
AD-A244 894
.,, IIlltI [iBIII~ ._111, - A,.P-SO

SAGARD
ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT
7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE

DTIC

AGARD CONFERENCE PROCEEDINGS 503

Software for Guidance and Control
(Les Logiciels de Guidage et de Plotage)

ii NORTH ATLANTIC TREATY ORGANIZATION

~ *Y~ J CA !MICNTA

~IDistribution and Avalablity on Back Cover
I .,..'. , , *. a , n dU~,Jtd

AGARD-CP-503

ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT
7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE

r---~ ta.. ...A

AGARD CONFERENCE PROCEEDINGS 503 - -

5t t r I M /

Software for Guidance and Control
(Les Logiciels de Guidage et de Pilotage) -1.t

91-16656
11111111110111111

Papers presented at the Guidance and Control Panel 52nd Symposii.m
held at the Helexpo, ''hessaloniki, Greece, from 7th May to 10th May 1991.

1

North Atlantic Treaty Organization
Organisation du TraitO de I'Atlantique Nord

*)1 11 27 O56

The Mission of AGARD

According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the fields
of science and technology relating to aerospace for the following purposes:

- Recommending effective ways for the member nations to use their research and development capabilities for the
common benefit of the NATO community;

- Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research and
development (with particular regard to its military application);

- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture:

- Improving the co-operation among member nations in aerospace research and development;

- Exchange of scientific and technical information;

- Providing assistance to member nations for the purpose of increasing their scientific and technical potential:

-- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection
with research and development problems in the aerospace field.

'I he highest authority within AGARD is the National Delegates Boaid consisting of officially appointed senior tepresentatives
from each member nation. The mission of AGARD is earned out through the Panels which are composed of experts appointed
by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications Studies Programme. The
ieults of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of
publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO n,tions.

The content of this publication has been reproduced
directly from materl supplied by AGARD or the authors.

Published September 1991

Copyright C AGARD 1991
All Rights Reserved

ISBN 92-835-0629-4

N
Primed by Spectalised Printing Senwes L inted
40 Chigwell Lane. Loughton. Essex IGIO37Z

11

7.

Theme

Software is of increasing importance in guidance and control systems and indeed in many cases is the pacing item in
development. Guidance and control software, while embracing a wide range of software, has emphases which include high
integrity considerations, hard real-time constraints, the implications of a still evolving hardware and systems architecture, and
the need to meet delivery schedules with high productivity under the constraints of onerous customer requirements for
documentation and visibility, and in the light of strong defence and air worthiness standards and requirements Time schedules
are frequently short since much guidance and control software is required early in the flight testing, and typically software
deve nt is undertaken in the context of still evolving requirements and developing programme phases.

The software climate in which this takes place is one in which there is a general trend towards high level languages, integration of
support tools, intioduction of mathematical formalisms into the design and verification processes, control of software sizing
and better cost estimating, and frequently a rapid turnover of programmers.

There is often a wide gap between concept and practice, and organizations will succeed which can brdge the gap effectively,
bringing modern methodologies, well supported by software tools, to bear on the problem and understanding how to apply
these methodologies and use the tools.)

To a T symposium covered general requirements on the software, software requirements capture,
design methods and support environments for real-time software, coding techniques, and verification validation and
certification.

Theme

Les logiciels revaent de plus en plus d'importance dans les syst~mes de guidage Ct de pilotage. Fin effet, le logiciel est souvent
'liment critique pour le ddveloppement des systimes.

Bien qu'il existe une large gamme de logiciels de guidage et de pilotage, I'accent est mis pnncipalement sur les considerations
suivantes: la haute intigritA, les contraintes temps riel du matdriel, les consequences de I'volution perniancite des
architectures systimes et materiel, le respect des ddlais de livraison pour des volumes de production levs, la demande
onereuse de documentation de la part du client, les contraintes d'intelligibilitd du logiciel, et la rigueur des specifications et
normes militaires ct adronautiques. 7.es ddlais sont souvent courts, puisque bon nombre des logiciels de guidage et de pilotage
sont demandds ds la premiere phase des essais en vol; typiquement, le logiciel est cr&c pendant que les besoins contmuent 'I
voluer dans le contexte des diff~rentes phases dvolutives du programme.

L'environnement logiciel de ce processus est caractdris6 par les langages 6voluis, l'intdgration des outils de developpement,
'emploi de formalismes mathdmatiques dans les mdthodes de conception et de verification, le contr6le du dimensionnement

des logiciels, la recherche d'une meilleure estimation des co/its et le renouvellement frequent des programmeurs.

HI existe souvent un grand pas As franchir pour passer du concept i la pratique. Les organisatiois qui reussiront i I'avenir seront
celles qui sauront franchir cc pus de fagon efficace, en se servant de methodologies modernes, bien appuyes par des outils de
ddveloppement, et qui auront compris l'application de ces mtthodologies et la mise en oeuvre de ces outils.

Afin de faciliter cette comprehension, le symposium a examin6 les sujets suivants: conditions g6nerales requises pour les
logictels, elaboration des spdctfications, mdthodes de conception ct environnements de soutien pour les logiciel, temps reel,
techniques de codage, et verification, validation et certification.

Guidance and Control Panel

Chairman: Dr E B. Stear Deputy Chairman: Mr S. Leek
Corporate Vice President Scientific Adviser
Technology Assessment British Aerospace (D)ynamics) Ltd. PB 256
The Boeing Company P0 Box 19
PO Box 3707 Six Hills Way
Mail Stop 13-43 Stevenage
Seattle, WA 98124-2207 Herts 501 2DA
United States United Kingdom

TECHNICAL PROGRAMME COMMITITEE

Chairman: ProfessoriJ T.Shcpherd UK

Members: Dr Andr6 Benoit 1BE
Mr B.Jacger FR
Mr U.K Krogmann GE
Lt F. H-at71V3SilioU OR
Mr K.A. Helps UK
Mr S. I laalaiid us
DrJI.Nicmcela us
Dr E.Zimet Uis

HOST PANEL COORDINATOR

L t Fivos H atzivasiliou
Hlellenic Air Force
Technology Center (KlA)
Thrpsica P'ost Office
16501 Glyfada, Athens
Greece

PANEL EXECUTIVE

Commandant MI Mouhaiad, FAF

Mail from Europe: Mvail from US and Canada:
AGARI)-O IAN AGARD-NATO
Attn: GCP Executise Attin: GCP Excutive
7, rue Ancelle APO AE 09777
F-9220)0 Neuilly sur Seine
France

'let. 33(I) 47 38 57 80
Telex 610176 (F)

Telefax. 33(l) 47 3857 99

ACKNO%4 LEDGEMENTS/REMERCIEMENTS

The Panel wishes to express its thaaiks to the Greek National Delegates to AGAR) tor the invitation to hold this meeting in

their country and for the facilities and personnel which made the meeting possible.

Le Panel tient a temiercier les Wclgu~s Nationaux de la Grece pr~s IAGARD de leur invitation :i tenir cette reunion dans
ceur pays et de [a misc diposition de personniel et des installations necessaires

Contents

Page

Theme/Thime iii

Guidance and Control Panel and Technical Programme Committee iv

Reference

SESSION I - TOOLS AND METHODS FROM A USER'S VIEWPOINT

Chairman: Professor J.T. Shepherd (UK)

A Survey of Available Tools and Methods for Software Requirements Capture and DesignI
by DJ.Thewlis

Tool Supported Software Development - Experiences from the EFA Project 2
by W.M. Fraedrich

SESSION 11 - GENERAL REQUIREMENTS ON SOFTWARE
Chairman: Professor.1J..Shepherd (UK)

Military and Civil Software Standards and Guidelines for Guidance and Control 3
by K.W. Wright

Requirements and Traceability Management 4
by G M. Cross

Coprocessor Support for Real-Time ADA 5
by R.K. Pag"

SESSION III - INTEGRATED PROGRAMMES SUPPORT ENVIRONMENTS
Chairman: Mr J.B.Senneville (FR)

Atelier de D~veloppement de Logiciels de Pilotage - Guidage 6
(Guidance Software Development Workshop)

par D Caignault, S. Gabison et J.-L. Lebrun

Atelier de Spkciicatioti/Maquettage pour les SystJimes de Gestion du Vol 7
(Softare Development Workstation)

par 1-. Robin et J.-C. Mielnik

AGLAE - Atelier de Gknie Logiciel de l'Airospatiale Engins 8
(Aerospace Software Engineering Works)

par 1. Hamon

Paper 9 withdrawn

Software Design Conisiderations for an Airborne Command and Control Workstation 10
by P. Kiethorn, P. Kuhl, B. Muth and R. Vissers

Reference

SESSION IV - SOFTWARE REQUIREMENTS
Chairman: Mr K.A. Helps (UK)

Formal Specification of Satellite Telemetry: A Practical Experience I I
by J.-M. Hufflen and M. Lemoine

Formal Verification of a Redund incy Management Algorithm 12
by.J.Draper

AA ethodology for Software Specification and Development based on Simulation 13
by G Fernindez de la Mora, R. Minguez, S. Khan and J.R.Villa

SESSION V - DESIGN METHODS FOR REAL-TIME SOFTWARE
Chairman: Dr A. Benoit (BEj

Network Programming: A Design Method and Programming Strategy for Large 14
Software Systems

by L. Schuberth, J. Kutscher and W -J Grunewald

The Dal%. Oriented Requirements Implementation Scheme 15
by C. 1 lonas

Process/Object-Oriented ADA Software Design for an Experimiental Helicopter 16
by K Gramixiw

Code Generation for Fast DSP-Based Real-Time Control 17
by I-I anselinann, A.Schwarte and l-.Ilenrichfreisc

Computer Aided Design of Weapon System Guidance and Control with Predictive 18
Functional Control Technique

by D.Cuadrado, P.Guechet and S.Abu El Ala lDo.,

Analyst Workbench 19
t~y T.F. Reese and F, Ariogida

SESSION VI - ADA APPLICATIONS
Chairman: Dr J. Nientela (US)

A Practical Experience of ADA for Developing Embedded Software 20
by C. Goettials and C. Grandjean

The Development of a Requirement Specification for an Experimental Active Flight 21
Control System for a Variable Stability Helicopter - an ADA Simulation in JSD

by G D. Padfield, S.1.1owater, R. Bradley and A. Moore

Paper 22 withdrawn

Software Methodologies for Safety Critical Systems 23
by W.C D~olman, A.M. Ashidown and 1 C Moores

Common ADA Missile Packages (CAMP) 24
by B.E Mullnib

Dci .io1p':~nt and Verification of Software for Flight Safety Critical S. stem~s 25
by I I Atab and A. Mattissel,

Reference

SESSION VII: AUTOMATED SOFTWARE GENERATION APPROACHES"
(Final Report from Working Group 10)

Chairman: Dr E.B.Stear (US)

Reusable Software Approach to Software Generation 26*by A.P. DeThomas, D. Dewey and S Wlson

Fourth Generation Languages 27*
by P. Chinn and K.A Helps

Mkthodes de Transformation 28'
(Transformation Methods)

par P. De Bondeli et M. Lemoine

Knowledge Based Approach to Software Generation 29'
by W. Manse! and H.Roschmann

'As 1p,,tcr, prewew. in thi sessw represeni th, find!-ll ofi. ~ WorkIing (roup 10. l'apers 2o to 29 are inoi included iii this ConferencePNoweding. ioc final report of Working Group 10) mlil bepjubfished as air Ad~isory Report (AR-292) in 1991 '92

iI

A Survey of Available Tools and Methods for
Software Requirements Capture and Design

by
D.J.Thewlis

GEC Marconi Ltd..
The Grove, Warren Lane,

Stanmore, Middlesex,
HA7 4LY,
England.

1. Introduction contribution to software development comes from
this experience.

In this paper I discuss the contribution to software

development of the tools and methods currently 2. Requirements and Design.
available to assist with the early part of the
software development life cycle - that is tools and Current Dogma is that we collect together a
methods for Requirements Capture and design. For complete specification of the customers
all parts of the life cycle the requirement for requirements before embarking on design. Further,
Quality, that is Quality Assurance and Quality we should easure that this specification is not
Control is fundamental. If it is lacking then, at contaminated by design or implementation
worst, the software will never achieve a deliverable considerations.'The arguments for this are
state, if delivered it will not work well and will powerful. One such is that: if we approach
probably not be maintainable. The word 'Quality' requirement capture with preconceived ideas on
is used in an informal sense, this paper is not about implementation; we shall try to make the
Quality Management or Quality Control so these requirements fit the design rather than the design fit
requirements are not discussed in detail; the requirements. At worst we fail to capture
nevertheless, the case is made that the tools and important parts of the requirement, at best we bave
methods used determine the achievable quality of a less than optimal design. Ward and Mellor I l,
the delivered system. There is a sense in which the amongst others, have developed this argument.
output from these tools is part of the delivered They argue that technology is now so developed
system, In general, the quality requirements for a that technology limits are now irrelevant and we
large or complex system are greater than those for can, so should, deliver exactly what the customer
a small or simple system, so the tools and methods requires.
now available make it feasible to build systems of a
size or complexity which would be impossible That technology limits are irrelevant is debatable
without them. The newer tools which are emerging and is covered in section 3. Equally debatable is
should enable the inevitable demand for even whether it is possible to acquire the full
bigger systems to be met. requirement prior to starting the design. In practice

the design process uncovers so many questions
Although the methods emerged before tools were about the requirement that it becomes impossible to
created to instantiate them, the words 'method' and separate the processes of requirement capture and
'tool' are effectively interchangeable. faking a (high level) design. The Starts Guide 121 to
simple example from a related area; critical path software methods and tools accepts this, treating
analysis of a network is a project planning method. both requirements and design in the same chapter
It would be practically impossible to apply this and reporting that many of the tools they cover
method to even quite a small project without the apply to both parts of the life cycle.
use of a network analysis programme - the tool. To
the protect manager his project management Computers have existed for about forty years and
method is the tool which he uses. It is so with have been widely used for twenty. There must be
software design methods and tools. Methods on few situations left where computers are being used
their own are of little use: fortunately,, we now for the first time. Most projects are to produce a
have tools. system which is in some ways better than an

already existing system. The customers perception
My company has used the MASCOT method and is of his requirements is coloured by his knowledge of
experienced in the use of the following tools: current implementations. And considerations o cost

and risk reduction constrain the supplier to use
Teamwork (Yourdon) existing ideas, designs and code wherever possible.
Software through Pictures (Yourdon) Thus the ideal, establishing a requirement free from
Speedbuilder (Jackson) implementation considerations, is rarely achievable.
PDF (Jackson) Most writers on methods and tools assume the

ideal.
We are experimenting with the use of a
Hierarchical Object Oriental Design (HOOD) tool, There are few projects where the ,;quirements
so in this paper the discussion of methods and their established at the beginning of development are still

1-2

valid at the time of delivery. Requirements change is in principle fea.sible In practice, the bridge
with time, so the methods and tools have to be would fall down and the reactor shield leak because
robust enough to cope with changes in the the quality and consistency of concrete sufficient
requirement. Fortunately, the tools which have for a garden path would not be sufficient for a
emerged in the last few years do seem to work well larger structure.
in the real world.

It is so with software Although many large
Although the methods discussed have features systems were produced in assembly code; even
which apply particularly to the initial requirements more were attempted but never used because their
capture, such features are not discussed iti this quality was too low The size and sophistication of
paper as they are not relevant to the main argument the systems we can build is constrained by the tools
and, in the author's opinion, of less importance we h'ave available.
than the facilities which assist design and the
control of design. Tools or methods for producing software,

potentially have two aspects.

3. The Software Problem. C hnkig. that is the ability to 'see'
the software or a part of the software

Computer hardware performance increases at a as a small enough number of chunks
formidable rate Some sears ago the IBM UK to be understandable.
Research Director stated that processors were
getting "better" at a rate of 45% compound per CoMplky: that is the connectivity
year. Memory and data storage were not doing so between the chunks is of low enough
well; for them the rate was 25% compound per complexity to be understandable
year "Better" means almost any ratio which is
ikely to interest system developrs, that is MIPs or High level languages, eg FORTRAN 2,. were the

bytes as the numerator and such things as price, first tools, they enabled a number of machine code
sWe or power consumption as the denominator, statements to be created by one high level language
These rates have applied since the early days of instruction. Further chunking was achieved by the
computing and are ikely to apply for the concept of a subroutine. For mathematical
foreseeable future software that, together with some ad hoc rules to

control complexity, has been sufficient to produce
It has long been the hope of software developers large systems of high quality. For other types of
that some of this 'surplus' power could be used to software this was necessary but not sufficient. New
aid the task of software engineering. The statement high level languages such as PASCAL and,
that the industry has developed to an extent that we following that,. Ada were devised, These give more
are problem limited rather than technology limited chunking than FORTRAN permits with data
in reference I II is one in a sequence of similar structure and control complexity by the introduction
statements going back to the early days ot of composite data types which can be manipulated
computing In practice, the technology limits as a whole and encouraging, almost enfbrcing,
continue to apply; the demands for speed and structured programming as defined by Dijkstra 'I he
functionality which systems engineers are placing methods and tools discussed in this paper take these
on computer system designers are increasing as concepts furtherquickly as the hardware technology improves

There are a number of methods which have evolved
It therefore seems likely that the site of system that over the last 10 years They are pioven, in that
developers are invited to construct will increase at a numerous systems have been developed using them,
rate similar to that at which hardware improves, and they are supported by tools, available in the
Experience within our organisation supports this market place, which can themselves be regarded as
Examination of similar projects, one started four proven
years later than the other, showed that each project

ad a similar size team working for about the same After high level languages the next step was
time, but the later project produced 21A times more modular programming, initially an undefined term
software than the earlier project The methods and until Stevens, Myers and Constantine 131 and
tools used by developers have to keep pace with the Parnas 141 developed the following qualities which
increasing size of software projects. defined a good module.

_.fflH s)hi - related activities are
4. Quality. grouped together,

A tew men with buckets and shovels can mix Low couplhn - minimum data
concrete and lay a garden path or the foundations transfer between modules
for a garage Perhaps a large number of men with
the same tools could mix and lay the concrete for a Data hiding - modules require no
bridge or a nuclear ieactor shield. No doubt (or little) knowledge of how data is
problems, such as delivering the concrete to the structured in other modules
right place at the right time, could be solved, so it

1-3

The current generation of methods and tools
support the concepts of low coupling and data Boxes are places in which data is transformed.
hiding. They are not enforced, so ii is possible to Arrows are routes along which data or signals
produce a poor design; but their use is encouraged. travel. This is called a data flow diagram. Each
The design is made visible in the diagrams created method has its own vocabulary and systems. Some
by the tools, so it is easy to inspect the design to of the boxes have a specialised finction and
discover whether it is of sufficiently high quality, different types of information flow are marked by

some device such as double arrows or dotted lines.
The Yourdon and the Mascot methods assume a
'top down' design process. They are, for reasons Two of the methods have a significant feature:
discussed in paragraph 8, less good at supporting there is one type of box which is recursively
the concept of high cohesion. defined. That is, it can itself contain boxes and

arrows. This gives great chunking power. A large
In addition to the aid they give in supporting good system can be described by few (less than 10)
design principles, the tools have two other function boxes with arrows. Each box, itself containing
which affect quality: they record the current state further boxes and arrows and so on to whatever
of the design and assist with reviewing the design. level of detail is necessary. The Jackson tools tend
They present the design in a way that is easy to not to support this feature. Jackson is a 'Middle
understand and update when the design has to out' rather than a top down method.
change because of requirement change or
implementation considerations.

For many companies in our group the improvement
in documentation and design control brought by the
design tool is the main reason for using the tool.
We may or may not design 'top down': we do
review 'top down'.

Since these methods were defined ideas on system
development have evolved. These develop further
the idea of a module. They assume that a system
can he decomposed into a number of objects.
Object is a technical term. It means a piece ot
software which delivers a service when requested
by other objects but whose internal structuic and
data is hidden from other objects. These Object Figure 2
Oriented Design methods, in effect, enforce the
creation of modules which are good in the sense
described above.

The methods support good design principles. With
one exception, discussed below, no box can get at

5. Current Design Methods and Tools. the data belonging to another box, except via the
arrowed routes, using the appropriate syntax for

Three methods, Yourdon, Jackson System Design that route. Thus, the Parnas 141 concept of
and Mascot seem the most popular amongst 'information hiding' is enforced to the extent that
designers of real time systems. The main part of no box can change the data held by another box.
each system is a diagram consisting of boxes joined Although not enforced, the principle of low
by airows thus:- coupling is encouraged. A design failing to meet

this criteria would have too many arrows, and so
be recognisable as a bad design. Composite data
types are supported by all methods. Only data of
pre defined types can pass along the arrowed
routes. Application of these methods using pencil
and paper would be difficult, tools are necessary.
They maintain a data base of the design, check that
each arrow both starts and finishes in an
appropriate place, and preserve consistency. A
most important feature of the tools is that when a
change is made to the design, they bring to the
attention of the designer the consequential design
changes which are required.

A vital feature of all three methods is that they all
go beyond the Von Neuman model of computing.
The boxes operate asynchronously. That is each

Figure I box could, in principle, be a separate processor
Thus, in the early part of the work, the design is

1-4

independent of the detail of the hardware on which
the system will run. If, when implemented, the
system runs too slowly, the same design can be
used to create a system which uses more or
different processors.

In the Yourdon Method this concept of
"implementation free design" is taken further. A
designer using Yourdon is instructed to build his
data flow diagram without considering how data
will be transferred or processed. For example, a Figure 3
data flow might well be "reactor temperature and
pressure". In this form the data flow diagram is
called the essential model. The next stage in the This means X is A followed by B followed by C.
design is to refine the essential model to create the
implementation model. At this stage data types are
made explicit - in the above example reactor
temperature might be defined as a three digit
decimal number. The transfer medium and protocol
would also be defined. This distinction between
essential and implementation models is a feature of
the Yourdon Method. The other methods could be
used that way. In some, perhaps most, situations
the distinction is valuable - details of the
implementation can be changed without affecting
the essential model and the designer is Figure 4
concentrating on one kind of thing at a time. In the
essential model he is working on what has to be
done, in the implementation model he concentrates
on how it will be done. This means X is either A or B

6. Full Constituents of a design method.
There are three main elements

A description of how the system
interfaces with its environment.

The design diagrams - (data flow
diagrams) Figure 5

Translation of the design into a
computer program.

And this is X is A then a number of Bs followed
Producing the design diagrams is the cicative part by C.
of design and is discussed below The Jackson
method tor the other two activities is the easiest to 'he program code is thn created by following
describe. Taking the translation into code first. The through the tree in a logical order. Tlie other
method is called Jackson System Programming, methods go through a similar piocess toi code
171. It is based on the Dijkstra concepts of JSP, Jackson System Programmingwas the
structured programming, sequence, iteration and pjecursoi to JSD. A majoi step in the creation ot
seleLtion are the only control structures permitted. JSD was the recognition that the systems

interaction with its environment could be described
using a similar structure to that of JSP The data

It uses boxes connected as follows. They form a which a coinputei system processes can be
tree. that is each of the boxes A, B and C can described using the concepts of sequence, iteration
themselves have boxes beneath them to whatever and selection. For example, a data sequence could
depth is appropriate,. be an 'A' followed by a number ot 'B's, then a 'C'

or an 'A' followed by either a 'B' or a 'C', then a
1). The diagram used to describe the data input to
a system are essentially the same as those used to
describe processing at the code level Although
they use a iather different method from JSP to
describe code, users of the Yourdon method are
tending to use the JSI) method of describing data
inputs from a systems' environment.

1-5

7. Differences between the methods. Z Data stream

Differences between the methods are apparent in
the way they handle information flow between
processor boxes. The essentials are summarised
below.

7.1 Mascot. [State vector
Inspection

Of the three methods the communications are most
well defined in Mascot. Necessarily so, for Mascot Figure 7
originally had run time environment as well as
being a design method. No activity box can
communicate directly with any other activity box.
Communication is via an IDA, intercommunication
data area. Originally there were two of these.
channel and pool, the current version of MASCOT,
MASCOT 3 permits more complex IDAs. supplying the data. The activity requiring data

initiates a state vector inspection. The Jackson
methods, both for design and programming are in
reference 161.

7.3 Yourdon.

This method has a philosophy different from the
other two methods. The Yourdon method
distinguishes between different kinds of

INei information. There are two kinds, data and signals.
Signals announce that an event has taken place or
issue a command. Youidon has one tvre ,f data
store, which is more like a MASCO!l po.l than a

Figure 6 channel, although the effect of a channel can be
created using control signals.

A channel is a buffered, first in, tirst out store. 0 - -o Dat flow
Such facilities are common to other methods. This
enables activities to progress asynchronously. The
sending activity can send it down to the channel
then continue with its work. The receiving activity L Event flow
collects the data from the channel when it is ready
to do so,

A pool is more complex. It always contains %ome
data. A number of activities can update the Flow to store
information held by the pool. A number of
activities can read the data in the pool. The Figure 8
difference between a channel and a pool is that,
data is destroyed when read in a channel; data
remains in a pool until overwritten. A full
description of Mascot is in reference 151.

DThe facility of separating control signals from data
7.2 Jackson System Design. is powerful. It is enhanced by the provision of

finite state machine models to sort out the
Like MASCOT, JSD has communication methods consequences of complex interactions between
which enable activities to progress asynchronously. control signals. For some types of real time
There are two methods. One, called a data systems this facility alone makes Yourdon the
stream, is similar to a MASCOT channel. The metmod of choice.
other enables one activity to inspect (but not wnte
to) the state vector of another activity. This i% the
same sort of facility as a MASCOT pool. A purist 8. Weakness of these methods.
may argue that it seems less safe but the facility
can be used to create an activity which duplicates A top down design methodology assists the
the action of a MASCOT pool. designer in achieving two of the three criteria of

good design, data hiding and low coupling. It
With a data stream the initiator is the activity contributes less towards the aim of high cohesion.

1-6

There is little assistance to the designer in messages. This is the heart of the matter.
identifying and implementing modules which Reference 181 contains a full description of object
provide Common services. Especially so on a large oriented programming including those aspects not
project when, following the top level design, the covered in this paper. These programming ideas
rest of the work is partitioned amongst a number of have been carried into the requirement capture and
different designers. A middle out approach, for the design part of the life cycle. In Europe the
reasons given below, enables a balance t',) be struck development of HOOD, hierarchical object oriented
between low coupling and high cohesion, it does design, by the European Space Agency and its
not neccessarily achieve both. adoption by the European Fighter Aircraft

consortium have supported and encouraged the
One of our companies, which uses the Yourdon move towards object oriented methods. There are
melhod, finds the methods' poor support fi-r 'high now at least two HOOD tot)l sets which are being
cohesion' so much of a problem that they have sold in the open market and supported.
drastically revised the way they operate the
method. They make little use of the tool as a Like the other methods discussed, HOOD has
design aid because, having tried to use it that way, diagrams with boxes and arrows. It also has the
they found that they were creating unsatisfactory recursive principle, that is, a box can itself contain
designs. The problem seemed to be that the boxes and arrows: this is why 'hierarchical' is part
decomposition of the system coining from the top of its title But the HOOD diagrams are not data
down methodology was not resulting in a gxd flow diagrams, the arrows indicate which objects
system The top level diagrams when first produced use the services of other objects. In HOOD there
seemed satisfactory but, as the design proceeded to are four different message iypes and two different
lower levels, and the designers understanding of object types to provide the synchronisation and
what was necessary improved, the design became parallel operation required in a high performance
less satisfactory. Either the number of data flows in real time system. Such detail is not relevant to this
the data flow diagrams increased; or a lot of similar paper, it is in Reference 191.
things were done in different parts of the system.
Either high cohesion or low coupling couldbe A Hod Object
achieved, but not both. For the kinds of system this
company is producing, large radar systems, they - Ob ject Name
find that a better design route is to identify the low __

level modules which will be required. These aie
then put into groups, then groups into larger groups
and so on. Although the Yourdon tool is not used a
as a design method; it is used to record the design, Object
maintain it as the requirement evolves and to nt na
supl)ort design review. >1I"ternls

This is the experience of one company in our
appach sOtisfcomaie for the ind ofwar they .1_
group. Some other companies are fhollowing their
lead. Other companies find the top down

)roduce. so use the tools both as a design aid and a
method of' recording the design.

Use Obl"t

The newer methods, Object Oriented Design,
preserve the advantages of current methods whilst Figure 9
encouraging high cohesion They are dliscussed
below.

Restriction of coinnuunicatlions betweeui modules to

9. Objected Oriented Methods. ,equests for service is a powerful concept. Objects
give a greater amount of encal)sulation than the

Although not entirely a new idea, their precursor - piocessor boxes in other methods; so, once its
SIMULA emerged in the 1960s, Object Oriented services have been defined, the design and
Methods have surged in popularity in recent years. implementation of an object can be carried out
Smalltalk, followed by C f I have contributed at independently of the rest of the project It retains
the programming level; so has Ada which has many and reinforces the gains made by earlier methods in
ofthe features of art object oriented language. data hiding and low coupling and the designernaturally tends to put related services in the same

The Object Oriented approach considers a system to object. It therefore supports high cohesion and so
be a set of interacting objects. FEach object piovides adds to the gains in quality provided by earlier
a service or services to other objects. Objects methods.
request a service of other objects by sending a
message to that object. A message consists of a An additional advantage of'object oriented methods
request foi a service together with any necessar is that they promote software reuse. The
data. Objects have access to one another only via encapsulation provided by the concept of an object

is so strong that it enables objects to be transferred

1-7

from one project to another unchanged if they to the whole system as a single entity. At the
provide appropriate services. If changes have to be current state of development of formal methods that
made the change process is controllable, as it is is, in practice, ii.ipossible.
restricted to changing the services provided by the
object. In an Object Oriented Design the objects have more

solid boundaries and communication between them
is more formalised than activities and the

10. Formal Methods in Requirements and communication between them in current methods.
Design. This ameliorates the scaling problem. An object

could be proven correct independently of the rest of
It has been known for more than ten years that the the system. Then. since the inside of an object is
requirement for a computer system can, in hidden, a system or subsystem could be proven as a
r iinciple, be encapsulated in a formal mathematical set of interacting objects.
anguage. The requirement can then be proven
complete and consistent Further, the
transformation to design and code can also be, in It. Summary and Conclusion.
principle, formalised to ensure that the eventual
code is proven to instantiate the requirement. '[his Software Quality is to a large extent determined by
is most attractive It suggests the possibility of how well the developers follow the principle of
proving that progmam, are correct resting does not Data Hiding, Low Coupling and High Cohesion.
do this, at best testing pioves that the software is Current design tools provide good support for the
not incorrect in the aspect which is being tested fist two of these concepts; support for high
Yet, in practice, formal methods are rarely used. cohesion is less good The newer methods, based
Many reasons have been advanced to explain this, on object oriented principles, retain the advantages
h'iom the point of view of this paper the relevant gained by current methods and support high
reason is that of scaling Formal methods woik cohesion.
well for small systems but the time and cffort
required to apply formal methods seems not to have Formal methods, which to date have promised
a linear relationship with system siue, it incieases much mnoic than they have produced, may gain a
much inoie iapidly new lease of life as object oriented methods

become more I)pular. The gmater encapsulation
('mient design methods give the designier gicat provided by these methods may make the use of
ficedom in the way he choose, to decompiose the tormal methods feasible on quite reasonably sized
system into actviti.s and data flows so, it formal systems.
methods are to be applied, they have to be applied

12 References.
I P 1 Wald Ind S J Mello . "Sti uciul ed)evelopment toi Real Tiic Systems", Yourdon Press

(1985)

2 "I he Sai ts Guide". Second Ehiition. National Computc Centre (198 1

3 W,Sievens, (G Myc's and I.Contantmne "Structured Design". IBM Systems Jownal, Vol 13, No 2
(May 1974)

4 1) 1. Parnas, "On the criteia to be used in decomposing s)ftware into modules", I-E ".ansactions
on Software Engineering ()ecember 1972)

5 "Special Issue on Mascot 3". Software Lngineering Journal, Vol I No 3 (May 1986)

6 J R ('ameron "JSP and JSI)", 11-1. Computer Society (1983)

7 M A Jackon "Constiuctive Methods of Pi ogramn)esmgn", Lecture Notes on Compute Science,
Springer-Verlag (1976)

8 I Stioustrup "'lhe C I I Piogranni.ing Idnguage" Addison Wesley (1987)

9 "11001) Relerence Manual", European Space Agency (1989)

2-1

Tool Supported Software Development

Experiences from the EFA Project

by
Werner M. Fraedrich RDir, Dipl.-Phys.

Federal Ministry of Defense
Rd P IV 3

D-5300 Bonn, West Germany

SlNPNT

EPA is a multinational project. As to pertinent data processing support, agreement had to be reached
between the partner nations (both industry and government) The paper will show that, generally agreements
were worked out by arriving at the lowest common denominator since none of the participating nations was
prepared to accept standards established by another partner nation, which would have meant giving up its
own standard.

The paper will address important additional information as well as experience gained to date:
* some general information on the EFA Project, including important determinations made

* the status of the software tool selection and procurement in the EFA Project
* a comparison between required and actual availability of software tools in the EFA Project

The paper will conclude by trying to point out what could be done in order to preclude the problems

mentioned.

The requirements to be met by the development

1. INIMCnW RPMI tools have been considerably influenced by

Tornado. What had been agreed on trinationally,
EFA is a multinational project. As to was now agreed by five nations or four,

pertinent data processing support, one could respectively.

therefore not simply apply national standards and

procedures. Rather, agreement had to be reached 2.2 K1E4,MffSTA1rT (EST 11.10.84)

between the partner nations (both industry and

government). The ESR formulations have been kept in fairly
general terms and, actually require only

The following will show that important * in para 4.2.1 the use of a High Order
determinations have betn made within the Language, and

multinational framework at a very early stage. in para 6.2.1 the use of development tools.
However, these were generally agreements worked

out by arriving at the lowest common denominator Pars 4.2.1

since none of the participating nations was "The common use ot a High order Language and

prepared to accept standards established by a Bus-System is required."

another partner nation which would have meant Annex Q of the EST lists the following detail

giving up its own standard. Later on, I am goin4 requirements:
to describe what comes of slich a course of action. * while France demands LTR

* the other nations call for Ada, andSinc thee fcts lone are not ery* the United Kingdom also for Coral 66.

meaningful, I will address important ad'itional

information as w-ll as experience gained to date. Para 6.2.1

To begin with, I am going to offer some general "To build confidence in the ultimate quality

information on the EPA Project,, including of the hardware/software system the contractor is
important determinations made. Following that, I to submit a detailed proposal for a System
will explain the status of the software tool Development Environment (SDE) for approval before

selection and procurement in the project. After installation. This should cover the following

drawing a comparison between required and actual aspects:

availability of software tools, I will conclude by * codes of practice
trying to point out what could be done in order to * software tools

preclude the problems mentioned. * test and integration

* use of language

2. RJMIMUlIf S' B7 !MI WI NAIM * documentation standards."

2.1 B 2.3 UKWUM S jr gIfl (ISR, 09.12.85)

EFA is a quadrinational programme which is
jointly carried out by the United Kingdom, Italy, In the next phase (meanwhile without Prance),

Spain and Germany. Early on, France had also the formulations become considerably more precise:

participated in the programme. * Ada is the preferred High Order Language
In case of non-availability of an Ada

Due to the fact that the United Kingdom, Programming Support Envircnment (APSE),
Italy and Germany have been implementing the CORE/EPOS, a combination of tools, which
Tornado Programme together, the course of the EPA had been agreed on in the case of Tornado,
Project has already been set to a certain degree, should be used.

which also shows in formulations of the earliest

documents.

2-2

Para 6.3.2.1 2.5 IDPI SYWU DIGI AM PMERaI. S! FIB1

"Software is to be written in the HOL Ada (VSDPS, 01.10.88)

throughout; exceptions may be made in particular The WSDPS - the development contract

areas ... all such exceptions are to be agreed technical specification - does not directly

with the Air Staffs." specify the tools to be used. Rather,, it says

Para 6.3.3 under "Software Design Principles"

"To build confidence in the ultimate quality Para 1.3.4.1
of the hardware and software system and the "Software shall be designed and developed

related documentation the contractor is to submit using the SDE (see part 111, para 2.6.6)"

a detailed proposal for a System Development and there, the following is stated:
Environment (SDE) for approval by the nations.

This is to cover the following aspects: Para 2.6.6

* standards and procedures "The SDE shall provide a complete environment

* software tools and methods for system/software design and development.

use of language It comprises:

* " a. CORE/EPOS and other tools agreed by the

Para 6.3.3.1 customer to be used for system/software

"In the absence of a full Ada Programming design and documentation.

Support Environment (APSE) an EPOS/CORE system for b. Configuration Management and Hodifica-

all aspects related to: tion procedures and tools...

design and development c. EFA Software Standards ...

project management d. Programme support environment for Ada

configuration management and any othse language ..

computer generated software documentation e The tools/software to support software

. ,, verification, testing,, integration,,

validation and certification (including

2.4 ELt1'PiW srMJ . IRO FCR DEm I' (ESR-D, analysis tools).

19.09,87) f. Generation of design documentation and
cross refezence between documentation

Now, the formulations are becoming levels."
* more precise on the one hand

it is stated While industry has thus to propose the tools

- when exceptions to using Ada are to be used, the Nations - particularly because of

permitted, and the influence on the in-service phase (Software

- who has to approve the waiver (the Maintenance) - will have to accept that proposal.

Nations, rather than the Air Statfs)2 2.6 Pwu-w? sPeIFI
* and more cautious on the other hand.,

as to the development tools, there is only regar e aroect, et memein aife

in case of non-availability of an Ada regarding the EFA Project, let me mention a few

Pogramming Support Environment a require- project specifics.

ment that a tool combination be used like The companies Eurofighter (EF) for the
the one which had been agreed on in the aircraft and EuroJet (EJ) for the engine are

case of Tornado (CORE/EPOS), consortia formed by natioi.il companies. In the

Pars 6.3.2.1 following, I restrict myself to the aircraft

"Software is to be written in an HOL. For all consortium, the Eurofighter Company, which is made

systems Ada shall be used, restrictions on the use up of the following national companies:

of Ada or some of its features will have to be

agreed between Industry and Nations." Ae (United Kingdom)

* CASA (Spain) and
Para 6.3.3 * MBB/Dornaer (Germany).
"To build confidence in the ultimate quality Each Eurofghter Partner Company (EPC) is

of the hardware and software system and the

related documentation the contractor is to submit within EF responsible (System Design Responsible
a detailed proposal for a System Development Company - SDR Company), for specific tasks. Joint
anvirodet popo for a al Syte D loent. Teams consisting of personnel of all companies (in
Environment (SDE) for approval by the narions.

the case of avionic design such as the Avionic
This isto vrs te foow ets : Joint Team (AvJT) based with BAe at Warton, which
Sstandards and procedures

software tools and methods is also the leading office for all data processing

use of language matters) were formed which are responsible for the
language, design of the various EFA systems.

Pars 6.3.3.1 There is an important project characteristic
in that all documents (for example, also tender"In the absence of a full Ada Programming seiiain)peae yteSRCmayo h

Support Environment (APSE) the SDE concept shall specifications) prepared by the SDR Company or the

be based on the use of tools such as CORE/EPOS for responsible team, have to be endorsed my the other
all aspects related to: companies, that is, having been prepared, they are

a aspes reate nt spforwarded to the partner companies for comments.

se n specifications Subsequently, Eurofighter Co. must approve and

* design and development issue the documents.

* configuration management

" computer generated software documentation."

2-3

This course of action is very time-consuming Eurofighter Software Development Standard
and it has happened that a report took nearly one (PL-J-019-E-006) (SDS, Issue 1 of March
year after preparation to arrive at the Nations 1990))
and at NEFMA (our "NATO EFA Development, the use of tools agreed in the Eurofighter
Production and Logistic Management Agency"). One Software Methods and Tools Applications
reason for that procedure may well be that each Standard (PL-J-019-E-l0lO) (SMTAS). This
EPC wants "to have a say" in each area - among document will be prepared according to the
other things, because of the national project progress made. While the pertinent
responsibility vis-A-vis its own government - and parts for System Design (Annex A) and
that the EPC is probably expected to do that on Software Design (Annex B) have been
account of requirements established by the available so far as Issue 2 of June 1990,

respectivefr a Isueationse.190
respective nations. we are still waiting for the first drafts

for Software Coding (Annex C) and Software
3. SELICKAND ROSTW r 0FM TOMS Testing (Annex D),

Work on EFA data processing aspects between the documentation of software development

the NatIons, including NEFMA,, and industry is done in the EFA Software Documentation Standard
in the Systems Integration and Scftware Group (PL-J-019-E-lOll) (SDOS, Issue 2 of March
(SISG) which held its first meeting from 17 to 19 1990).This standard contains - in annexes -
September 1986, that is,, more than two years the model texts for the documents to be
before the development contract was signed. prepared according to the SDS. These model

texts are prepared according to the project
3.1 pREOh)ITI(tS progress made. At this point in time,, about

Initially, basic matters had to be clarified 75 percent of them are available.
and settled before the actual selection and
procurement of tools could be tackled. 3.1.3 HIGhORDE hLANla

Right from the start the requirement was
3.1.1 POLICTcYs1mjr established by the participating Nations to use a

The first activity engaged in by the data High Order Language (HoL), and also which one -
processing specialists of the four nations (from namely, Ada. In line with that determination,, and
both, government and industry) was to determine beginning in 1987, that is, parallel with the EFA
data processing guidelines, according to which Software Standards, another Policy Statement was
system/software design and development was to be prepared by data processing specialists of the
accomplished. By the spring of 1987, a Policy four nations (from both government and industry),
Statement had been prepared and agreed,, which,, which addresses the Ada compiler. With that Policy
among other things, specified Statement, entitled "The use of Ada Compilers in

* its applicability to specific software the EFA Project" and dated 10 February 1988, among
items (that is, all those required for the other things
weapons system and the weapon system * selection (procedure)
development). * development (course of action)

* which significant management tools (plans, * validation matters, and

documents) were to be prepared (detailed * use (updates, version control)

plans in accordance w:th the EFA Software were determined.

Standards), and It was an important task for the System

on which standards these management tools Integration and Software Group to decide which

were to be based (agreement was reached compiler should be used. Prior to that, however, a

that system/software design and development decision had to be made as to which ti-processor

be exec .ed in accordance with DoD-STD-2167 should be used and which measures were to be taken
thereby tiking Into account RTCA-DO 178/A). in order to meet the reliability requirements for

flight safety critical software.

3.1.2 EFA Snqn S3,&= In early 1988 Eurofighter Co. presented a

In line with the above determination and study entitled "The Use of Ada for Safety Critical
subsequent to the Policy Statement whereby the Applications".

latter's requirements are taken into account, the This study demonstrated that Ada can be used
EFA Software Standards were established beginning for all safety critical applications. The
in spring 1987. They must be applied to all reliability of Ada programs is comparable to that
software including equipment software and by all of assembler programs, if not greater, if
equipment suppliers. Since 1989/1990, these * any restriction on the use of the Ada
standards have ben available as binding Project language is strictly adhered to (Safe Ada),
Standards, and they also define and

" the course of action to be taken by the * the static code analysis at source code
software configurations management In the level (- Ada) is made.
Eurofighter Software Configuration Manage-
ment Plan (PL-J-019-E-1003) (SCMP, Issue 1 Any reliability problems have been mainly

of Marc 1989) seen in the compiler area. In order to preclude
any possible compilation error as well as

" the development documents to be prepared,, unforeseeable run-time behavior,, a certain
as well as the course of action to be taken restriction on tne use of the Ada language was
in software development and certification, agreed, together with Initial target code
including software safety, in the verification.

2-4

3.1.4 STIMl-PROM called CORE-EPOS transformer, still had to be

In early 1988, Eurofighter Co. presented the developed. The contract for that development was

results of a market survey in the form of a p- awarded in October 1988.

Processor Report. In it, the Motorola
MC68020/68881 was proposed to become the standard 3.2.2 T r

p-processor for the EFA Pro3ect. As to software design and development tools,
industry had conducted a market survey in 1987/88.

This t p-processor (and this is why we speak of An important task to be performed by that market
a "standard p-processor") will invariably be used survey was to determine the method to be used for
by all subcontractors, that is, only one software development. Following an analysis of the
programming environment (compiler, run-time documents/proposals received, Eurofighter Co.
System, debugger, etc.) is required for the recommended the Rierarchical Object Oriented
pro3ect. Design, in short HOOD, to the Nations as method to

Eurofighter and Motorola have yet to agree on be used for software development.
a conditions, in which Motorola Co. would, among Here again, the market survey had shown that
other things, guarantee the tools required were not yet available in the

* supportability for a period of 25 years, configuration req,ired by the project. Making use
beginning on the date the last aircraft of the resul.s of the market survey, a tender
enters into service, and specification was prepared and - following
enhanced radiation hardening, evaluation of the proposals - in November 1989 the

In this connection, the main problem is that British company Integra Software (IPSYS) PLC (on
Motorola Co. is not prepared (and probably just behalf of Software Sciences) was awarded the
cannot guarantee) that some years from now, the contract to supply its "HOOD Toolset" as Hood
required production would still be based on the tool.
old technologies and old masks, when - in the
meantime - production would have been modernized Adaptation developments were also required in

and the masks reduced in size. the following areas:
* traceability to CORE/EPOS and vice versa

3.2 TIE ZFA SYST DMIGHEIWIROM (SDE) - Ada code extraction
* security classification attribute for

D inclumdesi toolobjects and its printout on documents and
*system design diagrams.

software design/development
* Ada compiler, and 3.2.3 M
* static and dynamic test tools

as well as The Project Baselined Compiler to be employed
* IPSE with its standard tools, according to the Policy Statement will be procured

by both Eurofighter and Eurojet, and its use by

3.2.1 TOCLS FR SYSTMD9SI the equipment suppliers - that is, for those who
need it - has been ensurod.

The basic weapon system performance

requirements had been known to industry already As to the Ada Compiler, industry conducted a
with the first phase documents, that is. very market survey in 1981/38, whose results were
early. And the same documents also specified the incorporated intn the tender specification.
tools to be used for weapons system design and Subsequent to the request for proposal in early
development: CORE and EPOS. They could certainly 1989 and their evaluation, the contract was
have been used also in the early stages of the awarded in Fenruary 1990 to SD-Scncon Company for
project in a meaningful way. XD-Ada

Whereas EPOS is mainly used Adaptaticn developments were also required in
* to analyze and identify individual the following areas:

requirements from "plain english" texts * Target Run Time System for multi-p-
* to ensure requirement traceability processor systems

to compile the Interface Requirement * emulation of basic floating point
Documents operations (in case no mathematical co-

CORE is mainly used for the design process, processor is used)COREIS ainy ued or te dsig prces, •library of mathematical fixed and floating
i.e. to decompose high level requirements in a pint fnctions.

logical and consistent manner until a level is point functions.

reached where the requirements are expressed in 3.2.4 SWTICAD m=IC T T=
such sufficiently, precise detail to allow
software design to begin. As already shown, the reliability of Ada

programs - where compiler errors are critical,
Already on 21 October 1985. industry thus rather than prograzming errors - is comparable to

stated in a restrictive manner: that of assembler programs, if not greater,
"It is anticipated that full facilities, both provided that
hardware and software, allowing direct entry from * any restriction on the use of the Ada
EPOS to CORE will be avidlable to all partners not language is strictly adhered to (Safe Ada),
before August 1986." and that

The reason for this restriction was that the * the static code analysis at source code
interface routines between the existing tools CORE level (= Ada) a made.
(Ae Company) and EPOS (GPP Company), the so- As said before, target code verification will

be applied as long as the compiler stability has
not been proven.

2-5

Thus, when testing, appropriate tools must be 4.2 TITOqDCmIl1
used to check whether the programmer has observed Let me now reverse the above sequence, that
the restrictions agreed. is, start with IPSE and finish with the CORE/EPOS

While the SPARK Examiner (by PVL) is used to system design tools.

make the static code analysis, TESTBED (by
Liverpool Data Research Limited (LDRA)) is used 4.2.1 IPSE

for the dynamic analysis. These tools, however, An initial version of IPSE should have been
are only required to be used for "Risk Class 1 available in autumn 1990, but the acceptance tests
Software",, that Is, Flight Safety Critical for this version failed because of problems
Software. maintaining database integrity due to hardware

The license agreements for these "off the problems. It was planned, that IPSE should be

shelf" tools were signed in mid 1990, following a available in its entirety about mid 1991 but this
market survey. will no longer be possible. Nevertheless, while

this is not the optimum, it will not result in any

3.2.5 Ih11GRTP10GRN=SliQ~RTZWIR31MW (IPSE) significant problems or delays in the programme

The aim had been to find an Integrated especially as the IPSE is only used by the EPCs.

Programming Support Environmert, into which 4.2.2 StTICANDDuIfCTTT(U
possibly all of these tools listed under
paragraphs 3.2.1 through 3.2.4 could be Currently available versions of these test
integrated. In add.tion, it was to include tools (SPARK Examiner and TESTBED) have been
standard tools, such as those for available 3ince November 1990. This seems to be

* documentation fully sufficient since the software tests - even

* configuration control, those conducted by equipment suppliers - did not
begin before late 1990. Updates of these

As to the Integrated Programming Support commercially available tools are requireA.
Environment, industry had conducted an initial
market survey at the end of 1987/in early 1988, to 4.2.3 TYADCaCGUU
be followed later by the request for proposals. In First versionj of the Ada Compiler have been
the spring of 1990, Eurofighter Co. selected the available since May 1990 for the standard p-
tool "Perspective", offered by the British company processor. In its entirety it will be available
System Designers. Since significant parts of the about 12 months later. This is fully sufficient
IPSE were not available as required, here again, a since the equipment suppliers started coding not
contract had to be awarded for adaptation before the middle of 1990,, and since the compiler
developments also in the following areas: versions available at that time had been

* user interface (format of terminal windows) sufficient for the initial work.
* data management facilities

* database protection facilities 4.2.4 HOOD-TM,

- configuration control
* integration of the interface control tool While first versions of the HOOD Tool hae

"Ingres". been available since December 1989, it will be
available in its entirety in the middle of 1991.
Here again, the tool has been available in good

4. AVlABIIT V3 ST time for the developtint of both aircraft and
4.1 GDL equipment software.

As can be seen from the observations, the
entire system and software design and development 4.2.5 CORE/9POS
of the EFA Project was to be carricd out tool- Even though the CORE and EPOS tools had
supported and top-down. In this connection, a already been released since 1987 for project use,
distinction is being made between tools for their actual use had been limited since the CORE-

* system design EPOS transformer - just like the associated
* software design versions of CORE and EPOS - could not be used.

compiler, as well as for
* miscellaneous purposes, such as standards, The development, which was started in

test tools and IPSE. October 1988, had taken much longer than was
expected in the Eurofighter letter referred Lo

Regarding all these tools, a decision has earlier. It was not until the 16th meeting of the
been taken in the meantime as to what is to be Systems Integratioc and S,)ftware Group held on
used by the aircraft consortium (EF) and its 12/13 November 1990 that industry reported
equipment suppliers, namely "now the transformer can be successfully used on

* CORE/EPOS for system design the project".

* the HOOD Toolset by IPSYS for software
design But due to the necessary paperwork its

* SPARK Examiner by PVL for static code release for use on the project only took place in

analyses early December 1990.

* TESTBED by LDRA for dynamic tests/Analyses 4.2.5.1 RD 5i R LKAVAIABLIW
XD-Ada by SD-Scicon as Add compiler
IPSE by System Designers based on The first quadrilateral document, the ESR,
Perspective. was signed in late 1985. This was the beginning of

the joint definition phase. However, some time

passed - although the participating nations dnd
industry had reached early agreement on the

2-6

- tools - until CORE/EPOS, and even parts of them, (Subsystem FRDs) had been completed, the equipment
had been available to all development teams of the specifications were established. Otherwise - as
aircraft copanics, to say nothing of the sub- stated by Eurofighter Co. - the fixed target dates
contractors. Apart from the implementation of of the development programme - particularly the
desired/required - but as yet not released - first flight of the first prototype (P01) and/or
requirements, there were also general commercial that of the first avionic prototype (P05) - could
issues that hindered the rapid use of the tools by not be met.
all participants, such as At an Design Review, held in January 1989,

* individual or project license the Avionic Joint Team explained in detail how the
* which version basic documents (ESR, WSDPS) and the design
* how many "systems" per company documents (FRDs, LRI Processing Specifications)
* how many users per "system". should serve to carry out system design and

Regarding the EFA project, industry has thus development of both hardware and software by means
worked for a long time either without the tools or of
with the tools, but only to a very limited extent. * a market survey (based on ESR)

* preliminary equipment design requirements
4.2.5.2 T9 Cg!PM L A AVMIBIA1W (based on logistic requirements of the

According to the basic documents, such as WSDPS and "initial unit functions" of the
EST, ESR, ESR-D and WSDPS, the whole system design System FRDs)
should have been carried out tool-supported and * tender specifications (among other things
top-down; that is, al.. concept and definition work based on the detailed functions of the
should have &'ready been accomplished with data Subsystem FRDs)
processing support. This, however, was not the * contract specifications.
case. The customer (NEPHMA/Nations) is not

The technical requirements to be met by the enthusiastic about this course of action since it
weapon system were laid down in the Weapon System represents "rather an equipment specification loop
Design and Performance Specification; naturally, than an equipment specification route", and since
in "plain language" since this was an annex to the the proposals may have a strong impact on the
main development contract. system/subsystem design.

A conversion to EPOS was not carried out 5. "LIuLAur
until one year later (1989). Thus, the main
requirements to be met by the weapon system had When considering all tools, one thing becomes
not yet been specified for the first Functional very clear: the design tool is most critical. All
Requirement Documents (PRDs), such as Avionic other tools are needed later on in the project
System PRD and Subsystem FRDs, in a Requirement tife cycle; that is, there is usually sufficient
Data Base. It was not until preparation of later time for their

versions of these FRDs, that the Requirement Data * selection
Base could be assessed. * procurement, and

* any adaptation developments, if required.
Whether or not systL. development could have

been carried out that rapidly and smoothly given Especially in the case ot system design
early availability of the transformer, so that one tools, their absolutely necessary use may be

really could speak of a top-down design, cannot be iasily put at risk as important development steps
determined by this briefer. In this connection, are initially taken without them, thus making

the top-down design means to make the following early decisions, which could be corrected, not at
approach: all or only with great difficulty (and usually

" At first, preparation of the System FRDs turning out to be also very costly). To make it
for the avionic, flight control and utility clear, use of tools will not prevent design
control systems on the basis of the Wes,on errors. But if the designer is using such tools,

System Design and Performance Specification his attention is in many cases called early enough

(1'' level) to inconsistencies and other deficiencies in his
" subsequently, preparation of the Subsystem design that correction will be possible without

FRDs (2-4 level) too great difficulties (and usually also not great
* based on that, preparation of the LRI cost).

Processing/Softwarp Requirement Specifica- The experiences gained from the EFA Project
tions and of the equipment specifications to date, clearly show that
W

6
level). * international (NATO) standards for system-

Above all, the determination as to which and software development, including docu-
requirement/task is to be met or carried out by mentation and tools, as well as
hardware, and which one by software, will be * early decisions on the design tools to be
decided not before the 24

d
system decign level, used (that is, already at the start of

multinational cooperation; however, not
I consider the late availability of a31. parts only between the nations, but also between

of the system design tools CORE/EPOS (that is, the participating industrial companies)
including the transforaer, the "problem child" of are urgently required.
that tool combination) as the main reason that
departure from this ideal top-down design. Moreover, a top-dotn design as described

earlier would certainl be desirable. This,
Parallel to the preparation of the design however, may be possible only if - at the time of

documents (Avionic System FRD and Subsystem FRDs), sinin the main development contract
that is, before system design of th- 25* level A the market survey has been completed

2-7

* the system design has been completed, if

possible down to the LRI Processing
Specification level, but at least to the

Subsystem FRD level, and
* the teader specifications have been

prepared for all equipments/subsystems/
systems.

This, however, will not be realizable since
the basis of system design - that 's, the
technical specification (in our case, the WSDPS) -

is usually agreed in a binding manner together
with the main development contract.

This dilemma could probably be evaded only if
development is carried out in stages, that is

* at first, system design until the above
preconditions have been met, and

* then development with the invitation to
tender for the equipments, is not started
before the second stage.

However, I cannot really say whether such a
course of action would actually be possible and,
if so, whether it would also help to resolve the
problems described.

3-1

Military and Civil Software Standards
and Guidelines for Guidance and Control

by
K.W. Wright

Smiths Industries Aerospace and Defence Systems
Bishops Cleeve

Cheltenham
Glos
U.K.

SUMO4ARY UK industry. As a consequence of the
large number of commen.-s received, the

The two most widely used standards document has been undergoing, what is
covering the development of software in believed to be, significant
the military and civil avionics modification. It had been intended that
industries are DOD-STD-2167A and RTCA this paper would compare the contents of
DO.178A/EUROCAE ED-12A respectively, the revised standard with the
This latter document is currently requirements of DOD-STD-2167A and DO-
undergoing extensive update by RTCA 178B. However, at the time of writing,
Special Committee 167 and EUROCAE the revised document has not been
Working Group 12, with a planned released, the comparison has therefore
document re-issue date of the end of not been possible.
1991. This paper compares DOD-STD-2167A
with the work currently being undertaken 2. HISTORY
by SC.167/WG.12. DOD-STD-2 167

1. INTRODUCTION
DOD-STD-2167 was initially released in

As a direct consequence of the size of June 1985 with the aim of reducing the
the US defence market, the most commonly occurrence of programme cost and
used standard covering the development schedule overruns and at improving the
of mil3tary guidance and control quality and maintainability of software
software is DOD-STD-2167A, 'Military products.
Standard, Defence System Software
Development', (Ref. 1). Revision A of the standard was released

in February 1988 in order to take
RTCA DO-178A/EUROCAE ED-12A, 'Software account of the comments and criticisms
Considerations in Airborne Systems and received following the practical
Equipment Certification', (Ref. 9), has application of the requirements
been used by the world's civil aviation specified in the original document. In
certification authorities as the basis particular, the new issue addresses the
for clearing avionic equipment and identified deficiencies with respect to
system~s containing software, since 1985. incompatibilities with the use of Ada
It should be noted that software is only and with new and evolving software
certificated as an integral part of engineering technologies.
equipment or a system, never stand
alone. The document is currently RTCA DO-178
uindergoing an extensive revision by RTCA
Special Committee 167 and EUROCAE RTCA DO-178 was first published in
Working Group 12. The current target January 1982 following agreement,
date for the publication of DO-178B/ED- between the certification authorities
12B is December 1991. and industry, on the need for guidelines

covering the certification of avionic
This paper compares the requirements equipment containing digital computers.
contained in DOD-STD-2167A with the The document was specifically aimed at
discussions taking place within SC- providing guidance on how the
167/WG 12. It must be emphasised that authorities' requirements, particularly
the revised DO-178A/ED-12A guidelines, with respect to safety, might be
discussed in the text, are based on the satisfied.
author's understanding of the status of
the activities within SC-167/WG 12 as at In 1983 it was decided that the document
the end of January 1991. should be revised to reflect the

experience gained during the initial
Note: The terms SC-167 and DO-178B are period of field application. Revision A

used subsequently in the text to of the document was published in March
reflect the activities jointly 1985.
being undertaken by SC-167 and WG
12, and the current working Following the circulation of a
position of the revision to DO- questionnaire by the FAA to industry,
178A/ED-12A, respectively. requesting information on the experience

gained and problems identified with
UK DEF STAN 00-55, 'Requirements for the using DO-178A, RTCA established SC-167
Procurement of Safety Critical Software in October 1989. SC-167 was tasked
in Defence Equipment', was issued in May updating the document with the aim of
1989 as a draft interim standard. A making software production more
number of its requirements, including effective and efficient, and at the sarn
mandatory use of formal mathematical time, enable a more consistent
methods, and use of an organisationally interpretation.
independent verification and validation
team, gave rise to strong reaction from

3-2

A copy of the Terms of Reference for SC- (SDP). With the exception of scheduling
167 are included as Appendix 1. data, all updates to the SDP require

customer approval. Any specific aspects
3. PURPOSE AND SCOPE of the proposed development programme

which are considered to be a potential
DOD-STD-2167A source of technical, cost or schedule

risk, must be identified, analyzed,
The main purpose of the document is to prioritised and monitored.
provide a procurement specification for
deliverable software in the fom of The potential need for subcontractor
Computer Software Configuration Items management, establishing an interface to
(CSCI's) . However, the requirements may an Independent Verification and
also be applied to the development of Validation body and security are also
software delivered as part of Hardware identified.
Configuration Items, firmware nnd non-
deliverable software. The supplier is required to monitor the

utilisation of processing resources
The document defines the software throughout the programme and to re-
development process as shown in Figure allocate resources as required in order
1. The fact that the process begins and to meet the reserve requirements.
ends with system related activities,
emphasises the importance of the need to If use of a High Order Language is not
control the interface between the system mandated in the contract, the choice of
and software development activities, language to be used is subject to

approval by the customer.
DOD-STD-2167A(in addition to the
specific requirements it contains, calls The need to plan the transfer of the
up five further standards covering product from a development to a support
configuration control, specification environment is identified together with
practices, management and technical the associated requirements for
reviews and audits. maintenance and documentation specific

to the support activity.
RTCA DO-178B

RTCA DO-178B
The purpose of the document is to
identify and describe software The primary purpose of the guidance
development and management methods and material which will be provided in
techniques, whose application will relation to the management process, is
result in software products which aimed at providing the certification
perform their intended function in authorities with confidence that the
compliance with airworthiness safety software products meet their
requirements. requirements with respect to safety.

The guidelines are intended for use in The software development process model
either the development, modification or likely to be adopted by the document
approval of systems and equipment. They will be based on a subset of the
may also be used for the qualification proposals made by the IEEE, (Ref 2).
of software tools and methodologies, This defines the software lifecycle as a
used in the certification process. The sequence of processes, see Figure 2.
guidelines are not intended to be Each process includes a number of
applied to user selectable databases or activities which must be completed in
to support software which is not safety order to complete the lifecycle,
related, however, activities need not be

completed in a single 'pass' through the
The document only provides guidance on process.
software considerations, it is not
within the scope of DO-178B to provide The appropriate software lifecycle is
guidance on systems processes. The determined for each software development
document only refers to items of task. Large developments could be
information which are expected to be broken down into separate tasks, each
transmitted between the system and having a distinct lifecycle.
software processes.

A software lifecycle is made up of
4. MANAGEMENT OF THE SOFTWARE software development and integral

DEVELOPMENT PROCESS processes. Development processes are
product orientated activities, i.e.

DOD-STD-2167A planning, requirements analysis, design,
code and integration. Integral

The equipment supplier is required to processes provide engineering support
establish a project software development and assurance functions such as
life-cycle consisting of the activities verification, configuration management,
identified in Figure 1. The activities quality assurance, etc. These latter
are permitted to overlap and be processes are required to ensure the
performed iteratively or re-cursively, completion of the lifecycle and the

quality of the end product.
Details of how the identified activities
are to be performed and how they relate The planning process is fundamental to
to the formal reviews and audits, the development of good quality
required by the contract, are documented software, it is during this phase that
in the project Software Development Plan the specific lifecycle(s) for the

3-3

project is (are) defined. This planning and the currently proposed software
activity only relates to software development processes.
development and is subset of overall
project management. System safety requirements may be

satisfied in two ways, namely, preclude
Note: Business or commercially related by design or prove absence through

programme management activities verification. All safety requirements
are currently being addressed by allocated to software will be documented
th-, ARINC/AEEC Snftware in the software requirements. The
Management Sub-Committee which is requirements will also specify the
developing Project Paper 652 software criticality level.
'Guidance for Avionics Software
Management'. SC-167 has currently identified five

levels of software criticality, A
5. SYSTEM DEFINITION through E. The levels are tied to the

failure condition categories as defined
DOD-STD-2167A in AMJ 25-1309 i.e. Catastrophic,

Severe/Major (Hazardous), Major and
The standard divides the System Minor, plus a category corresponding to
Definition phase into two separate the case where there are no safety
activities. System Requirements implications. The selection of software
Analysis, which involves a review of the level will be based on the potential
(customer) system specification to contribution of software to a failure
remove any deficiencies eg ambiguities, condition, as determined by a system
omissions, inconsistencies, etc., and safety assessment activity. Appendix 2
System Design, where the requirements contains defiiitions of the failure
are allocated between hardware, software condition categories and the
and the 'user'. This latter activity corresponding software levels.
results in the system being partitioned
in to hardware and software 6. SOFTWARE REQUIREMENTS ANALYSIS
configuration items, and, where
appropriate, manual operations. DOD-STD-2167A

In order to minimise the chances of the The purpose of this phase is identified
system entering a hazardous state during as an analysis of the system
operation, the supplier is required to requirements allocated to each CSCI and
pe-form a safety analysis. Any the definition of a complete set of
potentially hazardous events must be software and interface requirements.
clearly identified and documented. Included in the analysis are the

processing resource and reserve
As part of this phase the supplier is requirements for each configuration item
required to develop preliminary software including throughput, memory and I/O
and interface requirements for each port loading.
CSCI.

The resultant CSCI software and
The output of the System Definition interface requirements form the
process provides a 'junctional baseline' 'allocated baseline' for the software
on which the software requirements will design process.
be based.

RTCA DO-178B
The inputs to this activity are

As stated in section 3, systems related identified as system requirements
activities are outside the scope of DO- allocated tu software, specific safety
178B, SC-167 is only addressingthose related requirements, software
items of information which pass between criticality level, project standards and
the systems and software processes. the approved project approaches to

software development, quality assurance
Note: SAE, at the request of the FAA, and configuration management.

has established a group tasked Subsequent to the initial pass through
with developing system the process, inputs will take the form
integration requirements. This of requirement changes and feedback from
group is workinq closely with SC- later processes.
167 to establish an interface
between the two activities. The activities associated with this

process are aimed at generating a well
The purpuse of the system/software defined and traceable set of software
interface is to identify the input requirements for use by subsequent
requirements, necessary to enable the processes. Any deficiencies identified
software development process to proceed, during this process must be fed back
and the outputs of the process, needed into the system process.
for use in system validation. One of
the major issues being addressed is the The only impact of software criticality
traceability and accountability to those level on this process is likely to be in
system requirements which are related to the level of detail provided by the
system safety. The aim being to documentation.
establish safety directed software
development process. Figure 3 contains
an overview of the flow of information
between system safety related processes

3-4

7. SOFTWARE DESIGN design process of including software not
necessarily developed to the same

DOD-STD-2167A standards and procedures.

The standard separates this activity Guidelines are also being developed to
into Preliminary and Detailed Design. cover special design requirements for
The process involves the partitioning of developing 'User Modifiable' software.
each CSCI into Computer Software This is defined as software which may be
Components (CSC's) and Computer Software modified, within fixet constraints, by
Units (CSU's). An example of a the end user, without any requirement
'typical' decomposition of a CSCI is for re-certification. The limits,
shown in Figure 4. within which, the user is permitted to

change the software, are identified and
The preliminary design activity results approved by the certification
in the definition of the high level authorities, at the time the equipment
design of each CSCI and allocates is cleared to enter service.
software and interface requirements to
CSC's. This activity also involves the The process product is a design
preliminary design of the interfaces description, including traceability back
external to the CSCI. to the softwre requirements. The only

impact of software criticality level on
The detailed design activity involves this process is likely to be in the
the breakdown of the high level design level of detail provided by the
to unit level, by allocating software documentation generated,
requirements from the CSC's to the
CSU's. The detailed design of the 8. SOFTWARE IMPLEMENTATION
interfaces external to the CSCI is also
developed during this phase. DOD-STD-2167A

There is a requirement to consider the The standard specifies language
use of Non-Developmental Software (NDS) independent coding standards and the
ie re-usable software, commercial off- supplier is responsible for developing
the-shelf (COTS) software, and project specific codes of practice in
Government furnished software, during accordance with these requirements.
the software design process. Any use of Following acceptance by the customer,
NDS software must be agreed by the the standards are employed in the
customer, identified in the project implementation of the requirements of
plans and documented in accordance with each CSU.
the requirements of -he standard.

RTCA. DO-178B
In order to assist the future
understanding of both the high level and The coding process involves the
detailed design, supporting information, production of source code based on the
such as rationale, results of analyses software design and requirements. It
and trade-off studies, etc., must be will be generated in accordance with
retained and documented. project coding standards and subject to

the approved quality assurance and
RTCA DO-178B configuration management procedures.

The design process is divided into two Any deficiencies identified in the
parts, high-level architecture requirements handed down must be fed
definition and detailed software design. back to the preceding processes for
The architecture definition activity correction or clarification.
involves the allocation of requirements
to high level software functions, plus 9. SOFTWARE VERIFICATION
the definition and design of the
hardware/software and software/software DOD-SID-2167A
interfaces. The detailed design process
includes definition of the low-level The verification requirements contained
structure of the software tasks and the within the standard are distributed over
allocation of requirements to software a number of activities and involve
units. reviews, product evaluations,

development testing and formal
The inputs to the process, in addition qualification testing. An important
to the software and interface aspect of the verification process is
requirements, include design standards the need to provide documented
and the approved project approach to traceability of the system requirements
tools, verification, configuration allocated to each CSCI, its CSC's and
management and quality assurance. CSU's and to formal test cases.
Following the initial pass, inputs also
arise as a result of requirement changes The supplier is required to conduct or
and feedbdck from subsequent processes. support formal reviews at various stages

of the project as indicated in Figure 1.
The document will also address the use All technical reviews are required to be
of software developed as part of another performed in accordance with MIL-STD-
project i.e. re-used software, and 1521 (Ref. 8). The standard does alloa
software supplied by a third party e.g. sufficient flexibility to enable reviews
Ada run-time libraries and COTS to be planned and scheduled to meet
software. Consiteration will be given project needs, multiple reviews (e.g.
tc the consequential impact on the PDR's and CDR's) are also permitted.

3-5

Evaluations are required to be performed On completion, all documentation
on all deliverable software and associated with the FQT and audit
documents at specified stages in the activities is required to be reviewed
development life-cycle. In order to prior to delivery to the customer.
ensure adequate objectivity, personnel
involved in the development of a RTCA DO-178
product, may not conduct its evaluation,
but, members of the engineering team are The document will identify verification
permitted to participate in the as an integral process and as such,
activity. All records associated with verification related activities are
evaluations, including problem carried out as part of, or in parallel
identification and corrective action, with, the development processes, The
must be retained and available for guidelines will divide the verification
review by the customer. Details of process into two principle activities ie
default evaluation criteria are provided reviews and analyses, and testing.
by the standard, but the supplier is Emphasis will be on the importance of
free to propose alternate or additional reviews during the requirements
criteria, subject to customer approval, analysis, design and coding processes

and on testing during the integration
The supplier is required to perform process. The need to perform analyses
development testing on all CSU's and during all phases of the life-cycle will
integration testing on all CSC's to also be emphasised.
ensure that they satisfy their
specifications. In both cases the test Reviews and analyses are required to
procedures and results must be recorded ensure the correct and complete
and retained, translation of, system requirements to

software requirements, software
Following completion of the integration requirements to design and eventually to
testing activity, the process by which code. At each stage, any requirements
the CSU's and CSC'a are combined to form related to safety must be identified and
an integrated software product i.e. a addressed specifically. The review
CSCI, the product toqether with its activity must include checks to assure
associated formal test documentation, is adherence to the appropriate project
reviewed to determine its readiness for standards, whilst the analyses verify
Formal Qualification Testing (FQT). compliance with, and traceability, to

higher level requirements.
The supplier is required to develop

and

document plans and procedures for The guidelines will identify the fact
performing FQT in a Software Test Plan that since tho design process make take
(STP). Following its acceptance by the the form of a number of iterative steps
customer, with the exception of the verification activity itself may
scheduling information, all changes to also be iterative.
the STP must be subject to customer
approval. The results of the verification

activities must be recorded and
The STP is required to contain details retained, details of problems
of the software development environment identified, logged and coirective action
to be used, including information tracked. Traceability is also required
relating to its verification, from system requirements to the
configuration management and verification products. In some cases,
maintenance. Further, in order to particularly where the software is
ensure the required degree of classified as safety critical, a review
objectivity, persons involved in the of the verification products may be
development of the software, may not required, in order to provide assurance
conduct the FQT, however, members of the of the completeness i.e.
engineering team may participate in the comprehensiveness, of each verification
activity. The STP will contain details activity.
of how the stipulated level of
independence is to be achieved. Testing is identified as providing

evidence that a function has been
FOT activities related to each step in implemented correctly, and as a means of
the software development life cycle, identifying interface definition
shown in Figure 1, are identified within deficiencies. The benefits o
the standard. addressing the specific needs of the

testing activity during the requirements
When the CSCI testing activity has been analysis and design phases will be
completed, the software product must be identified, as will the need to test for
integrated into the system and the both normal and error conditions.
system validated agai.,t the
requirements identified and documented The document will identify three
during the system requirement analysis categories of testing ie low-level,
phase. software integration and

hardware/software integration. It will
Functional and Physical Configuration also emphasise that the majority of the
Audits must be performed on each CSCI on test procedures should be developed from
completion of either the CSCI, or system the software requirements. There will
integration activities. The product of be a requirement to carry out a
this activity provides the 'product structural coverage analysis on the
baseline' for all subsequent activities. requirement based test procedures ano

source code, to demonstrate that the

3-6

code structure has been adequately 11. SOFTWARE QUALITY ASSURANCE
exercised. This latter activity may
identify the need for additional test DOD-STD-2167A
cases.

The standard does not address the
The guidelines will identify that the requirements for quali:y assurance
depth and scope of the verification explicitly, however, the need for
rocess is governed by the criticality independence in carrying out the

level of the software. The document evaluation and testing activities can be
will provide guidelines on the minimum classified as a quality assurance
verification requirements for each requirement. Also, a number of the
software criticality level, default product evaluation criteria,

identified in the docUr-ent, can be
In order to ensure that the right level considered to be quality assurance
of objectivity in the various related.
verification activities, the
verification of the individual products Military project software quality
of the software development process, assurance requirements are provided by
must be performed by someone other than other documents such as DOD-STD-2168 and
the person(s) who developed the product. AQAP 13 (Refs. 4 and 5 respectively).

10. SOFTWARE CONFIGLRATION XANAGEM9NT RTCA DO-178B

DO-STD-2167A SC-167 has yet to reach any firm
conclusions on guidelines for software

The supplier is required to establish quality assurance.
and maintain a software development
library together with the necessary The objectives of software quality
supporting plans and procedures. The assurance process have been identified
latter are required to enable the as:
software and related documentation
produced during the development process, (a) to assure that plans, standards and
to be identified and controlled. All procedures are established and 'fit
problems identified with software and/or for purpose',
documentation placed under configuration
control, or with the development life- (b) to assure that approved plans,
cycle processes, are required to be standards and procedures are being

subject to a corrective action complied with,
procedure. This process will include an
analysis to detect any adverse trends in (c) to assure that the evidence eg
the problems identified. records, etc., provide confidence

that the software products conform
Minimum requirements with respect to to the established technical,
configuration identification, control procedural and safety requirements,
and status accounting are provided,
together with category and priority (d) to ensure that the entire
classifications for problem reporting, development life-cycle process is
The standard also calls up DOD-STD's 480 reviewed and any deficiencies
and 481 (Refs. 6 and 7 respectively). identified and corrected.

The specific configuration management The above will be achieved by closely
requirements related to each step of the monitoring and auditing the project
software development life cycle, shown activities, whilat maintaining the
in Figure 1, are identified within the independence of the quality assurance
standard. function.

RTCA DO-178B 12. DOCUMENTATION

To date, SC-167 has not reached any firm DOD-STD-2167A
conclusions with respect to guidelines
for software configuration management. The content and format of each

deliverable document is defined in a
It has been agreed that there is a need Data Item Description, (DID), which is
for a disciplined configuration considered to form part of the standard.
management approach throughout the A list of the deliverable documents is
software product life-cycle. It is provided in Figure 5.
considered important that identifiable
configuration items and baselines are The standard requires more documentation
established to enable the software to be to be made available for review or audit
controlled, documented, verified, than is identified as deliverable. The
maintained, reviewed and audited, project specific deliverable

documentation requirements are provided
It is also accepted that there is a in the Contract Data Requirement List
requirement for a formal change control (CDRL). The SDP must include the
procedure to be in place which includes justification for not producing non-
a method of recording problems and deliverable documentation identified in
tracking their resolution, the standard. The format and content of

all non-deliverable documentation to be
generated must also be specified in the
SPD.

3-7

Each document DID provides very detailed 13. CERTIFICATION
information on layout, sub-paragraph
content, the applicable sections of DOD-STD-2167A
relevant standards, and at which
review(s) the document should be The standard has been developed to
presented for approval, establish a common interface between

customers, suppliers and maintainers.
In order to minimise unnecessary As such, it is not intended to be used
overheads MIL-HDBK-287, (Ref. 3), has directly, to provide a third party, such
been produced to assist projects to as the civil aviation certification
'tailor' the documentation generated to authorities, with the level of
their specific needs. Tailoring may be visibility they require. The document
used to eliminate either non-applicable therefore does not contain any specific
sections of individual documents or requirements related to this activity.
complete documents. Project specific
instructions for tailoring DOD-STD-2167A RTCA DO-178B
requirements will normally be specified
in the Statement of Work (SOW), whilst The primary purpose of the guidelines is
tailoring instructions for the DID's to enable the supplier to provide the
will be specified in the CDRL. The certification authorities with proof
extent to which project specific that the software content of the system
tailoring has occurred must be or equipment has been developed in a
identified in the SDP. structured manner. This proof may

involve an audit of the development
RTCA DO-178B process employed, a review of the

project documentation, concurrence with
The document will identify the the suppliers statement of compliance,
information which will be required to or some combination of all three.
support system/equipment certification.
The information needed can be The level of involvement by the
categorised as follows: certification authorities will be

dependent on the system safety
(a) Process Definitions assessment and the resultant criticality

These will take the form of plans level given to the software functions.
and standards which will detail the The level of rigor to be applied,
strategies to be followed and the particularly in relation to the
methods and tools to be employed, verification process, and the amount of
Information relating to the data required as deliverables, will be
configuration of t he dependent on the potential impact of any
support/development environment software errors on the safety of the
will also be required. aircraft.

(b) Process Outputs Based on knowledge of the software
These may take the form of level(s), the supplier is required to
requirements and design develop plans covering certification,
documentation, source code, and quality assurance, configuration
verification procedures and management and verification. These
results. The information supplied plans will be used to inform the
will provide the evidence required certification authorities of the
to prove that an activity has been methods, tools and techniques which will
completed satisfactorily, in be used to design, implement, verify and
compliance with its plans and control the software development
standards. Also, to enable the process. The plans should be prepared
software products to be controlled in advance of the software development
and maintained, configuration life-cycle actiqities.Index's must be produced. As a minimum, the certification

(c) Summary Information authorities will require delivery of the
Both the certification plan and the following plans. Software Aspects of
accomplishment summary are used to Certification, Software Quality
optimise the certification process. Assurance and Software Configuration

Management, together with a Software
DO-178B will only provide guidelines on Accomplishment Summary. Additional
the information to be supplied. Apart documentation deliveries will depend on
from grouping the information under the criticality of the software. The
headings eg Software Quality Assurance supplier will be required to propose a
Plan, Software Requirements, etc., no set of deliverables as part of the
specific requirements with respect to Certification Plan.
format and structure will be provided.
The information may be made available in Any documentation submitted as evidence
a number of forms such as individual of compliance must be that which
documents, combined into larger controls, or results from, the software
documents, distributed across several development process. With the exception
documents, or on magnetic media. The of the Accomplishment Summary, no
only requirements are that it must be document should be produced solely for
available in form which can be reviewed use by the authorities.
efficiently, and that the mechanism
chosen must be identified in the If a supplier wishes to reduce or
Certification Plan. eliminate particular verification

activities by using a software tool, the

3-8

certification authorities will require REFERENCES
the tool to be 'qualified'. Guidelines
will be provided for determining if 1. DOD-STD-2167A 'Defence Systems
software tool qualification should be Software Development' 29 February
sought and, if so, the process to be 1988
followed in order to obtain
certification authority approval. 2. Standard for Software Life Cycle

Processes (Preliminary)
14. CONCLUSIONS IEEE, Pl074/DS, 1 December 1989.

DOD-STD-2167A was developed principally 3. MIL-HDBK-287 A Tailoring Guide for
as a procurement standard and as such, DOD-STD-2167A,'Defense System
it provides detailed requirements with Software Development', 11 August
respect to the software development 1989.
documentation required as deliverables.
It also identifies deliverable documents 4. DOD-STD-2168 'Defense System
which are specific to the needs of users Software Quality Program',29 April
and software support personnel. 1988.
Although there is a requirement to carry
out a safety analysis to identify any 5. AQAP 13 NATO Software Quality
safety related risks, no specific hazard Control Systems Requirements,
classification related variation in August 1981
requirements is identified. Variation
may be possible by means of the 6. DOD-STD-480A Configuration Control
tailoring information contained in MIL- - Engineering Chanqes, Deviations
HDBK-287. and Waivcrs, 12 April 1978

The guidelines provided by RTCA DO-178B 7. DOD-STD-481 Configuration Control -
are primarily aimed at giving the Engineering Changes, Deviations and
certification authorities the assurance Waivers (Short From)
that the software has been developed in
accordance with the regulations, 8. MIL-STD-1521 Technical Reviews and
particularly those related to safety. A Audits for Systems, Equipments and
great deal of emphasis will therefore be Computer Software.
placed on the verification, assurance
and control related activities. 9. RTCA DO-178A/EUROCAE ED-12A,
Information will also be provided on how Software Considerations in Airborne
the requirements may be modified for the Systems and Equipment
different software criticality levels. Certification, October 1985

It should be emphasised that the civil
certification authorities do not
certificate software stand-alone,
software will only bp certificated as an
integral part of equipment or a system.
DOD-STD-2167A does cover the situation
where the procured item is a software
product ie a CSCI.

Provided the additional documents
required by RTCA DO-178B are available
eg Accomplishment Summary, Quality
Assurance Plan, etc., and the supplier
ca. amonstrate that the contents of the
documents, produced in accordance with
DOD-STD-2167A, comply with the RTCA DO-
178B guidelines, then it should be
possible to obtain certification
authority approval for a CSCI as part of
a system or piece of equipment.

However, due to the degree of document
format and content flexibility likely to
be available within the guidelines of
RTCA DO-178B, the probability of it
being acceptable for a procurement
against the requirements of DOD-STD-
2167A is not high.

As stated pteviously the comments on the
likely contents of DO-178B are based on
the author's understanding of the status
of the discussion at the end of January
1991. The content and structure of the
document may change significantly by the
time it is finally issued.

