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DISCRETE WAVELET TRANSFORMS:
THE RELATIONSHIP OF THE 'A TROUS AND MALLAT ALGORITHMS

M. J, Shensa
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RESUME ABSTRACT

L'objet de ce papier est de clarifier les rapports entre In a general sense this paper represents an effort to
transform&s d'ondelettes discr~tes et continues. Plus clarify the relationship of discrete and continuous wavelet
pr&eis~ment, on s'intresse aux liens entre deux transforms. More narrowly, it focuses on bringing together
impl6mentations distinctes de la transform#e d'ondelettes: two separately motivated implementations of the wavelet
l'algorithme i trous et la dbcomposition multir~solution de transform, the algorithme *a trous and Mallat's multiresolu-
Mallat. On remarque que ces algorithmes sont tous deux tion decompostion. It is observed that these algorithms are
des cas particulierSd'une unique structure banc de filtres, both special cases of a single filter bank structure, the
appel6e transforme d'ondelettes discrete, dont le com- discrete wavelct transform, the behavior of which is
portement depend du choix des filtres. Dans cette governed by one's choice of filters. In fact, the 'a trous
approche l'algorithme i trous se presente comme un algo- algorithm, originally devised as a computationally efficient
rithme multir~solution non orthogonal pour lequel la implementation, is more properly viewed as a nonorthogo-
transform& d'ondelettes discrite est exacte. Un cadre nal multiresolution algorithm for which the discrete wavelet
systematique est propose pour cette transform6e et des con- transform is exact. A systematic framework for the discrete
ditions pour lesquelles elle permet le calcul exact de la wavelet transform is provided, and conditions are derived
transformbe d'ondelettes continue sont 6tablies. under which it computes the continuous wavelet transform

exactly.

I. INTRODUCTION more precisely as E fk -. /2, is necessary to the construc-
tion of a corresponding continuous wavelet function [31-

Wavelets are rapidly finding application as a tool for The bandpass requirement, while apparently not essential to
the analysis of nonstationary signals [1. However, with the all applications, ensures that finite energy signals lead to fin-
notable exception of orthonormal wavelets ([21, [3]), very lit- ite energy transforms ([6]). Under these conditions the
tie literature has been devoted to linking discrete implemen- filter bank output will be referred to as the Discrete
tations to the continuous transform. As in the case of the Wavelet Transform (DWT), a terminology which will
discrete Fourier transform, these implementations (or filter become clear in the course of the paper.
banks) can, and should, stand on their own as abstract One class of DWT filter pairs are the Daubechies
decompositions of discrete time series. Their wide sweeping filters [3] which yield orthogonal wavelet decompositions
significance, however, lies in their interpretation as wavelet and constitute, in more conventional terms, a QMF filter
transforms. In a general sense, this paper represents an bank with perfect reconstruction. Another is that for which
effort to clarify the relationship of discrete and continuous the lowpass filter satisfies the 'a trous condition
wavelet transforms. More narrowly, it focuses on bringing f2k - 6(k) /N/2. Such filters, which simply serve to interpo-
together two separately motivated implementations of the late every other point, correspond to a nonorthogonal
wavelet transform. One of them, the algorithine 'a tros for
nonorthogonal wavelets ([4], [51), was developed for music
synthesis ([1]) and is particularly suitable for signal process- 2 ---n
ing. The other, the multiresolution approach of S. Mallat S Li j S 1. S2 .......
and Y. Meyer, originally used in image processing, employs
orthonormal wavelets 121 - [31

A glance at these two algorithms suffices to reveal I 9
closely related structures. In fact, api:rt from the con- -
straints on their filters, tile decimated 'a trous (15]) and Mal-
lat algorithms are identical. We are thus lcd to examine the N, , w ~

expanded family of algorithms encompassing both types of
filters. The algorithms to be discussed all are filter bank Figure 1. A wavelet filter bank structure. The down-arrow indi-
structures (see Figure I). Their only distinguishing feature j.tes decimation. The output of the transform is tIle family of sig-
is the choice of two finite length filters, a lowpass filter f nals w', forming the two parameter transform w, in the scale-time
and a bandpass filter g. The lowpass condition, expressed plane. Following terminology to be introdUCed. M' is the

(decimated) discrete wavelet tr ansform



wavelet decomposition. If they are further restricted to be decimation, is easily restored by separately filtering the even
LVgrangian interpolators, they become the squares of the and odd sequences or by using the algorithm pictured in
Daubechies filters [6], which is quite remarkable in con- Figure 2 (c.f.,[61).
sideration of the totally different derivations.

