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Abstract Table 1: Principal Notation
Power spectral estimation provides one approach to
direction-finding. This approach readily generalizes t time
to produce a collection of newer direction-finding algo- f frequency
rithms. Estimation of the bispectrum yields a bispec- c speed of sound
tral direction finder. Estimates of time-frequency dis- E expectation operator
tributions produce Wigner-Ville and Gabor direction- u unit (look) vector
finders. Some types of non-stationary time series ad- u ut s ens or
mit spectral estimators which can be used. to localize =m(t) rth sensor output
a source. Chaotic signals can also be localized using x(t) = [Xm(i)] array "snapshots"
recently developed parameter estimators. rm vector to mth sensor

a(f, u) = [exp(i2xrfru/c)] steering vector

1 Introduction
In 1982, Don Johnson wrote a much-cited paper en-

titled The Application of Spectral Estimation Methods
to Bearing Estimation Problems [10]. In the interven- 2 Conventional DF
ing years, considerable development has taken place A quick review of conventional DF is undertaken
in time-frequency distributions, higher-order statis- in this section to provide the nomenclature for the
tics, and estimators for non-stationary random pro- subsequent DF algorithms. Assume a single source
cess. This paper extends the theme developed by is transmitting a signal s(t) in a lossless, plane-wave
Johnson to encompass some of these newer results. environment in the direction -uo. The signal s(t) is
Following a review of conventional direction-finding received by M omni-directional sensors fixed at posi-
(DF), section 3 shows how estimators of the bispec- tions rm. Each sensor receives a time-delayed copy of
trum can yield DF algorithms. DF using the Gabor s(t). The time delay function associated with the mth
Transform and Wiguer-Ville Distribution (WVD) are sensor is rm(uo) = r HuO/c. If additive noise (zm(t))
covered in sections 4 and 5. Spectral estimators for is present at the mth sensor, then the noise-corrupted
time series which are periodically correlated (cyclo- signal at the m-th sensor is determined as [10]:
stationary) also yield a DF algorithm (section 6) as
do the estimators for a fractral-like time series (sec- -m(t) = s(t + rm (U0)) + zm(t). (1)
tion 7).

Vectors are denoted boldface x. The conjugate The classical DF output z(t, u) using look vector u is
transpose is denoted as xH. The normal or Gaussian determined by weights (win) and time delays (rm(u))
distribution with mean p and variance 0 2 is denoted as
AN(p, a2 ). If {x(t)) is a zero-mean, vector-valued ran- M

dom process, the covariance function is z(t,u) E w ,mXm(t - rm(u)). (2)
m= 1

Rx(t, , t 2 ) = E[x(t1 )x(t 2 )H], The fundamental point of Johnson's paper [10] is that
the estimates of the power spectrum of {z(t, u)) yield

and the cross spectral density (CSD) matrix is: bearing estimates. To see this, make the following
standard assumptions regarding the stationarity of the

Px(f, 2) = j ,( , 1 2,)Rx(t .t 2 )dt 1di 2 " signal and the noise process z(t) -: [z,,,(t)].
17 _-o1



Assumption 2.1 Single source, uncorrelated noise: Definition 3.1 [13] If {x(t)} is a zero-mean, third-
1. the plane-wave signal s(t) is a zero-mean, wide-sense order stationary random process, then one definition

stationary (WSS) random process. of the third-order cumulant is
2. the noise z(t) is a zero-mean, wide-sense stationary Cx(ri, = E[x(t + Tj),& x(t + 2) &

random process.
3. the signal s(t) and the sensor noise are uncorrelated. where 9 is the Kronecker product. The cross bispec-

If s(t) WSS, it admits a mean-square Fourier rep- tral density tensor (CBT) is:
resentation Bx(f1,f2=

s(t) = ei2rftdS(f), j O e-i 2 r(fI1r,+2r2)Cx(rT, r 2)d-rldr2.

where dS(f) is an orthogonally scattered measure [12].
The power spectrum P, (f) of the signal is determined The generalization of equation (3) for the CSD matrix

E[IdS(f)121. Likewise, the WSS noise of the array output {x(t)} to the CBT is straight-by dP.(f) = E~d~)2.LkwsteWSnie forward [191.

vector z(t) admits Fourier representation with an or-

thogonally scattered vector measure dZ(f) and its __2_____).

