the engineers who participate
in the development of the project.

4. Development Standards

A structured development philosophy and
Verification and validation approach is
particularly important in the case of
Flight Safety Critical Systems. Much
documentation exists relative to standards,
procedures, methods, tools and environment
which support this type of development.
Standards and guidelines are described in
a sophisticated way and must be applied to
the related projects. The efforts required
during the development process increuases
with the criticality of the application.
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Figure 1 Knowledge Base

For each of the five major category of
activities which are :

~ Software project management

- Software configuration management
- Software quality evaluation

- Software engineering

- Software testing

detailed tasks are defined. Model texts
will help the engineers to prepare the
documentation in a standard way.

In order to minimize the very costly and
most difficult to detect errors in the
early phases of the Software projects,
Methods and tools Application Standards,
Design and Coding Standards are specified
to support effectively the production of
the software. In the requirements analysis
phase, the design phases, and the coding
phase.

In addition development guidelines and
procedures for software safety tasks are
established.

5. Safety Analysis Activities

The objectives of the safety anulysis tasks
are :

-to identify the hazards

-to eliminate the hazards if possible
through design or reducing the
associated risks to an acceptable level

-to minimize the hazardous events

The analysis will result in reports,
recommendations, guidelines and corractive
actions.

The fundamental principles to achieve a
high degree of flight safety avre:

-System Level Management
-Flight Safety Analysis
-Information Flow

The Flight Safety Program is a top level
system engineering activity which
integrates flight safety concept and
analysis into all phases of the project.
The Software Safety Analysis is performed
1n parallel to other development activaties
and is accomplished from the system level
“uwn to th> component level. It is a step

by-step procedure which attempts to
exhaustively identify all potential hazards
to which the system or its functions, could
be subjected to. It is fundamentaly a top-
down approach which goes as deep as
necessary in order to adequately describe
the hazards with respect to  their
consequences on flight safety. The hazard
analysis is structured into a hierachy.

In order to manage and coordinate the
flight safety relsted activities, a flaght
safety engineer with enough experience and
thorough knowledge about the application,
hardware, software, shall be appointed to
the project.

In order to perform a comprehensive
analysis, the flight safety engineer must
collect and organize all information
related to the software development
process. The relevant data to the flight
safety is focussed and used in the flight
safety analysis process.

Based on the preliminary list of potential
hazards and given the systen's operational
environment, the system safety engineer
develops hazard scenarios. A scenario is
the possible sequences of events and
circumstances  that can lead to a
consequence. For each event involved an the
hazard scenavrio, the system safety engineer
considers failure modes that can lead to
these events.

Different techniques are known for the
accomplishment of the hazard analysis.
LITEF's approach for identafication of the
hazards in the Software requirements
analysis phase and the preliminary design
phase is the usage of the 'Fault Tree’
technique . Based on cratical signals
defined in the specification, the critical
functions in the Software Requirements
Specification and associated Computer
Software Components (CSC) in the 'Software
Top Level Design Document' are identified.

Critical functions and interfaces are
identified and allocated to the system

components. Multiple systems with
dissimilar software, Backup systems,
redundant configurations shall be

considered in the overall design so that
flight safety failures can only occur as a
result of multiple farlures.
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The sanalysis continues in the software
detailed design, coding and unit testing
phase.

The objectives of the tasks during the
detailed design phase are :

-to 1dentify potential failures and
define their effects on safety

~to identify necessary design changes

-to identify the extensiveness required
for testing and V&V activities

In order to complement the system safety
tasks and reaching the objectives defined
for software safety, a Failure Mode,
Effects and Criticality Analysis (FMECA) is
performed in the detailed design phase. The
level of analysis in this phase is the
computer software unit (CSU) level. These
units are identified in the detailed design
document. A CSU is examined to determine
its impact on the reliability and safety.
Functions and units which are identified as
critical during FMECA will undergo a more
extensive testing.