A fundamental question is when do these discrete
implementations yield exact (i.e., sampled) versions of w tafr Asid .continuous wavelet transform? Aside from regularity condi- -....... s' ----- F O fl--- . I ...

tions relating to smoothness [3], we shall find that if f is 'a Jr
trous, then the DWT coincides with a continuous wavelet
transform by a wavelet g(t) whose samples g(n) form the DD
filter g. Even if f is not 'a trous, the algorithm is exact pro-
vided the signal lies in an appropriate subspace; however,
in that instance, the corresponding wavelet depends on f as
well as g. This is the situation in the orthonormal case W W
where, moreover, the filter g is almost completely deter- Fig 2. The (undecimated) discrete wavelet transform. The
mined from f through the constraints of orthogonality. filters D'f are obtained from f by inserting 2'-1 zeros between each

pair of filter coefficients. The operation of filtering is understood to
I. TRANSFORM DEFINITIONS mean convolution.

The continuous wavelet transform of a signal s(t)
takes the form Proceeding from (3), we shall arrive at the DWT of

Fig. 1, namely,

W(a,b) f . (') f) t) dt (1)a af i]. _ f,.-- [ si-']j (4)

where g is the analyzing wavelet, a represents a time dila- [w'le - I. g.-j [si-'J
tion, b a time translation, and the bar stands for complex
conjugate. The normalization factor 1Va is perhaps most
effectively visualized as endowing I W(a,b) 12 with units of where [w41 corresponds to w(2', 2'n) of equation (3) and so

power/hz. Certain weak "admissibility" conditions are usu- is the original signal s. The mysterious appearance of the
ally required on g(t) for it to be a candidate for an analyzing filter f in (4) will be unraveled in the derivation of the 'a
wavelet; namely, square integrability and f Ik(w)12 dw < co trous algorithm in Section III. Finally, we shall come full

1e circle in Section IV where, under quite general conditions,
where &() is the Fourier transform of g(t). They insure that we show the existence of a function g(t) with g(n) - g.,
the transformation is a bounded invertible operator in the and such that the DWT acting on the sampled signal is
appropriate spaces ([3], [7]). If (w) is differentiable, then it exactly the sampled output of the continuous wavelet
suffices that g be zero mean, i.e., that J g(t)dt - 0. transform (i.e., of the wavelet series).

We shall be exclusively concerned with discrete values Note that (1), (2), (3) and (4) have an analogy in the
for a and b. In particular, we assume that a has the form Fourier transform, Fourier series, discretized z-transform,
a - 2' where i is termed the octave of the transform. The and the discrete Fourier transform (DFT). The Fourier
integral (1) then yields a wavelt series transform of a continuous signal s(t), S(w) 4 f e-4' s(t) dt,

W(2', n) a - f (__-_n) s(t) dt. We remark that finite is a function of the continuous variable W. Restricting it to\/2 2 a discrete (one-dimensional) grid Irsuts in the coefficients
energy for the wavelet transform is not at all equivalent to ofa iscreter oediesi ) gri e-su t) tin th icin
finite energy for the wavelet series. It depends on the sam- of a Fourier series S(27rm) - e- s(t) dt, which in

turn may be computed approximately by s,(27rmat) -
pling grid as well as the function g(t). Thus, the above e 2  ' s(kAt) At the z-transform of a. s(n ) output at
admissibility condition is not necessarily appropriate in the k
discrete case and should be replaced with conditions on the discrete points e 2, m". If s(t) is band-limited and sampled at
relevant filters [6]. In the present paper, we shall take b to an appropriate rate, At - l1N, then the above may be
be a multiple of a N k

computed exactly using the DFT, g. Ee " S

These transforms correspond precisely to W(a, b), W(2', n),
W(2', 2'n) &-- fg(-) - n) s(t) dt (2) w(2', n), and undecimated w.". With wavelets, however, we

/2 2 have the additional difficulty of dealing with a whole class

of functions g(t) rather than simply ei"t. Also complicating

A logical step in applying the theory to discrete sig- things are its two-parameter structure and the existence of

nals is to discretize the integral in (2) decimated versions, which, due to their 2'n dependency on
i, play a distinguished role without analogy in the one-
dimensional case.

w(2', 2'n) 9 g n) s(k) (3)

(VT / 2 Il. THE'A TROUS AND MALLAT ALGORITHMS

The sample rate has been set equal to one. As indicated by Notation

2'n on the left hand side, (3), as well as (2), are decimated Signals and filters in bold face will be treated as vec-
wavelet transforms- Octave i is only output every 2' sam- tors, in which case * indicates discrete convolution and
pies. In this form the resulting algorithms will not be trans- yields a vector. The symbol t is used for the adjoint filter
lation invariant. I owever, the invariance, which is lost by (ft)k = f--k Decimation, which appears as a down arrow



