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INTRODUCTION 

A. STATEMENT OF THE PROBLEM 

The Army has a need for information about the distribution of smokes and chemical agents 
in the atmosphere, and their changes with time. With the increasing use of laser-guided 
weaponry and detection systems, there is a gTeat need for quantitative measures of the probability 
that a clear line-of-sight will be found through an obscurant cloud. Chemical and biological 
defense planning also needs information about the likelihood that critical concentrations will be 
exceeded. This is the problem addressed by the research reported here. 

Practical treatments of the smokes and gasses in the atmosphere have largely been limited to 
dealing with "average" or "most probable" results, i.e., smooth distributions. Any observation of 
atmospheric plumes suggests that such a picture does not accurately portray conditions at a single 
moment in time. Considerable structure and numerous inhomogeneities are usual features of 
such instantaneous plumes. This is not important for some applications, but in many instances 
it is, (e.g., when we wish to know thi likelihood of being able to see through a plume, or of 
encountering short-term concentrations above some critical threshold). 

There is reason to believe that the inhomogeneities in smoke plumes are "fractals." Some of 
these reasons are reviewed later. In the work reported here, I have identified suitable fractal 
analysis techniques and observations, and adapted and applied those techniques to the observa- 
tions. Some of the techniques and results suggest that, in the future, they will lead to a much 
better understanding of atmospheric turbulent processes. 

B. EVOLUTION OF THE RESEARCH APPROACH 

Before proceeding to review why fractal concepts are important to the description of the 
inhomogeneous distributions of kinematic properties and the mixing of materials, I will briefly 
describe the evolution of the approach that was taken. 

This work started with the intention of developing and applying methods for calculating the 
fractal dimension of atmospheric fields. As the project proceeded, it became apparent that fractal 
dimension provided only limited information and that the techniques used to estimate fractal 
dimension generated much valuable information that was discarded. For example: 

• Simple box-counting methods do not use the spatial relationships between 
boxes containing members of the set at different scales. 

• The Fourier methods do not use the distributions of amplitudes in the Fourier 
plane to infer anything about changes in anisotropy with scale. 

Other factors were also troublesome. First, all the methods dealt only with the distribution 
of scalars in space, or with the distribution of members of some specified set (e.g., scalars with 



values in a specified range). Another problem area was that fractal dimension was of rather lim- 
ited use. Finally, there didn't seem to be much connection to the physics of the processes being 
studied, although there appeared to be some good reasons to think that fractals would be inherent 
to many atmospheric processes (e.g., the space fillingness of turbulence and the cascade of 
energy to ever smaller vortices). 

At about this point J.G. Jones sent a preprint of the paper, "Multi-Resolution Analysis of 
Remotely-Sensed Data." This paper (eventually published—Jones et al., 1991) described how to 
use defined structures in a two-dimensional scalar field as the sets from which fractal dimension 
was calculated. Although still limited to scalars and two dimensions, it was clear that the tech- 
nique could readily be extended to three dimensions. Furthermore, it soon became obvious that 
extension of the approach to two- and three-dimensional vector fields was also possible. This 
multiresolution feature analysis and other techniques are described in Section II. 

With this new approach, it was theoretically possible to select "physically significant fea- 
tures," and use them in the analyses to learn more about the processes. It also appears that use of 
such features might significantly improve the realism of simulated inhomogeneous distributions. 
Of course, we must be able to define "significant features," the obvious line of reasoning is to 
devise a method whereby the data themselves would determine what was important. Statisticians 
frequently use principal component analysis for this purpose, and Lorenz (1956) had successfully 
used a closely related approach to define patterns of pressure and temperature variability for sta- 
tistical weather forecasting. Lorenz called the patterns that account for the most variance in the 
data Empirical Orthogonal Functions (EOFs). 

The EOF technique has the following advantages: 

• The main patterns of variability are defined by the data themselves, thereby 
giving reason to believe that they are "physically significant." 

• Because the patterns are linearly independent (orthogonal), the original pat- 
terns of variability (and their spatial derivatives) can all be approximated by 
linear combinations of features. 

It also turns out that EOFs may reveal artifacts in the data introduced by the instrument used to 
collect the data. 

In addition to the Jones et al. (1991) analysis technique that was reported during the course 
of the project, new types of data also influenced the research direction. Two data sets were par- 
ticularly important. First, was a set of detailed, three-dimensional wind observations provided by 
Schneider (1991), and second were detailed estimates of transmittance through a smoke plume 
presented as two-dimensional imagery (Bleiweiss et al., 1991). Transmittance inhomogeneities 
through a plume represent an important class of problem for the Army. Unfortunately, the data 
were obtained only a few months before the conclusion of the project, preventing as comprehen- 
sive an analysis as desired. 

Considerable effort was spent in developing vector-analysis techniques for application to 
the detailed wind observations in the belief that an understanding of the atmospheric motions 
would provide a basis for describing the inhomogeneities of the scalar distributions. While this 



still is a reasonable expectation, it became apparent while developing the vector-analysis tech- 
niques that this approach would require more effort than could be expended as part of the current 
project; therefore, the focus returned to the analysis of scalar distributions. Although the main 
focus of this report is on the distribution of scalars in the atmosphere, some of the vector-analysis 
approaches and preliminary results are also discussed. 

Some conclusions can be drawn from the studies reported here, but to a large extent they are 
only preliminary. Some of the techniques appear promising, but have not been refined and 
applied rigorously enough at this stage to realize that promise. Thus, some of the conclusions 
reported at the end of this report take the form of suggestions for refinements and future applica- 
tions of the techniques described here. 



II REVIEW OF FRACTAL CONCEPTS 
AND THEIR APPLICATIONS TO THE ATMOSPHERE 

This section is in large part derived from a review published earlier (Ludwig, 1989), but 
inasmuch as this is a rapidly evolving topic it has been necessary to include some more recent 
material. The purpose of the review is to provide definitions for fractal dimension and descrip- 
tions of various methods by which it can be calculated. Another important goal is to provide a 
basis for understanding why the concept of fractals has relevance to the understanding of atmo- 
spheric inhomogeneities. 

The word "fractal" only appeared about 16 years ago (Mandelbrot, 1975). The widespread 
use of the word in popular and technical writing in recent years suggests that either fractal con- 
cepts have general applicability, or that fractals have taken on something of a cult status. The 
fact is that both reasons apply: Concepts related to fractals do provide good mathematical 
analogs in fields ranging from cosmology to geography to population biology and fluid mechan- 
ics (Mandelbrot, 1983); unfortunately, there may also have a been a tendency to think that this 
widespread applicability meant that a "universal truth" had been found. Atmospheric science is 
among those places where the fractal has found a home. The ability of fractal concepts to 
describe a wide variety of conditions and processes is tantalizing, but to date, the practical, pre- 
dictive results have been few. 

This review is intended to provide a qualitative understanding of important concepts and an 
introduction to the simplified version of the mathematics underlying these concepts. Examples 
of how the concepts apply to the atmosphere, and how some relate to classical approaches are 
also included. 

A. GENERAL CONCEPTS 

One of the more comprehensible parts of many discussions of turbulence is the following 
piece of doggerel credited to Richardson (1922): 

Big whorls have little whorls, 
Which feed on their velocity; 
And little whorls have lesser whorls, 
A fid so on to viscosity... 