3-9

APPENDIX 1
TERMS OF REFERENCE

Special Committee 167
DIGITAL AVIONICS SOFTWARE

Special Committee 167 shall review and approval.
revise, as necessary, RTCA Document DO-
178A, "Software Considerations in 7. Consider the impact of new
Airborne Systems and Equipment technology such as modular
Certification". architecture, data loading,

packaging and memory technology.
GUIDANCE:

8. Examine the need, content, and
In accomplishing its work the Special delivery requirements of all
Committee should recognise the dynamic, documents, with special emphasis on
evolving environment for software the accomplishment summary.
requirements, software design,
generation, testing and documentation, 9. Define and consider the interfaces
and formulate a revised document that between the software and systems
can accommodate this environment while development life cycles.
recommending suitably rigorous
techniques. To accomplish this 10. Review the criteria associated with
revisior, the Special Committee should making pre- and post-certification
consider the experience gained through changes to a system.
the field application of the guidance
material contained in DO-178, and DO- 11. Consider the impact of evolutionary
178A, as well as the results of recent development and other alternative
research in software engineering. SC167 life cycles to the model implied by
should also recognise the international DO-178A.
implications of this document and,
therefore, should establish a close
working relationship with EUROCAE (which
has become the normal practice in RTCA
Committees). An objective should be to
achieve a common/parallel RTCA/EUROCAE
document. The Special Committee should
focus this review to address the
following areas:

1. Examine existing industry and
government standards and consider
for possible adaptation or
reference, where relevant.

2. Assess the adequacy of existing
software levels and the associated
nature and degree of analysis,
verification, test and assurance
activities. The revised process
criteria should be structured to
support objective compliance
demonstration.

3. Examine the criteria for tools to
be used for certification credit
(e.g. development, configuration
management and verification tools).

4. Examine the certification criteria
for reusable software, off-the-
shelf software, databases, and
user-modifiable software for the
system to be certified.

5. Examine the certification criteria
for architectural and
methodological approaches used to
reduce the software level or to
provide verification coverage (e.g.
partitioning and dissimilar
software).

6. Examine configuration control
guidelines, quality assurance
guidelines, and identification
conventions, and their
compatibility with existing
regulatory requirements for type
certification, in-service
modificatioas, and equipment

3-10

APPENDIX 2
RTCA DO-178B (DRAFT)

SYSTEM CRITICALITY CATEGORY AND SOFTWARE SOFTWARE LEVELS
LEVEL FAILURE CONDITION CATEGORIES

a. Level A - Software who anomalous
The failure condition categories behaviour, as shown by a system
described below are those accepted by safety assessment, would lead to a
the aviation community and the failure of system function
certification authorities for use in resulting in a catastrophic failure
equipment and system certification. The condition for the aircraft.
categories are based upon the severity
of the effects of failures or design b. Level B - Software whose anomalous
errors on the aircraft, crew, and beihaviour, as shown by a system
occupants. The categories are: safety assessment, would lead to a

failure of system function
a. Catastrphic - Failure conditions resulting in a hazardous/severe-

which wou prevent continued safe major failure condition for the
flight and landing. aircraft.

c. Level C - Software whose anomalous
b. Eazardous/Severe-Ma'or - Failure behavio3ur, as shown by a system

conditions wic wou d reduce the safety assessment, would lead to a
capability of the aircraft or the failure system function resulting
ability of the crew to cope with in a major failure condition for
adverse operating conditions to the the aircraft.
extent that there would be:

d. Level D - Software whose anomalous
* a large reduction in safety b-ehaviour, as shown by a system
margins or functional safety assessment, would lead to a
capabilities, failure of system function

resulting in a minor failure
* physical stress or higher condition for the aircraft.

workload such that the flight
crew could not be relied on to e. Level E - Software whose anomalous
perform their tasks accurately or behaviour, as shown by a system
completely; or safety assessment, would lead to a

failure of system function with no
* serious or fatal injury to a consequences for the aircraft.

relatively small number of the
occupants.

c. Major - Failure conditions which
would reduce the capability of the
aircraft or the ability of the crew
to cope with adverse operating
conditions to the extent that there
would be, for example, a
significant reduction in safety
margins or functional capabilities,
a significant increase in crew
workload or in conditions impairing
crew efficiency, or some discomfort
to occupants.

d. Minor - Failure conditions which
wo=u not significantly reduce
aircraft safety, and which involve
crew actions that are well within
their capabilities, Minor failure
conditions may include, for
example, a slight increase in crew
workload, such as routine flight
plan changes, or some inconvenience
to occupants.

e. No Effect - Failure conditions
which do not effect the operational
capability of the aircraft or
increase pilot workload.

3-11

SYSESM
REOTS SREADINES"I
ANALYSISSOETIER

ANALYAND PRELIMINAR

AEOVIRMENTS ETAILE

REVIEW EESEG

EVIEW SOTAEDVLPET PESSDT26

NOTESIZEOF RET EOFT WARE

CRITICAL

FI.2SFTAR IFDCCESG PRCSSMDESTATEM7B(DAT

3-12

A SStI PMEU rUChS ;E-
SYSAM l~tL(VLIAITCO USTEEO IA(MEM S)

SASIA' I S~'S - AEL'AIED

SOFTWAAE ~ ~ ~ SATASS4...

soOrwSn
00-11

* SO UKIAY S f0044
%AnPO SO~F CSAAE LVEL

6 S S - -- S... (04400 ((('U
CONS(SS 02 S00 _A COVE

..... - *. _SAlT N ((S 440 vs0O

..i.......... -0 A '4 0F4 I ACES BETWIM(DtV(O(W~(f 400 SoAFl PA00(501

FIG.3 SYSTEM SAFETY PROCESS INTERACTION WITH SOFTWARE PROCESSES
RTCA DO-178B (DRAFT)

cScl I~7
(SRAS)

-------------------- - ----------------------

0@0

csc csc

AE CS S CC pYO ,RET Sj

FIG. EXAPL OFCSCIDCMOIIN O-T-1

3-13

DOCUMENT REFERENCF NUMBER

PLANS
Software Development Plan (SDP) DI-MCCR-80030A
Software Test Plan (STP) DI.MCCR-80014A

SOFTWARE DEVELOPMENT DOCUMENTATION
System/Segment Specilication (SSS) DI-CMAN-80008A
System'Segment Design Documont (SSDD) DI-CMAN-80534

Interface Requirement Specificatlion (IRS) DI-MCCR-80026A
Software Requirement Specification (SRS) DI-MCCR-80025A

Software Design Document (SDD) DI-MCCR-80012A
Interface Design Document (IDD) DI-MCCR-80027A
Software Test Description (STD) DI-MCCR-80015A
Software Test Report (STR) DI-MCCR-80017A
Software Product Specification (SPS) DI.MCCR-80029A

CONFIGURATION CONTROL
Version Description Document (VDD) DI-MCCR-80013A
Engineering Change Proposal (ECP) DI-CMAN-80639
Specification Change Notice (SCN) DI-CMAN-80642

SUPPORT
Computer System Operators Manual (CSOM) DI-MCCR-80018A
Software Users Manual (SUM) DI-MCCR-80019A
Software Programmers Manual (SPM) DI-MCCR-80021A
Firmcare Support Manual (FSM) DI-MCCR-80022A
Computer Resources Interface Support
Document (CRISD) DI-MCCR-80024A

FIG.5 DELIVERABLE DOCUMENTS DOD-STD-2167A

PLANS

Software Aspects of Certification Plan
Software Ouality Assui;nce Plan
Sollware Configuration Management Plan
Soltware Verification Plan

SOFTWARE DEVELOPMENT
System Requirements Document
Soltware Requirements Document
Software Design Description Document
Source Code
Software Verification Procedures and Results Document

CONFIGURATION MANAGEMENT
Unit Configuratlon Identitication Document
System Configuration Identification Document

SUPPORT

Support!Development System Configuration DocumL-nt

STANDARDS

Software Design Standards

CERTIFICATION
Accomplishment Summary

FIG.6 SOFTWARE DEVELOPMENT DOCUMENTS RTCA DO-178 B (DRAFT)

4-1

REQUIREMENTS AND TRACEABILITY MANAGEMENT

Author: G M Cross, Marconi Underwater Systems Limited
Station Road, Weybridge, SURREY, KT15 2PW, ENGLAND

ABSTRACT ANL INION
This paper explains the contribution of requirements a VA ...f , ,

traceability to the system development process in risk - ,.AL,,=
reduction and rework avoidance and the impact on all
phases of project development from requirements ,,N , ST,,, U

capture through to customer acceptance and ANALVU

subsequent maintenance. By update of the traditional
lifecycle model, the paper shows how the RTM1

:O'rWA#I IME!RArM"

(Requirements and Traceability Management) product
builds a system development environment addressing t7ow .
these issues and improving the benefits to Users of many
of todays leading CASE tools by more effective
integration, with a total lifecycle coverage.

Introduction and background to the work F I The V-Diagram

Traditionally, the processes involved in System As we move out of the bottom of the V from code
Development have relied heavily upon decisions made on production we are all too often merely testing that the
the basis of experience and intuition. In particular, these coded and integrated system accurately reproduces the
decisions are predominantly made in the earliest, most errors lying undetected in the products of the preceding
critical phases of the project, where any errors have analysis and design phases. Then eventually, as we
maximum cost impact. Furthermore, these critical come to acceptance and we measure the system against
decisions are often made arbitrarily and are rarely the input requirement, the painful truth is finally revealedl
recorded in a formal manner. The traditional system It is a "standard result"2 that almost two thirds of defects
develooment process therefore lacks traceability. The detected at integration and acceptance result from latent
result of such an approach Is a system which cannot analysis errors.
easily be shown to meet the customer requirements. Clearly what is needed is to establish a much earlier

As part of the investment by Marconi Underwater confidence in the quality of the requirement, followed by
Systems Limited (MUSL) into producing high quality traceability into the analysis phase and beyond, and a
systems and software, MUSL have performed a careful comparison between the products of each phase to
analysis of the activities to be supported during the check for consistency. Traceability is "good common
systems development lifecycle. Research started sense", and most technical managers will basically
several years ago, when it became apparent to MUSL as recognise that they use this approach informally In
an early adopter of CASE that some of these tools had attempting to manage the risk in their projects, for
serious deficiencies and were difficult to manage example, as part of their design review activities It is
effectively over multiple projects. For example, poor also required by standard DOD.STD-2167A However, the
integration meant excessive Engineer interaction to full benefit can only be realised by rigorous application,
produce consolidated documentation, leading in turn to and this demands effective tool support.
low maintainability as source data changed. In particular, Traceability Toolset requirements
the issues of technical control and management of
traceability and configuration were poorly addressed, and The results of the MUSL SDPM work also suggested
Ifdecycle support was incomplete and fragmented. that a standard model for traceability was impossible to

agree, and that one ought to allow tailoring of the process
In order to better understand these problems, MUSL model to optimise it for a given project. This in turn needs

produced a system development process model (SDPM) to be reflected by flexible configuration of the toofset.
using the Yourdon method. This modal considers system
development as a series of transforming processes In order to get the best return from traceability we
operating on the customer's requirements, to produce need to examine the total system development process,
different representations of the system under as MUSL did with the SDPM, and then fabricate an IPSE
development and resulting in the finished product offered where traceability is the underlying strategy for tool data
for acceptance. An important result from the model is that integration. We thus identify the bridges which need to be
management of the customer requirement, its detailed built between the co-operating CASE tools in order to
analysis and understanding, and traceability through to provide design traceability throughout the lifecycle. All of
acceptance are key lifecycle activities, this has to be achieved of course, in the environment of a

dynamically changing system requirement as the project
Requirements Traceability proceeds. A successful implementation must provide

In the classic V-Diagram (Figure 1) we have facilities for:
historically underated the role of traceability in
establishing early lifecycle verification as the design Total litecycle support "Cradle to Grave"
evolves. • Initial requirement specification capture and

subsequent configuration management

Clarifying and refining poorly specified customer
requirement statements

4-2

" Updating of Customer originated specifications, Customer acceptance. Figure 2 shows the basic
preserving Customer's format for meaningful elements of a System Development Environment
dialogue constructed around RTM, in the context of the software

development tasks on a project. An upgradable
" Dynamic traceability, linking to all lifecycle phase architecture of UNIX workstations forms the platform for

products, and linking phase to phase the tools.

" Configurable traceability map to reflect local project Requirements Capture
needs In real world situations the requirements to be

" Partitioning and managing designs, thus enabling captured by RTM will come from various sources. Most
sub-tontractors tondmntrag cincy at every commonly they will be presented as a Customer suppliedphase document, or they may be presented as requirements

assembled from a number of diff6rent documents. Under
" Generation of compliancy reports supporting some circumstances they may be a set of derived

verification eg to DOD-STD-2167A requirements resulting from the reverse engineering of an
existing system. The first step in the RTM process is to

" Acceptance specification production facilities for capture this information electronically. Those Items which
system validation are not supplied by the Customer in an electronic form

" Audit trails of design history to support design review can be captured by scanning the Customer supplied
and maintenance document or if necessary typed directly into RTM afresh.

Once this information Is electronically captured the full
" Impact analysis for change management facilities of RTM can be applied. To maintain and ensure

These were some of the objectives of MUSL's RTM, the integrity of the original captured requirements they
and the rest of the paper explains the relevance and are made available to the RTM toolset in read-only mode.
benefit of these objectives in an effective, high
productivity total Systems Development Environment Requirements Stripping
(SDE). The motivation behind the production of this All documents which contain requirements relating to
environment and underlying method Is to maximise the proposed system are systematically transferred into
support in the early phases of design for the scarce the Project Database in a process known as requirement
system designer resource, and to encourage rational and stripping. Typical examples of these documents would be
explicit decision-making by provision of a consistent set documents defining the contractual standards, and
of guidelines for decision-making and recording of those documents defining system specific requirements. As
decisions. each requirement statement Is extracted from these

documents and inserted Into the database, the document
Components of an RTM based SDE identity and paragraph number from which it was

At the heart of RTM Is the Project Database. This extracted is recorded In the database. Any newly derived
database holds information pertaining to all phases of the requirements which result from points of clarification or
project, but focuses primarily upon the system the like are documented and approved before being
requirements and the tracking of these through the added to the project database as configuration items.
project development cycle. After subsequent clarification and refinement asdescribed below, it is then possible to reconstruct all of

the original documents automatically to allow customer
PROJECT TEAM approval of the updates as valid interpretations of their

needs. A browse facility in RTM enables users to scan
the original requirements document either on a line by line
basis or by using "string searches". The desired
requirements text is interactively identified and
transferred to a database, accompanied by a record of

_ _ _ _ _which section of the customer document it was extracted
Yfrom.

Requirements Engineering
OCE Once all the requirements have been extracted from

suppore by = the Customer's source documents it is necessary to
PCISConurato~nMan wmantPaua examine and engineer them so that any ambiguities

_J. errors or duplicates are identified and addressed.RTM Poci RWO A&~ Eloctronic Normally this activity would be performed by a small
a . suport wofnch bhgroup of subject matter experts who are able to

NE I WRMInlerion Kernel communicate directly with one another. The aim is to
un on LS inject as much subject matter knowledge as possible into

the requirements at the earliest stage, so that
requirements are well defined before requirements

Net.wormd UNDxWorkwoa Is subsets are passed on to the analysis teams. The
analysis teams are then able to concentrate mainly on

HARDWARE grouping and partitioning the requirements in a logical
PHYSICAL sDE manner, using the specific subject matter knowledge

______ SICAL __OEI_ which has already been injected. RTM provides facilities
Fig 2. RTM based System Development Environment to enable the following requirements engineering
This type of database is often referred to as a Verfication functions to be performed whilst at all times maintainingCross-Reference Index (VCRI), and is used to audit the the necessary links to provide an audit trail back to the

compliancy of the project to the User requirement through functional requirements as stated by the customer:
the successive phases of development, culminating in

4-3

One to One Substitutlcti This is basically a simple to the keyword. Also a pseudonym text string can be
edit of the re4u!rement. used. In this case the requirements are searched for

the pseudonym text string and those requirementsOne to Many Substitution Allows a complex linked to the keyword.
requirement to be broken down into is component
parts thereby generating "child" requirements. Keyword Reports Having grouped requirements

Many to One Substitution Allows duplicate or together under keywords, reports can automaticallyManyto ne ubsituionAllws uplcat or be generated identifying which requirements are
similar requirements to be focused down into a single associated with what keyword.requirements statement,.soitdwh htkyodCrqiicatn oa ements AKeyword Viewpoints Keywords can also beClarification of Requirements Allows additional grouped together in sophisticated hierarchiesnotes to be added (Engineers note pad) and allowing the selection and identification of
associated with the requirement for use by analysts requirements by a related group of keywords. This
or designers later in the project's lifecycle. These can be used as initial partitioning of the requirements
notes are not normally produced or included in any as we move into the analysis phase.
automated reporting to the customer. The notes do
not affect the text of the requirement. Lifecycl Traceability

Requirements Questions Provides for questions Having captured, understood and engineered the
on specific requirements to be raised and fed back to requirements, it is important to ensure that each
the customer (points of clarification) with the requirement is correctly designed for and implemented,
updated specification, and that the impact of any future changes in the
It is not uncommon that a customer statement of requirements Is fully understood and traceable.

functional requirements, for a medium sized system will A high level view of the System Design Process
generate many thousands of engineering requirements. h model is shown at Fig 3 in a waterfall layout. It shows how
is easier and more efficient to manage large volumes of RTM relates to the major project phases and how the
requirements if they are broken down into categorised major inputs to each phase are the outputs of the
subsets. Within RTM this is achieved by classifying the previous one. The outputs of each phase are baselines of
requirements by keywords: the evolving design of the product, together with the

design compliancy data against the requirements. FromDefinition of Keywords Any cnaracter string can the figure it can be seen that RTM supports traceability
be defined as a keyword. Keywords can be linked to through the entire project lifecycle from the initial capture
requirements either manually or by automatically of customer requirements through to delivery of the
searching through the requirements for the keyword accepted systems and subsequent maintenance
character string. For example use of the string support.
"Engineer" would result in all requirements where that
string appears in the text being identified and linked

Qulltonir -- ___

• ,'Oqumsrnbo:: : ~~t..

Al Valid nfqulromeels

ap Events ?AS Tbool

Reequire. Essential
mRnqairemens implementation

Modl
Rebuil tructured Objets

Requirement& AnalysisSource Maintained
Documen Specilcation Structure

link to Design
udae I Current analysis modei Allocation In,,.. Requirements om". l n

Rebot source Code and
ttTMfFIquirflqn Allocation link Test

,Tro~tJ~?'.Pt~oi.4--o code Modulee

preserved t o
ccepanc

assist Customer Cross Referetnce o
Dialooa Requirements to .. M M

Fig 3. R TM projet Lifecycle

4-4

With traceability links in place to all the products of
design, it is then possible to see the impact of a specific
requirements change down through analysis, design,so in mlet dsg_
implementation and testing.

The project phases are supported by the following tools:

Requirements RTMfuilsaoct
Analysis Teamwork or SIP btuet0
Design Teamwork or SIP
Coding User Specified essntal
CM PCMS requirement specifies model
Documentation Framemaker or Interleaf "jc

Analysis and Design
As we move into structured analysis and design

(SASD) using for Instance Yourdon, we first build an
essential model which is equivalent to a Functional
Baseline. This is a secure basis for progressing to the
stage of allocating functions to hardware and software trial-
architectures in the implementation model. To provide
traceability links to any elements of SASD models, I. _ _ _

integration modules are provided for industry standard Figure 4- Example Data Schema supported by RTM
SASO tools. Note that the analysis phase will typically The user can define any object type which is required
cause some update to requirements, and with RTM, these to support the project's lifecycle, for example, Event
can now be kept in frack. Lists, Essential Model Objects, Implamentational Model

Because each object in the model is tied to the Objects, Test specifications, etc. In addition the user
requirements it can be demonstrated that there is nothing can define any links (relationships) between the object
superfluous or missing and full compliance can b readily types. These relationships can then be associated with a
demonstrated by a simple report from the Prolect requirement. Where supported by the systems analysis
Database. and design tool in use, these objects and relationships

In the design phase we are concerned with reviewing can be described graphically by creating an entity
candidate solutions,to arrive at an optimum approach relationship diagram from which information is captured
before producing the coded system. The candidate and automatically entered into the controlling database.
solutions are represented as "distortions" of the essential
model. Distortion in this context means that extra Traceability to non Integrated tools

functions may neeu to be added to establish Certain development tasks will be performed with
communication between items of off-the-shelfl tools which may not be integrated fully with RTM, for
equipment or software. Another example would be where example reliability modelling. In such cases, the
an essential function is split between two processors for appropriate requirements are selected from the Oracle
reasons of cost, performance, space or customer database using keyword classification. The teams
constraint. These constraints can be tied into the system responsible for addressing those requirements rrake

design using RTM. Allocation of ubjects in the essential compliancy statements against each of the selected
model can be mapped on to the implementation model requirements, indicating for each concept which
objects to assure consistency of the two inodels, requirements are fulfilled. In this way, full traceability is

assured.
Testing and Acceptance Impact Analysis

A number of trials specifications are produced
directly from the requirements in the database. These will RTM provides standard reporting features which will

detail the tests necessary to demonstrate to the identify objects which are linked to requirements,

satisfaction of the customer that a set of requirements requirements which are linked to oojects, and objects
hwhich are linked to other objects. These reports enable

the impact of requests for changes to original
;.n acceptance test plan and record is drawn LIp requirements to be comprehensively analysed and

which shows the manner in which the trials are conducted assessed.
and reeords the outcome of those trials. Requirements
are marked as having been accepted upon successful Compliancy Reporting and Audit

completion of their associated trial. A full audit of where RTM also provides standard reports which will
the project is proving the implementation of requirements identify requirements not supported by analysis or
is available from the VCRI (Verification and Cross implementational objects, which thus indicate
Referencing Index) report. deficiencies in the analysis or of the implementation

design. Conversely reports can also be generated which
Traceability Schema Configuration will show analysis or implementation objects which do not

RTM provides facilities which allow entities and support a specilc requirene.it, which may indicate over
relationships to be defined to suit the particular design or the provision of functionality not requested by
requirements of a project and to be stored in the the customer. This also documents design decisions
database. An example of such a schema to support a taken by engineers ensuring that project continuity is
project is shown Figure 4. maintained even with staff turnover.

Automated Documentation
The ability to automatically generate meaningful,

quality documentation in support of the requirements
capture, design and implementation phases of the

4-5

lifecycle is very important. It improves project
communication and enhances reporting and
communication between the customer and project. When
all the captured requirement have been engineered as References
described above, a complete report can be presented to 1. RTM (Requirements and Traceability Management) is a
the customer. This report wili coniai thu customer's CASE tool developed by GEC-Marconi & MAlT Limited,
requirements mapped to the resultant engineered and distributed in Europe by SOL Systems International
requirements, to any questions (points of clarification) as of Harlow, Essex, England.
described above, and to the evolving design that 2. B. Boehm, IEEE Trans Software Eng. March 1975,
satisfies the engineered requirements. These reports are P125.
fully automated, so that latest document versions can be
produced with high productivity.

CONCLUSIONS
The Benefits of Requirements and Traceability
Management

Throughout the project development lifecycle, the
database will provide accurate and concise information
relating to many aspects of the project:

Risk Management. Resolving the ambiguities in
the requirement specification as part of a meaningful
dialogue with the customer, minimises the risk to
both parties. Subsequently, through life traceability
ensures we build the system we have contracted to
build, and plan acceptance at the earliest stage
possible.
Project Management. It is possible to obtain an
instant statement of the degree of compliancy in
terms of those requirements which have been
engineered, analysed, designed, implemented,
tested and accepted. This provides the project
manager with an objective indicator of the progress
of the project.

* Requirement Change Control. When a
requirement changes, it is possible immediately to
determine which project tasks are affected either
directly or indirectly, and how many hardware and
software modules may have to be modified.

* Testing. When producing a test specification for a
particular module, the Proiect Database will provide a
list of all the requiremelts which the module should
fulfil. The test can then be conducted on the basis of
these requirements, and does not merely confirm
that design errors have been faithfully reproduced by
the implementationt
Integration/Acceptance If during trials a
requirement does not appear to have been
implemented correctly, the Project Database will
identify the module or modules which purport to
implement the requirement in question, along with the
analysis and design objects from which they were
derived. This greatly reduces the extent and cost of
the investigation which needs to be performed.

* Ducumentatlin. Because the majority of the
system development tasks are performed using
software tools, it is possible to automate the
generation of high quality, consistent docurnentatior,
to specified standards at the appropriate time.

* Maintenance. Several of the traditional difficulties
encountered during maintenance are reduced due to
the recording of traceability data in the project
database. This reduces reliance on project experts,
and allows areas likely to be affected by proposed
changes to be more easily identified.

5-1

COPROCESSOR SUPPORT FOR REAL-TIME ADA
by

R. K. Page
Senior Software Technologist

Naval Weapons Cent.r
Code 3922

China Lake, CA 93555-6001
USA

SUMMARY overhead function (e.g., rendezvous) has a short

compute time, a sufficiently short period may yield

The purpose of this paper is to propose the basic 100% utilization. For this reason, missile
elements of a real-time clock that would be suitable applictions, with their short periods, require

for use with the tasking mechanism of the Ada extremely short compute time for both application
programming language and other real-time and overhead functions. High rates in the
concurrency management systems. A real-time application may also require a finer resolution in the

representation of time and, consequently, require aapplication needs such a clock for several reasons: higher overhead cost to maintain the representation

1. To relieve the processor of some of the of time.

overhead burden of time and task management.

2. To provide adequate granularity for the Because of inadequate hardware support and a
representation of time. marketing imperative to cover the largest set of

targt computers, existing Ada nm-time systems are
3. To provide sufficient range for the software intensive. As a result, a large portion of

representation of time (References 1 and 2). the time available for the application on the
processor must be spent updating the real-time

'lis paper also suggests a more complete clock, managing the various scheduling queues, and
,olution to the overhead problem-move both the scheduling tasks. Many hard real-time applications.
clock and the task scheduling functions nomally such as missiles and robotics (Reference 3).
implcmcnted in software into a concurrency generally use all of the time that the processor
management coprocessor, provides. If a significant portion of the processor's

time would be devoted to managing Ada tasking, it
could make the difference between using Ada
tasking and writing a custom concturency

BACKGROUND management system or a cyclic executive.

One of the main purposes envisioned for the
Ada language was the programming of real-time
embedded systems (Reference 2). A real-time Some specific overhead functions that may
system is a system containing real-time tasks. A require a large percentage of the processor's time
real-time task is a task that has timing constraints are related to time and scheduling. For one Ada
(e.g., a deadline). Timing constraints may be hard implementation, I found that the interrupt required
or soft. A hard timing constraint must always be to support package CALENDAR's notion of time-
met (otherwise the system would fail). A soft of-day and the delay statement, with 0.1 millisecond
timing constraint should be met if possible, but granularity imposed by the application, required
missing the constraint does not cause system failure, greater than 30% of the processor's time.
Fundamental to real-time systems is the concept of Addressing time management with software alone
time. Real-time systems operate in an environment can consume a significant percentage of the total
of severe timing constraints, with hard deadlines processor utilization. As task rates, tolerances on
imposed on computations and input/output (I/O). task rates (Reference 4), and the application

utilization of the processor become more severe, a
Som.z a', :1, 'lions require very high periodic solution must be found to free more time for

proces, . ",. In Equation 1, the parameter U(n) applications. One author (Reference 4) suggests,
represe -ocessor utilization. (When the "With the ongoing interchanges in
mtilizat' , the processor is 100% utilized.) hardware/software trade-offs for improved

performance, the future may reveal specialized
hardware to alleviate some of these (real-time

C, =)performance) problems." Although the imponance
T U(n) (I) of hardware support was recognized early by some

, = £ (Reference 5), general recognition of this need is
growing slowly in the real-time community as

%%here C, and T are the execution time (including evidenced by papers appearing in journals
overhead) and period of task ti, respectively. It is (References 6 and 7), by papers presented at real-
clear that processor utilization increases with either time workshops (Reference 1), and by some
increasing compute time or decreasing period. If an products directed toward re?!-time (Reference 8)

5-2

TIME MANAGEMENT COPROCESSOR Time Queue-The Time queue is a time-ordered
queue that contains the scheduled event time, an

Fundamental to the management of tasks are event identifier (usually the task identifier), and
data structures, such as delay queues and ready the task priority (see the section titled Periodic
queues, and functions, such as reading time, setting Execution).
alarms, and queue management. One way to reduce
the time spent by the processor on overhead Ready Queue-The Ready queue is a priority-
functions is to off-load the bulk of the run-time ordered queue of events for which the scheduled
system's time management oveihead onto a time has expired. This queue contains the event
coprocessor. The time management coprocessor identifier and the task priority for each expired
would be a hardware clock that would not need to event.
interrupt the processor at a high rate to provide a
fine granularity software clock. Because this device Time Registers-This section contains all the
would contain a delay queue, the rn-time would not registers required for operations within the
need to implement or maintain a delay queue. The device:
coprocessor would contain a priority-sorted ready
queue and would not need to interrupt the processor
to signal an expired delay unless the delayed task has
a higher priority than the currently active task. For CURRENT PRIORITY-set by the run-time
example, if a delay interval is requested, the interval system to the priority of the currently
would be added in the coprocessor to the current executing task (see the section titled Delay
time, and the event identifier and resulting time Scheduling). Because this register is, as are
would be placed automatically on the Delay queue. all registers, memory mapped, the time
Upon expiration of the delay, the event identifier required to update the priority is the same as
and priority would be moved automatically to the writing an integer to a memory location
priority-sorted Ready queue. These capabilities during a task switch.
would replace the software delay queue and some
ready queue management with simple memory YEARNUMBER-as derived from the 64-bit
references. They could also reduce the number of representation of time (see the section titled
interrupts required to support overhead functions. Representation of Time).

MONTItNUMBER-as derived from the 64-
MAJOR COMPONENTS bit representation of time (see the section

titled Representation of Time).
Figure 1 depicts the major functional blocks and

general interfaces required for the time management DAYNUMBER-as derived from the 64-bit
coprocessor. representation of time (see the section titled

Representation of Time).

64SECONDSNUMBER-as derived from the 64-
- .- oata bit representation of time (see the section

-- l ___ > Proc , s 32--) titled Representation of Time).
9 i-1-8. -__ - tsle
- "L s , NANOSECONDSNUMBER-as derived from

(I--ta the 64-bit representation of time (see the
_____ - --- q s section titled Representation of Time).

TIMENUMBER-for the 64-bit representation
" I cof time (see the sec.ion titled Representation

Tine-buns Clock of Time).
Interrupts Control

STATUS REGISTER--indicates overflow,
Figure 1. Time Management Coprocessor. underflow, sign, zero, a negative or zero

delay, or a delayuntil scheduled for a time
that has passed (see the sections titled Time-

The major components of the device would be Related ,,,perations and Delay Scheduling).
the following: COMMAND REGISTER-commands to control

and set the mode of the copiocessor are
written to this register by the processor (see

64-bit Timer-The least significant bit represents I the section titled Time Management
nanosecond. The count represents the number Coprocessor Functions).
of nanoseconds since 00:00, 1 January of some
user-defined year (see the section titled SAMPLE CLOCK REGISTER-for the current
Representation of Time) or a count of count when commanded under hardware
nanoseconds since initialization of the timer. control (see the section titled Initial Setting).

5-3

UPDATE REGISTER-for a predetermined months-representing month of the year (4 bits
number of the least significant bits to replace minimum)
the corresponding bits in the current time. years-representing absolute or relative years
This is done under hardware control (see the (10 bits)
section titled Clock Synchronization).

Each of these would be an integer value written
ALU-An arithmetic/logic unit (ALU) is used for to a separate address on this memory-mapped

performing arithmetic time operations (see the device. When the derived representation is written
section titled Time-Related Operations). to the appropriate address, the device would

internally convert the derived representation to the
Interrupt Control-Interrupts the processor if the 64-bit nanosecond count representation for use in

event at the top of the Ready queue is of a setting the clock, setting a delay, or setting another
higher priority than the priority in the of the time-related functions. Time representation
CURRENT PRIORITY register. could also be read from the device in the derived

(by automatic conversion) or the 64-bit nanosecond
Internal Control-Executes commands and controls count (direct) format.

the components of the time management
coprocessor.

TIME MANAGEMENT COPROCESSOR
Host Processor Bus I/O-Controls communications FUNCTIONS

with the host processor.
Several functions are required by this device to

support the run-time system. The following is not
REPRESENTATION OF TIME intended to be an exhaustive list, but only to

represent some basic commands.
With the time management coprocessor, time

would be internally represented as a 64-bit -ount of SETTING THE CLOCK
nanoseconds. There are two related reasons for the
coprocessor to use a count of nanoseconds. First, to Initial Setting
provide for a monotoi ic clock during distributed
system cloLk synchronization, a finer timer To set the clock, the user would write the
granularity may be required than for any current time in either the internal or the derived
application task (see the section titled Clock format. It would be necessary to enter only the
Synchronization). Second, although nanosecond parametcrs of time that are of interest to the
granularity is not required for most applications application. For example, in a missile application,
today, I believe that any attempt at addressing time of flight and not absolute time is the more
timing issues should address longer term appropriate representation. The user could,
possibilities, therefore, initialize the clock to zero time at the

start of the mission. For shipboard-, ground-, or
The time may come, with faster applications space-based applications, the user may require the

(aircraft, missiles, etc.) and higher speed processors full representation of time: a nanosecond count from
(gallium arsenide (GaAs)-based processors a user-specified time. Whether the time used is
(References 9 and 10) for example), that nanosecond relative or absolute would be determined by a mode
granularity may be required. However, the device command issued to the coprocessor.
could be designed to increment only those sub-
second bits that are appropriate for current Clock Synchronization
technology. For instance, if the hardware
teclmology supported a I-megahertz clock rate (I In distributed applications, the need for clock
microsecond granularity), the ten least significant synchronization becomes apparent. Clock
bits of the nanosecond field from an applications synchronization takes two forms: start-up
point of view would always be zero on output and synchronization and correction for drift. If the
"don't care" on input (see the section titled Clock application required setting the clock to the value of
Synchronization). This 64-bit representation would a master clock, this could be done in one or two
support over 290 years of nanoseconds, which stages, depending upon the application and its
should be enough for most Ada applications. The required accuracy. The first stage would involve
run-time system or application could read or write copying the time from a "standard" clock to the
directly to the device using the 64-bit (nanosecond coprocessor and then issuing the set clock command.
count) representation of time. However, the most (This first stage should be nonpreemptable.) The
common representation would be the following: second stage is the synchronization process.

nanoseconds-representing nanoseconds less Stai c-up synchronization and correction for drift
than a second (30 bits minimum) (Reference 4) could be accomplished in a similar
seconds-representing second of the day (17 bits manner. If time were sensed to have drifted, the
minimum) user would have the ability to correct the time with
days-representing day of the month (5 bits three levels of processor interaction, depending
minimum) upon the accuracy required.

5-4

Full processor involvement-the processor is a For each count of the 64-bit timer (which could
critical element in the accuracy of the represent 1 nanosecond for a 1-gigahertz time-base
synchronization process. An example of this clock, 1 microsecond for a 1-megahertz time-base
type of synchronization is given in the oscillator, etc.), the device would compare the
previous paragraph. earliest time on the Time queue with the current

time. When the current time is greater than or
Partial processor involvement--the processor is equal to the scheduled time, the priority and TID

involved; however, processor timing is not would be transferred to the Ready queue.
critical to the accuracy of the synchronization
process. The priority and TID of the highest priority

runnable task would always be readable by the run-
Processor independent-the processor is not time system. If the run-time system has written a

involved in the synchronization process on a value to the CURRENT PRIORITY register, the
continuing real-time basis. device will wait until the highest priority runnable

task has a priority greater than the CURRENT
One method for partial processor involvement PRIORITY register before it generates an interrupt.

would involve a hardware-based signal for the To disable the interrupt, the run-time system would
coprocessor. The coprocessor would be equipped write the vaiue of PRIORITY'LAST to the
with a sample clock input that would force the clock CURRENT PRIORITY register. To always be
to immediately copy the counter to the SAMPLE interrupted when a delay expires, the rn-time
CLOCK register. The processor would next copy system would write the value of PRIORITY'FIRST
the SAMPLE CLOCK register of a master clock to to thc CURRENT PRIORITY register.
the coprocessor. The processor would then issue the
subtract and update command. This command A delay_until statement (Reference 12) operates
would cause the coprocessor to subtract the master in a similar fashion. The difference is that the
clock time sample from the value in the SAMPLE absolute time for expiration is entered when a set
CLOCK register and then add the result to the delay-until command is issued to the device. If the
current time. This method could incur an scheduled time has passed, this will be flagged in the
unacceptably large processor overhead. Also, if the STATUS REGISTER (see the section titled Major
clock were being used for timing measurements, the Components), and the information for the task will
results would not be acceptable. be placed directly in the Ready queue.

A method to implement the third form of Other Scheduling Operations
synchronization would involve the processor only
during system initialization. During initialization, If a task required removal from either the
the processor would enter a predetermined number Ready queue or the Time queue when a task
of the least significant bits into the UPDATE terminates, is aborted, or completes a timed entry
register. At an appropriate interval, the master call, the run-time system would write the TID to the

clock would issue a hardware-based update device and then write a coprocessor command to
command to the coprocessor. The coprocessor, delete the Time queue entry or to delete the Ready
upon receipt of this command, would copy the queue entry.
UPDATE register into the least significant bits of
the current time. If the bits set in this process are If a task priority must be changed, the run-time
less significant than the granularity required by the system would write the TID, the new priority, and
application, time monotonicity is assured. the change priority command to the coprocessor.

This would change tne priority of all occurrences of
These are some of the simpler clock that task in both queues.

synchronization schemes that could be used.
However, the device should be compatible with Time-Related Operations
approaches taken in bus standards, such as
Futurebus+ (Reference 11). The following functions would be available from the

device:
Delay Scheduling

Convert a 64-bit representation, written by
To implement the current Ada delay statement, the run-time system or application program,

the run-time system would write the delay time (in to YEARNUMBER, MONTH.NUMBER,
either representation of the section titled DAYNUMBER, SECONDS-NUMBER, and
Representation of Time), the task priority, and the NANOSECONDS-NUMBER (Reference 2).
task identifier (TID) and then write the command to
set delay. Internally, the device would add the delay Convert YEAR-NUMBER,
to die current time and then enter the absolute MONTHNUMBER, DAY-NUMBER,
expiration time into the Time queue along with the SECONDS-NUMBER, and
priority and the TID associated with the event. If NANOSECONDS.NUMBER to the 64-bit
the requested delay is zero or negative, this will be representation.
flagged in the STATUS REGISTER (see the section
titled Major Components), and the information for Add an interval to the current time, in either
the task will be placed directly in the Ready queue. the derived format or the 64-bit format, to

5-5

the current time. The output would be -
available in either the derived format or the 644 Tumer me-4 ,ase CIOck

64-bit format.

Time Bus Processor (R!it)Subtract the clock from a time in the future. ERe ster B R
The input would be in either the derived 0 as)
format or the 64-bit format. The output
would be available in either the derived
format or the 64-bit format. This operation
would also allow comparison of the current Interrupt Control
time with a given time with the result
available from the STATUS REGISTER (see
the section titled Major Components). Interrupts Control

Figure 2. Time Management

OTHER OPERATIONS Coprocessor Essentials.

time to the device immediately after the current
Watchdog or Alarm Functions timer event expires or as a new event precedes the

current timer event. This simple implementation
A watchdog or alarm function would be treated would require an interrupt only when a scheduled

like a delay statement or delay_.until statement by event expired. The run-time oyciem or the
the coprocessor; howcver, if no TID would application could read the curent time.
normally be associated with the watchdog or alarm
function, the run-time system would fabricate a While the coprocessor's requirements could be
special identifier to flag the function. The implemented in today's gate array technology
advantage of having the watchdog function as part (Reference 13), it is unlikely that a I-nanosecond
of the same device is that the priority of the clock granularity will be required for the processors
watchdog expiration would be sorted with the being designed into systems today. A granularity of
priorities of the tasks in the Ready queue. Because 0.1 microsecond should be easily achieved and
watchdog priorities are combined with task should cover the majority of applications today. A
priorities, the application will not have a high processor based upon VIISIC Phase II or GaAs
priority event interrupted by a low priority event, technology could support 0.01 microsecond or less
A user, for example, may not want the "fight fire" granularity because of their 100+ megahertz clock
task interrupted by the "popcorn ready" interrupt, rates (References 9 and 13).
Periodic Execution Other pieces of the full coprocessor may be

added to the basic timer depending upon their
Through the addition of another field and more relative contribution to run-time system overhead.

control logic in the Time queue, automatic If the operations involved in combining various time
rescheduling of periodic tasks could be supported. units into the nanosecond count and deriving those
The additional field in the Time queue would time units from the nanosecond count are a larger
represent the period of the associated task. 01 burden than queue management, they would then be
expiration, the TID and priority would be moved to implemented. Coprocessor implementation with an
the Ready queue. The device would, on finding a ALU could supersede implementation of a
nonzero period field, add the period to the expired comparator for signaling the expiration of a
delay time for the task and then enter the new time, scheduled event. It is also clear that many more
the priority, and the TID into the Time queue. If run-time system functions could be added to this
the periodic task terminated, the run-time system type of coprocessor and result in reduced overhead
would write the appropriate delete command to the in the run-time system (Reference 6).
coprocessor (see the section titled Other
Operations). Coprocessor Versus On-Chip

One question must be addressed to ensure
IMPLEMENTATION OPTIONS compiler vendor support and applicability to the

broadest number of systems. Should the time
Reduced Capability Implementations management device be implemented as a

coprocessor in a separate package from the
The discussion here has centered on producing a processor (off-chip) or integrated with the

device that has full capability to support run-time processor on a single chip? I believe the devtce
system time-related functions. While this is should initially be implemented off-chip.
desirable, a device with less functionality could also
improve system perfornance. The basic timer The following are some technical advantages of
elements required to support the run-time system on-chip implementation.
(Figure 2) are the 64-bit timer, an expiration time
register, and a time comparator. With this basic * Signal propagation delays involved in
device, the run-time system would keep a time- communicating with an off-chip device may
sorted queue of time events and write each event be ten times thoc of an on-chip device.

5-6

• Less power would be required by an on-chip coprocessor has the potential of relieving the
device. processor of some overhead, a more complete

solution is required. The more complete solution
" A smaller footprint would be required for an includes moving time management functions,

on-chip device. scheduling algorithms, and other concurrency
manageme.. functions from the rm-time system and

" Potential performance gains exist from conipiier-generated code into a concurrency
integrating the timer registers and commands management coprocessor (References 4, 6, and 10).
with those of the processor. Tnc concurrency management coprocessor has been

demorctrated by I nid University as a practical and
The technical advantages of on-chip devices feasible way to build computer systems. This

must wait until experience with them is gained and solution will never be applied if the design of
the market for them is developed. The following computing systems is maintained as separate
are advantages of the off-chip time management hardware and software entities.
coprocessor.

We are now entering an era that requires and
" The coprocessor device can be designed to can support a new view of system design-a view

work with a variety of processors currently in inspired by the need for higher speed and more
use for real-time applications. This flexibility correct complex systems. The foundation for this
would provide a broader market base for the new view is based upon powerful hardware and
device. software tools that have developed along similar

lines (e.g., silicon compilers, VHDL, software
" The selection of an appropriate timer could be compilers, Ada). What appears to be lacking are

independent of the selection of an appropriate methods to support the work and system engineers
processor. with appropriate expertise (Reference 10). The

work discussed here is dramatic evidence of the
Implementing the off-chip coprocessor first and potential of taking a new view of system design.

then following that with development of the on-chip
device was the approach taken successfully with the REFERENCES
floating-point coprocessor and memory management
units (see the section titled Summary and 1. N. H. Weiderman. "Real-Time Programmers
Conclusions). Don't Use Calendars," Third Intemational

Workshop oa Real Time Ada Issues, 1989.

SUMMARY AND CONCLUSIONS 2. U.S. Department of Defense. Reference Manual
for the Ada Programming Language. January 1983.

In the past, we have seen software floating-point (ANSI/MIL-STD 1815A.)
arithmetic performed to the detriment of real-time
system performance. Now we have hardware 3. Thomas E. Bihan. "Current Issues in the
floating-point coprocessors. In the past, we have Development of Real-Time Control Software,"
had software-intensive memory management IEEE Computer Society Real-Time Systems
systems. We now have hardware memory manage- Newsletter, 15, 2, 1989, pp. 1-5.
ment coprocessors. Both of these devices have
relieve d the processor of a computational burden 4. Robert K. Page. Naval Weapons Center.
shared by many applications. At the present time, Coprocessor Support for Real-time Ada. March
we have software-intensive "time management" as 1991. (NWC TM 6958.)
evidenced in the Ada run-time systems where
software manages the delay queues, ready queues, 5. M. Ganapathi and G. 0. Mendal. "Issues in
time scheduled events, etc. We need similar Ada Compiler Technology," Computer, 22, 2,
hardware support for real-time performance to February, 1989, pp. 52-60.
make Ada viable for a broader range of real-time
systems. 6. Paul N. Hilfinger. "Implementation Strategie s

for Ada Tasking Idioms," Proceedings of the Ada
A time management coprocessor could be easily TEC Conference on Ada, 6-8 October 1982.

implemented with today's gate array technology,,
although it would probably be limited to 0.1 7. Joachim Roos. "A Real-Time Support
microsecond granularity. The main issue in the Processor for Ada Tasking," ASPLOS-Ill
design of the coprocessor is to ensure that it Proceedings of the Third International Conference
interfaces properly with a broad range of processors on Architectural Support for Programming
(Reference 13). Languages and O,,erating Systems, IEEE Computer

Society P:ess (Order Number 1936), 1989.
A time management coprocessor should be only

a first step in moving more overhead functions into 8. R. A. Volz and T. N. Mudge. "Instruction
the hardware. Implementations of this device could Level Tuning Mechanisms for Accurate Real-Time
range from the basic device in Figure 2 to the more Task Scheduling," IEEE Transactions on
complete device shown in Figure 1. While this Computers, C-36, 8, August 1987, pp. 988-993.

5-7

9. Intel Corporation. 80960MC Programmer's 14. V. Anderson, Naval Weapons Center. Code
Reference Manual. IC, P.O. Box 58130, Santa 3649 E-Mail communication, 1989.
Clara, CA 95052-8130, 1988.

15. L. Philipson. "Multilevel Design and
10. R. Weiss. "GaAs Bears Fruit at TI," Electronic Verification of Hardware/Software Systems," IEEE
Engineering Times, 514, 28 November, 1988, pp. Journal of Solid-State Circuits, Vol. 25, No. 3, June
53-54. 1990, pp. 714-719.

11. W. Helbig and V. Milutinovic. "A DCFLE-D- 16. R. Woolnough. "Chip Accelerates Ada,"
MESFET GaAs Experimental RISC Machine," Electronic Engineering 7imes, 9 October 1989, pp.
IEEE Transactions on Computers, C-38, 2, 20 and 26.
February, 1989, pp. 263- 275.

17. Vectron Laboratories, Inc. Crystal Oscillators
12. R. A. Volz, D. Wilcox, and L. Sha. "Position 1987. VLI, 166 Glover Ave., Norwalk, CT, 06850,
Paper on the Global Clock for the Futurebus+." 1987.
Draft, 1989, p 4.

13. L. Sha and J. B. Goodenough. Software
Engineering Institute. Real-Time Scheduling Theory
and Ada, April 1989. (Technical Report CMU/SEI-
89-TR-14.)

KTZLIZR DE DIVRLOPPZMZNT DI LOGXCIZLS
DI PILOTAGI - GUIDAGE

par
D.CAIGNAULT, S.GABISON, JL.LEBRUN

SEXTANT Avionique
A6rodrome de Villacoublay

78141 V6lizy Cedex
FRANCE

0. IRhaUM& Dana 1e domains de la conduite du vol
civil, la partio..pation de SEXTANT

Lea 6quipementa de pilotage et guidage Avionique A la gamme Airbua,commenc6e au
d~velopp63 par SEXTANT Avionique poss~dent tout d6but des ann~es 70,a 6t6 marqu~e par
des architectures de plus en Plus COrn- certaines "preMi~re3" qui ont conatitu6
plexes ot la part du logiciel eat sans des avanc6e3 technologiques marquantes:
cease Croissants.
Pour r6pondre A Ces n6coasii63, SEXTANT SystAmes d'atterriasaga automatique
Avionique a mis on oeuvre un atelier de tout temps avec une hauteur do d6ci-
d~veloppement do logiciela do pilotage at sion (HD) progrsivement amon~e A
guidage. Cot atelier oat conatitu6 z6ro,
d'outi aot do passorellos communicantes d~voloppement sur A300-B4 du proemier
assurant Is coh6renco sur tout 10 cycle du FFCC (Facing Forward Crow Cockpit),
d~veloppoment. pilotage A deux, bas6 sur un syst~me
VISA (Yaljdation Interactive de do conduite du vol num6rique,
ap~cification3 Avioniquos) perinet la for- *commiandos do vol 6lectriques d'abord
mulation des ap6cificationa at offre Ia aur 1'A310 pour lea gouvernos 3econ-
possibilitA do l0a rendre ex~cutables, daires, puis globaloment sur l'A320,
pour d'une part, 6valuer tr~s t6t lour int6gration des fonctions do conduite
comportemont dynamique (maquettage) at et do geation du vol pour A320, puis
d'autre part, v~rifier le comportement en A340 dana un soul calculatour.
temps r~ol do 1'Aquiaent 3p~cifi6 (pro-
totypago). Dana I. domains do la conduits du vol
La conception at la r6alisation du logi- militaire, SEXTANT Avionique participe a
Ci01 sont facilit~ea par loemploi d'outils Is d~finition at A Ia r6alisation des
do g~n~ration automatique do code do pilotes automatiques do toua lea avlons
l'atelier :d'armoa franqais Les derniera 6quipements

" GAIA (g6n6ration Automatique do fournia concernent lea diff6rentes ver-
Logiciel Avionique) g6n~re 10 code sions du Mirage 2000 (D6fen30 a~rienne,
ex~cutable des fonctions do pilotage Export, N at D), lea avions ATL-2
et guidage A partir des SP6cif.tcations (patrouillour maritime), 10 C135FR (ravi-
d6taill6ea d~crites dana Ia lang.qe taillevir en vol de l'arm6e do l'air fran-
graphique sous VISA. igaise) et l'h6licoptbre franco-allemand

" GALI (a6n6ration Automatique do TIGRE.
Logiciel d'Interface) g~n~re le code Pour Ie RAFALE. SEXTANT Avionique conduit
ox~cutable do traitement des des travaux sur l'approche et l'appontage
entr~es/sorties d~crites dana 10 dic-- automatique, sur l'approche et Ilatterris-
tionnairo do donn~es soua VISA, sage sur terrain do fortune, fonctions do

L'int6gration at la validation s'effec- pilotage automatique int6gr~ea dana Is CET
tuent on plusioura phases. La]lane do (falculateur d'Elaboration do
Yalidation Avionique (EVA) a pour ob~ectif 2Ira jactoiras).
do simplifier Ia miss en oeuvre ot
l'exploitation des r63ultat3 do cos tests. Ces 6quipements so caract6risent
Lea outils do V'atelier sont plac6s dana
une atructure d't-ccueil PALKS (Production *par des architectures fonctionnelles
hssiL~t6e do Logiciel d'Application et mat~rielles do plus en plus comn-
.Ztructur"a) assurant Is coh~rence do plexes,
1' ensemble. *par une num~risation quasi-totale,

induisant des volumes do logiciel en
accroiasomont permanent,

1. Introduction *par des d6voloppements A d~lai
constant, impliquant une malt rise du

La conduite du vol ast un des m~tiers do cycle do d~veloppement au travers
base do SEXTANT Avionique. d'outils performants et d'une organi-

sation industrielle ad6quate.

6-2

Tout coo programmes, d6veloppbs do plus an
plus on large partenariat, reposent our
do* techniologies do pointe, dosn logiciels Sp6cificattonVaitond
at dos 6quiporneants A haut niveau do s6cu- Frttrg 6quipermont
rit&. atg

Cette communication insiste aur lea exi- V
gences en rsati~re de Qualit6l do logiciels
qui ne peuvent Atre asaur6es qu'au travers Conception Into ration

d'une mthodol!2aie rjgoureiiae couvrant le
cycle de vie complet. La formalisation do
cette m6thodologie A l'aide d'outils raaslo
informatiques eat un atout suppl~mentaireGAACL
A la satisfaction de ces exigences. PALAS Gsdlon do configuraion

La communication d6crit dana l'ordre habi-
tuel du cycle do d~veloppement du produit ATLIER DR D EVELOPPI3NT DR LOGICIELS DE
I'ensemble des m~thodes et outila mis en PILOTAGE GUIDP.GI
place par la soci~t6 SEXTANT Avionique
pour I& sp6cification, la conception, la
r6alisation, l'int~gration et la valida- 2 Sp~cification, maquettage, prototypage
tion des 6quipementa do conduite du Vol et
souligne I& coh6rence de l'enaemble au 2.1 Spocfication
travera do paaaerellea communicantea.

VISA eat un outil d6velopp6 par SEXTANT
Les activit~s concern~es par 1'6laboration Avionique congu dana le cadre d'un m6tier
d'6quipements av~oniques aont r6partiea particulier dont le savoir-faire eat par-
classiquement dana un cycle en V et repr6- faitement stabilia6 10l developpement do
aentent auccesaivement :logiciela do pilotage-guidage.Visa eat

" Ia formulation des exigences (sp~ci- utilis6 pour l161aboration do la ap~cifi-
fication) et la recherche dea solu- cation globale puis detaill6e.Il a 6t6
tions permettant do lea satisfairo 61abor6 avec 1e souci do satisfaire aux
(conception), contramntes impoa~es par lea collabora-

* la r~alisation (mat~riel et logiciel) tions induatrielles multi-partenaires
impl~mentant lea solutions,

" l'int~gration at la validation fonc- - diverait6 des m~thodes et outils do
tionnelle globale do 1'6quipement. r~daction du cahier des charges qui

La d~marche entreprise a pour but darri- fiction gobee ous dformle d p,

ver au niveau do d~tail final solon une fcto lbl udtile

m~thode d'analyse descendante, en asurant - partage des tachos et communication

tine tragabilit6 dana le d~veloppement etde pcfatosrgnasdn u

do lier lea diff~rentes phases au travera cadre contractuel.

d'outils d~di~s A chaque tAche ot compa- Lea difficult~s sont surmont~es grAce A la
tibles entre eux :modularit6 do l'outil et A un support

*VISA (Validation Interactive do m~thodologique rigouroux.

Sp~citicationa Avioniquea) pour lea VISA r~pond, do plus, aux baoins suivants

thches do sp~cification
*GALA (G~n~ration Autoniatique de accroltre la qualitA et la fiabilit6
Logiciel Avionique) at GALl de la ap~cification produite au tra-
(G~n~ration Automatique do Logiciol Vera d'uno description structur~a et
d'Interface) pour lea tAches do o mbgd
conception et do r~alisation du logi- nonatiue, as~iia naatl
ciel, phasede r Iala~ifation aat ,
*le Banc do Validation Avionique (BVA) phasger do documiation
pour les tAches d'int~gration et do
validation fonctionnello,Anls ecdat

*PALAS n' (Production Assist~e doenls oaedrt
Logiciel d'Application StructurA) L pcfctofiuaindsei

pour11oganiatin duproet a la gences, se d~compose en plusieurs phases,
gestion do configuration. avoc un niveau do d~tail croissant. Ces

phases aboutissent A des formulation3 dif-
f~rentes,maia coh~rentes entre ellest,du
cahier des charges.

6-3

La sp6cification globalo slappuie sur une La sp~cification eat parall~lement compl6-
m~thode de d~composition fonctionnelle, t~o par 18 d~finition des entr6ea/sortiea
h~rit6o de Ia mthode SART, suivant 1e do l'Aquipement, 6galement ordonn6es dans
formalisme proposA par HATLEY. La concep- uno dauxibme 8D, appel6e BD externo. Son
tour affine progresaivoment la fonctions exploitation permot d'Alaborer un document
n~cessaires A Is r6alisation du cahier dea official, livr6 avec l'Aquipement pour en
charges et pr~cise lea flux de donn6es aphcifier lea connexions.
asoci6es.L'architecture g~n~rala du rro-
dluit eat ainsi mia en place at est utili- Ces deux BD sent utilisacs conjointament
s6e pour censtruire une geation do confi- at des relationa parmottant d'an croisar
guration (entit6s et liens do d~pondance los informations.
inter-entit~s) at initialiser lea phasea
auivantoa du d~veloppoment. Gestion at documentation int6gr6.a

Sp6cification d6tai116o Il eat indiapensable de conserver A
l'onsombla uno coh~rence constante, tant

La phase do sp~cification d~taili~s oat au niveau du contenu qua do Ia oonfigura-
pr~c~d6e dlune 6tude pr~liminaire de Is tion. En phaae do d~veloppement, lea anni-
atructure des lois de pilotage et do la chissements sent multiples et Is charge de
miso au point des solutions r~pendant au travail impoa6e par lea thches do gostien
bosomn. Cette tAche eat r6alia~e avec requiert une mobilisation importante,
l'aide d'outiis d'AAO (Automatique Aussi, ii est apparu indispensable d'y
Assist~e par Ordinateur) . associar un guide m~thodologique pr~cis,

raposant sur la pnincipos suivanta
La solutions sont ensuite formaisaes *centralisation at transmission verti-
grAce A un langage graphique tr4s proche cale des informations A travers
do colui do i'automaticien. Une bibiio- Ilexploitation do Ia RD interne, lora
thbque do fonctiona standardis6ss eat dis- des diff~rentes phases do sp~cifica-
ponibla at comprend, entre autras, dos tion (contr~les crois6s sur Is canto-
fonctions do type arithm~tique, trigonom6- nu, analyse da coh~rence at do campl6-
trique, logique at des fanctiona plus cam- tudo, r~percusaxon des modifications,
pioxes toibas quo filtre, int~grateur, consultation ergonamique),
retard, mayenne, limitaur. Ce langage sera *gestian do configuration giobale,
d~crit pius pr~cisament au §3. d~finissant la liens do d~pendance
Las solutions sent d~velapp~es conformA- antre 6i6ments do diff~rentes phases.
mont au d~coupage fonctionnel at A Ia
d~finition des fiats do denn~es, issus do Do mAma, l'61aboration do Ia documents-
Ia phase do sp~cification globala. Ellba tion, salon una norma pr~cise, r~clame ls
sent tr6s finament d~taiii~es afin do par- pius grando riguour m~thodolagique et eat
mettre un codage direct. avantagousemont 3upport~e par un autil do
La repr~sentatian qraphique do i'onaamble PAO (Publication Assist~a par Ordinateur).
do Ia sp~cification eat 10 vecteur privi-
i6giA do Ia communication grace a son for- Cea diverses thches font partie int~grante
malisme clair, non ambxgu et accessible A do I'atelier. Lour traitemont en apparait
diff~rents niveaux d'abstraction (d~compo- siors mains contraignant, laissant aux
sition hi~rarchique doscondanta). Ella eat intervenanta plus do disponibilit6 pour
ror'due indiaponrable du fait do la diver- les tAches aff~rontes A Ia recherche do
sitA des intarvenanta. solutions r~pondant aux exigances fanc-

tionnelics.
Bass do donn~a.

Outila
L'anaiyso du cahiar des charges d~boucho,
comma on Ila vu, aur i'Alaboratian d'une Lea m~thoden pr63ent~es ci-dasaus sent
sp~cification globala, puis d~taili~e, misos en oeuvre par des pragiciela qui
finalisant ainai ia bonne cempr~hensian du sent, chacun, d~di~s A une partie distinc-
prabl~me at l'assuranco do is faisabilitA to do la sp6cification. Chaque autil pea-
th~orique. Lea informationsasuscoptiblos sade un contr6le int~grA de ceh~rence at
d'Atro utixia~s dana piusiours phases du do syntaxe, do is partie qu'il eat chargA
d~vabappement (typos, natures, destina- do d~crire, Sinai qu'uno 8D propro.
tions des flats do donn~as, attkilbuts des L'outil VISA poss~do une structure medu-
61kments caract~ristiques) sent oxtraitas laire, dent lea camposants do base, pour
do ces sp~cificationa at sent ordonn~e3 Ia sp~cification, sent STPTmd (3t6 IGL sup-
dana une base do denn~es (BD), appel~e RD partant SART), un 6ditaur graphique
interne, qui eat axploit~a pour assurer la SAF.IRS714 (stA ASSIGRAPH) . Ces autils peu-
cah~rence do la sp~cification at apporter vent 6tro remplac~s par des autibs 6quiva-
un campi~ment pratique d'infarmaLions A bonts pour satisfairo boa bosomns sp~ci-
celle-ci.

6-4

fiques d'activit6s dans le cadre de coop6- ---------------------------
ratins idusrieles.Codage outomtque do Is opicIfication

ratins idusrieles.pour I* maquettage
L'outil do gestion de configuration ScreainImage logIC01lO
(PALAS'7' cf §5) et le gestionnaire des BD
interne et externe (ORACLETU) assurent la
coh~rence de l'ensemble. - - - - -

Ces outils sont int6gr~s dans une structu-
re d'accueil A interface conviviale et/
I'ensemble constitue un atelier coh~rent-
et un vast outil de communication infor-
matique graphique, pr6ci3, et efficace
pour lea 6quipes d'Atudes, lea 6quipes
syst~mes et lea 6quipes de d~veloppemont ,*----

logiciel. 3-

Le code image de la sp6cification est 6la-
2.2 Maquettag* bor6 A l'aide, principalement, do traduc-

tours automatiques d6velopp6s A SEXTANT
Lea 3p6cifications, aux diff6rents niveaux Avionique
d'abstraction, ne 3auraient Atre finali-
s6es sans la posaibilit6 d16valuer lour *SART/ADA pour la sp6cification globa-
coiportara-ant dynaniqol Li, LOL daxia !a 1e,
cycle do d6veloppement. Il eat n6cessaire *GALA pour la sp~cification dtaill~e
d'introduire dana le cycle do d~velppe- dn hqeA~etrp~et nAA
ment des mini-cycles do validation, asso- mont terminal de la repr6sentation
ci63 aux phases qui le comoosont, permet-fnconoe(uePECdn eor
tant do slassurer quo lea sp~cificationa maliame SART),
issues d'uno phase r~pondent aux beooms *un g~n~rateur do code exploitant lea
pour lesquels ellba ont 6t6 6tablies. Ces informations des BD interne at exter-
op~rations do validation s'appuient sur 1s no, pour lea d~clarations
maquettage, pour lequel VISA assure la d'entr~os/3orties.
traduction automatique de Ia spAcification
dana un langago do simulation. La conduito de simulation eat conviviale:

.interface graphique (visualisation,
Co maquottage, mon6 on parall~lo A 1'Acii- poste do commando...),
turo des sp~cifications, n~cossite *interactivit6 (lancement/arrat des

essai3, d~finition des onregistro-
*uno ropr~sontation logiciello do la menta/stimuli, modifications des para-
sp~cification, r~alis~e en grande par- m~tros internos do la op~cification).
tie grAce A des traductours automa-
tiques, ce qui limito lea risques Le dialogue ontre los fonctions A tester
d'erreurs, (l'mogo do la sp~cification) et lour
*une mod~lisation do 1'environnemont environnaent so fait par envoi/r~ception
do 1'6quipement ayant pour but do don- do messages intor-processus, ce qui pormot
nor un comportoent r~alisto aux do faire communiquer des langages diff6-
entr~es/sortios dos fonctions sp~ci- rents tols quo C, Le-Lisp, Fortran at ADA.
fi~e3,
*un environnemont do conduite do simu-
lation ot d'analyse do r~sultats.

2.3 Prototypago
Un effort particulior eat portA sur la
pr~sentation des r~sultats dos simula- Co teimo d~signe ici une opbration qui
tions, ceux-ci 6tant ins~rables dana 1e rel~ve do la m~ine d~marche quo 10 maquet-
document d'ensemble do la sp~cification. tago avec la diff~ronce quo l'animation
La gestbon do configuration, plus soluplo dos fonctions eat offectu~e on temps r~el.
pour 10 maquottage quo pour la sp~cifica- Coci so)ustiflo pour lea fonctions dont
tion, est n~anmoins sous-jacento et appor- la validation n~ceasite la pr6sence d'616-
to a la phase do maquettago uno d~marcho monts r~ols
rigourouse ot pr~cise (uno simulation eat
r~alis6e A partir d'un certain Atat do la *cortainos fonctiona font intervonir
sp~cification, dons un contoxto pr~cis 1e pilote et no peuvent 8tre valid~es
etc ... ; la gestion do configuration permet qu'on pr~sence d'un op~ratour r6agis-
d'en retrouver et d'identifier le dominane sant en temps r~el:
de couverturo th~orique). do mgine, il pout 6tro n6cessaire do

valider une fonction dialoguant avec
une autre en la plagant dans 10

6-5

contexte r~aliste cr66 par la pr~sen- ment leurs sorties. La phase de conception
Ce d'un 6quipement reel supportant de 'es 6quipementa peut se sch~matiser en
cette autre fonction. une r~partition des 6l6ments de la sp~ci-

fication d6taill~e dana des modules logi-
En phase de prototypage, VISA int~gre lea ciels en fonction de contraintes d'implan-
contraintes temps-r6el du logiciel. Ces tation du logiciel.
contrainte a sont du reasort de la r~alisa-
tion logicielle, mais sont prises en Dana lea 6quipements de pilotage et guida-
compte lors de Ia sp6cification dfitaill6e. ge, une faible partie du volume de code
Ceci souligne la n6cessit6 do consid~rer eat constitu~e de logiciel commun r6utili-
le projet dana son ensemble en liant s6 sur d'autres calculateurs. Cleat le cas
6troitement les diff~rentes phases lea du moniteur temps r~el, d'une biblioth~que
unes aux autres, tout en proc~dant A un de fonctions avioniques de base et d'une
affinage progressif: le maquettage ayant partie des tests do s6curit6 et de mainte-
valid6 lea contraintes amont (cahier des nance int6gr~e. La plus grande partie du
charges), le prototypage pr~voit le corn- logiciel eat tr~s sp6cifique d'un calcula-
portement de la ap~cification sournise aux teur donn6. Dana le cas du pilote automa-
contrajntes aval ou A Ilenvironnement tique de l'Airbus A320, la r~partition on
r~el. Ces contraintes sont modlis!es pour volume des fonctions sp6cifiques du pilo-
cette thche. tage automatique eat la suivante
Nous verrons au §4 que la validation quan-
titative s'appuie avantageusement Sur des *45% pour lea calculs do logique et
r~sultats de simulations, g~n~r~s par lois de pilotage,
l'outil de prototypage. 30% pour la gestion des entroe/sor-

ties,
VISA *20% pour lea s~quencoments,

SP601abon5% pour diverse3 fonctionnalit~s.
gi~ai. ~ 1Vadat.. do 14 Idsulf Il L6..25!!!L.. La part de logiciel eat do plus en plus

Sp&CIhcI.an do tzin~a~,f importante dana lea 6quipementa, mais lea
d6lais impartis A Ia r~alisation restent

Maquttag constants. L'utilisation d'outil3 do g6n6-
9_ ration automatique do code eat donc un

PrOlotypago moyen d'augmenter la productivit6 tout en
__________ maltrisant la qualit6 du logiciel produit.

5p6clifealion I
gAPNU*. IIl apparait judicioux de g6n~ror automati-Baa. do 6onnMos - - len

"O quement lecode des fonctionnalit~a ropr6-
sentant lo plus fort pourcentage do volume
de code au~et A de fr~quente5 modifica-

Lea bosoins pour le prototypage sont du tions. Ainsi GALA eat un outil g~n~rant
m~ine ordre que pour le maquettage : dispo- automatiquement le code du calcul de la
ser d'outila pour produire, A partir d'une logique et des lois de pilotage, tandia;
ap~cification globale, un code ex~cutable que GALI g~n~re le code do la gestion des
image do la fonction sp6cifi6e, et pour entr6es/sorties.
mettre en oeuvre ce code dana un contexte
temps r~el. Ces outils utilisent lea res- Lea outils de g~n~xation de code GALA et
sources du Blanc do Validation (cf 54) . GALI d~velopp~s par SEXTANT Avionique sont

fond~s Sur l'approche suivante

La g~n~ration automatique du code des
3. Conception et r6,alisation du logiciol modules logiciels, n~cessite la formalisa-

tion d'un langage do 3p~cification
d~taill~e. La g~n~ration autoinatique d'un

Los r~sultats dos activit~s do ap6cifica- module logiciel eat alora la transcription
tions, maquettage et prototypage sont exacte do la sp~cification de ce module,
exploit~s dana lea phases do conception et d~crit A l'aide do ce langage, en code
do r~alisation. source acceptable par un compilatour.

La conception et le sch~ma global dans 3.1 GALIt * 9n4ration Automatique de
lequel se place la structuration logiciel- Logiciel &vionique
1e des 6quipements do pilotage-guidage

sont parfaitement maltris~s. Cos Acjuipe- GALA (G~n~ration Automatique de Logiciel
monts entrent dana Ia cat~gorie des sys- d'Avionique) g~n~re automatiquoment 1e
t~mes r~acttifs qui r6agiaaent continOment code source ex~cutable des modules 10gi-
A leurs enti~es pour recalculer cyclique-

6-6

ciels sp~cifi~s sous forme graphique ainsi Analyse et contr~le de coh~rence du
que la documentation associ6e. diagramne en accord avec un certain

nombre de r~gles syntaxiques (par
3.1.1 Le larigage exemple, toute broche de symbole doit

6tre connect~e) et s6mantiques (par
Le mgme lanigage est utilis6 pour Ia sp~ci- exemple, 3i un chemin de donn~es comn-
fication d6taill6e Souls VISA et pour la Porte une boucle, un op~rateur de
programmation par GALA. m~morisation doit 6tre obligatoirement

pr6sent sur cette boucle). tine partie
Il s'apparente aux langages A flot de don- de ces contr~les est effectu6e sous
noes synchrone, avec lesquels un syst~me VISA en phase de sp6cification.
est repr~sent6 par un r~seau d'op~rateurs
connect63 par des liaisons. *G~n6ration automatique de code en
tin op6rateur (un symbole graphique) repr6- deux 6tapes :d'abord Is g~n~ration de
sente une foniction. tine liaison (un fil) code symbolique ind~pendant du langa-
repr6sente une donn6e. go, suivi de la traduction de ce code

symbolique dans le langage de program-
Ce formalisme pr~sentent les avantages mation cible.
suivants

L'utilisation d'un nouveau langage de pro-
*Il t particuli~rement bien adapt6 A grammation cible pour un projet donn4
Ia description des automatismes et de implique seulement le changement du tra-
!a logique op, rationnelle, ducteur final. Les traducteurs disponkibles
*La 3yntaxe eat simple et bien d6fi- actuellement sont :PASCAL, PLM, FORTRAN
kilo, et ADA.
*Los contraintes de 36quencement dans
l'ex~cution d'un programme r~sultent
uniquement des d~pendances fonction- 3.2 GALI Qn~rstionk Automatique do
relies entre los variables, Logiciel d'Interface
*Les temps de r~action des op~rateurs
du r~seau sont suppos~a n~gligoables Le langage de sp~cification utilisA par

par rapport aux cadences de circula- GALI est un langage textuel propre aux

tion des donn~es (cadences d~finies traitements des entr~es/sorties.

par le cycle d'actavation) . Cette AIsapisuunbseddons
hypoth4se parmet de faire abstraction G Isapi u n aed one

des ontrinte temoreles.contenant les caract~ristiquos de tous lea
des ontrinte temoreles.signaux en entr6e et en sortie d'un 6qui-

Chaque symbole graphique correspond a une pemont. Cette base de donn6es eat rensei-

foriction d~crite par un aigorithme validAk gn6e en phase de sp~cification.

et certifiA ot A un sous-programmo cod6 Le concoptour enrichit Ia e~finition des

dens le lanqage cible. L'ensemble des signaux en y apportant des incformations

fornctions ebc regroup6 dens une biblio- compl~mentaire (des contraintes logi-

th~que. cielies par exemple) . GALI assure alors la

Cette biblioth~que est extensible. Quand d~finition et ia mise A]our du d~coupage

un projot identifie un nouveau sous-pro- oitnelnrlaon6ot vc

gramme utilislk de fa,;on r~p~titivo, 11 1'outii de gestion de configuration, 6la-

suffit de cr6or un symbole graphique avec br adcmnainditraed

la caract~risation do ses broches de l'6quipement ot les sp~cifications de

connexion, puis do le valider et de Vins- codage dens le langage appropri6

taller dans la biblioth~que. GALI g~n~ro le code des modules de trexto-

Les informations compl~mentaires n~ces- menits d'ontr~es sorties en conformitA avec
sair3 a coage ontpries o coptopar leur sp~cification de codago ainsi quo les

saiitrmeudae son pris~es en Compt au modules do d~claretion des donn6es afin

syrnboles. doen assurer la coh~rence avec lour envi-
ronnemont. GALI utilise les m~mes traduc-

3.1.2 L'utilination teurs quo GALA.

Le processus do production do logiciel par 3.3 Bilan d'utilisation
GALA so d~roule en plusiours phases

Les avantages apport~s par !a g~n~ration
*Edition des diagramnos. Dens lo cadre automatique do code sont important$
do l'atelier, cotte 6dition ent
effectu~e pendant la phase do sp~ei- Les outils do codago automatique GALA et
fication d~ta.Lil6e (VISA). GALI transcrivont fid~lement la sp~cifi-

cation de codage en langago do programme-

6-7

tion. Aucune intervention humaine w'est par rapport aux diff6rents documents
n~cessaire A ce stade. de sp6cificatioi (interface, lo-,s de
Tout risque d'introduction de d~faut de pilotage, logique op6rationnelle)
codago est supprim6, ce qui permet d'obte-
nir beaucoup plus rapidement.le niveau Les op~rations d'int~gration/validation
requis de qualitA du logiciel.Les tests slorganisent en quatre phases
structurela (tests unitaires "boite
blanche") des modules g~n6r6s automatique- Phase 1 :Int~gration et Validation par
ment peuvent Atre supprim6a. processeur

Ces outils utilisae.t directement lea Les objectifa de cette phase sont de v6ri-
informations issues de la sp6cification et fier:
apportent une facilit6 dans la tra4gabilit6
de ces informnations ainsi qu'une bonne Ilint~gration hard/soft processeur
coh~rence sur Ilenaemblo de l'atelier de par processeur sous l'aspect int6grit6
d~veloppement, dana lequel chaque informa- (tests de a6curitb, auto-tests)
tion n'est d~finie qu'une seule fois, 6vi- *lea dialogues intor-proceasours.
tant lea r2.sques d'incoh~rence d'une
double d6fini~.±on. La coh6rence parfaite Les outils utilis~s sent lea bancs de test
entre documents do ap~cification et code de 1'Aquipement et lea moyens d'investiga-
ex6cutable et la concentration du d~velop- tion associ6s, tela qu'analyseur logique
p,,r sur lea .Aches de sp~cification aont et 6mulateur.
autant do facteura suppl6mentairoa do qua-
lit6 du logiciel produit.

Phase 2 :Tests en boucle ooverte (1 avion
La suppression do la phase de tests struc- n'est pas dana la boucle)
tureis (tests "boite blanche") des modules
g6n6r6s automatiquement n'eat autoris~e Lea teats boucle ouverte s'effectuent sur
par lea autorit~s de certification quo un calcvclateur complet et ferm6 (tests
dana la roesuro oi los outils ont 6t6 qua- bolto noire).
lifi~s, ce gui eut le cas pour lea pro- Dana cette phase do teat, lea sorties do
grammes Airbus A320 et A340. l'6quipement (ordres gouvernes et manettes

des gaz) no sent pas envoy~es A 1'anviron-
nement simul6.

4. Integration at validation des 6qutps- Lea ob~ectifa do cetto phase sent de v~ri-
mats fior:

le comportement dynamique du syst~me
4.1 I44thodes sous lea aspects architecture q6n~rale

et aequoncomont temps r6el,
Cette partie traite do l'ensemble des *lea flots do donn6es A l'int6rieur du
essais fonctionnels r6alis~s apr~s int6- syst~me,
gration du mat6riol et du logiciel. *globalement le monitoring.
Cos ossais font Luite aux teats r6aliass
par lea 6quipes do d~veloppement mat~riel Los tests boucle ouverto sent r~partis en
et logiciel. deux sous-phasos:

L'6quipe mat6rielle aura int~gr4 lea dif- a) Tess e l lgque
f~rents 6l6ments du calculateur, v~rifi6
lea signaux d'alimentation, lo3 diff6- La logique comprond A la foia la logique
rantes fonctions des cartes, le cablago do op~rationnelle li~e au contr~le du vol par
fond de panier, effectu6 lea auto-tests. 1'4quipage et la surveillance et roconfi-
L'Aquipe logiciidle aura valid6 le moni- guration des entr~es/sorties do l'6quipe-
tour temps r4~ol, la bibliothbque avionique mont.
GALA. Los tests unitairos auront 6t6 Sent toAt~s dana cette phase los engage-
effectu6s pour lea modules cod~s manuelle- ments des modes et des sous-modes au moyen
ment. des poatos do commando do l'6quipement

ainsi quo lea affichages des diff~rentes
L'ob~ectif de cea essais fonctionnela eat inforimations
do v~rifier:

*l'int~grit6 du ayst~zse, cleat A dire
quo toutes lea fonctiona pr~vues pour Le but do cette phase do test est uno
obrenir la sOret6 do fonctionnement validation dynamique et qulantitativeo do la
sont corroctement implant~es, fonction, par exemple :une tonue do cap,
l a conformit6 do l'6quipement r~alis6 d'altitude ou d'ILS.

6-8

Le calculateur reqoit un ensemble de de test eat en cours.
signaux coh6rents correspondant A une En effet, le passage des tests r6clame un
configuration avion donn6e sur lesquels se ensemble d~actions de l'op6rateur sur le
superposent un ou plusieurs stimuli. bane
Le principe retenu est un recoupement
quantitatif par rapport A des simulations -configuration de Ilenvironnement de
effectu6es sur un logiciel image implant6 simulation :choix de la version de
sur un ordinateur aol (mainframe ou sta- simulation, de sa conditions d'ini-
tion de travail) . tialisation,
Des sollicitations du type 6chelon, cr6- -pr6paration du calculateur A tester
neau ou rampe sont appliqu6es sur lea reset, auto-tests,
entr6es capteUrs, A la fois sur 1'6quipe- -actions sur les postes de commande
ment r~el et la fonction simul6e. avion :engagement du calculateur,

engagement de modes, a6lection de
La mise en oeuvre eat effectu6e sur le consignes...
Banc do Validation Avionique (BVA). - corrmandes aur la moyans dleapionnage

et de 3ollicitation du banc.
Phase 3 :Tests en boucle ferm6e (l'avion
est dans la boucle) Deux difficult6s sont idantifibes dana ce

processus manuel
L'objectif do cette phase eut de tester le
comportament en dynamique de l16quipement a) Lg d~titrminisme
dana la phases r6ellas de vol.
Dana cette phase, le calculataur regoit Lors d'un test effoctu6 manuellament, lea
lea r6ponse3 de l'avion aux commandes actions de Ilop6rateur interviennent A des
g6n~r6es par lui-m~me au travers d'una inatanta al6atoiraa.
mod6liaation fine do l'environnement Or certaina teats (tests de recoupament
(avion, coteur, capteurs, autras 6quipe- avec une simulation effectu6e sur un logi-
cents en relation avec l'6quipement en ciel image, teats de non r6grosaion)
test). n6cessitent de respecter un chronogramme
La principp retonu est vn recoupomont pr6ciB d'enchalnuent des actions.
quantitatif par rapport A des simulations
effOctu6ea sur un logiciel image implant6 b).JLA. shirge de trAy1 i I -L
sur un ordinateur aol. machines at des hcimmes
Lea stimuli sont maintanant issus des
poates do cormmande avion du pilota automa- La complexit6 croissanta des fonctiona des
tique tels qua le pilote paut lea envoyar calculataur5 provoque una augmentation du
"en situation" dana des conditions op~ra- volume des tests do validation. Il deviant
tionnellas do vol. n6casaaira de lib6rer l'op6rateur des
Tous lea modes sont ainsi test6a :modes tAchaa r6p6titives afin qu'il pui330 s0
de croisibre ou d'atterriasaga automaticjue concentrar sur le contr8la des r6sultat3.
ainsi qua la logique d'enchalnement des
modes at de laura diff~rents 6tats (modes Cos deux difficult6s cattent an 6vidence
arm6a, actifa'etc,....) Ia n6ce3sit6 do pouvoir, par un. automae,
Dana catte phase Ilensamble de la fourni- "asimular" Ilop6rateur, ou tout au coins
ture eat pr6sente sur le Banc do cellos de sea actions
Validation Avionique :postes de commande,
afficheurs de mode, contiguration multi- *qui doivant Atra ex6cut6es plus rapi--
calculateura. decant qua ne le permet le temps de

r~action d'un op6rateur,
Phase 4 :Tests do non-r6gression des *qui na n~cessitent pas un nivaau
6tats succesaifa du syst~me d'expertise important.

Des te.sts de non r6greasion des 6tats suc- L'outil an cours do Misa au point r~pondra
cessifs de 1'6quipement sont effectu6s sur aux deux ob~ectifs
des sc6ndrii de vol complets. La r6ponsas
de 1l6tat n+l sont compar6es aux r6ponas d6rouler automatiquement des
de l'6tat ik pour la fonctions non modi- s6quences d'actions datarministes,
fi6es entre lea deux 6tats. La mise en e x~cuter des tests en "batch".
oeuvre eat effectu6e do faqon automatis6e
sur le banc de Validation Avionique (BVA). Cas deux niveaux d'utilisation de I'auto-

mate sont baS6s sur des m6canismes qui
s'appuient sur la structure axiatante du

4.2 Evolution da mathodes do validation bane par ajout d'une couche "simulacion de

Une 6volution des ii hodes orient6e vera lprtu"a essdset~s"ls

I'automatisation du passage des proc6dures siques" de l'outil.

6-9

L'automate pourra agir sur tout le Bane, d'autre part.
constitu6 de mat~riels et de logiciels
h~t6rog~nes :stations do travail, sta- Le bane est reli4 A un poste de trac6 et
tions graphiques, ordinatours tems-r~el, d'aido A l'analyse des r6aultats d'essai.
moyons do trac6, boltiers do coupure ...

