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Abstract x
This paper investigates the use of Hidden Markov Y

models (IIMM's) for the classification and detection of z
ocean acoustic events in a nonstationary ocean back-
ground. A statistical formalism is described for inte- Figure 1: The observed signal, y, is a composite of
grating models for dynamic acoustic events and ocean signal from background, z, and signal z.
background into a unified statistical framework. In
this framework, both signal processes and background
processes are modeled as HMM's, and signal classifi- tic events [6], frame based static classifiers can provide
cation is performed by obtaining the likelihood of a poor event classification performance. This point was
corrupted observation sequence through a combined illustrated by a study comparing the performance of
state space of signal and background. Techniques are selected static pattern classifiers in classifying vowels
presented for estimating the acoustic event model pa- sounds as spoken by a large population of speakers[7].
rameters from training exemplars that are observed in It was often the case in this study that a classifier
these difficult background conditions. Finally, a novel that achieved a very low classification error rate when
neural network technique is proposed for the auto- classifying independent speech frames, achieved a very
matic learning of the nonlinear mechanism through classifyingwindependen the acieve a erywhich signal and background observations interact, high error rate when classifying the pntire utterancp.

w acr d p sen iHence, if the signal model suffers from an impover-Experimental results are presented. ished representation of temporal information in a sig-
I Introduction nal, the performance of the resulting classifier is also

likely to suffer. This issue has been addressed in pre-
The ocean acoustic events that are of interest in vious work by applying heuristic rules [8) or neural

this work can generally be characterized as short networks with time delayed inputs [9, 2]. Recently,
duration non-stationary events whose spectral en- hidden Markov models have been applied with some
ergy evolve according to some characteristic temporal success to the roblem of ocean acoustic event classi-
structure. The detection and classification of these fication [10, 11].
acoustic events in an ocean environment is compli- The principal contribution of this paper is to extend
cated by the presence of background signals that are the definition of the HMM to incorporate the effects of
not well modeled as traditional wideband or impulsive ocean background. By modeling component sources,
noise processes. In fact, the ocean background may the system developed here provides a robust way to
itself contain acoustic events which are similar in na- train and classify signals under differing background
ture to those events that we are trying to detect. Ex- conditions. Il Section 2, the form of the model is
isting techniques that have been developed for ocean introduced. In Section 3 a maximum likelihood tech-
signal classification do not explicitly account for the
desired signal having been observed in this difficult nique for estimating the acoustic event model parame-

ters is introduced along with a proposed hybrid neural
ocan background environment [1, 2, 3, 4, 5]. Failure network approach for estimating the process of signal
to do so, however, can result in severe performance coruptio ackgonestia in etio n of set
degradation, especially when a significant mismatch corruption by background. Finally, in Section 4 a set
in the background characteristics exists between the of experiments is performed to evaluate the effective-
training and testing of the classifier. ness of the approach in detecting an ocean acoustic

The principal motivation for applying HMM tech- event in the presence of actual ocean background.
niques to classification and detection of acoustic events
is that they provid. - rn mns for temporal integra- 2 Modeling Assumptions
tion of short-time iiame based spectral measurements. We define an ocean acoustic event a' E {A}, i -
When temporal information is an important part of 1,..., M, taken from a set of possible events {A). It
the signal representation, as is the case in ocean acous- is assumed that an acoustic event is produced with



prior probability P(a) and that there is an acoustic Ct in the signal background observation space defined
channel which produces D dimensional signal vectors, by yt = g(xt, zt). Expanding the observation proba-
X = (9 1,12 , -. -- , T) with probability P(i I a). We bility in terms of the joint probability of the hidden
depart from the traditional HMM model development state sequences and hidden data sequences allows us
by assuming that the signal vectors are observed in to isolate pertinent terms relating to the signal model
the presence of of an ocean background process which parameters. The complete data likelihood in Eq. 2 is
gives rise to D dimensional background observation given as
vectors Z. The output sequence Y = (gi, g2 ,.. ., #r)
is then observed as a component-wise function of sig- P(X, Z, I, J I A) =
nal and background, yt = g(zt, zt). We consider those T
functions g(-) for which the equation y = g z,z) de- 11p(it+1 I it)p(t+1 lit)p(jt+ I t)p(it+i lit)
fines a one dimensional contour in the x-z plane. t=1