CSD matrix is given by dPz(f) = E[dZ(f)dZ(f)H]. dBx(fif 2 ) = Z[dX(f 1 )0dX(f 2)OdX(f1 + f2)]. (5)
Under the assumptions 2.1, it may be shown that the For DF using the bispectrum, the classical assump-
array output {x(t)} admits an orthogonally scattered tions 2.1 need to be modified:
vector measure 10:

dX(f) = a(f, uo)dS(f) + dZ(f). (3) Assumption 3.1 Single source, independent Gaus-
sian noise:

Likewise, it may also be shown that the CSD matrix 1. the plane-wave signal s(t) is a zero-mean, third-order
of the array output is given as stationary random process.

dPx(f) = ErdX(f~dX(f)H] 2. the noise z(t) is a zero-mean, Gaussian, WSS ran-
dEX X) H  dom process.

- a(f,uo)a(f, uo)HdPs(f) + dPz(f) (4) 3. the signal s(t) and the sensor noise are independent.

Then the power spectrum P(f,u) of the classi- The bispectrum of a Gaussian WSS is zero [19, page
cal delay-sum DF is given by [1]: P :(f,u) = 36]. From equation (3), equation (5), and assump-
a(f,u)HWPx(f)Wa(f,u), where W is the diagonal tion 3.1, it can be shown that
matrix of the weights. As a special case, suppose
the sensor noises are independent and identically dis- dBx(fl, f2) =
tributed so that P,(f) is a scalar multiple of the iden-
tity matrix. In this case, P(f, uo) is the maximum a(fi, uo) 0 a(f2, uo) 0 a(fi + f2, uo)dBx(fl, f2).
value and illustrates the idea behind DF: that the
source direction can be determined by examining the In this form, the third-order signal subspace is oh-
maximum P(f,u) as a function of the "look vector" vious. For computational purposes, we can use the
u . equivalent form for three tensors: x ® y ® * - (x ®

As pointed out by Johnson [10], obtaining the CSD y)zH, which permits the application of the SVD to de-
matrix Px(f) is basic to this classical DF, as well as termine the projections for the third-order signal and
the MVDR and MUSIC DF. Therefore, consistent es- noise subspaces. Moreover, this equivalence combined
timation of the CSD matrix is a key point in these DF with equation (5) indicates that the CBT may be es-
methods and is usually justified on explicit WSS as- timated by averagin& Kronecker products of the DFT
sumptions and implicit ergodic assumptions. Before obtained by segmenting the data into time blocks [14].
we consider those cases where the array output {x(t)) Bispectral MUSIC performs DF by projecting a
is non-stationary, the next section is devoted to showr steering vector onto the third-order noise subspace and
ing how to generalize DF via the power spectrum to calculating the reciprocal of the norm of the projec-
DF via the bispectrum. tion. Mixed bispectral MUSIC performs DF by pro-

jecting a steering vector onto the second-order noise
3 Bispectral DF subspace (standard MUSIC) followed by the projec-

Higher-order statistical analysis of time series has tion into the third-order noise subspace and then cal-
been undergoing a tremendous development in the culating the reciprocal of the norm.
last decade. Excellent review articles of this area are The following simulation provides an assessment of
[13], [14], while [19] and [18] are foundational texts. these DF methods. A 10-sensor linear array is laid
In addition, Forster and Nikias [3] have produced a along the x-axis. Each sensor is spaced one-half wave
MVDR-like DF based on the bispectrum while Porat length at 11 Hertz. The standard right-hand coordi-
and Friedlander [16] DF using fourth-order cumulants. nate system is assumed so that broadside to the ar-
In this section, we show how to obtain a bispectral ray measure 0 = 90*. A Gaussian and a bilinear sig-
MUSIC DF and a mixed bispectral MUSIC DF. nal were present. The Gaussian signal was generated