Evolutions vers uzn Bane pour syat~msie

4.3 L'outil :1l Banc do Validation int~gr~s

Avionique (EVA) Deux axes d'4volution sont envisag~s

Le BVA ost un ensemble do mat6riels et de 6largir le nombre d'6quipoeonts qu'il
logiciols pormottant do tester lei logi- pout accueillir pour validor des sys-
ciels des calculateurs embarqu6s. 11 est t~mes int~gr~s d'avioniquo comprenant
utilis6 dans tous los programmes civils ot preepedscper tdsvsa
militaires majeurs dana losquols SEXTANT pia eompedscatuso dsvss

fourit es quipmens d conuit duvolavoir Ia capacit6 do remplacer pro-
:Airbus A310, A320, A340, h6licopt~re grossivement en cours d'±nt~gration
franco-allomand TIGRE, Mirage 2000, los 6l6ments protOtyp6s par les 614-
C135FR, puis RAFALE. pour le CET ets r~els.
(Qalculateur d'Elaboration de

Irajoctoiros).

Architecture fonctionnell* 5. Outil do gestion do configuration

Un bane est constitu6 P7ALAS : roduction Assist~e de Logiciel
d'Application 2tructur6

den imlt ty emp OULDECOR calr- Le dbveloppeoment du logiciel d'un 6quipe-
culateur detp OL/NOEcmr- mont de pilotage-guidage oat confront4 A
nant:

-un monitour de simulation char- des contraintes importantes

96dnemlooriato lo1 cycle do d~vclop .oment oat Court
- los mbles vomtor pour tonir des dt-ais do plus en plus

les odbls aionmotur, ap- r~duits,
- ueitrac epso hr los fonctionnalit6s A int~grer am6-
gne dneaes tempn s avoc los r nent A embarquer un volume croissant
gautrs cntans duo be. do logiciel,

d'ne utere conti~rtat du sation le1 cycle do vie do 1'6quipoment oat
don trvitenfc fontald luateur tain og et l'onvironnoment do d6veloppe-

do tavai onfronal d cdculaeurmont oat susceptible d'6voluer,
principal supportant tout 1e dialogue Ia sbcuritb ot Ia fiabilit6 du d~ve-
do conduite do simulation et de mise, opmn setrpadat,
en couvro des moyens d'3sai a fc lo- lappomentst defrevdrets, u
ticns do stimulation, d'ospionnage, et * vra ntcost do faie voivrol alusiour
do s~loction des onregistromonts, vriane t o n ainle.gcea ~n
d jnin2rmnts LsJmalkss sur station rtioe nprl~o

graphiquo do typo Silicon Graphics (en La prise on compto do ces contraintos rend
1 absenco do I onvironnomont r~el), n~cossaire l'utilisation d'uno structure
d'un 2upitre dans loquol vionnont d'accuoil facilitant Ia gestion des 6volu-
s'ins.$rer :tosdspoeso 'n~rt e

-une 'planche de bord" avoc los tivn e prots gce s l int6atiout d as
Al6ments r~els du poste do longves puti s deogiciels utisn, toutepu
.lotage (postos do comf.nde lion, dage ph es o pnifaio, oncepr-

PA, visualisations Abectro- tion, caldati n tes mnaiinter-

niquos) tovldto tmitnne
-des corruandes cockpit AA podAlesmedoc b oi .
(becs,volets,train,d~ro- ALAst rund Atrctuesml do c eil osoms.
froins, .), Costa u tructuren dcut ens d e aut
-des ospionneurs d'entr~es-sor- nimeauon qu Wroen ~omptemn losombl .
ties, dmnin 'ndvlpenn oiil
des traccurs x~pidu3,
dos tiroirs do coupure d&ali- Los prmncipales fonctions oftertes par

-los zupports calculateurs. *la structuration d'un produit 10gm-
d'uno chalne d'ontr,&Ls-orie per- ce nabrsec vcles
mottant le couplage do la simulation ce nabrsec vclos

temps r~el avec 1e ou les 6quipoments ule ste dsacrtiner

A valider d'une port et le pupitre uiiaer

6-1()

*la construction et le tests des confi- maintien d'int~grit6 entre plusieurs docu'-
gurations, ments, par exemple entre la sp~cification,

*la mise en place de versions of fi- un module logiciel et le r6sultat des
cielles, tests.

*le d~veloppement de versions de logi- PALAS r~alise enti~rement et de fagon
ciel en parall~le, automatique toutes les tAches de gestion

*le contr8le complet et l'enregistre- de configuration et permet done de mainte-
mont des modifications, nir la coh~rence entre l'ensemble des
1la gestion des historigues de tous les entit~s d'un projet, depuis l'expression
composants logiciels, des besoins jusquIA la mise en exploita-

*l'int~gration des outils du projet. tion, pour laquelle ii dispose d'un m~ca-
nisme de raise en place do versions offi-

5.1 Organisation du projet cielles.

PALAS permet d'une part d'organiser le 5.3 D~voloppemant an parallile
projet et de connaltre A tout instant
I'Atat d'6volution de celui-ci, d'autre 11 est fr~quemment n~cessaire de faire
part de d~finir les tfiches A r~aliser par vivre simultan~ment plusieurs variantes
chaque membro de l'Aquipo de d~veloppe- d'un m~me logiciel. Ces variantos pouvent
ment. Atre li6es A des configurations syst~me
PALAS permet 6galement de synchroniser des diff~rentes ou A diff~rents niveaux
d~veloppements dans le cas d'un projet d'int~gration. Ii est alors important de
partitionn6 en plusieurs sous-projota. conserver i plus grande part de compo-
Chaque utilisateur PALAS travaille dana un sants communs entre los divorse7
"'espace priv6" qui lui eat propre, dana le variantes.
cadre d'une tAche pr~alablement d~finio
par]a responsable projet. PALAS offre toutes los commandes pour

d~velopper en parall~le et continuer le
Le responsable de projet peut d~finir des d~veloppement en parallble ou le faire
autorisations d'acc6s A chaque membre d'un reconverger. Il autorioe is gosLion simul-
projet. Le r6le de chacun oat alors bien tan6e du plusieurs configurations d'un
d~fini, co qui induit m~ine sous-onsemble du logiciel, tout en

pr~sorvant des divergences les coaposants
*une organisation claire des 6quipes communs A ces diff~rentes versions.
de d~veloppement,
*une d~finition claire et compl~te, 54~~ o oiiain
pour chaque membre do l'6quipe, de son 5. uvdemoicaon
contexte do travail, ainsi quo des
informations qui lui sent n~cessairesi, PALAS offre I* possibilit6 d16tablir des
*le iasquage de certaines parties de proc~dures rigoureusos pour les mtodifica-
d~voloppemont (par exemple dans 1e tions par Ilinterm~diaire des D~cisions

cadre d'une coop~ration ou d'une sous- dItreto oiile(I) e ~i
tra~itnce).sions d'interventions logicielles, qui
traitnce).r~sultent d'uno analyse d'6volution, sont

Chdqe "ntiV dfine avc PLASpos~de d~crites sous PALAS en pr~cisant lea onti-

tin nombre variable "d'ob~eta" (de s oce prhau6vltnt

fichiers) associ~s, principalement identi- regroup6os au sein de Rapports de
fi~spar ea util slapliuantsurModification (RM) qui rythmont 1'Avolution

flitprle uis 'plqun u du logiciel d'un 6tat stable A un autro.

Une entit6 PALAS peut done corrospondre A PALAS r~alise le suivi des 6volutions et
on modble complet de sp~cification, A un gbre l'historique de chaque composant du
module logiciel (avec Ilensomble de ce proet ce qui permet dWon maItriser 1'Atat
fichiors do documentation, code source, atu ntn ucced i td

code objet ex~cutable...), A un jeu d6 garantir sinai la s~curit6 et la fiabilit6
tests, etc, ... Ce concept permet do g~rer du d~voloppement.

lea composants produits bora des phases du
cycle do vie du logiciel. 5.5 L'int~gration d'outils

5.2 estin doconfguraionPALAS offre un ensemble de services pour
5.2 atio d.confguraionint~grer los divers outils utilisA sur on

La description et l'exploitation des pro~et et contr6ler le processus de d~ve-
"liens" entre lea diff~rentos entit6s d'un loppement A travers ls raise en oeuvre de
projet permettent de mottre en oeuvre des cos outils.
m~canismos do configurations compl~tes ou
partielles do versions du logiciol et le

6-11

PALAS permet de r~utiliser des proc6dures
mise en place sur d'autres projets, voire
des proc~dures standardis~es au sein d'une
entreprise.

L'int~gration d'outils de d6veloppement
logiciel se fait par l'interm&diaire de
proc6dures do production ou "chalnes de
production" qui peuvent aller du simple
appel A un outil, juaqu'A l'enchalnement
complexe de plusieurs outils.
PALAS permet de d6finir des chalnes de
pro>duction fonctionnant dans des environ-
nements sp6cifiques l16s A l'environnement
cible (les bancs de validation par
exemple), ou A l'environnement d'un outil
(les stations de travail pour VISA par
exemple).

PALAS permet de prendre en compte lea
contraintes d'h6t6rog~n~it6 de mat~riels
de d6voloppement, et offre les m~canismes
n6cessaires pour maintenir l'int~grit6 du
pro)et sans intervention manuelle de
1' utilisateur.

PALAS est un outil industriel utilis4 dana
le cadre des grands programmes :A320,
A340, HAP, CI35FR, AIRIANE IV.

6. Conclualon

L'atelier de d6veloppement do logicielo do
pilotage-cjuidage o'appuie sur une m6thodo-
logie stable, et 6prouv~e par SEXTANT
Avionique pour le d~veloppement d'un grand
nombre d'6quipements. L'atelier permet de
mettre en oeuvre rigoureusement catte
m6thodologie, A travers l'emploi d'outils
adapt6s A chaque phase du cycle de d6ve-
loppement. Il assure la communication des
informati~ns issues de ceo outils pour
couvrir l'ensemble de la m~thodologie our
tout le cycle de vie du projet.
L'atelier est donc le garant d'un bon
niveau de qualit6 des 6quipements r~ali-
s~s.

7-1

ATIM DO S~tC zrCW / UkQUZT 1=L POUR U~S SYSTES
r9 GERzTIO DU VM

Hugues ROBIN, Jean-Christophe MIELNIK
SEXTANT Avionique

Division Conduite du Vol
A6rodrome de Villacoublay

78141 V6lizy Cedex
FRANCE

1. Introduction pilotes et lea avionneurs. Des m~thodea
accompagneas d'outils supports sont mises

Les syst~mes ernbarqu~s d~velopp~s par IS en place pour formaliser ces dialogues
Division Conduite du Vol de SEXTANT afin d'aboutir A des expressions de besoin
Avionique 6voluent sans cease au niveau de compl~tes et non arnbigu63.
leur3 fonctionnalit6s, des moyens de d~ve-
loppement et des techniques d'impl6menta- Le d~partement Avant-Projeta de la
tion. Division Conduite du Vol eat respconsable

de la d~finition des moyens do ap~cifica-
L'A6volution des fonctionnalit6s pout fitre tion fonctionnelle utilisa dana les
observ~e aur deux plans :phaseu amont du cycle de d~veloppement

- l'automatiaation de la condgite du vol ces phases sont d'autant plus Importantes
correspond A 1'Avolution du concept de qu'une erreur introduite A ce stade eat
Pilote Automatique vers celui de amplifi6e au cours des phases aval et que
Syst~me de Geation du Vol :ces Sys- sa d~couverte tardive entralne des retoura
t~mes mettent A Ia disposition des en arri~re toujours tr6s coOteux.
p11otes un ensemble de fonctions
d'aide au pilotage, depuia l'automati- Ce document pr~aente lea diff~rents
sation de IS traditionnolle tenue de besoins qui apparaissent dana ces phases
consigne jusqu'A l'aide A la reconfi- amont ainsi que lea divers environnementa
guration du plan de vol par le pilote mis en place A SEXTANT Avionique pour IS
en cours do mission, avec prise en sp~cification et le maquettage des logi-
compte de Ia pr~paration de mission au ciels do geation du vol.
aol,

- de plus, Ilint~gration de nouvelles
fonctionnalit6s eat rendue possible 2. Les bosoins on moyens do sp~cification
par la communication avec lea ayat~mes
de d~tection et de contr~le (radars), Lea besoins sont issus du conatat d'une
ces syst~mes pouvant 6tre terreatres contradiction concernant lea documents de
ou sarien3, statiques ou mobiles. ap~cification:

.ila constituent lea premiers documents
Au niveau des moyena de d~veloppement, le contractuejas d'un projet et figurent
logiciel joue un r~le de plus en plus de ce fait parmi lea documents lea
important. Il compl~te lea techniques de plus importanta,
l'automatiquo principaloment utili36es - leur forme, des documents papier com-
pour lea syatbmes de pilotage et guidage. pos63 d'un grand nombro de pages avec

des r~f~rences crois6es non atructu-
Si, aujourd'hui, lea langages de program- ras, rend probl~matique voire parfois
mation de type ADA sinai que lea m~thodes impossible lour exploitation.
de sp~cification et de conception sont
couramment mis en oeuvre, lea technologies Ainsi, lea outila d'aide A Ia phase de
du logiciel ne cessent d'Avoluer :lea sp~cification doivent non seulement per-
langages orient~a objets et lea syat~mes mottre d'exprimer ais~ment lea exigencas
experts actuellement utilis63 en phase fonctionnelles, mais aU331 de v~rifier
d16tude feront bient~t partie des techno- rapidement et A posteriori la validit6 des
logies embarque.. documents de sp~cification par rapport a

ces ngmes exigences.
Le rythme important avec lequel ces 6volu-
tions fonctionnelle3 et techniques sont La solution consiste A mettre en oeuvre
men6es n~ceSaite de mettre en place des des moyens de sp~cification formelle:
moyene pour maltriser et anticiper Ces leur caractbre formel, par opposition au
6volutions. Au niveau de la d~finition des caract~re informal inh~rent aux langages
fonctionnalits, ceci se traduit par un naturals souvent sujets A interpr~tation,
renforcement du dialogue que SEXTANT 6vite lea ambiguit~s et lea incompl~tudes.
entretient avec Sea diff~rents interlocu-
teura leas compagnies a~riennes, lea

7-2

Ceci est parfois obtenu au d6triment de la interm6diaire est automatiquement g6nfr, P.
lisibilit6 des ap~cifications. Une solu-
tion compl~te consiste alors A a3socier La seconde v~rifie qu'il nly a pas d'inco-
une activitA de maquettage A l'utilisation h~rence au niveau de la s~mantique de la
de m~thodes de ap~cification formelle. 11 m~thode : par example, des cas de division
devient ainsi possible do valider trbs t~t par z~ro et lea conflits de types peuvent
dans le cycle de d~veloppement l'expres- 8tre d~tect~s bora d'une phase d'anslyse
sion des besoina, Ia phase int6gr6e de s~mantique. La mise en 6vidence de ces
sp6cification/maquettage apportant le incoh~rences, dont I'impl~mentation peut
double avantage :Atre tr~s complexe, est faite de mani4A:e

- da mettra A la disposition des clients dynamique, cleat A dire bora de l'ex~ci-
un document sans ambigult6 ni incom- tion du code maquetta.
pl~tude et des moyens permettant une
exploitation rapide et lisible, 2.l.2.Macpzattage at "lv~rifications dyna-

- da mettre A la disposition des r~ali- miques"
sateUrs, une expression des besoins
claire at compl~te pour lea fonctions 2.1.2.l.Kise au point do la sp~cification
A r~asiser :le caract~re formel des
sp~cifications permet de mettre en L'animation ou ls simulation d'une des-
place les moyens d'assurer la tragabi- cription formelle des sp~cifications a
lit6 avec ha phase de conception logi- pour but de lea valider. Cette phase de
cielle at, lorsque ceha est possible, validation conaiste A
avec la phase de gan~ration automa-
tique de code embarquA (13].- v~rifier que la description eat non

ambigue et compl~te :c'est ce qu'on

2.1lnt6gration do la sp6oification at du appelle 'Ile debuggege de is sp~cifica-
maquttage au mein d'un me onvironnoment tion" qui consists A d~tecter lca

erreurs dues au non respect de la

SEXTANT Avionique, consid~rant 3p~cifi- m~thode et qui nWont pas pu 6tre
cation et maquettage comme indissociables, dtatiures lr e ~iiain
a mis en place plusieurs environnements, saius

chacun bas6 sur une m~thode de sp~cifica- -v~rifier que la description formelle
tion particuli~re A laqueble eat associ6 exprime bien lea besoins et que tous

un g~n~rateur de code. La simulation obte- lea besoina y sont exprim~s :clest ce

nue par Ilex~cution du code g~n~rA se fait qu'on appebbe la "validation de ls
dana le cadre d'un environnement do sp~cification".

maquettage pr6-existant. Les fonctionnali-
t~s ommnesA c3 evironemntado p6- Dana les deux cas, le sp6cifieur eat amen6

cification/rasquettage tont d~crites dana oiirl ecito omle3

Ia suite de ce document. b'ex~cution du code maquette associ6 ne
correspond pas A ce qu'xb attend, que ce
soit do point de vue "dehuggage" ou du

2.1.l.Sp~cification at "v~rifications sta- point de v'ue "validation"

tiques" Pour faciliter la d~tection des erreurs,

A un m~hod do3p~ifiatin frmele, dift~rants modes d'ex~cution du code

A ne mss toe de noafation or melle maquette sont impl~ment~s :plusieurs

sont associes deuIs nottions eat riet modes "pas A pas" (avec diff~rentes

atquirae nte la peme a t grasphiique vabeurs du pas) et un mode en continu avec

dispose pour exprimer sea besoins. La p3iii6dart5r6~eet

seconde eat textueble et constitue le Ian- Pour faciliter la correction des erreura
gage interm~diaire A partir duquel lea dana is description formelle, la traqabi-
v~rifications li~es A la m~thode sont lit6 eat assur~e entre lea Al6menta de
faites. sp~cification et le code maquette.

Ces v~rificationa sont au nombre de deux 2.1.2.2.Interface do simulation
is premi~ra, purement syntaxique, v~rifie
quo tous lea syrrbolo3 utilis~s par be sp6 L'interface do simulation constitue le
cifieur pour a description formable sont mynd ilgeetelevrnaetd
autoris~s et que lour agencement lea uns mynd ilgeetebavrnaetd
avec 1I, sutres correspond A Ia grammaire sp~cification/maquattage at le sp~cifieur.
du langage. Cette v~rification eat facili- Otelsmyn 'dto ~esie

t~e orsu'A artr d la ai30 Gfe~t60 Ia formulation des exigences fonction-
A I'side d'un 6diteur graphique d~d16, Isl nelles, le sp~cifieur dispose de moyens
repr~sentation Aquivalente dana le langage lui penr tant de contr6ler a simulation;

7-3

- en envoyant aussi bien des stimuli
(R~un, Stop...) quo des donn~e3, Des environnements de sp~cification/

- en visualisant des informations au maquettage A vocation "g~n~raliste" pou-
cours d'une simulation, vent aider A la formalisation d'un m~tier

particulier :ainsi, l'environnement
Ces moyens sont bas~s sur lea res- OOA/I<EE a permis de d~velopper un environ-
sources qu'offront aujourd'hui les nement do sp~cification/maquettage d'une
stations do travail, en particulier application ELS (cf. troisi~me partie do
l'utilisation de la souris, du multi- co document).
fenfitrage... (Cf, annexe 3).

2.2.2. Structure d'accueil
La caract~ristique principale do
l'interface do simulation ost d'Atre Les probl~mes d'int~gration so posent A
compl~tement dissoci~e do la descrip- pluajeurs niveaux:
tion formollo. Pour chaque descrip- - int~gration A un onvironnomont d'uno
tion on pout d~finir plusiours inter- nouvelle m~thode de sp~cification,
faces possiblos grAce A un langago do - int~gration A un environnoment d'une
d~finition d'intorfaco. nouvelle technique do maquettago,

- int~gration do plusiours environno-

2.2.Int6gration do plusioure environn*- monts do sp~cification/maquettage los
meats do sp~cification/maquettage au &*in uns avoc los autres :pour dos mgmes
d'un atelier onvironnoments, 1' int~gration pout

Atro faite do diff6rentes mani~ros, en
2.2..Poitio doprob~mafonction du mode do fonctionnomont du
2.2..Poatio diiprob~maprojot, do la r~partition des tAches

entro lots diff~rents intervonants ...
La muLtiplication d'environnements d~di6s
A des m6txors trbs sp~cialis~s, tous uti- La solution consisto A disposer d'uno
lis~s pour 1e d~veloppement d'un m~ine sys- structure d'accuejl constitu6e do m~thoJes
t~me do Gestion du Vol, n~cessite d'int6- et d'outils pormottant do sp~cifier los
grer ce.; onvironnements ontre eux. diff~ronts imp~ratifs d'int6gration.

tin environnemont donn6, constituAt d'une Cette structure d'accueil doit disposer do
m~thode do 3p~cification et dWun environ- trois types d'outils
nomont do maquettage, est - outils de d~finition do l'xnt~gration

- soit d~diA A un m~tior particulier do plusiours m~thodes ontre ellos,
parmi lesquels on pout citer celui dos - outils do d~finition de Il'nt~gration
lois do pilotage, do Ia logique du des techniques do maquettage entre
dialogue homme-machine, els

- soit A vocation plus g~n~rale. - outllees, iiindoIit~rto

d'une mthodo avec une technique do
Chacun des m~tiers mis en oeuvre pour le maquettage.
d~veloppernont des fonctions do Gostion du
Vol doit faire face A une double 6volu-
tion:as s

- du point do vue des moyens do sp~cifi- 1110 g3 14 4I4,I*,o .61h...
cation associ~s, commne par exomple "we owl".n.rn powg.
l'apparition do nouvell3 m~thodes, *I~..
les adaptations A apportor A 1 inter-Vd
face homme-iachine des outils sup- qul."(1
ports,

- et du point do vue des domaines 1.6*f. do WM.* *.

di'intervention des m~tiers qui sont do I,,tigistio dot; technIques do maquetiago. do"to Jt.o

plus en plus nombreux au fur et A
mesure de l'apparition do nouvelles - Structuration en couches do Ia structure
fonctionnalit~s dans los fonctions do d'accueil -
Gestion du Vol.

A partir do d~finitions 6crites avec ces
D'autre part, con nouvollos fonctionnali- outils, Ia structure d'accueil impl~monte,
t~s g~n~'ront do nouveaux m~tiors et n~ces- sans aucu no intervention humaine suppl6-
sitent un environnement do mentaire, un nouvol environnomont int~gr6
sp~cification/maquettago ad.a'tA ; tel eat do sp~cification/maquottage adapt6.
le cas pour l'ELS dont la maltrise domando
la m'.se en oeuvre do techniques do type
NHypertekt" non utilis~es jusqu'alors pour
le d~veloppement des syst~mes eirbarqu~s.

7-4

3. RaistioflC flux assurant la connectique d'un modale

SART.

Deux environnements de
spacificatiol/zaquettage, destin6s & la Deux types de flux sont d~finis :lea flux

formalisation des "fonctions nouvelles", de donn6es et les flux de contr~les (ou

ont 6t6 mis en place au sein du 6v6nements),. La diff~rence se situe au

D6partement Avant-Projets de la Division niveau de la perception de ces flux par

Conduite du Vol ;le premier est bas6 sur les 616ments qui les regoivent :lea flux

Ia m6thode SART (Structured Analysis & de contr8le sont perqus imm~diatement par

Real Time) pour la sp6cification fonction- l'4l6ment receveur car son comportement

nelle et le langage ADA pour le maquetta- eat susceptible d'fitre modifi& imm~diate-

ge., Le second, qui a'appuie sur lea lan- ment alors que lea flux de donn6es sont

gages orient6s ob~ets, a aervi A formali- consid6r6s comma de simples supports de

sor 1a fonction ELS (Electronic Library donn~es, donn~es que l'6l6ment receveur

System) et a conduit A la mise en place peut aller chercher de lui-mgme et quand

d'un environnement de il le d6cide.

spacification/maquettage d~di6 A ce type

d' application.
3.1.1.2. Le mod&le des contr~los : T

3.1.Un environnement "classiquo": BART/AflA Si le modale des traitements d6crit de

manibre atatique le logiciel & r6aliser,
3.1.1.1a zmthods SART consid~r~e sous la forme de fonctions s'6changeant

des donn~es, le mod~le des contr6les
La m~thode SART eat particuli~rement dacrit la dynamique de ces fonctions lea

adapt6e A la sp~cification fonctionnelle unes par rapport aux autres. Lea dia-

des applications temps-r6el. L'outil STP grammes 6tats/transitions assocx6s A
'(Software Through Pictures) [1], un des chaque CSPEC et lea flux de contr~le

outils du march6 supportant la m~thode entrant et sortant de ces CSPEC permettent

SART, eat largement diffus6 & SEXTANT pour de d6crire cette logique.
la spacification des fonctions assur~es

par lea 3stames de Conduite du Vol. Chaque DFD d'une sp6cifxcation SART d6crit

un 66ent FONCTION d'un diagramme de
Le terme "SART" eat ganarique et d~signe niveau sup6rieur. La CSPEC eat introduite

en fait deux m6thodea particuliares, celle sur un DFD pour d~crire comment la fonc-
de "Ward & Mellor" [3) et cello de tion mare du DFD prend en compte lea flux
"Hatley" [4). La m~thode SART eat semi- de contr~le qu'elle pergoit et comment
formelle car certaines combinaisons syn- elle 6met lea flux de contr~le sortants
taxiques n'ont pas une samantique suffi-

samment pr6cise. La m~thode consid~r6e ici

eat une extension formelle A celle de I~,.. d DFD
"Ward & Mellor" :lea ambiguit6s s6man-
tiques ont 6t6 supprim~es.a B

3.1.1.1.L. mod~ble des traitementa SA

Le principe de SART consiste A d6crire/
lea fonctiona assur~es par un logiciel//

sous la forme d'une d~compoaition hi6rar-/

chique deacendante, suivant le principe c
d'Analyae Structur6e de YOURDON/DEMARCO 81 b
[2)]. Chaque niveau de description eat com-/

plet en lui-mgme, mais la pr~ciaxon crolt /'
avec la profondeur. B2---

Une description SART eat conatitu6e d'une .K2 c2

arborescence de diagrammes, la racineB.

6tant un diagramme de contexte et lea

autres rioeuds des diagrammes do flux deo Arborescence de DFD-
donnaes (DFD) . Chaque diagramme contient

des 6laments de type :FONCTION, PSPEC, La CSPEC C permet de d~crire lea change-

CSPEC, DATA-STORE, ENTITE-EXTERNE et menta de comportement de la fonction B A

CONNEXION. Seuls lea 6l6ments de type partir non seulement des 60vaments

FONCTION se d~composent en un diagramme externes el et e2 mais aussi des 6vane-

fila. Chacun de ces 616ments possade des ments internes (venant de B.2 ou 6mis Vera

flux entrants et des flux sortanta, ces B.1). Lea changementa de comportement de B

7-5

correspondent en fait A des changements de le code r~cup~rable se situe au niveau
comportement des soun-fonctions B.1, B.2 de la description des PSPEC faite dans

et 6.3. Via la CSPEC C. un diagrarsme un psaudo-langage de type ADA,.

6tats/transitions est assocj4 A la fonc-
tion B. Il est tel que

- l'ansemble des 6tats correspond A un 3.l.3.l'anvironnomant do simulation mini-
ensemble de configurations diff~rentes mal
des sous-fonctions B.1, B.2 et B.3,

- l'ensemble des 6v~nements conditions Dans un mod~le SART, la description du
de transition est constitu6 par les dialogue entre la fonction sp~cifi~e et
flux de contr~le entrant dans la CSPEC son environnement est enti~rement regrou-
:ces 6v~naments sont Soit externes p6e dans le diagramme de contexte :on y
(el) Soit internes (venant de B.2), pr~cise la flux de donn~es et les flux de

- l'ensemble des 6v~nements 6mis lors contr~les 6chang~s entra la ntit~s
des transitions est constitu4 par la externes et la fonction que l'on sp~cifie.
flux de contr~le sortant de la CSPEC-:
ces 6v~nements sont Soit externes (e2) L'id~e de d~part est de consid~rer qua la
Solt intarnes (6mis 'jars 8.1) . antit~s axternes sont elles-m~mes issues

d'una sp~cification SART. Ceci permet da
3.1.2.1. traductsur SART/AA consid~rer l'anvironnement de maquettage

coma pouvant 6tre anrichi A chaque foiz
Les motivations qui ont conduit au choix qu'une nouvelle fonction est sp~cifi~e en
de ADA coma langage cible sont au nombre SART, celle-ci devanant une entit6 externe
de trois utilisable pour Ia sp~cification d'une

autre fonction.
lea concepts du parall~lisme mis en
oeuvre dans ADA (notion de tAche, ran- Au d~part, c'ast A dire avant de disposer
dez-vous) ont permis d'impl~menter un d'entit~s externes issues de sp~cifica-
mod~la SART comme un ensemble de pro- tions SART, on dispose d'un anvironnement
cessus an parall~le s'6changeant des minimal de simulation constituA d'un
donn~es at se synchronisant. ensemble d'antit~a axtarnes de base A par-

tir deaqualles on pout an construira de
le concept de g~n~ricit6 permat de nouvelles qui, alles, seront issues do

d~finir, pour chaque type d'6l6ment de mani~re automatique d'une sp~cification
la m~thode SART, un package g6n~rique SART. Cos antit~s externas de base sont
qua le g~n~rateur de code inatancie aussi bien de haut niveau at d~pendant
pour chaque 616ment da chacun des dia- 3lors d'una application (par example
grammes d'une ap~cification SART. "Guidage", "Pilota", "Param~tras avion",

"Plan de vol" at "MCDU" pour ls gastion du
Certains param~tras sont comauns A vol) qua plus g~n~rsas coma par exemple
tous la packages g~n~riques (par "clavier", "visu", "fichier" at daatin~es
example, la lista des flux sortants) . A plu3ieurs types d'application.
D'autres ont des parambtres particu-
liars d~pendant du type de 1'6l6ment
SART (par example, le package corres- 3.1.4.Znvironnoment do simulation 6tandu
pondant A l'Al6ment de type CSPEC a un

param~tre "automate") . L'anvironnement do simulation, utilis6
pour valider Ia sp~cification, propose

En annexe 1, eat 3ointe ls partieasp6- deux modes d'ex~cution:
cification des six packages g~nA- - un mode "pas A ps" 00 la valaur du
riquas. En particuliar, pour le packs- pas correspond A l'6mi33ion d'un flux
ge correspondant aux 6l6ments do type de contr6le par un des 6l6mants do la
PSPEC, cinq t&ches 3ont g~n~r~ea pour sp~cification,
impl~mentar lea daux types de flux : - at un mode an continu avec possibilit6
lea flux do contr~le sont perqus imA- d'arrAt pour observer at inspector
diatement par Ia PSPEC alors qua Is l'Abtat de la simulation.
consommation d'un flux de donn6es eat
compl~tement d~synchronis6e de as pro- L'Atat de la simulation correspond sux
duction. La communication antre ces 6tats des diff~rents 616ments du mod~le
cinq tAchas, d~crita dana le formalis- SART.
me HOOD (7], eat)ointe an annexe 2. - l'Atat des PSPEC at des FONCTIONS

actif ou inactif,
la choix de ADA comme langaga de - 116tat courant de chaque diagramme
maquettage parmet d'anvisager una 6tats/transitions,
r~utilisation partielle du code de - la production at/ou la consommation
maquettaga dana Ia phase do codage des flux de donn~es,

7-6

- l'6mission des flux de contr8le, 3.2.l.La m6thode 00?A consid~r~e

L'acc~s A toutes ces informations eat pos- tine m6thode de sp~cification d~crit
sible grace A une instrumentation du code aussi bien l'aspect statique que dynamique
g~n~r6 par du code permettant de garder, A d'un logiciel. La m~thode consid~r~e ici
tout moment, la tragabilit6 entre la simu- est inspir~e des travaux men~s par Coad et
lation et la sp~cification SART. Yourdon (5) ainsi que par Schlaer et

Mellor 110] pour d~finir une approche
tine extension pr~vue A cet environnement objet dans lea phases amont du cycle de
eat son int~gration avec l'environnement d~veloppoment.
de sp~cification/maquettage d~di6 aux lois

de pilotage (VISA) :un type d'int6gration Les concepts de base mis en oeuvre dans
possible consiate A d~crire lea PSPECS non ces m~thodes sont ceux des Langagos
plus directement par une proc~dure ADA Orient~s Objet3 (LOO) dont le plus
mais avoc le formalisme de Ia m~thode de illuatre eat SMALLTALK.
sp~cification des lois de pilotage :ceci
eat d'autant plus facile que VISA permet 3.2.l.1.Aspects statiques
la g6n~ration de code ADA.

La strat~gie do description des aspects
D'autres extensions sont A l'Atude atatiques eat issue de la m~thodo OOA

- prondre en compte lea particularit~s (Object Oriented Analysis) (5) . La strat6-
de la m~thode de HATLEY, en particu- gie globalo de mod~lisation a 6t6 simpli-
hier la tables d'activation/d63acti- fi6e en ne retenant quo quatre des princl-
vation et lea tables de d6cision, paux concepts de ha m~thode OOA :i1

- onrichir Ie mod~le des contr~les par s'agit des concepts do CLASSE (identique A
des langagos formels de type celui des LOO (111), de STRUCTURE D'ASSEM-
Statecharts (8] et HMS [9], BLAGE, de GENERALISATION/SPECIALISATION ot

- et Ie couphage avec l'environnement A de LIEN B' INSTANCES.
vocation "fonction nouvelle" OOA/KEE.

3.2.1.1.1.Classe

3.2.Un environnement 'lavancil" , 0A/KZE tne chasse eat un t.ye abstrait de don-

n~e d~fini par une baste d'attributs ot de

L'approche fonctionnelle en phase de services (ou m~thodos) caract~ristiquos de

sp~cification consiate A d~crire he syst6- sea intne

me A r~alissr en listant lea fonctiona
qu'ih doit assurer ot lea flux d'informa-
tion qu'ellos s'6changent. Cette approche clns PLAN-DE-VOL

fonctionnelle doscendante eat naturelle en dtj : a6roport de d~part

phase do sp~cification et correspond aux a~roport d'arrlvce

habitudes des sp~cifiours. L'approche laste ordonn~e do 1,,nts de

objet, qui favorise la r~utilisation et la passage

fiabilitA du logiciel, eat une approche
ascendante plut~t utihis~e en phase de sevcs modifier

conception. Loraque lea approches fonc- ins~rer-point-de-passage

tionnelle at objet sont retenues respocti- (point pr~c~dent,nouveau point)

voment en phase de sp~cification et en activor

phase de conception, un probl~me de tran- fncab

sition apparalt entre ces deux phases.

Pour 6viter cet inconv~nient, SEXTANT -D~finition de la classe des plans do vol-

Avionique a exp~rimont6 l'utilisation do

h'apptoche objet d~s la phase de sp~cifi-
cation dana le cadre de certaina projets L'instance PARIS-ATHENES de ha classe

do conduite du vol. Lea r6sultats obtonus PLAN-BE-VOL associe des valeurs particu-

slavbront promotteura lea sp~cifiours so hires aux attributs

sont tr~s vite adapt~a et ont 6t6 tr~s
onthousiastes. Un environnement de sp~ci-
fication/rmaquettage basA sur l'approche intac PARIS-ATHENES class-mer PLAN-

objet a donc 6t6 mis en place pour aider A DE-VOL:

ha formalisation de certaines des nou- a~roport de d~part

velle3 fonctions do gestion du vol. - PARIS
a~roport d' arriv~e

- ATHENES
histe ordonn~e do points do passage

- (BERNE MILAN BARI)

7-7

fi~n .instXance Sur le sch6ma, chaque instance de la clas-
se AVION eat compos6e d'une collection
d'instances de la classe TRAJECTOIRE,

-D~finition de l'instance PARIS-ATHENES - cette collection pout 6tre vide (ls cardi-
nalit6 minimum eat nulle) ou contenir un

Chaque instance eat susceptible de rendre nombre non born6 d'instances (la cardina-
lea services d~finis dana la classe mire lit6 maximum eat Win). De la mime mani~re,
aux autres instances. Par exemple, si le chaque instance de la classe CONSIGNE est
pilote sollicita le service "ins~rer- compos~e d'une liste ordonn6e d'instances
point-de-passage(MILANROME)" au plan de de is clas.-e ORDRE-GOUVERNES, cette liate
vol PARIS-ATHENES, son attribut "liste doit contenir au momns une instance (la
ordonn~e de points de passage" sera modi- cardinalit6 minimum est 6gale A 1).
fi4 de is fagon suivanta

Chaque instance de la classe AVION est, A
tout moment, en relation avec 0 ou 1 ins-

instance PARIS-ATHENES clsemr PLAN- tance de la classe PLAN-DE-VOL, is rela-
DE-VOL :tion "plan-de-vol-actif" a 6t6 d6finie par

a6roport de d~part le sp6cifieur.
- PARIS

a6roport d'arriv~e 3.2.1.i.3.Structure al'assemblage
- ATHENES

liate ordonn6e de points de passage Le concept de structure d'assemblage
- (BERNE MILAN ROME BARI) permet de d6firir des classes d'ob~ets

firLJunit.Ans. comme des n-upleta d'autres classes :il
se rapproche de la notion "d'enregistre-
ment" que V'on trouve dana les langages do

3.2.1.1.2.Lioi d'instances programmation structur6e tels que PASCAL
et ADA. Pour illustrer l'emploi de ce

Le concept de lien d'inatances (ou rela- concept, aupposons que is classe TRAJTEC-
tion) s'inspire des mod~les ralationnels TOIRE eat enti~rement d~finie par le
binaires de description des donn~ea (mod6- simple fait que chaque instance eat compo-
le entit6-asociation en particuliar) uti- s6e d'una CONSIGNE et d'unk PLAN-DE-VOL. La
lis63 pour d~finir lea ach6mas conceptuela class. TRAJECTOIRE na dispose donc pas
des bases de donn~es (12). d'attributs at de services propres at la

notation associ~e A is classe TRAJECTOIRE
Un lien entre deux classes d'objets eat deviant
unidirectionnel at met en relation une
instance de is classe de d~part avec une flVQ

ou plusieurs instances de is classa
d'arriv~e, ce nombre 6tant dfifin4. par is
cardinalit6 associ6e au lien par un couple
de valeurs (cardinalitA minimi,m, cardi- In

nalit6 maximum).

Plusieurs types de relation existent
- la relation "eat compos6 de",
- is relation "eat compos6 d'une collec- cnin ome

tion de",
- is relation "eat composA d'une ha~te - Liens d'instances entre structure

ordonn6e de", d'assemblage et classes -

- et lea relations d~finies par le sp6-
cifieur. 3.2.1 .1.4.G6rahisation/sp~ciaiaation

01-nde.,61 Ce concept eat en fait une autre forms-
lisation du concept d'h6ritage (simple et
multiple) des LOO. Il a l'avantage de sim-
plifier le graphe d'h6ritage en ne faisant
apparaitre que lea classes 616mentaires.

tr.I.t.I,.Ce sont lea cardinalit~s associ6es aux
noeuds du graphe qui d~finissent lea sous-
classes obtenues par h~ritage des classes
6l6mentaires et leur caract~re d'instan-

a!ft ciabilitA (Ie fait qu'une classe peut ou
ne peut pas avoir des instances dana le
"monde r~el", cleat A dire celui qui

-L' ens d' instances - concerns le 3p6cifieur):

7-8

avian3.2.1.2 .Aapecta dynamiques

La strat~gie de description des aspects
(1.13 dynamiques est issue de la rn~thode OOSA

(Object Oriented Systems Analysis) [10).
Il s'agit d'associer A chaque classe

,I,.~I .,~n~III.I. 11 VI~l-IrOUI8e~ d'objets un diagramme 6tats/transitions

d6crivant le "cycle de vie" des instances.

-Grahe e gn~rlistionsp~ialsaton- Ce diagramme d6crit la logique d'envoi de
messages entre objets en fonction des

La lecture de ce graphe permet de daduire changements de valeur des attributs.

les assertions suivante3
- Les classes "avion-militaire", "avion- La sollicitation d'un service d'un objet

civil", "jet" et "avion-A-propulsion" receveur par un objet demandeur s'appelle

haritent des caract~riatiques (attni- "l'envoi de message", Deux types de solli-

buts et services) de la classe citations sont possibles :le premier est
exprimnt le bloquant, l'objet demandeur se bloque

-Les cardinalit~s epintlahani- jusqu'A ce que Ie service ait 6t6 compl6-

tages multiples ainsi que lea classes tement rendu (envoi de message synchrone),
instanciables. Lo graphe d'h~ritage le second permet A l'objet demandeur de

6quivalent dans le formalisme habituel solliciter un service d'un autre objet

serait le suivant (les classes instan- sans attendre qu'il ait 6t6l reiidu (envoi

ciables apparaissent en gnisat) de message asynchrone).

.0o.La logique de daclenchement des services,
d~cnite par les diagramnes btats/transi-
tions, est sp6cifi6o au niveau des classes

Ivon-olig lvin. i.r* .ot avian-a.prop~violon :les sous-classes; et les instances hani-
tent de cette dynamique ot en particulien
en cas d'h6ritage multiple, la sous-classe

4vI~~mI~tf~r.*I~I.I~ .~~n.N$I)eth~rite de chacun des diagrammes des
classes manes.

.~'n33II,.**'@w~s~n a~~n't~I''prpiI.~n3.2.2. Le traducteur OOA/KE

Le traducteur OCA/KEE a lui-mame 6t6

-Graphe d'h6ritage 6quivalent au graphe 6crit en KEE. KEE (Knowledge Engineering

de g~nralisation/sp~cialisation - Environment) est un environnement de d6ve-
loppement basa sur CommonLisp destin6 aux
applications mettant en oeuvre un systame

La cardinalit6 (1,2) permet de faire expert raisonnant sun une base de connais-

remonter au niveau du noeud pare sance structur6e grace A une reprasenta-
(celui qui Porte la cardinalit6 tion objet. Outre les fonctionnalitas d'un

(2,2)), les classes "avion-militaire", langage de frames, l'interface tras convi-

"lavion-civil" et la classe composae viale (multi-fengtrage, affichage de

"avion-militaine-civil". Si cette car- graphes. .. .) a facilit6t le d~veloppement du

dinalit6 avait 6t6 (1,1), lea classes traducteur.

remiont6es se senaient limit6es aux
classes "avion-civil" et "avion-mili-- Grace A la similitude des concepts de

taire" :un avion n'aurait pas pu l'OOA et de ceux des LOO, l'implamentation

avoir .A la fois les caractanistiques des aspects statiques de la mathode n'a
d'un isvion civil et d'un avion mill- pas pos6 de problames particulier :par

taire. Le graphe aquivalent dans le exemple, !a notion de "facette d'attribut"
formalisme habituel aurait 6t6 !e sum- et en pazticulier celle de "valueclass",

vant qui dafinit Ic(s) dumaine(s) de valeur
d'un attribut, a permis d'implamenter la

aviannotion de lien d'instances.

.,Ionlo .,I.. .~onIIs, P. Pulal. Pour les aspects dynamiques de la mathode,
deux forictionnalitas de KEE/Co=munLisp ont
6t6 avantageusement utilisacs :il s'agit

4v15.Styt~)I *yQ5'3NI''prpilt*.~de la notion do "damon" (ou de "valeur

active") et de Ia notion de panallalisme.

7.9

On "d6mon" oat une action a33oci~e A un de cycle dans 1ea liens entre ins~tances et
attribut et qlui ost d6clench~o A chaque d'y rem~dier par des modifications do IS,
acc~a A ce dernier (en lecture, en 6critu- Sp~cification.
re ou lea deux). Dans Il'nvironnement KEE,
un d~mon particulier, associ6 A chaque
attrjbut d'un objet, 6value lea conditions 3.2.4.Un .nvironxiement "dAdiU" : ypextoxt
des transitions sortantes do l16tat cou- at dialogue R/11
rant do l'ob~et :si la nouvelle valour
valide une condition do transition, L'environnemont do sp~cification/maquet-
l'action de transition a3sOCi~e est alors tage OOA/KEE, A vocation "fonction nouvel-
effectu6e. La dynamique eat ainsi entibre- lo", a 6t6 utilisfi pour aider A formaliser
mont dirig~e par les changements de valour Ia foaction ELS (Electronic Library
des attribut3. System) :ce travail a abouti A un outil

do sp~cification/maquettage pour les
L'existence du "parall~lisme" oat n~ce3- applications ELS.
saire pour impl6mentor la sollicitation do
service non bloquante pour Ilobjet deman- One application ELS consiste A automatiser
dour :lea fonctionnalit~s do "multi-tas- la consultation par lo pilots des docu-
king" offertos par CommonLisp ont pormil; ments A bord do Ilavion. One telle appli-
do r~alisor une primitive d'envoi do mos- cation eat destin6o A 6trO 3p6cifi6e en
Sage aaynchrone 6quipo int6grhe avoc Is compagnie sarionno
'send(objetdeatinataire,service)". et los pilotes, d'oi) la n~cessit6 do d1s-

poser d'un outil ota ap6cification et
maquottage sont indissociables.

3.2.3. L' nvironment do maquattage
L'outil permet do d~finir Ia structure

Do la m~ine mani~re quo Ilenvironnoment logique do touts Ia base do donn~e3 docu-
SART/ADA, l'environnement OOA/KEE offre au mentairo embarqu~e et Ia logique d'accbs
ap~cifieur par 10 pilots A cette base do 4onn6os. Le

- des MOinoyn do tragabilit6 du code concept c14 eat celui d'hypertoxt" :lea
maquotte par rapport A Ia description documents sont reli~is los un3 aux autres
OOA correspondante, par des liens typ"s. One application ELS

- diff~rents modes d'ox~cution, consiste ell fait A naviguor dans Is base
- un langago do d6finition do l'interfa- do donn~ea documentairo en suivant les

cc do simulation :il comports on cor- chomins d'accb3 d~finis par cals liens.
tain nombre do primitives, dont Ia Pour cola, 1s pilots dispose d'une inter-
primitive "DISPLAY" qui permot d'asso- face utilisateur lui permettant yrhce A on
cier a un attribut uno repr~sontation moan do d~signation (do typo souria) do
graphique (jauge, thermortAtre, comp- ablectionner des portions do documents et
tour...) qui visualise 3a valour. On d'acchder A coux auxquels ils sont roli~s.
autro primitive "DISPIAY-2D" pormet do
visualiser dans un plan l'Avolution 3.3.Atelier int~gr6 do sp6cification/
des valeurs do deux attributs. aletg

Si, comma pour l'environneinent SARVTADA,
l'instrumentation du code g~n~rA a 6t6 one L'atelier do 3p~cification/maquettage
des techniques d'impl6mentation do l'envi- regroup. diff6rents onvironnoments do sp6-
ronnement do inaquettage, 10 calcul symbo- cification/naqoettage at met a ls disposi-
lique, foncmmient du langage Lisp, a acc6- tion des utilisateuirs des moyons r~pondant
16r6 Ie d~veloppoment et r~duit 10 code aux trois beooms d'int~gration qui sont
g~n~rA. intbgration do techniques do maqoettage

entro ellba, int~gration do m~thodes de
One des fonctionnalit~s particuli~ro 3p~cification entro ellba afin W'en d~fi-
induite par Ia m~thode oat le MnCanisme nir do nouvelles ot int~gration d'une
d'instanciation. La m~thode OOA d~finit -,ithode avoc one technique do mraquettage.
des classes d'objer et los relations entre
lea futures instances do ces classes. One Los travaux d'impl~mantation effectu~s
simnulation comports une premi~ro phase jusqu'A prasent dans le cadre do L'atelier
d'initialisation qui consists A cr~or los do "sp6cification/maquottage" at pr~sont~s
instances et A initialiser los relations dans co paragraphs ont conduit A des r~a-
qu'elles ont lea unes avec les autres. lisations logicielles qui doivent 6tre
C'est grAce aux cardinalita des relations consid6r6es comma des maquettes destin6as
quo as fait la cr~ation des in-;tances : a A valider los bosoins. Ellba ont 6t6 rba-
puissance du m~canisme d'instanciation lis~s directement sous UNIX abors quo les
perinet. d~s la phase d'initialisation, de inayens d'int6gration qui seront effective-
mettre en 6vidence lea 6ventuels probl~znes ment ratenus par la suite s'appuieront Sur

7-10

des norrnesaet produits du march6 parmi. Ce "repository" permet de faciliter
ceux-ci, Is norme PCTE et les outls sup- l'int6gration d'une m6thode avec une tech-
ports (EMEP.AUDE), des environnements de nique de maquettage en disposant d'une
type EAST ou ENTREPRISE sont A 1'4tude. repr~sentation interne ind6pendante de la

notation graphique ou textuelle de la
3.3.1.Structure d'aocusil m~thode et A partir de laquelle le g~n6ra-

teur de code est d~fini.
3.3.l.1.Couche do commuication

3.3.2.Int~gration des m~thodes
La croissance des besoins en communica-

tion qui s'explique par l'h6t6rog6n~it6 L'int6gration de diff~rentes m~thodes se
des concepts lis aux m~thodes de sp~cifi- base sur l'existence, pour chaque rr~thode,
cation et aux techniques de maquettage d'une description formelle de s syntaxe
ainsi quo par Ia distribution des outils et de sa s~mantique.
correspondants Sur un r6seau do stations
de travail, a n~cessit6 la d~finition et C'est A partir de la description formelle
ia r6aiisation d'une couche de communica- d'une m~thodo que sont d~finies:
tion (141. - ia repr~sentation interne dans le

repository commun des sp~cifications
GrAce A cette couche, lea moyens informa- 6tablies en utilisant Is m~thode en
tiques, logiciels et mat~riels, sur lea- question,
quels tournent les environnements de spA- - les v~rifications, syntaxiques et
cification/maquettage, deviennent transpa- s~mantiques, li~es A cetto m~thodo.
rents et le nombre et la localisation des
stations de travail Sur le r~seau sont La description formelle d'une m~thodo
masqu~s au sp~cifieur. d~finit donc un outil support A cetto nou-

voile m~thode.
Coci eat rendu possible par ia facuit6 do
faire communiquer des langeges de program- L'int~gration do doux m~thodos consiste A
mation ontre eux :ainsi 1'interface entro enrichir les descriptions formelles do
ADA, KEE/Commonbiap, FORTRAN, C et LeLisp chacune des deux m~thodos :on aura ainsi
oat r~alis~e par des primitives du type d~fini une nouvelle m~thode int~gr~e sinai
SEND(deatinataire, moasaqo) et que 1'outil support associ6 et, grAce A la
RECEIVE(6metteur, message). L'impi~menta- couche de communication, i'int~gration des
tion do ces primitives fait appel aux techniques de maquettage li~es aux deux
diverses fonctionnalit~s de la couche do m~thodes initiales sera assur~e.
communication d'UNIX, en particulier RPC
et los SOCKETS. L'outil choisi pour supporter le travail

do description formelle des m~thodes est
L'int~gration des techniques do maquettago un outil du march6, GRAPHTALK r~alis6 par
consisto, A partir de la couche "communi- XEROX. A partir d'une d~finition graphique
cation ontro langages", A d~finir dos pri- et textuelle d'une m~thode (graphique pour
mitives do plus haut niveau :par example, la syntaxe et textuelie pour is s~man-
la primitive ADA tique), il permot is mise A)our du "repo-
"ADD FACT~baso doconnaissanc,fait)" met sitory" commun ot) iea descriptions for-
A jour is base do connaissanco d'un syst6- mehles dos diff~rentes m~thodes sont
me expert tournant dans i'environnement elies-mdmes stock~es. Les v~ritications
KEE. li~es A is m~thode r~sultant do l'int~gra-

tion des m~thodes axploitent ces descrip-
3.3.1.2.Repository comawn tions formolles enrichies.

La structure d'accueii dispose d'un
"repository" qui permet d'avoir une base SARTIADA OOA1(EE VISA
do stockage des donn~es commune A tous lose.
environnenments do sp~cificdtion/maquetta- 5.

go. Dans cotte base do donn~es sont stoc- ADA FORTRAN LISP SARI ODA
-4k~os des informations do tout niveau :on

y trouve aussi bien les diff~rontes sp~ci-
fication3 et ies maquttes associ~ea quo couch. do communication REPOSITORY
des 6l6monts d'une granuisritA inf~rieure 1
comma ceux figurant Sur une sp~cification UNIX
: par exemple, pour SART, on trouvera ies
flux do donn~es, lea fonictions, les
PSPEC..., pour l'OOA, los classes, lea
relations, lea automates... - Lea diff~rentes couches do i'atelier -

7-I

4. Conclusion 5. Bibliographie

Ces travaux de d6finition et de mise on [1] Software Through Pictures, referen-
place d'outils de sp6cification et de ce manual, IDE 88-89
maquettage ont, pour la plupart, 6t6 (2] T. Demarco, "Structured Analysis
financ6s par des fonds propres SEXTANT. and System SpecificatLion", Yourdon
Us ont largement b6n~fici6 du soutien de Press 78
plusieurs projets op6rationnels, civils et [3] Ward & Mellor, "Structured
militaires, dans le domaine de la conduite Development for Real-Time
du vol : on pout citer le SOP (Systhme Systems", Yourdon Press 85
d'Optimisation des Performances) pour (4] Pirbal & Hatley, "Strategies for
avions d'armes, la fonction ELMS Real-Time System Specification",
(Emergency Landing Managment System), le 88
projet PROFIL men6 en collaboration avec [5] P. Coad, E. Yourdon, "Object-
l'Afrospatiale, l'ELS (Electronic Library Oriented Analysis", Prentice-Hall
System) et plusieurs applications des sys- 90
times experts aux loglciels de gestion du (6] KEE, Technical Manuals, Intellicorp
vol. 88-89

[7] HOOD, manuel de r6f6rence, ve.-ion
Ceci a permis la d6finition de solutions 3.0, ESA sept. 89
parfaitement adapt6es aux besoins et les (8] D. Harel, "Statecharts : A visual
outils associ~s sont mis an place selon un approach to complex systems",
calendrier qui autorie lour utIlisation Science of Computer Pogramming,
dans le cadre d'importants pro)ets actuels Vol 8-3, 1987
tel qua le CET (Calculateur "'Elaboration [9] A. Gabriellan, R. Iyer, "Specifying
de Tra)ectoires) du RAFALE. Real-Time System w.th Extended

Hierarchical Multi-State
De fagon similaire A la phase de sp6cifi- Machines", Thomson-CSF, INC. -
cation/maquettage, une 6tude est men6e PRO, 90
concernant la phase de prototypage. Cette [10] Schlaer & Mellor, "Object-Oriented
phase vise A valider une fonction dans son Systems Analysis", Prentice-Hall
dialogue avoc lea syst6mes ex~stants A 90
bord do l'avion : Ie principal problbme (11] B. Meyer, "Ob)ect-Oriented Software
pos6 par ce type do validation eat do Construction", Prentice-Hall 88
faire dialoguor une maquatte fonctionnelle (12] C. Delobel, M. Adiba, "Bases de
(dont Ie d~veloppement a fait abstraction donn6es at syst~mes relationnels",
des prob Ames de performance 116s au mat6- Dunod 82
riel) avec des 6quipements, r6els ou simu- (13] D. Caignault, S. Gabison, Jl.
16s, n~cessitant des temps de r6ponse Lebrun, "Atelier de d6veloppement
proches de ceux attendus en voi. de logiciels de pilotage-guidage",

526me symposium AGARD, Thessalonik
Lea deux principaux axes de cette 6tude 91
des moyens de prototypage sont le passage (14) X. Chicot, "Environnament do commu-
automatique d'une sp6cification fonction- nication pour la maquettage de
nelle ou de la maquette associ6e A un code nouvelles fonctions avioniques",
executable en temps-r~el et l'Avolution M6moire CNAM 91
des moyens mat~riels at logiciels pour
recevoir Ia code at fournir l'environne-
ment n~cessaire A son ex~cution.

La comp6tence on sp~cification/maquettage,
acquise lors des 6tudes at travaux 11s A
Ia mise en place do cas anvironnements, at
la veille technologique assurAe an perma-
nence Sur les techniques logicielles avan-
c~es permattent A Ia Division Conduite du
Vol d'Atre pr~to A mettre sur pled tr~s
rapidement, l'environnement dAdi A Ia
5p~cification at A la validation par
oaquettage et/ou prototypaga de touts nou-
velle fonction qua la division pout 6tre
amen~e A d~velopper.

7-12

marc. ads

connexion et data store

--.
with p modele_sartuse p model sart;
qene r c

IU!te flux sortant : iste de fl.;x

pacxage p connexion is

task tache connexion is
entry ricevoir flux (unfi .L ; flux);

end tache-colnfexLon:

end p_connexion;

..

- - papec

with p odel. sart;use p model. sart;
qenerLi

with procedure traitemnt pspec;
liste flux_sortant : list;doflux;

package Ppspec is

task qererentrees is
entry recavoir fluxiun flux flux);

end qOreC Mtreeo;

task trsitement;

task controleur local iA
eatry controletr 0:
entry co trroolert-MG1;
entry re
entry I n;

end controleur rlocal

task gererdemne..v Is
entry reieveir donneas(un flux flux do donnees);
entry valeuz .eu.ante (vs

1 out f ie out'.el:
entry valeur_eelle (val : out flux di-dmnneesl)

end qerer-donnees;

tack qeretr stles Is
entry produirelun flux in flux);
entry rioe"l etatletac tn tatfonction):

end qerer sertles:

ed p-pspec:

-- copec

with p. ..elcsart:;use podelesart;
qener ic

I sitmete : UtOAt*;
packaqe pecapec is

tack tach-.capec is
entry resvi luz I uncoatroke : in fluL);

end t checsps c

end p cspect

-- foncio

witb p mdele east:use P-madle-set;

fl seCtant femt le0 : list. do flux;
flus-epmtnfl z I Ste do Tlui:
aive;Wfanctras I positive:

Packae p feetele is

task tithe factios is
estry jecsu.r flus (leflux : in flux).

rO tae te-fectim;

nd p-femctle;

AMME

7-13

A PSPEC

A iLUX-ENTRANTS A FLUX..SORTANTS

,.~v~tA CON4TRO=LP

"Sit

A O-ONNEES A rRAIrIMENT

.SP -- 1 I Il

St I i*M'~.'*~ I I"IP t nr- u

AN= 2

7-14

XEE .I. .11- .- "

ANWFX 3

8-1

AGLAE - Atelier de Genie Logiciel de 1'aerospatiale Engins

par
Jocelyne HAMON

aerospatiale
2, rue Be'ranger 92320 CHATILLON (FRANCE)

R lifl4: La conception des systtmes Lemps-r5eI est un probltme fortomeni combiinatoire mais irts contraint. Les experts
proc~dent par des transformations de la sp(5cification technique de besoin en des syst~mes &juivalents, satisfaisant los con-
traintes du temps-n~eI (frdquence, retard, priorit5, communications). AGLAE est un atelier logiciel comprenant une base
de donndes orientde objets des composants et algorithmes utilisds ; une base de connaissancos reproduisant le raisonno-
ment do nos meillours experts ,un systame do simulation permcutant la validation des architectures mat(5riclles et logiciel-
les propos5es. AGLAE est un programme dc satisfaction do contraintes guid5 par dos heuristiqucs (relations do pr(5firencc
des experts). La sp(5cification formne]a racinc d'un arbre ET/OU oci chaque naeud (foniciionncllcment &luivalent) corres-
pond I'applicaiion d'une transformation (ensemble de rftles). Los feuilles dc l'arbre final sont soumises A une simulation
temps-r5e. La recherche est dirig5e par los d(5pendanccs qui sont gt~n6rdcs comme dans un ATMS : los causes d'(5chcc
sont analys(5es ct es conditions minimalos sont retenuos pour (5viier la r6p(5tition do ces causes lots des retours.

I. INTRODUCTION: aerospcztlale Engins) d(5crii dans cot article, ost un
syste expert qui reproduit Ie raisonnomint d'un grou-
pe do conceptours do syst~mos temps-r5el. 11 a pour but

Los syst~mos do conception et do validation contion- ossoiitiel d'8tre un syste do conception et do valida-
nont g(5n(ralement dcs outils (qui no sont pas n(5cessaire- tion pour calculatours cmbarqu5s ou tout autro syst~me
mont s(5par6s) de syntlbe, d'analyse et do test temps-r6el.
(simulation).

Un outil do synthese (do systtine tomps-r5el) aide to
concepteur dans la production d'uno architecture mat(5-
rielle, et d'un ensemble do programmes A partir d'une 11. LES ATELIERS DE GENIE LOGICIFL:
description do Ia fonction quo doit remplir cc systme et
des contraintos li(5os aux dorndes en entrte et en sortie.

Un outit d'analyso permet au concoptour do v(5rifier Les progr~s enregistr5s ces quinze dcmni~res annt~cs
qu'un syste remplit Ia fonction avoc los performances sur Ia production de comoosants mat5riels ont consid5ra-
d(5siridos (it contient un vdrificateur do r~gles do construc- bleniont modifid to parc: des syst~mes informatiques. Pa-
tion et do satisfaction do contraintos). ratlement, si l'on examine l'6votution du

d6vcloppement du logiciel2, on constate quo l'effort
Un outil do simulation osi indispensable pour s'assu- s'cst d'abord port5 sur I'acivu(5 do codage, grAce aux

rer du respoct des coniraintes tomps-r5el, car l'arrvd tangagos do haut niveau et aux techniq- es do program-
dos donndos pout avoir un caracitre at(5atoire (distribu- mation structur~c. Par contre, Ia qualitd des documents
iion dans to temps) quo l'analyso no pout pas toujours do sp(5cification et do conception retlet plus seuveni
prendro en compto: if so pout quo Ia simulation fasse ap- Ia valour do l'analyste plut&t quo la riguour d'une m(5tho-
paraltro dos situations dans losquolles une ou plusiours dologie adaptde, ce qui conduit tes cherchours A aborder
des contraintes temps-r5eI sont viot(5es. La sp6cification 1e ddvoloppement du logiciol sous un nouvel angle. CVest
technique do bosomn prdcise si cos violations sent accep- ainsi qu'ont W5t identifi5es puis mesur5os tes diffdrentcs
tables do mani~re transitoiro ou totalement prohib5es. activit5s do production du logiciol. L'oxistence mae
Dans ce cas, un autre system doit tre con~u, puis simu- d'un cycle do vie standard a 60t(reconnue et normalis5e.
Id et ainsi do suite..

L'atelior AGLAE II(Atelier do G(5nie Logiciol do
_______________________2. Le togiciel est 1'ensemible des programmes.

procds ct rfgles. ct 6veniueeni de Ia documen-
1. AGLAE esi une marque deposdc par Ia socidie iation, reltifs au foncionnemeni d'un ensemble de
aierospatiale. ixrsiiemcni de t'inforniation (arrat& du 22.12.1981).

8-2

La figure 1 planche 1 montre le cycle de vie du logi- tion Technique de Besomns, forrnalis~e par un prototy-
ciel proposd par 1'Association Frangaise pour tc Contr~lc page.
Industriel de Qualit6 (AFCIQ).

L'analyse statique est composde de deux dtapcs : la con-
Cette approche Gdnie Lojziciel de la fin des arndes 70 cention VrdIiminaire ct la conception d~taille d'un sys-

s'est traduite par des tentatives d'int6gration (au niveau tame,
de I'organisation du projet comme an niveao fonction-
net) de procddures, m6thodes, langages et outils qui fa- La conception prdliminaire permet:
vorisent]a production et la maintenance de composants -d'dnumdrer et de d~crire les travaux A effectoer,
logiciels de qualitd. -d'analyser les exigences de qualitd,

-de d~finir]a politique de maintenance,
Si l'on se r~tre At 1'arr~t6 ministdriet du 30.12.1983, d'identifier les techniques de toldrance aux fautes It

on appelle Gdnie Logiciel :'l'ensemble des activitds de mettre en cruvrc et 6tudier leurs consdquences,
conception et de misc en ceovre des prodoits et des pro- -d'dtudicr Ics conditions de recette du systme,
c~dores tendant It rationaliser la production du logiciel et -de proc6der At I'analyse fonctionnelle des besoins ht par-
son suivi." tir do Cahier des Charges Fonctionnel, ceci afin de :
Arrt tr~s important puisqu'it s'agissait alors de recon- prdciser Ics fonctions techniques et d'idcntifier Ics
naitre l'existence du Gdnie Logiciell, conno sculement points critiques de chaque solution envisagde,
de quciques initids. Vingt ans apr~s, Ic Gdnic Logiciel *d'dtablir l'architectorc do systme (et des sous-syst -
fait I'objet do nombrcux programmes nationaux et inter- mes).
nationaux. D'un point de vue organisationnel, cettc 6tape pennet do

ddfinir]a stratdgie indostrielle qu'il faudra appliquer sur
Sclon P. JAULENT2l, lc Gtdnic Logiciel est un ensem- tc programme.

ble de "proc~durcs, m~thodcs, langages, ateliers, impo-
s~s ou prdconis6s par les normes adapt6es At Les t6ches ctntreprises au coors de 1'6tape de conception
1'environncmcnt d'utilisation, afin de favoriser la pro- ddtailldc d'un syst~nic compl~tcnt, affluent et valident
duction et la maintenance de composants logicicis (de les aspects entrevos A l'diape pr&&Idente Celles-ci dd-
qualit6." bouchent sur une nouvelle tdztion dcs Specifications

Techniques de Besoins
En cc qoi concemne les proc&Iores, la misc en place

d'une organisation de production de syst~mes, qoi per- L'analyse dyiianique des besoins mainteniant exprimds,
met au scmn d'un cadre industriel, de maitriser la qualitd se traduit par la ridalisation d'un prototype. Celtu-ci dolt
des produits, les cofts et les ddlais de rdalisation repose nous offrir la possibiid d'exprimcntcr, rapidement et ii
sur to principc de d~coupage do processus de ddveloppe- moindres Crais, le bien-fond6 de ccrtaincs iddes, qu'il
ment de syst~mes en plusicurs phases, Ce d6coupage s'agisse d'iddes "fonctionnelles", d'iddes architectura-
normalisd (DoD 2167, GAM 1'17,...), appeld cycle de Ics, on simplement d'ides concemnant l'utilisation do
vie d'on syst~mc, est constitud de six phases. syst~mc que l'on doit ddvelopper.

Phase I : Orientation - Faisabilitd des bosoins 11 faut savoir qu'il existe deox types de prototypages : Ic
Cette dtape d~crit los hesoinis formulds par tc futur client, prototypage rapide et Ic prototypage c6volutif.
ct non comment les obtenir en tenant compte par excin-
plc, des contraintes de coi~t, de ddlai, de temps d'cx6cu- Le prototyvage ranide consiste A r~aliscr tout 00 partie
tion, de pr6cision des calculs. do futur syst~me avec des midthodcs et des outils dispo-
Le document cr6 lors de cette phase est appeld Cahier nibles, et a pour but de vdrifier la cohdrence des diverses
des Charges Fonictionnel (CdCF- I nornic AFNOR contraintes et de les prdciser. Malhieurcusement, Ic cott
NFx5O-5 11). et lc tenmps de d6veloppenient d'un tel prototype appro-

chent souvent ceux d'une imptldmentation rdclle.
Phase 2 : Conception do syst~me ct validation des be-
soins Le prototypa-Re 6volutif est one partie int~grante do dd-
La conception d'un systme suppose: veloppement do systtme, qooiqoe n'dtant pas intdgrd au

u ne analyse ttique, faite A parcir do Cahier des Char- mod~le classique de ddveloppement do Iogiciel, it se
ges Fonictionnel, formalisde par one Sp~cification substitoe aux dtapes de conception et permet de vdrificr
Technique de Besoins (STP), Ics coh~rences et les choix it ces niveaux.

- ne analyse dynamigoc, faite A partir de Ia Sp&ifica-
Dans les deox cas, l'utilisateur do syst~me pout 6valuer
Ic comporteinent do prototype, et Ic comparer A cclui

11968 : Corifdrencc OTAN sur le G~riic Logiciel qu'il attendait. Si le prototype ne d6montre pas les carac-
c'esi l'ann6c du consiat de ta crise du togiciel etiVti- t~istiques attendues, it pot 6ventoeltement, apr~s avoir
tliisation poor 14 preini~re fois dte Pexpression 'Soft- identifid Ic problme, modifier sa sp6cification. Toot ceci
ware Engineering". lui permeit dgalement de ne pas prendre Ie risque d'attcn-
2. Patrick JAULENT, (idnie Logiciet les in~thodes, dre Ia fin de la n~alisation do syst~ine pour s'apewcevoir,
Editions COLIN. 1990

8-3

A ce moment IA, que les Wdes en question sont peut-atre exprimds par le Cahier des Charges Fonictionnel et par
suijettes A caution ou tout simplement inad6quates. les Sp~cifications Techniques de Bosoins. Les tests de

recetto s'autachent A contr~ler les caractdristiques telles
Phase 3: DMveloppement logiciel du systme que :
Cette phase est critique, puisqu'il s'agit de construire (ce -les fonctionnalit~s du syst~me,
qui W'est pas rdalisable), suivant un cycle de vie normali- -l'intorface hommo-machine (prdsentation des 6crans,

sd partir des documents rddigds pr&cdermont, P'en- dialogues, rdsistance aux erreurs utilisateurs,..)
semble des composants matdriels et logiciels qui - 'int~grit6 res donndes (p~rotection),
constitueront le systtme. -les temp,- do r6ponse,

-les reprises,
Sept sous-phases la composent: les modes degrades,..
- la spkification fonctionnelle du logiciel, donnant lieu A
I'analyse des bosomns exprimds par le client afin de ddfi- Phase 6: Maintenance du syst~me
nir le futur logiciel. 11 s'agit de definir uno politique de maintenance liable

pour le systtme sous Ia forme d'un contrat, en tenant
- la conception ordliminaire du logiciel dont l'objectif est compte des diff~rentes categories de maintenance (cor-
d'apporter une solution aux bosomns exprim6s en identi- rective, 6volutive, adaptative. .)

fiant I'architecture du logiciel.
En cc qui concerne les m6thodes' produire et mainte-

- la conception d6taillde du logiciel oii chaque compo- nir un logiciel de qualit6, en maltrisant los cofits et les
sant idcntifid A l'dtape de conception pidliminaire fait ddlais de ddveloppement, suppose l'utilisation d'uno ou
l'objet d'une conception d~tailldo qui d6crit les dorndos plusicurs m~thodes pour los diffdrentes phases du cycle
manipul~es par Ics composants et Ics algorithmes agis- de vie d'un syst~rme. Cependant, l'utilisation d'une md&
sant su ces donnides. Pour chaque composant, Ics tests thode ndcessite de bien maltriser ses domaines d'appli-
unitaires lui affdrant sont ddfinis, afin de s'assurer quo le cation, ses possibilit~s, mais dgalement sos limites, sos
composant rdalis6 rdpond A la description qui en a di.6 difficultds de mise en ceuvre,..
faite. 11 est absolument ni~cessaire, si l'on veut qu'une m6tho-
Pour chaquc composant, un document do conception dd- do apporte Ics gains de productiviU6 escomptds, de la
tailIde et un document de tests unitaires sont 6labords. choisir en fonction de crit~res tels quo :

- les finalitds et strategies de l'entreprise,
- le codage du logiciel, o6i chaque composant logiciel, -los acteurs concemris,
donndes ou algorithmes, est codd dans lc langage do pro- leI domaine d'application (gestion, scientifiqiie, contr6-
grammation choisi. Le code doit Wte compild ou assom- le de processus, ...),
bld, puis "d6vcrmin6" soit par relectures, lectures -les dtapes du cycle de vie du syst~me couvertes par la
croisdes ou tout autre moyen de vdrification. m~thode,

- le nivoau d'outillage do Ia m6tliode. (papier, intdgrd, in-
- Ics tests unitairos de logiciel. Ici, pour chaque compo- dustrialisd,..)
snt logiciel, les jeux d'essais d6finis dans la phase de
conception ddtaille sont exdcutds. Les rdsultats sent en- Les principales mdthodes aujourd'hui sont:
rcgistrds de m~me quo tout dcart par rapport aux rdsultats - SADT: Structured Analysis Design Technique
attend us. (D.T. ROSS)

- SD : Structured Design (Rapport IBM : STEVENS,
- I'intdgration et tests d'intderation du lospiciel dent l'ob- MYERS, CONSTANTINE)
jectif est d'obtenir un ensemble intdgrd de composants - E-R : Enti ty-Relationship model (P. CHEN)
logiciols de faqon constituer tin produit finial. - SA :Structured Analysis

(F.YOJR DON. T. DEMARCO)
- la validation du lo-Riciel, ou certification, dont le but est -JSD :Jackson System Development (M. JACKSON)
de d~montrcr quo le logiciel d~.veloppd r~poiid exacte- SA-RT2 : Structured Analysis Real Time
moent aux besoins exprim6s dans]a sp~cification. (I. PIRBHAI, D. HATLEY)

-HOOD : Hierarchical Object Oriented Design
Phase 4 : lnt~gration matdriel-logiciel (BOOCH, MATRA, CR1, CISI)
Chaque entitd ayant Wt consUutte et test~e s~pardment, -

il ost ddsormais possible de produire un syst~me, en int&
grant matdriel et logiciel, de le tester et de Ie certifier 'Pour los Iangages, plusiours tendances so ddgagent
conforme par rapport aux documents c6tablis lors do la actuollement dans le monde informatique:
conception ddtaillde, puis de lo fabriquor en vue d'iine l a programination algorithmique constraito dans le do-
utilisation soutenue. maine du proc~duraI (FORTRAN, PASCAL, C) ou do

modulaire (ADA),
Phase 5: Rocette syst~me - Validation laI programmation puremont fonctionnelte et d~clarati-
L'objcctif do cetto phase est do d~montrer ao client quo ye (LISP),
le syste d~Sveloppo rdpond effoctivoinent aux bcsoins l a programmation par objets (C++, SMALTALK),

8-4

l a prograinmation logique (PROLOG).
Chaque entreprise, en fonction de son expdrience ou de La Direction des Etudes, au scmn de la Division En-
ses objectifs choisit l'un ou I'autre langage. Mais il faut gins Tactiques de aerospatlale, dans son Etablisse-
noter, A l'heure actuelle, l'apparition d'outils tels que des ment de Chatillon, a rdalis6 un prototype d'atelier de
g~ndrateurs de code permettant d'automatiser au maxi- Genie Logiciel rdpondant A ses besoins. Cet atelier, nom-
mum cette dtape de programmation. m6 AGLAE (Atelier de Gdnie Logiciel de aeropatia-

le Engins) a pour objectif d'automatiser les i6tapes de
Les ateliers de Genie Logiciel, quant A eux, suppor- conceptions prdliminalre et d~taill~e, en proposant au

tent la misc en place d'une organisation industrielle de concepteur un ensemble de solutions, architectures ma-
production et de maintenance dc logiciels en regroupant tdrielles et architectures logicielles, adaptdes A son pro-
harmonicusement: Winme: diaboration d'un calculateur embarqu6 ou de tout

les m6thodes reconnues telles quc SADT, SA-RT, JSD autre syst~me soumis A des contraintes temps-r~el.
les procddures de ddveloppement normalisdes comme

DoD 2167, GAM T17 Si nous comparons notre dt~marche avec celle definie
les gdndrateurs de code PASCAL, C, ADA dans le chapitre prdcdden, nous pouvons indiquer que
les outils tels que: chacune des solutions proposdes par l'atelier est en fait
" des gestionnaires de prujets, un prototype dvolutif de la partie fonictionnelle du systa-
" des interfaces avec un gestionnaire de configurations, me (sans les interfaces et l'environnement). L'utilisateur
" des mod~les d'estimation des coflts, peut donc ainsi valider sa sp6ciflcation, A partir du corn-
* des outils de qualimiftrie et de mamntenance du logi- portement du systme simuld par AGLAE. Si aucune so-

ciel, lution n'a Pu Wre produite, alors, l'utilisateur peut
" des interfaces PAO. modifier sa sp6ciflcation et continuer sa recherche.

Ils poursuivent de nombreux objectifs dont les pnnci- A partir de ces remarques, une vuc plus ddtaillde du cy-
paux sont : c de vie s'impose (§ figure 2 planche 1).
*d'augmenter la productivitd d'une dquipe de ddvelop-
pement, A lPorigine de cette phase de conception, ie document

*d'aindliorer la qualitd des produits logicicls, c'est-h- relatit A]a Sp6cification Fonctionnelle Technique doit
dire leur fiabilitd, leur dvolutivit , leur maintenabilitd, 8tre rdIig6. Celui-ci deticnt de numbreuses informations

-d'aider l'&juipe ii appliquer les diffdrentes normes et qu'il nous importc de connautrc avant l'utilisation de l'a-
proc~lures, incontoumrables idlapes dans le processus telier AGLAE.
de developpement,

-de soulager l'quipe de thches fastidieuses et rt~pdtiti- 1. Sixci fication Fonctionnelle Techniaue:
yes telles que les vidrifications de cohdrence fors des
phases de spdcification et de conception du logiciel, .. Tout systkmc informatiquc comprend une architectu-

re matdrielle (processeurs, bus, m6moires, coupleurs, ...)

et un ensemble de logiciels qui, exdcut~s sur cette archi-
tecture, rdalisent une fonction (au sens mathdmatique du

Il1. LA CONCEPTION DES SYSTEMES TEMPS- terme). Cette fonction esi gdralement didcnte, dans Ia
REEL: Sp6cification Technique de Besoins du systme, comme

une composition d'autres fonctions (qui sont elles-m8-
La conception d'un syst~me (conceptions pridliminai- mes des compositions de fonctions et ainsi de suite). Elle

re et ddtaille) est N'tape la plus ddlicate du cycle de vie est encor(appelde Sp~cification Fonctionnelle Techni-
d'un syst~me, puisqu'elle suppose de la part de l'archi- que dui syst~me
tecte, des compotences stir les deux principales compo-
santes en interaction : lc matdriel et Ie loiciel. En effet, Dans un syst~me temps-r-AeI, Ia function attendue est gS-
c'est effectivement lors de cette idlape que s'effectuent ndralement de contr~ler et de commander un processus.
les choix de cc qui sera fait en matidriel et en logiciel, Pour cela, I'ex~cution des programmes est toujow-s comn-
mais idgalement, avec quel type de mattriel et de logictel inandde par les donn~es ;certames donndes en entrde
sera construil le futur syst~me. doivent Wte prises en compte dans un delai tr~s court (fe-

jitres d'enLr~c) ;certaines donndes en sortie doivent 8tre
Mag les numbreux moycos qui permettent pruduites A un instant donnd (fenktres de sortie). Les

aujourd'hui de cuncevuir l'architecture d'un syst~me, contraintes, Wem~s Ia nature des donndcs en entr~e et en
nous avons ddlibdrdment choisi de developper noure pro sortie, peuvent ainsi s'cxprimer en termes de fr~quence,
pre m~thode, et ceci pour les raisons suivantes : de retard maximum A la prise en compte,d'inteiruptions,

les m~thodes proposdes sur Ie march6 ne couvrent pas de date de production, de dates de consummation mini-
suffisamnment toutes les contraintes exprimdes dans Ie males et maximales, ... Par ailleurs, d'autres contraintes
domaine du temps-rdel, peuvent Utre impos~es, cumme la quahtO requise pour le

- i nous faut un produit approcliant au maximum le rat- syst~me (choix de composants, d'architecturcs, ..) et Ia
sonnement de nos experts dans cc domaine et tenant precision des calculs.
cumpte de leurs expdriences et de Icur savcir-faire.

8-5

La conception de l'architecture matdrielle est sumilaire A Trois donndes sont produites par RECALAGE:
la construction d'un circuit diectrique ou diectronique * SORTIE- I-COMM envoyde sur une ressource exter-
simple, et est totalement pris en charge par AGLAE. Au ne,
contraire, les logiciels, eux, ne sont pas congus par * ACC-COMM et P05-MACH absorb&es par PILO-
AGLAE, le code des algorithmes de base (fonictions; 616- TAGE.
mentaires) figure dans la Spdcification Fonictionnelile
Technique. Toutes ces donndes ne sont produites ou consommndes
L'organisation du logiciel sur le matdriel peut ainsi Wte qu'A certains moments dut cycle (pdnode). Ces instants
vu comme tin ordonnancement, mais A la diffdrence de sont appelds "fen~tres" et sont matdrialisds par les res-
celui d'un atelier, les thches sont interruptibles et du fait sources extemnes ENTREE-O, ENTREE-i et SORTIE-O.
des asservissements (boucles oiz, pour deux program-
mes, les donndes produites par I'un A un instant t sont Le problfme, pour une wille spdcification, est de faire
consommndes par l'qiutre A un instant t', avec t supdrieur A exdcuter l'ensemble des fonictions; de wille sorte que tous
t'), i1 s'av~re ndcessaire de gdrer des communications et les rendez-vous soient tenus. Ce sont les; contraintes dut
des rendez-vous A dates fixes. De plus, cette organisation temps-rdel. Une solution possible, ddpendante du temps
est telle qu'elle doit vdrifier, A la fois la fonction deman- d'exdcution de chaque foniction (matdrialisd par un cr6-
dde, mais dgalement les contraintes expnmdes (le plus neati grisd), est ddcrite dans les figures ci-apr~s.
souvent non relaxables).

(§ figure 4 planche 2 : Ddcoupe du logiciel durant une
Le probl~me a Wt dtudid sous tous ses aspects (objets, pdriode courte)
moniteurs, paralldlisme, _.). Les rdsultats sont utilisds
dans les connaissances d'AGLAE, soit pour ddcrire Ic Durant cette pdriode courte, les; deux fonictions RE-
systbme, soil sous la formne de contraintes A respecter, CALAGE et PILOTAGE-RAPIDE sont exdcutdcs l'unc
soil sous la forme de rfgles de transformation de syst6- apr~s l'autre,]a fonction PILOTAGE-RAPIDE ndcessi-
mes. tarn la fourrnture d'une donnde de RECALAGE.