Both the signal and the background processes are (3)
represented by HMM models. The choice of the topol- Given an initial estimate of the acoustic signal model
ogy of the 11MM models that are used for signal parameters A, and following the method of Baum et
and background was made experimentally. The back- al. [15] it is possible to find a new set of model param-
ground HMM is a 4 state fully connected model, and
the signal event model is a N state left-to-right model eters A such that P(Y I A) > P(Y I A). This is done by

containing N - 1 non-null states and a "null state" maximizing the auxiliary a function

that always emits a zero, to account for the "no sig-
nal" condition. The observation probabilities for all Q(A, 5) =
states, both signal and background, consist of single Z_ 2., fc P(X, Y, I, J I A) log P(X, Y, 1, J I )dXdY.
Gaussian densities with diagonal covariance matrices. (4)

The goal in acoustic event classification is to choose In our simulations the probabilities obtained in t'he
that event a by maximizing P(aIY), which from Bayes forward backward algorithm were replaced by a state
rule, sequence produced by the process of Viterbi training.

P(a I Y) - P(Y I a)P(a) Viterbi decoding in this context involves selecting the
P(Y) ' single path through the signal-background state space

illustrated by the diagram in Figure 2 that maximizes
is equivalent to maximizing P(Y I a)P(a). Estimating P(Y I A). In this case, the summation over all possible
P(Y I a) is accomplished using a probabilistic HMM state sequences in Eq. 2 is replaced by a max over all
to represent the acoustic event a. The prior probabil- I and J.
ity P(a) is estimated from higher level non-acoustic Space does not permit a detailed description of the
source of knowledge. These higher level hierarchical steps leading to the expressions for the ML parameter
sources of knowledge have been shown in [6] to be crit- estimates. Taking the partial derivative of Equation 4
ical in acoustic event classification by humans. The with respect to the signal mean yields the estimate
success of HMM's in continuous speech recognition is
partly attributable to the ability of HMM's to combine P(i, iIY, A)E(giPg, i, i, A)
these hierarchical sources of knowledge. It is expected
that tlMM's will provide similar benefits in the area t i(
of ocean acoustic event classification. Pi,ML = E P(it, jtlY, A) (5)

3 Estimating Model Parameters t it
3.1 Maximum Likelihood Formulation where

The ML parameter estimation employed here is
based on Rose et al. [12] and is similar to approaches
taken in [13] and [14]. The noise corrupted ob- E(igtlft it,j,A) = c i)P(Z Ijt)dgd
servations Y arise from underlying state sequences - p(t I it)p(it I it) ditdt
I = (i1 , i2,. .. , i), of the signal HMM, and J = (6)
(il, j 2 , ... , ;j) -f the background HMM. The likeli- and P(i = it, j = it I Y, A) = 1 if the optimum Viterbi
hood of the output sequence given signal model A, path passes through states i and j at time t, and equals
which consists of the node dependent mean fii and 0 otherwise.
standard deviation di of the Gaussian HMM observa- The contour integral depcnds on the definition of
tion probabilities p(ft I i = it) and transition proba- the noise corruption function go. While the choice
bilities p(it I it-,) is given as this function can be very general, not all choices of go

will lead to a contour integral that has a closed form
'hoition. For ist.nce if go reprcsents an additive

P(Y I A) P(X, Z, I, J I A)dXdY (2) function of signal and background
I J

g(z, z) =zx+z, (7)

where the summation is over all possible state se-

quences in the signal-background state space, and the then, using the notation x to refer to a single compo-
notation fc refers to the integral along the contour nent of the vector i, it can be shown that E(z I y) of

2



HMM-z
1. Estimate P(ig,jt I Y, A) via Viterbi decoding

112. Estimate the probability density functions for
0 signal and background

00  ... (i) Compute fi,ML, O'z,ML for the decoded
"non-signal" observations

0me (ii) Compute P.,ML, 0,XML for each source
model

HMM-x 3. Obtain new mapping function based on go

and new source densities

Figure 2: Multi-dimensional Viterbi lattice. In this 4. Go to 2 until convergence in source densities
example, an 11MM for background (labeled z), con-
taining 4 nodes, and an HMM for a signal (labeled x) 5. Go to 1 until overall convergence is achieved
with four nodes, formed a Cartesian product with 16
possible states (or state combinations) per time frame.
Viterbi decoding on this lattice is equivalent to decod- Figure 3: Training algorithm summary.
ing on a standard 2-D lattice with 16 nodes.

