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Abstract ysis [3]. For ocean acoustics, this means that wavelet
This paper describes results using the wavelet transforms may be able to provide a small number of

transform to preprocess acoustic broadband signals in relevant parameters for the classifiers - a property
a system that discriminates between different classes that usually leads to good overall performance.
of acoustic bursts. This is motivated by the similarity Nicolas has performed an extensive comparative
between the proportional bandwidth filters provided study between wavelet, FFT, Wigner, and other pro-
by the wavelet transform and those found in biolog- cessors for a database of short duration ocean acoustic
ical hearing systems. The experiment involves com- events [4]. For the DARPA Phase I dataset, Desai [5]
paring statistical pattern classifier effects of wavelet used wavelet a transform, with sophisticated feature
and FFT preprocessed acoustic signals. The data used extraction, to attain 0% error. Beck [6] performed
was from the "DARPA Phase I" database, which con- comparative evaluation between wavelet and FFT pre-
sists of artificially generated signals with real ocean processing for neural net classification, and found that
background. The results show that the wavelet trans- wavelets lead to better performance for this database.
form did provide improved performance when classi- The contribution we make here is to offer some ex-
fying in a frame-by-frame basis. The DARPA Phase planations as to why the wavelet transform seem to
I database is well matched to proportional bandwidth lead to better performance on the DARPA Phase I
filtering; i.e., signal classes that contain high frequen- database. Section 2 will provide a brief introduction
cies do tend to have shorter duration in this database, to the wavelet transform, which will leave out much
It is also noted that the decreasing background lev- of the mathematical properties but focus on the prop-
els at high frequencies compensate for the poor match erties that we feel are important. Section 3 describes
of the wavelet transform for long duration (high fre- our approach to this problem. Section 4 describes the
quency) signals. DARPA Phase I database and the experimental per-
1 Introduction formed. Section 4.1 discusses the experimental results.

An ocean acoustic event classification system in- 2 Background
cludes a pre-processor, a frame-level classifier, and Since the wavelet transform will be compared to the
higher level decision logic. For known signal in back- Fourier transform, perhaps the best way to introduce
ground, there are a number of ways to optimize at the wavelet transform is to compare and contrast it
each stage to maximize overall detection/classification with the Short Time Fourier Transform (STFT) in
probabilities. For short duration ocean acoustic the problem of time-frequency localization.
events, however, we look for algorithms that are ro- The STFT estimate of a signal, f(t), in the time-
bust under different training conditions. The goal of frequency domain, for the mth frequency and nth time
this study is to compare wavelet and Fourier prepro- component, is defined as
cessing for a system with the same classifier, in order
to identify the characteristics in the pre-processor that -
lead to good overall performance. cstft[m, n] =I

There are a number of reasons for studying the
wavelet transform. Humans are excellent acoustic where
event classifiers. The wavelet transform provides a
proportional bandwidth (bandwidth increases in pro- f(t) = the input signal,
portion with center frequency), similar to the filters in g(t) = a window,
the human ear. There is considerable progress in the mAw = frequency shift, and
wavelet field. This means that systems that use the nAt = time shift.
wavelet transform is supported by a rich understand-
ing of the different aspects of the wavelet transform. In other words, csftf is a discrete Fourier component
Finally, the wavelet transform proj.ert- a signal into of a windowed input. g(t) is a window, and is required
a multi-resolution space that is useful for image pro- to have finite support in both the time and frequency
ceasing [1], speech coding [2], and sound pattern anal- domain, and centered around t = 0 and w = 0 in the



Table 1: Contrasts between STFT and wavelet trans-
form. **00*oo* *oo***oo

STFT WAVELET 0 0 0 N 0 0

g(t) is centered at t h(t e at t 0 ,

0, w = 0 with compact H(w =0)=0, a 0
support H(, j is centered at k0
cstft[m, n] samples f(t) cwlm, n samples ftat 0 e 0

atw=mAw, t=nAt w=ko/am t = bn/am .
same bandwidth scales as
bandwidth and time res- a"(BW), time window
olution for all m and n, scales as (Length)/am Fa
the bandwidth and time Figure 2: The sampling locations, bandwidth and
resolution of g(t) time window length for wavelet transform in the time-