Sur ce graphique, les instants d'ent~e et sortie de don-
2. Exemp]e ndcs externes sont maldrialisdes par les pics en lecture (r)

et en dcriture (w).
Soil la Spdcification Fonctionnelle Technique, figure

3 planche 2. Durant une pdriode longue, dgale dans cet exemple A
huit pdriodes courtes,]a foniction PILOTAGE-LENT est

La fonction PHASE-VOL est ddfinie comme une coi- rdalisde.
position des fonictions PILOTAGE et RECALAGE.
La fonction PILOTAGE est elle-mdme ddcomposde en (§figure 5 planche 2 : Ddcoupe du logiciel durant tine
deu. -,ous-forictions : pdriode longue)

PILOTAGE-LENT,
-PILOTAGE-RAPIDE. 11 faut noter que le temps d'exdcution de cette demi~re

Ces deux fonctions se distinguent par leur frdquence fonction a permis de l'effectuer en deux fragments du-
dont l'une est plus rapide que I'autre. rant]a premi~re pdriode courte. 11 aurait dtd possible, si
Les fonictions produisent et consomment diffdrentes don- ndcessaire, de la segmenter encore pour la rdaliser stir
ndes:' plusieurs pdnodes courtes.
-PILOTAGE-LENT consomme la donnide P05-MACH
et produutlIa donnde GAIN, L'exemple ddcrit ici a permis de citer un petit dchan-

-PILOTAGE-RAPIDE consomme les donndes: tillon de contraintes prendre en compte lors de la rdali-
" GAIN produite par PILOTAGE-LENT, sahion d'un syst~me wemps-rdel. 11 nous faut maintenant
" ACC-COMM produite par Ia foniction RECALAGE, aller plus loin et ddcrire non seulement la solution obte-
" SOUS-CYCLE-O et SOUS-CYCLE-1 produites par nue mais aussi le raisonnement appliqud par l'expert

les ressources externes (bus d'enirde-sortie). pour l'obtenir, ce qu'AGLAE reproduit autonatique-
Cette fonction produit la donnde nommde INCIDENCE. nent.

La foniction de RECALAGE consomme les donndes:
* SOUS-CYCLE- I issue comme prdcddemment d'une

ressource exteme, IV. L'ATELIER I.OGICIEL AGLAE:
* INCIDENCE produite par PILOTAGE-RAPIDE.

11 faut noter qu'INClDENCE est une donnde asser- 1. Systdme exoert
vie, c'est-A-dire que la donnde utilisde par RECALA-
GE provient tie la pdriode prdcddente. Ceci se fait La rdalisauon d'un syst~me expert ndcessite tin im-
gdndralement quand]a mise A jour des donndes nWest portant investissement (temps et cofit). Aussi, pourquoi
pas primordiale pour les nouveaux calculs, oti quand avons-nous choisi ceue solution ?
cette donnde n'a pas le temps d'etre prise en compte Les raisonis sont les suivantes:
dans la pdriode m~me o6i elle est produite. - rdussir 5 conserver dans I'entreprise tine connaissance

8-6

et an savoir-faire. Le pnrblme est d'autant plis aigil
que les; personnes deteniant. la connaissance sont dans 2. Base de fats:
notre cas pea nombreases. De plus, le systtme expert
W'est pas an stockage passif de la connaissanco mais iI Dans AGLAE, la base de faits est decomposco en
est constamnment romis A jour et enrichi, deux sous-ensombles :

- permoure aux experts de se dechargor des t~ches repeti- - tout d'abord, une base de faits orotires au vrobitme A
tiyes et de se consacrer A d'autros trevaux, rdsoudre, comme decrite precedemment, ropronant la

- diminuer les cofits de mise au point puis de maintenan- description de la Spdciflcation Fonictionnelle Technique
ce d'une application, ... (mission et contraintes du systtme),

Ces considerations sont tres gendrales et applicables A - puis,]a base de faits permanents, ou encore appele
tout systame expert. Maintenant, nous pouvons ajouter base de dones, comprenant toates los caractristiques
que coute m6thode nous permet dans le cas d'AGLAE de techniques et commerciales des matdriels utilisables
resoudre des problmes fortement combinatoires (nom- (composants du march6, composants militarisds, ...).
bre important do solutions possibles) et egalement tres
contraints (dii aux contraintes; temps-reel). 2. 1. Soecification Fonctionnelle Technigue:

D'un point de vue structure, les systmes experts so 2. 1. 1. Pratictue des expers
caractdrisent par lear architecture. A la diffdrence de la
programmation classique qui oppose le programme aux Los experts distinguent deux types d'objets, los
donnees, trois composantes sont identiflees dans an sys- fonctions et les donnes:
t~me expert:

l a base do faits, - les fonctioys, ' c;ore appelees Machines Abstraites
l a base de reglos, (MA), repr~sentent soit des didments materiels, soil
le moteur d'inference. des 6l6ments logiciels du futar syste,

Une quatifme composante existe:
-I'inteifaco homme/machine (§ chapitre V R16sultats). - los donndcs forment l'ensenible des communications

virtuelles ou rdelles entre les fonccions. Une donnde est
Avant de der e faqon precise l'impldmenuaon produite pour uno unique fonction mais peat 8tre con-

d'AGLAE, donnons quelqaos d6finitions: sommee par plusieurs.
A chaque donnee sont associ6es des informations telles

- la base do faits contiont 1'ensemblc des donnes pro. que los; fonctions qu'ellc relie, sa pr~cision,..
pros au proble A rdsoadre. Cet ensemble dvolue au A chaque function soot associces plusiears informations,
cours do la rcdsolution du probleme en int~grant los; rd- telles quo son entr6e (donnees consommdes), sa sortie
saltats intermddiaires et la ou les solutions obtenucs (donnees produites), le traitement qu'elle ridalise, sa fd
par le systeme. La base peat s'enrichir en coars d'exd- quence, son temps d'ex6cution, sa pr~cision,
cation si lo systeme fait appel A l'utilisateur pour qu'il
introduise do nouvelles; doonnes. Maintenant, los donn~os et los functions enoncees ici, no

suffisent pas A d&crire toutes; los contraintes dues au
l a base do retle , encore appelde base do connaissan- temps-reel. Coinme noas l'avons vu sur l'exemple prd&
ce, est constitace par l'ensemble des methodes do rd- c&Iont, il faUt aussi ddcrire, ii partir do la specification,
solution du probl~me determine. Pour communiquor des couploars d'ontrde-sortie qui, A chaque periode, re-
cos methodes au systamo, l'expert utilise ane techni- presentont des fenetres ouvertes A an certain moment
quo do representation do Ia connaissance: le plus sou- pendant ane certaine daree.
vent, il s'agira do rfgles oa productions do Ia forme - Ces fonatres imposont quo los fonctions qai produisont

Si conditions Alors actions oa consomment ces donnees soient executees (pour faire
La base do connaissances est ainsi constitu~e d'un en- baurs entrees et sorties au mnoms) pendant la durde do ces
semble do ces ontites 6lementaires : les r~gles. Cellos- fectkres.
ci soot d~claratives, elles tradaisent Ic savoir-faire et Ces fonctions seront ropresentees dans AGLAE comme
l'expdrience do nos experts eL specialistes du donaine des machines abstraites, mais avcc des caractdristiqucs
sans prdjugor do lear utilisation. supplementaires telles quo los dates do debut et do fin do

production, los dates do debut et do fin do consommation
leI motear d'inference est an mecanisme general do iai- do doon nes,
sonnoment charge do resoadre le problme specifc par
Ia base do faits A]'aide des connaissances contenues 2.1.2. Modflisation dans AGLAE:
dans Ia base do regles. [Le moteur d'infdrence est an lo-
giciel accessible, ni A l'utjlisateur final, iii A 1'expert. LUensemble do Ia Specification Fonctionnelle

Technique est, comme noas venons do Ie voir, compose
A partir de ces definitions, repronons chaque module uniquemont do fonctions et do donn~es. Ces deux 6lC-

et regardons comment il a Wt reais dans AGLAE, mients soot considerds dans AGLAE comme des objet~s A
part entirc et materialises par dos schemas compatibles

8-7

avec le formalisme du gendrateur utilisd. nidmoires, coupleurs, ...). Ces composants sont, ou
bicn spdcifiques (ddveloppds en interne A aerospa-

Pour les fonictions, an ensemble de machines abstraites fiale, ou bien du commerce). Dans cc dernier cas, tou-
(MA) est crdd. Chaque MA est une instance d'un objet tes les informations sont accessibles A partir des
de]a base de faits et est d~crite sous la forme suivante: documentations des divers fournisseurs.

Schdma PHASE-VOL 212.2. Moddlisation dans AGLAE
instance machine-sequ (p~our machine d6composablc)

ddcomoosition-en EN1'REE-0 ENTREE- I De la meme faqon que la base de faits relative A
PILOTAGE RECALAGE SORTIE-0)a sp6cification, Ics diffdrentes architectures et compo-

est-un-comaosd-de (nom de]a machine parent) sants sont entrds dans AGLAE sous la forme d'objets.
unitd-temps ms Par exemple, I'architecture ARCHI-MONO-COUPLEE
nbre-unit/ 1000 (architecture mono-processeur avec mndmoires coupIdes)
entrde (pour donn~es en entr~) sc prdsente sorus]a formec d'un schdma:
sortie (pour donn~es en sortie)

... Schdma ARCHI-MONO-COUPLEE
is- mono-processeur

Une dcs machines la composant est RECALAGE: processeur (nombre de processeurs)
bus-intemne (nombre de bus)

Schtdma RECALAGE m~moire-donnde (nombre de m~moires de donn~.e)
instance machine-base (pour machine abstraite) m~moirc-programmc (ncnabrc de rndmoires dcecode)
cst-un-conos&dc PHASE-VOL trans fcrt-donndes-int
temps-exdcution-maxinium 10 (pour 10 ins) (pour temps de transfert des donn6cs en interne)
entrde (SOUS-CYCLE- 10) (SOUS-CYCLE- I -I1) trans rert-programmei (temps de transfert du code)
sorti (P05-MACH 0) (ACC-COMM 0) maioration-acc~s-mdmoire (temps acc~s m~moire

(SORTIE-I -COMM 0) cstimd s'iI nWest pas connu exactement)
(0 pour standard, -I pour asservissement)

frdsuencc 60 (en Hertz) Quant aux matdriels, la description d'an processeur se
fait do la faqon suivante:

Unc des don ncdes produite par RECALAGE est P05-
MACH: Schdma PROCESS EUR-X

is- processear (appartient A)a classe des processeurs)
Schema P05-MACH frsguucnce 1E6 (pour I Miga-Hertz)
instance paqucts-donnees + 4 (l'oporation addition dare 4 cycles de base)
prod-yapuet RECALAGE (fonction productrice) ... (temps respectifs pour Ics atitrcs opdrations)
cons-tpaguet PILOTAGE-LENT coprocessear (liste des coprocesseurs associ6s)

(foniction consommatrice) ... (liste des autres composants associds)

Tous ces objets sont r~unis dans des fichiers inodifiables Pour lcs autres composants, Ics Oaractdristiques propres
par I'utilisateur, soit de faqon textuelle (idditeur ASCII), sont inscrites sous]a forme de propridt6s relatives A l'ob-
soit sous forme graphique (interface sp~cifique), jet d6crit.

2.2. Base do dorndes Matdriel:
Globalement, tous les objets composant los deux

2.2.1. Pratigue des exoerts: sous-ensembles de la base de faits sont rdunis dans une
structure arborescente comprenant, A partir d'une macmne,

Le second sous-cnscmblc composant Ia base do diffsdrentes classes:
faits est chargd de ddtenir]'ensemble des informations - la classe RACINE-mATrERIEL ou base de donn&s
matdrielles. MatdricI constitude de l'cnsemblc des types d'architecta-
11 s'agit A]a fois: reseti des composants matdricls,
- des types d'architectures, mono et multi processeurs, - Ia classe RACINE-LOGICIEL dacrivant la Speciftca-

simples et complexes avec mdmoires coupl~5es, DMA 3, tion Fonctionnelle Technique composde des machines
I A N bus externes, ... abstraites et des dorndcs,
Celles-ci ont Wt recensdes parmi los architectures les - Ia class RACINE-SOLUJTION oit sont crd6s, durant Ia
plus commundment utirs~es dans I'cntreprise mais rdsolution, los objets; relatifs aux solutions propos~es
aussi parmi celles connues A cc jour. (matdricl et logiciel).

- des diffdrents composants matdriels (bus, processeurs, (§ figure 6 planche 3)

3. DMA: Direct Access Memory ou Acc?~s direct A
Ia mdrnoire.

'3. Base de connaissances: l'autre,
Alors order une machine abstraite les regroupanL.

Si le moteur d'inf'~rence (§ paragraphe 4 Moteur dWin-
fdrence) reprdsente 'Tintelligence" d'AGLAE, les r6-
gles, elies, rcpr~sentent son unique "connaissance". 4. Moteur d'inf'&ence:
Extraites de 1'expdrience des experts et sp~cialistes du
domaine, elles pormettent au systmo de trouvcr, par it6- 4. 1. Princino
rations successives la solution rechcrch~e.

Pour AGLAE, un inoteur d'infdrenco sp~cifique a
Elles sont formalisdes de la fa~on suivante: dtd construit.

Si conditions Alors actions Les syst~mes fonictionnant en chainage arritre (comme
PROLOG) sont inaddquats pour le genre do problmos

Aujourd'hui AGLAE contient onze classes de rfgles: trait~s par AGLAE (construction ou synthse).
Les systmes classiques en chainage avant (comme

-architecture :choix d'une architecture mat~riello en OPS) sont peu efficaces et posont, do nombreux probW~
foniction des contraintes de la sp~ciiication, mes lid~s h la non-monotonic (une rtle peut d6truire un

fait sur lequol reposent d'autres faits).
-composants : comptdtion de l'architecture matdriclle Los problmes do construction dtant des probl~mes; dans
choisic gri~ce A]a base de donnt~es des composants, lesquels les: choix sont nombreux, il est plus ais6 do tra-

vailter sur des contextes s~pards (un par choix) et de
-dre: calcul du temps d'cx~cution de toutes les fonc- maintentir, d'un contexte Ore sos fits, la cohdrence. des
tions A partir de la dur&e des oprations 6l6mentaires informations au moyen d'un programme sp~cial -un
du processeur choisi, TMS'.

Or, la comptcxitd d' une t~che do r6solul; -n de probl~mes:
- qjt: respect du scuil imposd par l'utihisateur conc-.r- est fonction, la fois du nombre de rtules ext7_.,'iAs, ct
nant te calcul du co~it des composants choisis, du nonibre do contextes considdrds d.ans la recherche.

*chemins : recherche des chcmnins do donn6cs prioritni- L'une dcs preni~rs raisons qui a motzv6 Ia construction
res, d'un nouveau moteur pour AGLAE a Wt la nt~cessit6 de

specifier le contr6le du bosomn expnmd par l'ordre de d6-
-communications : crdation des machines abstraites do clenchentent des rfgles, et exprimant Ie raisonnement
communications sur tous les chemnins de donn~es, des experts. Un tel contrO!e, ridalisd par un programme

procrddural classique, diminue la flexibiltiri de l'outil et
*sduencialisation : crtdation d'une chaine temporellc re- complique sa maintenance.
grcjupani l'enscmtble des machines abstraites, Dans AGLAE, le contr~lo est traduit par la rtdunion de

certaines rfgles en classes (sources do connaissances), et
*datation : calcul des temps relatifs A chaque fonction par l'utilisation de mndta-rfgles pour le choix de ces sour-
dans la chaine tcrmporelle, ces de connaissances dans un contexte donnd.

Los contextos forment ainsi un graphe (arbre) qui est ex-
dcouoage : segmentation des fonctions lentes sur plu- plonS sitivant une procddure BRANCH AND BOUND
siours pOriodes courtes, gdn~ralisde (GBB'). Cello-ci incorpore a Ia fois I'utilisa-

lion:
* dnlacmet:en cas d'&hec, on effectue uno modift- - d'un ordrc do prdfdrence sur los sources do connaissan-

cation do I'emplaceanent d'une function daits la chaine Cos et los n~gles,
tempurelle, *d'un "backtracking" intelligent (DDB6),

d'un ATMS 7 pour maintenir la cohdrence do chaque
*doohasag~ : en cas d'dchec, los functions no Isouvant contexte.

Wte ex~cutdes dans la pdriode impartie devront accep- En effet, un nrsolveuir do probl~me contr6l6 par DDB a
ter los dorndes do Ia pNnode prdcdente. tendanco A Wte plus efficace pour des probl~ues dans

lesque!s quclques solutions parmi toutes cellos possibles
Par exemple, nous aurons: sont ddsinros. L'efficacitd est obmenue en organisant la re-

cherche, do mani~re a no trouver qu'une solution sp~cifi-
Une nfgle do PCostion temporelle (los ressources: quo d'-abord. La combinaison d'un ATMS et do DDB, A

I deux machines abstraites unt des fr~iueiices diffd- la fuis, ndduit to nombro do contextes examnz6s et do r -
rentes, gles exdcutdes, et prmet d'obtenir efficacement une so-

Ators la machine abstraito do frdIuence la plus rapido lutiun sp~cifique en premier.
ost prioritaire.

ou encore une nfele do rettroupein 4. TMS :Truth Maintenance System
5. GBB Generalized Branch and BoundSi deux machines abstraites ont Ia mC~nc fr~lucnce et 6 D:Dpnec ietdBctakn

quo 'un prouitdes onnes ectuivemnt our7. ATMS . Assumption Truth Maintenance System

8-9

Lion de donnees (en dcriture oti en lecture),
Quand tine contradiction est rencontr~e, le retour (back- -les fonctions de gestion de contextes permottant la sau-
tracking) est offectu6 jusqu'au premier "gdndrateur" vegarde et la rostauration de l'environnement lors dWin-
contribuant A la contradiction (c'est-A-dire la gdn~ration torruptions ou de reprises de fonctions lentes.
de la premiere cause d'6chec). Toutes les raisons pour
d1iminer des valeurs; sont combindes pour fonmer une La demiere planche indique l'ensemble des composants
contradiction. Mais le systbime ne so souvient pas de ces choisis, leur co~t, l'architecture matdrielle adopt~c ainsi
contradictions quand tine autre branche ost trouv~e. Cer- que le i~sultat complet de la simulation du systame avec,
taines d'ent elles peuvent donc Ure calcut6es plusieurs pour la i~chc rapide (pdriode courte) et la thche Iente (p-
fois de suite. Dans AG;LAE, chaque cause d'erreur (con. niode longue):
jonction minimale) est retonue do mani~re pennanente leI temps total d'exdcution,
pendant Ia recherche, le temps total de communications interne et oxterne,

le temps total do gestion des contextes,
4.2. Moddlisation dans AGLAE: le taux de charge du processeur clioisi.

En s'appuyant sur l'algorithme prdtddcnt, 11 Caut noter que cotte derni~e information ost primor-
AGLAE, A partir de]a sp~cification fonictionnelle, doit dialo pour le concopteur, car ella le renseigne sur los Ii-
commencer par construire tin systte fonictionnellcment mites du syst~meoen ce qui concerne los modifications do
6quivalcnt. L'architecture matdriclle est, soit cello qui est maintenance (possibilit6 d'augmentation de la taille dos
impos6e, soit Ia plus simple possible. L'organisation 1o- logiciols, do Ia vitesse des processours, du changemont
gicielle correspond exactemont A la sp~cification : pas do composants, ...).
d'interruptions, oxdcution des t~ches eniiemcnt sd-
quontielle. Si, apres simulation, to rdsultat est acceptable Tous ces r6sultats sont prdsentds stir l'dcran AGLAE.
solon los contraintos; temporolles, it est proposd..- Am do rester lo plus convivial possible, aucuno com-

mando n'est entrde sous formo toxtuello. Toute demando
Dans to cas contrairo, cette architecture constitue alors la do traitomont se rdalise gr~ce A]a souris en "cliquant" stir
racino do l'aibre des solutions. Les transformations entro tine icone A droito do l'dcran.
tin nrud pOre et sos fits r6sident dans l'organisation torn-
porelle des t~ches et Ia suppression oti l'ajout dvcntuol Six iconos sont repr~sentdes:
do composants matdrxels. l a premi~re pcrmet l'affichage d'un toxto do prdsenta-

dion dti logiciel,
La rdorganisation temporolle so fait par d~coupage et re-
grotipement des sous-fonctions do Ia sp~cification, to but GE pour Gestion
final diant do: * LOAD: chargomont d'unc spcification,

- espce lo oad urlsdn* SAVE : sauvegarde stir disque d'une sps~cification,
-diminuer to temps global do calcul. * CHECK: vdrification syntaxique ct sdmantiquo

d'une sp~cification,
Tout neud ost alors testd comme uno solution dventuello * KILL : effacement d'une specification en mdmoirc,
du s)ste. En cas d'echec, on isole Ia cause miniinale * RUN: rdsoltition et recherche do solutions,
do l'dchec et on supprime tous los nreuds do I'arbre vdri- * QUIT: sortie d'AGLAE.
flant cetto cause.
Si aucune dos organisations cssaydes no satisfait l'en- VIEW pour fonictions do Visuialisation
semble des contraintes, tine autro architecture matdrielle * OVERVIEW : spdcification complete sur la page
est recherchide, oti tic, modification des rt~luences ost drn
imposde. * ZOOM :vue limitdo d'une partie do Ia spdcification

avoc deplacoments gr~ce ii des ascenseurs verlicaux
et horizontaux to long do Ia Cciiftre do visualisation,

*TRAME : Tranie do fond oti dcran d'attente.
V. RESUJ~rATS:

EM~1 pour Edition do Ia base do donnides
Los figures ci-apr~s inontrent pour l'exeniple dt~crit *'EDIT: dition des objets Stockds dans AGLAE,

aui debut du document, Ia solution proposde par AGLAE, TREE: visualisation des objets et dos classes sous Ia
On rotrouve stir Ia planche 4, Ia Sp~ciflcation Fonction- fornme d'arbres.
nelle Technique sous forme graphique.
Puis, stir cette memo plancho, los chronogrammes rdsul- G §.RAPH- pour &Iiteur Graphique do Ia specification
tats sur tine p~riode courto et tine pdriode tongue. * COMPOSE : crde dos fonctions d6composables,

* FUNCTION : cr&~ tine machine abstraite do base,
En plus des fonictions, dont lPcx6cution est matdiialisde * WINDOW : crdo one Cen&re d'entrde-sortie,
par des crtdneatix, los chronogranimes inoiquent : *DATA :cr~e tine donnke
leI nom des fonctions do communications cnid6cs, * ARCHITECTURE : ct6c l'objet descriptour do Pear-
] 'instant o6 cltes sont utilisdes ii dos fins do m~morisa- chitecture choisie si elte oxiste,

8-t0

* DELETE: permet d'effacer une boite ou une don- frir des solutions base de multi-processeurs. Ceci im-
n~c, plique l'analy-, fine des diffdrents paraIIdIismes;

* MOVE: permet de d~placer une boite ou une donnde possibles (dtuae des gains),
sur I'&ran. -le couplage avec des ateliers de G6nie Logiciel du com-

merce qui perineura de couvrir I'ensemble des phases
-LASER pour impression sur un pdriph6rique extemne du cycle de vie d'un syst~me iotamment:

" ECRAN: image dcran en format POSCRIPT, * la phase de codage du logiciel (ADA, C,..,
" SOLUIION : texte associd A la rdsolution avec pro- * la phase de test automnatique du logiciel codd,

positions de solutions, * la phase de documentation sous des formats normali-
* ECHEC: texte associ6 aui refus de solutions avec le sc~s tels que AQAP 13, GAM T17, DoD 2167B,..

diagnostic prononcd.
Quant A la phase de specification, une 6tude est en

cours afin de faciliter lc travail du concepteur humain.
En effet, AGLAE devra lui-m~me afficher la Spdcifica-

VI. CONCLUSION: Lion Fonctionnelle Technique sous forme graphiquc, A
partir d'un texte en langage naturel, ceci pour limiter au

1. Validation:- maximum les manipulations d'dditcurs toujours fasti-
dieuses pour l'utilisateur final.

Plusicurs systbmes op~rationncls sont utilisds pour Ia
validation des connaissances contenucs dans AGLAE, Enfin, un portage en langage C-+ est envisag6 avec
ccci dans le but de vdrifier: un gdndrateur di'interfac. suffisamment normalis6 pour
-qu'avcc Ia seule desciiption de Ia Sp~cification Fonc- envisager une utilisation de l'atelier AGLAE sur des ty-

tionnelle Technique. AGLAE est A mamc de proposer pcs de console et d'cnvironnement quelconques.
une voire plusicurs solutions,

-qu'avec un m~me choix dc composants, les solutions
proposdes sont similaires 5 celles retenues par Ics con-
cepteurs humains. BIBLIOGRAPHIE:

11 est important de pr~ciser que ces solutions sont obte-
nues en quelques minutes (apr~s 1'entrde des dorin6es), BRUYNOOGHE M., Solving combinatorial search pro-
alors que l'dlaboration et Ia validation d'unc autrc solu- blems by intelligent backtracking, Information Proces-
tion preraitauparavent plusicurs jours aux ingdnicurs. sing Lctters 12, 1981, pages 36-39.

2. Evolutions: BRUYNOOGH-E M. - PEREIRA L.M., Deduction revi-
sion by intelligent backtracking, dans CAMPBELL J.A.

AGLAE est dcrit en Common LISP et s'appuie sur Ic (Ed), Current issues in Prolog implementation, New
gdndrateur de systame expert KNOWLEDGE York, Wiley. 1984, pages 194-215.
CRAFP~ms V 3.3. Les objets sont des schdmas CRLTm9 ,
tandis que les autres connaissances (r~gles) ctle moteur BENAY G. - VAZEILLES M. - VILLEMIN F.Y., Con-
d'infdence sont des fonctions de Common LISP. ception intelligcniment assistd& de syst~mes temps-rdels,
Le matdriel utilis6 est tin SUN 3t260TmlO sous environ- aerospatiale & CNAM-CEDRIC, Mdmo n9O491, 1989.
nement UNIXim V4.0.3 1 1.

Malgrd les quelques 110 objets r~partis dans les bases de KLEER J., An assumption-based truth maintenance
de faits, et les I1I grands sous-ensembles de rfgles de la system. Artificial Intelligence. vol.28, nQ 1, 1986, pages
base de connaissances, AGLAE est encore loin de r6sou- 127-162.
dre tous les probitmes temps-rdeI rencontrds dans noire
Division. de KLEER J., Extending the ATMS, Artificial Intelligen-
Les dvolutions prochaines du produit permeitront par ce, vol.28, 1986, pages 163-196.
exemple:

1 'enrichissement de Ia base die donn6es pour prendre en die KLEER J.,Problem solving with the ATMS, vol.28.
compte un nombre plus important de composants du 1986, pages 197-224.
march6 et de nouivelles architectures,

- 'enrichissement de la base de corinaissances pour of- de KLEER J.- WILLIAMS B.C., Back to backtracking:
controlling the ATMS, Engineering Automated reaso-

8. KNOWLEDGE CRAFT est mine marque d~pos~e ning, 1987
par CARNEGIE GROUP INC.
9. CRL: CARNEGIE Representation Language est JAULENT Patrick, Gtdnie logiciel les m6thodes, Paris,
mine marque ddpos&e par CARNEGIE GROUP INC. Armand Colin Editeur, 1990, pages 14-34 et 258-278.
10, SUN est uae marque d~posde par SUN MICRO-
SYSTEMS. LUQI, Software evolution through rapid prototyping,
11. UNIX est mine marque d~pos~e par AT&T BF.LL Computer, Mai 1989.
LABORATORIES,

8 -Planche I

Oieaion6 CYCLE DE VIE D'UN SYSTEME Maintenance
Fasbile s~ du systcm

Concepton, Recette systbine
Prhu.naPc d'u Validationdu

Ssslme Ps stamc

Figure I: Cycle de vie I atsamlProduci
d'un logiciel

Fonctionlic Codag du DU LOGICIEci ice

Conntatlon

Mirin du intN1'o Vaiato Iu
aoicc Tetsterndgat

WtareOgicicl lgi

okticatioo VoIi'iaiond

PouicooneE Ci gogicic

Orientationgazin c
mo du sccidie

Modificareion Modlidacaonon

Codage duioi9e

Cosruto Constrctioon

1 Eva1 ®r ion ration et

8 - Planche 2

3003-CY'CLE-9

ACC-CAC

~~ .. _N

- VT/ENCEZ

Figr 3Expe dge prfcto

8-13

8 -Planche 3

Figure 6 Structure arbor.scente
de la base de faits

.. ... a-- -_

/ W -- -.-- --1

, (\ , , ," .,I. . .. I:===flI,,

'I 'nc gc

L..\

8-14

8 -Panche 4

Figure? : Solution

proposde par AGLAE

dz.

fditA

.. ... ,l- - - -...

filt.

- -- -- ----- - - - -- 1-

-. -. - . .. *.- AA

0-i

SOFTWARE DESIGN CONSIDERATIONS FOR AN AIRBORNE COMMAND AND CONTROL WORKSTATION
by

P. Kielhorn, P. KUhl, B. Muth, R. Vissers
Dornier Luftfahrt GmbH

Postfach 13 03
7990 Friedrichshafen 1

Germany

Summary - antisubmarine warfare (ASW)
- siEnal intelligence (SIGINT)

Within this paper we present some - search and rescue (SAR)
basic concepts of the software design - pollution control
for a command and control workstation - coast guard
for airborne applications. We report - fishery patrol
not only on theoretical considerations - photogrammetry
but also on practical experience, - verification
which was gained during the
development process of a prototype Fig. 2 shows the environment for an
command and control workstation at ASW mission, certainly requiring more
DORNIER. Special emphasis is put on than one workstation, whilst the
software archtitecture, data pollution control example in fig. 3
structures and tasking with respect to may well manage with a single station.
Ada. In order to get a firm basis and
to ease understan ing the paper starts 2.2 Components
with a description of the tasks and
components of a command and control From a system point of view a
workstation, which includes a short workstation consists of a multitude of
description of the afore mentioned parts, from a software point of view
DORNIER prototype workstation MODOS. however there are only a few
The paper concludes with some issues components, that have to be mentioned
on software "-ilities". (fig. 4). These components which host

the software or work together with the
software are as follows

- the workstation processor (main
1. Introduction processor),

the heart of the workstation
Airborne command and control (C2) - the workstation add-on processors,
workstations will be used in a variety additional or specialized processing
of different applications, will range power
from maritime patrol to border patrol, - the graphic engine with one or more
from military missions to civil display screens,
missions, and include different flying output generation and presentation
platforms, i.e. aircrafts as well as to the operator
helicopters. - the operator input devices,

the means of human input interaction
A C2 workstation operates as a link the system interfaces,
between a human operator and an the various connections to the
environment (fig. 2), which normally outside world
consists of a suite of sensors and in
some cases also of effectors2 It is obvious that a modular design
Basically, employment of a C2 will ease workstation adaption to
workstatIon may be as a stand-alone special needs.
unit connected to a single sensor or
in a more effective way as a single 2.3 MODOS
station controlling multiple
sensorsleffectors, or within a network For the afore mentioned tasks DORNIER
of multiple sensors/effectors and have developed a workstation based on
workstations, which in addition a set of requirements of which
provides the ability of a redundant modularity was one of the most
design of the system. important. Therefore the name of that

station was chosen as MODOS standing
2. C- Workstation vescription for MODular Operator Station. The

workstation shown in fig. 5 is
2.1 Capabilities installed into a Do228 aircraft, which

acts as a small maritime patrol
The following main capabilities have aircraft, equipped with a
to be provided by a C workstation SIPERSEARCHER radar, a KESTREL ESM and

a secondary LINS navigation system.
- man/machine interface The software of this system and the
- sensor/effector management and experience gathered durin& the course

sensor data acquisition of its development is subject and
- data processing basis of the following design
- data storage considerations.

These capabilities will be used for
applications as for example

10-2

3. Software Design Considerations we adopted the military standard to
the civil product.

A command and control workstation iq a ARTX, the real-time executive, is the
real-time embedded computer system operating system which is used for our
because of its connection to a real- workstation in conjunction with Ada.
time process, real-time information ARTX is widely accepted in industry,
gathering and processing and it is a quasi-standard.
immediate interaction. Although not
extremely demanding, we have to tackle GKS stands for Graphical Kernel
with interrupts, concurrency, System, it is one of several graphic
multiprocessing and time dependency. A standards in use. We use GKS level 20
well structured software may help to with standardized Ada language
meet these challenges. binding.

3.1 Architecture The symbol set to generate tactical
situation presentations is adopted

As explained before one of our most from the German Navy. The symbol set
stringent requirements was modularity is realized as a data structure and is
in hardware and software, because therefore easily interchangeable.
modularity is seen as the key to
flexibility and adaptability. IFX as an amendment to ARTX is the
Modularity should also help to build file handling system. It provides a
up an open archtitecture (Fig. 6). The MS-DOS-like file structure, which is
first step in this direction is the also regarded as a quasi-standard.
separation between application
dependent software and application We have applied no database standard,
independent software. In this way we no library standard and no
introduce some kind of structurin, presentation standard, mainly because
which is of course reasonable, buh it relevant standards were not available
is merely suitable for an overview. In when we started our development. A
order to get a useful architecture, we math library standard as NAG (Numeric
have to get a deeper insight into the Algorithm Group) or AGL (Ada Generic
functionality of a C workstation. Library) was not necessary and not

applicable resp. Maybe we will use SQL
Starting with the context diagram of or X-Window in the future.
fig. 7a as the first level we achieve
by means of usual stepwise 3.3 Data strucures
decomposition on the second level what
we call platforms (fig. 7b) and on the Data flow and data structures are also
third level what we call building areas which have to be considered
blocks (fig. 7c). A group of building during software design. Whilst data
blocks forms a platform. As indicated flow is more a global matter to be
in fig. 7b we distinguish a man- examined during the analysis phases,
machine platform, a sensor platform a data structures have to be determined
data storage platform, and a special during the software design steps.
processing platform. Fig. 7c gives
more detail by showing the building Generally we have to deal with two
blocks of the man-machine platform, kinds of data flows
including the operator input/output
devices. o sensor -> processing -> presentation

or
3.2 Standards -> storage

Another design goal was to rely on o operator -> processing -> sensor
standards whenever possible. Where or
formal standards were not available we -> presen-
applied quasi-standards, i.e. widely tation
used conventions or agreements (table or
1). -> storage

Table i: SW-Standards & Quasi- whereat the second flow is mainly a
Standards control flow, only sometimes combined

with data.
- Programming Language Ada
- Operating System ARTX One of the problems that arise when
- Graphics GKS developing a software structure are
- Symbol Set national the synchronous and asynchronous
- Files IFX aspects of the environment, i.e. we
- Data Base SQL have to handle
Libraries NAG synchronous/asynchronous input and

- Presentation X-Window output.

Ada as a programming language standard Asynchronous input means that the time
is of course the most significont when data input occurs cannot be
standard for this project. Ada is now predicted. For example all operator
a "must" in the military market-place, input is asynchronous. Also some
but the benefits of Ada are also sensor types are designed to deliver
attractive for the civilian area. And data only by event, because for
because we want to serve both markets embedded computer systems often

10-3

interrupts are used to decrease CPU operator inputs. In other words one
overhead, has to establish a tasking concept.

Asynchronous output is output of which Our MODOS software design comprises
the amount of generated data is 38 tasks, a fairly high number, and it
variable, As a result the time needed has to be explained which
to generate these data is variable. considerations led to this number. To
For example the amount of graphic begin with, these tasks may be sorted
output data depends on the number of into 3 categories, which are shown in
objects to be displayed or refreshed, table 2.
Output data generated only when a
certain event occurs is also Table 2: Task classification
asynchronous (e.g. operator action to
provide effector data), Type Qty Characteristics

Synchronous input is data received Actor 7 cyclic with delay,
with a constant frequency and constant Task free-running, no entry
data block size. Most of the sensors initial start synchro-
with a data bus interface according to nized by initialisation
Mil-Std-1553B need to be polled within routine
a constant time period to prevent data main purpose to
loss., transport data

Synchronous output is data generated Manager 13 cyclic with delay,
with a fixed time period and block Task free-running,
size. For example update/refresh data with entries
for intelligent sensors needin$ actual initial start synchro-
aircraft position for calculating nized by initialisation
course or direction is synchronous routine
output. main purpose to perform

high level system
Data has to be structured in order to functions
be handled properly and effectively,
One measure is to create types, but Server 18 non-cyclic
what we want to use is a somewhat Task initial start synchro-
higher level of abstraction. This is nized by initialisation
clarified in fig. 8. This figure shows routine
a section of the input data flow of a main purpose to provide
distinct sensor, in this case a radar. abstract data types
Incoming data (the messages) is held
in different structures according to The first category contains the so
the relevant processing stage. The called actor tasks. These tasks
structures, which are used here are correspond with all cyclic aata
called queue and pool resp. Similar to transfer internally as well as
this we have to provide further data externally. The second category,
structures for other processing called manager tasks, provides high
purposes. The structures we have used level system functions. Most of these
within MODOS are tasks control the various system modes

of the workstation and the
- fifo for buffering of single data environment. The third category is
- queue for buffering of messages built up by server tasks, which

pool for data base encapsulate a data structure and the
- tree for describing a hierarchy associated functions to operate on, in

of commands other words an abstract data type.
- menu for operator command choice
- form for operator generated data While the design as a task is

entry judicious for both the first and
- window for data or image second category namely concurrency,

presentation the decision for the third category
has to be explained. An abstract data

The first 4 structures are of more type may be realized of course by a
general character, whilst the last 3 set of procedures which permit the
are special for the workstation necessary operations. Now, when
application, different tasks access the same

operation, one has to provide some
3.4 Tasks means of protection against

intermixing. A task with entriesIn an embedded computer system where according to the various operations
synchronous and asynchronous data is and performing these operations during
processed the software design has to rendezvous is a very suitable
guarantee that all events are solution.
processed in time independent of the
basic processor workload. It is Tasks of the first and second category
extremely difficult to achieve this are called active tasks. The structure
within a purely sequential program of these tasks may vary, whereat CPU
structure, if there is a number of time consumption may be a driving
concurrent processes. One may easily design consideration. Fig. 10a shows
derive concurrency between for example the basic active task type, it is not
data acquisition, data processing, waiting for any external event or
data presentation, and the various rendezvous. Fig. 10b shows a slight

10-4

modification to allow for additional 4. Assessment
communication with other tasks or
procedures via entry-calls. Fig. 10c We would like to pick up again some of
shows a further modification to allow the before addressed aspects, in order
for switch onloff on request. If to assess their relevance within the
switched off this task will not MODOS workstation software design.
consume CPU time until switched on These are
again. The state of the task can be
changed by different events (external - Open architecture/modularity
interrupt, rendezvous, self- - Reusability
deactivation). A last example with - Portability
respect to task design is given in - Testability/maintainability
fig. 10d and shows the combination of - Real time processing capability/
a server task and an active task, used tasking
for the handling of Mil-Std 1553B data
bus. The combination provides for the In addition also some aspects of
possibility to use different task object oriented design (OOD) will be
priorities. Communication between the discussed.
two tasks is realized by a fifo
buffer. 4.1 Open architecture/modularity

Designing a task based program An open architecture shall allow an
structure implies also to take care of ease expansion by new modules to
deadlocks. Using the full repertoire obtain additional features. As shown
of Ada language constructs as "select before the hardware is designed for
... or", "select ... else", timed or add-on processors thus giving the
conditional entry calls, "delay" capability of a separate database
statement, and watch-dog timers in processor, an extra signal processor
conjunction with appropriate transfer or something like that. This implies
protocols in the case of multi- the distribution of software. One of
processor systems may help to avoid the expected expansions may be the
eadlocks. For our MODOS design we did employment of a new sensor. In this

some Petri-net modeling, but because case not only the addition of new
of deficiencies of the tool used, we modules is necessary, but also changes
finally relied on more empirical in the existing software have to be
methods. made. As long as data structures as

menus or forms are concerned, they may
3.5 Interfaces easily exchanged. The incorporation of

2 new commands into the control task isA C workstation is part of a more shown in fig. 9. Modularity gives us
comprehensive system, i.e. there are still more flexibility: exchangeable
interfaces to the environment, which symbol sets, exchangeable maps
of course should also be based on variable function key assignmeAt for
standards (table 3). example.

Table 3: Interface Standards 4.2 Reusability

Hardware: STANAG 3838 (Mil-Std 1553B) Modularity and exchangeable data
RS232C/RS422 struct ui pLumuce also reuseability.
SCSI For new applications almost all of the
RS 485 basic software represented by the
ARINC 429 inner shells of the formerly shown
others software layers diagram (fig. 6) may

be reused. All abstract data types are
Software: GKS Level 2C cah.didates for reuse. For example

SQL within MODOS there are 14 instances of
others the abstract data type "queue".

The first kind of interfaces is the 4.3 Portability
connection to the external environment
and to the workstation's peripheral Portability is widely supported,
devices. From a software point of view because only a small amount of code
the only consideration is whether the less than 5 Z, is written in assembly
necessary drivers have to be written language. With one exception no
in high order language or in assembly services of the underlying operating
language. The next consideration system are used directly by the
refers to the man-machine interface. software. Of course a new environment
But this interface, although software- has to provide a GKS interface.
driven, depends on system
considerations. The third kind of 4.4 Testability/Maintainability
interface is the software interface.
Relevant standards we have mentioned Both "-ilities" are strongly supported
in the beginning. Beside these one has by modularisation and standardisation.
to pay attention to the required open Furthermore a clear architecture and
architecture. The software structure identical or similar instances of
should be designed in such a way, that software components assist in
new applications, i.e. new software testability and maintainability resp.
modules may be built in easily. That means that both will be achieved

automatically at least partly if the
basic design considerations are obeyed

10-5

(besides such means as comments, 5. Conclusion
programing style etc.). Of course
testability wi ll be complicated by Some considerations concerning
concurrency. software design of a command and

control workstation have been
4.5 Real time processing capability/ presented and their realisation

tasking explained and discussed. The
requirements for a C workstation lie

The extensive use of tasks may cause above all in adaptability to different
problems with real time processing kinds of employment. This is achieved
ecause of accumulated task switching by the current software design. Far-
time overhead. We have experienced no reaching requirements as hard real
detrimental effects, which is of time processin or extreme data
course owning to the ARTX operating throughput may be satisfied by add-ons
system., The Do228 MPA example to the basic design. Because of the
mentioned at the beginning shows a principles of modularisation and
balanced behaviour between processing standardisation for software as well
capacity and data transport capacity. as for hardware stronger requirements
Furthermore the tasking concept is will easily be met.
helpfull when distributing software in
multiprocessor systems.

4.6 OOD

Because object oriented design (OOD)
is now the favorite software design
method, we are caused to make some
remarks on it.

For the software design of MODOS no
special OOD method and tool were
applied. Nevertheless the software
architecture was built up in
accordance with the OOD philosophy of
Grady Booch. Furthermore the
application of the Ada language
supports the implementation of OOD by
providing of implementation features
as follows

o structured constructs
o typing
o interface specifications
o information hiding and data
abstraction

The MODOS software architecture is
implemented by an Ada package
hierarchy which is defined by the uc1e
relationship. The objects of'the MODOS
software are represented by Ada
packages or compositions of Ada
packages.

The top level objects like (see also
fig, 7)

o Environment I/F Management
o Sensor Management
o Data Storage
o Data Fusion/Tactics
o MMI

are created in accordance with the
real-world objects of the MODOS
system. Those objects group only lower
level objects to one object which
represents a real-world entity.

From the software engineering point of
view more efficient objects are the
low level objects of the MODOS
software architecture. These objects
are implemented as an Abstract Data
Type. Most of them are multiple used.

10-6

Environment

Work- Work-
station

stto

Operator Operator

a) Basic Configuration b) Multiple Sensor - Single Workstation Contig

Sensor 1 ~ Sensor nEffector 1 Efco

I I IWork- Work- Work-
station 1 sainstation k

oOpe t or

c) Multiple Sensor/Effector - Multiple Workstation Configuration

Fig. 1: System Configurations

1(i-7

Coordinat ion I
Tatcl Tactical Tactical
Communication Navigation

SWortstatio

Management ,Command

___-~Control

RADA/IF WorstaionECM

L _______ Mir'_

Fig. 2: C2Workstations Applications in ASW Missions

Mission --..........
MMission Leader Mission

Communication Navigation

SLzR ' & I- Scanner

Control

Workstation U-cneL
FLIR

~~FJUV-Secanner

Laserfluorosensor 1 TVor Photo
Camera

l SMWR i

Fig. 3: C2Workstations in Oil Spill Detection Missions

I0-,s

1 or more
Display Screens

I
Graphic
Engine

System Main Processor Add - on
Interfaces Processors

Function Keys Keyboard Touchpane, Tracka,,

Fig. 4: C2 Workstation Blockdiagram

Fig. 5: Modular Operator Station MODOS

10-9

Addd-On

H Adateicai

Applica ion I trrp

P ekge

In.. ...OODS

Fg:Suportwr Add-On

10-I0

Environment

ment I/FEnvironment Mgmt

Work- Sno
station Mm

OOperaor

a) Context Diagram b) First level of decomposition

Monitor

Device
Driver

Data Storage K

Sensor Mgmt

Key panel Disla

Device a Device

Functon Keys Touchpanel rackball

c) Second Level (first level of decomposition of MMI)

Fig. 7: SW Architecture - Decomposition

10-11

Display'0I

Annunication

F tdatai
Sye M Sens r M

input e Track i

[E Message I . Radar dat I Tracks

I npt Config.

/ dataa

-- Sensorl a

trip- u-- 0 Errr a

data a

Reqquue o es Test
data a

Fig. 8: Data Flow

{" Start

Reques Reuest Request
System Mode or SnoMde or Function o

I !

Reus r Req uest or Request or

System Function i Sensor Functionl Display Function or

Fig. 9: Principle of mode/function control

10-12

task body actortask is

-- local declarations

begin

-- Before the task can run it must be
-- explicitly started.

accept start (...) do

-- initialize variables and return
-- initialisation status.

end start;

-- Now the task is active and can run freely
-- except when the delay-statement
-- is executed.

loop

statements;

-- allow other tasks to run

delay specifictime;
statements;

end loop;
end normaltask type_l

Fig. 10: Active Tasks Examples
a: free-running with delay

10-13

task body managertask is

-- local declarations

begin

-- Before the task can run it must be
-- explicitly started.

accept start (...) do

-- initialize variables and return
-- initialisation status.

end start;

-- Now the task is active and can run freely
-- except when the delay-statement
-- is executed.

loop
select

accept entrya (...) do
-- perform rendezvous

end entry_a;
[statements;

or
accept entry_b (...) do

-- perform rendezvous
end entryb;
(statements;

or
[when booleanexpression =>
accept entryc (...) do

-- perform rendezvous
end entryc;

statements;

else

statements;

-- allow other tasks to run

delay specifictime;
ene. select;

end loop;
end normaltasktype_2

Fig. 10 (cont.): Active Tasks Examples
b: free-running with delay and entries

10-14

task body switchingtask is

-- local declarations

begin

-- Before the task can run it must be
-- explicitly started.

accept start (...) do

-- initialize variables and return
-- initialisation status.

end start;

inactive:
loop

accept activateentry (...) do
-- perform rendezvous

end activateentry;
active:
loop

select
accept deactivate entry (...) do

-- perform rendezvous
end deactivate entry;
[statements;

or
accept entryb (...) do

-- perform, rendezvous
end entry-b;
[statements;

or
[when boolean expression =>
accept entryc (...) do

-- perform rendezvous
end entry-c;

statements;

else
statements;

-- possibility for the task to
-- deactivate itself

exit active when;

-- allow other tasks to run

delay specifictime;
end select;

end loop active;
end loop inactive;

end switching task;

Fig. 10 (cont.): Active Tasks Examples
c: same as 10b plus switching capability

10-15

package body milbus is

task body manager is
-- this task has the default task priority

task driver is

pragma priority (system.priority'last);
-- highest priority

entry start (frame time : in duration);
entry milbus interrupt;

for milbus interrupt use at ...;
end driver;

task body driver is
fr time : duration;
begin

accept start (frame time in duration) do
-- perform rendezvous
fr time := frame_time;
C statements;]

end start;
loop

[statements;
accept milbus interrupt;
[statements;-]
delay fr time;

end loop;
end driver;

begin -- of milbus.manager
accept phase_O (...) do

[statements;
end phase_O;

-- begin of phase 0

phaseO:
loop

select
accept entermessage (...) do

[statements;]
and entermessage;

or
accept phase 1;
exit phaseO;

end select;
end loop phaseO;

-- begin of phase 1

phasel:
loop

select
accept new-frame (...) do

[statements;
end new-frame;

(to be continued)

10-16

or
accept entermessage descriptor (...) do

[statements;]
end enter message descriptor;

or
accept phase_2

(frametime : in duration) do
[statements;

end phase_2;
exit phasel;

end select;
end loop phasel;

-- begin of phase 2

driver.start (frame_time);

-- now the driver task is activated

phase2:
loop

select
accept available messages

(count : out natural) do
[statements;]

end availablemessages;
or

accept get-message (msg : out message) do
[statements;

end get-message;
or

accept sendextramessage
(msg : in message) do
[statements;]

end sendextra_message;

accept change messge (...) do
[statements;]

end change-message;
end select;

end loop phase2;
end manager;

end milbus;

Fig. 10 (concl.): Active Tasks Examples
d: Combination of active task and passive task

II-I

Formal Specification of Satellite Telemetry:
a Practical Experience*

Jean-Michel HUFFLEN Michel LEMOINE
GRECO INFORMATIQUE ONERA-CERT/DERI

2, avenue Edouard-Belin
31055 TOULOUSE CEDEX

FRANCE

Abstract The second reason is the origin of the reuse notion.
Many studies have shown that a lot of functionahties

We expose an exj.orience of using formal algebraic are repeated from one application to another. What
specifications, conducted in collaboration with an about reusing at least final codes? It is clear that the
aeronautic industry. Tile objective is to provide a ability to reuse software is a main key to the software
reusable specification of processing telemetry results. success: the gains we can expect are of course
This family of spatial applications is described by important from the viewpoint of economy in terms of
means of generic formal specifications, and each work and time But another perhaps more important
telemetry could be built from them. Reuse gain is obtained if the reused and/or adapted parts
possibilities are supported by our framework In this have been proved correct once and for ever
paper, we give a general survey of this experience,
including its "story", the method followed for A means to decrease the underlying difficulties is to
establishing the generic specifications which are the start the development process--before beginniig the
system core, and reuse aspects provided, coding phase--by a first description of the

application in a very high level formalism. The goal
Keywordst formal specification, telemetry of this description we call specification is to express
decommutation, design and software reuse, fast the application in a formal language. By formal is
prototyping, requirements elaboration, meant a language for which the mathematical

foundations are precisely established both from the
viewpoint of its syntax and semantics. Because the

Introduction use of a formal language requires a precise
description of all the wished functionalities, aiiy

It is obvious to say that software becomes more and problem expressed with such a formalism will have
more complex and of course as a direct consequence one and only one interpretation, the same for all
more and more expensive to develop. Too much kind of users (men and computers).
work, too much time are necessary to get an
operational version of a software product. Among tile Among the precise specification formalisms, one
reasons responsible of such difficulties in the software seems quite interesting, it is called algebraic
production, at least two are of first importance. specification because it is based on specifying types

as value sets and functions in an equational way to
First of all, the development process activity is express function behaviour. Moreover, it is possible
slowed down each time the description of the system to parameterize ani algebraic specification by another
to be produced is not precise enough and requires to which represents hypotheses Such parameterized
make decisions all along development. Unfortunately, specifications are also called generic specifications
this appears any time the requirements document is At the last, let us remark that under certain
expressed in a natural language. It is impossible to conventions, some algebraic specifications can be run
guarantee that such a document describes, in an and play the role of a prototype. (Concerning this
unambiguous way, what the system has to do. flow specification formalism, its theoretical notions can be
to know whether or not the document is complete found in [4].)
(has everything been said?) and consistent (is there
no contradiction)? In all the cases, the specification activity obliges to

ask ourselves the right questions and to give the
This work was supported by a contract between CNES right answers by fixing-in a not necessarily

and GRECO-PRC PROGRAMMATION. This action of tech-
nology transfer has been managed by two teams- in Grenoble definitive way--the choices related to the
(IMAG/LIFIA) and Toulou~e (ONERA-CERT/DERI). functionalities to provide. This step is compatible

11-2

with the reuse problem. Indeed when we consider terminology was often different from one s3 'en.
related applications, the use of abstraction for to another.
synonymous functionalities allows a better
obviousness of common parts. It might have been possible to isolate in a very hand

fashion the common functionalities but without an'
In this paper, we present an experience of using warranty of keeping consistent the overall
formal specifications within the context of an understanding of what a telemetry system was.
industrial and spatial application: telemetry Another point to be rein'tmber is the fact that the
systems. As it will be mentioned later, the reuse d.cuments we hd in hdnJ were about yet evistiug
objective is always present. A complete description telemetry systems and that we were ir.' -,ed in
of this experience is available in [9]. [10) points out developing a general and formal telemetry
the didactic results of this operation aad also gives description for future systems. What should have
the CNES (Centre National d',tudes Spatiales: been the adequacy of a new system in such a
National French Space Agency) viewpoint. In this context? What credibility should have been given?
paper, we emphasize more the followed process and This problem has been mentioned many times: what
the main results considered from a methodological has not been developed with a reusability aspect is
viewpoint. In Section 1, we quickly recall the study difficult, even impossible to reuse! Here was the
evolution. Section 2 points out our principles for main reason we started in another direction.
writing this specification. Section 3 summarizes the
lesions and perspectives this work opens. First of all we asked the telemetry specialists to

describe in an informal but rigorous manner what a
telemetry system is from an abstract viewpoint.

I "Story" of the study-The Then after several inspections, this document [5) was
chosen approach formalized in terms of generc specifications we will

call generic telemetry in the rest of the paper. Of
The telecommunication division of the CNES is in course, all the problems were not solved in 15).
charge (among others) of writing the requiiement Nevertheless, its main advantage was that it was
documents relative to the telemetry systems. Then it independent on any existing or future telemetry
asks software houses to develop the corresponding system and it was readable enough for non specialists
software system Up to now, all the telemetry of the field as we were.
systems were developed independently each others The generic telemetry gathers the description of all
even if obviously some phases of the telemetry the entities involved in any telemetry system. It
processing are similar from one telemetry to another looks like a general framework from which any
Here is the starting point of our study: to show that telemetry specification could be built. it is evident
some (supposed) reusable parts can be effectively that the informal general document was not aole to
reused for any kind of telemetry systems by means of take into account all the cases. Thus the generic
reusable software components, telemetry is open (e.g. new elements can be easily

Our basic idea was to develop an only and formal added) and very abstract in order not to be too
requirement document from the informal ones which restrictive or too dependent on any particular case.
described a few existing telemetry systems. Instead In practice to the contrary of the first approach, this
of this, another approach should have been to second one is definitively bottom up. Indeed, it is
develop more or less directly reusable software more simple to enrich a generic specification with
components. This second approach has not been new elements (not yet considered as generic enough)
achieved for assessment reasons and also to than to suppress peculiar characteristics that had
guarantee that the reusable software can be keep free unfortunately been considered general.
from any implementation language. laving written the generic telemetry during the first
The study was started with five ditTerent telemetry part of this operation, it was interesting to test it on
systems. We tried to exhibit all the common a real case. We have done this work with a telemetry
functionalities between them. This top down of the scientific project INTERBALL. As mentioned
approach was abandoned because. above, it was necessary to enrich the generic

telemetry. The example has been fully developed for
the difficulty to understaind the informal its main difficult parts: generation and storage of
documents, indeed, there are so many embedded information according to an INTERBALL
incompletenesses, too much implicit that only a format, and decominutation of the received data at
specialist of 'his domain was able to understand ground.
such docum :ts;

A few remarks:
" each document was specific to a given telemetry

system: in other words, each document reflects a due to the chosen specification language we have
the description of one telemetry system outside been able to run parts of this iistantiated
any global consideration-for instance, the used specification. This point is very comfortable.

11-3

Indeed, it is not necessary to wait for the end of 2.2 Our approach
the project to get some results allowing the
specifier to prove the project under 2.2.1 Frame

consideration is really effective; As we have exposed in Section 1, our approach

v the internal and external presentations of proceeds by using parameterized specifications. For

information are similar: this improves the any telemetry, our framework for specifying is

readability of the formal specification and allows divided in two parts:

updating it easily in case of any modification to
the external view; e the generic telemetry specification: it

includes, on the one hand, the operations which
* the enrichment of an instance of the generic are present in all the telemetries (e.g. a sort

telemetry must be done with in the mind the according to a time base), on the other hand,
reuse goal of the added information (we will go the description of all the entities which
thoroughly this point in §3.1). participate in any telemetry and functionalities

which equip these entities.

2 Specifying telemetries: tool * the instantiation, i.e. the bindings of formal
and method parameters to actual values. These actual values

are supposed to be specified: they represent the

Now we are going to tackle more technical features. specific conventions for the considered telemetry.

First, we describe any telemetry process succinctly.
Then we explain how we have specified is as the In order that modularity of our specification respects

generic telemetry using generic specifications. We the telemetry organization given in Figure 1, we have
illustrate our method by an excerpt from these written one module for one entity. These modules are
specifications, from which we take some examples parameter specificatons: because of their generalness
At the last, we briefly show an example of its use character, they do not represent the entities of a

particular telemetry, but they must be templates,
such that the specification of any telemetry entities

2.1 General description of telemetries can be obtained by replacing the module parameters

The aim of any telemetry process is to make up the by the conventions of this telemetry.

measurement results effected by a scientific satellite
The data of each experiment must be provided in
chronological order to the organization which 2.2.2 A limitation

manages it. For any telemetry, the number nb-ezp of embedded

Any telemetry system is divided in two subsystems: experiments and nb-ts of technologic sets

an on-board system and a ground one, as shown in (cf. Figure 1) depends on the considered telemetry.

Figure 1. The on-board system includes a Let us recall that any experiment and technologic set
transmitter which sends telemetry results to ground are represented by a parameter specification in our

stations. If the satellite is geostationary, framework, according to the principles we have

transmissions are direct and purely sequential. In the stated in the previous subsection. If we consider any

general case, the satellite moves. There are several telemetry process in a global way, we obtain

stations, and the satellite faces one of them only parameter specifications which are parameterized

during a little while. While the satellite does not face themselves--they are parameterized respectively by

any station, it records telemetry results to be the natural numbers nb-exp and nb-ts.

transmitted in a storage zone. When it is within
sight of one, it transmits both direct and recorded As far as we know, any algebraic specification

telemetries. That is why it is necessary to order language provides neither theoretical nor practical

results according to their dates afterwards. tools to describe such a specification. Some ways to
cope this limitation exist. Since we are interested in

Information provided inside satellites is constituted providing a very readable specification especially, we
by bit strings, according to a specific format for each have chosen the solution we think it is the simplest
embedded experiment Before transmission to in a didactic way: we consider one experiment, and
ground, the satellite mixes these bit strings into byte one technologic set. Generalizing these two
matrices according to a distribution called specifications to describing nb-exp xperiments and
telemetry format. Such a format depends on the nb-ts would make them more complex, hut does not
considered satellite. On the ground, separating data constitute a real problem. In order to be exhaustive,
according to their origin among the received byte it seems important to us to report this limitation but
matrices, in order to reconstruct original bit strings, we cliM it is the only actual limitation we come up
is called telemetry decommnutation. against while specifying these spatial applications.

11-4

nb-ezp experiments, nb-ts technologic sets,
each has its specific each has its specific
experiment format technologic format

E-----------En .exp T---------)- t

format zon

B
0
A
R
D T"ansmitter for telemetry data

G
R Extracting

0and ordering O u p u ofU telemetry results Output of

N telemetry results

D in the chronological
order

nb-st stations

Figure 1: Advancing data during any telemetry (according to [5]).

11-5

2.2.3 Method telemetry to another. Let us cite two examples

Now we are going to explain the principles which here-cf. [8] for more details.

have guided us in writing the modules of the generic The formats of the UARS-WINDII telemetry is
telemetry specification Figure 2 gives one of divided in vertical sections corresponding to the
representative excerpts. Readers interested in the different kinds of data which they contain As
complete text can find it in [8] Some technical another way, the INTERBALL telemetry formats are
notions about our notations are given in Annex. described byte by byte

Because of their algebraic character, the Since no unified approach for describing any
specifications we propose comprise both types and telemetry format exists, our solution is to consider a
functionalhties. In these parameter specifications, we telemetry format as an object, according to the
understand types as possible value sets: for example, object-oriented approach. We do not know its
the modes of a telemetry, which give access to the representation and we have access to it only by
different telemetry formats, form a specific type for methods. In our case, the methods are:
this telemetry (In Figure 2, we note tm-mode this
type which depends on the considered telemetry) * storing data into telemetry formats--it is done

Functionalities are actions on types: they are by means of:

characterized by their inputs and outputs, and they * the operator receive-exp for the telemetry
are represented by means of operators For example, experiment.
reception of data from the experiment is made by
means of the operator * the operator receive-techno for the

technologic set
receive-exp

& decommutation of formats in order to provide
whose domain is. the different kinds of data these two op'-rators

tmi-mode (for the experiment of the telemetry and its
x technologic set) are included in the specification

Seq[Fixed-Array Ftype-and-Nat[Bit / exp-dmi]] of ground operations.

x o some additional information bound to the
Seq[Matrix Ftype-and-2-Nut(Byte format-e g. the synchronization words- they are

/ used to control the reliability of the data flows
nb-rows, nb-bytes]]

This point ends the presentation of the principles we
and codomain is. have followed for exhibiting types and operators from

the informal document [5]. We cannot go thoroughly
Seq[Matrix Ft pe-nd-2-Nat (Byte the specification of storing and decommutation since

/ bit narrowly depends on the considered telemetry
nb-rows, nb-bytes]l format. Thus our generic telemetry is a framework

(For more details about these type expressions and for formally specifying how to built any telemetry

meaning of our identifiers, see the commentaries m specification from it Applications to reuse objective
Figure 2 and Annex.) will be seen in §3 1, after a short survey about the

instantiation we have studied during the second part

In a concrete way, the argument of sort tin-mode is of this work
the current working mode when the data are
received These data are organized in an array
sequence using the experiment format, and this 2.3 Instantiating the generic
operation takes also a matrix sequence using the telemetry
telemetry format-obtaned from tm-mode--in which As ientioed already, the distribution of the
information is put in the appropriate places In INTERBALL telemetry formats is given byte by
another way, the "new" matrices are obtained from byte, according to the different kinds of data. An
the "old" ones by addition of experiment data (Let important point fo- our specification is that our way
us recall that there cannot be side effect since we for describing the format conventions is very near to
consider functions in a purely mathematical sense what is depicted in the project documents. For

According to (5], a telemetry format is a byte matrix storing and decommutation, the different bytes are
whose dimensions are specific to the considered used as a grid in which holes indicate places for
telemetry. In such a way, the distribution inside this deposing or extracting information [9]. We do not
matrix depends on the telemetry, too. And no detail this feature here, and are going to be rather
additional information is provided. Principles for interested in replacing some elements of the generic
these distributions may be very different from one telemetry For example, some dimensions are

11-6

-- This is a commentary. See Annex for more details about some technical notions.

prop Satelflit e- Features[tmi-mode, -- Working mode: it provides access to each
-- telemetry format used.

bit-rate -- Type of all different bit rates for
-- transmissions.

-- How to receive the results...
exp-dimi, receive-exp, - -. .. Of one experiment (cf. §2.2.2) whose format

-- dimension is exp-dimi,
fechno-diml, receive-terhno, --.. .of one technologic set whose format

-- dimension is techno-diml.
-- In these two cases, let us recall that the used
-- telemetry format depends on the working
-- mode tm-mode.

nb-rows, nb-bytes, -- Dimensions for the matrices of telemetry
-- formats.

dim,, dim2 , corr, -- Data enrichment by an error-correcting code.
-- dim, and dim2 are respectively the
-- dimensions of the original array and the
-- enriched one. corr is the coding operator.

mode-rate, -- Bindings: working mode '.-* corresponding bit
-- rate.

obtain-time, fl ow to get dates.
lg-synchro, -- Common length of synchronization words.
synchro] - The synchronization words themselves.

opus -- Domains and codomains of the operators:
exp-dim1 , techno-diml, nb-rows, nb-bytes, dim,, diM2, Ig-rynchro - - -

Nat
receive-exp tm-mode x Seq[Fixed-Array.Ftype-and-Nat[Bit / exp-dimul]] x

Seq[Matrix. Ftype-and-2-Nat [Byte / nb-rows, nb-bytes]] -
Seq[Mati-ix Ftype-and-2-NatiByte / nb-rows, nb-bytes]

receive-techno Im-mode x Seq[Fized-Array.Ftype-and-Nat[Bit / techno-dimu]] x
Seq[Matrix.Ftype-and-2-Nat(Byte / nb-rows, nb-bytes I]) -

Seq(M at,-ix.Ftype-and-2-Nat [Byte / nb-rows, nb-b ytes]
corr Fixed-Array. Ft ype-a nd-Nat (Bit / dim,] -

Fixed-Array.type-and-Nat(Bit / dim12]
mode-rate : m-mode -

bit-rate
obtain-time -Nat

Time
synchro :-

Seq[Fixed-Array. Ftype- and- Nat [Byte / Iy-synchro]

-- No specific axiom in these module (cf. §2.2.3).

includes -- Using the specification of anty error-correcting code:
Using- Error-Codes[/ dim,, dim2, corr],

-- General binding of modes to rates:
Bit- Rat es-and-Modestm-mode, bit-rate / mode-rate]

endprop

Figure 2: Data reception inside aiiy scientific satellite.

11-7

instantiated as follows: o the establishment of a real specification in which

every thing is explained and where no ambiguity
n6-rows 32 remains;

nb-bytes ' 16

ig-synchro 7 * an efficient means for developing a software
family where the main keyword is reuse;

and the synchronization words are-they are given

using hexadecimal codes--: e a first prototype of the system has been
developed;

[("F5", "F6" , "O, "cr', "02", "¢" "c4"),
("F5", "C6", "DO", "Dl", "D2", "D3", "D4"), * writing a formal document which represents(D5" , "DC", "EO"," , " E 3", "E4"), what the order wants in a very clear manner.
("5 E", "E6", " " , "F3", "E 4"), This document may be considered as well as areference document for the following steps of the

Software Life Cycle. As main consequence, this
3 Specifying an application document can also be reused along the

family development piocess for verification and
validation purposes

3.1 The ways to reuse Moreover we have shown that using a peculiar

By using our framework for developing telemetries, formalism such as an algebraic specification language
an environment for this comprises the generic is not too difficult if the semantic distance between
telemetry and instantiations for obtaining some the application and the chosen formalism is not too
telemetries. Each instantiation leads to a high
specification which is ii glbne lnted using a We have been very surprised from our viewpoint to
programming language. This global situation is see that telemetry specialists have accepted Wo learn
depicted in Figure 3. Two possibilities for reusing the (very strange) formal language and are now ableexist. h vr tag)fra lnug n r o:al

to read our telemaetr) specifications.

Reuse of the generic part If the used
programming language supports gencricity (like
Ada), the operators of which we give the Conclusion
behaviour (e.g. the chronological sort) can be
implemented once and reused for each new Now writiig a formal specification is becoming a

telemetry, feasible task at the industrial level. Some large
applications have been described with algebraic

Reuse of iplensuntatiois If we find out--when specification. As an example, a specification of the
we integrating it-that the instantiation of a File Management System of UNIX is described in [31.
new telemetry is the same as a previous one, The purpose of that specification was to study the
then reuse of implementation of this previous ambiguities, contradictions, incompletenesses,
telemetry is allowed, inconsistencies of part of an operating system such as

T'his second case can be extended when only entities UNIX We will say that kind of formal specifications

are identical, but the implementation process miust have been writt!n in order to evaluate all the power

have respected the specification modularity in order of formal speciuicatmons on a concrete example.

that reuse is possible. In our context, the CNES which is more a client

In order to guarantee reuse, it is crucial that the than a developer had put the main emphasize about

consistence are maintained. As a consequence, maintenance and reuse of software systems. The

modifying generic telemetry- for correcting an error, formal general specification-describing an

adding a forgotten functionality, or reporting a application family-it is not too difficult to maintain

standard change-should be followed by an and in case of any modification at the highest level,

up to-date about all the instantiations. Otherwise, it it is easy to measure the consequence on the final

is desirable to consider the "new" generic telemetry codes waen these codes have been implemented by

specification as a core of a new tool. following the specification modularity. In case of
development of a new but similar system an

3.2 Lessons instantiation is straightforward.

Nevertheless a few drawbacks do exist.
If we try to summarize the presented application,

several lessons have been learned. According to what The first one is about the kind of languages we can
has been done, we can affirm that using a very high use. These languages are generally based on
formalism for expressing of real problem is mathematical notions They are not readable enough
mandatory for many reasons, as should be dedicated interfaces.

I

11-8

implementation of generic subprograms

instasuptin no. gae no. 1ramentation

GENERIC "General"
TELEMETRY prTlemtryProra

atin no. 2 no. 2

instantiation pas Telemetry no. 2. Telemetry

no. n

Figure 3: Integrating a new telemetry with reuse.

Trhe second drawback is related to the lack of describe an application famitly in a precise and
industrial environment supporting formal languages reusable way. Consequently, we can think we have
and formal methods. Indeed, even if formal methods answered the preoccupations of the CNES.
such as VIjM [111 do exist and are in practice, they

suffer from a lack of support tools.

The third one is about the expressive power of
formal languages. As it can be read in this paper, llereafter we briefly expose our notations about
functionalities are easily described. What about the genericity. The foundatiois of this theory can be
operational properties of a system? By operational found in [4]. Since it increases the expression
)roperties is meant real time constraint such as time powerful, it has been integrated in most of present
and space but also other properties such as algebraic specification languages, e.g ACT ONE [4],
friendliness of the interfaces. OBJ3 [7), PLUSS [2], LPG [1] ..

All the drawbacks will be overridden very soon. For the specifications we have written, we have used

The first point is currently being solved by FP2 (Functional Parallel Programming.), or more
education. The academia has started teaching formal exactly a subset described in [8] and in 19, Annex B]
languages and formal methods as well a few years (This generic specification language includes also
ago. The new generation of computer scientist will some aspects of parallelism [13].)
be able to tackle the problem of specifying formally. In FP2, parameter specifications are expressed by

The second point is fully considered by the industrial means of property modules The types and operators
world. A few environments have been developed in introduced inside this module are given after the
large European project such as PROSPECTRA [121 module name, e.g.--"/" is a syntactic separator
and are ready for industrial use. between types and operations-

The third point is the only one for which only partial Total-Order[t / rel, eq]
solutions exist.

Finally, we have shown that algebraic specifications where t is any totally ordered set, rel is a total order

could be successfully used within spatial domain to relation, and eq is an equivalence one (eq is needed

11-9

to specify the antisymmetry of rel). For any (3] DECLERFAYT (Olivier), DEMEUSE
instantiation, the lexical order is used to substitute (Brigitte), SCHOBBENS (Pierre-Yves),
formal parameters by actual values, e.g.: WAUTIER (Fran~ois): Adiquation des

spiczfications forinelles aux probl~mes de grande
Total.Order[Nat / ,1envergure. Software Engineering & Its

Applications. Second International Workshop.
which points that the type Nat of the natural Toulouse, 4-8 December 1989. Proceedings,
numbers, equipped with the boolean operators " Vol. 1, pp. 483-505. EC2.
and "=" is a totally ordered set. [)ERG(atu) AR(en)

Three types which appear in the Satellite- Feature Fundamentals of Algebraic Specification 1.
property (cf. Figure 2) are generic. Equations and Initial Semantics. EATOS

Monographs on Theoretical Computer Science,
" The fixed arrays: they are parameterized by the Vol. 6. Springer-Verlag, 1985.

property Ftype-and-Nat which comprises the
constituent type and the natural number which [5] GIROD (Fran~oise), THOU VENIN
represents the dimension. Thus, the expression: (Jean-Pierre): Une tflimesure :qu'est-ce, d'oi

a vient, o~i Va va ? Communication CNES,
Fixed-Array. Fype-and-Nat([Bit / 101 janvier 1990.

denotes the fixed arrays whose constituents are [61 GOGUEN (Joseph A.), THATCHER (James
bits and dimension is 10 (decimal integers are W.), WAGNER (Eric IV.) An Initial Algebra
allowed). Approach to the Specification, Correctness, and

Implemnentation of Abstract Data Types. Current
* In the same way, matrices are parameterized by Trends in Programming Methodology. Vol. 4:

a property which includes the constituent type, Data Structuring, chap 5. Prentice-liall, 1978.
the iiumber of rows, and the number of columns, (7] GOGUEN (Joseph A.), WINKLER (Timothy
eg.- C.): Introducing OBJS. SRI-CSL,-88-9 SRI

Mat rix. Ft ype-and-2-Nal (Byte / 32,161 Projects 1243, 2316, and 44i5. August 1988.
(8] JIUFFLEN (Jean-Micliel)- Fonctions et

which is a type expression used for specifying generaicitv dans un langage dc progranmation
the INTERI3ALL telemetry format. paratlle Thi~se do I'INPG. Grenoble, juillet

1989
" "Seg" denotes the generic sequeiices. They are

parameterized by a property which includes oiie (9] IIUFFLEN (Jean-iihil) J1e6uhisabilit6 &
type. Such sequence types caii be iiotedl ii an tdellnesure. Utzlzsation d'un oul de
abridged way, e.g. "Seq[flit]'. spt~cification algebrique. Rapport de fin de

contrat CNES, seIpteinbre 1990
(All the rules about the conventions for these type
expressions provided by FP2 can be found in (8]) [10] IIUFFLEN (Jean-Michel), GIROI) (Franqoisv),

TIJOUVENIN (Jean-Pierre): Line utilsation
Let us note also that parameter specification can idustrielle des spe'cifirations alge'briques dans le
import another parameter specification by means of domnaine spatial To appear in Proc. CIL'91
an inclusion mechanism, as exists in object-oriented Barcelona, Mlay 1991
languages. (We use this feature in Figure 2.) 1111 JONES (Cliff Bryn)- Systematic Software

Developmnent Using VDM. Second Edition, 1990.

References Prentice flail, Series in Computer Science.

[11 ERT(Diier, DABIK(Pacal, E~t~lED (121 KRIEG.1BRUJCKNER (Bernd); Forinalisation of
(1] ERT(Diier) DRIII (Pscal, EhAIEI) Developments, an Algebraic Approach. lIi

(Itachid), IIUFFLEN (Jean-Michel), "ESPRIT'87, Achievements and Impact,
DECLERFAYT (Olivier), DEMEUSE Part P", pp. 491-502. North- Holland, September
(Brigitte), SCIIOBI3ENS (Pierre-Yves), 1987.
WAUTIER (Fran~ois): Reference Manual of the
Specification Language LPG. Version 1.8 on [13] SCIINOEIIELEN (Philippe), JORRAND
SUN Workstations. LIFIA, XRT 59. Grenoble, (Philippe): Principles of FP2: Term Algebras
March 1990. for Specification of Parallel Machines. In.

"Languages for Parallel Architectures: Design,
[2] BIDOIT (Michel): PLUSS, un langage pour le Semantics, Implementatioii Models" Wiley,

diveloppemeni de speictflcations alge'riques 1989
modulaires. Th~se d'Etat. Orsay, mnars 1989.

12-1

FORMAL VERIFICATION OF A REDUNDANCY MANAGEMENT ALGORITHM
by

Jonathan Draper
Systems Engineer

GEC Avionics Limited
Technology and Systems Research Laboratory

Airport Works
Rochester

Kent
ME1 2XX

UK

SUMMARY against another level: does the lower levil of design
satisfy the requirements of the higher level of design?

This paper describes work on mathematical formal An example of verification is the review of code
verification of a redundancy management algorithm against a low level design document. The algorithms
that was carried out in two stages. The first stage used in the code are verified against the algorithms
used the specification language Z and verified the required by the low level design.
specifications with hand written rigorous proofn. The
second stage used a proof tool to produc, foroanl proofs Vahdation of a detailed low level design is often
and specified the system with the language of that performed in two stages: verification against a higher
proof tool. The system specified was part of a safety level of design; and then validation of that higher level
critical software section of an aviomc system. of design. This is donc because validation of the higher

level of design is easier as the requirements are not
The paper includes a section that presents the being obscured by implementation detail. For example
theoretical concepts of formal methods, concentrating consider the validation of code, the low levl
on specification and proof. These ideas are illustrated specification, using pseudo cede, the high level
in the paper with extracts from the formal specification. The cods car, be verified against the
specifications. Some of the benefits and problems of pseudo code by review. Thus the problem of validating
using mathematical proof for verification are described the code directly has been simplified to validating the
in the illustration of the redundancy management higher level pseudo code.
example.

Thus formal verification is used to show the
INTRODUCTION compliance of a (detailed) low level design with an

(abstract) high level document that can itself be
This paper is divided into two main seftions: the first validated as containing all the important properties
on theoretical concepts and the second describing the required of the system. This is an idea that will be
work done with the examples. The conclusions of the used later, with the levels of design specified formally
work are given at the end of the paper. and the verification performed with mathematical

proofs.
The first section of the paper starts by defining the
terms verification and validation. It continues by Specification
describing the main ideas of formal methods: formal
languages, formal specifications, formal requirements, A formal specification is a description of the design of
formal refinement and proof, a system at a given level of detail. It is written in a

language with a mathematically formal definition of
The second section of the paper reports on the two both the syntax and semantics. Examples of formal
stages of work done on the example - the redundancy languages are VDM or Z but also include subsets of
management algorithm. The different results of the most programming languages. The description is
stages are discussed. usually of the functional aspects of the system, but

may include non-functional details such as temporal
FORMAL TECHNIQUES requirements. Tools can be used to check that

specifications obey the syntactic rules of the
Validation and Verification specification language, and can also check some of the

semantic rules, such as type matches. The levels of
Validation and verification are processes that design that are specified can range from the highest
demonstrate the correctness of a design. However, as lkvel safety requirements down to the executable
there are many definitions of these terms, the program code.
definitions used in this paper are given below.

The initial advantage of formally specifying a level of
Validation is the checking of a design against the real design is that it forces choices to be made, and
world: does the system performance satisfy the recorded, about unclear aspects of the design. The
customer? An example of validation is the inspection formal specification itself is precise, and can be made
ofa high level requirements document. The ideas abstract. Precision is useful as it removes ambiguity -
expressed in the requirements documents are all the choices that are being left to lower levels ofvalidated, for compliance, against the customer's design are made clear. Abstraction is useful in high

ideas. level specifications, as it allows important properties
to stand out.

Verification is the checking of one level of design

12-2

Where two levels of design are formally specified then statements they were used on. The steps of a formal
formal verification techniques can be used to encure proof are exceedingly small (such as the rule in Figure
that one is a correct representation of the other. This 1) and checking is a simple pattern matching exercise.
leads to an approach where successive formal This can be carried out by non-mathematicians or a
specifications are written, and each is checked against simple tool. However, because of the extra detail, more
its predecessor. This approach is known as formal effort is needed initially to write the formal proof.
refinement or roification. During this approach the
formal specifications of the design becomes more More advanced tools can help write proofs by:
detailed and explicit. Thus, the abstract requirements
that were clear in the high level specification may be 0 Displaying clearly the current stage in the
obscured by this detail. Hence, the need to verify the formal proof.
final refined design, using mathematical proof, against
the higher level designs. 0 Applying a rule chosen by the user,

calculating the next stage of the proof.
Proof

Storing a library of rules, to allow the user to
Mathematical proof is a formal verification technique. search for rules that may be useful.
It can be used to show that one mathematical
statement follows logically from another. Thus it can Let the user define new rules from a
be used to verify that a low level formal specification combination of old rules and store these in
meets a high level formal specification. It can also be the library.
used to help validate a specification showing
mathematically that a design has desired properties. 0 Allow the user to write functions that try sets
Proof is used to verify that the specification meets this of rules and apply them if they are useful.
property; then the mathematical statement of the
property can be validated. A completed proof will have analysed the theorem for

every possible combination of inputs and states. This
A mathematical proof can be presented in either a car. be contrasted to testing where only a
rigorous or a formal style. representative, finite set of cases is analysed.

However, the theorem may have explicitly excluded
A rigorous proof is an outline of the major points of a certain cases, and the analysis with proof only checks
proof. It should provide enough detail to enable a that the theorem is correct in the casoe that have not
formal proof to be constructed. However, the drawback been explicitly excluded.
with rigorous proofs is that they are difficult to check,
since a mathematician is needed to construct the EXPERIENCE OF FORMAL VERIFICATION
missing steps avid check that the proof is correct.

Having described the theoretical ideas behind formal
A formal proof has all the details of the proof at every specification and proof, the paper now discusses the
stage - this includes the proof rules used and the formal verification of an example redundancy

management algorithm.

This is an example of a top-down proof rule. The rules states how the correctness of the current
goal, above the line, can be simplified to the subgoal below the line. Each goal is a list of
hypothesis and a conclusion: the goal is true if the truth of the hypothesis entails the truth of

the conclusion.

In the rule given below, B and C are general predicates, while r stands for all other predicates
in the hypothesis list. The rule states that to show that "if the hypotheses in r are true then the
statement B = C is true" it is sufficient, because of the rule, to show that "if the hypotheses in
r are true and B is true then C is true". The rule is extremely simple, but a large number of
such rules can prove useful statements.

F-B =: C

P,Bi C

Figure 1: Proof Rule

12-3

Overview of System Specification

After an initial study of formal verification on a small The specification approach emFloyed can be divided
subsystem, it was decided to apply the formal into three parts: the framework, the requirements,
verification techniques to a much larger sub-system. and the algorithm. The framework and algorithm form
The initial work was specified in Z with hand written the main specification, describing the functional
rigorous proofs. The subsequent work used a proof tool behaviour of the redundancy management subsystem.
to write formal proofs and specified the system in the The requirements are of the higher level behavioural
language used by that proof tool. This language is properties that are desired for the system. For
based on the functional language ML. example a property may state that once a lane has

been isolated it will never transmit any commands.
Redundancy management of duplicate resources is an Alternatively, the framework and requirements can be
essential part of many safety-critical systems, and this thought of as a high level specification, and the
aspect of the system was chosen as an example to framework and algorithm as a lower level refinement
study the results of formal verification techniques. of this specification.
Safety critical systems are viewed as a natural
application area for formal verification. In particular The specification framework describes the interface of
the algorithms used in safety critical systems must the redundancy management subsystem to the rest of
also be considered as safety critical, and it is the the system. This includes listing the variables that are
algorithm that the formal verification was input and output, and a definition of their types. The
concentrated on. framework also defines how the inputs and outputs

are externally linked in the rest of the system. A
With the benefits of the initial study it was decided to simple temporal framework is also defixied using
use formal verification over a larger area of the functions mapping time to the values of the system
system, to specify more algorithms. The main benefits states. This framework allows the sequences of the
expected were an unambiguous specification of the inputs and outputs to be defined and can be used to
algorithm and better analysis of the algorithms than model some of the effects of the asynchronous aspects
testing alone can provide, of the system.