Following steps are performed for FMECA :

~Planning
-Analysis
~Reporting

The details of the analysis approach,
documentation and worksheets, report
formats, interfaces and other analyses
performed at the code level are defined in
the FMECA plan.

Failure severity category and hazard
consequence severity category are assigned
to each computer software unit.

Static and Dynamic code analysis are
perforused to the source code. The objectve
of Static code analysis is to identify the
deficiencies in the data flow, control flow
and 1information flow and to assess the
complexity of the programs.

The objective of dynamic code analysis is
to verify that the test cases for the units
provide sufficient coverage of the source
code.

These acivities are performed in accordance
with the Mil-STD-882B task series 300,

6. Safety testing

Testing is generally performed until the
test engineers feel confident that the
software is reliable enough and can be
released. Various testing and reliability
models has been developed to determine the
level of reliability. Normally these models
does not address the failure impact in the
case of safecy critical systems. The amount
of testing required is heavily dependent on
the potential effects of failure on the
flight safety.

In order to define the specific safety
testing requirements in the functional,
component and unit level of the software,
LITEF uses the results of the flight safety
analysis, statistical data of the previous
projects and the on-going test results.

Unit risk is estimated based on the data
described. The tests are planned
proportionally to the risk of each unit.

Units are classified by relating the units
to the hazards and thelr consequences. In
the detailed design phase all units are
analyzed to identify those which use or
update the data related to the critical
functions. The units are classified
according to their impacts on the safety.

In addition the expected number of faults
per unit is estimated. This estimation is
based on the complexity of the unit and the
statistical data which are ccllected during
past years for units of similar projects.
The a priori distribution for the unit
reliability is formulated for each unit
after it has been coded.

The unit classification and unit
reliability model both will serve as a
qualitative assessment of the unit risk and
consequently a better planning of test
efforts.

During the unit test phase and subsequent
phases, the unit fault statistics are
collected. The unit fault rates used for
the updates of the a priori distribution
and consequently the test plan.

1. Application

The Seat sequencer software is categorized
as flight safety critical.

It is a microprocessor based unit which
controls the timing of the various seat
sub~systems (e.g. drogue canister catapult
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firing, parachute container catapult
firing). Control of these timings will be
based on information provided by seat
sequencer mounted sensors which establish
the ejection conditions of acceleration,
base pressure and dynamic pressure. The
sequencer operates independently of the
aircraft.

The system architecture constitutes the
following principles :

-triple redundant microprocessor
channels

~redundant sensing of environmental
conditions

-harmonization of intermediate results
between channels

-2-of-3 H/W voting before Electro
Explosive Devices(EED)~-ignition

The basic design philosophy is to
completely eliminate single point failures
by building a triple redundant system.

Each seat sequencer channel contains the
same program. Each channel samples the
environmental data during the ejection. The
1ntermediate resuits of each microprocessor
channel is harmonized with both
neighbouring channels. The EED ignition
decision of each channel is passed to a
hardware voter which in turn makes a 2-of-3
voting for a final ignition decision.

The organization of the software is very
simple given the critical nature of the
application. It implies the repetitive
axecution of tasks within a predefined
period of time.

In order to facilitate the target testing
of the units and the Computer Software
Components (CSC's), consideration has been
made in the overall software design. Each
CSU or CSC can be isolated from the other
parts of the software by external commands
and tested by downloading the individual
data of different test cases,

The sequencer is considered to pe flight
safety critical for, if the sequencer fails
to fire the pyrotechnics in the correct
sequence and at the correct time.

Based on this top level hazard, the system
is analyzed and the sub events which can
lead to the top event are identified. This
analysis are continued until the basic
events are reached. The fault tree
technique has been used for this analysis.
Based on the safety analysis, a report is
prepared and recommendations have been
given for the re-design or as requirements
for the subsequent activities.

7. Conclusion
A software development methodology has been
presented to produce highly reliable
software for flight safety critical
applications.

In addition a test planning method for this
type of applications has been presented.
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