Those four lines provide a vivid picture of turbulence; they also provide a good starting 
point for visualizing fractals. If we examine the streamlines associated with Richardson's big and 
little whorls, we find that those streamlines have their corresponding large, little, lesser, and least 
wiggles—down to where "viscosity" stops the process. We can magnify and find wiggles super- 
imposed on wiggles already there. This is one type of fractal. In this case, we have a collection 



of points that form a line with wiggles and roughness over a large range of scales. The set of 
points could also be part of a surface with roughness elements at every scale, or a collection of 
separated points that are arranged in clusters of clusters of clusters... 

Many lines and surfaces in nature are fractals. Coastlines have the property of being 
"rough" over a wide range of scales (Mandelbrot, 1983; Feder, 1988). Lovejoy (1982) found thai 
cloud and rain areas have these properties over more than four orders of magnitude; Rys and 
Waldvogel (1986) looked at hailstorm perimeters and obtained similar results down to sizes of a 
few kilometers, but found smoother outlines at smaller scales. 

Fractals are rough geometric shapes: their roughness is qualitatively similar at all scaies; 
the measure of roughness is fractal dimension. Later I discuss several quantitative mathematical 
expressions that can be used to determine fractal dimension; here I limit the discussion to some 
easily understood subjective attributes associated with fractal dimension, such as the already 
noted relation between fractal dimension and perceptions of roughness. Pentland (1984) reported 
that when people ranked images of surfaces in order of their perceived roughness, the rankings 
corresponded to fractal dimension, with the roughest surfaces having the highest fractal 
dimension. 

Space-fillingness is another useful subjective concept associated with fractal dimension. A 
smooth line is confined to one dimension, a smooth surface to two. A fractal, with its wiggles on 
wiggles on wiggles, begins to infringe on other dimensions. Topologically, the fractal line or 
fractal surface may have only one or two dimensions, but the wiggles make them substantively 
different from the smooth shapes. Fractal dimension provides a quantitative measure of the 
degree to which these structures fill the physical space beyond their topological dimension. 

The concepts discussed above can be extended to any number of dimensions, but consider- 
able care must be taken when the dimensions represent different physical properties (e.g., a mix 
of pressure, density, and wind components). Even in two dimensions (e.g., a time series of 
aerosol concentrations at a point), Mandelbrot (1985) warns that there can be discontinuities in 
certain measures related to fractal dimension. 

B.    MATHEMATICAL RELATIONSHIPS 

Several different definitions of fractal dimension are found in the literature. They illustrate 
different physical properties or processes that are related to fractal dimension. The first two 
methods for defining and calculating fractal dimension discussed below follow from the fact that 
fractal dimension is a measure of space-filling properties. The other definitions are related to the 
fact that fractals are associated with fields that are self-similar (i.e., scaling) over a wide range of 
scales. 

1.    Box (or Cell) Counting 

Mandelbrot (1975) defined fractal dimension through its relation to the space-filling con- 
cept. He assumed a continuous distribution of some parameter so that there are isosurfaces 



containing all the points with the same parameter value. He then invoked a concept commonly 
used for measuring metric properties by counting the number of elementary units (e.g., small 
units of area or volume) required to cover all the points in the set. Restated, a metric property, 
M, is estimated by counting the number (N) of measurement units of linear size X that are 
required to cover the set of points being measured. For simple shapes, the measure is related to 
the dimension, D, of the shape and the size of the measurement unit: 

M = NXD   . (1) 

Mandelbrot (1983) has noted that the usual smooth shapes of Euclidian geometry result in inte- 
ger values for D, but many natural shapes require D to be fractional to obtain consistent results. 
The fractional (fractal) dimension D in these cases is analogous to the Euclidian dimension in 
terms of its relation to the metric properties of a surface. 

In his extension of the measuring concept outlined above, Mandelbrot starts with a large 
cube containing part, or all, of a surface whose fractal dimension is to be determined. He defines 
the side of that cube as the external scale, L, and then subdivides it into smaller cells of side 
length / counting the number of smaller cells containing at least one point on the surface. If the 
"surface" is a straight line, the number of small cells through which it passes is proportional to 
(L//)1. A flat plane will intercept a number of small cells that is approximately proportional to 
(L//)2. For a solid "surface," that number of cells is proportional to (L//)3. In each example, the 
exponent of (L//) is the Euclidian dimension of the surface, confirming the analogy to the usual 
measurement concepts. However, the exponent assumes fractional values for rough, scaling 
objects. For example, a line that has many wiggles, with wiggles upon those wiggles, passes 
through a number (N) of small cells that is approximated by 

N = k(L//)D   , (2) 

where k is a proportionality constant and D, the fractal dimension, is larger than 1. Similarly, for 
a rough plane with an irregular surface over a wide range of scales, D is larger than 2. 

Greenside et al. (1982) attributed an algorithm for computing fractal dimension based on 
Mandelbrot's (1975) defmition outlined above to Takens (1981). They found the approach to be 
impractical for surfaces of dimension larger than two because of convergence problems. Later in 
this report, applications of this approach to two-dimensional scalar fields are presented. In these 
applications, the scalar values were rescaled to fall within the same numerical range as the linear 
dimensions of the area over which they were measured. This allowed the use of cubes to cover 
the scalar surface. 

When the definition provided by Eq. (2) is reduced to two dimensions, a square and smaller 
squares replace the cube and subcubes; the definition then can be used to examine the lines 
formed when a plane intersects a fractal surface. It is generally accepted (Mandelbrot, 1983) that 
if a fractal shape is intersected by a flat surface of lower dimension, the intersection is also a 
fractal. The dimension of that fractal differs from that of the original object by the integer differ- 
ence between the dimensions of the two spaces. This fact could be used to examine the distribu- 
tions of scalars in space by applying it to an isoline (line of constant scalar value), which is the 
intersection of a surface whose height is proportional to the value of some parameter at that x, y 



location in the underlying plane. Thus, the cell-counting method could be used to infer fractal 
dimension of a parameter distribution from the fractal dimension of an isoline. There are pitfalls 
in this method when the intersecting plane is not one of constant parameter value, or the units of 
x and y are different. 

The cell-counting concept is reasonably direct and easily applied to an array of discrete 
numbers (e.g., a digitized image). The constants for the logarithmic form of Eq. (2) are found by 
linear regression: 

log (N) = log (k) + D log( Uf) (3) 

In practice, we want as many values for N as possible. For a discrete array, each value must cor- 
respond to an integer value of ( L//). Therefore, the calculations that are described later used a 
large area that was defined so that L had many divisors. The large number of divisors was 
obtained by defining L as a product of powers of 2, 3, and 5. 

2.    Area/Perimeter Methods 

Another method for calculating fractal dimension that is related to the space-fillingness of a 
curve uses the relationship between the area A enclosed by some shape and its perimeter P. A 
smooth perimeter encloses a larger area than the same wiggly length. For smooth curves, the 
perimeter P is proportional to the square root of the enclosed area, but a fractal shape encloses an 
area related to its perimeter by 

A        . (4) 

where D is the fractal dimension. Eqn. (4) applies to isopleths and their enclosed areas, so it can 
also be used for estimating the fractal dimension of a scalar field. The data available for this 
study did not lend itself easily to the identification of isopleths on a fine scale; thus, this tech- 
nique was not implemented. 