Redundancy management, as the name suggests, In describing the structure of the rest of the system,
chooses between redundant elements of a system in abstractions have been used and assumptions made.
the event of failure. The illustrative example chosen is Abstractions are used to hide details not relevant to
a triplex digital system. There are three lanes, each of the redundancy management and to simplify the
which generates commands and qualifibs these system to make analysis easier. For example the
commands with binary flags. Redundancy redundancy management does not need to know the
management is performed by the comparison of these exact datatype of the commands it is comparing, only
commands together with exchange of opinions between that the commands can be compared, and can use an
lanes on the correctness of the other lanes. Ultimately abstract datatype with this property. Also there are
these opinions can cause one of the lanes to stop many commands that the redundancy manageriert
generating commands. It is the function that compares but abstractly only one command need be
generates these opinions that we have specified and described and the results of the analysis of the one
validated, and it is clear that such switching of command generalised to the others.
resources is critical tu the safe operation of the
system. The assumptions that had been made in the

specification were recorded and form part of the
Overview of Process specification document. The assumptions covered

areas such as: the accuracy of the temporal model; the
Formal verification techniques were used together generalisation of analysis performed on one to the
with informal techniques. Important parts of the other commands, and the correctness of the
algorithm were formally specified, and an informal list simplifying abstraction used on the datatypes. An
of specification assumpt ins produced. High level example of an assumption is given in Figure 2.
requirements were stated initially as broad
mathematical theorems. Thiee were modified after
analysis to provide a record of the cove. age of the
formal verification.

The assumption is in two parts: the first half of the sentence describes the assumption; the second half give
some justification for the assumption. Tlus will be reviewed when the specification is reviewed.

'It is assumed that the flags A and B can be modelled as a single boolean value, as all processes use the
disjunction (A or B) of the flags."

Figure 2: Example Assumption

12-4

This is an English paraphrasing of a Z schema that describes part of the redundancy
management algorithm. The algorithm is defined on the part of the framework describing the
inputs and outputs of a lane. This information is contained in the schema ALaneState, formally
defined elsewhere in the specification. The A symbol is the standard Z notation of defining an
operation with two copies of the system state: one is used to represent the system before the
operation, the other represents the system after the operation, the variables of the state after
the operation are shown with a dash after the variable name. The operation is defined by
specifying how the final state is related to the before state

It can be seen that the new value of ownAfc, that is ownAfc', is defined explicitly in terms of the
other variables. (07HERLANE has only two values so the forall statements can be simplified.)
Thus the value of ownAfc' can be calculated from the inputs. This calculation still uses abstract
datatypes and operations (operations that are not directly available in programming languages),
such as the relation "does not compare with".

OwnAFCGeneration

ALaneState

ownAfc' = notAvailable if and only if
(forall lane of type OTHERLANE.

(inputs(lane)).dataSent = sent and (inputs(lane)).afc = available and
threatToSelf(lane) = threat) or

(forall lane of type OTHERANE.
(inpvts(lane)) dataSent = sent and (inputs(lane)).afc = available and
(oldCommand, ownCommand) does not compare with

(inputs(lane)). command)

Figure 3: Specification of Design

The list of assumptions was found to be useful as a and concisely, and helps with the reviewing of the
checklist to be used when the specification was specification. The explicit natut . of the specification
reviewed. As the specification is claimed to accurately also helps reviewing, and allows the use of simple
model the system apart from the assumptions, animations, where the specification is translated into
validating the specification can concentrate on the a very high level programming language (e.g ML or
closeness of the model. The assumptions can be Smalltalk) and executed.
justified informally, complementing the formal
analysis that is validating the system. The algorithm is formally specified from an outline

given in an informal document. One of the benefits of
The framework is written from informal documents formal specification is that it is easy to see the cases
that described the system, and validated against these that have been left out of the informal documents.
documents by inspections.

As with the framework, a list of the assumptions made
The specification of the algorithm describes the in formally specifying the algorithm is written down.
internal operation of each lane, in contrast to the This list of assumption is very useful as a cheeklist
framework which contains the external links of the because it includes the basic assumptions that have
lanes Together with the framework specification, the been made about the system when designing the
algorithmic specification provides a complete algorithm.
description of the aspects of the system that are
relevant to the redundancy management subsystem. The specification is used as a requirements document

for the software, the lower level design and the final
The algorithmic specification describes how the code can be verified, formally or informally, against
outputs defined in the framework can be calculated the specification
from the inputs defined in the framework. The
algorithm is usually defined explicitly but still uses The algorithmic specification itself is validated:
abstract datatypes, such as lists and sets, and abstract partially by formal verification against the
operations. (An example of part of an algorithmic requirements specification; anl partially by review
specification is given in Figure 3). The use of abstract against the informal descriptions of the algorithms,
datatypes allows the algorithm to be described clearly

12-5

This is an English paraphrasing of a Z specification of a requirement. The original English
requirement was "If one or more lanes have been shut down, then no other lane will be
deliberately shut down."

Note that the specification uses some previous definitions: LifeCycle contains the state of the
system; NotTransmittingAfter and Shutdown define some of the functions used in the
specification. The specification is very precise about when the conditions must hold, and what
they must be.

SRequirement3

LifeCycle
NotTransmittingAfter
Shutdown

forall frame of type natural number and laneNumber of type LANEIDENT*
laneNumber notTransmittingtfter frame implies

(forall otherlane of type LANEIDENT and
subseqFrame of type natural number I

otherlane # lIneNumber and subseqFrame > frame*
not (otherlane ehutdownOn subseqFrame))

Figure 4. Specification of Requirement

The requirements specification is a collection of high Proof
level functional requirements.. Many of the
requirements aie fundamental to the safe operation of Mathematical proof wa5 used to verify that the
the system. The requirements are defined on the algorithmic and framework specifications met the
inputW Hr'd outputs of the lanes defined in the requirements specification. A theorem (a mathematical
framework, but at a higher level of abstraction than statement of an important property) was written for
the algorithm (eg Figure 4). Most of the requirements each requirement and pro"ed to follow from the lower
include a set of conditions; the requirement only level specifications.
applies if these conditions hold.

For the initial study, which had been written in Z,
The requirements are written functionally with two hand written rigorous proofs were used. The proofs
levels of functions. The higher level is almost a were presented in a formal style using small steps to
paraphrasing of an informal requirement, and uses try and make the proofs easy to check. The final result
the lower level functions to link the inputs and was a proof that alternated between a series of formal
outputs. The conditions for the requirement are also steps and rigorous steps. It was found that the formal
clearly specified at this level. Then the lower level steps were very tedious to check by hand, and the
functions are defined to give an exact definition This rigorous steps were hard to check, thus the confidence
form of definition is used to help validation by in the correctness of the proofs was low.
separating the overall requirements from the
definitions of specific terms. There were two methods to increase the confidence in

the proofs, the proofs could be v ritten with either
The requirements were originally written from the fully formal steps, or large rigorous steps. Fully formal
informal high level philosophy documents and after steps would allow a computer aided tool to check the
discussions with the system designers. The proof. Large rigorous steps would allow a
requirement were later modified after analysis with mathematician to check the proof.
mathematical proofs. The modifications added
constraints to remove cases that are not important to As a computer proof tool was available it was decided
the operation of the system and are hard to prove. The to write formal proofs. The tool has a number of
final requirements provide a clear record of the cases advanced features, including tactics which
that have been proved, and, in the constraints, a clear automatically combine simple rules, and the tool has
record of the cases which have not been proved. When an extensive library of basic rules. The proofs were
the requirements are reviewed the exception cases built from many formal steps although, as many of
must be covered by informal arguments. these steps were chosen automatically by the tool,

there is not a record of every step. Thus the record of
the proof has a rigorous look and can be reviewed by

12-6

mathematicians. But the main confidence in the proof combination of formal and informal analysis gives
is provided by rerunning the proof on the tool using higher confidence in the system.
the proof records.

Specific conclusions from the study of formal
One of the benefits of using proof as a verification verification are:
technique was that before writing a proof the author
would thoroughly informally analyse the theorem. 0 Formal specification produces a clear precise
This would often lead to the theorem being altered description of the system, and highlights any
into a form that was provable. This often took the ambiguous parts of the informal description.
forn of defining exceptional cases where the theorem
does not apply. The proof then provided evidence that 0 A list of assumptions made during formal
the analysis had been performed and checked that it specification is useful as a checklist both for
was correct. the formal specification and the original

description.
The verification of the algorithm against the

requirements is completed by informally justifying the 0 Formal proofs should be written using some
cases that have been excluded by the theorem. Either tool support. Hand written proofs should be
the cases are so unlikely that they can be ignored, or as informal as possible while still being
effects that are lost because of the assumptions can be rigorous.
used to show the correct behaviour.

0 The theorems should be written with a wide
CONCLUSIONS coverage originally, then exceptions added

during the proof stage. These exceptions must
Overall the role of formal verification in the project be informally analysed.
can be thought of as similar to that of the role of the
reinforcing steel rots in reinforced concrete. The * Proofs ensure that the algorithms are
formal verification is very strong in the areas it analysed thoroughly, and provides a good
covers, and the informal analysis gives wide coverage record of these analysis.
but at a lower level of confidence. Together the

13-1

A METHODOLOGY FOR SOFTWARE SPECIFICATION
AND DEVELOPMENT BASED ON SIMULATION

by
G. FernAndez de la Mora, R. Mfnguez, S. Khan, J. R. Villa

SENER
Raimundo Ferndndez Villaverde 65

Madrid 28003
SPAIN

SUMMARY 2. EJ-200 DECU PHASED APPROACH

This paper discusses the methodology presently 2.1 GENERAL
used for specification and development of
guidance and control software (GCS) refered to as The EJ-200 DECU is a digital electronic box,
the phased approach. This methodology is shown whose function is to control the EJ-200, the engine
to present basic shortcomings in relation with the to power the European Fighter Aircraf (EFA).
requirements specification phase:, long The DECU software is in the flight critical
development time, reverse engineering tasks and category (Level I SW according to
inadequat, handling of errors. RTCA/DO-178A).

In order to solve these problems, a new As a consequence, a set of stringent software
methodology, the simulation based approach, is standards have been built, in line with
presented. This new methodology is based on the DOD-STD-2167A. This specification incorporates
fact that any requirements specification for control a methodology for SW development, that we call
software is preceded by a simulation task, that the phased approach, based in a sequential series
includes the design, code and test of the GCS. As of tasks: specification, design, code and urit
a consequence, the GCS is developed twice, once testing, and formal testing.
in the simulation, and then in the flight software Thc CASE environment is based on EPOS [31,

The new methodology proposes to build the GCS which includes two basic tools: EPOS-R, used for
only once, and through the use of two basic tools: formulation of the requirements, and EPOS-S,
simulation and rapid prototyping, cuts through the used for the design phase. EPOS-R is a
main shortcomings of the phased approach. semi-formal specification language, while EPOS-S

is a formal design language. EPOS-S allows for
I. INTRODUCTION automatic partial generation of code. Facilities

such as requirements tracing or consistency
The aim of this paper is to discuss a new analysis are included.
methodology for specification and developmcnt of
guidance and control software (GCS). This Those tools will not be discussed further, since
methodology is based on the fact that any GCS it their exact nature is incidental to the new
built upon a detailed simulation, which includes v methodoly. But a CASE environment is an
fonctionally correct version of the OCS. important help, since requirements traceability,

and ease of documentation generation is a must.
This methodology was tested in the SBG program
[II and is now been applied to a subset of the 2.2 PHASED APPROACH METHODOLOGY
EJ-200 DECU 12], in parallel with the phased
approach based in the DOD-ST')-2167A. This The top level requirements for the engine control
soflware is actually in the coding and unit testing system are included in the document " Engine
phase. Control and Monitoring System ". Requirements

are expressed in purely functional terms, for
The new methodology, referred to as simuiation example: " Overshoot shall not exceed X% of the
based development, proposes as a core principle to demand ". Actual Control Algorithms (CA) are
reuse the GCS built for the simulation into the real not mentioned. Preparation of this document does
time target. The key term is reuse. If the GCS not require a prior detailed simulation work. It is
extzls in two versions functionally ident:cal, one based mainly on experience, extrapolation of state
in the simulation and one in the target, and both of the art techniques and equipments, judgement
need to be developed, documented and maintained and conceptual design.
throughou: the life of the equipment, why not to
produce a single version ? The foilowing document to be produced is the

" Electronics System Requirements Document
Advantages are numerous, including shorter (FRD). This document not only includes
development time -code is developed functional requirements, but also all the CA
simultaneously with the control laws -, while defined in an i .formal language. It cannot be
disadvantages are minor, written without a detailed simulation of the

engine, its sensors and actuators, and all the
In the following lines we will present more in required control loops, including analogue -if any
depth those ideas. Section 2 will discuss the -and digital. It is the last contribution of systems
phased approach - based on DOD.STD-2167A . and control engineering to the development, and
used for the complete DECU software development. from it the software engineering phases begin:

Software Requirements Specification (SRS),
Section 3 will present the simulation based Software Design Document (SDD), etc.
approach.

Let us study how the Control part of the FRD is
Section 4 will address the application of the built.
simulation based approach to a subset of the
EJ-200 DECU SW.

Section 5 will finally present the conclusions.

13-2

2.3 FRD GENERATION - In tho phased approach, part of the
development is tied up within a closed

The process of producing the control part of the loop: the code produced can be tested
FRD is as follows: The engine, its sensors and against its requirements, and as a rbult
actuators are modelled to a level of accuracy any error introduced from the SRS
which is a compromise between fidelity and time - downwards will be detected and
both execution and development -. From this consequently corrected before
simulation a series of lineal or at least simplified hardware-software integration.
sets of equations are derived, and from those the
CA are designed. They are then coded, tested and Open loop errors are those introduced when
refined within the simulation. Once a satisfactory producing the FRD or the SRS. They
solution is found, the CA are translated from the cannot be correcten in the SW tests,
simulation to the FRD. whatever the severity of those migh. be.

They can only be found in the system tests,
So, the task of producing the control part of the after hardware-software integration. The
FRD can be itemised as follows: phased approach does not provide any idea

on how to solve the open loop errors,
S Simulation build up. except to look for them in the system tests.

This solution is inadequate from a program
" An iterative process of design, code and test point of view, since the cost of correcting

of the CA until an adequate solution is found an error increases as an exponential
within the simulation. function of the time it takes to be found.

" A reverse engineering process, through which Open loop errors not only exist in the phased
we transform the GCS in the simulation into approach, since for example any error in the
requirements in the FRD. modelling of the engine might lead to it under

any development methodology. But the
This process implies translating a formal language phased approach has a tendency to increase
(the simulation code) into an informal one (FRD them through two effects:
requirements). Thus, we obtain the result that the
very formal and apparently elegant methodology - The phased approach results in
of the phased approach for software development requirements expressed in a formal
is in fact based on a reverse engineering process. language in the simulation (Fortran for
The document to be obtained in the first phase of example), being translated into an
the development, the FRD, must be preceded by informal one in the FRD, and then back
the design, code and test of the same software we again into a different formal language (
are trying to obtain. specification language) in the SRS. Thoseconversions are a high risk area.
And this result not only applies for development,
it is also required for software maintenance. If any -- The phased approach does not provide any
control characteristics are to be modified during mean for checking simulation CA, FRD and
the life of the engine, those are first tested in the SRS consistency before hardware-software
simulation environment, and so the CA have to be integration.
coded before the new requirements are
iicorporated into the FRD. 3. SIMULATION BASED APPROACII

2.4 PIIASED APPROACH APPRAISAL The simulation based approach places some
requirements on the development of the simulation

The phased approach to SW development was a itself. We will study those in the first place, and
mr.jor improvement when it was introduced sonic then we will proceed to the flight SW development.
filteen years ago, and has increased considerably
software quality. Nonetheless, in the case of 3.1 SIMULATION REQUIREMENTS
control SW, it has several shortcomings. The main
ones we have identified are: The simulation includes at least two different

Computer Software Configuration Items (CSCI).
The simulation, which is the basis o r the The first one, which we will discuss in length
control requirements within the FRD, is thereafter, and includes the GCS, is the " common
usually developed with a set of software simulation-embedded SW ". The second one,
standards well below those of the flight code, which we call " other simulation SW ", contains
The result is a significant risk of an error everything else, and is made up by the following
been introduced, either in the simlation of Computer Software Components (CSC):
the engine, the accesories, the environment,
ete, either in the CA themselves. The • CSCI: Environment (atmosphere, engine and
complexity of the configuration control in accessories, including hardware of the
this kind of program increases the chance of a electronic box, etc).simulation induced error taking place.

CSC2: Simulation of the embedded SW non
Lenghtly development times. The CA have to included in the CSCI " common
be transformed into software at least twice simulation-embedded SW ". This CSC is very
in the simulation and in the embedded dependent on the extension of the CSCI "

software). commom simulation-embedded SW ", and in
the limit it can be reduced to a simulation of

Some errors which can be introduced early in the run-time system of the electronic box. In
'he development process can only be detected most cases it will also include hardware
i its very late stages, creating potential dependent features, such as the drivers and
hazards. We call those errors open loop the Built-In-Test (BIT). If the CSCI "
errors, due to the following: common simulation-embedded SW " is

13-3

reduced as much as possible, it will include The development of the CSCI " common
everything except the GCS, as for example simulation-embedded SW " implies a new
the input signal conditioning or the methodology. Two aparently opposite
supervisory logic. requirements are to be met (see ref [31):

CSC3: Analysis tools. Those tools help the • SW should be generic enough such that
developer in its use of the simulation, and , ,a;ges typically required by control design
includes elements such as data presentation, gain modifications, inclusion or elimination
noise evaluation, transfer functions of a specific feddback variable, etc) could be
identification, statistical data analysis, etc. easily implemented.

The requirements for the CSCI " other simulation • SW should be adequate for a real time
SW " are as follows: application. This usually implies elimination

of unnecessary operations, such as
It should be considered as a Level 2 software multiplication by zero.
according to RTCA/DO-178A. This
requirement comes from the fact that errors in The main difficulty is of course not only to solve
the embedded code due to simulation those requirements, but to develop control SW
inadequacies can only be detected in the test according to class 1 standards without a well
bed trials with a real engine. The costs - due defined FRD to begin with.
mainly to program delays - generated by such
late errors can be considerable, and are best Our answer has been to develop an iterative
avoided by raising the simulation quality, process, which can be detailed as follows:

CSCI (environment simulation) shall be All the SW development process, from FRD
developed with the aim of been as complete to CSCI testing, is redone continuously, with
as possible. This results in two favourable a new SW issue been produced every few
effects: on one hand, the OCS can be tested weeks.
in a more realistic environment, and the side
effects not usually accounted for can be Each issue is formaly developed in the sense
explored. On the other hand, the CSCI " that changes are first introduced at FRD
common simulation-embedded SW " can only level, andthen implemented down through all
be made larger if the environment expands the stages of the phased approach until CSCI
itself accordingly. For example, the BIT can testing. All basic documents: FRD, SRS, and
only be including in the " common SDD are kept in EPOS and are traceable.
simulation-embedded SW " if the hardware
failures are simulated in the CSCI. SW is divided into two different areas: code

itself and what we call " initial parameters "

Requirements for the CSCI " common i.e., initialisation values of control and logic
simulation -embedded SW " arc different. It is to variables. Those are kept within an assigned
be line to line identical in the simulation and in memory area, and can be modified without
the embedded SW. It shall be built to the same reissuing the SW itself. In this way the
standards as the flight SW, and its documentation, system engineers can modify the control laws
configuration control and quality evaluation are without continuously changing the SW. The
directly applicable to the flight SW. value of those " initial parameters " allows

not only to change the numeric value of
In fact, until the point where hardware-software gains, limits, etc, but also to feedback or not
integration begins, development of this CSCI for any specific variable, or to switch from a Pi
both the simulation computer and the flight feedback to a PID, etc.
computer is only one activity. From now on, we
will consider it as a flight SW task, its use for the Every SW issue has an original set of values
simulation been just a by-product. Let us proceed for " initial parameters " which is subject to
into how this SW is developed, configuration control. Changes made to these

parameters within each issue are not subject
3.2 FLIGHT SW DEVELOPMENT to configuration control, and are only

recorded through technical notes. Those
The embedded SW is made up of two CSCI. The might lead, when consolidated, to a change
first one has already been mentioned, it is the " request incorporated into the following FRD
common simulation-embedded SW ", and includes issue.
the GCS. The other CSCI is " other embedded SW

and is made up of all SW modules not contained This iterative process is in our opinion within the
in the first one. It includes at least the run-time spirit of DOD-STD-2167A, which in its foreword
system, and probably the drivers, SW related to explicitely states that " The contractor is
IIW such as BIT, and in general all SW not responsible fnr selecting software development
developed nor tested with the help of the methods (for example, rapid prototyping) that
simulation. best support the achievement of contract

requirements
The CSCI " other embedded SW " is to be
produced according to the rules of the phased The iterative activity we have just described is
development approach, and in particular performed by two work teams. The first one is
DOD-STD-2167A. The new methodology does not made up by an agregate of different specialists:
introduce in it any modification, except the system and control engineers, fluidodynamicists
requirement that each embedded box SW has to and safety experts. Their first task is to prepare
have at least two CSCI, one developed within the the preliminary issue of the FRD. From then on,
simulation and the second external to it. they receive the succesive issues of the SW, test it

with different values of the " initial parameters
and prepare the following revisions of the FRD.

13-4

The second team is made up of software engineers • An initial FRD for the MMV was written.
who prepare, as in the phased approach, the SW
itself. Due to the CASE tools used, an important • The interface definition between thepart of thi s task is done automatically, once the simulation SW and the "commonfirst SW version is implemented. simulation-embedded SW " was defined.

3.3 SIMULATION APPROACH APPRAISAL . As the simulation was coded in Fortran, and
the " common simulation-embedded SW " was

The simulation approach methodology for control in ADA, a pragma construct was implemented.
SW solves most of the shortcomings we fou;d 'n
the phased approach. Its advantages are as follows: The first version of the " common

simulation-embedded SW " was produced and
Simulation induced errors decrease, as more running before the initial FRD for the complete
development effort is put into this tool. This DECU, using the EJ-200 SW standards was
result is important since those errors tend to written. An up to date version was in place,
be expensive to solve, as they appear only in documented and tested during the SRS phase.
the tests with the real engine.

Changes were easily introduced into the MMV
Open loop errors generated when translating FRD, such as those required by reliability
simulation GCS to the FRD and then to the considerations. The MMV SRS went through
SRS are eliminated, since the flight SW is further improvements, such as eliminating real
tested with the simulation from the initial number multiplications, or more detailed
stages of the program. The only errors that interfaces definition. An important result was
can survive undetected through SW testing nonetheless negative, as we found that developing
are those due to simulation inacuracies and through the new methodology a small subset of a
errors found in the CSCI " other embedded CSCI was impractical, since many general purpose
3 W ". procedures (such as table interpolation, for

example), not originally intented to be part of the
Development time decreases, due to a module had to be incorporated it) it, as those
combintion of factors: modules where not yet available.

- Flight SW prototypes are available very On the other hand, we found, as expected, that the
early in the program. GCS development time could be considerably

reduced.
- Less errors are produced, specially those

lengthly to solve. Another important result was that the simulation
task itself, though much more formal than in

- "he CSCI " common simulation-embedded previous programs, was not slowed down, and it
SW " is only produced once. even seemed to be actually faster. One possible

interpretation is that the system engineers, been
This approach has also several shortcommings. freed from the software task of building the
Those we have found are the following: simulation, could concentrate on the control

algorithms themselver.
* As more quality is required from the

simulation, more effort has to be put into it. 5. CONCLUSIONS

, The very formal precedure for producing the The main results we have obtained are as follows:r
CSCI " common simulation-embedded SW "

even before the CA are well defined might • In the phased approach development
appear as a disproportionate effort, methodology for control software, the FRD is

the result of a reverse engineering process:
The embedded SW produced maintains sonic from simulation to requirements.
characteristics of simulation SW and is not
optimized from an execution time point of In the phased approach development
view. methodology, any error produced when

translating the FRD into the SRS or before,
From our experience, advantages are considerably will not be found until the real time
more important than disadvantages. In fact, some simulation test takes place, or even later.
effects which might appear as shortcommings have
also favorable aspects. For exam ple, the fact that Embedded SW can be split into two CSCI:
the embedded SW retains some characteristics of one of them, which includes the OCS, can be
the simulation SW implies, among other things, developed through a new methodology which
that it is easier to modify than typical flight SW. we have called simulation based approach.
This might prove of considerable advantage during
the life of the engine. The simulation based approach uses a

common SW in the simulation and in the
4. APPLICATION flight computer.

This methodology has been applied to a small The simulation based approach has two basic
subset of the EJ-200 DECU, the control of the advantages over the phased approach: shorter
Main Metering Valve (MMV) of the Main Fuel development time and avoidance of most open
Metering Unit (MFMU). The following steps loop errors.
where followed:

13-5

REFERENCES AND NOTES [3] EPOS-MANUAL Version 5. GPP.

[!] J. L. Quesada, R. Mfnguez and P. Segurola, [4] A. Mattissek, " A unified approach to
" Guided Weapon Simulation, the SBGL simulation software and operational software ", in
development experience ", in AGARD Guidance AGARD Guidance and Control Panel, 50th
and Control Panel, 50th Symposium on " Computer Symposium on Computer Aided System Design
Aided System Design and Simulation ". and Simulation

[2] Note: The EJ-200 is the engine to power the
European Fighter Aircraft (EFA). The Digital
Engine Control Unit (DECU) is an airborne
electronic box responsible for the Full Authority
Digital Engine Control (FADEC).

T--5.-

ecs~

30D~

Figure I: Phased approach methodology in practice

HW0SW

Figure 2: Siulation based approach methodology

14-1

NETWORK PROGRAMMING:
A DESIGN METHOD AND PROGRAMMING STRATEGY

FOR LARGE SOFTWARE SYSTEMS.

by L. Schuberth, J. Kutscher, and W.-J. Grtinewald
Forschungsinstitut fir Funk und Mathematik

Neuenahrer Str. 20, D-5307 Wachtberg

Summary: Network Programming is a certain programming language nor to a cer-
methodology for the evolutionary develop- tain kind of machinery. Here we will first
ment and life cycle support of large data give a short introduction to Network Pro-
processing systems. It utilizes a fully decen- gramming and its main features. Then the
tralized approach. A given DP task is first re- Network Programmer's Workbench will be
alized as an operable network of sequential shown in some detail and some of its tools
processes, communicating via typed chan- will be described. Particular attention will be
nels. It serves as a base for logical testing, paid to the Network Monitor. An example
data flow measurements, and assessment of will illustrate the use of these software instru-
system behaviour. Runtime requirements ments. Finally, we will have a look on a de-
and the mapping of processes to processors fense oriented simulation.
are taken care of in a separate final step. A Keywords: evolutionary software develop-
remote procedure call illustrates the concept ment, communicating sequential processes,
of a channel's operation mode. The Network typed channels, OSI application layer, Net-
Programming method is neither confined to a work Monitor.

1. The situation to cope with 0 supports the implementation of well-
defined processes,

Systems for guidance and control are fre- . allows processes written in different
quently integrated systems with heterogene- languages to communicate effectively,
ous components. Software makes the indi- • makes processes communicate
vidual components accessible by describing effectively, which run on different
their interface, and software makes them machines under different operating
communicate, thus describing the essence of systems and
the system. Software for guidance and con- * supports changing programs, adding
trol, embedded software, for short, is there- processes to the system, and removing
fore of considerable complexity. We focus processes from the system at minimal
our contribution on large software systems of costs in terms of implementation and
this kind, which, in addition, have a long pe- test times.
riod in service.

The concept of Network Programming has
Large software systems are subject to chang- been outlined in [1]. Basic work and an im-
es: of the machinery involved, or changes in plementation have been reported in [2]. It
requirements, or of design goals. Those could easily be used in defense oriented sim-
changes take place usually and should be tak- ulations as described in [3]. As a develop-
en account of from the very beginning of a ment tool for greater systems was needed, an
project. Network Programming (NWP) is a Ada - oriented workbench had been devel-
method to construct large software systems oped [4]. The use of Network Programmer's
upon autonomous communicating processes. Workbench to design, implementation, and
NWP helps to cope with all three kinds of test of process networks is described in [5].
changes because it In this contribution, the main concept is de-

14-2

autonomous processes typed channels

Figure 1: NWP inventory

rived from certain needs when programming 2.2 Communicating processes by
large systems. mes--age passing

We regard systems as composed of processes
2.1 Modular Programming: distribution of and directed channels (Fig. 1) resulting in a

workload upon dedicated machines process network, which can be represented as
a system communication graph (Fig. 2).

It is a commonplace idea to distribute parts of Each process executes sequentially and in
a complex task to pieces of hardware, which mutual independence. Currently, it may be
each matches best the details of work to be described in e.g. Ada, Pascal, C, or Prolog.
performed. In reality, i.e. in our context of Other languages may be included by writing
guidance and control, systems get composed an interface in that language and linking it to
of suitable hardware, and are to be glued to- the application programs.
gether by means of software, later on. It is
conceptually no great step to imagine tasks, Each channel connects at least one process to
completely separated one from the other, at least another one. It transmits messages of
which communicate by rather simple mes- a certain type or of some corresponding struc-
sages. Each task may be written in its proper ture. The senders and receivers on both ends
programming language, i.e. that optimal me- of each channel command co-operatively the
dium to describe and effectively attain the in- message transfer and must agree upon that
dividual portion of the general aim. message type or structure (e.g. cf. Figure 5).

Figure 2: System communication graph

14-3

m senders n receivers

2 message k s 2

m 10 i- n

Figure 3: Channel as a typed buffer

The channels are buffers connecting the re- This approach induces the concept of a sepa-
spective communication partners. Depend- rate manager: Local Communication System
ing on buffer management, there are three (LCS), to create and maintain the communi-
connection modes to be distinguished: cation ways between the processes, to furnish

these channels with appropriate buffer capac-
* synchronous mode (S mode), buffer is a ity, and to establish the necessary translation

0-element queue, the sender waits for between language interfaces. Regarding the
receiver; last point, we ultimately split the manager.

Each process contains a language-dependent
buffer-synchronous mode (BS mode), part, which transforms language-dependent
buffer is a k-element queue (cf. Fig. 3), communication calls to a common communi-

the sender fills up the buffer without hes- cation interface. This part of a process com-
itation and then waits until at least one municates with the LCS and hands messages
element has been removed (read out) by to and fro.
a receiver;

The communication between different ma-
asynchronous mode (AS mode), the buff- chines takes place as message passing by
er contains one element, which may be means of the respective operating systems
overwritten by the sender. between the LCSes involved (Fig. 4).

• [application
I [process

I channel
management faai a interface

-1LCS communication part
LCS1 i OS

iMonitor

LCS2

, - C interface :

Figure 4: LCS - process connections

14-4

2.3 An example: simulating RPC The network is spread over tiree ma-
chines, the server and one client reside on

Nowadays' operating systems comprise re- SUN workstation "rspsun 14", while the
mote procedure call (RPC) facilities, and oth- two other clients run on different SUN
er means to make processes communicate. workstations, each.
Fig. 5 illustrates the simulation of a remote
procedure call by means of NWP features and • The clients use the channel in synchro-

their corresponding Ada constructs. The nous mode, the access is "give_wait".
complete listings will be given in the appen- Client_14 has given a message, which the
dix. The lower part of Fig. 5 shows the re- server has not taken, yet.
spective transport commands and their line
numbers in these Ada listings. * Another state: client_12 has delivered a

message, which has not yet been accept-
The subsequent series of Monitor pictures il- ed, the flow is 52/22 messages per sec-
lustrates a process network with one server ond.
and three clients under different aspects:

The other channel ist FROM-SERVER,
it displays again the networks

distribution.

Server

T O _S E V E FRIF R O M _. S E R V E R I
I Smode S mode

....

Client1 Client,

Client:

40 C.GIVE(ToSERVER,ORDER); ..

42 C.TAKE(FROMSERVER,RESULT,SENDER);

Server: loop

32 S.TAKE(TOSERVER,ORDER);,

37 S GIVE(FROMSERVER,RESULT);

end loop

Figure 5: RPC Simulation

14-5

Environment of channel 'T0..SERVER'.

SENDER RECEIVER

CLINT-4 Q - TO ERVER

CLIEUT-13VE %-fSRE

CLIME) "-11 0SERVE

CLIENT-121

Figure ~ ~ ~ ~ ^ 6:TecanesTSRE-aov)adSRM.REREo)Rn

theirmn respctivnel envronmet, essmdsRadbfe rpein

14-6

2.4 Systems with different machines under 3. Support environment:
different operating systems the NWP programmer's workbench

The same idea applies when no common op- Nowadays' operating systems contain virtual
erating system or system family can be as- file systems, remote procedure call facilities,
suzned: Given a transmission control proto- and other means to make processes commu-
col, the LCSes must adopt the greatest com- nicate. Thus they fulfill OSI specifications
mon portion of the protocols shared by the on the application layer and encourage the
different machines. Our experience compris- development of distributed data processing
es: applications. To strengthen this gradient of

development is one purpose of Network Pro-
* processes on different SUN workstations gramming.

under UNIX
written in the same programming laguage Frequently, the partition of work is a major
(Pascal, or C, or Ada, or Prolog) point of concern, be it not to loose human
written in different programming lan- control or understanding, be it to apply spe-
guages (Pascal, and C, and Ada, and cialized hardware, or to avoid waiting situa-
Prolog) tions. If a large system is composed of well

fit hardware to fulfill the partitions of task, it

m

SUN SUN

o LOS
* process
m monitor

SUN UNIX) VAX (VMS)

Figure 7: A heterogeneous network example

and may occur that in "typical" situations individ-
ual components are overloaded and their

* processes on SUN workstations under companions have already finished their part
UNIX and on DEC VAX780 under VMS and must wait. Probably the duplication of
written in VAX-Ada and using the one dedicated piece of hardware would
VERDIX Ada Development System, speed-up the overall performance, or to apply

another kind of algorithm, or to build in an-
they all communicate by message exchange. other switch to discriminate types of situa-
Fig. 7 shows as example a machine configu- tions or of workload. The analogue may arise
ration in operation at our site. under conditions near the limit of a system's

14-7

area of applicability: in the very beginning, or The NWP Monitor uses SunViews, the
near system overload, or due to damages. In graphics and windows interface of SUN
any case, one will need an embedding sys- workstations. This notwithstanding, the
tem, where the whole object can be run with Monitor can "look" beyond the limits of the
well defined parameter sets, and can be ob- SUN subnet of a heterogeneous network. It is
served, logged, (statically) reconfigured, and language-independent in that all its analysing
rerun again, and evaluating capabilities cover process net-

works, of which the components are written
The NWP programmer's workbench was de- in every supported language. The construc-
veloped to support these doings. The struc- tive means were needed in an Ada centered
ture of its current Ada oriented realization is project, therefore the tools to handle commu-
outlined in Fig. 8. It currently supports the nication channels are Ada directed, and the

generator for test environments is Ada direct-
. development of process networks ed, as well and for the same reason.
and
• run time analysis of process networks.

JNWP Ada workbench I

for process networks network optimization of process networks

maintenance of test environment run-time
communication interfaces generators supports Monitor

Figure 8: Components of the NWP workbench

For the first kind of work, it offers tools to It is in terms of the above mentioned "waiting
handle communication channels in Ada and situation" that the enhancement of system
generators for Ada test environments. The performance can be indicated. Thus, in the
second kind of work benefits from NWP prototyping phases of developing a large dis-
workbench's run time support and its Moni- tributed system, the Monitor can supply rela-
tor. tive gradients for different configurations of

participating processes over a heterogeneous
The Monitor provides (see Fig. 9): network.
" static analysis of the network definition,
• recognition of deadlocks and wait situa- Classical methods of design and analysis are

tions, often strictly top down. On the one hand, this
• run time observation of process networks, causes considerable overhead. On the other
" recording and calculation of a commu- hand, it does not lead itself very well to sys-

nication density, tem changes. In fact: each change is likely to
" process loading support. modify the original top down structure, giv-

ing rise to a respectable increase of system

14-8

FMonitor

dera ationlyi of process loading process network
network definition support hvuoi ie control

evoluionar ap oah ndfacilit es ai s Ia n at sink s l egnrae uo ai

Ic recognition of
recording and calculation ae o s h

channls afe aatingk thaune fo t

of communication density i c eadFg.k1 anwait situations

Figure 9: Features of the NWP Monitor

complexity, because maintenance induces By test case we understand a subnet of a proc-
degradation of structure 6]. Therefore, the ess network, of which the communicative be-
NWP programmer's workbench supports an haviour is to be tested. To do that, data sourc-
evolutionary approach and facilitates "rapid es and data sinks will be generated automati-
prototyping" achy, so-called stubs, to SUt the open

channels after separating the subnet from its
To cope with complexity, it is recommended surrounding, cf. Fig. 10 a&b.
to tailor the component processes of a net-
work to a moderate size and such that bugs A test scenario describes the circumstances of
can be assumed to be absent. Thus the prob- performing a test case. The allocation of
ability of bugs is moved from the internal processes to computers will be defined here,
structure to the communication of processes, and the co-ordination of stubs, computers,
i.e. into the network. Here, because there is and sets of test data to be run, additionally
no common memory, and because all corn- different operating modes for stubs can be de-
munication is performed by message passing, fined here. Syntax directed editors for test

debugging is a question of process interfaces, data can be generated automatically, which
to which the NWP workbench provides auto- allow to input structured Ada types. Based

matic support. In addition, since communi- on the internal representation of Ada data
cation is exclusively done by messages, it is types, such an editor produces an ASCII rep-
unlikely that a bug in one process causes se- resentation, and thus assures portability of

vere effects in another. data. A "normalisator" will be generated con-
currently as a means to produce an ASCII -

The NWP workbench has a toolkit which file of test data. On the top of this part, a tool

contains automatic generation of program to easily produce files of test data is provided.
frames, and a syntax directed editor to declare Fig. 10c sketches the test configuration, i.e.
Ada types and channel masks. Thus we can the subnet and its interconnection to the test
manipulate processes in order to either environment, which fully simulates the inter-
change an existing net, or to expand it, or to face of the original surrounding.
merge it with another net. The toolkit con-
tains also definition tools for "test cases" or
"test scenarios".

14-9

Ac'

a: network partition b. subnet embedding

.~ process

F-channel

*~ ~ ,to be~ tested

I/O pckage.<~>stub

c: test environment

Figure 10: Testing a subnet

14-10

4. Modelling naval anti-missile defence The Monitor depicts the network and the
clustering device can be helpful to judge ap-

To get an impression of the ability of the propiate grouping of computers and their
NWP workbench, have a look on a Pascal- connection to different sensors. The whole
written subnet of a naval weapons guidance model finds practical application in the deci-
system [7]. This subnet is tasked to detect po- sion process to upgrade resp. re-design naval
tential mutual destruction and deflection of weapons guidance systems.
own effectors, which are aimed at hostile
anti-ship missiles. Different algorithms are The first part of the Monitor's screen, Fig. 11,
to be applied, whether destruction of an anti- shows the project's name: WW, gives the
missile missile by another one or by gun fire number of all possible network participants:
is to be foreseen, and another kind of algo- 11, while already 9 of them have introduced
rithms, in order to avoid one missile deviating themselves to the LCS, or have been men-
another one, in case the second has a pro- tioned by some other participant. Ninety
grammed or seeking sensor. Here, the ques- channels are foreseen within the process net.
tion of parallel computation according to dif- Below this window, the whole process net-
ferent algorithms, arises, work is depicted as a connection graph, with

:Project: ww

static: 11 Processes. 90 Channels.

dynamic: 9 Processes.

Process net.
nowhere

nowhere WW3 4., l
WW,24 (CANYAS

CLUSTER I . nowhere

W23 0 LCSMONITOR.

nowhere CLUSTER 1
WW14 INIT

Fn o rs CLUSTER 3noWhre3 AAFT

nowhere CLUS-TER 2
WW12 C UTERN ENEM

XSKS

Figure 11: Monitor's state indicating window, and connection graph of project WW

14-11

named nodes (processes) and edges to indi- when WW23 has been told from KSKS to
cate the connections. Solid circles indicate communicate data to CANVAS, in order to
that these processes have already started their sketch details of a possible influence of one
computing activity, own missile upon the target-seeking sensor of

another own missile. Heavy circles mark the
The top-left part of Fig. 12 shows a grouping already active processes. CANVAS, in it's
recommendation, after the Monitor has eval- turn, using SUN View's graphical facilities,
uated the communication intensity under the must be resident on a SUN workstation: rsp-
network's initial phase: the process WW23, sun 14, in this case, it has not yet begun its ac-
which has been initialized by INIT, and re- tivity and its circle is still empty. Because
porting to the man-machine-interface KSKS, none of the other WW - processes has been
should be run in close connection to INIT and started by INIT, their border circles are also
KSKS, on the same machine, if possible. The empty, and they reside "nowhere". INIT has
process EMEM represents the sensors of the done it's job and has withdrawn, thus it's bor-
weapons system, and AAFT reads an anti-air- der line is empty, too. The Monitor is not a
craft fire table. The Monitor's cluster analy- member of the process network, therefore it is
sis proposes to locate them on remote ma- also flagged to reside nowhere(with respect
chines, apart from the first process cluster, to the project WW).
The lower-right part of that picture shows the
table of process affinities (i.e.numbers of Though we did not perform specific time
channels weighted with communications fre- measurements, we may say that the process
quency), which the above recommendation is communication under LCSes enables fire
based upon. This grouping is depicted with- control to dispose in time over the boat's re-
in Fig. 11, and additionally that network state, sources and to avoid own missiles' "fratri-

cide".

WW23

KSK$
EEN

rocess net in clusters with affinity over 9.

WW3 t , -14-' KSKS,

AAFT K393 ONO tZ

IWIT, AA-2 -- --
ti s mNct

Figure 12: Monitor's grouping reco mmendation based on process communication history

14-12

References:
[11 H. von Issendorff: [5] J. Kutscher:Netzwerkprograrmmierung - Eine uni- Das Entwickeln und Testen von ProzeB-verselle Programmiermethodik netzen mit dem Netzwerk-Program-FFM - Bericht Nr.328, Wachtberg, mierungsarbeitsplatz.

[2 Jar 1r98e3ld Fachtagung Softwareentwicklung,[21 W J. raneald:Informatik Fachberichte 212,Netz - Pascal unter BS2000 Springer Verlag, Juni 1989FFM - Bericht Nr. 352, Wachtberg, [6] M. Hallmann:July 1985 Eine transaktionsorientierte operationale131 L. Schuberth: Emn Proze~netzwerk zur Methode zur AnforderungserfassungVermeidung von Waffen-Wechsel- fur das Prototyping (Diss.)wirkungen bei der Verteidigung gegen Dortmund, 1988Seeziel-Flugk~rper [7] MTG Marinetechnik GmbH:FFM - Bericht Nr. 380, Wachtberg, FLIWES Strukturen --February 1988 Operationeller Einsatz Eigenschiffs-[4] W.-J. Granewald, J. Kutscher, Th. Schell: fiihrung -- 10berwasserbekgmpfbarkeitEmn Arbeitsplatz zur Programmierung Berechnung der Wechselwirkungen beiverteilter System in Ada Einsatz von HardkillmaBnahmen,Wehrtechnisches Ada Symposium, Hamburg, 1987Mannheim, November 1988

14-13

Appendix:

Subsequently, the listings of our RPC-simulation example are given. Because this example is
coded in Ada, first the language interface for Ada is partly listed, as an example high level lan-
guage interface.

LCSTNTERFACE l-Mar-1991 19:07:34 VAX Ada V1.5-44
I -- LCSINTERFACE for Ada, 12.12.88 VMS type
2 --

3 package LCSINTERFACE is
4 type CHANNELID is private;

5 type CHANNEL-SET is private;
6 INVALIDMEMBER : constant CHANNEL ID;
7 LCSSYSTEMERROR,

8 LCSUSERERROR,
9 LCSSIZEERROR,

10 NOTIMPLEMENTED,
11 CHANNELCLOSED : exception;
12 type COMMUNICATION-KIND is
13 (giveto, givewaitto, give, givewait,
14 write to, write,
15 take_from, take, readfrom, read);

19 procedure LOGONPROCESS(PROCESS:STRING);
20 procedure LOGOFF PROCESS(PROCESS:STRING);

21 procedure SELECTCHANNEL(CHOICE : in CHANNELSET;
22 WAITINGSET: out CHANNEL SET,;
23 COUNT : out INTEGER);
24 procedure SELECTCHANNEL(CHANNEL : in CHANNELID;

25 WAITINGSET: out CHANNELSET;
26 COUNT : out INTEGER);

32 generic type messagetype is private;

33 package INTERFACE is
34 procedure GIVE(CHANNEL : in CHANNELID;
35 MESSAGE : in MESSAGETYPE);

51 procedure TAKE(CHANNEL : in CHANNELID;
52 MESSAGE : out MESSAGE TYPE;
53 SENDER : out STRING

63 procedure CREATECHANNEL
64 (MODE : in COMMUNICATION KIND;
b) SENDER : in STRING =""

6t, RECEIVER : in STRING :a"";

67 CHANNEL NAME : in STRING;
68 CAPACITY : in INTEER:=I;
69 CHANNEL : out CHANNELID);
70 procedure CLOSECHANNEL(CHANNEL , in CHANNELID);
71 end INTERFACE;
72---
73 -- Functions to handle channel sets

90 private

96 end LCSINTERFACE;

14-14

SERVER l-Mar-1991 18:21:03 VAX Ada V1.5-44

1 with TEXTIO, INTEGERTEXTIO, LCS_INTERFACE;
2 use TEXT IO, INTEGERTEXTIO, LCSINTERFACE;

5 procedure SERVER is
6 SENDERNAME STRING(1..32);
7 NUMBER : INTEGER;
8 TO SERVER CHANNELID;
9 FROMSERVER : CHANNELID;
10 package S is new INTERFACE(INTEGER);
11
12 begin
13 -- Start communication with local LCS:
14 LOGONPROCESS("SERVER");
15 -- Define a channel from client processes to this one,
16 -- channel's name is to be "TO SERVER",
17 -- its handle is TOSERVER, here:
18 S.CREATECHANNEL(MODE => take,
19 CHANNELNAME -> "TOSERVER",
20 CHANNEL => TO SERVER);
21 -- Define a channel to client processes,
22 -- of buffer-synchronous mode and
23 -- channel's name is to be "FROMSERVER",

24 -- its handle is FROMSERVER, here:
25 S.CREATECHANNEL(MODE 4> givewait,
26 CHANNEL NAME -> "FROM-SERVER",
27 CHANNEL -> FROMSERVER);
28 NEWLINE;
29 -- Listen:

30 loop
31 -- accept a message from a client
32 S.TAKE(TO SERVER, NUMBER, SENDERNAME);
33 -- Print the client's name and the message:

34 PUT(SENDERNAME); PUT(" :); PUT(NUMBER,5);
35 NEWLINE;
36 -- Respond by sending back the message to it's sender:
37 S.GiVE(FROMSERVER, NUMBER);
38 -- Here an exit should take place if a condition holds
39 end loop;

40 -- Good-bye! to LCS
41 LOGOFF PROCESS("SERVER");

42 end SERVER;

14-15

CLIENT 1-Mar-1991 18:20:29 VAX Ada V1.5-44

1 with TEXTI0,INTEGERTEXTIO, LCSINTERFACE;
2 use TEXTIO, INTEGERTEXT.IO, LCSINTERFACE;

5 procedure CLIENT is
6 SENDERNAME : STRING(1..32);
7 NCLIENT INTEGER;

8 LC, NUMBER, ERGEBNIS : INTEGER := 1;
9 TOSERVER : CHANNELID;

10 FROM-SERVER : CHANNELID;
11 package C is new INTERFACE(INTEGER)"
12
13 begin
14 -- Individualization: ask user for a (unique) number
15 PUT("CLIENT X: GIVE ME A NUMBER X:"); NEW-LINE;

16 GET(NCLIENT);
17 -- Start communication with local LCS:
18 LOGON._PROCESS("CLIENT"&integer'IMAGE(NCLIENT));
19 -- Define a channel to server process,
20 -- of synchronous mode,

21 -- with this process as sender,
22 -- channel's name is to be "TO SERVER",

23 -- its handle is TOSERVER, here:

24 C.CREATECHANNEL(MODE -> givewait,

25 SENDER > "CLIENT"&integer'IMAGE(NCLIENT),

26 CHANNELNAME -> "TOSERVER",
27 CHANNEL -> TO SERVER

28 -- Define a channel from server process to this one,

29 -- with this process as receiver,

30 -- channel's name is to be "FROMSERVER",

31 -- its handle is FROMSERVER:
32 C.CREATECHANNEL(MODE -> take,
33 RECEIVER -> "CLIENT"&integer'IMAGE(NCLIENT),

34 CHANNEL NAME -> "FROMSERVER",
35 CHANNEL -> FROM SERVER
36 -- Activity: ask user, how many actions consisting in

37 -- sending the action number should be undertaken?

38 PUT("GIVE LOOPCOUNT:"); NEW_LINE; GET(LC);
39 for I in 1..LC loop -- set action number
40 C.GIVE(TOSERVER, I); -- Send number to server
41 -- Accept answer from server and print it:
42 C.TAKE(FROM SERVER, ERGEBNIS, SENDERNAME);
43 PUT(ERGEBNIS,5); PUT(" from "); PUT(SENDERNAME);
44 -- Flag an error, if server didn't answer properly:
45 if I /- ERGEBNIS then PUT("ERROR"); end if;

46 tEW LINE;
47 ' '. loop;
48 - ._..ng sent LC action numbers, "Good-bye!" to LCS:

49 ' ;OFFPROCESS("CLIENT"&integer'IMAGE(NCLIENT));
50 -Aception -- In case of an error, print its class and
51 -- give farewell to LCS at any case:

52 when LCS USERERROR => PUT("USERERROR");
53 LOGOFFPROCESS ("CLIENT"i&integer' IMAGE (NCLIENT));

54 when OTHERS => PUT("OTHER EXCEPTION");
55 LOGOFFPROCESS("CLIENT"&integer'IMAGE(NCLIENT));

56 end CLIENT;

15-1

THE DATA ORIENTED REQUIREMENTS
IMPLEMENTATION SCHEME

Christine Thomas
British Aerospace (Dynamics) Ltd
PB 230, Six Hills Way, Stevenage
Herts SGI 2DA, United Kingdom.

1 Abstract (CORE) [1] is used for the definition
phase, and a method known as Modular

A need has been identified for a Approach to Software Construction,
generalised approach to the Operation and Test (MASCOT) [3] is used
specification, design and development for the design phase. These methods
of real time embedded systems. There have to be extended and adapted so that
are many tools that cover different they can be integrated into the DORIS
parts of the life cycle. Some of these scheme
are integrated to various degrees, but
for real time systems it is probably Implementation is achieved using a new
true to say that there is not a set of architecture known as the Data
integrated tools which covers all Interaction Architecture (DIA) (6].
phases of the life cycle. This paper The DIA is based around shared memory
describes the way that the Data and offers fully controlled
Oriented Requirements Implementation asynchronous communication (in addition
Scheme (DORIS) attempts to remedy this to the more conventional synchronous
situation. DORIS is an applied communication), It uses two specially
research project at British Aerospace designed chips to support
(Dynamics) Ltd, United Kingdom, multiprocessor applications.

Many existing proprietary tool sets and
2 Introduction methods tie the user into a specific

language, host or target. British
DORIS is a set of integrated methods Aerospace has such a large variety of
and associated tools for the projects that standardization on any of
development of real time, embedded, these is impractical. One of the main
multiprocessor systems. It covers the aims of the DORIS approach is that it
whole of the development life cycle will be language, host and processor
from the requirements analysis through independent. This will lead to a
to implementation in software and standardization across products, which
hardware. The main aim of DORIS is to in turn will lead to improved
support the development of safe and productivity.
reliable systems. Particular emphasis
has been placed on direct support for
the development of multiprocessor 3 Requirements Analysis
systems, reducing timing
indeterminancies and supporting the CORE is both a method and a tool
traceability of requirements. designed specifically for the

requirements phase of the development
Figure 1 shows the fundamental steps life cycle. The metnod has been
that have to be made when developing a developed by British Aerospace
system. DORIS uses two existing (Military Aircraft) Ltd and System
nethods based on the idea of dataflow: Designers Ltd in the United Kingdom.
The Controlled Requirements Expression CORE establishes the actual problem to

15-2

be solved, and reduces ambiguities and - Mapping Description Language
inconsistencies in the customer's (MDL)
requirements. It also highlights the Maps th2 designer's MASCOT
effects produced by changing the system activities into specific
specifications and formalises these processors.
system specitications so that they are
understood and agreed by all involved The DDL is an adapted form of MASCOT
in the p.'oject. [2] [3, 4, 5]. MASCOT was developed at the

Royal Signals and Radar Establishment
CORE consibts of a set of defined steps in the United Kingdom and has been
for the deve.,--!'.nt of systems adopted by the United Kingdom Ministry
requirements models. It encourages of Defence as a standard approach for
structure and therefore modularity, and the development of embedded systems.
identifies the data flow between the MASCOT is a network approach to
elements. software design suitable for multi-

processor systems. It gives
The main concept of CORE is that of independence from specific processors
'viewpoints'. These describe the and provides a framework for specifying
nature and content of the problem as interconnections and interfaces between
seen from particular points of view. different software (and indeed
Each viewpoint looks at the problem in hardware) components in the system. It
terms of the information acquired, the has both a graphical and a textual
processing of this information and the form, each of which can be derived from
generation of output results, the other.

CORE avoids using complex mathematical In MASCOT, activities are sequential
notation, and yet still achieves the processes, concerned primarily with
necessary degree of formality required performing a single function. Each
for requirements analysis. This makes activity is cenceptually independent,
CORE more acceptable to the engineering i.e. it runs concurrently with all
community. other activities. Activities

communicate with each other through
Once the behaviour of the system is shared data areas, known as
described, this information can be used Intercommunication Data Areas (IDAs).
as the requirements document for the
design teams. Certain extensions have been made to

MASCOT so that communication between
the MASCOT elements in independent of

4 Design both the hardware configuration and the
type of the data being communicated.

Figure 2 shows the structure of the This has been achieved by adding th.
design tool set. Three languages have idea of a Route to MASCOT. A Routi. is
been provided for the design phase of a specialised form of an
DORIS. These are: Intercommunication Data Area, with one

input and one output. It enables
- DORIS Design Language (DDL) information to be passed from one

Specifies the software design of activity to another, unchanged. It can
the system (based on MASCOT). be used to provide either asynchronous

or synchronoub communication between
- Hardware Description Language the two processes.

(HDL)
Describes the configuration of To allow this to be implemented, the
the processors, the memories and concept of type-independence has been
the interfaces between the added to MASCOT. This allows the data
memories, type to be specified at instantiation.

15-3

In MASCOT, a template a standard Route:
pattern for the design of a component
in the system, When the designer wants - Private
to use a component of that design, he The activities using the route
creates an instance of the template. are both in the same processor
As part of the DORIS system, it is
intended that standard templates will - Shared
be provided to help communication The activities using the Route
between activities in the system, are in different processors,
These templates will provide four connected by shared memory.
methods of communication from a sending
process (the writer) to a receiving - Remote
process (the reader). These are: The activities using the Route

are in different processors, not
- Fully Asynchronous connected by shared memory.

This method of communication
allows the reader and the writer The software designer will be able to
to operate independently of each define a Route between two activities,
other. regardless of their mapping into

hardware. At build time, the builder
- Conditionally Asynchronous will determine the relative

This form of communication is a distribution of the activities, and
limited form of the fully will substitute a Route with the
asynchronous mechanism. It is necessary distribution. This allows
guaranteed to work satisfactorily the software to be designed without
if the interval between needing to know how the activities are
successive writes is always mapped into the processors, One
greater than the duration of any benefit of this is that the software
read. can be tested in the host, using a

private distribution, and then the
- Loosely Synchronous activities can be mapped into different

This does not require that the processors, without requiring a
two processes are at the same corresponding software design change.
place at the same time to
exchange information. It does The design tools provided with DORIS
however, exercise some constraint will allow the software design and the
over the relative operation of hardware configuration to be easily
the two processes by limiting the changede It is intended that the basic
extent to which the production of toolset will contain:
information can get ahead of its
consumption. In effect, it is a - Graphical Design Tools
bounded buffer. - Timing Analysis Tools (SPIRITS)

- Textual Analysis and Checking
- Fully Synchronous Tools kDAN, HAN, MAN)

This is a rendezvous, which locks - Build/link tools (Builder)
together the operation of the two - Loader/Monitor (DEMON)
processes at or during the - Run-time development tools
exchange of information. There
must be a point in time at which It is intended that the DDL, HDL and
the two processes meet. Data can MDL will have graphical front ends to
then be passed between the two simplify the network design. There is
and they can then carry on also a textual form of all three
independently, languages. One possible front end to

DDL is MADGE (MASCOT Design GEnerator).

In addition, three distribution This has been developed by British
possibilities will be provided for a Aerospace (Dynamics) Ltd and supports a

15-4

graphical form of MASCOT. DORIS run time development tools will
be provided that provide:

The problems of timing analysis are
being addressed by a Department of - Detection and reporting of run
Trade and Industry sponsored initiative time errors
called SPIRITS (Supporting Predictable - Breakpoint handling
Implementation of Requirements In - Memory examination
Timing and Safety). This is - User Defined Debug Messages
investigating the need to develop hard (MASCOT record primitive)
real time systems whose timing and - MASCOT primitive monitoring
safety properties are known and can be - MASCOT execution control
shown to satisfy the existing - Timing data collection
requirements.

Figure 2 shows the relationship of the 5 Implementation - The Data
textual analysis and checking tools. Interaction Architecture
The DDL Analyser (DAN) checks the DDL
text (either generated by the user or The aim of the Data Interaction
by MADGE or similar tool). If the Architecture. (DIA) is tu pLuvide a
syntax is correct, it places the mechanism to support multi-tasking and
network connectivity information multi-processing systems. It uses
contained in the text (how the simple hardware elements, giving
components in the system are connected) predictable behaviour for high
into the template database, and creates integrity systems. The DIA provides
source files in the selected target direct hardware support for MASCOT
language for syntax checking using designs.
commercially available compilers. This
use of propriety compilers aids the Figure 3 shows the basic configuration
language independence of DORIS. of an element in the DIA. Ideally the

Central Processing Unit (CPU) is a
The Mapping Description Language relatively simple form of Reduced
Analyser (MAN) and Hardware Description Instruction Set Computer (RISC) in
Language Analyser (HAN) both store the which no use is made of features that
information contained in the MDL and introduce non deterministic timing
the HDL into appropriate databases for effects including interrupts and
use by the builder. caching. More complex computers can be

used, but this will make it more
The Builder checks that all the difficult to analyse run time
activities specified in the DDL are properties. (6]
mapped to processors specified in the
HDL. It also checks that for all IDAs, The CPU has a private bus that allows
an IDA template suitable for the it to be connected to:
appropriate mapping is available in the - private memory (containing
database. It generates instances of activities and private IDAs)
the templates with the correct - Asynchronous devices (polled
connection between activities and IDAs. peripheral devices)
For each processor in the system, the - S)nchronous devices (peripheral
builder generates a list of activities device generating a stimulus)
resident in the processor, and presents - Asynchrorous Dual Port Memory
the instances of activities and IDAs to (ADPM, containing
the compiler and linker. Intercommunication Data Areas

shared with activities in an
The loaderlmonitor (DEMON) provides adjacent processor)
facilities to allow multiprocessor - Two sorts of specially developed
loading and hostimultitarget VLSI device, the Kernel
communications. Integrated Circuit (KERIC) and

15-5

the Communication Integrated Co-operative scheduling will be
Circuit (COMIC), used instead of interrupts.

No inter-processor buses will be
The Kernel Integrated Circuit supports used,
low level scheduling, providing the No caching will be used.
multi-tasking facilities needed when Asynchronous Communication will
many activities are mapped onto a be ased.
single processor, as well as handling
external stimuli (from timers etc.)
without using interrupts. It selects Multiprocessor Support
which activity is to be scheduled by
using built in priority and polling Design, Mapping and Hardware
rules. It supports cooperative Description languages will be
scheduling in preference to pre-emptive provided.
(or interrupt driven) scheduling. Use The substitution of templates in
of the Kernel Integrated Circuit avoids the builder allows the software
the timing overheads normally found in design to be mapped as
software based executives, appropriate to the hardware

available,
A processor communicates with an
adjacent processor via shared memory.
The aim of this is to remove the need Traceability of Requirements
for buses, thus eliminating the risk of
a "single point of failure". It is The use of CORE and MASCOT will
intended that the shared memory used in provide the means of tracing the
DORIS should he Asynchronous Dual Port requirements through to
Memory (ADPM), although other devices implementation
can be used. The Communication
Integrated Circuit is used to control
the access to the shared memory, 7 References
allowing activities in adjacent
processors to pass data from one to 1. Mullery G.P. CORE - A method for
another. An Asynchronous Dual Port Controlled Requirement
Memory without arbitration ',as Specification, Proceedings of the
currently been selected, wi.ch avoids Fourth International Conference
any timing interference, Four on Softwa-e Engineering 1979, pp
different forms of communication are 126 - 135.
supported: fully asynchronous;
conditionally asynchronous; loosely 2. Cooling J.E. Software Design for
synchronous; fully synchronous. Real-time systems, 1991, Chapman

and Hall. pp 331 - 333.

A facility is provided that allows the
COMIC to signal to the KERIO in the 3. The Official Handbook of MASCOT
destination processor that data has (Version 3.1), 1987, Defence
arrived for it, and that the Research Information Centre,
appropriate activity can be Glasgow.
rescheduled.

4. Simpson H.R. The MASCOT Method.
Software Engineering Journal,

6 Conclusion 1986, 1, (3), pp 103-120.

DORIS aims to provide support for the 5. Simpson H.R. MASCOT Real Time
development of safe and reliable Networks in Distributed System
systems. It does this by: Design. IEE Colloquium on MASCOT

and Related Issues, December
- Reducing timing indeterminancies 1990.

15-6

6. Simpson H.R. A Data Interaction
Architecture (DIA) for Real Time
Embedded Multi Processor Systems.
RAe Conference on Computing
Techniques in Guided Flight,
Boscombe Down, 1990.

8 Acknowledgements

The author would like to acknowledge
the help of her colleagues at British
Aerospace (Dynamics) Ltd with the
preparation of this paper.

The author would also like to thank the
Ministry of Defence in the UK for its
funding of some of the tools and
methods mentioned in this paper.

15-7

DORIS DEVELOPMENT PROCESS

Requirements

Arim~onefinision

System (s)

CORE COntrolled Requirements Expression

MASCOT Modula Approach to Software Constructon, Operation arid Test

DIA Data Interaction Architecture

Figure 1

DDL Source HDL Sourceties flsMDL Source

HOL
Anayer

DOLse HDL template MDL--,(AN)~se database iayser

(MAN)

hAv instance
generator

Checked set of DOL template Wbudtemplate sources database IWidatabaine
databaseDatabase

set of Set of

insan e s ur esbatch files 1[dtabase

Co lier

Set of loadlable
images set of linkmaps

Laden/
Monitor
(DFiMON)

Target

Figure 2

15-9

Private~Bus
Pit Private

Memory:e
ADPM

Async comi c

Device de.e

Other
Processors

Sync
Device

TFierg r 3

L - - - - - - - - - I -- - - -

Cuonections to Private Bus:

Private Memory: Contains activaies and private icdas.

Kernel Integrated Circuit: Supports activty scheduling and cooperatie external stimuli,

Asynchronous Dual Port Memory- Idas shared with activties in an adjacent processor.

Communication Integrated Circuit: Control and stmulus logic for shared ides.

Async Device: Polled penhper.:ad device.

Sync Devce: Peripheral device generating stimulus.

Tnew. Periodic stimulus generation,

Figure 3

16-1

PROCESS/OBJECT-ORIENTED ADA SOFTWARE DESIGN
FOR AN EXPERIMENTAL HELICOPTER

by
K. Grambow

ESG Elektronik-System-GmbH
Postfach 80 05 69
8000 Munchen 80

Germany

Summary In this paper a comprehensive design metho-
dology, which strongly utilize Ada's design and real-

This paper discusses a software design method timefeatures, is presented. The methodology focuses
for real-time applications written in Ada. It proves on large real-time systems, giving a practical, step-by-
that even time critical systems can be implemented in step design approach, which is documented in several
pure Ada. graphical illustrations and can be canonically trans-formed to Ada program design language.

The design method is based on the Ada tasking

model in coniunction with object-oriented design As an example, the design methodology is
OOD) priniples. Special purpose graphs, derived appiied to an experimental helicopter project which

from Yourdon/De Marco data flow diagrams is currently under development at ESG.
DFD's), illustrate the method, while Ada program
design language (PDL), as a counterpart to the In the following chapter, we briefly describe the

graphs, serves as a basis for the software imple- example project. Chapter 3 explains the methodology
mentation. and applies it to the project. Chapter 4 continues the

description of the design, concentrating on refinement
No global cyclical executive is used to schedule steps under utilization of OOD techniques. Chapter 5

the concurrent threads of execution. Instead, a is dedicated to real-time scheduling and software
rendezvous-based interaction of Ada tasks provides performance issues, discussing the question of
the schedulinF. This is automatically generated from whether the scheduling based on the Ada tasking
an Ada compiler. model is applicable in time critical systems. The finalchapter summarizes the experiences with the design

This software design technique is illustrated by method.
the development of the operational flight software for
an experimental helicopter.

2. A typical real-time project

1. Introduction At ESG, a project is currently under deve-
lopment which equips a helicopter with experimental

In the past, real-time systems were implemented avionic instrumentation. The helicopter will facilitate
using a dedicated operating system on the target the analyses of advanced equipment components and
computer or using a higher level programming of the man-machine interface aspects of a modern
language with real -time extensions. Since the intro- cockpit in the course of flight trials. Modern
duction of Ada, a widely accepted programming computer-controlled displays and sensors are at the
language is available which incorporates real-time pilots disposal to gain flight experience in a realistic
features such as tasking or interrupt handling in the environment. The results of these flight experiments
language itself. are a valuable input for and can prove the feasibility of

later helicopter products like the German/French
Moreover, complex real-time software deve- "Tiger" anti-tank helicopter.

lopment demands a Ian age with design features,
modularity concepts and precautions for team-effort Due to the experimental character of the project,
implementation. Therefore, Ada was equipped with the system and software design should be flexible and
such features as packages, generics and separate easy to alter or extend. Clearness, ease of change and
compilation. reusability are important demands on the software

devlopment effort. All software for the avionicThese two aspects prove Ada to be a very good system is implemented in Ada.
tool, both for the design and for the implementation
of complex real-time systems. Figure 1 shows the system architecture of this

example project:

16-2

StlieInertial F iDaaBasic Helicopter
Navigalion Navigation S ler System

System System (Turbines)

Term inal if A vionic . o k n

~Infrared Sensor

Toprapical Graphic
Mao Device Displays Helmet

Figure 1: System architecture of the experimental helicopter

The avionic computer is a multiprocessor system, language (PDL). The global design is process orien-
based on Motorola 68030 boards, with an integrated ted, leading to the identification of all concurrent
graphic symbol generator. All display and control processes and their interactions. In Ada. these are
units, and the sensors, are electrically connected to described as tasks and rendezvous. In a refinement
special input/output boards of the avionic computer. step of the design, Ada PDL is further developed to

outline the single threads of execution of each task
The pilot controls the avionic instrumentation using OOD methods.

with a menu guided terminal and with the help of a
topographical map device. In the following, the methodology will be

explained step-by-step and illustrated through
All important flight information (flight routes, examples from the experimental helicopter project.

danger areas, helicopter attitude and velocities) is
displayed and continually updated on special multi- At first, one tries to identify the main software
color graphic devices, functions and their real-time executions, i.e. whether

they perform event-driven or execute periodically. A
In addition to the usual inertial navigation textual description of the requirements for the project

system, a very precise satellite controlled navigation will normally be the basis for this step. As discussed in
system (GPS) is utilized, more detail in chapter 5, no global cyclical scheduler

will be used in this kind of design, but all the real-time
Last but not least, the pilot wears a helmet issues will be handled with the Ada tasking model.

mounted sight/display device: digital information is Therefore, it is important to fit the main software
mixed with the video image of the forward looking functions in concurrent processes which will be
infrared camera and can be projected on the screen described as Ada tasks. The real-time execution of
of the helmet. The camera is controlled through these tasks is provided implicitly by the Ada compiler,
movements of the pilot's head. their interaction is controlled by Ada rendezvous.

But how does one find these tasks? They should
be combinations of cohesive software functions. Some
will execute periodically, others event-driven. In the

3. The Ada software design method latter case, they may be triggered by interrupt. The
design methodology defines a comprehensive

The software design for the helicopterproject is procedure for the identification of these tasks:
derived from a methodology developed by Nielsen
and K. Shumate at Hughes Aircraft Company (see The so-called "edges-in approach" assigns a
(11). It is based on the Ada tasking mode in con- concurrent process to each of the interface handlers
junction with object oriented design (OOD) features. which connect the external hardware devices with the
Graphics illustrate the global design steps and can be main avionic application. Here, the main part is not
canonically transfered into Ada program design yet specified, only its data flows to the outside world.

16-3

Navigation HandleSensor Navigation Handle Basic

_Datag l'n nputv0utput Helicopter He
Input Data 'co tr

Navigation Helicopter
Data Data

Keyboard
Strokes Hade Character

Screen Handle
U pdate Terminal

Output

Figure 2: Top level data flow diagram

This first step is illustrated in the top-level data flow as well as moding control). For performing process
diagram (DFD). See figure 2 for a mapping of the identification, this level of DFD hierarchy is not suffi-
helicopter system architecture onto a top level cient. As an example, in figure 4, the flight manage-
software DFD. The interaction with the hardware ment is further refined to a level where one can iden-
devices (navigation systems, pilot controls, ...) is tify the concurrent processes: helicopter control, flight
controlled by concurrent handler processes. In the control, navigation and obstacle warning should run
case of functional cohesion, some of these handler concurrently. The navigation process is a combination
processes may be combined to one process in order to of the software functions navigational computation
reduce the number of different tasks in the system. and height warning, and the data storage for NAV-

data and height limits. Its real-time performance is
In the next steps, the main avionic application event driven. Whenever new navigational data arrives

(middle part) is decor'oosed using a hierarchy of in the system (through certain handlers, see figure 2),
DFD's. The tool for this step is the good old the process becomes active, Only in the case of new
Yourdon/De Marco DFD, applied not for functional height data the height warning function will be
analysis of the project but for software design. Hence, performed. Hence, the height warning software
one cannot just map the transforms and data flows of function is integrated into the navigation process. The
the requirement description onto software modules. It flight control process monitors the routes, guaran-
is necessary to set up a new, shallow leveled DFD teeing mutually exclusive access to these flight routes.
structure with the aim to combine transforms to The obstacle warning is a typical periodic task. Every
concurrent software processes. During this procedure, second, possible obstacles along the flight track are
one has to consider the resulting interactions of the checked.
so-formed concurrent processes. They run in parallel
and interact with each other. Therefore, one carefully Now, all processes are determined and can be
has to avoid mutual waiting situations, i.e. dead-locks, graphically illustrated in a single-level process
Sometimes intermediary processes (buffers, queues, structure chart. At this stage, a textual representation
...) have to be introduced to decouple applications, of the software can begin. Because of the excellent
For the process identification, i.e. the combination of design features of Ada, this will result in readily
certain DFD functions, functional cohesion, as well as compilable Ada PDL which corresponds directly to
temporal dependencies, are to be considered. Typical the graphical representation and is easily readable.
reusable objects, such as monitors for a critical data The concurrent processes are described as Ada tasks.
region, servers or periodic modules, are examples of A hierarchical dependency of tasks must be avoided.
such processes. All concurrency must be visible at the top level. In

order to suprt separate compilation and readability,Figures 3 and 4 illustrate the software DFD the tasks will be embedded in Ada packages, strictly
structure and process identification in the experi- separating the specification from the implementation
mental helicopter project: Figure 3 shows that the (body) part. Thus, even in this early software design
AVT middle part consists of four major software stage, the results can be expressed with Ada code.
functions (terminal, flight and graphics management,

16-4

Charactert

Heliopte Flght odeDevice
Detaoptea Status

FlightModing
Management Take off / Touch down Control

Navigation Md

Figure 3: The middle part or the top level DFD

------ ---- ----- ----- ----- -------- -----------------
mode

NAV Data
Take 0M1

--------------------- downa
Posiaon '-

. a~~an Navigation - t'ack Obstacle
(Velocity Warning

newa Waanang

Heaght Flight
Control a'

aHeight Limits Wanng

aa Helicopter
Routa Control

Update
Height Data A,,

Warning a &aphac
Manae-

Flight RoutesI

oea~ flules

to

Figure 4: Refinement of the flight management" with process identification

In order to conclude the global design, the design step, a careful decision has to be made as to
interactions of the tasks have to be specified. The data which task issues an entry-call and which task is called,
flows between the concurrent processes are a basis for to avoid waiting tasks and dead-locks (caller-called
the Ada rendezvc, .between these tasks. In this decisions).

16-5

tal Inputs 4

Fiue5:Aat st achote main CPUiina

Warnin 11 Character
r-sann - Handier Buffer

t

ATbbls N AY Dersettas, theig Lconnection

Fiarrws Ant task gah o the i aCp

Theow fdes ulbe t ofauha glo ba e s ignr isfo an Aa tedt lwi noecs n n nteohrcs
tamkgrph ATG) whchderbe the neiotrpoetwor ofAll "ou Dtaiesg
courrenti processes a thereri on. aing

aows dscribethon datalows. Sro ee fotor pr on tatil sigan e

exm le t froms threnhioterti Allon th cpre dtie ein h d acaecntutiple
vous tidenatife r. onessesia ron afti d sigle ncnucin ihO Dies

eetoloo ir ted hA er roens se e f ment

dIn ste prowmfnta hinotegradal ioentiied prot- cod an asil bpte dducs apaed frmhnT by desri
prcesso eu a trihfrad the main aoncpr.TesmtescPO binkges o ced proessaes withAdutass and their
(atrpefrsalaplicatiod dhlestributionbe prt of the procesesront processoreneatoswt d edzo s. Pefrin the
iautprocessor deviroent pis beyndatemse adeailae dspeintens Adaulh package uoisapied

rntexp rimg enral, iote pojl et, sbe o r the mut- n afissp themAdaltas cared ecuanthein Adaie

represent all processes of a single processor in a single identified with the entrance procedures. Hence, thelevel AVG. Otherwise, too much concurrency (too tasks are treated as typical objects in an OOD

many Adia tasks) will occur. As an example of the manner: their detailed definition, or even their
caller-called decision, consider the interactions of the implementation is not visible. Only the operationsflight control and the terminal management process of which influence them, i.e. the entrance procedures,
figure 5: the flight control process is a pure server, i.e. are visible. Figure 6 shows this QOD concept applied
is always called-in order to be in an accept mode for to the moding part of the ATG of figure 5.
its various jobs at any time (in Ada, this corresponds
to a selective wat construct). On the other hand, the In the following steps, the sequential flow of each task
terminal management process is a pure caller. It is furthe," decomposed using separate Ada sub-
performs lengthy computations accessing lots of data. programs (which describe some DFD-transforms of
Therefore, it always actively issues Ada entry calls. In the task) and again using Ada packages and p~roce-
conclusion, both interactions between the flight dures / functions to represent objects/operations
control and the terminal management process are from QOD theory. For example, the height warning
called from the terminal management side, although (figure 4) will be implemented as a separate sub-

program in the task "navigation".

16-6

Spec: with DEVICES: - - Definition of devices and their status
package MODING is

type MASTER-MODE is (OFF, DAY, NIGHT,..
type MODES is...;
function GET-MODES return MODES; - - access to data store
-- entrance procedures:
procedure NEW.MASTER.MODE (VALUE: in MASTER-MODE)

end 'ODING;

Body: package body MODING is
task MODING is

entry NEWMASTERMODE (VALUE: in MASTERMODE);

end MODING;
procedure NEWMASTERMODE (VALUE in MASTER-MODE) is
begin

MODING.NEWMASTERMODE (VALUE);
end NEWMASTER-MODE;
task body MODING is separate:

end MODING;

Figure 6: An example for using OOD techniques in Ada

This concludes the discussion about the design The Ada tasking model .,'ters a fundamentally
method. The further stepwise refinement, towards a different approach. As ob-.rved in the revious
full Ada implementation is generally straightforward chapters, the language itself provides a the features
and heavily depends on the specifics of the appli. necessary for real-time scheduling. Whenever a task
cation. The next chapter returns to the discussion completes an execution part, has to wait for infor-of the most dominant feature of this design method: mation from other tasks, or a higher priority task
the real-time scheduling aspect. becomes ready to execute, the system automatically

reschedules. This dynamic preemption of tasks at run.
time is a direct outcome of the Ada compiler. It
generates non-deterministic timelines, at odds with

5. Scheduling with the Ada tasking model the very idea of the classical fixed execution time slots.
As we have observed, the design of real-time

Earlier avionic projects, especially those where systems using Ada is guided by functional cohesion.
strict real-time requirements with short cycle times Only those software modules whose applications are
dominated, were typically realized usin a gobal related, comprise a common task. Each task locally
cyclical scheduler. All functional modus ad to be determines its real-time behaviour. Some execute
itted into time slots of a cyclical executive in order to event-driven, others periodically, locally setting up

guarantee their periodicity and to ensure that the their cyclical behaviour. No global scheduler deter-
critical ;ections of different tasks do not interleave, mines the system flow, only the rendezvous mecha-
With large .applications, this mapping process, from a nism between the tasks guides the flow of execution.
functional aspect to time slice behaviour, became Each task schedules itself, either cyclically with the
more and more complicated. The average, or better Ada constructs "delay* and "calendar.clock" or on
the worst case duration of each function, had to be event per rendezvous "accept" or call. Therefore,
estimated to ensure that all applications fit into their cyclical behaviour is naturally integrated with event
time slots. An overrun would destroy the whole global driven processes. Overall, such an Ada design can be
execution scheme. Such an approach often confused easily extended and with the help of the locality
clear program structure, violating functional cohesion principle and OOD constructs many modules
and locality principles for the sake of timing con. (packages) are reusable.
siderations. Typically, such schedulers were imple-
mented using special operating system routines or Early criticism of Ada's real-tim features argued
real-time extensions to the implementation language. that the non-determinism of the Ada tasking model

16-7

was in contradiction to fixed real-time deadlines. References
But, extensive studies have proved that certain bounds
on CPU utilization, in conjunction with Ada prioritypolicies, guarantee that all tasks will meet their dead- [1] Kjei Nielsen, Ken Shumatelines without knowing exactly when any given task will Desiging Large Real-time Systems with Ada"
be running (see [3]). Without going into details of this
study here, the principle ideas of the stud h[3 h are the
"rate monotonic scheduling algorithm",w s ges [2) jel Nielsen
each task a fixed priority assiting higher priorities to "Ada in Distributed Real-time Systems"

tasks with shorter periodicity, and the "priority ceiling McGraw-HiU, 1990
protocol, which prevents dead-lock situations and
unwanted priority inversions. Nevertheless, the [3] L. Sha, J. B. Goodenough (SET, CMU)

"A Review of Analytic ea -time Schedulingpresent de inition of the Ada language has some Theory and its Application to Ada"

drawbacks related to the priority inversion issues Proceedis AdEo Itation al

(which are caused by using FIFO rather then priority Proceedings of the Ada-Europe International
queues for tasking). Hopefully, future versions of Ada,
and perhaps even the next official release, Ada9X, will 4 SIGAda Performance Issues Working Group
address this matter. "Ada Performance Issues"

A second important criticism regarding Ada's ACM Press Ada Letters No.3,1990
real.time execution was the unsatisfactory quality of
the Ada compilers. How big of an overhead does an
Ada compiler impose on the scheduling (task switch
times)? What is the accuracy of the delay and timer
constructs in Ada? Benchmark tests initialized by
SIGAda's performance issues working group show
that the latest generation of compilers now have quite
satisfactory results (see [4]). Our own experience in
the experimental helicopter pro ect was also quite
satisfying. The Ada tasking model, under the rate
monotonic scheduling policy, i.e. a special policy of
assigning priorities to tasks, works well. Nevertheless,
a few features of an Ada runtime system outside the
scope of the language were used, especially to over-
come the inaccuracy of the Ada timer resolution.

6. Conclusion

The experimental helicopter project, as a typical
real-time system, has been completely designed and
implemented with Ada. The design method derived
from Nielsen / Shumate has proved to be a practical,
comprehensive guideline utilizing the powerful Ada
features to defime and implement a complex real-time
software system.

The functional decomposition served as a basis
to build the Ada tasks and their rendezvous. In this
process, non-cyclical modules and periodic tasks were
easily combined. Hence, no painful fitting of func-
tional applications in time slots of a cyclical executive
had to be performed. The Ada compiler itself pro-
vided the real-time scheduling.

Currently, the project is undergoing a restruc-
turing phase leading to some new or changing func.
tionality and requirements. But, because of the well
structured design and the modular, clear and reusable
software implementation, due to Ada, we are
convinced that we can easily cope with these new
aspects.

17-I

CODE GENERATION FOR FAST DSP-BASED REAL-TIME CONTROL
by

H. Hanselmann, A. Schwarte, H Henrichfreise
dSPACE digital signal processing and control engineering GmbH

An der Sch6nen Aussicht 2
W-4790 Paderbom

Germany

Sumuary. Digital single-chip signal processors (DSP) are ly, whereas for fixed-point chips fully automatic implementa-
powerful devices to implement closed-loop controllers for tion is currently limited to linear (though arbitrarily high-order)
highly dynamic mechanisms. Code production is however not controllers, with semi-automatic treatment of nonlinearities and
that easy, particularly with DSP offering only fixed-point logic.
arithmetic. This paper describes key issues and a toolset which This paper describes key issues and a powerful commercially
builds on automatic code generation to complement existing available toolset (DSP-CITpro) for generating code for re-
control design tools so as to close the gap between design and al-time DSP-based control. This toolset has also proven to be
implementation or experiment. very useful for real-time simulation (hardware-in-the-loop

simulation).