the standard 2-D case. The complete algorithm, sum-
Eq. 5 is marized in Fig. 3, has one Expectation Maximization

2 (! (EM) estimator embedded in another. Convergence is
E(xly) =r2 A 14 (8) guaranteed since P(Y) cannot decrease at any step in

E+ly ~ y X+ , - • Fig. 3, by virtue of the properties of Viterbi decoding
and ML estimation.

3.2 A Neural Net Mapping Function
For spectral parameters, the additive assumption

of Eq. 7 is inaccurate. If the observations are aver- s ............................
ages of N magnitude squared spectral frames, then it.) Simulated
the noise corrupted observation probability is non- o ocean

central X2 distributed with 2N degrees of freedom.
No closed form solution for E(xly) has been found for
this case; nor have closed form solutions been found.,. ., , M, t(

for other important noise corruption functions. Nu-
merical evaluation of the integrals required for E(zly) L-k..ir-

can involve costly iterated integrals and series expan- )
sions. For spectrograms, reasonable accuracy can be Not a
obtained using the trapezoidal rule and approximat- L . U
ing the non-central X2 density with 50 summands [16].
However, it may be simpler and faster to approximate ,ection &¢lasificatiou
E(xiy) by training the parameters of a general map-
ping function using actual observations. Neural nets
can be trained using a minimum mean squared er- Figure 4: Algorithm of the HMM-neural net hybrid
ror criteria to approximate a mapping from clean to system. The input to the neural net switches to sim-
noise corrupted observations that converges with infi- ulated ocean during neural net training, and to ob-
nite data to E(xjy) [17]. This is true for a broad class served ocean when estimating source model parame-
of networks including the Multi-Layered Perceptron ters.
MLP) trained using back-propagation, and the Ra-
ial Basis Function (RBF). This suggests the use of However, if neural nets are used to estimate E(xly),

an HMM-neural net hybrid system where the HMM convergence in the inner EM estimator is not guaran-
provides the teroporal decoding and the neural net- teed. The system illustrated in Fig. 4, simulates the
work performs the mapping from the space of uncor- ocean environment internally during training. The
r,,nted signal vectors to the space of -)bscrvablc i iosc internal simulation is necessary to generate training
corrupted observation vectors, data for the neural net mapping function. Neural net
3.3 Algorithm Summary training for estimating E(xly) has the problem shown

The Viterbi lattice that results from the compo- in Fig. 5. The neural net does not perform well in re-
sition of signal and background HMM's is mlti- gions with limited training data. These regions from a
dimensional (Fig. 2). Viterbi decoding on a multi- mismatch between the real the simulated ocean. This
dimensional lattice is a straight-forward extension of is illustrated by the noise in the Radial Basis Function

3



Table 1: Summary of experiments performed on addi-
.. .tive normal components. Resilts labeled with "LMS"

R, . ., w ere obtained using neural net.

TRAINING FALSE ALARM MISS
S .. .._ SNR GAIN RATE (sec (% ERR)

high 0 o
low 0 .041 0%

Figure 5: Scatterplot for 1000 samples of signal (a) low (LMS) 0 0 0%
vs. its (A) 2nd order non-central x 2-distribution (a high -6d13 .123 5%
single frame of magnitude-squared spectra), and (B) low -6dB .165 20%
8th the order case (4 spectral frame averages). The low (LMS) -6dB .082 20%
corresponding estimate of E(xly) are plotted for the
LMS (solid line) and RBF (dashed line) techniques.