frequency domain.
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Figure 1: The sampling locations, bandwidth and time 0 , ,
window length for STFT in the time-frequency do- rroqu.ncy (Hz)

main. Figure 3: Frequency response of the hair cells at dif-
ferent parts of the cochlea of a cat. After [Bertrand,

time and frequency domain (in order to get resolution 1989]

in time and frequency). The Wavelet transform, on
the other hand, is defined as

cw[mn, ] = V h(amt - bn)f(t)dt (2)

where

h(t) = wavelet function, ,opw
am = a dilation factor, and

nb/a m  = a time shift. Figure 4: "Mel-scaled" filter bank: Linear spaced tri-
angular filters between 0 and IkHz, and logarithmic

Here, h(t), the wavelet function, is required to have increments in both frequency and bandwidth after-
finite support in both time and frequency, centered wards.
around t = 0 in the time domain, and centered around
w = k0 : 0 in the frequency domain. The reason for
the requirement of it being not centered at 0 in the "SLrI
frequency domain is that frequency shifting is achieved I--,.,,,. , "
by scaling to achieve a center frequency of w = ko/am, d1-21(.,

and no frequency shifting can be achieved if k0 = 0. d(")

The differences between the wavelet transform and
STFT are summarized in Table 1, and illustrated in
Figs. 1 and 2. The main point is that wavelet trans-
form provides proportional bandwidths, with wider i2 .. . 44, ./,
bandwidth/hi her time resolution at high frequencies,

and finer bandwidth/wide time windows at lower fre-
quencies.

To see why the wavelet is a biological model, con- Figure 5. Octave band coder.
sider the frequency response of the cochlea of a cat,
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shown in Fig. 3. The biological ear, as in the case of
wavelet, provide wider bandwidth in higher frequency
than in lower frequency. This fact is taken advantage Table 2: FFT Pre-processing schemes. NAVG is
of in many speech processing front-ends. For instance, the number of FFT frames averaged together, DATA
the "mel-scaled" cepstral coefficients (Fig. 4 leads to WINDOW is the amount of data that each frame of
improved speech recognition performance [7]. The oc- output examines. FRAME SIZE is the dimensionality

tave band speech coder, used for speech compression of data supplied to the classifier.
[2], has the same time-frequency resolution and sam- ift %over- data frame1
pling properties as the wavelet transform (Fig. 5). id size lap navg window size

2.0.1 Laplementation ft128 128 50 1 0 msec 65
ftl28avg3 128 50 3 l0msec 65

The octave band coder, shown in Fig. 5, represents the ft256 256 75 1 10msec 129
way the decimated wavelets are implemented in prac- ft64avg4 64 50 4 6.25msec 33
tice. The wavelet function is designed to pass frequen-
cies from w = ir/2 to ir. At each stage or "octave", the
wavelet function extracts the upper half of the band-
width. The remaining signal (extracted with a simi-
lar low-pass filter) is decimated and then re-applied Table 3: Wavelet Pre-processing schemes for the dec-
to the same set of filters. To improve the frequency imated wavelet and the tree wavelet. The Morlet
resolution in the high frequency extraction step, the wavelet is a modulated Gaussian pulse. Daubechies
high frequency filter is divided into several high fre- wavelet is a 4 point orthogonal wavelet function. AT
quency, non-overlapping narrowband filter that col- g
lectively constitute the high frequency filter - and is the time interval between wavelet outputs.
thereby creating several "voices". The "tree wavelet" octaves voices wavelet
[8], or "wavelet packets" [9] seeks to improve the reso- dt
lution in the high frequency filter by splitting not only decwvlt 4 Morlet
the low frequency component at the next octave, but tree 1 8 Daubechies
also split the high frequency signal. id window ATrame size

3 Approach decwvlt 168.4msec .5msec 28
Performance comparison studies [10, 11] have tree 2.56msec .04msec 17

demonstrated that a number of pattern classifiers will
produces results near the Bayes' optimal value. There-
fore, for the purpose of this study, evaluation will be
restricted to the quadratic Gaussian classifier. Eval-
uation will be performed based on frame-level clas-
sification results. Recent studies have demonstrated Table 4: Final classification percentage errors.
that good frame-level recognition rates do not auto-
matically extend to good event-level recognition. In PRE-PROCESSOR PERCENTAGE ERROR