Introduction

An integral part of many guidance and control tasks is the
lower level embedded closed-loop control of mechanisms DSP Chip Categories
(Fig. 1). The largest DSP family is available from Texas Instruments,

referene and This family roughly divides into three groups (Fig. 2).
feodforward signals

mechanism F -l edP~

Fig. 2: DSP categories

sensors
The DSP microcontroller is just a fixed-point DSP with on-chip

controlled and auxiliary variables peripherals such as: bit i/o port, watchdog, 6 high-speed
pulse-width-modulated outputs, 4 capture inputs. The latter two

Fig. 1: closed-loop control features belong to a so-called event manager, a very important
subsystem which is also available in many modem non-DSP
microcontrollers

The mechanisms controlled may range from microminiature
actuators to huge flexible space structures. Tasks include The most important points of a DSP's architecture regarding
motion control, vibration damping, and stabilization. Tech- code generation are:
niques include classical multiloop PID-control, state-space - the type of arithmetic offered,
contiol with Kalman-Filiers and observers, gain-scheduling, the support for HLLs (high level languages),
and adaptive control.

Fixed-point and floating-point digital signal processots (DSP) - memory limitations.
are very powerful devices for implementation of such con- The current floating-point DSPs are most suitible for standard
trollers for fast systems. They are also available in high-relia- IILLs such as C. They have virtually no memory limtations,
bility versions suitable for avionics and similar applications. software stack support, and very efficiently implement the

Traditionally, the code for such devices is developed on the floating-point arithmetic of standard HLLs.

assembly language level which has well-known disadvantages. Standard HLLs are not generally suited to fixed-point DSP
For fixed-point DSP there has been virtually no alternative, primarily because they do not offer a suitable data type and
There are ItLL (high level language) compilers for some DSP, arithmetic concept for efficient and accurate fixed-point signal
but they lack adequate data types for dealing with fixed-point processing. The DSPL language as described below is designed
arithmetic other than integer. They are also not tailored to the specifically to fill this gap. It also addresses other issues of
architecture of DSP. Furthermore, producing code for such efficient use of the DSP's special architecture and instruction
processors means more than just programming. There is much set /I
to be done between a completed controller design and the point
where actual code can be produced. Crucial steps are structure
selection and scaling.
For the newer floating-point DSP there are quite good C Fixed-point DSP Arithnetic
compilers and the specifics of fixed-point arithmetic no longer The anthmeuc used throughout DSP-CITpro for fixed-point
dominate the task of code production. More complex nonlinear DSP isfracnonal anthmetic where the binary point is just right
control can be envisiomned to be implemented fully automatical- of the 'sign' bit (Fig. 3),

17-2

external outputs of the controller (i e at least the control signals
Sb _i _b_2 b bgoing to the actuators).

If the controller is a connection of subsystems then it is
assumed for simplicity that all subsystems and connections are

Fig 3 fractional data format combined into one big 'monoblock' system (1). An example
would be the connection of a state feedback gain matrix,

ant, the number range is feedforward gain matrix and a plant observer or stationary
Kalman-Filter. A great deal of what is explained below would

-1 0, 5 r < 1 0, - 2 - -') also apply if only a linear subsystem of a nonlinear controller
would be considered.

The central arithmetic operation in most signal processing tasks (1) minimization of computational load
is the scalar (or dot) product If matrices A, B, C, D are taken directly from a control design

r = c' d, + c" -d + .-. +cd, (2) software package, then all matrices may be totally dense in the
It is crucial to have a clear methodology as to how this worst case. Minimization of the computational load means

operation is to be implemented on a DSP, with respect to reducing the number of nonzero entries (coefficients) in those
number range violations, accuracy, and efficiency. matrices, without aitering anything in the dynamic input/out-

put-behaviour of the controller This can be achieved by
suitable transormations based on linear algebra theory Mati-

Key Issues of Control Implementation ces A, B, C are affected Totally dense matrices A, C may for

From a system dynamics viewpoint some key issues when example be changed into

implementing a closed-loop controller are /2/-

(1) minimization of computational load, 10 0 0 0 0 -a,

(2) insensitivity to coefficient and signal quantization, I 0 0 0 0 a,
0 1 0 .. 0 0 -a

(3) minimization of input/output delay,

(4) good discretization if controller prototype design is A =
analog,

(5) adequate scaling for fixed-point arithmetic, 0 0 0 .. I 0 -a,_

(6) overflow handling with fixed-point arithmetic. 0 0 0 . 0 1 -a,_

From a coding viewpoint some key issues are-

(7) avoiding assembly language coding, yet exploiting pro-
cessor architecture,

(8) avoiding loops, subroutines, or indexing for maximum C=(O 0 0 .. 0 0 1)
speed, The various forms of the matrices are also called structures due

(9) control over memory allocation, to their different block diagrams when represented graphically

(10) ensuring timely execution even for worst-case control Unfortunately, such transformations n iy have an adverse effect
flow in the program, on sensitivity .o quantization in the processor. It is important to

(11) avoiding extended precision arithmetic have tools which provide adequate structures, and can analyse
sources of potential or real trouble with quantization

Remark (8) may seem to contradict good programming prac. (2) insensitivity to coefficient and signal quantization
tice, but need not have the unwanted effects normally associat- Different structures in the above sesse normally exhibit differ-
ed with such programming style For DSPL compilers as ent sensitivity to coefficient and signal quantization Quite
described below the level where this style becomes visible is frequently the structures with the least number of nonzero
the assembly language output, not the DSPL program. For coefficients behave very badly in this respect. With such a
generated C code the generated code is still easy to read. structure one may be forced to use extended precision arith-

metic somewhere, which quickly outweighs any gain from

The various points listed above will now be explained in some reducing the number of nonzero coefficients

detail first for a linear controller. It is assumed that the
controller is available in the form of matrices A, BC. D of the (3) minimization of input/output delay
time-invanant difference equation If the control signal instantly depends on current sensor input

samples, which is normally the case with controllers, then there
x. =Ax, + Bu, (1) *s some inevitable delay between the theoretical output instant

and the rsal one (Fig. 4).
y, Cx, +Du,

where x is the internal state vector of tne controller (which is Some of the delay may be due to A/D- or D/A-converters and is
assumed to have dynamics, not just gains), u comprises all unavoidable The delay resulting from the finite computetion
input signals to the controller (i e. from sensors or reference time in the processor however can be nunmizcd by proper
generators / path planning modules), and y comprises all arrangement of the code (Fig 5)

17-3

ideal real i.e. by introduction of normalized variables after determining
maximum values.
Even with scaling of variables it is not guaranteed that the

coefficients of scalar products are all fractional numbers. For
matrices AB in (1) this can however normally be expected with
certain structures (which are often anyway the preferable ones),
such as the so-called real-modal form. For C. D this is often not

t the case. The frequently high gains of a controller are repre-
sented in these matrices, and coefficients three orders of
magnitude greater than one (the fractional number limit) have
been experienced. Scalar-product handling as mentioned below

Fig. 4: input/output delay helps.

(6) overflow handling with fixed-point arithmetc

With a scalar product (2) there is the potential of overflow.
Even with proper scaling of variables such as x, y in (1) there

--- [may still be some variables which may overflow occasionally,
and this may even be intentional. An example is the control
signal to the actuator of a position control system. With large
commanded position changes the control signal is normally
expected to saturate for a while This means that this compo-
nent of y must be able to go into saturation overflow. The same

Imay hold for components of x if they are associated with
integrators in the controller

Unfortunately wrap-around will occur if no provision for
fW"'SMI# -"- s overflow saturation is made (Fig 6).

oultut 1m u n gMw -ta11

test--~

Fig. 5: input/output delay minimization Fig. 6: overflow handling

(4) good discretization if controller prototype design is The code generation for fixed-point DSP in DSP-CITpro via
analog the DSPL language provides a systematic method called

If control design is carried out in the continous domain (i.e. for scaiar-product scaling at compile time to guarantee

analog implementation) the controller will normally be dis- accommodation of coefficient, outside the fractional number
cretized, i.e. the differential equations will be translated into range,
difference equations. Much can be gained by using methods efficient and accurate execution of the scalar-product opera-
which have proven to produce good discretizations. A good tion in the extended accumulator of the DSP,
discretization is one which does not alter the controller's, or
more importantly, the closed-loop's behaviour when compared creation of logical 'guard' hits to ensure proper saturation on
to the analog one. Experience has shown that a good method overflow, if desired.

can yield as much as a factor of five reduction in the required
sampling rate over a standard discretization. (7) avoiding assembly language coding, but still exploiting

processor architecture;

(5) adequate scaling for fixed-point arithmetic (8) avoiding loops, subroutines, or indexing for maximum
speed,

Controller implementation on fixed-point DSP requires proper

scaling of coefficients and variables. Coefficients must be
representable. V-.iables (signals) must be scaled in order to A. Floating-Point. For floating-point DSP. which offer 32-bit
avoid both excessive quantization for small signals and over- single-precision computation without speed penalty, the pre-
flow for large signal exciraions. dominant HLL is C, but there are also compilers for other

Scaling of u, y in (1) is nonially derived from the gains of languages. For the TMS 320C30 there is even an Ada compiler
A/D- and D/A-converters and sensor and actuator amplifier available. So there is normally no need for assembly language
gains. Proper scaling of x ia be deterined by various means. programming except maybe for increased speed or in case of
One particularly attractive method is the so-called 1-scaling. It very tight memory limitations of the target hardware.
can be carried out by an algorithm (in DSP-CITpro) completely Standard HLL compilers naturally lack special constructs
automatically, useful for mapping signal processing operations onto the

Scaliig of nonlinear expressions (as may be attached to an special architecture of a DSP. O1, lizations available in
otherwise linear controller) is presently carried out manually modem compilers can however co,, iderably improve runtime
along the same lines as known to some from analog computing, efficiency /3/.

17-4

As an example a FIR filter operation is considered which is may result in severe degrading of execution speed. The
described by the equation below, where y is the filter output, a, computing power of a DSP can quickly be turned into a
are the coefficients, and u holds the current and previously fraction of the peak MFLOPS rate by not letting the DSP
stored values of the sampled input signal. compute, and doing address computation, stack administration

and branching instead.yk = a#uk + au; .. +. .. + a~ui4_
B. Fixed-Point For fixed-point DSP there are only few

The tasks to be performed are offerings of HLL compilers. The newer generations are some-

- computation of the output by the scalar product, as a times supported by C compilers too. The statements on C
sequence of coefficient-times-input-variable multiplications compilers for floating-point DSP hold again, but there is one
and partial product accumulations, very important additional point to make- Standard C compilers

- moving the stored input values u, so as to introduce the have no support for doing signal processing arithmetic effi-

newest input sample and discarding the oldest. ciently, i.e. there is no support for fractional number arithmetic
and scalar product computation

A DSP such as the TMS 320C30 can perform this operation in

one cycle, although there is some setup and pipelining overhead There is one C compiler available from Analog Devices for

which is significant for short filter lengths. Fig. 7 shows the their own line of fixed-point DSP which offers 'fractional' as a

assembly language code which makes use of parallel execution non-standard data type. But it still lacks features for optimal

of 3-operand multiply and add plus addres- generation for both scalar product computation as built into DSP-CITpro's DSPL

coefficients and input samples in one cycle (the code shown in compilers It is not uncommon to see a C programming effort

the box) on a fixed-point DSP ending up in 80% (hand-written) assem-
bly language code.

LDI filter-order + 1, BK ; block size n + I The approach taken in DSP-CITpro is to provide a suitable
LDI ARO, address.of.lastsoeffi- a, intermediate language, called DSPL. Details on syntax and

cient semantics of DSPL can be found in /I/. Code examples are

LDI ARI, bottomof sample buffer found below. A short characterization of DSPL and its compil-

L LDF u-newest, R3 ers is
STF R3, *ARI++% , unewest -> bufLDF 0.0, R0 - emphasis on efficient and accurate fixed-point scalar product

LDF 0 0, R2 arithmetic,

RPTS filterorder n - self-documentation, Ada/Pascal like syntax,

MPYF3 *ARO++(I)%, *ARI++(1)%, RO - strongly typed language,
II ADDF3 RO, R2, R2 - assembly language code is generated without loops, subrou-

tines and address calculations for maximum speed,
STF R2, yl - includes scalar product scaling mechanism,

B L - hides mechanisms for low-level operations such as details of
signal i/o,

Fig 7 optimal FIR filter assembly code for TMS 320C30 - looping, decisionmaking, and boolean instructions available,

A problem with a HLL like C is that the compiler is not - interrupt servicing on language level,

intelligent enough to detect that a piece of C code actually - compilers are processor dependent but not hardware environ-
represents a FIR filter and could be compiled into the above ment dependent (i.e. target hardware may vary),
code With optimuzations enabled, the Texas Instruments C - compiler output is comprehensively commented assembly
compiler produces code which is approximately 4 times slower language program,
than the above assembly program. The compiler is unable to
generate parallel multiply and add operations (factor 2) and the - global and statement-wise execution time profiles and
'update' operation (u, - -* u, ,) is executed separately. This is memory statistics generated by compiler (see below).

because the 'update' must be formulated in a separate statement DSPL compilers are available for first and second generation
in C, whereas at the assembly language level a special DSP Texas Instruments DSPs
addressing mode (circular addressing) can be exploited The
compiler is however intelligent enough to introduce zero-penal-
ty looping, parallel address increment, and a delayed branch.
For less structured operations the speed penalty of such a (10) ensure timely execution even for worst-case control flow
modem optimizing HLI. compiler should be rather low. in the program

In general there are some basic rules to follow for maximum A closed-loop controller or similar signal processing system
efficiency, such as must nomially run exactly at a fixed sampling rate. It is an

(a) to avoid calculating with insignificant coefficients, issue to determine the minimum execution time necessary. It is
also interesting to have profile information to see which parts

(b) to avoid loops, of the program are the most time-consuming and could possibly

(c) to avoid variable indices, be improved.

(d) to avoid pointers, The DSPL compilers automatically provide this information.
For each task a global worst-case execution time is compated
There are some very rare circumstances where the compiler

Sonic of these rules can normally not be met with 'general' cannot compute such information One example is a loop where
subroutines using loops and arrays So-called 'straight-code' the repeat count is a variable. In most cases encountered in
should be used, which is best produced by generating programs control implementation the calculation is valid. It even takes
from higher level descriptions of the tasks. Violating these rules into account that a DSP may have quite complicated instruction

17-5

cycle tables with dependencies on memory layout. With discretization sparseness must normally be separately

in addition the DSPL compilers also provide execution cycle generated by transforming into a suitable structure (seeIn aditon he DPL ompler als prvid exeutin ccle above section on minimization of computational load).

information statement by statement (DSPL), embedded as

comments in the generated assembly language source. Disadvantages with on-line integrators are:

With the C compiler for the floating-point DSP there is • Structure transformation and automatic scaling are not
unfortunately no such mechanism. The code must be executed directly available for fixed-point DSP.

for real-time profiling. A DSP-CITpro module called TRACE • Stability problems may occur for larger step-sizes or stiff
can however be used to gather such information from the systems.
running DSP program quite easily. A graph of the execution
time history versus time can be produced, clearly showing - Integration accuracy may be more limited, and the fidelity of

possible fluctuauons in execution time. Fluctuations occur the digital version of the continuous system may be signifi-

when operations depend on the actual numerical values of cantly worse than with a good discretization of the linear

operands, or if the program control flow varies. Worst-case pan,

paths in the program control flow can however only be assessed It is worth mentioning that there are discretization methods for
if they are actually executed. the linear pan which correspond to an implicit on-line integra-

'Executing' a program on a DSP software simulator (instruc- tor with respect to dynamics. Such algorithms are interesting

tion level) could be considered an option, but is usually because they do not suffer from stability problems with stiff

impractical because it is extremely time-consuming. systems. Implicit on-line integrators however are totally im-
practical for real-time use.
On-line integration today is the first choice for real-time

(11) avoiding extended precision arithmetic simulation of big nonlinear mechanical systems/5/on float-

A DSPs computational power can be defeated if large parts of a ing-point DSP, where particularly the first above-mentioned

program require extended precision over what is provided advantages count.

directly by the architecture. Accumulation (such as in (2)) is

normally performed already in extended precision at no penal-
ty, but results stored for later use in the program should be at Control Implementation with DSP.CITpro

the standard wordlength. The modules of DSP-CIrpro and their interplay are depicted in

There is one notable case in control where it may be absolutely Fig. 8.

necessary to carry out extended precision arithmetic. High-pre- IMPAC ,
ciswon motion control may for instance require 24 bit position
values on a 16-bit DSP. Using double-word arithmetic through-
out the control algorithm must however be avoided. Fortunately . _.
there is a systematic way of keeping high-precision position j
values out of the control computation /4/, except at one ad
easy-to-handle place. It works equally well whether the control design

algorithm is of simple error-driven PID type or a sophisticated 104 ; ,, - -
optimal state variable controller including a stationary LI
Kalman-Filter or observer. Nv

DA~f

Difference Equations or on-line Integration

In control implementation it is understood by most engineers PC.AT ,,d

that the algorithm has to be brought into difference equation Fig. 8: DSP-CITpro modules
form. Control design in the discrete domain delivers this

directly. Control design in the continuous domain requires A brief description of the modules is now given:

discretization. In that case it may be a viable option to Interface Software. DSP.CITpro does not cover control design

implement fixed-stepsize on-line integration of the differential or postprocessing of signals taken from the real-time experi-
equations, for example with Euler or Runge-Kutta-type integra- ments which may follow code generation. For these purposes

tors. Advantages are: there are well-known packages available such as MATRIXx or

Parameters of the continuous system are directly reflected as MATLAB. DSP-CITpro interfaces to these packages.

program variables, and thus can easily be changed on-line, IMPAC. Impac consists of IMPEX and a C or DSPL compiler.
e,g for gain-scheduling. IMPEX covers the preparation of a linear controller and

By contrast such parameters are normally spread out by analysis of implementation effects, and also generates a DSPL
nonlinear expressions onto the coefficients of a difference or C program for the controller. Such programs are then
equation, compiled by the appropriate compiler.

Nonlinear parts of the differential equation are naturally IMP"X. In detail IMPEX provides the following services:

represented on the right-hand side of the first-order differen- - discretization,

tial equation system to be integrated. combination of subsystem blocks into a complete controller,

By contrast such parts need to be separated before discretiza-

tion and be attached later, making the situation somewhat - transformation into a suitable structure,

more complicated - automatic correction for A/D- and D/A- gains,

Sparseness of coefficient matrices of a continuous system is • automatic scahng ofontroller states for fixed-point imple-

reproduced. mentation,

17-6

- analysis of signal and coefficient quantization by simulation, with relevance to aerospace is

- A/D- and D/A- range entry and assignment of physical to - high-bandwidth suspension control for ground-based flexible
logical i/o channels, structure experiment,

- code generation specifications (meniory layout, scalar prod- - lightweight compliant robot joint control,
uct scaling etc.). - stabilization of head-up display mirror,

The IMPEX se'vices are available for linear blocks (1) includ- - gyro equipment control,
ing saturation where desired.

- servohydraulics for radar systems,
MERGE. MERGE is a kind of a batch editor. Its primary use is
to make modifications and insertions into code which was - active suspension,
automatically generated by IMPEX. A typical situation follows - active vibration damping of flexible structures.

A control design will normally be repeated and improved many
times based on experiment results. Current control design Control techniques involved range from simple PID control
technology is focusing on linear control. So in one design/im- over lqg-type state controllers, observers and Kalman-Filters up
plementation/experiment project a lot of versions of a linear to robust H-, controllers. Gain-scheduling, selftuning, and
controller are generated. Frequently the linear controller alone adaptive control can also easily be implemented even on a
is not sufficient, and must be enhanced by logic or nonlinear fixed-point DSP.
parts. Such parts are currently beyond the code generation
scope of IMPEX, so they have to be added at the language level
(DSPL or C) This editing is what MERGE can automate. A References
suitable control file tells MERGE how to modify or enhance I/ Hanselmann, -. and A Schwarte, 'Te Programming
the input code. Manual editing can be avoided and very quick Language DSPL, Preprints/Proccedings of 1990 Power Con-
turn-around times can be achieved even if the logic and version and Motion Control Conference (PCIM), Munch, June
nonlinear control code finally is much larger than the code for 15-28.
the linear block.

NMAC. NMAC is currently only available for the fixed-point /2/ Hanselmann, H., "Implementation of Digital Controllers- A
DSP. It produces DSPL-callable assembly code for nonlinear Survey", Automatica, Vol. 23, pp. 7-32, January 1987.
univariate functions NMAC reads a file describing arbitrarily /3/TMS320C30 Optimizing C Compiler Reference Guide,
spaced and arbitrarily many sample points of a desired func- Texas Instruments, 1990.
tion. It then produces table-lookup code which is optimized for
accuracy and speed. Various parameters specified by the user /4/1 lanselmann, IH., "Low Resolution Implementation of
can tailor the code towards speed, accuracy, and memory High-Resolution Position Control", IEEE Transactions on

consumption tradeoffs Automatic Control, Vol 33, No. 11. pp. 1074-1078, November
1988.

DSPL Compiler. The important features have already been
discussed in the general section on code generation. More /5/ ianselmann, H., Henrichfreise, If., Hostmann, A., and A.

information is embedded in the examples below. The code Schwarte, "Hardware-in-the-Loop Simulation mit Signal-

output of the DSPL conipiler is fully commented assembly prozessorsystemen", Preprints Echtzeit'91 Conference

code including execution time profile information. The assem- (Rael-Time'91), Sindelfingen, Jitine 11-13, 1991.

bly code is assembled by a standaid assembler.

C Compiler. The Texas Instruments ANSI C compiler is used Appendix

MON and SED MON is an object code loader. It also loads Control Implementation Example
setup information into the DSP-CITpro hardware Such setup A motion controller for an electromechanical actuator is
information (AID-ranges etc.) is bound to the object code 50 considered (Fig. 9). The actuator model is of 7th order due to
that loaded cede and loaded setups are always consistent. SED structural mechanical resonances around 1.5 and 2 kliz. The
is a setup editor. It is normally only used for static hardware actuator's position and the electrical driving current are mea-
setup data. Setun data for individual controllers are normally sured by sensors.
produced at the co)de generation stage of IMPEX.

TRACE. TRACE:, the module used to record all desired CONTROLLER

variables in the DSP while the control application is running. It
could be describcd as a virtually non-intrusive software tran- reference_-_-

sient recorder. Sophisticated triggering features allow capturing
the relevant data. Such data can be displayed graphically or
turned over to signal analysis or system identification packages th order observer
(MATLAB for example) F 7tot osarFil |

In suunary, the DSP-CITpro modules fill the gap between I t i / eo

theoretical control design and the real experiment Turnaround Donao s~qnal
times are very short due to sophisticated tools for making a
controller suitable for implementation and due to code genera-
tion. It need not take more than a couple of minutes to Fig. 9: controller example
reimplement a redesigned high-order state controller including The lqg-type (linear-quadratic-gaussian) controller is assumed
a stationary Kalman-Filter up to and including the actual to be designed ac a linear quadratic optimal (lq) state feedback
experiment, with a stationary Kalnan-Fiter as an observer. The design has

DSP-CITpro has been used in many fields of application and been performed with MATLAB, A rate-limiter will be added in
for various control techniques A selection of such applications the reference path, making the controller nonlinear. I he

17-7

rate-limiter prevents touching signal saturation at one of the The above description carries all information on the controller
sensors and thereby greatly improves medium-to-large signal dimension, numerical values of the matrices in (1), signal
behaviour, names and their optional ranges and units. This controller has a

The steps are: total of 80 nonzero coefficients, 49 in A, 21 in B, 7 in C, 3 in D.

(1) lqg design in MATLAB

The sampling rate is set to 10 kHz. First results within (3) Application of IMPEX
MATLAB are the state-feedback vector (including the refer- The following main steps are performed:
ence feedforward gain), plus the constant Kalman-Gain matrix. Structure transformation, reducing the number of coefficients

in A from 49 to 11.

From the state-feedback and Kalman-Filter the complete con- - Automatic state scaling for fixed-point implementation.
troller can be constructed within MATLAB, written to disk, - Specification of i/o for code generation.
and converted into a format expected by IMPEX. An alterna-
tive is to write the state-feedback and Kalman-Filter to disk - Specification of scalar product handling at to be realized by
separately, convert them, and then use IMPEX for combining DSPL compiler.

these into one single controller block. - DSPL source code generation.

(2) Create basic block readable by IMPEX (first alemative, The following DSPL program is produced (excerpt only):
excerpt only): ...

basicblock is scptype statel is fix' (acculength -> 32,
round -> on,

-- file C:\NICE\SEMC25\LOGDES\LINX.BB. scale -> on,
-- 20 Dec 90 1:30:54 pm saturation -> off),

scptype outl is fix' (acculength -> 32,
sampling_period :- 1.0E-04; round -> on,

scale -> conmmon,
systeminputs is saturation -> on);

name -> u_x_ref, unit -> V,
lowerbound -> -O OE+01, ...

upper bound -> 1.OE+01; xk : vector (7) of fractional;
name -> u_x, unit -> V, xkI vector (7) of fractional;

lower bound -I.0E401, u vector (3) of fractional;
upper bound-> 1.0E+01; input is u;

name -> u_I, unit -> V, y : vector (1) of fractional;
lower bound -> -1.0E+01, output is y,
upper bound-> 1.0E+01; tempi : rawaccumulator;

end system_inputs;

system outputs is begin
name -> u.M, unit -> V, every 1.0E-04 do

lower bound ->-.0E+01, update (xkl, xk);
upper bound -> 1.0E+01; input (u);

end system outputs; accumulate prescalpro (outl)
y(l) :- tempt + dl * u;

system..equations ssd is end accumulate;
system representation PHYSICAL; output (y); -- line 152
system states is accumulate scalpro (statel)

name -> xl; xkl(l) :- al - xk + bl * u;
name -> x2; end accumulate;

name > xT;
end system states;
dynamic_matrix is
a(1, 1) :--5.13340703582052E-01;
a(2, 1) - 4.15508858506746E-05, (4) Compilation and download (first without rate-limiter)

row output matrix u M is The linear controller's DSPL code is first compiled for a TMS
c () :- -3.41575795865014E+01; 320C25 second generation fixed-point DSP, the assembly
c 2) :- -2. 7389922042727E+05; language output assembled, and the object file loaded onto the
c(3) '- -2.72461533485298E 01;
c(4) 3.72279499287142E+05, hardware if it is attached. All that can be done by invoking just
c(5) - -3.05696777635724E+00; one batch file.
c(6) -2 41915412951632E.05;
c (7) :- 1 36757999529863E+00; Compilation yields the following processor load info file,

end rowoutputmatrix; which shows that at maximum 27,6 ps are needed:
directlink u x ref to u M is execution time iequirements
d :- 1.42651871551162E+01;

end direct link; task I cycles I rate (kHz) I time (us) I rqst (us)
direct link u x to u-M is --
d :- -9.98336393716665E+00, 1 1 276 I 36.232 1 27.600 1 100.000

end direct link;
direct link u I to i M is total processor load 27.60
d -- -3.0473936899C223-01.

end direct link, 303 words of code (off-chip).
end syste-_equations; 37 words of data (on-chip).

end basic-block; 32 words stack (on-chip)

17-8

An excerpt of the assembly code produced highlights the to insert the rate-limiter. An excerpt of the resulting code is
automatically generated comments and DSPL statement-wise shown below:
execution cycle profile information. Line 152 of the DSPL /* declaration of input / output functions */
source is marked in the above DSPL excerpt for reference. void start o ;

float ds20010;

addh -ClS void ds2101);

rovm disable HW satur /* declaration of coefficients *1
sfl rescale /* dynamic matrix -/
sach v2, 7 ;y(i)c vfloat al-l - 9.6813219E-02;

; 19 cycles float al_2 - 8.8771683E-01;

line 152
ds2101 0,2,_v2,080h,2 output y(l) /* input matrix *1

7 cycles float blI - -1.4816430E+00;

line 153
zac /* declaration of variables */
it _v8 A state variables
mpyk 3172 al(i)
Its _v8+ ; xk(2) float xl..modal - 0.0000000E+00,
mpy _c3 ; al(2) float xkl_l - 0.000000E+00;
Its v1 ; u()
mpyk -76 ; bl(i)
Its vi+l ; u(2) /* input variables */
npyk -3660 ; bl(2)
Ita _vl+2 u(3) float ux ref scaled - 0.0000000E+00;
mpyk -23 ; bl(3) float u_xscaled - 0.0000000E+00;
apac float u_I_scaled - 0.00000001+00;
adlk 1, 14 - 0 ; perform rounding /* output variables */

no oveflow test, roscaling 0 bitsachvO 1 xk~i)float uMtscaied - 0.00O00000O0sach _v9, t xkl(1)

/* temporary variables */
15 cycles float temp_l - 0.0000000E+00,

/*--- rate limiter ----------
float r last,

float delta,

(5) Merging-tn the rate.liniter code float max-elta - 0.008;

The following file instructs MERGE so as to include the /---- exec time ----------
rate-limiter code: long timernew, timer_old;

long *timercounter - (long U) 0x80034;
float exec time;

tbegin# - I insert float t clock - 1.2012E-7;

r last : fractional, cintlOt)
delta • fractional,
max-delta : constant fractional "- 0.008;#

@ #update# +I insert # r_last :- u(0;# timer-old - -timer-counter,
asm("trapu 27"); /* call TRACES30 /

@ #accumulate# insert
------------------ _------- xl modal - xkl l;

delta :- u(l)-r-last, x2modal - xkl2;
if delta > max delta then x3modal - xkl3,

u() :- r-last * maxdelta; x4modal - ski_4;
elsif -delta > mat. elta then x5 modal - xkl5;

u0i) :- rlast - maxdelta; x6modal - xkl6;

end if; x7modal - xkl_7;
---------------....--....- # /*--- rate limiter ---------

r last - u X ref scaled;
The first line of this merge control file for instance contains the r ---- u--- _re-c....ed-

following merge instructions: look for the string 'begin', go up start) ;
one line, then insert the 3 lines of declarations bracketed in by ux ref scaled - ds2001 (0x0000O000, ox00000001);
the # character. One executable statement and a sequence of 6 /--- rate limite-----------
executable statements are inserted by the next two merge delta - u x zef scaled-r last;

instructions, if (delta > maxdelta)
u_x_refscaled - r last + max delta;

Invoktng MERGE for the above DSPL source and merge else Tf (-delta > max_detta) -
control file, compiling, assembling and download can again all u _ ref scaled - r last - maxdelta,

be perfortied by just invoking one batch file. ------- . .----------------------- /
u_x_scaled - ds200lt0x00000000, 0x00000002);
u_I_scaled - ds200lt0x00000000, 0x00000003),

(6) C code generation uM scaled -
temp_l +

If the same controller is to be implemented on the TMS d1 1 * u x ref scaled 4320C30 floating-point DSP C code generation has to be dl-2 u x-scaled
selected in IMPEX. The same MERGE utility can then be used dl3 - uI scaled;

17-9

ds2i01(OxOi000080, OxOO000001, uM_scaled);
xkl 1 -

al_1 * xl.modal +
al 2 * x2_modal +
bl I * u x ref scaled +
bi_2 * u_x_scaled +
bI_3 * uIscaled;

xkl 2 -
a2_1 * xl modal +
a2 2 * x2 modal +
b2_1 * u x ref scaled +
b2_2 * ux_scaled +
b2_3 * u_iscaled;

xkl 3 -

a3 3 * x3 modal +
a3_4 * x4 modal +
bS_1 * u x ref scaled +
b3_2 * u-xjscaled +
b3 3 * u I scaled;

xkl_4 -
a4 3 * x3_modal +
a4 4 * x4 modal +
b41 * u x ref scaled +
b4_2 * uX-scaled +
b4 3 * u_I_scaled;

xkl 5 -
a3 5 * xS modal +
b5I * u x ref scaled +
b572 * _x_scalid +
b5_3 * uIscaled,

a6 6 * x6 modal +
b6 1 * u a ref scaled +
b6_2 * u sx scaled +
b6 3 * uI scaled;

xkl 7 -
a 7 * X7 modal +

b7_1 * uxref-scaled +
b7_2 * u x scaled +
b_3 * uIscaled,

temp_l -
cli * xkl l +
cl 2 xki_2
ci_3 * xkl_3 +
cl 4 * xkl 4 +

ci_5 * xkl 5 +
cI_6 * xkl_6 +

ci 7 * xkl_7;

timernew - *timer-counter;
exec_time - (timer new - timer old) * tclock;

The C code as generated by IMPEX has been enhanced via
MERGE with some code for execution time measurement by
TRACE.

The code exhibits indexless (no-arrays) calculation for maxi-
mum speed The dsXXXX functions are t/o functions for the
specific hardware.

A comparison of 1st, 2nd and 3rd generation DSPs executing
the above controller including the rate-limiter programmed (or
better, code generated) in the appropriate language is given in
the table below. The execution time figures are exclusive i/o,
which can take about a microsecond with the right penpheru,
hardware architecture and components

processor language clock execution

TMS320C14 DSPL 25MHz 2661's

TMS 320C25 DSPL 40 MHz 18.1's

TMS 320C30I C 33 Mh S 5 about 5
MFLOPS

18-1

COMPUTER AIDED DESIGN OF WEAPON SYSTEM GUIDANCE AND CONTROL
WrlPREDI-IIVEUnCONALCONTROLTECHNIQUE

DidierCUADRADO. S. ABU EL ATA DOSS
Philippe GUERCHET

THOMSON-CSF ADERSA
Division Systtmes Electroniques 7. Bd du Marichal Juin
9, rue des Mathurins F-91370 VERRIERE-LE-BUISSON
1-92223 BAGNEUX CEDEX

ABSTRACT.

Predictive Functional Control (P.F.C.). a Mode Based Predictive Control (MBPC) technique is a control strategy based on the
use of a model to predict the process output over a long range time period. This technique, fully compatible with the "CAD-
based integrated design", is presented here. ThMe link between the specification and the control law tuning parameters is made
and the benefits of the use of a CAD tool is demonstrated. Two industrial applications are detailled. The first one concerns the
guidance law of an air defence short range missile. The second one consists in the control of the two axis turret of a very short
range air defence weapon system.

1. INTRODUCTION particularly attractive for non-expert technical persons who
have a limited control background.

Design of control laws for weapon systems are subject to
more and more severe constraints. These laws have to satisfy All the tools associated with the PFC software increase
high quality performance and have to be adapted to more and considerably the interest in the technique. PFC is wide-open
more difficult environments (inter-changeability of sensors to further extensions.
and/or actuators, restricted and/or evolutive specifications,
processes with unusual behavior -, delay, non-minimum The main characteristics of the PFC software are given in
phase, non-linear, non-stationary, oscillatory, unstable, section 2.
...etc). In these conditions, tight correlation between the
parameters to be tuned and the required specifications have to In the fields of air defence systems, in which we apply it,
be established in order to allow rapid prototyping. A good this technique present moreover the advantage, with regard
performance/cost ratio is thus necessary. to conventional techniques, to propose a package :,

Predictive Functional Control (PFC) technique presents complete for the computation of the control (it
interesting characteristics for this purpose. PFC is a model includes both feedback and feedforward action; in the
based predictive control technique developed by ADERSA case of unknown setpoint),
and used by THOMSON-CSF in the last few years. The
control is designed according to a receding horizon strategy, independent in the case of temporary lack of measures
using explicitly a model to predict the process output over a (setpoint or output process).
long-range time period. For linear models, this leads
analyt-cally to a linear regulator which can be easily This technique has been used by THOMSON-CSF mainly in
implemented in an on-board computer fo: real-time the following two applications
applications.

in simulation (engineering simulator of short-range
The technical features of PFC are well appreciated : follow-up weapon system) for all phases of line-of-sight
servo performances, robustness, simple constraints guidance (initial, pursuit and terminal) of a high
handling, possibility of controlling difficult processes, velocity missile. The missile characteristics are :
compensation of measured disturbances by a feedforward non-stationary, non-linear and non-minimum phase.
action, inherent dead.time compensation, But the most This technique has proved to be very performant with
appreciated characteristic is its ease of tuning ; in fact PFC regard to a classic law (adaptative PID) in the case of
design introduces specification parameters rather than tuning fast manoeuvring targets (aircraft evasive
parameters this allowing direct relation with performance. manoeuvres, missile and aircraft helicoidal
This main feature makes the PFC technique fully compatible manoeuvres) and it maintains very good
with the "CAD-based integrated design" and "engineering performances in the case of straight targets, radial or
workstation" concepts. not.

PFC environment permits acceleration of the phase between in simulation and on the actual weapon system for the
model identification and performance evaluation. Once the turret homing to target phase of a very short range
model is obtained, the control strategy is straight-forward by weapon system, This turret presents many non-
defining the setpoints nature and the required specifications. linearities such as friction, free motion, hysteresis
In the PFC software, many procedures are dedicated to assist and saturation. Its behavior depends on the amplitude
the user in the parameters selection in relation with the of the effective movement. The PFC technique with
specifications. Simulation and behavior analysis (in both its associated CAD tool, allowed, not only to
time and frequency domains) of the process controlled by improve the dynamic perfornance with regard to
PFC can also be accomplished by the software. polynomials regulators (previously used) but also

rejects the effect of perturbations such as blast of
An expert system has been added by THOMSON-CSF to the wind, noises and inertia variations. The looked for
PFC software in order to save experience of existing PFC robustness was not, in the past, achieved by other
users and to help for rapid training of new personal. The PFC technique.
concepts can thus be mastered in a short time ; this is

18-2

These two applications are treated in section 3.

2. PFCSOF,-WARE The control variable computation consists of
determining the unknown coefficients of the linear

The general principles of th- PFC technique are briefly combination of the control expression. Only the first
presented here, in the single input - single output case, then value of the future control sequence is used to control
the main characteristics of the software are described and its the process. The whole procedure is repeated at the
CAD-compatible nature is shown. Details on the PFC next sampling instant and so on.
algorithm which leads to a linear control expression are
provided in the Appendix A.

2.2. PFC PARAMETERS ANDTHEIR PERFORMANCE
RELATION

2. 1. PFC GENERAL PRINCIPLES
It is assumed here that the reader is already acquainted with

PFC is a particular long-range predictive control technique. the Appendix I in which details on the PFC algorithm are
The control variable is calculated on-line according to the given. We first present the list of the PFC tuning parameters
following receding horizon strategy. and then we indicate how they can be selected.

At each sampling time (Figure 1):, The parameters are of two types : basic and optional

the process output has to rally a setpoint trajectory in basic parameters, these are
the future.

the base functions
a reference trajectory initialized on the actual process the reference trajectory (response time)
output defines the way to follow the setpoint on a the coincidence points
prediction horizon ; the characteristics of this
trajectory are chosen in relation to the desired closed- The influence of these basic parameters on the main
loop dynamics. A first order decay error between the specifications is illustrated in the following table
sepoint and the process output is generally used. where 0,1 and 2 mean weak, medium and high

influence respectively

Tuning
past -.*- present -0- future Base Reference Coincidence

functions trajectory points
Specification

sctpoint Steady-state
accuracy 2 0 0

Closed-loop
dynamics 0 2 1

Stability -
robustness 0 1 2

Prediction horizon

manipulated variable - The almost diagonal property of this matrix shows
that the basic parameters are specifications parameter
directly connected to the performance characteristics.

FIGURE I : PFC principle Optional parameters, these are for :

The future control variable is structured as a linear self-compensation (extrapolation polynomial
combination of a pre-specified set of functions called degree, number of past observations and their
base functions. The choice of these functions depends filtering)
on the nature of the process and the setpoint. setpoint extrapolation (degree of the polynomial.
Gcrerally step, ramp. parabola, ... are used. number of past values)

criterion modification (weight of the quadratic
The process model allows expression of the output term added and order of the control variable
prediction under the effect of the future control variation considered)
sequence. The process output prediction is then
adjusted by taking into account the extrapolated Concerning the influence of these optional
distance (in the future) between the process and model parameters. we can give the following elements,
outputs based on past observation. This is called the
self-compensation procedure. The self-compensation procedure is necessary when

the difference between the process and model outputThe control objective is to minimize the sum of ttic causes a not constant asymptotic tracking error if no
squared errors between the predicted output and the self-compensation is used.
reference trajectory at certain points of the prediction
horizon called the coincidence points, The number of The setpoint extrapolation in a polynomial form
these points is at least equal to that of the base ensures the steady-state accuracy when the setpoint is
functions. Adding a quadratic term in the control not known in the future.
variable or its variations to this criterion allows
control smoothing.

18-3

The criterion modification is intented to produce a missile to lie as nearly as possible on the line joining the
more regular control. It is particularly interesting in fire unit and the target called the line of sight.
the presence of noise.

The concept of THOMSON-CSF L.O.S. systems is automatic
2.3. TUNING using differential missile to target tracker (ex. CROTALE

system) where all the operations are executed at ground level
For some of the already listed PFC parameters the to correct imperfect target tracking in the guidance loop.
specifications can guide their selection, this is the case of
the time response of the reference trajectory and the setpoint
extrapolation degree.

For some others, rules derived from theoretical results have HAr , ,-,.
to be applied ;, this is the case for the choice of the base
functions. . MISSILE TARGET

Unfortunately, for the remaining parameters, there is no AREA

straight forward link between them and the performance
characteristics. Thus for the selection of these parameters,
no rules exist apart from some elementary ones. For these
parameters the software PFC provides many help procedures T,___.__LN

to the user, through specific experimental results giving, for AN lot, T

different choices of the parameters, many performance AONMNT UNI It

criteria (closed loop dynamics and robustness margins, ...),

The limited scope of the paper does not allow to give all the
details concerning the tuning of each parameters. FIGURE 2 :Principle of the LOS command

But one can be said is that the possibilities o: ired by the
PFC software permits easy tuning and rapid prototyping. The main research works on the missile guidance subject (2],
PFC can be used by non-experts, it is a good candidate for [3], [4] concern the "terminal" phase (see figure 2) because it
CAD-based Integrated Design. is a deciding factor in the presence of targets manoeuvres,

particularly during the hundredths of second preceding the
interception. Nevertheless, each phase of the missile

2.4. TUNING WITH1 AN EXPERT SYSTEM trajectory has a different objective which leads to the success
of the fire. The first phase is intented to counter tie launch

An expert system, called PFC-EXPERT, has been built from disturbances. The second phase objective is to minimize the
KIRK (developed by THOMSON-CSF). KIRK is an expert energy consumption to preserve a high potential of
system shell. Its principal functionalities are a forward manoeuvrability. Finally the "terminal" phase is concerned
chaining capability, a prolog-based backward chaining with the miss distance minimization. Generally, there exists
capac;'ity, packet of rules to organize the knowledge base. a guidance law structure adapted to each phase and an

appropriate methodology for tuning the parameters of each
The PFC-EXPERT knowledge base contains the tuning rules guidance law.
related to basic parameters (see section 2.3). In the case of
optional parameter, the rules are defined from experience of In the most general case, the inputs of the guidance law are
existing PFC users acquired by interpretation of performance (see figure 3):
criteria provided by the software PFC.

- tm, measures of the metric differential gap target to
The PFC-EXPERT pres-nte advantages to accumulate the missile,
knowledge of the users and to help for rapid training of new
personal. 0a et d0aldt measures of position and speed binded to

the line of sight motion,
3. APPUICATIONS

,rm , estimated value of fire unit to missile range.

3.1. MISSILEGUIDANCE
The acceleration Fc (see figure 3) is the output of the control

3.1.1. PROBLEM STATEMENT computer and is calculated in the missile reference system of
coordinates.

Interception of a moving target (aircraft or missile) by a
remote control missile, launched from a fixed or moving The specifications required for the guidance law are
platform, is a complex dynamic problem composed of
several phases. Once the targit is detected, the launching to minimize the error etm at the interception,
platform is oriented such that initial conditions of the particularly in the case of fast manoeuvring targets,
missile flight are the most favorable. Simultaneously, the
weapon system computer estimates the most appropriate to m;,'imize the noises on the missile control
time to launch the missile. As soon as the missile is acc(lt.ations,
launched, it is guided until the interception of the target. In
the domain of short-range weapon systems, the type of robustness with respect to the inaccurate knowledge
missile guidance is generally a L.O.S. guidance (Line of of the process (non stationary, non linear, non-
Sight). minimum phase, reference system change, ...etc).

The L.O.S. concept ban be characterized by three points : the
position of the fire unit, of the target and of the missile. The
object of the L.O.S. guidance system is to constrain the

18-4

00
0 0

UU
0

U +

0U

(3))

'0 ~0 0

0 0

0 (4

(4

7
)

0

FU R 3 2~utr fgiac a

18-5

3.1.2. CONTROLLAWDEI'ERMINATIONWrIhCAD The principle of "PFC terminal" law is to vary
TOOLS simultaneously the coefficients (ki(i=0,1,2), v) of the PFC

regulator in function of two variables : the output tmd of the
The following elements are needed for the predictive target manoeuvre detector and the estimation of the
guidance law: remaining time before the interception (ttg). This leads to

the following regulator equation :
the calculation of the future setpoint trajectory. The

more convenient way to do that, is to extrapolate r(n) = k0(tmd, ttg).(co(n) - yp(n)) +
filtered past values in a fixed reference system, 2

the calculation of the position of the missile in the X[ki(tmd. ttg).(ci(n) - e5(n))] +

selected reference system axes. It can be easily i=1

reconstructed from the mesured error £tm and the vT(ntmd, ttg).XM(n)
estimated setpoint (see figure 4 below), The evolution expressions for coefficients ki and v are given
a linear model that gives the realized position of the by ,
missile from any control acceleration. ki = kl,init * (ai - bi*tmd) * cvki for i = 0, 1, 2

v = vinit * (al - bl*tmd) * cvkl

PREDICTIVE GUIDANCE AWwhr:
_where: * ai, b i and cvki are positive,

-,the values ki.init (i = 0, 1, 2) and vinit are those
m -hs :c 'corresponding to a tuning which requires a weak

dynamics (i.e. that the coincidence points are nearly
of the reponse time).

c ,- for tmod : a law value is adapted to helicoidal and
evasive manoeuvres requiring strong dynamics, a

, Pichigh value is adapted to defiling targets which need
medium dynamics.
cvk i = I. + cki*cvk fori= 0. 1, 2 where cvk is a
limited function of l/tag.

FIGURE 4 : Structure of the predictive guidance law

The single input • single output PFC control law elements are The numerical values of ai, bl, vki for i = 0. 1, 2 result, with

described in figure5 : the PFC software, from analyzing the evolution of the
coefficients ki (i = 0, 1, 2) and v when the coincidence

Where : n = current time, points are chosen smaller and smaller. The PFC software
ttg = time to go, estimation of the offers very great facilities for that. These variations are

remaining time before intercep- linear functions of tmod and ttg.
lion,

tmd = output of a target manoeuvre
detector. 3.1.3. PERFORMANCES COMPARISONS

The internal model chosen is relatively simple in The 6 DOF (degree of freedom) simulator used to evaluate the
comparison with the process complexity and does not result performances of the different guidance laws, is representative
from a very accurate identification procedure. It consists in a of an existing short-range weapon system. It encloses an
transfer function which represents very approximatively the accurate modelisation (physical models) of each of its
missile for a given flight time, a total time delay in the material components. The on-line software simulation of the
guidance loop and a double integration. The parameters are weapon system is according with the real time
considered time invariant, implementation. The conditions in which the guidance laws

have been tested are thus among the more realistic ones.
hi what follows, two PFC laws are described by mean ol the
same set of equation. "PFC terminal" includes a terminal The fire topics are
phase with the time to go estimation ttg and "PFC" is the
same with ttg = 0 assumption. The passing over from "PFC" - RI : aircraft target, radial straight target, constant

law to "PFC terminal" law is very easy. speed = 500 mi/s, interception range = 6.5 km,
HI aircraft target, helicoidal manoeuvring target.

constant speed = 300 m/s. around 6 parallel to X
- with a 500 m cross range, interception

range = 7.4 km
_______ 1H2 same as I with niissile target and constant

speed = 160 m/s
,,"p- 1 : D aircraft target. straight and level a long A

altitude = 1000 m, horizontal cross range -= 4500
m, constant speed = 350 m/s, interception
range = 4600 m.

E.-O" V2 : same as DI with constant speed = 500 m/s, A
LA% EQUATION MW altitude = 200 m, cross range = 3000 m,

l" d w~interception range = 4200 in
, El aircraft target, straight horizontal target,

_J- constant speed = 500 m/s, escape manoeuvre 5 g
betore interception range 5 km.

F E2 same as El with 10 g manoeuvre.FIGURES5: PFC law

18-6

In what follows, we present synthetic results of the Monte-
Carlo simulations for the different laws evaluated .
"classical" law ("PID" type adaptative regulator with
feedforward action), "PFC" law and "PFC terminal" law. mI- ,,,co,.,

PFC ,loxfu, Line6o

set psenh Cont.l1ibl. "~

Relative mean miss distance phet hoy

2.
FIGURE 8 Functional scheme of the turret control

The system includes electromechanical structures and
electronic parts. It can be represented by a three dumb-bells
model. The main mechanical components of the chain are the
motor, the gear box assembly and the load. The chain
caracteristics are,

- the motor, gear box assembly and load inertias
o0 1 1 the flexibility and the damping of the transmission

RI Hl H2 DI D2 Et E2 Target type gear
- the free motions, fnctions and hysteresis

C0 CLASSICAL W PFC 1 PFC TERMINAL the gear ratio

FIGURE 6: Guidance laws comparisons Electronic loop are included in the turret assembly hardware

The superiority of the predictive guidance law is obvious in regulation loop for the mo,or current
the case of fast manoeuvring target.. It is clear that the tachometer loop for regulation of the motor speed
adding of a terminal phase improves the performances in
term of miss distance from 30 to 60 %. For the last laws and Synchro-resolvers give the angular positions (elevation and
from a real time point of view, realistic estimations of the bearing) of the load compared with the platform.
duration demonstrate the compliance with the on board
computer constraints.

3.2. TOW AXIS TURRET CONTROL

3.2.1. PROBLEM PRESENTATION

The objet of this application is to realize the control, using a ,,,,,. ,.h ., c1r1,,, O. of,
real time computer, of a two axis (elevation and bearing)
turret. The system allows the angular trdcking of a
nianoeuvring aerial target. bhon,. Soo

rng Line of sight

tie'savo. FIGURE 9: Turret assembly (one axis)

The control variable of the turret assembly chain is
representative of the load speed. The process output are die
angular positions of the load which represent the line of
sight for the tracking.

Now let us talk about constraints and required performances.

Pt:to,nt The most important constraint is that the control law has to
withstand :

large system parameters variations (for example : the
range of the turret inertia is from 60 to 120 kg.m2).

FIGURE 7 : Two axis optical turret These variations have an effect on the process time
response (30 %) and on the process time delay (50 %)

non linear effects due to friction, threshold,
backlash...

For a tracked flying target, the set point trajectories are
unknown. Nevertheless, most of them correspond to a
rectilinear uniform flight at a constant altitude. The involved
setpoints are made of reversed trigonometric functions (see
figure 10)

18-7

For cxample : = arctg Vt Morever, the trring parameters are the system required
d specifications. This feature makes the PFC (the choosen

MBPC) technique fully compatible with the "CAD based
where V is the target speed integrated design" and "engineering workstation" concepts.

d is the crossing range
t is the current time
0 is the bearing setpoint

"'.4.-.

.0M- , , .. -... -..-------
1.41

.6. .1. ,, ! ..

T.. l

-11. .,

-2.21A -..1.656

0.349 - -

S.I16

4 -I10; 2

TYIA SETP....] _.2,66 . - "1662 .: ' . .; ,: - -' - - ' - - - - -- ,o,

TYPICAL SETPOINTS

FIGURE 10: Typical setpoints 3.2.2. CONTROL LAW DETERMINATION

The allowed tracking error in the previous conditions sl'ould All the PFC parameters are listed in section 2.2. For same of
not exceed 5 mrad with a rallying time response as shorter as them, the specifications can actually guide their selection.
possible. For example, the setpoint extrapolator degree is linked to

the typical observed setpoints most of which can be
In order to preserve the electromechanical parts. the control approximated by second order polynomials.
is subject to the following constraints The time response of the reference trajectory is related to the

process response. As the control law and its gradient are
I u Imax < 1.5 rad/s and I < 1.6 rad/s2 limited, the time response of the reference trajectory depends

dt Max on the difference between the setpoint and the process output
which is to be compensated. Then this PFC parameter has

As the real time computer is not only dedicated to the tunet been tabulated according to the error to compensate.
control, the sampling time cannot be less than 20 mns, which
is a severe restriction according to the system time response tr = f(c, sp)

As all these constraints and required performances are verystrict, a conventionnal control law (Signal Based Control Others parameters tuning derives from theoretical results. It
is the case for the number of base functions. If d is the degreelike PI.D.) has revealed itself quite insufficient because :, of the polynomial setpoints and ni is the number of

the set points to follow without tracking error look integrators in the process to control then the number of base
like second order polynomials, functions is d - ni + I if the specification is to have no
ite control variable constraints are very strict and are tracking error. For this application, as the process is once

often hit (the model evolves with constrained integrative and as typical setpoints look like second order
control), polynomials, two base functions were chosen : the step and
ie sampling time (20 ms) is very important with the ranp.

respect to the process time response (35 ms).
the process is highly non linear (friction is an For an equation system icsolution reason, the number of
important constraint) and a SSC control law would coincidence points must at least be equal to the number of
not achieve the required robustness performances. base functions. If it is greater, the system is solved with a

least square method. Their positionning depends on the
A more elaborate control law is needed. Among the Model desired robustness. It also has some effect on the control
Based Control techniques, the Predictive ones (MBPC) are dynamics. Situated near the current instant, the band pass is
particularly well adapted to high evolutive setpoints. large, far away, the dynamic is quite poor.

18-8

Unfortunatly neither process behaviour specifications nor The filter is necessary to smooth the extrapolated datas
theoretical results can be a way to determine the number of because of the noise they carry with them.
coincidence points and their location.

For the tuning of these parameters, the CAD tool gives an
Here is one of the main interest of the CAD tool. As soon as on-line help similar to the above one. Once given the degree
the reference trajectory, the base functions and the number of of the extrapolating polynomial, the user gets a table in
coincidence points are chosen, an on-line help gives to the which are given the gain margin, the delay margin and the
user the gain margin, the delay margin and the time response time response for several values of the filter time response
for different locations of coincidence points. Results are and the number of past values used in the extrapolation. A
presented in a table in which the user can choose a tuning for particular tuning can then easily be chosen. An example of
the coincidence points. An example of one of these on-line this on-line help is given below (figure 12) for a first order
help tables is given hereafter (figure 11) for a first order extrapolating polynomial.
reference trajectory (tr = 0,1 s), two base functions and twn
coincidences points.

*Nol nb.dom I tps.filtre I q.n I m retard I tpx. rep.

S11 2 0 100 1 3 0 1 0.0200 1 0 120

Nol p o oioncidence I kO Im.gainin retardltps. rep. 21 2 1 0 200 I 3.8 1 0.0200 1 0.120

............ *** * 31 2 0.500 1 4 8 0 0400 0.120
1 0 0,00 0 1000 [45.3 1 6 01 0 06001 0 120' 2 1 1 000 1 5.2 1 0.0400 1 0 120

21 0 0600 0.1000 1 33 4 1 6.81 0 06001 0 140' 51 5 1 0.100 1 5.0 1 0 0200 1 0 120

31 0 0800 0.1000 I 27,7 1 7.41 0.09001 0 140" 6 5 0.200 1 5 4 0 0200 1 0 120

41 0 0400 0 0800 I 47.2 1 5.81 0.06001 0.120 '71 5 1 0 50 1 5 6 1 0.04001 0.120
0I 00600 0 0800 1 36 1 6 61 0 06001 0 120' 81 5 1 1 000 1 5 8 1 0.0400 1 0 120

61 0.0400 0.0600 I 50 5 1 5 81 0.06001 0 120- 91 10 1 0.100 1 5 a 1 0 0400 I 0 120
. 01 10 I 0.200 1 5 8 0 0400 I 0 120

" 11 10 1 0 500 1 5 8 1 0.0600 1 0 120

FIGURE 11 Example of coincidence points on-line help '121 00 I 1 000 1 5 8 I 0 0600 0 120
results *121 20 1 0.100 1 5 8 t 0 0800 1 0.120

'141 20 1 0 200 1 5 8 1 0.0800 1 0 120

As already told above, most of the setpoints can be .151 20 I 0 500 1 5 8 I 0 0600 1 0.120

considered as portions of second order polynomial. This '161 20 1 1.000 1 b.b 1 0.0600 0 120

gives the degree of the setpoint extrapolating polynomial.

The number of past setpoints values used in the
extrapelation results from a trade-off between the following FIGURE 12 : Example of self-compensator on-line help
considerations : results

The noise in the setpoint is quite important (o = 25 To tune all these parameters using the CAD, several steps are

mrad). Considering a great past horizon will have a necessary.

filtering and delay effect. Process and model are identical, control variable is

10 % of the setpoints correspond to very high not constrained. Reference trajectory, base functions,
evolutive targets. If the filtering effect is important, coincidence points and setpoint extrapolation must

the extrapolation will be bad and will lead to the loss be chosen.

of the tracked target. Process and model remain identical, control variable

All the MBPC techniques use an internal and linear model of is constrained. Reference trajectory is then adjusted
the process. His goal is to predict tie process behaviour in according to the deviation to compensate.

tie future Unfortunately, the model and the process cannot
be identical. The model only approximates the process. Its Process and model are different, control variable is

determination results from a global identification step based constrained Choose the self-compensator
on datas meseared on the real process to control. The chosen parameters.
models for this application are During all the procedure, the CAD tool can generate the

1 behaviour of the different interesting datas showing them on
1
BM(S) = s (1+ 0.03s) for bearing axis time depending graphics

Setpoint
HEM(=.(1 + 0.024s) for elevation axis Control variable

Process output
Model output

As the process and the model are not identical, the process Difference between sepoit and process output

output prediction for the future instants will be biased. The Difference between process and model outputs

process and model mismatch is known in the past and at the
current instant. It can be then extrapolated in the future, that
is the purpose of the self-compensator which parameters to For the tracking turret application, the selected parameters
tune are :, are

degree of the extrapolating polynomial First order trajectory :, tr = f (c, sp)
number of past values used in the extrapolation Two base functions • step and ramp
time response of the process-model mismatch filter Two coincidence points : t ! = 0.04 s t2 = 0.08 s

Second order setpoint extrapolator with 5 past values

18-9

First order self-compensator extrapolator with 10 4. CONCLUSION
past values
Self-compensator time response filter = 0.5 s In this paper, it has been discussed of a new guidance and

control technique , Predictive Functional Control. It was
The control law, written in ADA, is the following one. shown that this technique is fully compatible with CAD

integrated design and allows rapid control laws prototyping.
u(n) = ko.(c(n), sp(n)).[co(n) - sp(n)] + Two applications were presented. Obtained results are quite

T significant. For the missile guidance law, the miss distance
kl .[c1 (n) - dI (n)] + k2.c2(n) V.XM(n) was reduced of 30 to 60 %. For the turret control, it was

shown that good pe- .rmance and robustness could be

Where : obtained under wide operating conditions. Compared to the
previous SBC Control law, the robustness and the closed

n is the current instant loop dynamic have been increased by 50 % and 20 %

c is the setpoint respectively.
Sp is the process output
cj(n) are the setpoint polynomial extrapolator REFERENCES

d
constants such as c(n+l) = E cj(n).iJ [1] RICHALET J.: Model BAsed Predictive Control in

j=0 the context of integrated design. CIM - Europe
Workshop on Computer Integrated Design of

dl(n) is the first order constant of the difference Controlled Industrial Systems (1990)
between process and model outputs polynomial
extrapolator [2] HL. PASTRICK, S.M. SELTZER, M.E. WARREN,
XM(n) is the current model state vector such as Guidance laws for short-range tactical missiles,

XM(n) = F.XM(n-1)+ G.u(n.1) Journal guidance and control, Vol. 4, N* 2, March-

k off-line constants given by the CAD tool April 1981, pp 98 - 108.

v x off-line vector given by the CAD tool [3] J.L. DURIEUX, Terminal control for command to
line of sight guided missile, AGARD, LS-135, 1984,

The figure 13 shows PF C. law inplemented in the on-board pp 4-1/4-13.

system real time computer Results are shown in the next [4] JIN-JOONG, H. JONG-SUNG, K. MYOUNGSAM, S.
section. TAEK-LYUL, Performance analysis of PNG laws for

randomly manoeuvring targets, IEEE Transactions
In appendix B is shown the listing generated by the CAD on aerospace and electronics systems, Vol 26, N* 5,
tool. September 1990, pp 713 - 721.

[51 DE KEYSER R.M.C. :. Model Based Predictive
Control Toolbox CIMEurope Workshop on
Computer Integrated Design of Controlled Industrial
Systems (1990).

[6] RICHALET J., ABU EL ATA-DOSS S., ARBER Ch.,
KUNTZE H.B., JACUBASCH A., SCHILL W.

--- 1 Predictive Functional Control. Application to fast
and accurate robots. 10th IFAC World Congress,

co C n Munich.

FIGURE 13: P.F.C. law

3.2.3. RESULTS

The obtained results for a tracking sequence are presented
here. The figure 14 shows a step response of the turret and a
non moving target tracking. The tracking error remains in
the specified values. The rallying time (without overshoot)
is very good.

The figurel5 shows the tracking of a rectilinear uniform
flight at a constant altitude. Here, the target is more
evolutive, but the tracking error always rerains in
acceptable values.

18-10

....... : 1 4-

......

....

........

It It
FIUR 14 o-oigtagttakn

, -- 18-11

I!. ii iii

I i "I

*................... 1 1 .!-- 1

........... ,... .. +
I... "..'"1 ..

I 1 " Ii i I I
* Ii *. HI

....

......!!! !! !! .! i !
.i.........

..4 "]"I - I I . I , ,
I I ,.1i. i... I.

Ii "ll~- lilllII III ••s

FIGURE 15 Evolutive target tracking

18-12

APPENDIX A ne
e(n+i) = e(n) + ej(n).iJ 0 5 i : h (A.)

A1. ON-LINE CONTROL COMPUTATION jl;

The linear model of the proms, in stage space form, is e(n) being the difference at instant n. The procedure of
introduced in the ontrol elements : predicting this difference with ne Z 1, i.e. by considering

6(n+i) * e(n), is called self-compensation.
The control is calculated by minimization of the

PFC criterion:

D(n) = { 9p(n+hj) - yr (+hj) } 2 (A.6)

j=1

{hjj--,lnh being the coincidence points with hnh - h.
The number of coincidence points must be at least equal
to the number of base functions.

FIGURE 16
The PFC algorithm yields, for the first value of the future

with the notations : control sequence which is the value to be applied at

instant n, the following linear control expression:

poess u(n) - ko.{co(n) - yp(n)) +

C : setpoint max(nc,ne)

u control variable
kj. (cj(n) - ej(n)) +XT.Xm (A.7)

M model Where the coefficients ko, kj and X are calculated off-

line, 26 denoting the model state vector.
y : output

A.2. EXTENSIONS TOTHE BASIC ALOOMIM

The reference trajectory YR on the prediction horizon of

length h is a first order trajectory defined by . Constraints on u, is and QI can be dealt with by applying a

particular strategy without modifying the linear control

c(n+i) - yl(n+i) - ai(c(n) - yp(n)) O i ! h (A.1) expression. In this strategy, the part of the future model

with 0< a!5l output ym(n+i) depending on the past is calculated by
using the applied (i.e. constrained) control values.

The future setpoint (known or extrapolated) is expressed

inModification
of the criterion (A.6) by adding a quaatic

term in u or its variations can be used for control energy

reduction and smoother control. The modified criterion is

c(n+i) cj(n).ij 05iSh
of the form:

¢(n~~gi) =XAun) (A.n)i8)<i :h A2

1=0 D~n)= .D { 9p(n+hj) - Yl(n+hj)2+ {Aku(n)2 (Ag)

The future control sequence is structured as a linear J=l

combination of base functions:

nb This yields to the linear control expression:

u(n+i) = I k(n).ubk(i) i>0 (A.3) u(n) = ko.Ico(n)- yp(n)) +

k=l max(ncne)

I ki.{ cj(n) - ej(n)} +

At each instant, the control calculation is thus reduced to

the determination of the coefficients { I() } kflnb' vT m + .u(n-l) (A.9)

The predicted process output is given by: where ko, ks, y. and A are calculated off-line.

yp(n+i) ym(n+i) + e(n+i) 0 : i : h (A.4) Feedforward compensation of a measured perturbation 8

A dis achieved by including e prediction of this perturbation
(n+i) denoting the predicted difference between the in the promes output pediction ; in this case, PFC works

process and model outputs, obtained through

observations on a past horizon, by a polynomial with an additional model M8 corresponding to the d ->

extrapolation
y: yp transfer as shown in the figure below

18-13
PFC

U8

FIGURE 17

There also, a linear regulator is obtained, its expression
is given by:

u(n) = ko.ico(n)- yp(n)) +
max(nc,ne)

Skj. (cj(n) - ej(n)) +vT.X -
j= 1

Tk8j.8 j(n) + X.268 (A.1O)

j=O

APPENDIX B

Example of CAD tool outputs for bearing axis.

18-14

PARAMETRES BE LA SIMULATION* *****t************************

periode de simulation - 0.200005-01 sec.

PROCESS

retard - 0.00000 secondes
FONCTION DE TRANSFERT CONTINUE
numerateur - 1.0000 * p** 0

denominateur - 0.00000 * p** 0
+ 1.0000 * p** 1

+ 0.30000E-01 * p** 2

PERTURBATION D'ETAT :

perturbation en entree - 0.00000 + 0.00000 * t
bruit sur sortie : ecart-type - 0.O0000 f.coupure - 0.00000 hz

CONTRAINTES :

commando max. - 1.5000

commande max. - -1.5000

gradient max. - 1.6000

CONSIGNE :

consigne inconnue generee sous la forme
conaigne - 1.5700 + 0.00000 *t + 0.00000 *

t
2 + 0.00000 *t3

***** ** **tt*****

PARAMETRES DE LA COMMANDE

periode de commande - 0.20000E-01 sec.

MODELE

retard - 0.00000 aecondes
FONCTION DE TRANSFERT CONTINUE
numerateur - 1.0000 * p** 0
denominateur - 0.00000 * p** 0

+ 1.0000 * p-
t

1
+ 0.30000E-01 * p

t
* 2

MODELE DISCRETISE a : 0.20000E-01 s
matrice d'evolution F :

1.00000 0.145975E-01

0.000000 0.513417

matrice de commande G

0.540251E-02

0.486583

matrice d'observatlon C

18-1IS

1.00000 0.000000

BASE , REF. , COINCIDENCE

nombre de fonctions de base - 2
echelon

r.mpe
traj.de ref. du ler ordre tps rep s 0.10000 sec.
nbre de pts de coincidence - 2 0.40000E-01 0.80000E-01

EXTRAPOLATEUR DE CONSIGNE
...........................

degre de l'extrapolateur de consigne - 2
nombre de consignes passees utilisees - 5

AUTO-COMPENSATEUR :

degre du polynome extrapolateur de d.o.m. - I
nombre de d.o.m. passees considerees -10
tps rep filtre de d.o.m. - 0.50000 sec.

EQUATIONS DU REGULATEUR :
.........................

u(n) - kO C cO(n) - sp(n)
+ k1 cl(n) - dl(n) 3 + k2 I c2(n) - d2(n) 3 + k3 I c3(n) - d3(n) I
+ vx.xm(n)

k0 - 47.1561 kl = 124.841 k2 = 191.746 k3 - 0.000000

vx - 0.000000 -1.49681

EXTRAPOLATEUR DE CONSIGNE :

cm - moyenne des c(n-i) pour i - 0 horizon de consignes passees
of(n) - somme sur i de (yc(i,1) (c(n-i) - cm)
c2(n) - somme sur i de yc(i,2) (c(n-i) - cm)
c3(n) - somme sur i de yc(i,3) (c(n-i) - cm 3

cO(n) - cm - me(l) cl(n) - me(2) c2(n) - me(3) c3(n)
me . -2.5000 9.1667 0.00000
yc(0,.)- 0.58929 0.89286E-01 0.00000
yc(I,.)- -0.35715E-02 -0.17857E-01 0.00000
yc(2,.)- -0.32857 -0.71429E-01 0.00000
yc(3,.)- -0.38571 -0.71429E-01 0.00000
yc(4,.)- -0.17500 -0.17857E-01 0.00000
yc(5..)- 0.30357 0.89286E-01 0.00000

EXTRAPOLATEUR DE D.O.M. :

dm - moyenne des domf(n-i) pour i - 0 horizon de dom passees
dl(n) - somme sur i de [yd(i,l) (domfln-i) - dm) 3
d2(n) = somme sur i de (yd(i,2) (domf(n-) - dm I
d3(n) - somme sur i de { yd(i,3) (domfln-i) - dm
yd(0,.)- 0.45455E-01 0.00000 0.00000

yd(I,.)- 0.36364E-01 0.00000 0.00000
yd(2,.)- 0.27273E-01 0.00000 0.00000

18-16

yd(3,.)- 0.18182E-01 0.00000 0.00000
yd(4, .) 0.90909E-02 0.00000 0.00000

yd(5,.)= 0.00000 0.00000 0.00000
yd(6,.)- -0.90909E-02 0.00000 0.00000

yd(7,.)- -0.18182E-01 0.00000 0.00000
yd(8,.)= -0.27273E-01 0.00000 0.00000

yd(9,.)= -0.36364E-01 0.00000 0.00000
yd(10, .)- -0.45455E-01 0.00000 0.00000

19-1

ANALYST WORKBENCH

Thomas F. Reese, Frank Armogida
Naval Weapons Center

China Lake, CA 93555-6001, USA

SUMMARY interactively visualize flight-tcst and simulation
results. The Analyst Workbench supplies the tools

The Analyst Workbench was developed at the Naval needed to answer the key questions listed above.
Weapons Center to provide analysts with the ability These abilities are imperative to ascertain the
to interactively visualize flight-test and simulation integrity of the analyses, to provide insights into
results in the study of missile performance and subsystem performance, and to share those insights
effectiveness, This technology integrates tools and with others.
utilities into one software package that not only
assists analysts in gathering data, but that provides BACKGROUND
the means to analyze and assimilate the data.
Visualization technologies--such as the Analyst Missile system analysis has been conducted
Workbench--enhance communication between traditionally by means of strip charts and computer
computer and analyst, analyst and analyst, and analyst printouts. Analysts manually evaluate the strip
and management. Current methods are an inefficient charts for anomalies for each data parameter on the
use of analysts' time and talents. The Analyst checklist and write the results on a chart for data-entry
Workbench helps eliminate the large portion of time personnel to place into the database. After
analysts now spend just searching for the data so this completing the evaluation procedure for each item on
valuable time may be spent analyzing these data the checklist, the analyst conducts a statistical
instead. Using these technologies to increase analysis to detect trends within these data. After all
personnel productivity and organization the analyses are complete, a report is generated and
communications will ensure the reliability and delivered to the appropriate program office.
efiectiveness of current and future guidance and
control systems throughout the North Atlantic Treaty Current methods are an inefficient use of the analysts
Organization (NATO). time and talents. The strip charts and data tapes are

never easily accessible. The analyst spends a large
INTRODUCTION portion of time just searching for the data rather than

interpreting them. The Analyst Workbench provides
Analysts involved in the study of missile performance the tools required to integrate and make the data
and effectiveness require telemetry data and accessible so the analyst can conduct a complete and
simulations to conduct significant analyses. As a full analysis within a reasonable time.
result, these analysts are inundated with the data
generated. Using an exclusively numerical format, The interactivity of the Analyst Workbench provides
the analysts cannot effectively interpret these valuable a natural means for an analyst to communicate with
data. data by manipulating their visual representation.

This method enables the analyst to control the
Analysts need an altemative to numbers. They need analysis and find anomalies. Simply, the Analyst
the ability to visualize these data and the tools to Workbench increases the analyst's productivity.
answer key questions, such as

OVERVIEW
Did the subsystems function satisfactorily?
Did the subsystems function at the proper time? The Analyst Workbench is a series of interactive
Did any evidence of unexpected or marginal utilities integrated to form a software package. The
subsystem performance exist? software components communicate through shared

memo.y and data files. Fig. I shows the software
The Analyst Workbench, developed at the Naval components and their stage of development.
Weapons Center, provides analysts with the ability to

19-2

Tape Operations
Dis- Data

Mountlmount Rewind List Dump extrac-
tape tape tape tape tape tion Save Load Modify Delete
1 100 100 100 100 100 0 0 0 0

Database Tools
Data Telemetry J Flight I

reduction help Data trends objectives Test plan Test report
50 50 10 50 50 50

Plot Utilities
XvsY X, , Z Histogram Pie Bar

50 s0 0 0 0

Statistical Utilities
Mean Variance Standard deviation Custom

70 70 70 0

NPSPANEL Data View
?] Integration

100 30

Live Video
Hue I Saturation I Contrast I VTR control

10 I 100 I 100 I50
Analyst Workbook

Automatic M E c I I I
report writer Propulsion Mechanical Electrical Pneumatic Ordnance Guidance25 15 is 15is1 51

Flight Number

95

Guidance
95

Vehicle
95

Fig. 1. Analyst Workbench Software Components and Percent Completed.

19-3

DATA EXTRACTION AND and time-consuming storage-management techniques.
REDUCTION UTILITIES Currently. we only have hard disk drives available for

data storage. Future plans involve transferring the
Before any analyses can be conducted, the analyst data to a combination, erasable optical, and worm
needs to acquire telemetry data. Flight-test telemetry (write once, read many) optical disk. This storage
data are normally stored on magnetic tape by test- strategy will provide for on-line access of telemetry
range personnel. The data tapes are then transferred to and simulati6n data for the analysL
the analyst for analyses. The data extraction and
reduction utilities select individual telemetry channels The data-extraction utilities are menu driven and
from data tapes and install them into the database, usually must be customized for each type of !elemetry
For some flight tests, the amount of data can reach up data set (Fig. 2). Once a format is determined, a
into the gigabytes. Dealing with this "big data" by computer scientist can write a routine to extract the
conventional means requires laborious tape transfers data and add them to the utility.

TAPE PLOT UTILITY

OPERATIONS OPERATIONS OPERATIONS REDUCTION

Mount tape XY plot Sort utility Frequency

Dismount tape XYZ plot System utility Redundancy

Tape format Pie chart Convert utility Manual

Unload tape Histogram Make flight path Automatic

Unload grp Bar plot Smooth Exit

Unload channel Print plot Exit

Exit Exit

Fig. 2. Data Extraction and Reduction.

Currently, the reduction utility provides various tools DATABASE UTILITIES
to reduce the amount of data stored. First, the utility
evaluates each telemetry channel's update frequency The database utilities provide a series of interactive
and places the beginning time and update frequency in information storage and retrieval routines that enable
the header of the file. This procedure eliminates the the analyst to query the database for a group of
need to store the time for each time step. channels, an individual channel, documentatien, and

overall data trends.
Second, the reduction utility eliminates data
duplication. The utility determines if the telemetry Currently, the database consists of FLTNO,
value is equal to the previous value, and if so, does GUIDANCE, and VEHICLE parameters. Each of
not store these data on disk. When the data value these icons is shown in (Fig. 3).
does change, the time and value are stored in the
database. This simple process can reduce a file size When the analyst needs data from a particular flight
significantly. test, the mouse is positioned above the FLTNO icon

and the left mouse is pressed (Fig. 4). At this point,
Several data-smoothing algorithms were considered; the utility searches the database for available flight-
however, in some cases the algorithms eliminated key test data sets. The analyst then reviews the list and
data elements required for analyses. These algorithms selects the appropriate data set. This process sets the
are still implemented, but very rarely are they used. "current path" in the database and all data are retrieved
Analysts can usually tell noise from real data. from this path. To alter the path, the analyst can

reselect the FLTNO icon and repeat the orocess.

19-4

Fig. 3. Data Extracton and Reduction Utilities.

Fig. 4. User Selects FLTNO Icorn.

19-5

Once the current path is set, the analyst can select the table is not the most efficient means of evaluating the
GUIDANCE or VEHICLE icons. The GUIDANCE data. The plot and time utilities of the Analyst
icon accesses the telemetry data related to the guidance Workbench provide an electronic strip chart of
systems, and the VEHICLE icon accesses the telemetry channels and a digital readout of the
telemetry data associated with the propulsion, numbers.
mechanical, electrical, pneumatics, fuel, and ordnance
subsystems. Additional icons can be added to suit the The electronic strip chart depicted in Fig. 8 is used to
analyst. Once selected, the utility searches the display a time segment of four selected telemetry
database for available groups of telemetry data and channels. Using the video tape recorder (VTR)
provides a popup menu of the groups. The analyst controls, the analyst can move time by pressing
can move the mouse over the selected group, roil over REWIND, FFWD, STEP->, <-STEP, PAUSE, or
the menu to get an additional menu of the telemetry PLAY. This time is stored in shared memory for
channels in that group (Fig. 5). The analyst may other processes within the Analyst Workbench to
now select a telemetry channel that assigns that access.
channel to the "current file." The current file is used
by many of the routines described in this paper. The numerical readouts shown in the upper left comer

(Fig. 8) display the telemetry channels' numeric
Each of the telemetry channels has an associated values in the center of the electronic strip chart. Thedocumentation file. This file is a text file that analyst may position the mouse over a readout until a
discusses the particulars of each channel. The analyst readout lights up and enables the sliding scale for that
may access these files by selecting a channel by the particular telemetry channel. Once a sliding scale has
previous method, then selecting the TOOLS icon, and been enabled, a red light on the lower border of the
making a select ion from the documentation menu. readout is turned on and the scale associated with that
The documentation utility then searches for telemetry channel tracks along the mouses horizontal
information on the current file and opens a window position on the screen. Attached to the left and right
that displays it to the user (Fig. 6). sides of the scale's vertical line are rectangles

Stored in a separate part of the database are the data containing the time and value of the telemetry
trends for each of the analysis criteria, such as "fuel channel. The analyst may move the rectan0;,s by
bum rate." To review the data trends, the analyst pressing the left mouse button and moving the mouse
selects the TOOLS icon and then selects TREND vertically. To disable the sliding scale, the analyst
ANALYSIS from the menu. The utility then presses the middle mouse button.
searches the database for a list of available trend
studies and presents them to the analyst. At this The labels on the left side of the utility display the
point, the analyst selects a data-trend study and a telemetry channels assigned to each data trace. The
window is opened showing a plot of the current trend analyst may turn a trace on or off by centering the
and the equation used to calculate this value. In mouse over the rectangle until the rectangle lights up
addition, the analyst is provided with an additional and by then pressing the middle mouse button. To
menu to add, delete, or modify the data in the display a different telemetry channel, the analyst
database., retrieves a current file from the database, as mentioned

previously, and positions the mouse over the desired
To conduct a complete analyses, an analyst needs trace rectangle until that rectangle is lighted, then
statistical tools to evaluate telemetry data. Currently, presses the left mouse button. At this point the
the statistical tools available, although rather limited, software removes the existing traces data, notifies the
uo provide the basic statistical utilities like mean, analyst of the file being loaded, and then loads the
variance, and standard deviation, new telemetry channels file into memory (Fig. 9).

A tool is currently under development to enable the The beginning, ending, and current time digital
analyst to r...dly customize his or her own statistical readouts depicted in Fig. 9 enable the analyst to
routines and add them to a popup menu (Fig. 7). manually alter the time to rapidly increase, decrease

the time scale, or move current time to a particularThe aforementioned utilities and tools provide the telemetry segment. The ">" ard "<" icons are used to
analyst with access to all the telemetry data to move the beginning and ending times incrementally.
evaluate flight.test and simulation results. However, The analyst positions the mouse over the icon until
analysts need to see the data to conduct their analyses, that icon lights, then presses the right mouse button.

The longer the mouse button is pressed, the faster the
PLOT AND TIME UTILITIES time scale changes.
Analysts like to use strip charts and numbers.
However, spreacding a strip chart over a conference

19-6

Fig. 5. Guidance Database Menu.

Fig. 6. Documentation on Telemetry Data.

19-7

Fig. 7. Statistical Utilities.

Fig. 8- Electronic Strip Chart.

19-8

Fig. 9. Loading a New Telemetry Channel.

The vertical scales for each telemetry channel can be The U.S. Defense Mapping Agenda (DMA) provides
modified individually. The UP and DOWN icons digital terrain elevation data (DTED) and digital
shown in Fig. 9 are used to increase or decrease the feature analysis data (DFAD) to U.S. Government
scales shown on the display. The scales that are Agencies. This product is widely used throughout the
turned off are not modified. Again, the longer the analysis community.
mouse is pressed, the faster the scale changes.

The DTED data are composed of a matrix of elevation
The versatility of the plot and time utilities provide data within a 1-degree latitude by a 1-degree longitude
many of the visualization tools necessary to analyze quadrangle. The distance between ccll elements is
telemetry channels. The analyst can rapidly access, approximately 100 meters. Many attempts at
display, and manipulate the data used for analysis. generating a realistic out-the-window view for flight
The plot and time tool will not eliminate the need for simulation have been stopped as a result of the large
strip charts. Therefore, plans are underway to amount of data. The Analyst Workbench does not
implement an interface to a strip-chart recorder. attempt to generate a realistic out-the-window view.
However, this utility does satisfy most of the strip- The out-the-window utility does a simple
chart needs of the analyst. representation of the terrain and target. The out-the-

window scene is a modified product produced at the
OUT-THE.WINDOW TOOL Naval Postgraduate School, Monterey, Calif.

(Reference 1).
The out-the-window tool provides a visual
representation of the missile flight parameters, seeker
characteristics, and physical test environment,
Fig. 10.

19-9

Fig. 10. Out-the-Window View.

Thc Naval Weapons Center needed to modify this PLAN VIEW UTILITY
software to fit the needs of the Analyst Workbench.
First, the software needed to be driven by an autopilot The plan view utility provides a three-dimensional
file and time from shared memory. An autopilot file perspective of the missile flight on the test rango
for each flight test is created from the telemetry and An icon of the test vehicle depicts the location,
tracking data. The autopilot file is read in and creates altitude, and seeker field-of-view. Icons of the targets
a linked list of time, x, y, z, heading, climb, roll, and and key features are also displayed (Fig. 11).
velocity in internal random-access memory (RAM).
Second, the Heads-Up display needs to be modified for Using this utility, the analyst can see a perspective
each missile type analyzed. This modification view of the missile, seeker range, and field of view.
itiuludes bucket siato variables and bucket field of A popup itenu is provided. which enables the analyst
view. Third, the targets and environment need to be to zoom and pan into the test area. These features
displayed as icons on the terrain, provide the analyst with a better understanding of the

seeker interactions with the target, such as several
As the time is modified by the VTR controls, the RF-emitter sources.
oit-the-window utility alters the perspective of the
missile and updates the Heads-Up display. This DATA VIEW UTILITY
procedure provides the analyst with visual cues of
anomalies within the test. Using the visual The data view utility provides an interactive set of
representation of the missile-body angles, seeker field utilities that enables the analyst to tie bar charts,
of vicw, and seeker state variables, the analyst can digital readouts, dials, and histograms to an individual
understand and communicate better the complex or group of telemetry channels. If a data parameter
relationships between the target, environment, and the exceeds the maximum or minimum threshold entered
missile. by the analyst, the analyst is alerted.