3.    Scaling and Probability Distributions 

Although fractals are geometric shapes, their potential applications as descriptors of natural 
phenomena frequently arise in connection with highly irregular spatial or temporal distributions 
of some nongeometric quantity such as kinetic energy, aerosol concentration, or temperature. 
Jones et al. (1991) distinguish between two distinct types of fractal dimension: 

•      The fractal dimension of the graph of some fluctuating function 

The fractal dimension of the set of points that define active regions of fluctuation. 

The second, geometric definition is addressed by the two methods described in the preceding 
sections. While it is possible to convert a problem involving the first type of fractal dimension 
into one involving the second type by examining shapes of isopleths as described above, it is 
often more useful to invoke statistical descriptions. For example, one common statistical 
descriptor is the probability distribution Prf Ac(Ar) > q] associated with differences in parameter 
value over a specified distance. Pr [r > s ] is the probability that the argument inequality is true; 



Ac(x) is the absolute value of the difference in c at two points separated by a distance x. These 
probability distributions vary according to the separation distance. Generally, the likelihood of 
exceeding some specified difference increases with increasing separation between points. For 
many natural phenomena, the probability distributions retain the same functional form for differ- 
ent separations, but exhibit a change of scale. This is because many natural fields vary in such a 
way that the fluctuations look qualitatively the same, regardless of magnification. Large-scale 
fluctuations in a scaling field are qualitatively the same as the middle-scale fluctuations embed- 
ded within them, which are in turn similar to the still smaller fluctuations. 

When a field is scaling, the probability distributions for different separations are related as 
follows: 

Pr[Ac&Ar)>q] = Pr[*HAc(Ar)>q]   . (5) 

Equation 5 shows that the fluctuations in c over small separation distances Ar are related to 
those at larger separations (X Ar) by the factor XH. The exponent H is the Hausdorff dimension, 
which is related to the fractal dimension D and the number of Euclidian dimensions E of the 
space where the field is plotted (Voss, 1988) by: 

D = 1 + E - H   . (6) 

For example, a time series (where time is the dimension against which the variable is plotted 
and E = 1) has a fractal dimension of 2-H. When the probability of the difference exceeding 
some selected value is directly proportional to the separation, as it is for a steadily increasing or 
decreasing variable, then H is 1 and the fractal dimension is also 1—that is, a smooth line for the 
time series. If H approaches 0, the fractal dimension approaches 2 and the difference in value at 
two points is almost as likely to exceed a specified amount for closely spaced points as it is for 
widely spaced points. This is characteristic of a very rough, space-filling time-series graph. 

Schertzer and Lovejoy (1983) assumed a functional form for the upper tails of atmospheric 
probability distributions in order to use Eqs. (5) and (6) to estimate fractal dimension from 
observed data. Often, the tail of a distribution is most interesting because it involves the large, 
infrequent fluctuations. They assumed that the upper tail had a hyperbolic form; that is, for 
large q: 

Pr[Ac>q]=F(q) (7) 

where Schertzer and Lovejoy (1983) define F(q) by: 

F(q) = Kq-<*   . (8) 

The constants H and a are estimated from the data after substituting Eq.(8) in Eq. (5) and taking 
logarithms: 

log{ Pr [Ac (A.Ar) > q| ) = k + H log(A.) - a log(q)   . (9) 

This equation is applied to observed data as follows: 

(I)   a and [k + H Iog(^)] are determined by linear regression from the upper tail of the dis- 
tribution for each X. 



(2) The average a is determined; if individual values of a do not differ widely, the average 
a is used to get an equation relating X and H for each value of q so that linear regres- 
sion can be used to determine H. 

(3) D is then obtained from Eq. (6). 

The hyperbolic functional form for the upper tail was chosen by Schertzer and Lovejoy 
(1983) because it appears to fit atmospheric distributions that they analyzed. Other functional 
forms can be used in much the same way as described above. The important point is that the 
probability distributions are the same if the separation distances and parameter values are scaled 
as in Eq. (5). 

4. Spectral Analysis 

The method just described, which relates the difference in the value of a parameter at two 
points to the separation between those points, is closely related to the estimation of spatial auto- 
correlation. Not surprisingly, therefore, spectral-analysis methods can be used to estimate the 
Hausdorff and fractal dimensions for fractal Brownian functions defined by Eq. (5). For exam- 
ple, the exponent of the power spectrum (-y) for a scaling time-series graph is related to the 
Hausdorff dimension (Saupe, 1988) by 

Y = 2H + E (10) 

When we combine Eqs. (5) and (10) and substitute E = 1 (for a time-series graph), we get 
y = 5 - 2 D. The spectral density P(f) of a scaling variable is proportional to f^D_5, where f is 
frequency. 

The spectral relationship can also be used for estimating the fractal dimension of a scaling, 
isotropic field in two or three dimensions. Fast-Fourier-transform (FFT) methods give the ampli- 
tudes of the Fourier terms in wave-number space. The spectrum is then fit without regard to 
direction. In essence, the procedure averages the amplitudes around circles (or spheres) of con- 
stant wave-number radius. Pentland (1984) used the spectral method to characterize the fractal 
dimensions of 16 x 16 pixel subsections of photographs, and used the results as a basis for dis- 
tinguishing between different picture areas according to their texture. For these two-dimensional 
images, the power density scaling is proportional to f20-8. 

The spectral approach proved the least successful of those that were implemented for these 
studies. However, an inverse Fourier transform approach described later proved quite useful for 
generating test arrays of known fractal dimension. 

5. Multiresolution Feature Analysis 

If fractals represent a composite of similar "features" over a broad range of scales, then it 
should be possible to use this fact to estimate fractal dimension. This is the essence of the 
approach described by Jones et al. (1991). The following description of the methodology, taken 
from Jones et al. (1991), is a variation of the method based on probability distributions that was 
discussed earlier. Instead of simply using changes in the value of the dependent variable as a 



function of distance, they express those changes in the form of a set of differences that can be 
used to define geometric "features" of the distribution. They also degrade the image resolution 
to get different separation distances. This approach provides a method by which fractal dimen- 
sion can be more easily related to specific physical characteristics of the field. 

The process begins by producing an image of half the original resolution through low-pass 
filtering. Correlation with a centered 3x3 matrix gives a value for each point. These new val- 
ues are resampled at every other grid point in both directions, giving one point for each four in 
the original array and a new image of half the resolution (and about half the grid points in each 
direction). The process is repeated to obtain a set of images covering a range of resolutions. 

Jones et al. (1991) found empirically that preprocessing of the original image to introduce 
slight smoothing helped them obtain better scaling in their analyses of LANDS AT imagery. Fol- 
lowing their example, the data were initially smoothed with the following matrix: 

0.031 0.044 0.031 
0.044 0.7 0.044 
0.031 0.044 0.031 

(11) 

The smoothings to obtain the reduced-resolution imagery used the matrix 

L.= 

0.0625 0.125 0.0625 
0.125 0.25 0.125 
0.0625 0.125 0.0625 

(12) 

After the set of reduced resolution images have been obtained, a high-pass filter is applied 
to each image. The high-pass filter can be interpreted as a "feature detector": It returns large 
positive or negative numbers when superimposed on a pattern in the image that corresponds to 
the feature it is designed to detect. For example, the following matrices detect "edges" oriented 
vertically and peaks (or holes) in the pattern: 

« vert edge 

and 

H 
peak 

10 -1 
10 -1 
10-1 

-1-1 -1" 
-1   8-1 
-1 -1 -1 

(13) 

(14) 

The matrices can be combined. For instance, the outputs from four edge detectors (for vertical, 
horizontal, and two orientations of diagonal edges) can be summed to find regions of strong 
gradients. 