12], for instance, classifiers that provided best frame- decwvlt 0.14
level performance did not lead to good segmental- ft128 7.93
level performance. However, for the purpose of this ftl28avg3 8.98
study, it was felt that there is a strong correlation be- ft256 2.58
tween the frame-level scores and segmental level scores ft64avg4 6.37
so that we can make a valid interpretation from the tree 23.40
frame-level scores. Here, the segmentation of data
samples (assigning class labels to pre-processor frame
outputs) is done by Hidden Markov Models (HMM's)
and forced Viterbi decoding, where the HMM's were
trained on the training set. Therefore, the segmenta-
tion boundaries are those that would lead to the high- Table 5: Percentage confusion matrix for DECWVLT.
est recognition rates on both the training and testingset. TRUE ESTIMATED CLASS

CLASS # A B C D E

4 Experiments # 99.89 0 0 .01 .02 .08
The six signals of the DARPA Phase I dataset was A 0 100 0 0 0 0

processed by the conventional FFT (summarized in B 0 0 100 0 0 0
Table 2), and wavelets (Table 3). The frame-by-frame C 0 0 0 100 0 0
output of the pre-processors being studied are then D 0 0 0 0 100 0
fed into a quadratic Gaussian classifier. E .19 0 0 0 0 99.81

Table 4 shows the percentage errors resulting from
the Gaussian classifier for the various pre-processors.
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Table 10: Percentage confusion matrix for TREE.
Table 6: Percentage confusion matrix for FT128. _________CLASSTRUE EJSTIMA'TLD GLAS!,

CLASS # A B C D E
TRUE ESTIMATED CLASS # 75.94 0 3.14 0 0 20.92
CLASS # A B C D E A 0 96 0 0 0 4
# 91.65 0 U 0 0 8.35 B 1.04 0 98.96 0 0 0
A 0 100 0 0 0 0 C 0 0 0 100 0 0
B 31.25 0 56.15 0 0 12.5 D 0 0 0 0 100 0
C 0 0 0 100 0 0 E 20.97 0 1.33 0 .51 77.19
D 0 0 0 0 97.62 2.38
E 6.96 0 0 0 0 93.04 2 ............ ..i................. .................... i...................

................. ........... ....

Table 7: Percentage confusion matrix for ,- ,IS LI

FT128AVG3. Figure 6: Signal "B".

TRUE ES'IMA TED GLASS
CLASS # A B C D E The confusion matrices are shown in Tables 5 through
# 88.77 0 0 .15 .31 10.77 8.
A 0 100 0 0 0 0
B 40 0 60 0 0 0 4.1 Discussion of Results
C 0 0 0 100 0 0 The results, according to Table 4, shows that
D 0 0 0 0 100 0 wavelet pre-processing is only marginally superior to
E 3.70 0 0 0 0 96.30 FFT. This is consistent with the results of other stud-

ies into this problem. In fact, a statistical analysis
may reveal that the difference is not significant. How-
ever, an examination of the confusion matrices reveal
several distinct advantages of the wavelet transform.

First of all, the decimated wavelet performed better
Table 8: Percentage confusion matrix for FT64AVG4. than the FFT based methods on signal E. Signal E is

a long duration sinusoid. It occurs at a low frequency
TRUE ESTIMATED CLASS region that coincides to a region of high levels of ocean
CLASS # A B C D E noise (high relative to other frequency bands). The
# 94.87 0 .24 0 0 4.90 time-frequency plots shows that the wavelet transform
A 0 100 0 0 0 0 provided a sharp, distinct features for signal E. This is
B 0 0 100 0 0 0 because at low frequency, the decimated wavelet have
C 0 0 0 100 0 0 a large time window, corresponding to a significant
D 0 0 0 0 100 0 SNR improvement via processing gain. The only other
E 9.15 0 0 0 0 90.85 plots that appears to be quite distinct for signal E is

that of the 256 point FFT and the 128 point FFT with
3 frame averaging. However, the decimated wavelet
resulted in better performance on signal E than the
256 point FFT, because it can integrate over a time
window of 168.4 msec's, whereas the 256 point FFT