by AR filtering i.i.d. r( 0, 1) noise (AR coefficients: Gabor representation of y(t) using the window func-
ao=l, a 1=.9, a2 =.81). This signal was normalized by tion g(t) is
setting the sample variauce to 1. It arrived on the
array from 800 azimuth using an FFT to perform the ot =r
lag. The bilinear signal was generated using the bi- y(t) = .C.g(t - nc)ei2rm ( - a),
linear model of Gabr [5]: st = 1.3st-3Ct-3 + CC, where m=-oo n=-oo
{e} is i.i.d. I'(O, 1) and then normalized by setting
the sample variance to 1. It arrived on the array from where a and P3 are positive, with a/3 < 1. This repre-
1000 azimuth using an FFT to perform the lag. Fi- sentation shows that the signal is to be expanded into
nally, the sensor noise was modeled as i.i.d. &r(O, 1). time-shifted and frequency-shifted versions of the win-
The sample rate was 34.38 Hertz and a total of 16,384 dow. Therefore, the application will dictate the choice
array snapshots were collected, of the window. Indeed, this is the basic point [4] for

The classical, MUSIC, bispectral MUSIC and analyzing transient signals. Since they consider a tran-
mixed bispectral MUSIC DF were applied to this data. sient signal as a signal whose duration is short corn-
All CSD and CBT estimates were made with 32- pared to the observation window, their basic idea is to
sample block averaging assuming fl=f2=11.5 Hertz. replace the original Gaussian window of Gabor by the
All MUSIC-type DF assumed two signals present. The one-sided exponential function: g(t) = /2e-Atu(t)
results are plotted in figure 1. The classical, MUSIC, to better follow transient signals with a sudden "on"
and mixed bispectral MUSIC indicate both sources time and subsequent exponential decay. Here u(t) is
with the primary lobe at the Gaussian source while the the unit step function and "the parameter A is used
bispectral MUSIC appears to discriminate between to control the effective width of the window" [4].
the Gaussian and the bilinear source. The use of the Gabor transform with this window

0 . is shown in the following DF simulation. A 10-sensor
linear array is laid along the x-axis and each sensor is
spaced one-half wave length at 11 Hertz with the first

2- % sensor located at the origin. An 11-Hertz plane-wave
... --- . ---- ............ signal is impinging broadside to the array (azimuth

0 = 90*) with an amplitude of 1/10. The signal is cor-
rupted by i.i.d. Gaussian noise W((0, 1) at each sensor.
In addition, five one-sided decaying transients were
added to the environment (a= 1, 63=1, A=1) and rele-

" , vant parameters are displayed in Table 2: A total of

.70.. " -

Table 2: Parameters for Gabor Transients

................. time delay azimuth Irequency
9index (sec) (deg) (Hertz)

uimuth (deg) 1 13 62 12

2 23 63 12
Figure 1: Bispectral DF on Two Sources - Gaus- 3 21 110 10
sian source at 800 azimuth; bilinear source at 1000 4 5 64 12
azimuth; Gaussian sensor noise. The solid line is the 5 10 80 13
classical DF, the dashed line is MUSIC, the dotted line
is bispectral MUSIC, and the dash-dot line is mixed
bispectral MUSIC. 1,024 array snapshots were collected during the time

interval of 0 < t < 32 seconds at a sampling rate of 32
Hertz. Figure 2 plots the 11-Hertz signal, the Gaus-

4 DF via the Gabor Transform sian noise, and the five transients at the first sensor.
This section shows how the Gabor transform can Figure 3 is a plot of the discrete Gabor transform of

be used as a pre-filter for removing transient signals the output of first sensor. The time axis starts at time
corrupting the sensor data. Since a transient can be t = 0 in the leftmost corner and moves in one-second
isolated from the sensor data, it follows that the same increments to the uppermost corner. The frequency
processing can apply to transient DF [22, Chapter axis starts at f = 0 in the leftmost corner and moves
4] and admit more advanced transient DF based on in one-Hertz increments to the lowest corner. The five
minimum-variance or subspace methods. For brevity, transients are clearly displayed.
we focus on using the Gabor transform as a pre-filter. The effect of the transients on the MVDR DF is