After arrays of feature intensities have been obtained for the different resolution images, the 
maxima and minima are identified. Then the numbers of these extremes whose absolute values 
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exceed various thresholds are counted. Plots of these thresholds and numbers of extrema exceed- 
ing them for each resolution can serve as a basis for estimating fractal dimension. The fractal 
dimension of the graph of a fluctuating function C is the measure that is most closely related to 
the scaling properties of C. According to Eq. (5) self-similar scaling processes display amplitude 
fluctuations (AC) whose magnitudes tend to be proportional to the ratio of their spatial scales X 
raised to a power, H. Jones et al. (1991) refer to H as the similarity parameter. In essence, the 
process described above identifies the number (or probability) of fluctuations of certain type 
exceeding various thresholds at different resolutions. 

The process described above provides an estimate of (nq)j; the number of exceedances (for 
a given total area) of threshold q for the i* resolution XiArn, where Arn is the cell size in the origi- 
nal data set. If the distribution is self similar, then the number of features exceeding a given 
threshold q will satisfy a relationship of the following form: 

-v2 ,"H 

VVi=qN    • <15> 
Jones et al. (1991) choose a series of values for H and estimate fractal dimension based on 

which of those values produces the best coincidence of the graphs for the different resolutions. 
Examples of the method are given later. 

6.    Anisotropie Effects 

The above discussions all assume that the relationships are both independent of direction 
and scale. This is not necessarily the case. Differences between scaling of feature dimensions in 
the vertical and horizontal directions seem likely to occur in a medium that is as highly stratified 
as the atmosphere. It turns out that many of the fractal properties of the atmosphere arise from 
the cascade of energy down through the various scales of motion. A fractal dimension that 
applies over the complete range of scales implies that the ratios of the number of eddies to 
subeddies remains constant over that range, which need not be true. While this report has not 
attempted to incorporate these effects into the analyses presented later, completeness requires 
that they be discussed. 

a.    Self-Affine Distributions 

The analytical techniques discussed above are appropriate for shapes with self-similar char- 
acteristics, that is, for those cases where the irregularities at all scales are similar in the Euclidian 
geometry sense. The smaller-scale features are contracted (and perhaps rotated) versions of the 
larger irregularities, but they maintain their proportions and the corresponding angles do not 
change. These cases are a subset of a more general class of shapes that occur naturally, the self- 
affine fractals, where the smaller-scale irregularities are affine transformations of those at larger 
scales. Barnsley and Sloan (1988) described affine transformations as "combinations of rotations, 
scalings, and translations of the coordinate axes in n-dimensional space." Voss (1988) defines 
self-affinity as nonuniform scaling, i.e., different scaling along different axes (directions). 
Mandelbrot (1985) pointed out that the methods described above for calculating fractal dimen- 
sion are not always appropriate for this more general class. In particular, he notes that the time 
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history of a scalar involves a choice of units for both time and the scalar, different results may be 
obtained for different choices of units. There will be local and global fractal dimensions. In fact, 
Mandelbrot (1985) defines three versions of fractal dimension corresponding to different meth- 
ods for estimating them. The three different dimensions are the same for self-similar sets, but 
differ for self-affine sets. Mandelbrot (1985) explained that (for the time series of some param- 
eter, B) 

..."square," "distance," and "circle" are vital notions in isotropic geometry, 
but they are meaningless in affine geometry. More precisely, they are meaning- 
fill for relief cross-sections, but are meaningless for [BJ noises, because the 
units along the t-axis and the B-axis are set up independently of each other, 
hence At and AB cannot be combined. There is no intrinsic meaning to the 
notion of equal height and width, a square cannot be defined. Similarly, a cir- 
cle cannot be defined because its square radius Fr = At* + AB* would have to 
combine the units along both axes. Furthermore, one cannot 'walk a compass' 
along a self-affine curve because the distance covered by each step combines a 
At and a AB. 

The above discussion emphasizes the care that must be taken when applying what are essen- 
tially geometric measurement techniques to the problem of estimating a fractal dimension. 
Although two of the techniques described by Mandelbrot (1985) give results in the small scale 
that are consistent with the results obtained for self-similar sets, it is wise to apply the techniques 
carefully to avoid the inconsistencies enumerated above. Even then, anisotropy in the processes 
producing the sets can make new measures necessary. One of these is discussed in the next 
subsection. 

b.    Elliptical Dimension 

The horizontal scales of atmospheric motion are much less constricted than the vertical. 
This causes anisotropy in atmospheric turbulence, especially at the larger scales. It also suggests 
that the transfer of energy from large eddies to smaller eddies is not likely to be self-similar, but 
rather self-affine, even though the vertical and horizontal distance units are the same. Schertzer 
and Lovejoy (1983, 1987; also Lovejoy and Schertzer, 1986) noted the following important facts 
regarding mesoscale atmospheric processes: 

• The energy spectrum is scaling (i.e., it has the form kßh, where k is the wave number 
and ßh = 5/3 is the appropriate value for wave numbers in the horizontal plane). 

• The energy spectrum for wave numbers in the vertical plane is also scaling, but 
anisotropy makes the relevant exponent, ßv, quite different: ßv = 11/5. 

• There is extreme variability, because active regions that account for most of the energy 
and moisture flux are sparsely distributed. 

To deal with the above observations, Lovejoy and Schertzer (1986) modified the self-simi- 
lar concepts to apply them to the anisotropic case. In extending the concepts, they assumed that 
there is a constant energy flux over the range of scales of interest, and that there are rules for 
describing how the statistical properties of eddies are transformed from one scale to another. In 
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dealing with anisotropic eddies, both shape and dimension must be characterized. Schertzer and 
Lovejoy (1987) represented the anisotropic scaling in a manner similar to that discussed earlier 
for the isotropic case, except that horizontal and vertical scaling were considered separately, that 
is, 

or 

where 

Pr [ Ac(XAx) > q ] = Pr [ XHh Ac(Ax) > q ] 

Pr [ Ac(XAy) > q ] = Pr [ \H* Ac(Ay) > q ] 

Pr [ Ac(XAz) > q ] = Pr [ A,Hv Ac(Az) > q ] 

Pr [ Ac( T (Ar) > q ] = Pr [ XHh Ac(Ar) > q ] 

(16a) 

(16b) 

(16c) 

(17) 

X 0 0 

0 X 0 

0 0 ft 

7   = 

Hz = (Hh/Hv) 

(18) 

(19) 

and 

Ar= 

Ax 

Ay 

Az 

(20) 

The matrix T produces a magnification overall, with stretching in the z direction; it trans- 
forms the probability distributions and introduces an elliptical geometry to account for the differ- 
ent horizontal and vertical scalings. Figure 1 shows how the magnification and stretching relates 
the small, vertically oriented shapes (eddies in this case) to a large, horizontally oriented shape. 
The transformation changes the volume by a factor X2 XHz = XDel, where Dei = 2 + Hz. Lovejoy 
and Schertzer (1986) called Dei the elliptical dimension. In an isotropic system, Hz = 1, and 
therefore the elliptical dimension equals 3. For two-dimensionally isotropic sets Hz = 0 and Dei 
= 2. Schertzer and Lovejoy (1987) described a technique called functional box counting for 
determining elliptical fractal dimension from observed data. 