1, C, = .14, .3, 0,2 =

-' - . ; by mixing different parts of the Phase I dataset. The

FREQ - - Phase I signals used were signal "A", a 10msec wide-
band pulse, "E", a 1 second low frequency tonal, and
the "quiet ocean" background. The testing set con-
sists of 24.3 seconds of data, containing 10 samples of
E, and 20 samples of A. The E samples overlapped A
samples 9 times, to simulate an adverse, highly non-
stationary background. The signals were mixed into

eil the background with a gain of either 0 or -6dB. Fig. 6
t .shows a sample from this testing set. The solid hori-
: .zontal long-dashes at the left are the Viterbi decoder

. ... estimates of the starting and ending times for signal
~ A events that it detected. The Viterbi decoder used

imodels that were trained ofline (in a high SNR, no
it.- interference condition) or in adverse conditions that

were similar to the test set.
.:. To evaluate the robustness of the neural net approx-

imation of E(xly), relative to the closed form solution,Figure 6: Time vs. frequency (via wavelet decompo- this first set of experiments involve mixing signals in
sition) for a sample in the test set. Horizontal ticks background after spectral decomposition. This was
mark .1 sec intervals. Solid horizontal long-dashes on necessary since Eq. 8 works only for additive normal
the left side are the Viterbi decoder's estimates of the components, and it is found that spectral components
starting and stopping boundaries for signal "A" (a 10 are not well approximated by Eq. 7.msec broadband event). Tab. 1 summarizes the results on this database.

Models were trained either under similar adverse con-
ditions, or they were trained with no noise and no

(RBF) output for large y's in Fig. 5. For large values other signal (high "training SNR" in Tab. 1). The
of y,.E( xy) is nearly linear. A linear mapping, imple- results in Tab. I show that it is possible to (1) train
mented as using the LMS algorithm, does a good job mels inal A uhde advers bo und o di-
in this case, and in the case of approximating Eq. 8, tions, and to () train models of A under high SNR
which is linear to begin with. However, the linear es- conditions, an then detect and classify A under ad-
timator is inaccurate for small values of y, especially cds a nd thndetnde
in the second order case in Fig. 5, where the RBF cor- verse background conditions.'
rectly estimated a slight downward nonlinearity. The
linear LMS estimator is used for the work presentedhere. I Tab. I shows that the use of neural net (LMS) to estimate

E(x IV) lead to better results than when the closed form solution
4 Experimental Results is used. This is probably a procedural artifact: The closed

form system was trained to five iterations, yielding the results
t'he purpose of the preliminary synthetic data ex- reported in Tab. 1. Neural net training was initialized with the

periment described in this section is to validate the final parameters from the closed form training. P(Y) increased
algorithms presented above. The DARPA Standard during each of 5 neural net iterations. Therefore, the results
Phase I database is designed to test conventional clas- reported for neural net training is slightly better. Tests using
siflers. It does not have the adverse background condi- Radial Basis Function (RBF) and Multi-Layered Perceptron
tions that this algorithm is designed to handle. There- (MLP) had very high false alarm rates, for reasons discussed
fore, an adverse condition testing set was constructed above.

4



5 Summary for Ocean Engineering, pp. 13-19, IEEE, August
The techniques presented here uses Hidden Markov 1991.

Models and the Maximum Likelihood (ML) formal-
ism to address the issues of temporal structures and [9] Y.-H. Pao, T. L. Hemminger, D. J. Adams, and
nonstationary backgrounds. Temporal structures pro- S. Clary, "An episodal neural-net computing ap-
vide an important cue for human acoustic events clas- proach to the detection and interpretation of un-
sifiers [6]; but is not well exploited by static, frame- derwater acoustic transients," in Proceedings of
ba.,L1 classifiers. HMM's can provide a succinct model the IEEE Conference on Neural Networks for
for temporal structures. The ML technique integrates Ocean Engineering, pp. 21-28, IEEE, August
HMM models of component processes to provide a ro- 1991.
bust way to handle highly nonstationary background. [10] M. K. Shields and C. W. Therrien, "A hidden
In the experiments presented here, signal models were Markov model approach to the classification of
trained offtine under high SNR conditions, and thenused to detect and classify signal events under an ad- acoustic transients," in Procedings of the Interna-

tional Conference on Acoustics, Speech and Sig-verse, highly nonstationary background. The exper- al Processing, pp. 2731-2734, April 1990.
iments also demonstrate an ability to t,-ain for sig-
nal parameters when a training set of clean, isolated [11] J. P. Woodard, "Modeling and classification of
events is not available, acoustic transients by speech recognition tech-

niques," Journal of Underwater Acoustics, Oct
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