The application of the Gabor transform as a means shown in Figure 4. MVDR used 11 Hertz in an at-
of transient detection was beautifully developed by tempt to find the weak li-Hertz signal but the tran-
Friedlander and Porat [4] and we borrow heavily from sients swamp the output. The transients were removed
that paper. Let y(t) be a given continuous-time, real- by takingthe Gabor transform of each sensor's output,
valued signal. Let g(t) be a fixed, non-negative func- finding those coefficients exceeding three standard de-
tion of unit area, called the window function. Then the viations of the Gabor transform, and then subtracting



0

the corresponding Gabor transients (weighted by its
Gabor coefficient). Thus, the Gabor transform func- .2

tioned as a pre-filter and the resulting array output
was passed to the DF. With the transients removed, . .
the MVDR DF located the 11-Hertz signal. /" /

"% .. o o m o 1o

6

44

2 
-101

00 20 40 60 80 100 120 140 160 180

uwmUb (deg)

Figure 4: MVDR using a Gabor Prefilter - An
11-Hertz signal at 1/10 amplitude from 900 azimuth,
additive M/0,1) noise, and the five Gabor transients.

10 15 20 2S 30 35 The CSD was estimated at 11 Hertz by averaging 32-
sample blocks of the 1,024 array snapshots. The solid
line is MVDR without the Gabor prefilter and the

Figure 2: Time Series of the First Sensor - The dashed is MVDR with the Gabor prefilter.

11-Hertz signal at 1/10 amplitude, additive A/(0,1)
noise, and the five Gabor transients. and frequency. As such, this approach could be used

to DF on transients.
Given two analytic signals X(t) and y(t), their cross

Wigner-Ville Distribution (XWVD) is [2]:00
W(z,y;t, f) = ei 2 wfz(t + T/2)9(t - r/2)dr.

Consider the case of the array output when only one
analytic signal is present from the direction u0 . Then
x(t) = [s(t + rm(uo))]. The XWVD of the mth and
m'th sensor outputs is:

W(ZM, zm,; t. f) = e i2 rf ( r_ ( u ) - r_- ( u o))

x W(s,s;t+ rm(uo)/2+r.,(uo)/2,f).

If the XWVD is smoothed in time, then three obser-
vations can be made: First, if the time lags are rel-
atively small with respect to the smoothing window,

Figure 3: Gabor Transform of the Time Series then the phase term is not affected while the time-
of the First Sensor - The 11-Hertz signal at 1/10 shifted WVD of the signal may be approximated by
amplitude, additive X(0, 1) noise, and the five Gabor the WVD of the signal. In matrix form, we get the
transients. estimate of the WVD of the array:

5 DF ia th WVDW(x, x; t, f) :t a(f, u)a(f, Uo)HW(s, s; f, f),
5 DF via the WVD

This section shows how one preliminary estimate where W denotes the smoothed WVD of the array
of the Wigner-Ville Distribution (WVD) of the ar- output. Second, if noise is present and distributes
ray output can be used to DF a source in both time in a uniform and zero-mean fashion over the time-
and frequency. This approach is different from that of frequency plane, then the smoothing should have the
Swindlehurst and Kailath [21] in which a spatial WVD effect of providing a biased estimate of the WVD of
was used to handle the near-field effects and produced the array but with a lower variance than the "raw"
both bearing and range estimates. Instead, we show WVD. Third, the form of the estimate permits the
how to use the WVD to DF on a source in the far field, application of subspace methods.
provided the signal admits a WVD sufficiently differ- The following simulation supports these claims.
ent from the background noise at a particular time The 10-sensor linear array spaced at 1/2 wavelength