Table 9: Percentage confusion matrix for FT256. integrates only over 10 msec's.
In the case of signal B, Fig. 6, the wavelet trans-

form was able to demonstrate its multi-resolution ad-
TRUE ESTIMATED CLASS vantages. Signal B has important features in both its
CLASS # A B C D E gross and fine details. Since signal B consists of two
# 98.3 0 .14 0 0 1.56 pulses that are approximately 30 to 40 msec apart,
A 14.29 85.71 0 0 0 0 a pre-processor with a shorter width will likely mis-
B 37.5 0 62.5 0 0 0 taken the middle part of signal B for noise. Thus,
C 0 0 0 100 0 0 large FFT's, such as the 256 point FFT, fared far bet-
D 4.44 0 0 0 95.56 0 ter than the 128 point FFT with single frame averag-
E 5.37 0 0 0 0 94.63 ing. The solution to this problem using FFT is to use

larger FFT's; however, wavelets allow for classification
of long events, such as signal B, without compromising
temporal resolution.
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Finally, note that the decimated wavelet provided noises in underwater acoustics using arborescent
the best overall performance. This may be an indica- wavelets and neural networks," in Colloque "On-
tion that it has provided a succinct, parsimonious rep- deletts et Premieres Applications, Marseille, June
resentation of the essential features of this database. 1989.
We note that the decimated wavelet output has only
28 points. The FFT can provide a small dimension- [5] M. Desai and D. J. Shazeer, "Acoustic transient
ality (the 64 point FFT, for instance, provides 33 analysis using wavelet decomposition," in Pro-
points), but not without degradation in performance. ceedings of the IEEE Conference on Neural Net-

The results provided by the tree wavelet are pre- works for Ocean Engineering, pp. 29-40, IEEE,
liminary. It seems that 8 voices are not enough for August 1991.
this problem. [6] S. Beck, L. Deuser, R. Still, and J. Whiteley, "A

5 Conclusions hybrid neural network classifier of short duration
The use of the wavelet transform as a front end of acoustic signals," in Internation Joint Conference

an acoustic broadband discriminator is advantageous on Neural Networks, pp. 1-119-124, IEEE, July
under at least two conditions. The first condition is for 8-12 1991.
the recognition of a long duration low frequency burst [71 S. B. Davis and P. Mermelstein, "Comparison of
in the ocean, where most of the background noise is parametric representation for monosyllabic word
also in the low frequency. In this low SNR case, longer recognition in continuously spoken sentences,"
wavelet filters in the low frequency provides higher IEEE Transactions on Acoustic, Speech and Sig-
SNR by a processing gain (a stronger signal compo- nal Processing, vol. ASSP-28, pp. 357-66, August
nent resulting from integrating the data over a longer 1980.
period of time). The second condition is where multi-
resolution is required. Pulse trains emitted by dol- [8] M. J. Shensa, "The discrete wavelet transform,"
phins, for instance, have a fine feature for the individ- Technical Report 1426, Naval Ocean Systems
ual pulses, and a coarse feature characterized by the Center, San Diego, June 1991.
frequency and duration of the pulse train. If both fea-
tures are important characteristics, the wavelet trans- [9] R. R. Coifman, Y. Meyer, S. Quake, and M. V.
form provides a good feature extraction. Wickerhauser, "Signal processing and compres-

The experiments here also suggest that wavelet sion with wavelet packets," tech. rep., Depart-
tranbforms may provide a parsimonious representation ment of Mathematics, Yale University, April
of the signal, which can represent all the essential fea- 1990.
tures of a signal with few parameters. However, the
these experiments do not imply that wavelet transform [10] Y. Lee, "Classifiers: Adaptive modules in pattern
is better for all other databases. Using the converse recognition systems," Master's thesis, MIT, May
of the arguments made above, one would guess that 1989.
wavelet might not perform as well as FFT for a long [11] W. Y. Huang and R. P. Lippmann, "Comparisons
duration high frequency signal when the amount of [ ewe cHng and .u n, carsnnoise is significant. between conventional and neural net classifiers,"
Ano edisigi nt in Ist International Conference on Neural Net-
Acknowledgement work, pp. IV-485, IEEE, June 1987.

The authors are grateful to Dr. Mark Shensa for
his many helpful discussions. [12] W. Huang and R. Lippmann, "HMM speech

recognition with neural net discrimination," in
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