'in Fig. 1, plays a pivotal role in all DWT algorithms and will be rewritten

be represented by a matrix Akj a 6(2k - j) where 6(j) is the
Dirac delta function. Also of significances is its transpose, si+1 - a (f * st)  (9a)
Dk1 A 6(k - 2j), which dilates a vector by inserting zeros. wi 

- ga*s' .(9b)

The 'a trous algorithm

We take the discretized wavelet series (3) as a starting Except for decimation of the output, this is the 'a trous
point. The difficulty in implementing (3) is that, even for algorithm described in [4]. Thus, we see that the 'a trous
g(t) of finite support, as i increases, i must be sampled at algorithm is simply a DWT for which the filter f (an interpo-
progressively more points, creating a large computational lator) satisfies condition (6) and the filter g is obtained by
burden. The solution posed by [4] is to approximate the sampling an apriori wavelet function g(t).
values at nonintegral points through interpolation via a fin-
ite filter ft. The resulting recursion is highly efficient and The Mallat Algorithm
may be implemented with the filter bank structure of Fig. 1. With w*- replaced by wL, the recursions (9) coincide

The interpolation is perhaps best introduced with an with those of the Mallat algorithm ([2], [3]). As is well
example. Let ft be the filter (0.5, 1.0, 0.5). Then, known ([3]), in the orthonormal case, they provide the sam-

pled output of a continuous wavelet transform; that is, wn

g2 ncoincides with W(2i,2in) of (2) for suitable g(t). More pre-

( - n even cisely, if the filters f and g satisfy
k~

- t g k  -_1( n-I ,)+ n+l,(5[(g(-"I) 2 g 2'-i)) n odd F. 12j-, fi- + g+ j-. - - 692,-, (10a)

approximates a sampling of g(t/2). With the help of the . -iT2. -j - 0, (10b)
dilation operator D, this may formalized as a general pro- !

cedure for dyadic interpolation. The steps are illustrated in
Figure 3. Let g be a filter defined by gl A g(n). First we plus certain regularity conditions, then

spread g* to provide space in which to put the interpolated
values. The resulting filter is D gt. Then we apply a filter ft - - (
which leaves the even points fixed and interpolates to get -/2f s(t)n

the odd points. This condition, that f be the identity on provided that
even points, is sufficiently important to warrant a separate
defimition: The lowpass filter f is said to be an 'a trous filter sk - f s(t) (t-k) , (12)
if it satisfies

f2k - 6(k)//2 . (6) where 4 (c.f., (14) below) is related to g(t) and the filter g
by

The result of the entire interpolation operation, as pictured
in Figure 3, is thus g(t) - - E V2 k 0 (2t- k) (13)k

1
fI * (Dg') - 2f' g(k) 1 -7 g(n/2) . (7) It is extremely important to note that, although the discrete

algorithm (4) is an exact computation of (11), the sampled
signal must lie in an appropriate subspace (i.e., (12)), and
the relationship between g(t) and the filter g is relatively
complex, i.e., g. v g(n).

g(n): g(-1) g(O) g(l) g(2)

I IV. THE DWT AS AN EXACT WAVELET TRANSFORM

Dg: g(-1) 0 g(O) 0 g(1) 0 g(2) Regardless of the filters employed, one can, of
course, perform the recursions (9) on the sampled signal s.

tf'%/2 Moreover, provided that f is lowpass and g bandpass, the
procedure may be interpreted physically as a bank of pro-

Sg(n/2): g(-I) x g(O) x g(1) x g(2) portional bandwidth filters [1], [6]. In the present section,

Figure 3. Diagram illustrating the dialation and interpolation of a we examine the mathematical significance of relaxing the
function g(t) : g(n/2) z V21 (Dgt). filter constraints (6) and (10). Our goal will be to relate the

more general filter bank to the continuous wavelet
transform, thus, in a sense, justifying the term DWT. In
this endeavor, the major questions which we shall address

Noting that g(k _ n) - g( k -2n )and inserting the are: for what functions g(t) is the recursion (9) an exact
2 implementation of (3) and for which g(t) and s(t) do (2) and

approximation (7) into (3), we obtain (3) coincide? The general answer is that we arc able to con-

_, struct such a g(t) provided the discretized signal lies in the
w(2, n) I g--2m g,, sk - Ig a * s)), (8) subspace dictated by (12). A somewhat surprising result is

that it is necessary and sufficient for f to be 'a trous for con-
which is simply w" of equation (4) with i = 1. Continuing dition (12) to be dropped. Due to a lack of space only the
inductively by replacing s in (8) with si- 1, we find that results will be presented. The reader is referred to 16] for a
w()2'. 11) xx, for all i. where vi is given by (4), which can complete treatment including proofs.