(f = 11 Hertz) is receiving chirp signals from two of Schell [20] which exploits cyclostationarity to per-
sources: one source is broadside to the array (azimuth form DF using subspace methods and has performed a
0 = 900). and transmits a four-second chirp. The Cramer-Rao lower bound analysis. Another approach
chirp starts at time t = 0 at 16 Hertz and sweeps to DF can be made using spectral estimators obtained
down at 4 Hz/sec. The second source is located at by Hurd [7], [8] and is the subject of this section.
0 = 600 azimuth and transmits a chirp sweeping up at
4 Hz/sec starting from 0 Hertz. Sensor noise was mod- Definition 6.1 [15, page 226] A random process
eled as i.i.d A(0, 1). A total of N= 128 array snapshots {x(t)) is called cyclostationary of period T > 0 for
were collected at a 32 Hertz sample rate. Figure 5 which the mean and covariance functions are periodic:
plots conventional DF at 11 Hertz, the conventional for all times t, t1 , and t2 , there holds E[z(t + T)] =
WVD DF, and the MUSIC WVD (one signal). Both E[x(t)] and R,(t1 , t2 ) = R,(t, + T, t 2 + T).
WVD DF used time t = 1.25 seconds and f = 11
Hertz. The conventional DF estimated the CSD ma- Definition 6.2 [12] A random process {z(t) is called
trix using 32-sample time blocks. The XWVD was (strongly) harmonizable provided it can be repre-
estimated in FFT size of 64 and rectangular 8-point sented in quadratic mean for every time t by the inte-
time-smoothing. The figure shows that both the WVD gral
DF distinguish the two sources while the conventional X(t) = ei2rltdX(f)
DF also shows that there are two signals at 11 Hertz eo d
at 60, and 90w azimuth.

0 . where X is a random measure for which the spectral
measure defined by PZ,(A x B) = E[X(A)X(B)] is of
bounded variation.

Hurd [7] points out that when {z(t)} is both cy-
.10 clostationary and harmonizable then the spectrum

P_2 (fl, f2) is confined to diagonal lines in the f, x f2
.15 -.:plane which are parallel to the main diagonal and

spaced 11T Hertz apart. In particular, stationary
and DF using f, : 12 should permit noise suppres-

sion. The DF assumptions are as follows:
-23

Assumption 6.1 Single Cyclostationary source,

3 I0 uncorrelated noise:
-0 0 40 60 so 100 120 140 160 ISO 1. the plane wave signal s(t) is a strongly harmonizable,

aimth (deg) cyclostationary random process.

2. the noise z(t) is zero-mean, WSS.Figure 5: WVD DF on Two Chirps - One chirp 3. the signal s(t) and the sensor noise are uncorreloted.

at 90* azimuth sweeping down from 16 Hertz at -4

Hz/sec. The second chirp at 60* azimuth sweeping Since the noise vector z(t) is WSS and signal s(t) is
up from 0 Hertz at +4 Hz/sec. The solid line is the strongly harmonizable, then the array Then the array
classical DF, the dashed line is classical WVD DF, and output x(t) is harmonizable with a Fourier measure
the dotted line is the MUSIC WVD DF (one signal). given by dX(f) = a(f, uo)dS(f) + dZ(f), where only

Z(f) is orthogonally scattered. From this representa-
tion, the CSD matrix of the array has the form:

6 DF on Cyclostationary Signals dPx(f1J.) = E[dX(f)dX(f2) ]

The fundamental stumbling block in treating non-
stationary time series is the lack of either a sample dP(fi,f 2 )a(fi,uo)a(f 2 ,uo) H + dPn(fi,f 2 ).
ensemble (which would permit a consistent estimation
of the CSD matrix), or an ergodic theorem (which can Note the following: the noise CSD matrix is supported
produce a consistent estimate from a sufficiently long only on the line of zero frequency difference; the exten-
realization of the time series). While there is a large sion to subspace algorithms appears straight-forward;
literature of attacks on non-stationary time series (see the CSD matrix can be estimated by averaging outer
Priestley [17] for an accessible survey), this section products of FFT vectors of the time segments of the
will consider harmonizable, cyclostationary time se- data if the period T is known.
ries. These assumptions will permit the estimation of The following simulation examines these claims.
the CSD matrix and readily apply to DF. A 10-sensor linear array spaced at 1/2 wavelength