C.    HOW FRACTALS MAY DEVELOP 

To this point, the discussion has focused on definitions of fractals and related concepts, 
while giving little attention to their underlying physical causes. At least three types of evidence 
indicate a connection between fractals and atmospheric processes: 

The structure of turbulent eddies observed in flow visualization experiments 
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• Similarity arguments from classical turbulence theory 

• Detailed numerical flow simulations. 

These are discussed in the following sections. 

1.    Observational Evidence 

a. Shear-Layer Flow 

Van Dyke (1982) showed several examples of structure in the turbulent layer that forms in 
the shear zone between fluids flowing at different velocities. The structure that commonly occurs 
in such flows is evident. Reynolds (1985) provided the basis for a qualitative discussion of the 
processes involved. Although his notes do not mention fractals, they do give evidence of scaling 
and the development of self-affine structures of different scales in the motion field. 

Figure 2 is based on Reynolds' (1985) schematic diagram showing free shear flow. Initially, 
vorticity is produced at the tip of the separator that is used to generate the flow. An unstable two- 
dimensional shear layer is formed. Instabilities excited by slight vibrations grow rapidly so that 
vorticity is quickly concentrated in nearly discrete vortices, oriented generally perpendicular to 
the flow direction. Not all vorticity is in the major features; some remains in "braids" connecting 
the major vortices (Figure 2), where it is stretched as the large-scale vortices "wind in" the fluid 
between them. This intensifies the vorticity in the braids, forming new vortices with axes aligned 
along the principal strain direction, as shown in Figure 3. These vortices undergo the same pro- 
cesses described above, but on a smaller scale and with different orientation. One can expect that 
the new, smaller vortices also contain irregularities where new minibraids form and stretch vor- 
tices along new strain axes. These new structures can undergo similar deformation on a still 
smaller scale, so that the processes continue to produce self-affine structures from the outer scale 
defined by the largest vortices down to the scale of viscous dissipation. 

The consequence of this process appears to be a set of vortices on vortices on vortices and 
so on, much like Richardson's (1922) description. Analogous reasoning can be applied to other 
flow types such as jets, boundary layers, and wakes, which are also characterized by regions of 
strong shear and concentrated vorticity. 

b. Turbulent Diffusion 

Procaccia (1984) reviewed the effects of fractal turbulence structures on turbulent diffusion, 
fluctuations of passive scalars, electromagnetic wave propagation, and cloud perimeters. He 
examined the behavior of the interparticle separation distance, R = rt - r^ of two points caused 
by their relative velocity, V(t) = Vj - V?. 

t 
R(t) = R(0)+fv(t)dt    . (21) 
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For isotropic turbulence, the ensemble average separation—represented by angle brackets, <> is 
constant and equal to the initial separation because < V (t) > = 0, but variance, < R2>, 
changes: 

|t<R2>=2j(V(t)-V(x))dt (22) 

0 

Procaccia (1984) asserted that, although the correlation < V (t) • V (x )> is nonstationary, 
some function, g(x), of scaled time variables exists such that 

<V(t).V(t)>=<V(t).V(t)>g^^ 
(23) 

where tR is the typical decay time for velocity differences over a length scale, R. Substituting in 
Eq. (22) provides asymptotic predictions at extreme times: 

d/R2\       f<V(t).V(t)> t 
d,X    '       l<V(t).V(t)> L 

t<<lR 
(24) 

l>>tR 

The diffusivity, d < R2> /dt, can be determined from < V(t)»V(t)> when R is in the inertial 
range. The ratio of the separation distance, R, to a typical velocity difference over that distance 
defines tR. For the "homogeneous fractal model" of turbulence described below, 

2 3-D 

<VA) ~(£R)3(7 )      3     • 05) 

where /n is the outer scale of the turbulence. Procaccia (1984) used this assumption to obtain 

A/.A    /«'""<«"•> '*"• 

where R is the root-mean-square separation. For space-filling turbulence, where D = 3, the 
above expressions reduce to the classical "4/3 law." 

Hentschel and Procaccia (1983) examined Gifford's (1957) and Richardson's (1926) two- 
point diffusion data and obtained estimates for D between 2.5 and 2.78, from which they con- 
cluded that these were reasonable values that supported the "fractally homogeneous turbulence" 
concept. 
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c. Cloud and Rain Perimeters 

As noted earlier, Lovejoy (1982) found that cloud and rain area perimeters were fractals 
over a range of six orders of magnitude—from about 1 km2 to 106 km2. The fractal dimension 
of the perimeter was D = 1.35 ± 0.05, so the fractal dimension of the cloud surface was 2.35 ± 
0.05 in the isotropic case. Procaccia (1984) considered how a surface defining the outer boun- 
dary of the cloud would be distorted by turbulent diffusion, and concluded that the fractal 
dimension, Dc, of the cloud perimeter is given by 

Dc = (ll-D)/6   , (27) 

where D is the fractal dimension of the turbulence. Using a value of 2.6 for the fractal dimension 
of the turbulence (Hentschel and Procaccia, 1983) gives D = 1.4, in agreement with Lovejoy \s 
(1982) value. 

d. The Boundary of a Diffusing Scalar in a Turbulent Flow 

Prasad and Sreenivasan (1990) experimentally examined several aspects of turbulence for 
fractal characteristics. They measured the concentration field of a diffusing fluorescent material 
in water. Their technique used a sheet of laser light to induce fluorescence. The fluid was 
scanned very rapidly and two-dimensional images obtained from closely spaced planes. Subse- 
quent computer processing provided the three-dimensional distribution of the material. Among 
the characteristics that Prasad and Sreenivasan (1990) examined was the shape of the interface 
between the fluorescent material and the surrounding water. They found that the interface was 
very rough, and generally self-similar with a fractal dimension of 2.35 ± 0.04. 

e. Elliptical Fractals 

Schertzer and Lovejoy (1983) introduced the concept of elliptical fractal dimension because 
it provides a smooth transition from the very large, horizontally oriented, "Hadley-like" cells 
down to the vertically oriented convective cells. An analysis (Lovejoy et al., 1987) of radar pre- 
cipitation data showed that rainfall is distributed in space with an elliptical fractal dimension of 
about 2.22. The elliptical fractal dimension represents the ratio of horizontal contraction to verti- 
cal, so this suggests that rainfall is more horizontally stratified than are the air motions, which the 
authors estimated as having a fractal dimension of about 2.56 (Lovejoy et al., 1987). 