When computer graphics, processor, and memory
speds increase, a more realistic out-the-window view
will be considered, but now the Naval Postgraduate
School's software works fine.

19-10

Fig. 11. Plan View Display.

When the analyst selects the data view tool from the the analyst. After completing the analyses, the
TOOLS icon, a window is opened that displays icons analyst saves the completed forms in the database
for each graph type (Fig. 12). The analyst may then with the data, keeping them together for future
selects a telemetry channel from the current file and reference.
assigns it to a particular graph. After the selection is
complete, the tool prompts the analyst to enter the LIVE VIDEO UTILITY
minimum and maximum values that are allowed.
Then the analyst may place the graph in the desired The live video utility provides the ability to display
spot in the window by moving the mouse to the live video in a window on the Workbench (Fig. 14).
lower left-hand comer and pressing the right mouse The VTR-type controls in the plot and time tools
button. At this point, the data file is read into a advance . tape to synchronize the video with the
linked list in internal memory, and the display is data. This utility enables the analyst to see and hear
initialized to the time in shared memory. the live flight test and help identify critical data

segments within the test.
As time progresses, the data view tool accesses the
time and displays the telemetry value at that time. If WARHEAD UTILITIES
the value exceeds the minimum and maximum value
input by the analyst the tool alerts the analyst, with a The warhead utilities provide the ability to study the
flashing rmd light and/or a bell sound from the characteristics of warhead/target interactions. The
keyboard. utilities require input of the missile-trajectory data

just before impact, the target name, weapon fuze
AUTOMATIC REPORT WRITER type, and warhead type. The utilities then smooth the

data into a flight path. Then the utility recreates tho
The automatic report writer (Fig. 13) is a missile endgame with the weapon/target fuze
documentation package customized for an individual interaction. The utility displays of the warhead-
missile program office. An analyst interactively detonation pattern on the target and calculation of the
accesses standardized forms that guide the analysis and probability of kill for the endgame geometry and
fulfill the laborious documentation requirements of variations.

19-11

Fig. 12. Dams View Graphs.

FUZE SPACE UTILITIES REFERENCES
The fuze space utilities provide the ability to study I R. B. McGhee, M. J. Zyda, D. B. Smith, andthe general characteristics of various fuze/warhead D. 0. Streyle, An Inexpensive Real-Timeinteractions with a target. These utilities were Interactive Three-Dimensional Flightdeveloped both to understand the interactions and to Simulation System prepared for USA Combtassist with fuze optimization studies, The utilities Developments Experimental Center, Fort Ord,display the fuze point, color coded for probability of Calif., by the Naval Post Graduate School,kill, for a set of parallel trajectories around a target. Monterey, Calif., 1987, NPS52.87.034.Multiple sets of data can be overlayed, or plots ofprobability-of-kill-versus.miss.distance or circular

error probable (CEP) can be displayed.

19-12

Fig. M3 Automatic Ropor Writer.

Fig. 14. Live Video Utility.

20-1

A PRACTICAL EXPERIENCE OF ADA FOR DEVELOPING EMBEDDED SOFTWARE
by

Christophe GOETIIALS -Claude GRANDJEAN

DASSAULT ELECTRONIQUE
55, Qual Marcel DASSAULT

Saint-Cloud
92214

France

Many papers have already been written about the general Real Time, Response Time, Memory and Throughput

purpose programming language Ada. The authors of these Constraints

papers often draw a number of contradictory conclusions such Because ofthe nature of the tasks that it has to perform.

as "users running Ada keel) complaining about Ada, but none mission computer software is subjected to such constraints that

of them would drop Ada for another language", or "Ada isn't the choice ofthe programming language is of utmost
perfect, but it's the best existing language", or "such importance.
language could never be used for embedded applicationswih Real Twhme constraits impose, first, a real-time architecture

stringent real-time constrainta". capable of handling periodic as well as random events and

assure a consistency in the processed data set. The choice of
In this paper we do not claim to draw any final conclusion what will be called later on the real-time monitor is vital to
regarding Ada - it would be too presumptuous on our part to do meet these requirements.
so in a domain under full expansion - but we do propose some
important reflections regarding design methods, real-time Response time requirements also are fundamental. Indeed,
aspects, and tools needed, considering our experience with mission computer software controls and manages the
combat aircraft embedded software, information made available to the pilot. To do so, it must assure

CHARACTERISTICS OF AN EMBEDDED that the response time between a pilot action, for example, and
SOFAR ERits acknowledgment on the right-side multifunction displaySOFTWARE takes less than X ma.

Prior to detailing our reflections in subsequent chapters, it is Memory and throughput constraints will be discussed below
paramount to know the characteristics of the projects on which when the efficiency quality factor isdetailed.
our experience is based. In fact, the characteristics ofa
compiler, a configuration manager, or an embedded software RecentChanges Calling For the Use of Ads
are very different,

Considering the more than 20 year life cycle ofa combat
There are two main types of characteristics : aircraft and the improvements made in the ct nputer

throughput field, a new quality factor has erierged, and it will
" Those of the software itself, have to be added to the previous ones: portability. This is
* Those of the software development proce~s particularly true for RAFALE since the initial operations were

carried out on a 68020-based PMPcomputr system, which will
Characteristics of the software be replaced by a SPARC-based CMFcomputer system. Thus,

the necessity is apparent regarding the choice of language we
Quality Factors will have to make to assure portability. Ada was chosen over C

because ofits higher-level concepts confirmed after a series of
Thne primary quality factors in the development ofcombt tests.
aircraft embedded snftware are fifonly three are to be
retained): Characteristics of the software development

* Robustness: ii fact, mission computer tasks have become process

more and more complex and even critical regarding pilot Software development process requirements, although they are
safety (in the terrain-following and guidance phases, for notsignificant in the choice of language, are signifcant in the
example). Thus, the software must be protected against its choice ofsoftware development resources associated with this
own defects or an unforeseen behavior ofits environment, language.

" Maintainability and adaptability: an embedded software Initial Development Time
evolves throughout the life cycle ofan aircraft, that is,
over roughly 20 years Ifor example, an average offive The development ofsoftware for combat aircraft embedded
modifications per workiig day during the first eightyears computers is characterized by a typical incremental
of the development process of the MIRAGE 2000 export development process since the various operational functions
was experienced). The software's structure as well as the constituting the Navigation and Attack System are
associated documentation are essential elements for the successively integrated. The development of'such an
acceptance of such factors. operational function, which can be scaled on the average to ten

thousand Ada lines, takes approximately 11 months, as the
* Efficiency : in spite ol the treiendou, niiprovement m development process is understood to encompass the following

technologies the labt few years, it wb a mut that the phases. functional definition, global and detailed design,
memory occupation and computer throughput required by coding, unit tests, integration tests, functional tests, and
the software be controlled and managed, validation 'ests. The last two test phases are executed using

the target computer itself.

20-2

Software Branches and Deliverieb 0 Real-time aspects are most ofthe time not perfectly
handled by OOD methods.

The incremental software development proes ib concretized

by deliveries of the entire software. These deliveries are * Configuration management problems may arise from the
normally scheduled at the rate of four to six a yea r. On the large amount of Ada units resulting front an object
MIRAGE 2000 Export we made 44 deliveries in 48 months hi In oriented decomposition process.
addition, these deliveries were not made in a linear manner.
Indeed, starting from a common software development trunk Organization
we derive what we call software branches which have their own
specific lives and are used to debug the operational functions To allow for dialog with our client and for technical
independently of the new developments made on the common management of the functions, the software development team
trunk. The upgrades made on the software integrated on this assigned to the RAFALE project, which is composed ofmore
branch are integrated in parallel on the common trunk or are than 30 members today, is organized following operational
only integrated when requested by the client. functions criteria.

Modifications However, since the concept ofobject is taken into account in the
software's architecture. it is necessary to organize the

Because of the complexity of weapons systems and the large interaction between the diverses parties acting on these
number of parties involved (notonly governmentagencies and objects. Thus, a team member is assigned to make sure that
offices, prime contractors, equipment vendors, but also each objector group ofobjects is homogeneous in relation to the
program managers and pilots), the initial definition ofan development of the various operational functions using that
operational function, and, as a result, everything subsequently object.
related to it, undergoes a vast number ofmodifications
throughout the life cycle, even during the development phase of In addition, we have defined a dictionary ofoperational objects,
the function itself. On the average five to seven modifications and their refinement at the software level. This dictionary is
are made each working day. Here too the methods and the tools currently being realized on an object oriented database. It is an
must be adapted to these constraints, indispensable tool for facilitating the distribution of

operational knowledge in the objects and the transmission of
SOFTWA RE DEVELOPM ENTr information to all ofthe software development teams. In
TECHNIQUES addition, it will be an excellent training tool to discover combat

aircraft software from operational point of view as well as from
In this chapter we are going to detail the changes that we were software architecture point ofview.
led to make in software development techniques to develop
embedded software using Ada Coding

These evolutions concern the Ucceptmice Of the onceptof As we noted at the beginning of this paper, the efficiency
object, the organization to be installed, and the software quality factor is primary for the type ofsoftware which we are
programming techniques interested in. On the other hand, Ado offers a wide range of

capabilities in terms ofencapsulation, data typing, controls,
Object-oriented development aiid so on.

Ada language oilers various possibilLies fimr software quality As in other domains, we had to make a trade-offbetween Ada
and productivity enhancenents (data typing, packaging. advantages and efficiency We established Ada programming
generics,..). But these are useless ifan Ada development is not rules for onboard software.
supported by an adequate design method.
For this reason, we decided to study and then use 001) In particular, three points should be clarified:
techniques having in mind 2 major advantages they way also
offer : The Ada built.in controls are only used in the unit test and

integration test phases, ii which we work in native
* Reusability because ofthe better stabilty ofan object over language on a workstation, as we can hardly affort the

a function, experienced through different projects in tie resulting generated code.
same application domain (aeronautics).

0 The exceptions are only used in some very special cases, as
" Prototyping pobsibilities allowing ibr early design the operational software should have a well.defined

validation iAda specifications implementing a design reaction on a whole host ofevents, even unexpected ones.
solution ian be compiled, due to Ado separated
compilation capacity, and even executed ifudequate * The generics should onlv be cautiously used, since the
"stubs" are added) advantage offparameterization provided by them is

thwarted in the operational software by the generation of
Nevertheless, potential problems had to be solved before full large amount of code.
object orientation of our developments.

REAL-TIME STRUCTURE OF EMBEDDED
* System constraints through so'tware requirements APPLICATIONS

documents (our input for software developments) which
ome from a functional decompositimn process and thus, Ada is considered to be weak in the real-time domain, but at

are very likely iot to match with object decomposition, the same time Ada is one of the only Ianguages directly
through data organization for digital buses exchanges (the integrating real-time features.
way data are gathered into mebsages and the exchange
conditions of these messages often do not correspond to our
object decomposition and our update or computation
conditions).

20-3

When Ada is used for embedded software, and, thus essentially * The queueing mechanism (BUFFER). F,
under strong constraints, this problem has to be coped with in a
global manner regarding the operational characteristics of the * The event and pulse mechanism (EVENT and PULSE).
application.

These mechanisms are implementable in Ada, are compliant to

Real-Time Executive the Ada rationale, and azsure portability. For our specific
needs, we optimized them to cope with the problem of

The feasibility of using Ada, including tasking, wib one ofour performance by writing some parts in asembly language and
major worries. Thus, we developed representative real-time by using the internal mechanims ofthe real-time kernel.
benchmarks aofour applications in order to verify their
feasibility in Ada. We ex perimented with diverse types of In order to promote the debugging and validation ofaoftware in
possible architectures and estai fished the minimal conjunction with the DEVISOR test tool, the monitor provides:
specifications under which the real-time executive we would
use, should comply to. These benchmarks permitted us to a A trace oftask communications.
de~ide, given a full knowledge of the situetion, how to develop
mission computer software in full Ads. * The effective execttion time of each of the tasks.

The principal characteristic of'our embedded applications is the * The storage ofthe size of the stacks so they can be
ability to respond very quickly to cyclic external events (a appropriately sized.
recurrent frequency ranging from I llertz to 100 1lert) or
random external events, along with the additional I nput/Output
requirement that all the events are assured t) be taken into
account. The processings to be executed have riverse priorities An embedded application as described right from the
and depend on the response time or activation frequency. The beginning is strongly serviced by communication systems
internal and external consistency of the 0ite handled and the imposing cyclic or random processings asdescribed above. The
associated processings are consequently fundamental, number and frequency ofl/O are very high. Thus, the

communication systems were designed to limit the
The real-time executive that we developed and ure using for computational workload induced in the application. To do so, a
our applications has the following characteristi s: part of the processings is handled by the coupling boards.

* It iscompliant to the Ada Programming Language The 1/O requests made by the application are:
reference manual ANSI/MIL-STD 1816 A.

a Global (several requestasre given in a single call).
* It is essentially written in Ada, or in ase.mbly language

for those parts linked to hardware or critical in terms of 0 Asynchronous (the application does notwait for an
execution time, answer).

• It is not specific to our applications, but is optimized for These actions permitted us to reduce the computational
our specific needs, workload supported by the application due to 1/O facilities by a

third.
* It is configurable according to the target machine to

assure the portability of our applications. SOFTWARE DEVELOPMENT RESOURCES

* Its underlying real-tinie kernel includes a scheduler The development of real-time applications under stringent
compliant to the Rate Monotonic Scheduling (RMS) software development constraints such as described above
principles in order to comply to the hierarchical necessitates the availability of an adapted set of software
structuring of the tasks of the applications, production tools integrated in a true software development

system.
Ada only has a single synchronisationtcommt unicatton
mechanism called the rendezvous, which allows a synchronous Global definition and design tool
interaction from n tasks to I task.

STPI (Software Through Picture TM) is the specification tool
There is n, direct asynchronous mechanism (without blocking choesn for our onboard software development process. STP is a
the calling task) allowing n tasko to communicate with I task software analysis and specilkation environment which is both
or n tasks with n tasks in the Ads programming language. complete and adaptable. 5IrP allows the combined use of
Writing such mechanim in Ads requires the use ofserver several modeling tachniquss, which is necessary to specify the
tasks, thus provoking penalties in memory occupation and multiple aspects ofa soware system: structured analysis
execution tune. (YOURDONIDEMARCO), structaired design

(CONSTANTINE), structured real-time analysis (HATLEY),
Our active participation in the ExTRA working group entity-relationship model (CHEN).
(Extensions for Real-Time Ada) enabled us to be the source of
the definition ofauch mechanism. The results of this group In addition, this tool integrates the architectural design phas
have been sent to the CIFO/ARTEWG. An effort to obtain a in which we deifine our software architecture (both ial-time
convergence between the ExTRA specification ones is currently and static architecture). It supports object-orientd design

under way and is planned for the CIFO 3.0 method.

To satisfy our immediate needs and amure the portability of Detailed design, coding and unit testing tools
our applications, we decided to implement the following
mechanism: KEYONE2 IR) is a tool supporting the detailed design and

coding phases (since it has a syntax editor). In addition, it
0 The asynchronous rendezvous, thus permitting a calling allows one to produce a standardised documeatation.

task not to be blocked (SIGNAL. and GO BETWEEN).

20-4

A set ofconsistent translators (Ada-Al SYS syttem, assembler) ILIADE2 is a parameterizable tool, especially regarding
allows one to construct an application from modules written in methodological support, and an open tool as well, since it allows
diverse languages. the integration ofnew tools.

DEVISORSI R) is a softwaredebug and test system covering all
of the test phases both static (execution not in real-time) and CONCLUSION :"USING Ada?"~dynamic. Its principal characteristics are :
dIn conclusion, we are going to conclude about the experience we

* The tested software is not disturbed. have acquired using Ada, first in terms of productivity, and

then on more general aspects.
" The test is formalized and automated, for easy non-

regression testing thanks to a high-level lang :.ge. Ada and productivity

I lndependance is asured between languages and target As we have been developing embedded software, we have
machines. experienced a gain in productivity of approximately 30 percent,

since the developmentofa function given(lual functionality
C The man/machine interface is user friendly and extended demands an effortofabout3O percent less.

use ofsymbolism is made.
However, in addition to this gain in productivity, we observed a

* The test program may be automatically generated, significant inicrease in time for the architectural design phase.
We also observed the following distribution of the effort needed

DEVISOR311) operates in a static configuration on a host by the diverse software development phases:
machine (UNIX-based workstation)

• 10 percent for the functional specification phase.
Validation Tools

a 30 percent for the architectural design phase.
DEVISOR3(11 operates in a dynamic configuration connected to
a real target machine through a logic analyzer. Thus, it is used 0 30 percent for the detailed design, coding, and unit test
for the software integration phases in which the ioftware is phases.
integrated in the target computer and the real.tine
architecture is validated. a 30 percent for the software integration, functional, and

global validation tests.
The SVB (Software Validation Bench) is used to validate an
operational software. It simulates the computer environment Ada: success or failure ?
(i.e. all the equipments connected to the computer in the
embedded system while complying to rea -time and data We have seen that the development of embedded software and
consistency aspects and allows for setting those states difficult the embedded software itself are subject to a whole host of
to obtain with real equipment (failures, transmission errors, constraints and requirements. At the same time the software
et.). The principal functionalities are the simulation of the must be secure and have the lowest failure rate possible. In
environment, the graphical display of the behavior of the addition, considering the evolutionary trend in technology,
software to be validated, the control oL the target computer, the portability is a key factor for long life.cycle software.
automation of teat procedures for non-regression. All of these factors when combined are favorable or

unfavorable for the Ada programming language, which,
Need for an integrated software development besides the ceding aspects, impact on all of the software
environment development phases.

In addition to the tool set that we were forced to develop in part, In light of the experience we have acquired with Ads, it is
a true software development environment in which these tools mandatory that all of the components characterizing embedded
are integrated also was indispensable. software be controlled and managed correctly. That is:

Thus, we developed ILIADE2, which oilers the following three 9 The software development methods and the way of using
functionalities: Ada to conserve indispensable efficiency.

" A configuration manager, wh,ch controls and manages all • The real.time aspects while waiting rr uture extensions.
of the objects involved in the software development cycle,
that is, the documentation (specificatios, design, test * The software development resources to as ure
files, etc...), the code (source, binary, Ada libraries, etc...), productivity.
the test objectlsheets, data, programs, results, etc ..) and
documents exchanged between a p time contractor and a Only by complying to these conditions will the development of
sub-contractor, embedded software for combat aircraft written in Ads prove to

be successful.
* A production manager, which automates the production

not only of the Ads software, but also the documentation,
test, and so on. This function also controls and manages
the software production servers and their resources in a
way transparent to the user. I STP is a trademark ofINTERACTIVE DEVELOPMENT

ENVIRONMENTS.
* A methodological support, which assists the boftware 2 KEYONE is a registered trademark of LPS.

development teams, project managet s, or business 3 DEVISOR is a registered trademark of DASSAULT
executives assuring a presentation and s methodological ELECTRONIQUE.

tracking and follow-up process of the project through an
adequate synthesis level.

21-1

EXPERINMAL ACrIVEFLIGHT COMM OSYSITM FOR A VARIABLE
STABILITY HELICOPTER -AN ADA SIMlTION IN JSD.

by

Flight System Deartmnent, Royal ArsaeEtbimet Bedford, MK41 6AE, UK-

Roy Bradley
Department of Aeropac Enginerin, univerity ofGlagow, Glasgow, G012 ItQ, UK

AlmnMoore
L1BMS Pic, 62 Oxford Street, London, WIN 9LF, UK

SUMMARY differet meth&d were applied by different twon members In an
attemnpt to fonralse the reqalems, to tackle design ismue

In the field offhelicopter fligh contro and handingS quialities, the and to providesa format: compatible with the la stagles of the
potential benefiw oflited by Active Control Technooloigy are system life cycle. Thie Jackson System Development (JSD)
considerable To support te developnment of appropriae methiodology was selected! for several roasons:

Royal Aerospace Etasm ent hsbe nsdIn the (a) TheJSD modelling prducea formlsecficatonof all
development of an ACT system fora reec ynx. Aa the plolystent Interaction and so forces the enginee to
a1111111Y envsaged the system Includes flil authrty fly by wire consider system beliaviour from a constriactlonaldesign

actuatioanod fall-opeate/fil-sae lutwa ltcttare The rather tha hierarchical description viewpoint
impac of dthe uird fonctionalty on the system r e aets
dictated a ned for a precise Yet versatile specification of the (b) The JSD network provides a comrplete description of all
systemn, and Jackson System Development (JSD) was selected the external system interihces reqired, plus a systematic
a a design method since it provides a formal modellingi of the partitionin of the system firnctionaltty.
pIlo interface, and also operates at a sufficient level of detail
ne=st to ensure completeness and resolution of ambiguities. (c) Ambiguities in the textual materia are naturally

Th bol which support JSD Include automatic code generation, Identified.
and for thIs woe* were further developed to accomodate
chanes to system arch~tecture In an efficient rmnnr. The code (d) Tools ecre avallable to support the method including
produced providea a direct simulation of the design and results automatic coda genton.
ina living specification availl for validation and investigation
of the written specification. A moat Impotant feature of the specification Is tha It Is an

executable version of the flmctlonal behvIvour of the system.
I. INTRODUCTION Ascode is autontatial generaed from t specification and,

when combined with a simulation ofd thefllhtmodel and
In-fligh slmulation provides the ultimae validation tWat ofa new various peripheral devices, becomeaallvl specification of
fl~gt constrol CccPt. The realism of fligh teat overcomes the the system behavioutr.
defi cee of roud lied simulation associated with cue
fidliltyad modellinglIacuacies. On theodwerhnd, coat and I~
sAY issues constrain what Is achievable In experimental fightM ITT
teat. A balance between grud and fih test is rec*lreso VV"
mamnracostrol conept ltl. IN the fiel of' heliopte flightV &AMlit *Fby*W
control and handling oualtie, the potential beneiwoferd y S f*my
ActiveConro Technology(ACT) arecorwiderabl Illand
results derived from ground and in-ftlh simoulation In Europe
nd Noeth Ameasbav d n tsnefit at moderate

perfornmc, levels. Future mill, rolorereft will need to

dewr at pposa r ha n 'lla ansre

explot teotia foresoed iA t fcilities. Ta th

on tud s thI -vol'aACTsysiom fwesivitecl
Lynx 12A3 F~asum of- qvisetn agedyeavlIackud fall astotty fa bywlre(FlW)etWaleaMs=nypiot
withback~drlvaacontrols," ' fi-eae/fall-ssfe (FOPS)
hardware arcitiecture ota raseonoetsasoe ad
pilot aceptoes Providing lpsto the ceNtr Lws Thle FOPS Cli

napo(aidateieeaothro N~Aneeenepe. The *hP oO bd- C Ma~n CL
requiremnt Is lesbe RA181deatlfledassedir foesV

daeopdtresodeinthog Flowe I ACT Lynx System Element

TIM spqfW etran needed! to address feacuonsliy (6tr boh The second elmseofesrpalrmea involves the Investigation of
nomlead d slae), eatilen and perfhnmsuce of the options for the exact aware of the BAM system implormawtoa

im ng a~ roedne wih iesfCes, coas and Thi research Is latioutaly conected with the uamber ad type
Thwsedicals an eded to be &i for ofrc _ 'geeetn the fom. ofh abmoeea

estblshig eastc developmentcoaend timacles. Th7e*rig To this end aew aae has been Invented which
appmuac take has insaedlto two pluses. Firstly, the all w esrption ofhadwar sycu =Y addtheprcwlslosolbnr
development oftext ecito oftht system with tolerance. Thle Iectto meaaI apme by data entY

acc mylag tllutatlo. Durn dhsactivity smaherof and code genrtion tokta alwmcinftaa ionte

21-2

descrption and a nof the specifedem using Ada Asa momof ddeu poicy the design team at RAE took
Tis faity enables theb hestiption of vso slrsare Ilaw 2.0 and subjected it to eff scrutiny to order to Identify'
architectures, providing die vital reallan required tolback up eea aw~iftc beslgfi ympved In
mome conceptual reseaciL particular, the possibility of using JSD was re-eamined since In

tecontext of the ACT Lynx application a methodology blued
m~ ape dri bes the development of the ACr Lynx towards system development was considered to be mote

req~remntspcifcteln, aaaig o upets f th sytem appropriate thana decompositions, hierachiesi, descriptive
fui~onslitytililustrate theJSD a1proach of modeling and tochnque A strenigth oftheiackson method is that It spews the
nework analyuis. Section 2 covets the evolution of the ACT Mil moprg of activity from system, definition to production of
Lynx momirments lending to the weed for aprototmp code [lI 1, so dostat one end It is concerned with modelling
almubtion. Sections 3 and 4deal wit the development and use correctly, for example, the actions of the pilot when he uses the
oft Ada simulatio, Illustrating Its ivestiptive potential. Pilots Control Panel (shown In Fig 2 and discussed fully in
Section 5 discusses the way forward for the specification &Wd the section 2.5,below) and at the other end contains the level of
project.aa whole._ _ _ _ _ _ _

This paper is the second in a sedes "amdov n at reater 0visibilittyon the InproMAcr!beltaeb f oreACTLynx W O 18
projct. The firstecoveredde& fcycle ofacotrol lsw [4), (5OMU1
from conception to fl~ eempbasing the vaidation aspects __ __ AujtW

airborne system. (hT
2. EVOLUTON OF THlE SPECIFICATIONFa

2. Background

NonM Coruo PAMe IM~ae Paul
insa series of technical memoranda and reports [2,3,5,61 RAE CWrdA hMOS ftaudeveloped the rationale forsa programme of resarh based on _

an ACT helcptr. Further studies harve demonstrated the I
practical feasibility of modfyng the RAE AH7 Lynx ZD 559
into aMl authority ACrveicle for such apupose; encouraged
bythe feasibility of this approach, RAE embarkedon ther--i -x, mJ
preparation of&a specification for the airorn sysem (Airborne _

System Reqirements Spedificat)of theAC Lynx rV :l
progrmme. Figure I illustrat es ign concept where the faexperimental pilot conventional cntrol via are replaced with i'a (.
an ACT system. The elementary modules of the naw system FEW am Z
are described morm Miy below, in section 2.3, but, In essence, a mn =flight control computer, with corresponding interfc units,7 a 9connets a new set of Inceptrs and sensors tosa group of
the outset MAE were determindthat the specification should be 0 0 0 0 0 0 0
the basis of& ael managed prcrmentM exercise, anda such,
should solve all ofthesignfcn designlsusofthesyten. ARMO 0 0 0 0 0 0 0 0 0
Potential suppliersawould then be able to aesessccurately the o- 0~ 0 0 0 0 0 0 0 0 0
costsof jly4n the various components of the system, since _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

the posisibilifty ofubeg involved In expensive open ended design
work would be eliminated. Also, by solving the outtading Mode CMUiW~ P"
desnign problems ab laikr, RAE would be aur that the system

cudactually be supplied in acordance with the specification. Flowt 2 ACT Lynx Control Panels (Schteawtc)

2.2 Adoption of Jackson Techiniques detailed speciftcation necessry to enerste code. Suchs leWWl of
detail effusure the dei- polnso the specificaio hae

With the ubjectve ofproducingaeomplete, unambiguous been addressed even If thsawar inoaculypdce, but
specification it wss decided to employ,.a for. ssible, the in this applicationsa fdhe Wt been taktes and code

tehigeofSoftwe Engineering. The d~scpllnes of these produced to halretsia io ofthe specifieds stem of
temluswould ensuea rigorus development of the design, 6Is30 (sc~n4). These two arena had so been ged

sand the associated CASE tools would asist In mslntinWa the suffiien m pai in the De Marc work, and the discipline of
precison md Wsty orthespecifcatiout. For tin dWWa peart of JSD woul force atmteo to them.

the otalsystm, mdwdscould be applied directly but for
other purts, which could! Include analogue, mechaical, 2.3 Specification structure.
hydraulic and even human components, it w. so hamediately
Clear now the softwar techeipes could be adapted. Moreover. It was alon felt aeomWto adopta modified stmrctrfor the
It was desdrable that, at the specifiation stag, there, should be specificatIonistorder to giveit more chesion. henew
some freedom as to the type of Imlmsinultiaely chosen stucture desce the system in te of Iftmajrr kctiona

*laigoefor exampe te Opto f Baslmlr elements. This decompos~wo was the only. hadt wa
inmpemeastltw o redadm unis. Jcksn Sytemimposed on the sysete apdrnd reflectd assepamio which

lDevelopmeat (JSD), ,7,81 was salpubteas the prefrre was uaavoldebly Incurred by the nobw of the prwt Sucht a
methodolog, but proved, at leant Initially, to be difficualt to subdividsio does sot preclude further subdivisions ANoul they
emWOaN In t#i nove cq*tem While the difficulies relating to evolve from the design process. The outcome Is shown in
the uwe ofJSD were being relved, dthr was artial Figure 3, where the rectWAn r components are hos relevan
appliation of Do Marce 19 meth* comsrpeady, when, the to the pcicatineecs.Th odrcagesw etrdt
11Wt version (lowsi 2.0 [1IOD of the specification wan old as Processin elemnt sad would wogdas forms a Fligh

smegsi~iee, nadiloto the convental strutr of Coto optsaltouch b emsinolog was sat uud In
paapapso tx supplemented by a set of technical the spW =cuoi
ilu at~n d digat i ontaied a goup of dots flow

digasMidd compositions reltin to aDe Marc style The elements of te syst are described In the order of te
enhancmerteo thetext.primary flow of the signa informatIore

21-3

Engineers Telemtra SysecodnSse

Support EnSupprt Elmttaio

Figure 3 ACT Lynx Logical Elements

(i) Sensor Element (SE). This leading element contains the (iv) Control Law Element (CLE). This next element is supplied

aircraft motion sensors - attitude and rate gyros and with inceptor, sensror, mode selection and related
acceleromcers, and also the air data units for obtaining information by the CLISE. The CLE is the raison d'etrc of
velocity, pressure and temperature information, the ACT Lynx since it hosts the experimental control laws

which are to be evaluated. It is this element tht the user of
(ii) Crew Station Element (CSE). The other leading lement the ACT Lynx, the handing qualities engineer or flight

incorporates the conventional controls for the safety pilot and dynamicist, will interact with. Carefully verified and
a versatile side arm controller facility for the experimental or validated control law sofware [41 will be plugged into and
evaluation plot. The CSE also contains the various unplugged from this element. Typically six control laws will
interfaces for the pilot to engage, operate and be cued by the be selectable by the experimental pilot with an additional
ACT system, Figure 2, as ollows: choice of up to six sets of parameters within each law. The

demands produced by the CLE for each of the four axes may
a) Pilots Control Panel (PCP) used by the Experimental be separated into low and high frequency demands, if

Pilot for engagement and disengagement and also for required, which are destined for the parallel and series
conducting the system-test sequence, actuators respectively (An option being currently evaluated).

The separation algoithm is par of the user supplied CLE

Cb) Repeater Panel (RP). provides a copy of the displays for software.
t(v) Control Law Output Suppor Element (CLOSE). The element

(c) Menu Panel (MP)- provides other ACT interactions, followirng the CLE interfaces the demands produced by the
such as selecting one of the available control laws and sets of Control Law Element to the remainder of the system. It also
parameter values. The saone pnel provides the interface for provides a selectable limiter on the rates and densands
injecting preprogrammted disturbances into the system, as produced by the control law as additional protection against
part of a flight-test facility used, for example, in the immature software.
validation of the helicopter mathematial mdel, and in

demonstrating compliance with and~ing qualities (vi) Actuaor Drive and Monitoring Element (ADME). Theg final
requirements of new control laws, element to provi~de processing takes the demands from the

CLOSE and produces drive signals for the parallel ttuators
d) Mode Select Panel (MSP) -ava..ilble for in-fight resident in the Actuator Element, and the series actuators in

selection of control modes, the Primary Flight Control Units (PFCU). The ADME also
manages the engagement of the ACT system through the

Clearly the CSE would be expected to £'eature significantly in energising of the parallel actuatr, and supplies a normal
any JSD modelling exercise, with the pilot assuming a autoP~abilisation function when the ACT system is not

number of different roles as he nteracts with dfferent engaged.

components of the system. Some of the related modelling
issues are discussed in section 2.5, below. cvii) Actuator Element. The parallel actuator system is last in the

sequence. Whenengged, it drives the existing Lynx
iii) Control taw Input Support Element (CLISE). The PFCUs. The parallel actuators are connected to the

following element has the main purpose of processing and conventional control rius from the s rfety pilot, so that when

managing she information fo the Crew Staton and Sensor the actuators are engaged, tshe controls are back driven to

Elements. IT also contains the scheduling ofa provide the safety pilot with essential control position cues

comprehensive system test, and toaid in recoveries.

21-4

(iiii) External System Support Element (ESSE). In support of
this network of elements is an element which essentially
provides a catchment for all of the significant data in the
system. It interfaces with the standard data acquisition
system MODAS 1121 and also with the experimental displays CLISU a0u
such as helmet mounted or head down dsplays. A record of
all system related events such as engagement,
disengagement, and diagnostic messages is retained in a
System Journal.

2.4 Element descriptions.]

Issue 3.0 of the specification contains a detailed description of (l ,DME

each of the elements identified above. As far as possible, the
recommendations of the STARTS 1131 guide have been Figure 4 Connections to a CLISU
followed in the preparation oflssue 3.0 [141. Each element is
described in detail under the headings Type, Function, done at a system test invoked prior to take off, or by the inbuilt
Operation, Performance, Inputs & Outputs, Interfaces, Testing, monitoring.
and Failure Reporting & Recovery. Where a particular element
is composed of replicated units, so that several units together FAILURE REPORTING AND RECOVERY- A statement of
comprise an element, the replication of units in the element is how errors, produced by a fault, having been detected arc
stated and the unit itselfis described under the same headings. reported within the system. Usually they are reported to the oilot
For example, the CLISE is a triplex element composed of three via the Menu Panel, and they are also sent to the system journal
identical CLISUs (Control Law Input Support Units). In detail part ofthe ESSE. Cautions and Warnings may also be raised
the descriptions are: through the Central Warning System. In addition, a statement of

the recovery of the system may be required, often this is by
TYPE - Some indication is given here of whether returning to Standby via a controlled disengage -as would be the
implementation is anticipated as an analogue, digital, case when one of the monitoring tolerances within the system
mechanical, hydraulic, electro-mechanical or human process. has been exceeded.
The suggested implementation is not intended to exclude
alternatives ifa supplier possesses a particular specialism The
view was taken, after some deliberation, that it was better to Once Issue 3.0 of the airborne system specification was
make specific recommendations rather than to leave the 'type' complete, it was decided to progress to a full JSD specification
issue open. A general allowance could then be allowed for in order to check out any residual ambiguity, vagueness or plain
variations that nevertheless complied with the functional aspects error. The full JSD would then be available to use as an adjunct
of the specification, to the written specification. It would give a precise description

of the interfaces between the components of the system and
FUNCTION - Under this heading is a complete statement of the between the system and any external devices, to the benefit of
tasks of the unit, that is,a statement ofwhat the unit has to do. prospective suppliers.
For example, one of the tasks of the CLU (a unit of the CLISE)
is inceptor management; the entry reads: "The inceptor A further decision was made to use the JSD to generate a
displacements and inceptor switch potions shall be processed simulaticn ofthe ACT system, to produce, in effect, a living
to provide consolidated signals for the associated Control Law specification which could be used to exercise and examine the
Unit (CLU)" specification dynamically. The novea features involved in this

step are described, in detail In section 3, but the six aims of the
OPERATION -This sub-section is concerned with how the unit simulation in relation to authenticating and potentially enhancing
will achieve its functions. This is done by detailed description, the specification were:
in text, ofthe processinL equired for each function. Forthe
CLISE example above, the full details of the processing of the (i) Control and human operation of the system. Pilot evaluation
triplex signals would be supplied, including the consolidation of the procedures for operating the system, for example, the
algorithms for fault tolerance. The narrative under this heading is amVengage/disengage sequence can be evaluated through
used to build the JSD Specification; the full JSD is not held hands on experience. Also suppliers can directly examine the
within the text of Issue 3.0, but sufficient initial design work nature of the interface between their equipment and the rest
was undertaken to be confident that a JSD specification could be of the system.
derived from the narrative.

(ii) Synchronised control information. The techniques for
PERFORMANCE - A statement of the times within which the managing and synchronising control information within an
tasks must be completed and, where appropriate, the accuracy asynchronous system can be verified.
that must be achieved. For example, a certain part ofthe system
test must be performed within a stipulated time The sampling (iii) Establishing tolerances. An asynchronous system generally
rates for the unit would be specified here. A defined constraint is must allow some tolerance in the monitoring ofthe
!',a; :he total system transport delay should be 25 ms. information from replicated units. Suitable tolerances can be

verified or even deduced.
iN'UTS & OUTPUTS - A list of all signals received by the unit
and those transmitted by it. It includes the source of a received (iv) Computational load. The processor power and memory
signal and the destination of a transmitted one. This information requirements of the system can be more confidently deduced
is also presented in diagrammatic form, Figure 4, for example, from a simulation than a specification. Alternative
where the connections to neighbouring units are clearly visible implementations may be evaluated for processing efficiency.
(The network notwtion is discussed in section 3). There is, of
course, a need to maintain consistency here, since for each input (v) Fault management. The mechanisms for reconfiguration,
listed there must be a corresponding output on some other unit and the issuing of caution and warning signals may be
Such consistency is easily maintained by a CASE tool such as verified directly.
Jackson Work Bench [151.

(vi) Design Evolution. Alternative designs for the components of
INTERFACES - A list of the units and their types, both internal the system can be evaluated directly.
and external, to which the subject unit is connected. The
purpose of this information is to identify the interfacing
requirements between units - analogue to digital, fo example. Before leaving this dtscussion or the evolution of the

specification in order to consider the development of theTESTING - A statement of how the function, operation and simulation in detail, there are two topics worthy of a special
performance of the unit is verified. In particular this may be note.

21-5

2.5 The Supervisor as a modelling issue. These problems %ere resolved in the final ISD modelling, part
of which is shown in structure diagram form in Figure 7 where

One area which, from the beginning, was subject to intense the system test and engage models are separately treated but have
scrutiny was the control or overall supervision of the ACT appropriate interlocks. In the structure diagram notation, which
system, including engagement and disengagement. Clearly this is described more fully in section 3, the leaves ofthe tree
is a critical area where it is essential to get the specification and structure are actions (similar to tmnsitions of the FSM) and in
implementation correct. An example ofan early model is shown Figure 7 there is a repetition, denoted by the'*' symbol, of the
as the flow chart in Figure 5, where the System Test, initiated by alternatives, denoted by the 'O' symbol, of a normal engagement
the pilot, ifsuccessful, is followed by a repetition of the arm. cycle or an early disengage. The Arm,Armed, Engage sequence
engage, disengage sequence of actions. While useful for can be quitted, denoted by the '!' symbol, at any stage to
conveying the general idea ofthe pilot's interaction in this area, continue with an early disengage. The system test process is a
it was not sufficiently precise to base software directly upon. simple cycle ofalternatives of a successful or unsuccessful test.

The exa.nple above has been discussed, for clarity, in a
simplified context, omitting such complications as control law
selection and disturbance injection, but the same principles

Power up apply. The use ofJSD in this area helped to achieve a
System satisfactory modelling and, further, the model can be directly

.implemented as a process, upon which the whole ofthe software
. .System powd UP can begin to be constructed. It is also Interesting to note that the

separation away from a monolithic supervisor was also guided
P System Test in progress by the need for maintaining optimum Integrity. The various roles

System Test of the pilot are modelled separately with appropriate interlocks
preventing inappropriate actions, for example, a change of

.andby control law when the ACT system is engaged.

System Arming)n progress

System armed

Engage

.System engaged

Disengage A-d A,C I
Figure 5 Possible System Control Flowchart

For example, it is possible in the specification, to return to
Standby through a disengage action without an engagement of
the system. This path is not shown in the flow chart. To
express the requirements in a precise manner finite state
machines (FSM) were mooted and proved a very useful

approach. That shown in Figure 6 Included the additional
transitions to Standby omitted from the flowchart, but suffered/ __.

from a shared disadvantage that the system test, itself, included
arm, engage, disengage sequences. FSMs have the advantage BWYthat they are readily transformed into software so they were
seriously considered as a basis for a 'supervisor' process, which
would have overall control and only permit allowed transitions

ofthe system to occut. The problems experienced with this
approach were twofold. First, incorporating all of the possible

F.12 sx 'm w F&I Figure 7 Pilot Engage and System Test Processes

owe Sys t stdb' Arming 2.6 Fault tolerance and redundancy management

P.. Within the function and operation sections of the unit
descriptions consideration must be given to the redundancy
managment and fault monitoring issues ofthe multiplex

Armed elements. The main criterion for tohrance is that the system
S should be first fail operative, and the identification of a fault

tis, should alert the pilot to return control to the safety pilot and
conventional inceptors, by a controlled disengagement ofthe
ACT System. Faults In a unit are detected by downstream

Engaged comparison of its outputs with those of its siblings (associated
units or lanes within the element - its partners within the

Figure 6 Possible FSM for System Control redundancy). This recognition is dealt with in three ways:

states and transitions afforded by the pilot resulted in a very (i) The consoltdation of the redundant signals must not be
complex FSM, which was difficult to interpret and militated affected by one signal being in error. There are two type of
against a correct implementation. Secondly, the engage or information to consider here. The firbt type is 'analogue' or
disengage actions made within system test, gave different states continuous type of data where the median select is used for
from those occurring after a successful system test. triplex architectures, the second type is discrete data where a
Consequently, and very importantly, the system test did not majority vote is employed, both of these are passive fault
exercise that part of the controlling software which would masking operations used to collect valid data for subsequent
ultimately be used. processing.

21-6

(ii) The error must be recognised and tignalled to the system and injecting errors into the simulated hardware and producing
the pilot via the appropriate panel lamp -this is the diagnostic information for off-line analysis.
monitoring aspect.

The adoption ofincremental delivery must be viewed as a
(iii)Thcre must be a reconfiguration triggered by the signalling of success. It was inevitable that RAE when presented with the

the error in order to isolate the faulty unit. Th. isolation is simulation should find discrepapcies between their view of the
done by ignoring all of the outputs of the faulty unit. system and its behaviour, either through misinterpretation of the

specification by LBMS, or through inconsistency or ambiguity
A dual-duplex arrangement operates in a different manner, in the specification. Incremental developtment and delivery
where each pair ofunits carries a validity signal and outputs the allowed thest discrepancies to be identi"ex zirly and, if desired,
validity status alongside the functional data. The downstream corrected.
units can then.' mask the faulty unit bya tolerant behaviour or
reconfiguration. The ACT System has in its initial form, a dual 3.2 Jackson System Development.
duplex ADME, originally to be compatible with the dual
hydraulics of the actuator, and the single fault tolerance arises Jackson System Development is used in order to analyse the
from the disconnection of a faulty pair ofunits from the drive to existing textual specification and provide a formal executable
the actuator; the performance of the drive being such that it can specification. The method was jointly developed by Michael
tolerate such a reduction ofinput. The processing elements, Jackson and John Cameron in the early 1980s (references 7 and
CLISE, CLE and CLOSE, are triplex, but have no cross 8). Since its release it has been used in the development of a
connections at their mutual interfaces .(There Is a modicum of ntmber ofsignificant real time systems including-
sibling monitoring in the consolidation of discrete data.)
Consquentiy they effectively form a single triplex module. The (a) The control software for a torpedo.
SE and the CSE are essentially triplex with a full number of
cross connections to the CLISE. (b) A submarine command and control system.

2.7 The adequacy of the Isue 3 Specification. (c) A wind tunnel control system.

The ACT System elements and the functions they performed (d) An army wide-area network command and control
were conceived and assembled from the combined engineering system.
experience ofthe project team. This included first hand
experience with design of conventional control systems and The technical method consists of three stages, model, network
direct exposure to the helicopter digital flight control system and in,plementation. These stages are described briefly below
programmes in foreign Industry and Government research illustrated by examples taken from the ACT Lynx project
laboratories. The FOFS requirement for ACT Lynx combined
with the need for significant flexibility in operation created new 3.2. 1. M~dqj A JSD model ib constructed of entities and
problems however. The completeness and validity of the actions. It is a logical description about a "real world" with
upgraded Issue 3 ACT Lynx specification had to be questioned, which the system must deal. Actions are events which occur in
Were the performance figures achievable in practice? Would the "real world" which are interesting to the system being built.
there be smooth operation through the PCP? Would the Entities are the objects in the "real world" which perform. or
redundancy management logic work? In many projects it is sometimes suffer, the actions. Figure 8 shows a typical list of
apparent that answers to these kind of questions are deferred actions. Figure 9 describes the order in which a subset of those
until deep into the detached design phase, often when the actions must happen via a time ordering diagram.
customer is no longer closely involved. RAE needed to increase
confidence and reduce the risk associated with these questions; it Aefon & C3 Sumnmary AttbuAtes
was decided to embark on the development of a fully operational AM p to a thesystem L b
prototype simulation. An incremental approach naturally fumed
complemented the JSD methodology. Coto lw clemto t n h

ARM_DFFA LT..MODb lhe iltiWdrMinsofadef.m , OEIr

3. DEVELOPMENTOFAN ADA SIMULATION otrotmod
CNCELSYSTM A treqt to cancel the system test
TEST

This section dscribes the approach taken The organisation of krh to so MODE_TD E
the section is based on the three major parts of the solution, r ft ARM toASM-AND tN-CAP
JSD, simulation and code generation. For each there is a COMPLE T Alt ,orleystem tmhav

I EST bm~mfulcomletedt ______description of the approach and a justification for choosing it. LONIINuE_SYS1rM Irusicamonb m i me crrent test of the

Finally, the solution is assessed against die initial requirements TEST system tet ha. been Ncesfully
for the project. Comleted

Ifteysteft1 cothts 15005550"nus my hepnbeot3.1 An Overview of the Approach tnhi t (1I) by the pifor pressig
the dsengage ttton of (2) by thr

The approach, in brief, was to use the Jackson System adin o 82",
Development method (JSD), coupled with automatic code It my ha n wthl.t FNGAGED
generation in order to produce a simulation of the ACT system. on Warr oa ,fr ac r a,, "wtlutto"ur] r~ig efmt that it hiss
An LBMS CASE tool, Jackson Workbench (JWB) was used to become dfgao
capture the specfication of the system, and subsequently to DOWN-DISTURBANCE The poN V'aes to be oftcrd the
generate the code. The simulation was delivered in six -REQUEST Prevtos alid dtrttbaoc¢, that tt

the fit dstorboe .t1h a Ioot,
increments, with consultation between RAE and LBMS exde i.rhef(ID)
following each increment. Tan ,o~ttnatent to z kp.

pst the DOWN tbto
sNGAG "7he [pit'r(~su(ce~ully

JSD is used to provide a behavioural description, derived from ____,____.

the textual specification, which is expressed in enough detail to FAt.oTAGEt 'astoeticsaeofthesystem tevs. h.s not been
be executable. The whole description is expressed as a network -full ,omqCw
of communicating sequential processes connected via message I OVALUE A ne. vse=e the
queues, and with read-onl' access to each other's data. A Curpt,, of an ow
separate description is made of the hardware configuration on
which this network must run, in terms of hardware units and Figure 8 Typical List of Actions
connections between them. The two descriptions are then
mapped one to another by partitioning the processes in the Time ordering diagrams are tree diagrams which use JSP
network onto particular hardware units. This mapping is used notation. The root is named after the enthy performing the
as the basis for determining the fault detection and recovery actions; the leaves (the lowest level boxes which are named
configuration. Finally code generation is used to take this rather than numbered) contain the names oithe actions
complete description and build a simulation which, besides performed by this entity. The internal nodes ofthe tree, i.e.
simulating the system, provides a range of facilities such as those between the root and the leaves describe different ways of

21-7

streams), or by read-only access to each others state vectors
(State vector inspections).

The example in Figure 10 shows the connections to the control
Pik law algorithm, which inspects data from sensors and inceptors
E. . (e.g. the state vector connection CLISEAMSE_DATA,

providing data from the Air Motion Sensing Element),
computes new actuator values in the process
CONTROL _AW.ALGORITHM, and then relays them, via the
data stream ACTUATORDEMANDS, to further processing
elements and eventually to the control surfaces.

cycle Dsen~e rtise e -beep

A Amd tus. Th.¢s- e AteS gc nsatl clise mode ts- mse da

Opeasc am Se

Figure 9 Pilot Engagement

ordering their children and are of three types: sequence, selectionand Iteration, identified by a symbol in the top right coner of the
-

box. An asterisk (*) represents iteration, that is one or more r.--..-. rrcn-/c] acutr engagement_status
occurrences: a circle (o) represents selection, I.e mutually
exclusive choice, and the absence of a symbol represents stcr
sequence, that Is all of the children of the node read from left to
right. The numbered operations attached to the action leaves dtuba¢
indicate how the state of the object (or entity) is changed when it d~tl ,I_ N ;,.,.receives the action. "-

Figure 8 shows a list of actions, that is events of Interest to the
ACT Lynx system. Some ofthese actions occur in the time
ordering diagram for PILOTENGAGEMENT In figure 9; from distutbnce,_

it, one can see hat the standard sequence ofsevent (under the

box NORMAL CYCLE) consists of the pilot pressing the ARM
button, followed by tte system ARMING itself, which is
followed by the pilot ENGAGING the system, and finally the
system is DISENGAGED. Note that there is an alternative to the
NORMAL CYCLE (indicated by the circle in the top tight Figure 10 The CLE Control Law
coner); this is called EARLY DISENGAGE and corresponds to
she possibility of the system being DISENCAGED at any point. Each process is descried in detail using JSP notation; in fact the
The entire ENGAGEMENT CYCLE can happen many imes JSP method can be used to develop the process descriptions.
(indicatea by the asterisk in the top right corer). Figure I1 gives as an example the process responsible for

interacting with the pilot when he Ia selecting control laws. The

In a completed model, the total set of tree diagrams deseribes all process executes operations which store state as well as readingof the 8imeorderings of the actions plus the changes in system from input data streams (READ), writing to output data streams
state which they cause. (WRITE), and inspecting other processes data (GET SV). In

this way the process is available to gather data and provide

3.2.2 Netwrkln this stage a network of communicating responses via its connections.
sequential processes is consttucted. (Figure 10 provides an
example.) The three elements of the notation are ocesses 3.2.3 Implemenhation.The network which results from the
(boxes), data streams (circles) and state vector inspections previous step is detailed enough to be executed, but rarely
(diamonds). The meaning and use of these symbols is descried matches the implementation environment: it often has more
below, concurrency than the target (each process instance In the

specification executes concurrently with evey other), and data
The bsis for the netwo Is the set of entities deited during stored in the processes sometimes has to be separated out into
modelling the state of the entity is recorded in the local data of a files and databases.
process, and the actions become messages passed to the process

vla an input data stream. Pilot Engagement (The entity described The implementation step is about fitting the specification to thein Figure 9) appears in Figure 10 where its state is inspected by target environment, It is
the control law algorith process. Processes derived from the discussed in greater detail in the simulation section.

entities in the model are called model processes. During the
network stag new processes are added to take messages from 3.2.3 Summary The main aim of the SD method is to providesa
the system boundary and feed them into the model processes, specification which can be usefully viewed from both above and
and to use data stored in the model processes in order to generate below. The modelling stage is a w object oriented analysis of the
system outputs. real world which produces a description which users can readily

grasp, because the result Is described in terms of objects familiar
A JSD process may have many instances, each executing to to the user, It also provides in an accessible form (tree
concunently and each possessing its own local data, collectively diagrams) impocan1 detail about the model of the real world.
known as the state vector of the process. The control flow ofall The network stage uses two descriptions, one, data flows,
instances of the process is identical, and is described by a tree which can be presented to the user to indicate the architecture o
stucture. Processes communicate via message queues (data the system, the other, tree diarams, which the analyst can use

21-8

which ensures that all functional issues have been aired. Inaddition, the specification network reaches to the boundary
of the system thus providing details of the system interface.

00i Fitness for Purpose

(a) Distribution/Concurrency. A completed JSD network ishighly distributed, which maps well onto this type ofapplication, where the processing is distributed over manym processors.

(b)Separstion of Concerns. The specification phase ends0 30,41 Seim~ with the network still not committed to a particular hardware2311 configuration. Not only does this provide a logical view ofthe system uncluttered by hardware constraints, but it alsoallows considerable flexibility when allocating processing to
Al~o-do D..1o. 0available resources.

,'on (c) Real Time Track Record. JSD has been, and is still
being, used on a number of large real-time projects, with
Ada as the target language.

(d) Evolutionary Delivery. JSD is a compositional method,sometimes termed "middle-out". In JSD terms, once a
,, off.bI potential deliverable, working system. This allows the

system to be delivered in a truly incremental fashion.

3.3 Simulation.
.ff~bicoff b]Having prepared the .ISD design, which in itself hasauthenticated the textual specification, there is the opportunity to-- '1 progress to a full simulation by implementing the design This isa definite additional step and it is worth identifying the additional

benefits which accrue:(a) The CLE Control Law Selector Process(a TheRCTE COTro aeecRr (i) Dynamic and Static Analysis. The essence of building a(WRt I L 1 T 11 CUR NT !, T representative, working simulation of a required system is1(WRITE S CL OUTPUTS NEW T -AW) that it provides unequivocal feedback on the validity and
((ID> SV OFFERED-CONTROL-LAW)) viability of the specification. This feedback Is provided via12 @WRITE 1 NEW CONTROL LAW NEW CONTROL LAW analysis ofvarious forms.(ID -> SV OFFERED CONTROL. LAW))

13 (WRITE S NEW _W NEW CONTROL LAW (i) Verification of BehaviourThe most obvious form ofW(D -> SV OFFERECONTRO-LAW)) feedback is in the behaviour of the system. Even good21 SV OFFERED CONTROL LAW - CONTROL LAW-ID, textual specifications contain a great deal ofambiguity, and22 SV CURRENTCONTROCLAW - even it the system agrees with the original specification itSV OFFERED CONTROLLAW, may not be acceptable. A running system that provides the23 SV OFFERETCONTROL LAW - 1, feed back required to verify the behaviour as described in the24 SV CURRENT CONTROLLAW - 1, original specification.
30 READ CL.SELECTION..CMDS (iii) Estimation of Hardware Requirements.lowever good your
40 GET SV(CONTROL LAW ID PARAMETER SET SUBSET), estimating technique, the more representative data that you41 GETSV(I,CL PILOT EN-G _SUBSET). - - can provide to it the better. A working system, even though
50 CONTROL LAW ID .- SV OFFERED CONTROL LAW; it may not be entirely representative of the final system5t CONTROL-LAWID - CYCLIC SUCC(CONTROt LAW ID), provides an excellent basis for estimation.52 CONTROL-LAW ID -CYCLIC-PRED(CONTROL -LAW-ID).

(v) Cost and Flexibility (compared to the real system) The(b) The CLE Control Law Seleetor Operations obvious choice for an implementation of the specification of
Figure I I the system is to build the system. However in this case thatwould have been prohibitively expensive. In addition,to express the design of a particular functton. The resulting because of the experimental nature of the hardwarespecification can be viewed by users from above because it is in configuration, a one offsolution did not meet requirements.terms of their real world and, simultaneously, the specification The obvious choice was simulation.contains enough detail for the implementers below to performtheir task. It is this general property that made JSD particularly Given a detailed description of the behaviour of the system usingattractive for the ACT Lynx specification, although the the first two steps ofJSD, the final step is to implement theapplicaion was concerned with more than just software, system by fitting the specification network onto the hardwareHowever when a simulation of the specification was envisaged architecture.The ACT system is to be implemented on a multiplethe established features of the JSD method became very relevant, node, fault tolerant network of processors with the requirementIn particular: to perform fault monitoring, fault prevention and fault recovery

to provide FOFS system with respect to hardware errors. Both(i) Formality and completeness. the hardware and helicopter are simulated. The finished systemruiia on a single IBM PC, or compatible.(a) Modelling. The semantics ofthe modelling notation areformal, which allows a formal description ofthe interaction 3.3.1 Hardware/Infrastructure DesritiontIn order to describebetween the pilot and the system, in terms of the pilot actions the hardware configuration and the associated fault tolerantand the states into which the system is drien, to be infrastructure a new definition language has been created.produced from as a result of the modelling stage Figures 8 Descriptions in this language can be entered using JWB andand 9 provide examples from the project. subsequently stored, in the same fashion as the JSD
descriptions. Figures 12(a). (d) provide examples of the(b) Network. The network, once completed, describes the descriptions used; Figures 12(a) and 12(b) describe what willentire functional behaviour ofthe system to a level of detail be hardware units in the final architecture. A number ofoptions

21-9

UNIT IE UNIT CLE
STD-INFO STD-INFO

LONGNAME LONGNAME
REFERENCE IE REFERENCE CLE
[']CLASSIFICATION-SET ['1CLASSIFICATION-SET
[rSUMMARY [-)SUMMARY
This unit is connected to the This unit houses the control
inceptors of the experimental law algorthl and associated

pilot. processing It is the middle processor
[o]NARRATIVE in a three processor 'lane'.

NO (o]NARRATIVE
MAIN-PART NO

[o]'YPE MAIN-PART
ANALOGUE [oJTYPE

(o]BASE-REDUNDANCY ANALOGUE
SIMPLEX [o)BASE-REDUNDANCY

REPLICATION 3 SIMPLEX
[o]UNIT-LVL-SYNCHRONISATION REPLICATION 3

ASYNCHRONOUS [o]UNIT-LVL-SYNCHRONISATION
FRAME-LAG ASYNCHRONOUS

(']INTRA-UNIT-CONNECTIONS FRAME-LAG
UNIT-SID [*]INTRA-UNIT-CONNECTIONS

UNIT-SID
(a) Unit Description

(b) Element Description

CONNECTION IE CLISE
STD-INFO CLE

LONGNAME
REFERENCE IEC1.IS
['CLASSIFICATION-SET
(']SUMMARY
(oJNARRATIVE CONTROLLAW PARAMETER CONTROL

NO _ALGORITHM SET LAW

MAIN-PART
SOURCE IE
DESTINATION CLISE
[o]DATA-TRANSMISSIONB ST N

BROADCAST DISTURBANCE
(o]SPEC-INTERFACE IADME -MPOSER

NO
[oJCONSOLIDATION

YES
HISTORYLENGTH 3

[oJSIBLING_ERRORMONITORING FREQUENCY

YES .SPLITTER
HISTORYLENGTH 3

(c) Connection Description (d) CLE Implementation Diagram

Figure 12.

arc provided, Including: (c) Whether the siblings ofthe current unit are tested for
agreement (sibling monitoring);

(a) The type of unit, analogue or digital (the CLE is one of
the main digital units in the system); Figure 12(d) is a pictorial repreentation of the mapping between

the specification network, and a unit (in this case the CLE). The

(b) How many units (the system is mainly triplex so most of rectangle at the top corresponds to a task type, with the network
the units have a replication of 3); processes converted via a standard transformation strategy into a

procedure calling hierarchy; processes nearer the top call those
(c) Whether the replicated units run in synchrony or not. connected directly beneath them Data external to the CLE is

shown via the disk symbols, with access shown.

Figure 12(c) describes a connection between the CLISE and the
Inceptor Element. The options which govern connections are 3.3.2 Implementation in AdaThere are many possible mapping
largely concerned with fault tolerance (described below) schemes between JSD and Ada; References 16 and 17 describe
including: two. The mappings for this project is broadly on that described

in Reference 17. This mapping relies very heavily on packages,

(a) Whether consolidation is applied to the data, and ifso the aim being to produce a set of Ada packages where each
over how many frames the consolidation is performed; correspond only to one specification object (e.g. process or data

stream). This enhances the traceability from the JSD
(b) Whether the multiple sources of the data are compared specification to the Ada. The most obvious extensions to this
for consistency (downstream monitoring); mapping scheme for ACT applications are:

21-10

(a) each unit type j., mapped onto a task type. Figure 13 INCEPTOR ELEMENT (IE)
shows the Ada for the UNIT described in Figure 12(b). The
replication of units is achieved by declaring an army of the
task type for the unit with a miIiplicity equal to the IU(l) IU(2) IU(3)
REPLICATION factor specified in the UNIT object, which
in the case of figure 12(a) is 3.

(b) the infrastiucture which provides the fault tolerance is
described using a number of generic packages which are
instantiated based on the information in the connection
object.

3.3.3 Implementation 9f Fult Tolera Figures; 14(a) and CLISU(l) CIU2
14(b) describe the connections between the Inceptor Element
and the CLISE, and the fault tolerant software sited in the
CLISE to handle the data passing between the two units. The CONTROL LAW SUPPORT ELEMENT (CLISE)
fault tolerant strategy was based on that described in Reference
18. The connections between the IE and the CLISE are (a) IE to CLISE interconnection
BROADCAST as indicated in Figure 12(c), that is every IE
sends to every CLISE. Figure 12(c) also indicates that each of
consolidation, downstream monitoring and sibling monitoring tU(t) IU(2) IU(3)
are enabled. The schematic diagram in Figure 14(b) shows the
type of fault processing which takes place.Voting is always
present where there are many sources for the same data. The R values
voted value is obtained by either majority vote, or median select
depending on the type of data. Downstream monitoring implies
comparing the values coming from each of the data sources with
the voted value. If any of the sources differs for more than a Voedvaue
given number of frames (IIISTORY-LENGTH in figure 12(c)), DOWN o ralue/
then an error is logged and the voter ignores all subsequent input STREAM Vahd sorc VOTER
from that source. Consolidation is performed by comparing the MONITOR
historical values from each sibling, gathered over previous
frames. A consolidater will only output a new value ifit Error log
perceives that all of its siblings agree with it. Sibling monitoring Voted vae CI ISU(3)
implies companng the voted values coming from the siblings of
the unit, rather from upstream sources. Otherwise the
processing is identical, with an error being logged when a Consolidation Data
discrepancy occurs. The sibling which is diagnosed as being in COSLAE
error is then ignored by the consolidation process. CONSOLIDATER it To

wth CLE-IODTYPEPACKAGE, Consolidated ia tes F..i. .o.
use CLEID_TYPE PACKAGE,
with SYSTEM,
padcage CLETASKTYPE_PACK is cI ist(t)

functon CURRENT ID return CLE-IDlTYPE,
task type CLEJASK_TYPE is

prawna PRIORITY (SYSTEM PRIORITYFIRST): (b) Schematic Diagram of Fault Processing
entry INITIALISE(ID. in CLEjDD_TYPE).
entry ENSURENITIALISATION,
entry FRAMESTART(FRAME_NUMBER in NATURAL), Figure 14

end CI.ETASKTYPE;
end CLE.TASKTYPEPACK. 3.4 Code Generation.

A significant contribution to the success of the project was the
use of code generation. Several factors encourage its use in

Figure 13 CLE Package Specification projects of this nature including:
i) Productivity. The most obvious gin is productivity. The

3.3.4 The Choiceof ALa p§ the Implementation Langua The statistics concerning the number of lines ofcode and even
selection of Ada as the implementation language was determined number of functions (counted using function point analysis
by the following considerations: FPA)) were very high. The figures obtained from the

second delivered increment were as follows:
(i) DoD Language. Ada is a DoD mandated language, and is

also "highly recommended" by the British MoD, which has (a) Function Points per man day 2.34
provided a large, guarantied market for Ada compilers (b) Source Lines of Code per man day 204
ensuring a great deal of investment from compiler vendors.
This fact coupled with the extensive validation tests required This project could not have been completed within budget
by the DoD has resulted in a number of very high quality and tinaescales without the use of code generation.
compilers,

(i0 Ease of Instrumentation. The requirement for dynamic
(ii) Language features. As has been discussed above, packages analysis will doubtless change as the simulation is used.

and tasks have been very important in implementing this Because the system is generated using code generation, the
system. In addition the comprehensive data typing provided instrumentation can be changed merely by altering the form
through Ada has enabled a more precise specification to be of the Ada templates and regenerating.
constructed with a resulting increase in qutality.

(ihi) Evolutionary Delivery. One of the important factors that
(iii) Tool Availability. The code generation tool Adacode, supports evolutionary delivery is for user feedback at the

described below was already available in prototype form to specification level to be converted efficientlyand accurately
serve as a basis for the project, and as its name suggests into implementation changes. With automatic code
generated Ada. generation directly front the specification this is assured

21-11

(iv) Living Specification. One of the major problems of 3.5 Requirements satisfaction.
maintaining systems, especially computer systems, is that
the behaviour ofthe nnning system diverges very quickly This section concludes by taking the three major features ofthe
from the original specification of system behaviour once solution in turn, and for each determines which of the initial
maintenance begins. Code generation provides the ability to requirements have been addressed.
maintain a "living specification", i.e. one where changes to
the specification are automatically represented in the (i) JSD:
implemented system. (a) Resolves Ambiguity. providing feedback which

This feature is especially important in the case ofthe ACT enhances the quality ofthe original specification.
system because we may wish to evaluate many hardware and
error monitoring combinations and even new functions in the (b) Formalises Interfaces -so that prospective contractors for
course of the planned ACT research. specific devices have a precise specification.

(v) Re-Implementation. Another important benefit of code (ii) Simulation:
generation is that, without changing the JSD specification of
the system, a completely different set of code can be (a) Provides Limited Hands On Experience -allowing pilots
generated, for example to fit the system onto real hardware to evaluate some aspects of the user interface.
or onto transputers. (This can sometimes be achieved
merely by changing the code generation macros, but may (b) Allows Investigations of Control Mechanisms - to
require new implementation objects if the implementation is resolve theoretical issues.
significantly different.) Therefore the investment In a system
specification is not compromised when when evolving the (c) Allows Verification of the Acceptability of an
system towards greater realism. Asynchronous Implementation - which is an important and

contentious issue.

Code generation is provided by a prototype Ada code generation (d) Allows Investigation of the Tolerance for Critical
tool built by LBMS which has been significantly enhanced Functions.
during the life ofthis project. Figure 15 illustrates the workings
of the tool. It takes the description of the system, specified using (e) Allows estimates to be made about required processor
the Jackson Work Bench (JWB) CASE product and generates power and memory usage - via static and dynamic analysis
the complete system from it. Data Extraction is done using built of the system.
in facilities ofthe CASE tool. The code templates are combined
with the specific parameters extracted from JWB by a (1) Allows verification ofthe error handling mechanisms - in
proprietary tool called JSP-MACRO. The code generation particular reconfiguration and system test.
approach provides a great deal of flexibility with respect to
changes in the implementation ofthe system. Many simple (iMi) Code Generation:
changes can be achieved purely by amending the templates.
Even large changes may only require changes to the data (a) Allows alternative designs to be verified - including
extraction, leaving specification ofthe system unchanged. As significantly different hardware architectures. This
well as tools to build the whole system, there are others which specifically includes a potential switch to a synchronous
rebuild the system regenerating a minimum of Ada based on architecture.
changes and still others which create test harnesses for any sub
network of the specification, providing a cost-effective way of (b) Allows alterations to the testing mechanisms, including
ensuring quality, monitoring, to be entered and Implemented quickly.

4. EXERCISING OF THE SPECIFICATION

CLIE CE-F With any complex system the problem is always going to beO F] ensuring that the specification is complete In that It totallydescribes the system behaviour for all eventualities. In addition

JWB reposttoy to complete, it must aiso be appropriate, correct, testable,
- unambiguous, and substantiated - together forming the

CACTUS rles. This is virtually Impossible for any
Data Extraction specification written In a non-formal language such as English.

The JSD design created from the English specification was to be
used to test, in particular, the requirements for completeness
and unambigulty, and to clarify the interpretation of the

Temlate Template document. The structure of the JSD forces the simulation of the
LUbrary Parameters specification to be complete within itselfand therefore any

omissions in the functional specification must be corrected. Any
other inconsistencies become apparent when the simulation of
the system is used In a representative way. An example of
incompleteness came t tight when the first increment of the
simulation was exercised. On disengage, the warning light on
the pilots control panel was to be illuminated. However, the
specification did not include any way to reset (i.e. extinguish the

Temlate Processor warning light once lit). This omission has now been corrected
(JSP-MACRO) and, although the example may appear trivial, an important point

to note is that even though the functional specification had been
read by several people, no-one had detected the absence of such
a requirement.

Ada sources Once the deficiencies in the specification are resolved at the
incremental level, the simulation can be completed and
exercised. It is in the exercising of the simulation that more
potential problems can be highlighted and solved. The first
objective ofexercising ofthe sstem must be to check out the
compliance of the simulation with the original functional

Figure IS Operation of Code Generation Tool specification. A thorough check cf the simulation is iceded to
ensure that all the functionality required in a panio'L. increment
is present. This is not an insignificant task and cat,ul thought

21-12

needs to be given as to how the compliance is to be assumptions are actually valid. It is a very valuable tool which
demonstrated. This task is slightly eased by the incremental allows a rigorous checking ofthe completeness and consistency
approach possible with JSD. The first increment will be fairly ofthe original specification. The exercising ofthe simulation
simple, hence the correlation between the functional specification ensures the adequacy of the design and allows initial processor
and the simulation should be fairly straightforward. As the performance estimates to be made. By running the simulation of
increments progress, it is only the increased functionality and the proposed system, fault tolerances can be set -a task that is
any associated performance requirements that need to be virtually impossible to do purely from a theoretical point of
checked. So not only is the design done incrementally, the view. Alternative architectures can be implemented, and due to
compliance checking is done in a similar manner. Each the modular nature ofthe design method, these alternatives can
increment demonstrates some aspects ofthe proposed replace the or!ginal design and tested for compliance. Thus the
functionality of the system and can be exercised in a tool has a valuable role to play all through the development
representative way. There may not be same interface as in the cycle.
cockpit, but the basic pilot/system interaction can be adequately
simulated using a keyboard. This ability to interact with the 5. THE WAY FORWARD
simulation was particularly useful and resulted in some changes
to what can be referred to as the Pilot Vehicle Interface (PVI). At the time of writing the ACT Lynx project is at a hiatus.
For example, the proposed system state lights on the pilots Estimated procurement costs for the system and its certiflcation
control panel were changed because it was felt that the exact are high and are likely to require a multi-partner team to be
status of the system at some points in time was not obvious, affordable. Both UK and international options are being

explored but no clear way forward curently presents itself.
Prototyping systems in order to optimise the PVI is of course Activities in support of the project are continuing at RAE
not new and several specific prototyping languages have been including the study of performance/ trade-offissues associated
developed to perform that role. In addition, however, because with trials in flight (safety) critical areas. The role ofthe safety
the design includes the description of the functionality of the pilot is crucial to this work and ground.based simulations 1181
system, using the JSD approach offers the opportunity for have been conducted - and are planned - to address critical
examining the ability to estimate of processor and memory functional questions such as optimum location of disconnects,
requirements, Instrumentation ofthe simulation means that backdriving frequencies, mismatch tolerances for failure
whilst exercising the system estimates of the computational managment, and PCP ergonomics. In parallel with these topics,
power of the required processors can be obtained. These results the requirements specification will continue to be developed.
can be fed back into the non-functional parts of the of the The current operation form is essentially complete in its
original specification It has always been a contentious issue in functionality. Future tasks include:
prototyping as to whether the software produced in this phase of
the development cycle should be used in the final version of the (a) Instrumentation ofthe simulation to evaluate end-to-end
system. The argument against using prototype software has and internal performance and behaviour.
always been that during its life there will have been frequent
changes and patches so that, at the end of the prototyping phase, (b) Production of a comprehensive user guide to the
the software is very unstructured. However, because the simulation.
changes to the prototype software under JSD are always done a
the high level design and not at the code level, the code always (c) Comprehensive exercise ofthe simulation to validate the
stays well structured and suttable for use In the final delivered specification across the operating spectrum.
system.

(d) Upgrading the requirements specification in line with the
One aspect of the specification writing which has been results of(a) - (c)
particularly difficult to quantify is the specification of tolerances
In any redundant system, where the compansons are made for (e) Upgrading the requirenienis specification to include a
fault checking purposes, tolerances need to be set against which second level ofJSD analysis, i.c, network and process
the system can check itself. If the tolerances are set too close diagrams together with text.
then the system will signal an error where none exists, if the
tolerance is to wide then the system may not detect an error (f) Implementation ofthe Ada sinulation in real time with
where one does exist - or alternatively may not react sufficiently representative pilots', engineer's and software development
quickly to it. In complex systems, several tolerances need to be stations
set at various strategic points throughout the system. Without
putting those tolerances into a representative system and then Many of these tasks can be embarked upon concurrently and are
testing that system it is difficult to ascertain what level they need not specific to the implementation in the final system. The
to be to provide the right level of protection The simulation results from these activities have generic value and can be used
allows the tolerances to be input and easily changed so that the to guide and support similar projects for example The current
effect of various levels and combinations of tolerances can be Ada simulation has been developed tn seven increments and the
established. The simulation not only allows the examination of approach has demonstrated the udlity of this approach. The
tolerance levels with a correctly functioning system, but also simulation has 'grown' in a controlled manner with each
allows a representative selection of faults to be injected to increnent offering more functionality for review and revision if
establish the behaviour of the system. necessary. The approach has had the added advantage of

enabling the software engineers to develop their understandiig
i a modular systemn such as the one being developed here (see of the application incrementally. A top-down approach to the
Figure I), it is vital to define rigorously the interfaces between design would have required considerably greater investinent in
the various elements to enable changes and upgrades to be easily 'application learning' before any cieative work could have been
made to the sytem. JSD enables each module to be treated started, It is recognised that there are contentious issues in
separately and the design method enforces a rigorous approach system development and that there are no right or wrong
to the specification ofthe interfaces. This has the added approaches. JSD has exposed functional anomalies and forced
advantage that different system architectures can be tried for hidden issues into the open through its emphasis on design,
parts of the system and still retain the integrity ofthe generated however. The behaviour of the ACT Lynx system, as currently
executable code. Thus quadruplex systems can be substituted for configured, is now well understood - the flight critical nature of
triplex, dual duplex substituted for triplex and so on. The the application makes this an attractive position to be in.
implication ofsuch changes can be investigated by a further
exercising of the system This ability is not only valuable during 6, CONCLUDING REMARKS
the initial stages of the development cycle, but also later when
actual solutions are being proposed to meet the specification. The handling qualites opportunities offered by active control
The simulation can be modified to represent, and then exercised technology for helicopters require considerable research effort
to ensure compliance of, any proposed solution; thus reducing using both ground and in-flight simulation before the final
the development nsk potential is realised Much work has already been done but the

peculiar problem areas, such as carefree handling, of high
In summary, the ability to exercise a simulation of the proposed performance levels have yet to be explored in-flight. The safety-
system confirms that the specification writers ideas and critical nature of such flight research demands that a fail-operate

21-13

design concept be employed covering both system hardware and 15. LBMS, Jackson Work Bench User Guide. (In
software. In the UK, the Royal Aerospace Establishment has preparation, 1991)
proposed the procurement ofan experimental ACT system for its
research Lynx. This paper a. cribes the development of the 16. Cameron J.R., MappingJSD Specifications into Ada.
requirement specification for the airborne system including crew Proceedings of the 6th Ada (UK) Conference, 1987.
station, sensors, processing elements, actuation etc. In its
current form the requirement is a textual and diagramatic 17. Lawton J.R. & France N., The Transformations ofJSD

description of the system behaviour covering functionality, Specifications in Ada. Ada User, Jan 1988.
operation, performance, testing and interface requirements The
specification is supported by design using the JSD 18. Kimberly A. & Charlton M., ACT Lynx Safety Pilot
methodology. An outcome ofthe design work is a prototype Simulation - Trial Runaway. RAE FM Working Paper
Ada simulation ofthe system. Examples of the JSD modelling (89) 03 1, June 1989.
and the mapping into Ada have been described. Initial results
from exercising the simulation have been presented. Although 8. ACKNOWLEDGEMENTS
the overall ACT Lynx project is on hold until an affordable
package is defined, the requirement specification continues to be The authors would like to acknowledge the contributions of
evolve, with an upgrading scheduled to follow from a Westland Helicopters Ltd and Theta Analysis and Systems Ltd
comprehensive instrumentation and exercise of the simulation. to the work described in this paper.
A real time implementation is planned which could form the core
element of a ground system to support software development.

7. REFERENCES

I Padfield G. D., (Editor), Helicopter handling qualities
and control. Proceedings of the R.Ae.Soc Conference,
London, 1988.

2. Winter J. S. & Padfield G. D., A discussion piper on
an ACT flight research programme using the RAE
Bedford Lynx. RAE Tech Mem FS(B) 523, 1984.

3. Padfield G. D. & Winter J. S., Proposed progr'mme
of ACT research on the RAE Bedford Lynx. RAE Tech
Mem FS(B) 599, 1985.

4. Tomlinson B. N., Padfield G. D. & Smith P. R,
Computer - Aided control law research from concept to
flight test. AGARD CP 473, 'Computer Aided System
Design and Simulation', 1990.

5. Winter J. S., Padfleld G. D. & Buckingham S. L., The
evolution of active control systems for helicopters;
conceptual simulation to preliminary design. Proceedings
of the AGARD FMP Symposium on ACS, Toronto,
1984.

6. Thomson K., The results of the WIlL feasibility study in
support of the RAE Bedford flight controls research
programme. Systems Technology Note STN 19/84.
Westland Helicopters, 1984.

7 Jackson M., System Development. Prentice Hall, 1983.

8. Cameron J.R , JSP & JSD: The Jackson approach to
system development IEEE Computer Society Press,
1983.

9. De Marco T., Structured analysis and system
specification. New York: Yourdon Press, 1978.

10. Wright B.P., RAE ACT Lynx -Airborne system
requirement specification, Issue 2. WIlL Flight Control
Department Note FCDN 8805, 1988.

I1. Birrel N.D. & Ould M.A., A practical handbook for
software development. Cambridge University Press,
1985.