Cyclostationary time series have been undergoing (f = 11 Hertz) is receiving two signals: the first
an extensive development in the last decade. (the is a cyclostationary signal generated by amplitude-
April 1991 issue of the IEEE Signal Processing Mag- modulating X1(0, 1) noise at 4 Hertz. This AM signal
azine is devoted to cyclostationary processing). In is normalized by setting the sample standard devia-
particular, we single out the excellent Ph.D thesis tion to one and arrives broadside to the array (90*



azimuth). The second signal is an 11-Hertz complex The basic idea is to assume that a signal s(t) is of the
exponential arriving at 75* azimuth. Sensor noise is form of the Model 2. A look direction is picked and the
i.i.d. N(0, 1). A total of 256 array snapshots were time series resulting from the conventional delay-sum
collected at a 128 Hertz sample rate. The classical beamforming is fed into the estimation scheme. The
DF estimated the CSD matrix by averaging 32-point one-step mean-squared prediction error is calculated
blocks at 11 Hertz. The cyclostationary DF worked by and its reciprocal is plotted as a function of the look
picking a look direction and then feeding the output direction. If the look direction matches the signal di-
of the conventional delay-sum beamformer into a esti- rection, then a good fit of the signal is obtained which
mator of the two-dimensional spectrum P,(f 1 , f2) at results in a small prediction error. Otherwise, a poor
the point (fl, f2) = (11, 15) Hertz. The spectral esti- fit occurs which results in a large prediction error. We
mator performed diagonal smoothing by averaging 11 compare this Fractal DF with the conventional DF
diagonal bins spaced 0.5 Hertz apart centered about and the MUSIC DF in the following simulations.
at (11,15). The results are displayed in figure 6. The We use a 10-sensor linear array with 1/2 wavelength
classical DF localizes the 11-Hertz signal while the cy- spacing (f = 11 Hertz). One signal is placed broad-
clostationary DF locates the AM signal. side to the array (azimuth 0 = 900) and is generated

0 from the CLM (p = 4, s(0) = 1/3). An second signal
was generated from the CLM and arrives on the array

.5. from 95* azimuth. The arrival was simulated using the
Fourier method: the FFT of the time series was mul-
tiplied by the appropriate phase for each sensor and

10 the inverse FFT determined the signal at each sensor.
SSensor noise was modeled as i.i.d zero mean Gaussian-15-.....''. with the standard deviation set so the SNR_-I. A

total of N=128 array snapshots were collected at a
100 Hertz sample rate. The Classical and MUSIC DF

"20 were operated at 11 Hertz and the CSD matrix was
estimated using 32-point block-averaging. MUSIC as-

-25 . sumed two sources. All DFs locate the source at 900
azimuth though the beamwidth of the fractal DF is
much narrower than the other DFs. The results are

0 20 40 60 so 10 120 140 160 Iso shown in figure 7. The Conventional and MUSIC DFs
usio& (d.g) could not resolve this sources, but the Fractal DF is

correctly indicating the signal directions at 900 and
Figure 6: DF on Cyclostationary Signals - 950 azimuth.
Gaussian AM signal at 900 azimuth; 11 Hertz signal "

at 75* azimuth. The solid line is the classical DF; the
dashed line is the cyclostationary DF.

7 DF on a Chaotic Signal 1 .
In the past decade, there has been a surge of pub-

lications in chaotic systerm. Of particudar interest ....... -,- "
for sonar applications, we single out the work of K. -.
Karagiannis [11] which observed chaotic behavior in
the noise generated by rattling gearboxes. One basic
model of chaotic behavior is the conventional logistic
map (CLM) [231:

X(t + 1) = AX(t)(1 - .(t)). .2s1
0 20 40 60 SO I00 12D 140 160 ISO

One stochastic generalization of the CLM is the Model azimuh (dvg)
2 of [6]: for t = 1, 2, ...

Figure 7: DF on a Two Chaotic Signals - Two
x(t + 1) - k(a,b)x(t)a(1 - r(t))bu(t + 1)', CLM signals at 90* and 95* azimuth. The solid line

is the classical DF, the dashed line is MUSIC, and the
where a, b, and c are non-negative, {u(t)} are inde- dotted line is the Fractal DF.
pendent and identically distributed uniformly on the
interval [0, 11, k(a, b) = (a + b)+i/(asb"), and the ini-
tial value is set as z(0) = u(0) ' . Estimators of a, b, c 8 Conclusions
were obtained and it was observed that Model 2 pro- The preceding sections have shown that Johnson's
vided a good fit to time series generated by the CLM. [10] approach to bearing estimation as form of spectral

This section demonstrates that the Model 2 esti- estimation readily generalizes whenever a statistically
mators of a, b, and c can apply to source localization. consistent ertimator of a signal attribute c-, lie found.
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