2.    Classical Turbulence Theory 

The description by Frisch et al. (1978) of the "ß-theory" of turbulence provides a good 
physical picture of the turbulent cascade. The energy spectrum E(k) is defined as the kinetic 
energy per unit mass per unit wave number k. For purposes of argument, consider a spectrum of 
eddies beginning at the largest scale, /0, where the energy is introduced, and proceeding to suc- 
cessively smaller, discrete sizes, /n, as follows: 

kn=l//n = 2n//0 n = 0,1,2,3,... (28) 
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If En is the discretized kinetic energy per unit mass in the wave numbers near kn, it can be 
defined in terms of a characteristic velocity vn. This characteristic velocity is not total velocity, 
but the velocity difference for the eddy size /n: 

En-Vn (29) 

The eddy turnover time tn is given by 

tn~'n/Vn   , (30) 

Frisch et al. (1978) defined an energy (per unit mass) transfer rate, £n, from eddies of wave 
number kn to kn+i for the inertial subrange, where tn is much greater than the viscous dissipation 
time, ti?h (V is kinematic viscosity), and much less than the characteristic time for the larger 
scale motions, /QIVQ: 

en~En/tn~(Vn)3//n   • (31) 

For statistically stationary turbulence, energy introduced at large scales (/0) transfers to suc- 
cessively smaller scales until the dissipation scale, /& is reached and the energy dissipation rate, 
en, is a constant, e. Solving for vn and En gives 

1 

vn~(i/n)
3 (32) 

2 

V^V3   ■ (33) 

Equations (33) and (34) are the same as Kolmogorov's results. A Fourier transformation 
provides the wave-number spectrum: 

2 _ 5 

E(k)~(e)3k   3    . (34) 

Equation (33) can be rewritten to show that the energy per unit mass per unit volume scales 
according to (// /0 )2/3 by noting that 

-     2/3 
E« «<*'*> (35) 0    v     0' 

Then, 

111 1 
En^(i/n)

3 = (-e/o)
3(/n//o)

3~Eo(/n//o)
3     , (36) 

There is a tacit (but very important) assumption in the above relationship: All eddy sizes 
are assumed to be spread more or less uniformly throughout the same volume. For greater 
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generality, Frisch et al. (1978) assumed that the smaller eddies are less space-filling than the 
larger ones. The behavior of free shear layer turbulence described in the preceding section quali- 
tatively supports this assumption. Frisch et al. (1978) define a parameter to characterize the 
degree of space-fillingness. For a wholly space-filling cascade of the type discussed above, the 
number of eddies of size /n = fol2n is 23 times as those of size /n+i because eight eddies of 
dimension //2 fill the volume occupied by one of dimension / Frisch et al. (1978) defined ß to 
be the average fraction of the /n volume filled by /n+i eddies. Eddies of size /n fill only a frac- 
tion, ßn, of the total space occupied by eddies of size /0: 

ßn = (N/23)n   . (37) 

where N is the average number of eddies formed by each eddy of the preceding generation, and 
of course N < 8. 

Frisch et al. (1978) assumed that eddies of the (n+l)tn generation are positionally correlated 
with those of the n1*1 generation by embedding or attachment, so that the region near where an 
eddy is formed becomes an "active region" for the cascade to smaller sizes. The evidence from 
mixing-layer turbulence suggests that attachment is more likely than embedding. Frisch et al. 
(1978) also tacitly assumed that the average number of eddies formed (N) does not vary system- 
atically according to eddy size. This is a weakness of this "ß model" of turbulence. 

If the kinetic energy per unit mass associated with scales on the order of/n is redefined in 
terms of active regions only, then 

E  ~ß  J~(*L\ v2   . (38) 
n    Kn   n    1     3   I     n 

The characteristic energy transfer time is still /n/vn if the smaller eddies arise from the 
internal dynamics of the larger eddies that produce them, but the steady-state assumption leads to 
an adjusted rate of energy transfer in the inertial range; that is, 

(39) 

The following relationships are obtained from Eq. (39) when we introduce D, defined by 
N = 2D: 

1/3 -(3-D)/3 
n n n0 (40) 

_      2/3 (3-D)/3 
En~<E'n>      <W • <41> 
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and 

- 2/3-5/3 -<3-D)/3 
E(k)~(ef k      (k/Q) , (42) 

Rewriting Eq. (42) shows the scaling nature of the relationships: 

-      2/3 (3-D)/3      -      2/3 (3~3} (3"3j    . (43) 

This is the same as Eq. (37), but with a correction of D/3 in the exponent to account for the 
incompleteness of space-filling (intermittency) in the energy transfer to smaller scales. The rela- 
tionship among N, ß, and D is 

ß = (N/23)n = (2D"3)n   . (44) 

The above derivation demonstrates the scaling properties of important turbulent parameters. 
It relates to classical theory and observed physical factors that cause intermittency. The fractal 
dimension was introduced as a measure of the assumed space-filling properties of the energy 
transfer process. When the process is assumed to be space-filling, the fractal dimension is 3, 
giving the classical results of Kolmogorov. 

Fujisaka and Mori (1979) estimated values for D under the assumption that informational 
entropy would be maximized. Their analysis led to an estimate of D = 2.659 which is in good 
agreement with estimates based on observations. It also suggests that on average, there are 6.32 
eddies of size /n+1 for each eddy of size /n in the above analysis. 

3.    Numerical Simulation of Small-Scale Flow Structures 

Most fluid flow simulations parameterize turbulent effects and so provide little evidence of 
fractal structures. However, Chorin (1982), using vortex methods like those described by 
Leonard (1985), performed an interesting numerical experiment that bears a close relationship to 
the formation of vortices in the braids between eddies. He considered a straight vortex with a 
single perturbation, much like one of the perturbations on the vortex filaments in braids between 
vortices. After a short while, the vortex tube segments stretched rapidly. The general orientation 
of the pattern remained the same, but it became contorted and complex. Chorin (1982) evaluated 
the Hausdorff dimension of the resulting structure and found it to be on the order of 2.5, which is 
consistent with values suggested by Mandelbrot (1977) for the fractal dimension of turbulent 
structures. 
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Ill        IMPORTANT RESULTS 

A. SUMMARY OF PROJECT ACCOMPLISHMENTS 

The research conducted during this project has provided the following: 

• A coherent review and summary of fractal concepts and their relevance to atmospheric 
behavior, especially as they apply to the turbulent dispersal of aerosols and gasses. 

• Identification of several analysis techniques based on fractal concepts that can be 
applied to atmospheric data. 

• Computer programs for calculating parameters necessary to estimate fractal dimension 
by methods described in the literature. 

Extension of the multiresolution feature analysis concepts to three-dimensional scalar 
and vector fields. 

Development of computer codes for applying the extended analysis techniques. 

• Identification and acquisition of atmospheric data for analysis. 

• Analysis of some of the available data. 

• Development of a methodology (including computer programs) for identifying natural 
patterns of variability in scalar and vector fields, so that those patterns can serve as the 
basis for multiresolution feature analysis. 

• Identification of promising approaches for future research. 

The remainder of this section, and the concluding sections provide examples of these 
accomplishments. 

B. IDENTIFICATION OF DATA SUITABLE FOR ANALYSIS 

1.    Background 

The most important purpose of this study has been to examine the spatial inhomogeneities 
in plumes released in the atmosphere. Obviously, detailed observations of such plumes will 
provide the best possible data for analysis. It was possible to obtain two such types of data: One 
data set was collected with a airborne laser radar (lidar) to provide vertical planar cross sections 
of aerosol backscatter from an elevated power plant plume, and the other data set (only identified 
and obtained near the end of the study) consists of two-dimensional arrays of infrared transmit- 
tance measurements through a smoke plume released at the surface. 