The discrete algorithm is specified by a signal s(t) and and discretized wavelet series
two discrete filters f and g. The wavelet transform wi is

:' then determined from (9) and the initial conditions on s .  w(2 , 2in) E g g(k) s(k) (20)
Our approach in relating this recursion to a continuous k
wavelet transform is to mimic the standard construction of
orthonormal wavelets [3]. More precisely, we construct a Let 4= s stand for the scalar product E 4C(k)sk, and
scaling function 4(t) with Fourier transform k

4.(t) • s(t) for the L 2 scalar product f 0 (t) s(t). Then:

$(w) . f(.')J (14) f is 'a trous -C g(n) - g=

where F1(w) - (ft)(w) is the z-transform of ft. (Sufficient For s discrete:

conditions on f for the existence, boundedness, and so - s - w(2 i, 2in)- w i
smoothness of 0 may be found in [3].) Note that for (14) to s a
converge to a nonzero function, the factors must approach s - s and f is "a trous w(21, 2'n) -
one; i.e., f,(0) - 1, which implies Efk - %/2.

The obvious choice for s o is k For s(t) continuous:

so = 0.(t) - s(t) - W(2 t, 2'n) - wn

s: .a s(n) (15a)
Restrictions on the filter g

However, we shall also consider Restrictions on the filter g relate to finite energy and
admissability, which, as mentioned in Section II, differ
from the continuous case. Constrained by space, we limit

so -a E 4(k - n) s(k) , (15b) ourselves to the following result from [6]: Let
Il i°°112 M lim sup hsl 12/2'. A sufficient condition

which relates to the discretized wavelet series w(2', 2n), and i-m.atfor the undecimated DFr ;v and its inverse to satisfy

s o a f 4(t - n) s(t) dt , (15c) A I1sl ' < + 12i 'l" < B I sII1 (21)
~ f £2'

(i.e., to be bounded in an appropriate metric) is that, for all
which corresponds to the sampled WT (wavelet series). For If(w) 2 < 2and
a given g, we shall construct a continuous function g(t) such

that the DWT of equation (9) is an exact implementation of
the discretized wavelet series under (15b) and of the wavelet I g.(.) 12
transform under (15c). 0 < A < 2 < B < o (22)

Define g(t) and gi(t) by 1 -- Ifz(w) 2

2

g(t) Y (t + k) gk- k 4b(t- k) gr (16) Note that a necessary condition for (22) to hold is

I - I .7) I - 2 - g,(-) - 0, which is very similar to the con-
g 2--- g(-- - n) (17) tinuous admissability condition.

REFERENCES

The 'a rous condition (6), f2k - 6ko//2, plays a central role

as a consequnce of the following theorem [6]: [1] Wavelets: Time-Frequency Methods in Phase Space, Proceed-
ines of the International Conference, Marseille, Dec., 1987, J. M.

f is an 'a trous filter - 4(n) - 40 (18) Combes. A. Grossman, Ph. Tchanitchian eds., Springer-Verlag,
1989.

[2] S.G. Sallat, "A theory for multiresolution signal decomposi-

This theorem implies that if f is an 'a trous filter, then g(t) tion: the waselet representation," IEEE Trans. on Pattern Analysis

defined by (16) satisfies g(n) - g!. We proceed to give a and Machine Int., 2, July 1989, pp 674 -693.

summary of exactness results; i.e., conditions under which [31 1. Daubechies, "Orthonormal bases of compactly supported
wavelets." Comm. Pure Appl. Math., 41, 1988, pp. 909 - 996.

the transforms W(2', 2'n) (continuous signal and continuous [4] M. llolschneidcr, R. Kronland-Martinet, 1. Morlet, and Ph.
wavelet) and w(2', -in) (discrete signal and continuous Tchamitchian. "A real-time algorithm for signal analysis with the
wavelet) are computed exactly by the discrete wavelet help of the wavelet transform," reference [1] above, pp 286 - 297.
transform wi (discrete signal and discrete wavelet filters). [5] P. Dutilleux. "An Implementation of the algorithme'a trous to
The proofs may be found in [6]. compute the wavelet transform." reference [1] above, pp 298 - 304.

[6] N1. J. Shensa. -"[he Discrete wavelet transform: wedding the

Exactness 'a trous and Niallat algorithms," submitted to IEEE Trans. ASSP.
May. 1990

Given discrete filters f and g such that 4(t) of (14) is 17] A (;rossnia, and 1. Motlet, "Decomposition of Hardy func-
well defined, define g(t) and g,(t) by (16) - (17) with tions into sqarc intcgrable wavelets of constant shape." SIAM I.
corresponding sampled wavelet transform (wavelet series) ,Math Anal . 15. 1984. pp 723 - 736.

W('_, ) f :(t) s(t) dt (19) This woik %,is funded by ()NR under the NOSC IR program.