12. Jewel C., MODAS analysis system- system overview.
Prosig Computer Consultants, 1986.

13. DTI/NCC. STARTS Purchasers' Handbook: "Procuring
software-based systems". NCC Publications, Second
Edition, 1989.

14. RAE. RAEACT LynxAirbome system requirements (C) British Crown Copyright 1991/HOD
spectficiation Issue 3.A, 1989.

23-I

Software Methodologies for Safety Critical Systems

by

W.C.Dolman A.M.Ashdown T.C.Moores
Lucas Aerospace Limited MOD(PE)
York Road St Giles Court
Hall Green 1-13 St Giles High Street
Birmingham London
United Kingdom B28 8LN United Kingdom WC2 H8LD

SUMMARY i) Input handling, including
sampling, validation,

UK MOD(PE) identified Ada' as the single averaging/filtering and scaling.
preferred high level language for the
implementation of defence real-time ii) Control law computation.
operational systems from 1 July 1987.
This meant that projects selecting an iii) Output handling, possibly
implementation language after that time including status and fault code
must select Ada, unless there are sound data.
and documented reasons for using an
alternative. iv) Fault monitoring and detection,

state input checks and Built In
UK (MOD)PE therefore decided to invite Test (BIT).
proposals for the High Order Language
Demonstrator (HOLD) to examine the v) Fault handling, take action to
applicability of Ada to an aero gas implement fault procedures, for
turbine FADEC, and awarded the contract to example change control lane or set
Lucas Aerospace Ltd, Birmingham. This the system to a safe state.
paper describes the work carried out to
date by Lucas Aerospace on this contract. There are two main areas of concern:-

1. INTRODUCTION Firstly the lack of visibility of theobject code and its characteristics.

UK MOD(PE) identified Ada'
as the single

preferred high level language for the This is due to the way in which high order
implementation of defence real-time language (HOL) sourced object code is
operational systems from I July 1987. generated. Software is written in the
This meant that projects selecting an HOL, and then converted by an automated
implementation language after that time process, compiled, into the object code
must select Ada, unless there are sound that will be loaded into and used by the
and documented reasons for using an target system. Whilst Ada lays down
alternative. stringent requirements for the design of

compilers, and the compilers have to be
The major potential benefit of the formally validated, there remains a doubt
application of Ada to military systems is about their integrity, and certainty of
the reduction of Life Cycle Costs (LCCs). the object code produced actually
In addition Ada is a truly international representing that required by the source,
standard and as a result very wide and therefore their suitability for this
support, in tarms of Programme Support application.
Environments (PSEs) and industry expertise
can be expected. Ada also provides Secondly the Size of code.
facilities for structured design which
holds the prospect for a modular approach The use of the full Ada language with many
with verifiable and re-usable software compilers was understood to be inefficient
components. in the production of object code, compared

to the specialised lower-level languages
UK MOD(PE)'e concern was that Ada was not being used for aero-engine control. This
yet ready for incozxoration into full would result in many times more computer
development of high integrity software memory space and processing power being
based systems, such as flight safety used for a given function, and would be a
'critical' Full Authority Digital Engine serious limitation to the use of Ada for
Control Systems (FADECs). aero-engine control. However,

restrictions on the features used, and
A FADEC is a real-time control system. careful optimisation of the source code
The control requires a fast execution might greatly alleviate the problem. It
time, typically in the order of 20mg, and was expected that there would be a speed
all of the functions must be computed and power penalty arising from the use of
within this time frame. The main Ada, but it was considered possible that
functional activities are: the penalties could be reduced to an

'Ada is a registered trademark of the US Government (Ada Joint
Program Office)

23-2

acceptable level. 3. REQUIREMENTS OF A SAFETY CRITICAL
ENGINE CONTROL SYSTEM

UK(MOD)PE therefore decided to invite
proposals for the High Order Language This section of the paper attempts to
Demonstrator (HOLD) to examine the describe the features and life cycle of an
applicability of Ada to an aero gas Aircraft Engine Control System which may
turbine FADEC, and awarded the contract to set it apart from other avionic embedded
Lucas Aerospace Ltd, Birmingham. This software systems. The nain purpose is to
paper describes the work carried out to highlight the main differences so that
date by Lucas Aerospace on this contract, some of the decisions described later in

the paper can be better understood.
2. PURPOSE AND SCOPE

FADEC system software is generally set at
The purpose of the HOLD programme is to the critically level of "Level 1" software
examine the applicability of Ada to a as defined by RTCA/DO-178A. The "Radio
military aero gas turbine FADEC. However, Technical Commission for Aeronautics, DO-
it is clear that much more can be 178A Software Considerations in Airborne
undertaken whilst pursuing the top level Systems and Equipment Certification"
objective. To ensure that the programme defines Level 1 software as:-
is as "real" as possible the contractor
has been required to base the programme on Functions for which the occurrence of
an existing in-service UK military FADEC. any failure condition or design error

would prevent the continued safe flight
The programme therefore covers:- and landing of the aircraft.

i) The identification of those Although RTCA/DO-178A is a civil
features of the Ada language which certification standard recognised by bcth
conflict with the requirements for che United States of America and European
a flight safety "critical" aero- certification authorities, it is the
engine control system. standard which was adopted for the flight

certified engine control system being used
ii) The utilisation and critical in HOLD. Consequently, it was also

assessment of design and adopted for the HOLD programme so that
development methods that will direct comparisons between the flight
provide the best possible certified engine control and HOLD could
application of the language to legitimately be made.
this type of system, to meet both
performance and integrity It is worth pointing out at this stage
requirements. that software, used for engine control,

requires a computer system plus the
iii) Re-programming of an existing associated input and output conditioning

flight certified Engine Electronic for it to operate and communicate with the
Control (EEC) in Ada. outside world. The design of this system

is of paramount importance, as the split
iv) Ths assessment of the efficiency of functions between hardware and

of the executable code, and the software, with the safety featurer embeded
resulting system performance and in both, provides the safety critical
integrity, using the existing system. Software running in isolation
flight certified EEC as a does not constitute the total safety,
benchmark, critical system, and consequently cannot

be considered in isolation.
Within these major activities the HOLD
programme will generate much valuable 3.1 Description of a FADEC
information on topics such as:-

i) Considerations leading to the
selection of the compiler. A FADEC comprises all the sensors,

actuators and computing elements that
ii) Considerations leading to the realise engine management. The (EEC) is a

selection of the support major component of the FADEC. It is
environment, beneficial to later sections of this paper

to segregate the 'essential' FADEC
iii) Development of the Ada solution, functions from those functions arising as

a result of 'how' the system is
iv) Simulator rig testing utilising a implemented.

reprogrammed EEC.
3.1.2 Essential Functions

v) Assessment studies to identify the
benefits and penalties of The primary purpose of the FADEC is to
the use of Ada. control a gas turbine installed on an

aircraft throughout the flight envelope.
vi) Selection of processor/computing Thrust demands from the cockpit and flight

power to implement an Ada management computer are input to the EEC.
solution. The EEC utilises a set of control laws and

schedules primarily based upon engine and

23-3

airframe measurements of pressures, The majority of the development changes
temperatures and speeds to control the are implemented in the software system due
prime interfaces to the engine, including to the fact that it is easier, but not
fuel metering, variable guide vanes, necessarily cheaper, than modifying the
engine igniters, engine bleed valves and hardware system. Therefore the software
thrust reversers. environment employed must be flexible but

must provide a top quality product without
3.1.3 Additional Functions reliance upon formal verification, as this

task is impractical during the engine
The FADEC design is required to meet development process.
stringent integrity and reliability
requirements. The architecture of the
FADEC and of the EEC is designed to 3.3 Real Time Control System
maximise fault accommodation. The
additional functionality required of the The term "real time" means many things to
EEC is: many people, from data entry systems,

supermarket checkout systems, banking
i) To condition, calibrate, validate systems to control systems to name but a

and select input signals (critical few. The consequence of failure to carry
inputs are normally duplicated). out a certain task in a certain time for a

real-time engine control is an error with
il) Validate correct operation of and a significant consequence, not merely an

select output drives, inconvenience. When this situation arines
it must be dealt with in a correct and

iii) Dormant fault detection, safe manner, not ignored. This feature of
engine control systems has a profound

iv) Redundancy management. effect on the hardware and software
systems which must react quickly and

v) Store all fault data for safely to a timing error. The
subsequent retrieval so that the requirements for the engine control system
status of the FADEC can be must contain the specific time
established, requirements and any system used to

provide and analyse these requirements
vi) Provide test features to aid .nit must have the ability to take time into

development, account,

3.2 Development Life Cycle 3.4 Software Verification

One of the major differences between an The verification of software is a very
engine control system and other avionic important, if not the most important,
systems is the software life cycle. It is stage of a software life cycle. The
not unusual for a development life cycle outcome bf the verification stage is to
to spin 10 years or more and during this show that the software meets the
time,t.ie software process must be requirements and only meets the
sufficiently flexible to accommodatc requiremntu. There are many facets of
numerous changes. Some of these changes verification including functional testing,
will be required to be carried out in structural testing, code review, static
short time scales, possibly less than 24 testing etc. To be able to meet the
hours during particular stages of the safety levels required for safety critical
development life cycle such as engine test software the testing methodology employed
cell operation. The EEC life cycle began must be against the target code resident
in 1979 and is still a 1lve project with in its target environment. If testing is
software modifications being planned for carried out against source code,
this year. A typical pro~ect for civil emulators, simulations etc then this will
application can last as loi.; as 5 years only be acceptable if the following
with modifications to the software takin) conditions apply:-
place after entry into passenger service.

i) The source code to target code
The life cycle normally begins with process has itself been verified
software requirements that are incomplete, or is completely analysed.
This is totally understandable as the life
cycle begins while the engine itself is Ii) The tools used in the process are
under development. The engine, in return, themselves verified to the same
requires a basic control system to operate level as the software criticality
it so that the engine can he run and the level.
development process continue.

So we have a situation where both the 3.5 LUCOL'
engine and its associated control system
are under development and continuous The EEC currently in production was
modification. Thus the software teams do programmed using the Lucas Aerospace LUCOL
not have the luxury of frozen, complete Programhmiig system.
and unambiguous requirements until quite
late in the project life cycle. The basis of the system in a high level

application oriented language consisting

LUCOL is a trademark of Lucas Industries Plc

23-4

of a series of LUCOL Modules representing made between the two systems. Likewise we
commonly used analogue control system could have started further down the
blocks together with sequential logic development path using the design of the
operations, input, output and safety original software as a template for the
routines. The control engineer solves his Ada software. This approach was also
problem by specifying an appropriately rejected. Although it would have given a
ordered network of LUCOL Modules. These very good basis for a comparison of the
LUCOL Modules are drawn from a library of physical effects of the two systems, it
rigorously tested microprocessor targeted did not render sufficient flexibility in
assembler language programs. the design process to explore all of the

inherent structured design features of
Each LUCOL Module has a mnemonic identifer Ada. So the middle road of choosing the
and a standard functional diagram assigned software requirements was chosen as the
to it. The control engineer draws his optimum starting point, bearing in mind
system block diagram using the LUCOL that we would have to keep a close eye on
Elements - this block diagram then forms a the design approach to ensure that the
pictorial representation of the software, resultant Ada software was consistent

functionally with the baseline software
The basic control source program is implementation, and thus did not
generated simply by producing a calling invalidate any results of the comparison.
sequence listing the LUCOL Modules, in
mnemonic form, and their associated Once this starting point was chosen, the
parameters. These parameters specify:- next stage was to decide on the

implementation approach to be adopted for
i) The data flow between LUCOL the specification and design of the Ada

Modules (analogous to the signal software. As part of the HOLD programme we
flow on a conventional block wished to investigate the impact that
diagram). Formal Methods would have on engine

control systems and to see where such
ii) The direct parameters such as methodologies would yield benefits in

gains, time constants etc. terms of improved software production and
integrity.

A feature of LUCOL is that a LUCOL Module
may use the output of the previous LUCOL We considered implementing the whole of
Module as an input automatically. This the software requirements using a Formal
method of transference, termed "signal Method but decided that this approach was
flow" is employed by most LUCOL .udules too great a risk to the programme. The
and results in an improvement in the time required to perform a full Pormal
efficiency and clarity of the resultant Methods implementation was an unknown as
control program. However, in a few cases, was the effect that it would have on the
explicit flow is used, the input or output subsequent production of Ada scftware. As
being defined in the calling sequence, the other main aim of the programme was to
Typically this method is used in such investlyate the suitability of Ada in an
cases as hardware interfacing LUCOL engine control environment we did not wish
Modules where several parallel operations to risk an approach that r v fail at the
are likely. This again is to optimise first hurdle.
overall efficiency.

There was also the unknown regarding how
4. HOLD METHODOLOGY well we could implement, using Formal

Methods, the present software requirements
The approach adopted for the development due to their structure and layout. We had
of HOLD was to reprogram one lane of an to be sure that any new representation was
existing FADEC unit. The unit chosen was i consistent with the present software
dual lane EEC i.e. it had two identical requirements and included the same
independent lanes of control. Each lane of functionality.
control was for dry engine control only,
there being a third common lane of control The next step was thus the selection of
for reheat. The advantage of choosing such the approach to be taken to represent the
a unit was that we could replace one lane software requirements.
with the code developed for HOLD whilst
retaining the original software of the
other lane. This meant that during testing 4.1 Requirements Capture
of the unit we could freely change lanes
between the two different versions of the We decided that the most advantageous way
software to examine performance, to proceed was to use some form of

computer aided ooftware engineering (CASE)
The starting point for the software tool to capture the existing software
development was the software requirements requirements. This exercise could also be
that had been used to develop the original used to ensure that all the software
software. We could have started further requirements were captured in such a way
back along the development path at the that the subsequent design and
system requirements level but we felt that implementation of the Ada solution mirrors
this approach would lead to different the existing software. This will thus
design implementations, that would throw provide reliable comparisoni between the
into doubt the result of any comparisons two systems. There are many methodologies

23-5

available that come under the umbrella of output flows and a set of inter-process
requirements capture or analysis and flows. Each process "bubble" can be split
design methods, such as CORE, MASCOT, into component processes thus forming a
SSADM, OOD, Jackson etc, but we decided to new dataflow diagram. At each stage of the
use Yourdon'. This choice was based mainly decomposition the data flowing into and
on two factors. Firstly our knowledge and out of a process must be maintained. To
experience with Yourdon over several years perform this task data composites are used
and secondly the availability of in-house to group together dataflow signals. A
tool support for this methodology. We had dataflow composite is simply a collection
available in-house the CASE tool Teamwork 2 of dataflow items, which may be either
which implements a Yourdon based system elemental dataflows or other dataflow
analysis methodology and also has support composites, that are grouped together
for structured des.gn. under a single name. Thus at one level of

the decomposition a process "bubble" as it
4.1.1 System Analysis is termed will have several dataflow items

flowing into and out of it. When this
The first task in the requirements capture process "bubble" is broken down into
was the analysis of the system. This is several component procens "bubbles" the
achieved in the Yourdon meti.odology by composite dataflows can also be split and
creating the top level context diagram, each element associated with it's
This defines the inputs and outputs of a component process. In this way diagrams at
system and thus places bounds on the the top of the hierarchy are not
extent of the system. This top level complicated by a mass of dataflow but by
diagram was defined by searching through simple composite dataflows. Figure 4.2
the software requirements for inputs and shows the breakdown of the tasks for lane
outputs. This task was aided by the fact A.
that the hardware devices of the EEC were
fixed and thus could be tied to individual For HOLD this process of gradually
software input and output functions. To splitting the overall task into smaller
simplify the diagram the various inputs and smaller items was terminated when
and outputs were then collected together further partitioning yielded no benefits.
into logically functional blocks. e.g. The decision as to where to stop the
collection of all engine input data, process was to a large extent arbitrary.
speeds, temperatures, pressures etc. into The main goal was to reach a point that
one functional block. The aim was to did not over or under partition a
generate functional blocks that could be function. If the level is taken too low
identified with individual system then individual functions could be
components. e.g. engine data, cockpit fragmented and not easily assimilated. If
signals, airframe signals, fuel valve the lovel is too high then functions will
etc.. be too large and complex.

The resulting ro.itext diagram is shown in 4.1.3 Process Definition
figure 4.1.

When the partition had been completed the
4.1.2 System breakdown end processes had to be defined. This was

achieved using the process specification
The next phase of the requirements capture (P-Spec) feature of Teamwork. This allows
process was to breakdown the context a process to be described in terms of text
diagram, through several steps, into and diagrams. The inputs and outputs are
smaller, and logically independent, defined to this P-Spec automatically from
functional tasks. The first stage of this the dataflow diagram. Figure 4.3 shows a
process was straightforward. As the EEC low level dataflow diagram for a part of
performs two different functions, dry the control function of the EEC and figure
engine control and reheat control, the 4.4 shows a typical P-Spec that we shall
first level of partition was to split the come across again later.
context diagram along this functional
boundary. Then as the dry engine control 4.2 Structural Desion
consists of a dual lane system the next
level of partition was to split the dry The task of structural design can he
engine control function into the functions thought of as one of organisation. The
of the two lanes, termed lane A and lane objective is to take a sot of specific
B. As the lanes are functionally identical requirements and organise them into
we then proceeded by continuing the coherent groups that will fit into the
partition for just one of the lanes. chosen hardware environment. If this is

performed adequately then the task of the
The breakdown is performed under the software design for the individual
Yourdon methodology by splitting an elements will, in concept, become trivial.
overall function into smaller and smaller
component parts or processes as they are It is thus at this stage that the real
termed. This hierarchy consists of a set world environment has to be considered. In
of what are termed dataflow diagrams. Each essence the Yourdon analysis of the
dataflow diagram consists of a set of software requirements has no knowledge of
process "bubbles", a set of input and the real time aspects of the engine

'Yourdon is a registered trademark of Yourdon Inc
2Teamwork is a registered trademark of CADRE technologies Inc

23-6

control functions, or of any physical Figure 4.9 shows how this has been
limitations such as size of memory achieved for HOLD. This structure follows
available. the original software structure which is

only to be expected as the hardware is
So the structural design was tackled with fixed. The main split is between power-
two different approaches. A bottom up up/initialise/base level functions which
approach to create the structure charts are one off or non time dependent tasks,
for the individual processes, and a top and functions which are iterated at a
down approach for the executive structure fixed rate. There are two rates used, a
controlling the order and sequence of fast level generated from a sample rate
execution of the processes. clock interrupt and a slower level

generated at a multiple of the fast level.
4.2.1 Process Structure Charts

It is this implementation of the software
The functionality of individual processes requirements into real iteration levels
within the requirements analysis was that causes problems with the structure
transferred to a structure chart format to charts. The example quoted in figure 4.4
represent the software design of each is typical of the problem. The major
component. An example of a structure chart portion ot this function is executed at
is shown in figure 4.5. These structure the slower rate but certain elements of it
charts show the design tree of the have to be iterated at the fast rate. This
software and how it is arranged into means that in designing the structure
various blocks consisting of functional charts there is not a one to one
modules and data only modules. Each relationship between a P-Spec and a
functional moduie is defined by a module structure chart.
specification (H-Spec).

4.3 Formal Methods Integration
The starting point for these M-Specs and
data only modules is the P-Spec from the In considering the application of Formal
requirements analysis. The way in which a Methods to the HOLD programme, we decided
particular P-Spec is implemented will that the best level at which to introduce
depend upon the language to be used in the such techniques would be at the P-Spec
implementation, as the M-Spec will have to level.
directly reflect the requirements for the
code. The data only modules may be defined We already had experience of the use of
directly from the input/output list of the Formal Methods, in terms of the use of
P-Spec. Figure 4.6 shows the structure static analysis applied to small sections
chart implementation of the P-Spec shown of assembler code. The next logical step
in figure 4.4 and figure 4.7 shows the was to move this process up a level to a
H-Spec associated with this structure small section of high level language code,
chart, and as such the P-Spec seemed the most

appropriate.
4.2.2 Executive Structure Charts

There are many different functions within
The executive structure charts fall into an engine control system and we decided to
two types. Firstly there are the simple choose a representative sample of these
ones that reflect the dataflow diagram functions for investigation. Four P-Specs
breakdown. Figure 4.8 shows the structure were chosen. Two of these were engine
chart for the dataflow diagram shown in control functions, one of which fell into
figure 4.3. This structure chart defines the classical control area and involved
the calling sequence of the various lead-lag compensation, gain, lowest and
modules which is not always obvious, or highest wins elements etc., and the other
defined, in the dataflow diagram fell into the logic area and involved
representation. This is an important sequencing functions. The third P-Spec was
feature which cannot be overlooked even chosen from the area of signal validation
though on the surface it seems to be a involving range, rate of change and cross
trivial task. checks on a signal. The fourth function

was selected from the area of the control
The second kind of structure chart is the associated with fault lcging and
oerall executive which is typical of an diagnostics.
engine control requirement. This is where
real world detail has to be added in the Our approach to the Formal Methods
form of power-up/initialisation representation of these functions was
requirements and iteration rates for the firstly to select the language in which to
various processes. In the ideal world we represent them. There are several Formal
would be able to spe..ify the processing Hethoda available and in choosing one we
power requirements to run all the software set out several criterion on which we
functions together at the highest required based o'ar selection. One factor in our
rate but in the real world the processing choice was that the method should be
poer is often the limitinq factor. This widel accepted and supported. We wanted a
means that we have to divide the software met',od that was in popular use by the rest
functionality into elements which can be of the irdustry and one that was likely to
executed at different iteration rates so stay in use for the foreseeabl3 future.
that only tne most important functions are The method must also be supported in terms
executed at the highest rate. of training and course availability and

23-7

ideally would also have tool support Let BOV Cycle be the set of cycle numbers
available for automation of the Formal at whicK the required state of the Blow
Method specifications and proof checking. Off Valve is determined. A function is
For these reasons we chose the Vienna needed which operates on the history of
Development Method (VDM) which also had the Pilot BOV signal to produce a map from
the added benefit of being the easiest to cycle numbers-in BOVCycle to a value of
integrate with our existing systems. true or false: true if an output value of

true can be found in
The next step was to look at the pilot BOV signal HISTORY within the last
implementation of the specifications from "N" seconds, false otherwise.
a general point of view. This activity led
to the formulation of some general BOVCheck:Booleans*Booleans
definitions which would be useful in the
specification of discrete systems. These BOVCheck(PILOTBOV signalHISTORY)
general definitions are based on the main
feature of a discrete system, that is the {c -+ 3d e dom PILOT BOV signal HISTORY
periodic sampling of inputs and updating
of outputs. O c-d S ("N" * CycleFrequency)A

Such discrete systems operate cyclically, PilotBOY signal HISTr!(d) I
usually in responce to a sample rate clock
interrupt, and prossess state variables c e BOV Cycle)
which determine the operation of for
instance timers, fault integrators and Cycle Frequency defines how many times per
integrators. Formal definition of the second a control cycle occurs. BOV Cycle
outputs required where state variables are defines on which cycles the test is
involved is best specified in terms of the carried out. Thus with
nistory of the inputs, allowing a direct
specification of the requirement to be CycleFrequency = 100
made without stating the precise
implementation ie what state variables are BOVCycle - J1,2,3,...
to be involved.

Pilot BOV signal = (lfalse,...,
The history of an input ts described via a 50-*false,...,
map of cycle number to the signal's value. 30000true,
Note that not all cycle numbers need be 30001-ofalse,...}
represented in the domain of the map since
an input may be read, for instance, on the example would yield a result of :-
every second cycle.

{l(-false,..,
Cycle Number - N; 50-4false,...,

30000+true,
Activation Cycle Set = Cycle Number-set 30001-true,...,

30000+"N"-true,
Booleans = Cycle Number "' B; 30000+"N"+l.false,...)

e.g. The VDM specification follows directly as:

hist, = (l-false,2-falee,34true,... ext rd current cycle : Cycle Number
hist 2 - {34false,5true,7-false,... rd Pilot BOV Signal HISTORY: Booleans

wr Lane A BOV Contr~l Out : B
domhist, - (1,2,3,...
domhist 2 - (3,5,7,.... post lane A BOV Control Out-BOVcheck

(Pilot_BoV SignalHISTORY)(current.cycle)
hist1 (2) - false
hist7(5) - true Since out implementation is based on a
hist:(6) is undefined simple cyclic, scheduler what we require
hist216 = triAe i.e. the value of hist:(5) is an implementation that maintains a

suitable loop invariant. However, we do

The application of this methodology may be not want to implement an operation which

better seen when applied to an example. needs the complete histo'y of the
Pilot BOV Signal. We want anTake for instance part of the P-Spec imleentation that on each cycle

referenced earlier in figure 4.4 for the impluates that o ehe ce o
control of the IP blow of valve which tatc le bae oly on the ve of

statesthat cycle based only on the value of
PilotBOV Signal for that cycle and a

"The conditions for opening the IP Blow small amount of additional state.
Off Valve are as follows:

(1.0) Immediately on receipt of a
Pilot BOV Signal, and eld for a
perioU of-"N" seconds after the
PilotNOV Signal is removed."

23-8

The obvious representation to use for the real time engine control application there
additional state is a counter whose value were two main areas that we had to
will be how many cycles ago the investigate. Firstly there were the safety
Pilot BOY Signal was last true. This aspects of the language and secondly there
counter will be called BOV timer count. were the timing implications.
in order to place a bound on the-value of
this counting when we reach the smallest 4.4.1 Safety Critical Language Features
integer which is larger than
N*CycleFrequency. We will call this value In the use of any language there are
BOV End Count. generally features of that language that

___ __are not desirable in a safety critical
BOVEndCount:N=round(N * CycleFrequency+ engine control software systems. As stated
0.5) earlier the failure of the software to

complete a function is a serious error not
After identifying the loop invariant we merely an inconvenience. It is of critical
can arrive at the specification of an importance, therefore, that any function
operation which calculates the result of in the software has an explicit entry and
the blow off valve check. The role of exit condition. For this reason loop
this operation is to re-establish the loop constructs of the type DO-UNTIL, DO-FOR
invariant for each cycle, and DO-WHILE are avoided especially where

the loop parameter is determined at the
ext rd :urrent_cycle : CycleNumber run timi of the system. For a similar

rd PilotBOV Signal_HISTORY:Booleans reason the use of GO-TO type constructs
wr lane A BOV Control Out : B should be avoided as they permit ad-hoc
wr BOVtimercount -: N entry to and exit from functions.

pre 0 s BOV timer count 5 BOV End CountA Another major feature of safety critical
-(9 d -dom PilotBOVSignal_HiSTORY. engine control systems is that in general
current cycle-2-BOV_tLmer_count< d 5 the hardware environment is composed of a
current cycle -1 custom made unit. This means that any
A Pilot BOV Signal HISTORY(d)) A software language used to program these
BOVCheck(Pilot BOV units must have the ability to interface
Signal HISTORYT(current cycle-i) with the unique hardware of the unit. This
- (BOVtimer count<BOV End Count A is available with Ada, and with other
Pilot BOV Signal HISTORY(current cycle languages, by means of an interface with
-1-BOytimer-count)) assembly language components. The hardware

constraints also limit in a system the
post lane A BOV ControlOut - amount of memory available and for this

BOVCheck(Pilot BOV SignalHISTORY) reason it is preferable to know in advance
(currentcycle)A how much storage is required. Thus
0 5 BOV timer countSBOV End Count A features which dynamically allocate memory
-(B d Cdom Pilot 80V Signal HISTORY. at run time must be avoided. Ideally all
current cycle-BOV timer count the memory should be statically defined at
<dScurrent cycle compile or link time, or in the case of a
A pilot BOV-Signal HISTORY(d)) A stack for example the bounds of the memory
BOVChec1(Pilot BOV SignalHISTORY) requirements should be calculable.
(currentcycle)
- (BOV timer count<BOV End CountA 4.4.2 Time Critical Language Features
Pilot BOV Signal HISTORY(currentcycle
-BOV Eimer count)) A typical engine control system runs at an

iteration rate in the region of 20
If we assume that there is a some milliseconds, the time being chosen to
mechanism to maintain the relationship: achieve satisfactory engine control

response. Thus time is critical in an
Pilot BOV Signal = engine control environment as there is no
Pilot BOV SignalHISTORY(current cycle) option available to increase the run time

of the software. For this reason the
tnen the implementation of the operations efficiency of the language is of prime
will only need to refer to Pilot BOV- importance. From experience we knew that
signal, and in fact the variables the run time system was going to be an
Pilot BOV-SignalHISTORY and current cycle important area to investigite, not only in
will 7iot appear anywhere in our executable respect of Ada itself but also in respect
code (such variables are referred to as of the particular compiler selected.
proof variables). The mechanism that
maintains the relationship is, of course, We required a run time system that could
the input routines. provide a simple and quick interrupt

transfer mechanism without the use of
From this VDM description the code may be tasking because of the time response
produced, but before this step can be associated with this feature of Ada.
explained we have to look at the Ada
programming environment. Another feature of Ada that we wished to

avoid was the use of exception handlers.
4.4 Programming Environment The main source of exceptions in an engine

control system is due to integer overflow.
In considering the application of Ada to a As integer operations are widely used this

23-9

would need in theory an exception handler id- 7ar be communicated easily.
for each operation as the result required
would be different in each case. This 5.2 Desin Description Document
approach would place a unacceptable
overhead on the execution time of the As is the case with the software
code. The preferred method is to design requirements, the use of structure charts
out or protect against overflow generated from the dataflow diagram
conditions, so that exception handlers breakdown has provided a clear description
become redundant, of the software design. The main problem,

as with all systems, is that of the
4.4.3 Compiler Selection and Restrictions transition from what is required to how it

is to be implemented. The addition of
As a result of the requirements set out in implementation dependent features at the
the previous two sections we selected the software design stage can obscure the flow
Ada compiler from SD-Scicon since it has a of information from the analysis to the
minimal run time system, which could also design phase. This problem can be
be tailored to our own individual overcome, however, if the analysis is
requirements. The selection was also performed with the implementation in mind.
influenced by the needs to operate on our In the life cycle of any project there is
own computer system in terms of rarely just one iteration around the loop
target/host configuration. from requirements to design to code. In

practice this loop is iterated around many
In considering the possible need to apply times. The software requirements at the
restrictions to the Ada language we looked beginning of a project are seldom complete
for a way of providing a safe sub-set of and develop over the life cycle of the
the language. Ideally we required some way project. In this way the Yourdon breakdown
to automatically test code for illegal may serve initially as a definition of the
construct usage. There is a very limited requirements but as time progresses this
set of products in this field but one definition can be developed so that the
which fitted not only our requirements for requirements are broken down in a manner
a safe sub-set, but also our needs in the which suits the chosen implementation.
integration of Formal Methods, was SPARK This will lead, eventually, to a closer
(SPADE' Ada Run-time Kernal). one to one relationship with the design

phase and thus simplify the software
SPARK is a tool which checks Ada source development process.
code for a variety of restricted features
and issues warnings if any code violates 5.3 Ada Run Time System
these conditions. The tool also performs
tasks associated with the static analysis Our work done on the assessment of run
of the code. This provides flow checking time systems suitable for this
of the code as well as verification application, as part of the selection of
condition generation and proot checking. an Ada compiler has shown that the area of
These last two elements fitted well with "bare micro" targets is being addressed by
the integration of Formal Methods in the compiler vendors. As recently as five
generation of the code. We could thus use years ago it would have been impossible to
the VDM specifications to generate pre and purchase anything other than a large run
post conditions in the Ada code which we time system aimed at a large computer
could then prove using SPARK. system target. Now more attention is being

focused on almost "bare micro" target
5. INITIAL CONCLUSIONS systems. The fact that we have been able

to take an off the shelf system, albsit
At present the HOLD programme is with some tailoring, is testimony to this
approximately 75% complete. The analysis development. Using this supplied system we
and capture of the software requirements have so far developed a bare run time
and the software design phases are system (interrupt servicing and test port
essentially complete. The main activities communication) which is working in the
at the moment are the coding and the target unit.
generation of the VON specifications.

The timing and memory utilisation of this
5.1 Software Reouirements Document system has been shown to be acceptable for

engine control applications.
The analysis of the software requirements
document using the Yourdon methodology has 5.4 Comnarxsons with Traditional
resulted in a very easy to read document. Methodology
The way that the requirements are split
down into finer and finer detail means The traditional development of software
that &t each level of the hierarchy of has relied on English language
dataflow diagrams a comprehensible amount descriptions for the software requirements
of information can be given. It must be and design. Whilst this is still true in
remembered, however, that the methodology part for HOLD, as most of the P-Specs are
only serves as a tool to represent the still in English language, the application
software requirements, it only helps to of the new methodology has served to
specify the requirements in so far as present the requirements and design in a
laying them out in a clear manner so that clearer form. The work in hand at present

'SPADE is a registered trademark of Program Validation Ltd

23-10

on the application of Formal Methods to ii) the likelihood of
the P-Specs will show whether we can misinterpretation of functional
replace the English language descriptions requirements will be reduced,
with a rigorous mathematical description.

iii) the interface responsibilities
6. FUTURE WORK ON HOLD between the various partners

should be more easily identified,
Once the work of completing the coding and
Formal Methods implementation of the iv) The functional interface between
selected P-Specs is complete the main task the elements of the system should
of qualitative and quantitive assessment be more easily identified,
can begin.

v) programs monitoring and the
We have already been able to assess the process to clear the system for
implication of using Yourdon and the flight should be less difficult to
effects of the Ad run time system and manage,
both have shown positive results for the
future of engine control software vi) the whole process will be more
development. The areas that have yet to be effective in the use of all
assessed in the future are threefold, resources deployed.
Firstly there is the assessment of the Ada
code itself. Comparisons will be made HOLD will enable the mi'itary aero-gas
between the Ada and original LUCOL turbine community to mak a positive
Software code. These comparisons will contribution to the general understanding
address not only the efficiency of the two of the topics that are being studied. We
languagee, run time, memory utilisation will more clearly understand where it is
etc. but also the speed and ease of code appropriate to use generalised techniques
development. Secondly there is the and where we must be concerned because of
analysis of the effects that the use of the application specific constraints.
Formal Methods will have on software Where we do identify clearly that a FADEC
development. Our work to date has shown does require particular considerations
that application of Formal Methods should then we will be able to present cogent
lead to unambiguous specifications, reasons for those considerations and
However, the practical application of such influence future standards and working
methodolog;.s is not easily attainable by practices.
engineers, because of the highly
mathematical nature of the system plus the HOLD will improve our ability to identify
fact that experience of their use in real programme technical and financial risk and
word situations of this type is extremaly hence improve UK MOD(PE)'s ability to
limited. Thirdly there is the aspect of procure functionally capable systems on-
validation of the system to be considered, time and on-cost.
In the past critical engine control
software has been verified down at the 7. ACKNOWLEDGEMENTS
level of the target code resident in the
target environment. Using Formal Methods, The authors would like to thank MOD(PE)
for example, will allow the mathematical and Lucas Aerospace Limited for their
proof that a piece of Ada code meets its permission to present and publish this
formal specification. This proof relies on paper.
the Ada compiler producing correct code.
Whether this is an acceptable system for The authors would also like to place on
validating software has yet to be record their appreciation for the support
assessed. of their colleagues in preparing this

paper and for their contribution to the
6.1 Conclusiops of Proiect HOLD project. This also applies to other

companies involved in the HOLD project, in
The work completed so far on the HOLD particular Program Validation Limited.
Project has emphasised that the
application of Ada, formal notations and The opinions expressed in this paper are
CASE tools to the flight safety critical entirely those of the authors and do not
military gas turbine FADEC brings necessarily represent those of their
particular problems, respective organisations.

This work has been carried out with the
However, we are also beginning to see the support of Procurement Executive Ministry
potential benefits within the total of Defence.
process that the application of a
structured, system level approach can
bring. It appears that if such an
approach is applied throughout the
process, from requirements capture through
to implementation, that:-

i) the likelihood of specification

errors will be reduced,

23-11

cc n

I-t z
I-~D a._

40

0 01 0

Nt 0 a 0.I

o fr - C

0 M 0

00) 0

:)Cc

04

0 C0
_IL

z C)

0 0 u

23-12

I. M:0.

S <I < 0 <

00

A C-

J
<.E

0 pro ' ~ 0

Ir w

U 0z- ;Q

-w<o 0

U W
C

a)-., 0

23-13

0

0 ~ 0

Goo

o==

.4-0

-J
'C 1~w 0r 0 0 - cc C')

.9 h0e

2 -1u. U

CCC

wOO(w

WI 0

0 CC=

* i0

o rtj
I

r! z I *I

0 0O

23-14

NAME:
1.J.4.i 1;1

TITLE:

PERFORM IP BOV CONTROL TASK

INPUT/OUTPU1'

Pto selected : data-in

PilotBOV signal : data-in

lane_ABOV controlout : data-out

BODY:

Purpose.

/I

To control the operation of the IP Blow Off Valve.

Function.

The conditions for opening the IP Blow Off Valve are as follows:

1.0 Immediately on the receipt of a PilotBOV signal, and held for a

period of "N" seconds after the signal is removed.

OR

2.0 The following Pressure conditions are achieved
Pto < x Kpa Pto decreasing

Pto< y Kpa Pto increasing

Figure 4.4

23-15

zc

04
00

06.3
0.

40
-x

ON

23-16

1 STRUCTURE CHART EXPLANATION

Introduction

Each structure chart is composed of an arrangement of various graphic symbols these symbols are
described below.

1.1 Module MSPEC

Modules A B and C are Plain modules,they represent some detailed processing activity the name of
the module relates to the nature of the activity occurring within the module.
Associated with each module is an MSPEC which details the procedural aspects and actions performed
by the module.

1.1.1 Data Only Module

The Data Only Module represents Global data, that is data used Globally throughout the software,
and each data only module can represent a single instance of an item of data, or an aggregate of such
items stored in a particular location.

1.1.1.1 Offsheet Connector

The Offsheet Connector is used to represent the existence of a further structure chart, and allows
decomposition of more complex charts into simpler subordinate structure charts.

1.1.1.2 Data Couple

The data couple represents data flow within the structure chart,they must be attached to an invocation.
The couple can represent Global or Local data, the direction of the anow represents the direction of
the flow.

1.1.1.3 Control Couple

The control couple represents control flow within the structure chart,they must be attached to an
invocation. The couple can represent Global or Local control, the direction of the arrow represents
the direction of the flow.

1.1.1.4 Transaction Centre

Represents some decision making process, such as conditional invocation of a subordinate module.

1.1.1.5 Hat

Represents lbxtual inclusion, that is the body of the MSPEC and the action performed by it is meant
to be included within the calling module.

Textual inclusion only occurs between plain modules, and does not occur between offshee, connectors
and or data only modules.

1.1.1.6 Invocation

The invocation line is symbolic of a call from a module to other symbolic items.
It should be noted that the philosophy adopted throughout this document is that only modules can
invoke other symbolic items.

The offsheet connector is used to connect invocations from a module to another structure chart, in
this case the interface between the corresponding connectors on each sheet must match exactly.

Figure 4.B

23-17

The precedence of invocation is Left to Right and Down, with reference to Fig 1.

Offsheet connector I with a control parameter invokes

Module A
The module performs its required operation

Module A
Invokes

Module B
The invocation is terminated with a hat,
The module performs its required operation

Module A
Invokes

Module C which invokes (reads or writes) from the data only
modules X and Y, performs some action and then returns
the data couple Z

Module A conditionally invokes

Offsheet connector D which performs some action.

Figure 4.5C

23-18

04,
CO

00

00

00

23-19

NAME:
IP BOV Contro;12

TITLE:
IP Blow off valve control procedures

PARAMETERS:

LOCALS:
Pre-condition_X
Pre condition Y
Pto last
Pto.limit_1
Pto.limit_2

GLOBALS:
Pto selected : data in
Pilot BOV signal : data in
laneABOVcontrol.out : data-out

BODY:
Purpose/Description

IP BOVControl is a subordinate MSPEC on the Structure Chart of the same name.
IL is invoked via the offsheet connector of the same on the Structure Chart
OpenLoopControl.

l)Read in the Globals listed above in the GLOBALS list as data-in.
2)Evaluate the conditions for opening the IP BOV.
2.1 Pressure Limits.

Pto.limit-l - x Kpa
Ptolimit 2 - y Kpa

2.2 Evaluate Pre-condition X
If ((Pto selected < Pto.limit 1) and (Pto selected < Pto last) then

set Pre conditionX - TRUE
else

set Pre conditionX - FALSE
2.3 Evaluate Pre condition Y

If ((Pto selected < Pto-limit_2) and (Pto selected < Pto-last)then
set Pre condition Y - TRUE

else
set Pre condition Y - FALSE

2.4 Determine new condition for lane A BOV control out
If (Pre condition_- X or Pre conditionY or Pilot_BOV signal) = TRUE then

set lane ABOV control out - TRUE
else

set lane ABOV control out - FALSE
3) Ptolast - Pto.selected
4) Write out the Global lane ABOVcontrol out

Figure 4.7

23-20

00-

0- 0

1

00

Oi0
0

Uz

23-21

0U

CL,

00

a.

24-1

COMMON ADA MISSILE PACKAGES
(CAMP)

Barry E. Mullins
Armament Directorate

Wright Laboratory
WJMNAG

Eglin AFB, Florida 32542-5434

Abstract language are extremely amenable to reuse, the Air
Force Armament Laboratory (now the Armament

The words "software crisis" should not be new Directorate, Wright Laboratory) initiated the
to anyone managing a program that involves CAMP program to investigate software reuse for
software. A shortage of skilled, software personnel conventional missiles using Ada (what else?).
is adversely affecting the development and
subsequent maintenance of today's and future The CAMP Solution
weapon systems. The Department of Defense
(DOD), as well as industry, acknowledge this crisis Although software reuse has been practiced
and are taking bold measures to alleviate it. The with varying levels of success prior to the STARS
Common Ada Missile Packages (CAMP) program is report and the Ada mandate, it was almost always
one such measure the DOD has undertaken to ease ad hoc reuse and the application domains were
the crisis via a high-payoff remedy -- reuse of real- typically not as constrained by size and speed as
time embedded (RTE) software. CAMP is a found in the conventional missile arena. It should
pathfinding effort designed to investigate the also be noted that prior to Ada, programming
feasibility of RTE software reuse by actually languages were not equipped with the necessary
developing reusable Ada parts, compiler facilities to directly support software reusability nor
benchmarks and a parts engineering system (PES). were they as highly standardized (i.e., supporting
This paper describes the genesis of CAMP, software transportability between platforms).
structure of the CAMP program, evaluation results
and CAMP products. McDonnell Douglas Missile The CAMP program was designed to address
Systems Company developed the CAMP products these limitations. CAMP focused on three primary
under the sponsorship of the Armament areas as they relate to operational missile flight
Directorate, Wright Laboratory at Eglin Air Force software: (1) investigate the feasibility and
Base, Florida. applicability of software reuse; (2) design and

develop reusable Ada parts, Ada compiler
The Software Crisis benchmarks and a supporting environment for the

Ada parts; and (3) refine, productize and transition
The amount of software required to operate the technology. To satisfy these goals, CAMP was

weapon systems over the past 30 years has grown performed in three separate contracts all competed
tremendously. Where earlier F-4 fighter jets had no and won by McDonnell Douglas Missile Systems
software systems, today's B-1 bomber is saturated Company. The contracts satisfied a particular
with well over 1 million lines of code. This is just phase of the program and were therefore called
one example of the insatiable demand for complex phases.
software systems which are typically the major cost
driver of weapon systems. This demand has not CAMP.I: Feasibility Study
been matched by the education and acquisition of
skilled software developers and maintainers. This The first phase of the CAMP program, Phase
imbalance ultimately resulted in the use of out- 1 (CAMP-i), began in September 1984. CAMP-1
dated software methods and tools being applied to was a one year feasibility study designed to
highly complex, sophisticated applications thus determine the scope of commonality among missile
leading to sometimes inferior, unreliable weapon flight software. Assuming sufficient commonality
systems being delivered late and almost always existed, the top-level design for common parts
over budget, would be developed. Also, the feasibility and value

of automating the process of building these software
In 1983, the Air Force Software Technology systems using parts was to be investigated.

for Adaptable Reliable Systems (STARS) Task
Force published a report on the software crisis and Before further discussion, it is important to
possible solutions. The report recommended fully understand what constitutes a CAMP part.
software reuse to ease current software problems. The CAMP program used the following definition: A
Software reuse by itself is not the panacea to the part is an Ada software package, subprogram or
softwar- risis but seems to offer tremendous task that must be usable in a stand-alone fashion
returns. Potential benefits include increased (i.e., does not depend on external code for proper
software development productivity of more reliable execution). However, parts may "with" other parts.
software systems and more efficient use of software The goal of CAMP-1 was to develop elementary,
engineering expertise. Furthermore, in 1983, the flexible parts which provide a useful function to
DOD mandated the use of the Ada programming more than one application while maintaining run-
language (ANSI/MIL-STD-1815A) in all new time efficiency.
embedded systems. Since the constructs of the Ada

24-2

Domain Analysis cataloging scheme must include sufficient
information to determine applicability of parts to

The feasibility study included a domain the user's domain/problem and efficiently retrieve
analysis that attempted to identify common parts without burdening the user with too much
operations, objects and structures within a bounded data. An overload of information can be
domain. Although a domain analysis is expensive counterproductive and ultimately lead to the failure
and laborious, it is imperative to verify domain of the system due to lack of use. Figure 1 displays
commonality exists before any attempt is made at the catalog attributes utilized in the CAMP PES
designing reusable parts. To attempt parts catalog.
development without a domain analysis would be a
waste of effort since the resulting parts would not A usable catalog system must take yet
offer true commonality within the application area. another step to ensure success of the software reuse

effort -- complete documentation of the software
Ten existing missile systems were included in parts. Every part must be thoroughly documented

the domain analysi which included at least two with standard data to provide future users with
missiles from the following classes: air-to-air, air-to- necessary decision-making information. A standard
surface, surface-to-air and surface-to-surface. By form should be developed for the catalog entry effort
studying documentation and source code for the to ensure all necessary information is supplied
missiles, sufficient commonality was verified to when a part is entered into the catalog. In the
warrant the design of parts. future, on-line data entry may elimirnawe the need

for such a form.
During the domain analysis it was discovered

that missile domain parts can be properly separated
into two types -- domain dependent and domain ABSTRACT ONHAL ATEOFCATALOGENTRY
independent. Domain dependent parts are BODYFIES PA57NMECATALOG ENTRY REVISION DATE PART NUMBSER

applicable only to the missile flight software COMPILATIN INST5UCIONS PERFORMANCENOTES

domain. Domain independent parts can be used in CONSOLDATEDTESTCO FILE REOUIREMENTSOOCUW NTAT"0N
other domains with few, if any, changes. An DEPeNDENCIS RESTRCTIONS
example of domain independent parts include the DSKOOGENATIO REVIION HISTORYDESIGN ISSUES REVISO NUBE
mathematical parts which are essential to missile DEVELOPER SAMPLE USAGE
software but also may be used in other areas. CEVELOPER CoMETS SPECFICATD4F.ENMJE

DEVELOPMENT DATE STATEMENT COUNT

CAMP-1 successfully demonstrated DEVELOPED FOR TAXONOIC CATEGORY

commonality existed within the missile domain. A KEYWORDS USEoBY
total of 219 reusable parts were identified. The INEsocoFCE USERCOMMENs
requirements and top-level design of each part were OCR05 TNAL SENSITIITYOF WIT14)BY
documented, and a software parts taxonomy was ENTRYPART WITHS

created to facilitate parts classification and
organization. Part complexity ranged from simple
mathematical functions to complex processes and Figure 1 CAMP PES Catalog Attributes
structures.

Parts Engineering System and Cataloging Automated Software Generation Using Parts
Scheme

To facilitate the development of missile
The development of efficient reusable parts is software systems, a study into the feasibility and

a major milestone in the fight against the software value of developing an automated means of
crisis. However, parts alone are not the answer; generating software using existing parts was
tools must be developed to organize, index, describe performed.
and reference the parts to fully exploit software
reuse. Therefore, substantial effort was invested in The concept of automatic software generation
the CAMP tools. In CAMP-1 a top-level design for a is not new. In fact, from the dawn of machine
Parts Engineering System (PES) was developed, language, researchers were devising mechanisms t

automate software generation by abstractio
The ultimate goal of the PES was to facilitate coding. At the time, they called this assembl,

storage and retrieval of relevant software parts for language. As software technology advanced, so did
use on other projects while increasing the researchers' expectations. They continued to expect
productivity of the parts user. The development of automatic software generation capabilities -- hence
the PES included the investigation of cataloging the birth of higher order languages. Today, the
schemes and documentation requirements. The quest is turning towards VHOL (Very High Order
actual capabilities of the PES are discussed in the Languages). VHOL allows the user to enter
CAMP-2 section. specifications and requirements at a high level of

abstraction.
The candidate cataloging scheme for CAMP

was studied in great detail. Realizing the role The reward for automating software
effective catalogs play in successful software reuse, generation is low-cost, quality software via reduced
the study included research into existing catalog development time and cost. This is attained by
schei.,es and philosophies. Without an adequate requiring less detailed design knowledge of software
cataloging scheme, the identification of particular developers. Thus, a domain engineer would be able
software parts becomes cumbersome at best and in to directly develop a software system by inputting
some instances virtually impossible. A successful his domain requirements into the generation

24-3

system thereby bypassing the software engineer During parts development, effort data were
altogether resulting in overall cost savings. These carefully tracked to determine productivity. To
savings are enhanced by the use of existing parts. ensure an accurate and fair comparison with other
In addition to the cost savings, the parts offer efforts, two metrics were used to calculate the size
greater reliability since they have been previously of the parts - lines of code and Ada statements. A
tested, line of code was defined as any line in the source

code file which contained all or part of an Ada
After studying various automatic software statement. An Ada statement count is simply the

generation systems available at the time, number ofAda statements in a source file (i.e., the
specification techniques, methods of operation, text number of semicolons). Figure 2 illustrates the
generation and expert system assistance, the CAMP total size of the CAMP parts. The figure also
"constructors" were designed. Constructors are reveals the enormous amount of documentation -- 9
software templates that when combined with user comment lines per Ada statement.
input to customize the template results in the
generation of complex softwere components. LICSOF ADA LWS OF

Constructors are supported by the PES expert ADACM STATEwNTS -cowIxs

system and a limited natural language interface. PA W -E
TESTCCOS{2.T4 i 1,9

CAMP-2: Development Effort T0AL 43875 28.19

The beginning of CAMP's second phase
(CAMP-2) coincided with the conclusion of CAMP-1 Figure 2. CAMP Parts Sizing Data
in September 1985 and finished 32 months later.
The primary goal of CAMP-2 was to complete the
development of the CAMP software and Figures 3 and 4 provide the development
demonstrate CAMP technologies in a credible, productivity and statistics respectively. As the
demanding application. This included the figure illustrates, the productivity experienced
development and testing of the reusable Ada parts, during the CAMP parts development was 61%
the parts engineering system and Ada compiler greater than the predicted value from the
benchmarks and the use of this software to build an COCOMO model. Factors leading to this increase
"11th missile" (so named because it was not in the included the use of the Ada language, well-trained
original domain study from which the parts were people, good tools and code reuse. Specifically,
generated). Ada's attributes (e.g., strong data typing) contribute

to increased productivity by allowing early
Development and Testing of CAMP Parts detection of errors. The CAMP team had some Ada

experience prior to the program and received
The requirements and designs developed training in software engineering practices.

during CAMP-1 formed the foundation of the actual Utilizing software engineering tools also increased
part implementations during CAMP-2. All 219 productivity. Finally, productivity was increased by
parts identified during CAMP-1 were coded, tested, reusing CAMP parts during the development of
and documented during this phase. While other parts.
developing these parts, an additional 235 parts
were identified, designed, coded and tested during PA5ICOMEONLY PART&TE.STCOOE
CAMP-2 boosting the total number of parts to 454.

tOOilAI IccAg

One of the design goals for the parts was to E2TE STN
keep them simple thus facilitating EFF0M
understandability and reuse. Part simplicity was '&toc 0 5KOC

enhanced by keeping their size small. The parts SMTw WSWU
ranged from 10 to 100 Ada statements. Another
way to enhance part simplicity was to ensure the
granularity of the parts were at the lowest possible 2 oc7s 750
level. In other words, the missile tasks were broken sTMsl 41 S W 452
down into the lowon'. possible functions while FOC 0" WitOC 0.223
maintain.sg underst'z. dability of the part. Also, WSWsSTU J
complex parts were developed using a combination
of simple parts.

Another factor leading to the successful reuse Figure 3. CAMP Parts Productivity Data
of software is adequate documentation. The CAMP
parts were documented extensively. Unfamiliarity
of the parts is the primary purpose for this The Parts Engineering System (PES)
documentation. A new user of the CAMP parts will
be unfamiliar with them and require tremendous With feasibility established and the
information on their operation. Also, CAMP parts requirements and design completed during CAMP-
use Ada's "generic units" which may be foreign to 1, a prototype PES was coded, tested and
most users. The documentation provides the documented during CAMP-2. The PES consisted of
necessary information, including samples, to three integrated subsystems designed to provide
properly instantiate and use the parts. expert assistance to the user: a parts catalog, a

parts exploration system and component
constructors.

24-4

is selected for further user examination and
| 2o subsequent part exploration. Figure 6 illustrates

1 6.01C too S tWTS the architectural approach.

,55 LOCIM AS'Ad d MbAI P.90 A Y-A. l M1.6-I (AMRMAM)

EXPECTED LAUNCHS AIR

AODJCTMFY ISO 0c4S. TARET A lt P~, S*o
(COMO)

RANGE 25. NM
WARHEAD CONVENTIONAL NAVIGATION
AIDIG No KALMAN FILTER

ADA ROUTING AIR AUTOPLO T
SEEKER ACTIVE RADAR COMICNcATIONS

DELTA 61% GOO0 PEOPLE AERODYNAMICS STANDARD AIR DATA4 NAVIGATION STANDARD COOROIAATE VIM ALGEBRA
NGOOD TOOLS ITERFACES DATA LIK SIGNAL PROCESSNG

REUSE
0011 So, J*" S W#on S,'SII. 1SOM4907, PP HW8265

Figure 4, CAMP Parts Development Statistics Figure 5. Application Exploration Example

An extensive cataloging capability should be
the backbone of any parts engineering system. The
CAMP PES is no exception; the catalog subsystem
is the foundation of the PES. The goal of the parts P

catalog is to help the PES user to clearly P
understand the Ada parts and facilitate their HIERARCUGAL Sje
efficient retrieval and reuse. The catalog allows the SOFTWARE MODEL
user to add, modify or delete reusable software
entries. It also provides the following functions: Figure 6. Missile Model Walkthrough
searching for catalog entries based on various (Architectural Approach)
attribute values, examining both catalog entries
and Ada part source code, and generating printed
versions of the catalog entries. Component Constructor Subsystem

EWraion Sbyem The objective of the component constructor is
to generate application-specific, tailored Ada code

The exploration function provides the user, based on user requirements. This allows the user to
typically a missile system engineer or a missile perform "what if' exercises, as well as software
software requirements engineer, with the ability to development, while decreasing development time
identify potentially applicable parts for a software and effort.
system. The primary difference between the
cataloging function and the exploration function is The component constructors are based on
the latter deals with a higher level of abstraction. special parts called meta-parts. These parts are the
The exploration function allows the user to specify blueprint for the generated Ada code. They
requirements while not concerning himself with facilitate requirements input and contain all
part specifics. This function acf- aily maps the necessary construction information for the
missile system requirements to the parts. development of the Ada code.
Therefore, it is designed for use early in the
development cycle (i.e., requirements/debign phase) Twelve component constructors were
to drive the design towards maximum software developed in CAMP-2 -- Kalman Filter, Finite State
reuse. Used early in the development, the function Machine, Pitch Autopilot, Lateral/Directional
assists software cost estimate, sizing and timing Autopilot, Navigation Subsystem, Navigation
stud;es, and make-or-buy trade-off studies. Component, Data Bus Interface, Data Type, Task

Shell, Time-Driven Sequencer, Event-Driven
The PES uses two techniques for parts Seq'sencer and Process Controller.

exploration. The first is the application approach
and is designed to map high.level system PE.&tY&Qf1
requirements to existing parts. Through a series of
questions, the application approach generates a list In CAMP-2 the prototype PES was developed
of potentially applicable parts. Figure 5 depicts the on a Symbolics 3620 computer (the PES was later
various types of information requested, as well as moved to a VAX in CAMP-3). This machine is a
the selected parts. single-user LISP workstation designed to support

the LISP programming language. An expert system
The second exploration tehnique is the shell was used as the foundation for the PES. The

architectural approach which ahows the user to system was developed using ART (Automated
walk through a hierarchical mode of missile flight Reasoning Tool from Inference, Corp.) and Common
software. The models were developed using LISP. This environment was selected for several
knowledge of the various missile systems and depict reasons, paramount of which was the availability of
the subsystems, functions, and applicable CAMP a production quality expert system shell. At the
parts. Based on user inputs, the appropriate model time, ART was the most mature system available

24-5

on the me:-:ket. This consequently mandated the The CAMP compilation benchmarks
selection of the processor; ART was only available determine the ability of an Ada compiler to compile
on the LISP processor. and link complex Ada syntax and semantics

typically found in the CAMP parts and armonic
11th Missile Demonstration software. The applicability of these benchmarks is

not limited to the parts; the benchmarks could be
One of the goals in CAMP-2 was to use the used for other domains as well.

CAMP software in its intended domain in the most
realistic situation possible. The true test of the The execution benchmarks include
CAMP parts and the PES came when they were mathematical functions and typical use missile
used to build the Ilth missile. applications such as guidance, navigation, and

Kalman filtering as benchmarks. Run-time data
A cruise missile system originally such as execution time and output are produced by

implemented in JOVIAL J73 was selected as the these benchmarks. Code size is also determined.
11th Missile. This application utilized MIL-STD-
1750A (hereafter referred to as 1750A) processors CAMP-3: Technology Transition
and a MIL-STD-1553B data bus. Navigation,
guidance and support functions of the 11th Missile The third and final CAMP phase, CAMP-3,
were re-implemented using the parts and the PES began in July 1988 and will end in September 1991.
to gauge the productivity improvement associated The CAMP-3 goals are to refine and transition the
with both. technology demonstrated in CAMP-2. More

specifically, CAMP-3 involves parts maintenance
To measure exclusive productivity increases and enhancement, PES re-engineering, meta-

associated with the CAMP parts and the PES, two constructor development, and various technology
versions of the I1th Missile were written. Version transition efforts.
one was written using parts without the assistance
of the PES and was referred to as the parts method. Parts Maintenance
Version two, called the PES method, used the PES
and the parts to generate and unit test the Kalman The primary goal of parts maintenance was
filter code for the system. The re-implementation of to correct possible errors discovered during the 11th
the 11th Missile revealed impressive productivity Missile application. Also, since the CAMP parts
results. have been distributed to nearly 300 agencies at

their request, these agencies were viewed as a
11th Ml Be-implementationB ,Reat valuable evaluation source. A questionnaire was

distributed to all recipients of the CAMP parts
The results of the parts method evaluation requesting ideas for corrections, enhancements and

were very promising. A productivity increase of modifications. Meetings were also conducted to
15% was observed implementing the l1th Missile solicit these inputs from McDonnell Douglas sister
using only the parts (without the assistance of the organizations. Only one error in the CAMP parts
PES). In other words, a development team would was reported.
save 15% of their efforts if they were to implement
the lth Missile using the CAMP parts instead of Fifty-one new parts were identified, designed,
developing from scratch. The parts accounted for coded and added to the parts set as a result of this
18.1% of the total 11th Missile. maintenance effort. In addition, existing parts were

enhanced to make the CAMP parts more robust.
The PES method resulted in an convincing Consequently, the total number of parts increased

28% improvement in productivity using the PES to over 500.
Kalman filter constructor. The constructor
generated code or instantiated parts to develop PES Catalog Re-engineering
70.1% of the Kalman filter component. The PES re-engineering goal was to develop a

Another benefit of the 11th Missile robust, all-Ada, production-quality version of the
application is the demonstration of Ada used in a PES. (While the meta-constructor is included in the
RTE application. At the time of the evaluation, Ada PES, it is still regarded as not production quality.)
was criticized for not being suitable for this domain. As previously mentioned, the prototype PES was
The 11th Missile was at. eloped using implemented on a Symbolics LISP machine using
approximately 21,000 linog o .,c' code and only 21 the ART expert system shell. While this is an
lines of assembly code. ! -,v k. d admirably and excellent environment for rapid development and
is well suited for RTE ap. prototyping of a PES, it is not suitable for wide-

scale distribution of a production-quality PES. The
APMONICS _chmarks Symbolics environment is very specialized relying

on system dependencies for successful PES
A benchmark suite was also developed during operation which is a detriment to software reuse.

CAMP-2 to measure the efficiency of compilers for To maximize software reuse, the delivery
suitability for programming armonics (armament environment must be accessible to several
electronics) software. The benchmarks also organizations. This eliminated a Symbolics delivery
facilitated the evaluation of the CAMP parts. The system; few potential CAMP users had access to
suite contains benchmarks designed to gauge this machine. Therefore, an Ada/microvax platform
compilation and run-time performance. was selected. All PES software is being re-

engineered to Ada thus exploiting Ada's portability
for maximum distribution. (Of course the parts

24-6

were already written in Ada.) System dependencies emerged: Software reuse and the development of
were isolated and site tailorable features were software parts must be precisely planned. An ad
addpd. All third-party software was removed to hoc approach to software reuse is destined to
eliminate the need for software licenses, failure.

Meta-constructor The future of software reuse is bright. CAMP
took a tremendous step towards institutionalizing

The component constructors developed software reuse as a standard way of doing business.
during CAMP-2 proved the feasibility of such Ada- Indeed, industry must rely more and more on
producing capabilities. However, these constructors software reuse to remain competitive in this era of
are very costly to develop and maintain. Therefore, austere budgets.
a meta-constructor is being developed during
CAMP-3 to alleviate these problems. A meta- Acknowledgements
constructor is a constructor designed to produce
other component constructors. This approach will The author thanks Constance Palmer and the
lower the overall cost of developing constructors McDonnell Douglas CAMP team as well as Chris
and, ultimately, tailored Ada code. Anderson for their thoughtful review and comment

of this paper. Their ideas and time are truly
Technology Transition appreciated.

Perhaps the most important responsibility of Other Readings/Materials
a program manager is technology transition. A
successful program will benefit no one if it is not The following CAMP documents are available
made available to the intended user. CAMP's through the Defense Technical Information Center:
ultimate users are software engineers and weapon
systems developers. Therefore, the CAMP-3 Developing and Using Ada Parts in Real-
program embarked on an aggressive technology Time Embedded Applications: A manual that gives
transition campaign which included the guidance in how to develop and use reusable
development and distribution of a CAMP brochure, software. Order AFATL-TR-90-67.
a reuse manual and a videotape, as well as a
demonstration of CAMP in action at a national CAMP-1 Final Technical Report: Three
conference -- Tri-Ada '90. The most significant volumes covering domain analysis, parts
technology transition effort was the actual specification, parts composition system study.
distribution of the CAMP parts and catalog as Order AFATL-TR-85-93, Volumes 1-3.
previously discussed.

CAMP-2 Final Technical Report: Three
A brochure was also developed to "spread the volumes covering parts and parts composition

word" about CAMP. It explains the entire CAMP system development, 11th Missile Application
effort and contains a complete listing of all products development, and Armonics Benchmarks
including the actual parts and documentation. A development. Order AFATL-TR-88-62, Volumes 1-3.
partial list is provided at the end of this paper. The
brochure's greatest asset is information on how to The CAMP sotware products listed below are
obtain these products. This brochure is available available through the Data & Analysis Center for
from either the McDonnell Douglas CAMP program Software, P.O. Box 120, Utica, New York 13503; the
manager, (314) 232-0278, or the USAF CAMP telephone number is (315) 336-0937.
program manager, (904) 882-8264.

CAMP Ada Parts: ANSI standard tapes
One of the most popular commodities is a containing source code for the parts, test code and

manual entitled "Developing and Using Ada Parts utilities, and design documents in machine readable
in Real-Time Embedded Applications." The manual form.
embodies the overall CAMP experience and includes
informative te hniques and methods for developing Parts Engineering System (PES) Catalog
and using Ada parts in the real-time embedded Version 1.1: ANSI standard tapes containing the
realm. The manual is available from the Defense CAMP catalog and the data needed to load it with
Technical Information Center (DTIC) by ordering the CAMP parts. This is in Ada, uses no
document number AFATL-TR-90-67. commercial third-party software, and runs under

VAX/VMS.
An executive overview videotape was also

produced to describe Ada issues, software reuse Benchmark Tape: An ANSI standard tape
issues and how the CAMP program attempts to containing the benchmarks, standard data files,
alleviate them. The videotape has been distributed and VAX command procedures for executing the
to nearly 70 organizations to heighten awareness of benchmarks on VAX hardware.
the CAMP approach to the software crisis.

Conclusions

CAMP has been a pathfinding program in
several respects. It demonstrated that software
reuse is feasible and valuable and that Ada can
effectively handle real-time embedded applications.
Throughout the CAMP program, one theme

25-I

Development and Verification
of Software for

Flight Safety Critical Systems

by

H. Afzali and Dr. A. Mattissek

LITEF GmbH
L8rracher StraSe, D7800 Freiburg, Germany

1. Summary It would be fair to ask the questions:
"what are the risks incurred by using the

In Flight Safety Critical Systems where the software?" and "what is the probability
lives of people and/or mission success is that the plane will crash due to a fault in
depending on, errors in the Computer the software?". From the point of view of
Software Components can have a catastrophic the pilot, who doesn't care if the problem
impact on the safety. is the hardware or the software, the issue

may be rephrased and put into the bigger
The requirements for the software context. "Given that I am going to fly that
development and maintenance of Flight airplane on a one-hour mission today, what
Safaty Critical systems differ in some are my chances of returning safely?".
aspects from the systems which do not fall
into this category. The reason for these
requirement is to produce "the right 3. Knowledge Base
product" at the very beginiing of the
system's usage and to ensure special Originally each software system will be
attention is paid throughout the whole considered as "unsafe". This label can be
service life of the equipment. only removed and replaced by a "safe" label

after sufficient knowledge about its safety
The reliability and safety requirements can status exists.
reach a point where testing alone is not
sufficient. Consequently adequate control A newly designed software for which there
mechanisms have to be applied. The software is none or little knowledge in the way of
configuration management, quality control, analysis and test results can not be
verification and validation must be considered safe.
rigorously adhered to.

On the other hand, it could happen that the
For the development of the equipment entire analysis and testing of software
software, a set of development standards reveals no need for changes. At the end of
and additional procedures for the the qualification of the software which was
implementation of Safety Critica Functions originally labelled "unsafe", it is
are defined. determined to be "safe", even though

absolutely no changes were made. The only
LITEF applied the standards and procedures thing that has changed since the initial
for the development of the Inertial design release was our knowledge about the
Measurement Unit which is a part of the entity in question.
Flight Control System and Seat Sequencer
Unit which is part of the E3ection Seat. As the figure above illustrates, the

quality of the established standards and
In this paper, some critical technology procedures, methods and tools, prepared
needs are described for supporting the documentation, review reports, the results
development and verification process of of the verification, testing and software
such systems and the activities which have safety analysis will impact the decision
to be performed during the development making process related to the safety of the
phases for identifying, assessing and software.
eliminating or minimizing hazards in a Not to forget the engineers who participate
systematic way. in the development of the project.

2. Introduction 4. Development Standards

In recent years, software has gradually A structured development philosophy and
been given more and more responsibility. Verification and Validation approach is
Today the software has complete control particularly important in the case of
over many Safety Critical Functions on some Flight Safety Critical Systems. Much
air vehicles. In fact, it would be documentation exists relative to standards,
impossible for a human to manually fly procedures, methods, tools and environment
several of the modern aircrafts. This is which support this type of development.
because they require complex control inputs Standards and guidelines are described in
at faster than human speeds in order to a sophisticated way and must be applied to
prevent loss of control leading to a crash, the related projects. The efforts required
However the question persists. Are we able during the development process increases
to verify that the software is sufficiently with the criticality of the application.
free from errors which would have a
catastrophic impact on the safety?.

25-2

Development
Standards Little Knowledge Lable

"Unsafe
Methods & tools Critical errors Software"

Documentation
Software Knowledge

Development Reviews Base

Verification

Testing No crit. errors
Lable

Safety Analysis High Confidence "Safe
Software"

People, Experience with similar SW

Figure 1 Knowledge Base

For each of the five major category of by-step procedure which attempts to
activities which are wexhaustively identify all potential hazards
Iodto which the system or its functions, could
er- Software project management be subjected to. It is fundamentaly a top-

- Software configuration management down approach which goes as deep as- Software quality evaluation necessary in order to adequately describe

- Software engineering the hazards with respect to their
- Software testing consequences on flight safety. The hazard

detailed tasks are defined. Model texts is ollectran ie a i nr a tion

will help the engineers to prepar e oin In order to manage and coordinate the
documentation in a standard way. flight safety related activities, a flight

safety engineer with enough experience and

In order to minimize the very costly and thorough knowledge about the application,
most difficult to detect errors in the hardware, software, shall be appointed to
early phases of the Software propectsa the propect.
Methods and tools Application Standards,Design and Coding Standards are specified In order to perform a comprehensive

to support effectively the production of analysis, the flight safety engineer must
the software. In the requirements analysis collect and organze all informaton
phase, the design phases, and the coding related to the software development
phase process. The relevant data to the flight
In addition development guidelines and safety is focussed and used in the flgh
procedures for software safety tasks are safety analysis process.
established.

Based on the preliminary list of potential
hazards and given the system's operational

5. Safe nglysis is Activiiies environment, the system safety engineer
develops hazard scenarios. A scenarto is

The obectives of the safety analysis tasks the possible sequences of events and
are :chrcumstances that can lead to a

consequence. For each event involved in the-to identify the hazards hazard scenario, the system safety engineer

-to eliminate the hazards if possible donsiders failure modes that can lead to
through design or reducing the these events.
associated risks to an acceptable level

-to minimize the hazardous event licalr fuctins adre known for the
accomplishment of the hazard analysis.

The anlysis will result in reports, LITEF's approach for identficaton of the
recommendations, guidelines and corrective hazards in the Software requirements
actions. analysis phase and the preliminary design

phase is the usage of the 'Fault Tree'
The fundamental principles to achieve a technique . Based on critical signals

high degree of flight safety are: defined in the specification, the critical
functions in the Software Requirements-System Level Management Specification and associated Computer

-Flight Safety Analysis Software Components (CSC) in the 'Software
-Information Flow Top Level Design Document' are identified.

The Flight Safety Program is a top level Critical functions and interfaces are
system engineering activity which identified and allocated to the systemintegrates flight safety concept and components. Multiple systems with
analysis into all phases of the project. dissimilar software, Backup systems,
The Software Safety Analysis is performed redundant configurations shall be
in parallel to other development activities considered in the overall design so that
and is -ecomplished from the system level flight safety failures can only occur as a
, wn to tic, component level. It is a step result of multiple failures.

25-3

u unit [unit
classification[1 reliability I

unit

risk

-I

Figure 2 Planning model

6. Safety testing
The analysis continues in the software
detailed design, coding and unit testing Testing is generally performed until the
phase. test engineers feel confident that the

software is reliable enough and can be
The objectives of the tasks during the released. Various testing and reliability
detailed design phase are models has been developed to determine the

level of reliability. Norealiy Ihese models
-to identify potential failures and does not address the failure impact in the
define their effects on safety case of safecy critical systems. The amount

-to identify necessary design changes of testing required is heavily dependent on
-to identify the extensiveness required the potential effects of failure on the
for testing and V&V activities flight safety.

In order to define the specific safety
In order to complement the system safety testing requirements in the functional,
tasks and reaching the objectives defined component and unit level of the software,
for software safety, a Failure Mode, LITEF uses the results of the flight safety
Effects and Criticality Analysis (FMECA) is analysis, statistical data of the previous
performed in the detailed design phase. The projects and the on-going test results.
level of analysis in this phase is the
computer software unit (CSU) level. These Unit risk is estimated based on the data
units are identified in the detailed design described. The tests are planned
document. A CSU is examined to determine proportionally to the risk of each unit.
its impact on the reliability and safety.
Functions and units which are identified as Units are classified by relating the units
critical during FHECA will undergo a more to the hazards and their consequences. In
extensive testing. the detailed design phase all units are

analyzed to identify those which use or
Following steps are performed for FM9CA update the data related to the critical

functions. The units are classified
-Planning according to their impacts on the safety.
-Analysis
-Reporting In addition the expected number of faults

per unit is estimated. This estimation is
The details of the analysis approach, basod on the complexity of the unit and the
documentation and worksheets, report statistical data which are collected during
formats, interfaces and other analyses past years for units of similar projects.
performed at the code level are defined in The a priori distribution for the unit
the FMECA plan. reliability is formulated for each unit

after it has been coded.
Failure severity category and hazard The unit classification and unit
consequence severity category are assigned reliability model both will serve as a
to each computer software unit. qualitative assessment of the unit risk anid

consequently a better planning of test
Static and Dynamic code analysis are efforts.
perforzied to the source code. The objectve
of Static code analysis is to identify the During the unit test phase and subsequent
deficiencies in the data flow, control flow phases, the unit fault statistics are
and information flow and to assess the collected. The unit fault rates used for
complexity of the programs. the updates of the a priori distribution

and consequently the test plan.
The objective of dynamic code analysis is
to verify that the test cases for the units
provide sufficient coverage of the source 7. Aplicatdon
code.

The Seat sequencer software is categorized
These acivities are performed in accordance as flight safety critical.
with the Mil-STD-882B task series 300. It is a microprocessor based unit which

controls the timing of the various seat
sub-systems (e.g. drogue canister catapult

25-4

firing, parachute container catapult References
firing). Control of these timings will be
based on information provided by seat (1) Military Standard, Defence Systor
sequencer mounted sensors which establish Software Development DOD-STD-2167
the ejection conditions of acceleration, (2) Military Standard, System Safety
base pressure and dynamic pressure. The Program Requirements MIb-STD-882B
sequencer operates independently of the (3) Software Corsiderations in Airborne
aircraft. systezs and Equipment Certification

RTCA/DO-178A
The system architecture constitutes the (4) Softv.aie Entwicklungsstaidard der
following principles Bundeswehr, yzxrgehensmodell

(5) EFA Standards (A compr'thensive set
-triple redundant microprocessor of standards and procedures)
channels (6) S.Sherer, Methodology for the

-redundant sensing of environmental Assessment of Software Risk,
conditions Doctoral dissertation, Wharton

-harmonization of intermediate results School, Univ. of Pennsylvania,
between channels Philadelphia

-2-of-3 H/W voting before Electro (7) J.D.Musa, A.Iannino, and K. Okumoto,
Explosive Devices(EED)-ignition Software Reliability: Measurement,

Prediction, Application, McGraw
The basic design philosophy is to Hill, New York, 1987
completely eliminate single point failures (8) S.Sherer, "Measuring the Risk of
by building a triple redundant system. Software Failure: A Financial

Application,"
Each seat sequencer channel contains the (9) Halverson, lITEF's Flight Safety
same program. Each channel samples the Program With Respect To The
environmental data during the ejection. The Software, Philosophical Background
intermediate results oi each microprocesor . -L "'- i'a-"......o-
channel is harmonized with both (10) H. Afzali, W. Hassenpflug,
neighbouring channels. The EED ignition Development and Verification of
decision of each channel is passed to a Software for Flight Safety Critical
hardware voter which in turn makes a 2-of-3 Strapdown Systems
voting for a final ignition decision.

The organization of the software is very
simple given the critical nature of the
application. It implies the repetitive
execution of tasks within a predefined
period of time.

In order to facilitate the target testing
of the units and the Computer Software
Components (CSC's), consideration has been
made in the overall software design. Each
CSU or CSC can be isolated from the other
parts of the software by external commands
and tested by downloading the individual
data of different test cases.

The sequencer is considered to De flight
safety critical for, if the sequencer fails
to fire the pyrotechnics in the correct
sequence and at the correct time.

Based on this top level hazard, the system
is analyzed and the sub events which can
lead to the top event are identified. This
analysis are continued until the basic
events are reached. The fault tree
technique has been used for this analysis.
Based on the safety analysis, a report is
prepared and recommendations have been
given for the re-design or as requirements
for the subsequent activities.

7. Conclusion

A software development methodology has been
presented to produce highly reliable
software for flight safety critical
applications.

In addition a test planning method for this
type of applications has been presented.

REPORT DOCUMENTATION PAGE

I. Recipient's Reference 2. Originator's Reference 3. Further Reference 4. Security Classification
of Document

AGARD-CP-503 ISBN 92-835-0629-4 UNCLASSIFIED

5. Originator Advisory Group for Aerospace Research and Development
North Atlantic Treaty Organization
7 rue Ancelle, 92200 Neuilly sur Seine, France

6. Title
SOFTWARE FOR GUIDANCE AND CONTROL

7. Presented at the Guidance and Control Panel 52nd Symposium held at the
Helexpo, Thessaloniki, Greece, from 7th May to 10th May 1991.

8. Author(s)/Editor(s) 9. Date

Various September 1991

10. Author's/Editor's Address 1I. Pages

Various 254

12. Distribution Statement This document is distributed in accordance with AGARD

policies and regulations, which arc outlined on the
back covers of all AGARD publications.

13. Keywords/Descriptors

Ada Expert systems
Safe Ada Rapid prototyping
Object oriented design Software generators
Formal specifications Real-time software
Fourth generation languages Flight critical software
Reusable software Software design methods
Transformational methods

14. Abstract

This volume contains the 23 unclassified papers, presented at the Guidance and Control Panel
Symposium held at the Helexpo, Thessaloniki, Greece from 7th to 9th May 1991.

The papers wete presented covering the following headings:

- Tools and methods from a user's viewpoint,
- General requirements on software;
- Integrated programmes support environments;
- Software requirements;
- Design methods for real-time software;
- ADA applications;
- Automated soltware generation approaches.

0 0

ca =- .

al r: , . C .= 0
x0 co co=o . 0

01LE05 0.Z 0.5 0 A

00>

.0 ~ ~ ~ '~E 0 Z . -

~ 8 ~ ob
0J = 2 2

iV, 18 z -

.2 r .Q - f

r o0
.00 C) 0 E 0

Z C0 V E

0 ~
~~~~ v 0 0

0 
0 v : 2H 0 oz ( ,I c

C6t 0 E ). E

= -E . 0 _ 2 : .8

- E0

.66

z z

.o Q CL~0

0 uOCE

Eu 0 < 0 0 rL

U0
0 0 E

z U.

0 In -Vt)
<. < < 0 60



;a E

E .
E

tb vc

2r v o
- I- I~ i

- c3 z - c

E C E 1 C -

Irei



NATO OITAN

7 RUE ANCELLE - 92200 NEUILLY-SUR-SEINE DIFFUSION DES PUBLICATIONS

FRANCE AGARD NON CLASSIFIEES

T6l6phone (1)47.38.57 00 -Tilex 610 176
Til~cople_(1)47.38.57.99 ____________________________

L'AGARD tie dtient pas de stocks de ses publications. dans un but de distribution gdniralc I'adresse ci-dessus. La diffusion initiale des
publications de I'AGARD est effectu&c aupr~s des pays membres de cettc organisation par l'intermidiaire des Centres Nationaux de
Distribution suivants. A l'exception des Etats-Unts.ces centres disposent parfoisd'excmplairesadditionnels; dansles cascontraire,on peut
se procurer ces exemplaires sous forme de microfiches ou de microcopies aupr~s des Agencer de Verne dont la liste suite.

CENTRES DE DIFFUSION NATIONAUX
ALLEMAGNE ISLANDE

Fachinformationszentrum. Director of Aviation
Karlsruhe c/o Flugrad
D-7514 Eggenstein-Lcopoldshafen 2 Reykjavik

BELGIQUE ITALIE
Coordonnateur AGARD-VSL Aeronautica Militare
Etat-Major de la Force Adrienne Ufficio del Delegato Nazionale all'AGARD
Quartier Reine Elisabeth Aeroporto Pratica di Mare
Rue d'Everc. 1140 Bruxelles 00040) Pomezia (Roma)

CANADA LUXEMBOURG
Directeur du Service des Renseignements Scientifiques Voir Belgique
Ministre dc la Defnse Nationale NOR VEGE
Ottawa. Ontario K I A (tK2 Norwegian Defence Research Establishment

DANEMARK Attni: Biblirieket
Danish Defence Research Board P.. x25tKjl
Ved ldraetsparkeii 4 N20 jlc
2 100t Copenhagen 0 PAYS-BAS

ESPAGNENetherlands Delegation to AGARD
ESPAGNI:National Aerospace Laboratory NLR

INTA (AGARD Publication%) Klttyverweg I
Pintor Rosales 34 2629 HS D~elft
2800t~8 Madrid

PORTUGAL
ETA'lS-UNIS Portuguese National Coordinator to AGARD

National Aeronautics and Space Administration Gabinete de Estudos e Progrnmas
Langley Research Center CLAFA
M/S 180 Base de Alfragide
Hampton. Virginia 23665 Alfragide

[FRANCE 2700 Amadora
O.N.E.R.A. (Direction) ROYAUME UNI
29. Avenue de Ia D~ivision Leclerc D~efence Research Informatioti Centre
923201, Chitillon %ons Bagneux Kentigern House

65 Brown Street
GRECE Glasgow 02 8EX

Hlellenic Air Force
Air War Co lce TURQUIE
Scientific and fechnical Library Milli Savunma Ba~kanli~i (MSB3)
Dekelia Air Force Base ARGE Daire Balkaitiki (A ROE)
Dekelia, Ather.sTGA 10 10 Ankara

LE CENTRE NATIONAL DE DISTRIBUTION DES ETATS-UNIS (NASA) NE D)ETIENT PAS DE STOCKS
l)LS PUBLICATIONS AGARI) ET LES DEMANI)ES DEFXEMPLAIRES DOIVENT ETRE Af)RESSEES DIRECI LIMLNT

AU SERVICE NATIONAL TECHNIQUE DE L'INFORMATION (NTIS) DONT L'ADRESSE SUIT.
AGENCES DE VENTE

NationlTcnclIfomtoSevc EuAIfrt eropean Serace Agen D Britist Supply Dvso
Natonl echicl nfmai~n SrvceEurIopatio Retievlce rvicec The-umrt Library Dvso

2 85 lSrt Royal Road 10, rue Mtrto Nikis Bustoni Spa, Weiherby
Springfield, Virginia 22161 75015 Paris West Yorkshire LS23 70Q
Etats-Unis France Royaume Uni

Lesdeniandes de microfiches on de photocopies de documents AGARD(y coinpris les demandles faites aupr~s du NTIS)doivent comporter
Ia denomination AGARD, ainsi que Ie numero de sie de l'AGARD (par exemple AGARD-AG-315IS Des informatiotns analogues, telles
que le titre etIa date de publication sont souhaitables. Veutller no~er qu dl y a lieu do spikifier AGA RD-R-nnn et AGARD-AR-nnn borade Ia
coinmande de rapports AGARDetci e rapports consultatifs AGARI) respectivement. Des rdfdrences bibliographiques comnpltesamnsi que
des r~sum~s des publications AGARD figurent dans lea journaux suivants;

Scientifique and Technical Aerospace Reports (STAR) Government Reports Announicenments and Index (GRA&I)
publi6 par Ia NASA Scientific and'Technical public par le National Technical Information Service
Information Division rinng teld
NASA Headquarters (N') Virgia 22161
Washington D.C. 20546 ~tats-Unis
Etats-Unts (accessible galemeiit en mode ititeractiff dans Ia base de

donnees bibliographiques en ligne do NTIS, et sur CD-ROM)

Iniprimi par Speccialised I'rining Sers'ues Linied
40 Chsignsell Lane, Loughtoit, Essex IGO 37-Z



NATO OTAN

7 RUE ANCELLE -92260 NEUILLY.SUR-SEINE DISTRIBUTION OF UNCLASSIFIED

FRANCE AGARD PUBLICATIONS

Telephone (1)47.38.57.00 -Telex 610 176
Telefax: (1)47.38.57."9__________________________

AGARD does NOT hold stocks of AGARD publications at the above address for general distribution. Initial distribution of AGARD
publications is made to AGARD Member Nations through the following National Distribution Centres. Further copies are sometimes
available from these Centres (except in the United States), but if not may be purchased in Microfiche or Photocopy form from the Sales
Agencies listed below. 7

NATIONAL DISTRIBUTION CENTRES
BELGIUM LUXEMBOURG

Coordonnateur AGARD - VSL SeeBelgium
Etat;Major de la Force Airienne
Quartier Reine Elisabeth NETHERLANDS
Rue d'Evere, 1140 Bruxelles Netherlands Delegation to AGARD

National Aerospace Laboratory, NLR
CANADA Kluyverweg I

Director Scientific Information Services 2-629 HS Delft
Dept of National Defence
Ottawa, Ontario K I A 0K2 NOOQ' A"

DENMAPV p~g e A4

NAS-SA

FRA? National Aemflautlcs antpn'Ity 10 yrvt Pr r to AGARD

4 Space AdmniniStratiOn
Washington, Dr-. SPIECW FOMM CLAS A

GFRIV, 2D546

K 0L ) AGIOIC--0
D DFT O'DrEFENSE N-ORA I.ON CEN.TERF

REC DEPTN~ Or CH ICAIL 1F ~ 0
HtEE 1 MTCHN.F 'J/OYCE CMIRAS
ti AVTEN I ST-A1-ION BLDI, 5

Del ALEXANID~~ ~ 2 O64

ICELAN.. to -ne
Dirt &entigern House
c/o. 654Iii Brownntree
Reyk, Glasgow 02 8EX

ITALY UNITED STATES
Aeronautics Militare National Aeronautics and Space Administration (NASA)
Uflicio del Delegato Nazionale alI'AGARD Langley Research Center
Aeroporto Pratica di Mare M/S 180
(00040 Pomezia (Roma) Hampton, Virginia 23665

THE UNITED STATES NATIONAL DISTRIBUTION CENTRE (NASA) DOES NOT HOLD
S'! OCKS OF AGARD PUBLICATIONS. AND APPLICATIONS FOR COPIES SHOULD BE MArI

DIRECT TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.
SALES AGENCIES

National Technical ESA/Information Retrieval Service The British Library
Information Service (NTIS) European Space Agency Document Supply Cenire
5285 Pont Royal Road 10, rue Mano Nikis Boston Spa, Wetherby
Springfield, Virginia 22161 75015 Paris West Yorkshire LS23 780
Unitend States France United Kingdom

Requests for microfiches or photocopies of AGARD documents (tncludag requests to NTIS) should include the word'AGARD'and the
AGARD serial number (for example AGARD-AG-31 5). Collateral inforrmation such as title and publication date is desirable. Note that
AGARD Repona and Advisory Reports should bespecified as AGARD-R -mmnnzdAGARD-AR-nnn, rspectively. Full bibliographical

references and abstracts of AGARD publications are given in the followiRSng ras:

Scientific and Technical Aerospace Re rts (STAR) Government Reports Announcements and Index (GRA&l)
published by NASA Scienitific and Technical published by the National Technical Information Service
Information Division Springfield
NASA Hedures(N'rr) Virginia 22161
Washin ton D.C. 20546 United States
United Itates (also available online in the NTIS Bibliographic

Daabase or on CD-ROM)

Printed by Specialised Printing Services Limited
40 ChigwylJ Lane, Loughton, Essex 1GIO 377

ISBN 92-835-0629-4