Another set of similar "data" was also analyzed. In this case, the data were calculated to 
have known fractal properties. While such data will never substitute for actual observations, they 
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have the important advantage of providing an image that can be used to test the performance of 
the analytical techniques that were applied to the observations. The generation of the test data 
also gave some insights into how one might go about generating artificial distributions for simu- 
lating the appearance and the effects of inhomogeneous smoke plumes on Army operations. 

Another type of data was obtained for analysis, although they were not directly related to 
inhomogeneities in smoke plumes. Data obtained by dual Doppler radar observations of the 
motions of chaff in a convective atmospheric boundary layer provide a detailed picture of those 
atmospheric motions that are the ultimate source of the inhomogeneities in the distributions of 
interest. Analyses of these data have not proceeded as far as those of the scalars, in part because 
they are not as direcdy relevant to project objectives as are the smoke-plume observations. 

All the data sources are discussed briefly below. That discussion is followed by a summary 
of the analyses that were completed. 

2.    Scalar Data 

a.    Random Brownian Fractal Test Data 

Jones et al. (1991) and Saupe (1988) describe a method for generating spatial distributions 
of known fractal dimension by using the spectral relationships discussed earlier [Eqs. (5) and 
(10)]. The method is well-described in both the sources cited above; Saupe (1988) outlines the 
algorithm in a section of computer pseudocode. The description that follows is based on that 
given by Jones et al. (1991). 

The process begins by generating a random array of complex numbers. The real and 
imaginary parts each have zero mean and unit variance. The examples shown in Figure 4, are 
based on a 256 x 256 array. The complex numbers in the Fourier plane are then multiplied by 
their distance from the origin (in wave numbers) raised to a power that ultimately determines the 
fractal dimension of the distribution to be produced. If f i and f2 are the coordinates of a point in 
the Fourier plane and we wish to produce a real number array whose two-dimensional spectral 
density S scales with an exponent between 0 and 1, i.e., 

S(fi,f2)~(fi2 + f22)"Y , (45) 
then the complex numbers in the random array multiplied by the following factor, F (fl,f2): 

F(fi,f2) = (fl2 + f22)"Y/2   ■ (46) 

where from [Eqs. (6) and (10)] we get the following expression for the resulting fractal 
dimension: 

D = (3E + 2-Y)/2   , (47) 

or for E = 2, we can choose y according to the following expression to obtain the desired fractal 
dimension: 

y=8-2D   . (48) 
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After the complex numbers in the Fourier plane have been multiplied by the appropriate 
value of F, the inverse Fourier transform is applied to obtain a new array of complex numbers in 
linear space. The real parts of this array form an array with the desired fractal dimension, at least 
within the limits of the resolution. Obviously, there will be a high-wave-number cutoff imposed 
by the discrete nature of the grid. 

Figure 4 shows three examples generated as described above. Standard FORTRAN Sub- 
routines from Press et al. (1986) were used to generate the desired random numbers and perform 
the inverse fast Fourier transform. The figure displays the results as gray scale imagery with 256 
gray levels. The fractal dimensions for the three panels of Figure 4 are, 2.3,2.5, and 2.7. The 
same arrays used to generate Figure 4 are analyzed later by three different methods for calculat- 
ing fractal dimensions. 

b.   Lidar Observations of Smoke Plumes 

Uthe (1983) described the operations of the airborne lidar downwind of an Electric power 
plant plume in Kincaid, Illinois. Figure 5 is a schematic diagram of the operations. The aircraft 
flies at about 3 km above ground level, and the 1.06-um laser is pulsed at a rate that corresponds 
to a distance of about 10 m between each vertical profile of aerosol backscatter. The pulse length 
and recorder operation provide a vertical resolution of about 3 m. The result is an array of values 
corresponding to aerosol backscatter with a spatial resolution of about 3 m (vertical) by 10 m 
(horizontal). 

Typically, the data were collected in a vertical plane approximately normal to the plume and 
10 to 15 km downwind of the source. The logarithm of backscatter was recorded with 8-bit (256 
units) resolution. Before analysis, the data were converted to a relative linear scale. The origi- 
nally recorded range of 0 to 255 corresponded to 16 dB. Hence, each unit corresponds to an 
increase of almost 1.5%. These data were converted to a linear scale before analysis. Range cor- 
rections did not account for the attenuation introduced by the relatively low aerosol concentra- 
tions in the plume. This, and the fact that aerosol backscatter is not directly proportional to con- 
centration limit the uses of the lidar, except for the determination of geometric measures. The 
fractal analysis techniques deal with geometric features which should be relatively unaffected by 
the lidar's limitations in estimating aerosol concentration. 

The rectangular nature of the data elements, with horizontal dimensions 3.3 x the vertical, 
may have an effect on the results. However, the atmosphere tends to horizontally stratified with 
more damped vertical motions and stronger vertical gradients, so the horizontally stretched shape 
of the data elements may be more appropriate than a square shape. 

Figure 6 shows three cross sections through a smoke plume measured about 11 km down- 
wind of the source between about 0800 and 0830 on 20 July 1980. Brighter regions indicate 
higher backscatter. An area of 144 x 144 elements has been selected from the original, larger 
data arrays. Two of the analytical approaches—spectral analysis and multiresolution feature 
analysis—are best applied with data arrays whose dimensions are a power of two. Therefore 128 
x 128 arrays centered on the plume were extracted from the images shown in Figure 6. The box- 
counting approach benefits by having arrays whose dimensions are divisible by many numbers, 
so the full 144 x 144 cells were used for that analysis. 
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FIGURE 4       RANDOM BROWNIAN FRACTALS (continued) 

(b) FRACTAL DIMENSION = 2.5 
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I 
lidar fires downward at 
regular intervals 

FIGURE 5       SCHEMATIC DIAGRAM OF LIDAR MEASUREMENT OF AEROSOL BACKSCATTER 
FROM A SMOKE PLUME 

c.    Transmissometer Images 

The Atmospheric Transmission Large-area Analysis System (ATLAS), described by 
Bleiweiss et al. (1991), uses a video imaging system to generate two-dimensional arrays of 
transmittance values. The radiance of whatever is beyond the smoke plume being measured 
serves as the source for measurements. This means that several conditions must be met for the 
data to be reliable. First, the radiance of the background scene must remain constant during the 
measurement period. Second, there must be good contrast between the background radiance and 
that from a wholly opaque smoke plume. Unlike the lidar, backscatter data presented earlier 
(which depend on concentration), the ATLAS estimates transmittance from contrast observa- 
tions. Transmittance depends on the integrated concentration along the line of sight. 

Bleiweiss and his colleagues at White Sands Missile Range supplied 100 ATLAS transmit- 
tance images collected at 0.1-s intervals over a 10-s period. As noted by Bleiweiss et al. (1991) 
many assumptions are required. They assume single scattering and a spatially uniform medium 
so that transmission through the smoke Tc can be expressed in terms of source and cloud radi- 
ance Ls and Lc, and received radiance Lr as follows: 

Tc = (Lr-Lc)/(Ls-Lc) (50) 
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(a) LIDAR CROSS SECTION 117 
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FIGURE 6       AEROSOL BACKSCATTER CROSS SECTIONS THROUGH A PLUME 
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(b) LI DAR CROSS SECTION 118 
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Bleiweiss et al. (1991) assume that cloud transmittances Tc along nearby lines of sight with 
contrasting background radiance are equal and that there are no radiation sources off-line so that 
Lc can be estimated from the source and received radiances. If the two lines of sight and their 
corresponding background and received radiances are designated by subscripts 1 and 2, Eq. (50) 
can be rearranged to give 

L 
LS1LR2   LS2LR1 

(L   - L   ) (L   - L   ) v SI      S2'v R2      Rl' 

Data presented by Bleiweiss et al. (1991) show that the ratio in Eq. (51) remains nearly con- 
stant during an experiment, thereby providing a means for estimating Lc, and from that the 
transmittance distribution. However, the data exhibit a strong peak in the horizontal wave num- 
ber that corresponds to about three pixels (approximately 1 m). It is not clear whether this is an 
artifact of the data-reduction technique, but data at small spatial resolutions may not provide reli- 
able results because of it. 

Figure 7 shows three 128 x 128 pixel subsections of the transmittance images in the 
sequence supplied by Bleiweiss. Here, bright areas indicate higher transmittance, or less aerosol 
along the path. They correspond to times i.5, 5.5, and 9.5 s from the beginning of the sequence. 
According to information supplied by Bleiweiss with the data, the "smoke" was an aluminum 
aerosol released from three generators about 500 m upwind from the part of the plume shown in 
Figure 7. The instrument was about 500 m from the plume. The measurements were made at 
1831 EST, 16 May 1990 at Eglin Air Force Base, Florida. The winds at 10 m were about 4.4 
ms-1 from the south. The atmosphere was neutral to slightly stable. 

3.    Vector Data 

A unique set of atmospheric wind observations was made available to us by Schneider 
(1991). The data-measurement and reduction techniques are described in detail in the above 
cited reference. Very briefly these data were collected by observing the motions of small alu- 
minum dipoles (chaff) with two Doppler radar systems separated by about 16 km. The two 
radars provided data from a volume about 9 x 9 km in the horizontal and 2 km in the vertical 
direction at a rate of about one complete volume measured every 2 min. The initial radial veloc- 
ity measurements were interpolated to a Cartesian grid with 200-m spacing in all three directions. 
The grid is oriented with the Y direction toward north. The radial velocity data were smoothed 
to remove 400-m fluctuations. The data were also linearly interpolated to a common time 
between two successive volume scans. The u and v components are extracted from the two 
radial velocities at each grid point, first by ignoring the w component. The w component is then 
estimated from integration of the continuity equation and used to correct the first u and v esti- 
mates. Schneider (1991) found that the integration of the continuity equation gives more reliable 
estimates of w when performed in a coplanar, cylindrical coordinate system oriented along the 
radar baseline. 
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FIGURE 7       A SEQUENCE OF INFRARED TRANSMITTANCE IMAGES THROUGH AN ALUMINUM 
AEROSOL PLUME 

Courtesy Bleiweiss et al., 1991 

(a) 1.5 s 
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FIGURE 7       A SEQUENCE OF INFRARED TRANSMITTANCE IMAGES THROUGH AN ALUMINUM 
AEROSOL PLUME (continued) 

Courtesy Bleiweiss et al., 1991 

(b) 5.5 s 
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FIGURE 7       A SEQUENCE OF INFRARED TRANSMITTANCE IMAGES THROUGH AN ALUMINUM 
AEROSOL PLUME (concluded) 

Courtesy Bleiweiss et al., 1991 

(c) 9.5 s 
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The data provided by Schneider were in the form of the u, v, and w components at the grid 
points. It should be noted that the chaff tracked by the radar was not uniformly distributed so 
that there are some "holes" in the data. Furthermore, because the volumes scanned by the radars 
were such that there was no overlap in some comers, those grid points are also without data. 
Nevertheless, these data are complete enough that I began to consider applications to three- 
dimensional vector fields of the fractal dimension estimation methods discussed earlier. As of 
the writing of this report, we have not fully developed the necessary methodologies. The dis- 
cussion of the dual Doppler wind data is included to demonstrate that there are data to which the 
methods described later can profitably be applied. 

C.    APPLICATIONS OF STANDARD FRACTAL ANALYSIS TECHNIQUES 

1.    Fourier-Synthesized Fractal Arrays 
The data shown in Figure 4 were generated to demonstrate the degree to which the different 

fractal dimension estimation techniques can recover the "true" fractal dimension. In this case, 
the data are known to conform to the definition of a fractal, but (as we shall see) data collected in 
the atmosphere do not behave ideally. We would expect that, inasmuch as the test data were 
generated by Fourier synthesis, the Fourier methods for estimating fractal dimension would work 
well. This proves to be the case as can be seen in Figure 8. The three panels in Figure 8 show 
the power spectra (averaged according to radial distance from the origin in the Fourier plane). 
As expected, the slopes of the best-fit lines correspond to the correct fractal dimension within 2% 
in the worst case. This is indicative of the degree to which fractal dimension can be recovered 
under the best of circumstances for an array of this size (2562). 

Figure 9 shows the results obtained when the box-counting approach was applied to these 
same data. In this case, the data were treated as a three-dimensional array. A 240 x 240 subsec- 
tion was taken from the larger array. The values at each grid point were scaled so that the largest 
values were also < 240. In this case, lines with slopes corresponding to the exact fractal dimen- 
sions have been drawn. They show good agreement with the points over most of the range, but 
the points corresponding to the smaller sizes tend to show too few points. If best-fit lines are 
calculated for all but several of the upper points, the slopes agree within a Tew percent of the 
expected values. 

Figure 10 shows the results obtained when the multiresolution figure analysis is applied 
using the four-orientation edge detector discussed earlier [see Eq (13)]. Without any formal 
quantification of the congruence of the curves for different thresholds, this technique does not 
have the sensitivity of the others. It should not be too difficult to develop a method for measur- 
ing the overall discrepancies among the curves, but that has not yet been done. Nevertheless, it is 
apparent that the center panel of each figure, which corresponds to the correct fractal dimension, 
has the most nearly coincident curves. 
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2. Lidar Data 

In principle, there is no reason why the same analysis techniques used in the preceding sec- 
tion cannot be applied to any two-dimensional array of numbers, such as those representing the 
lidar images of Figure 6. The presumption is that if the array has the properties associated with 
fractals, then that can be determined along with the fractal dimension. The presence of noise and 
errors in the data makes the problem more difficult. Figure 11 shows the power spectra obtained 
from the lidar images in Figure 6. Figure 11 also shows the best-fit straight lines and their 
slopes. The fractal dimensions inferred from these slopes are generally > 3, which seems unreal- 
istic. The box-counting estimates shown in Figure 12 suggest a value between 2.5 and 2.6, at 
least over the range of larger sizes where the straight lines fits are appropriate. Dashed straight 
lines of slope -2.9 (corresponding to a fractal dimension of 2.55) have been entered in Figure 11. 
It is apparent that they are in reasonable agreement with the box-counting results for the lower 
wave numbers (larger wavelengths). It is not certain whether the aerosol backscatter is not scal- 
ing over the entire range of sizes, or whether there is random noise in the data on a smaller scale. 
Data uncorrected for attentuation would be expected to have somewhat greater power at wave 
numbers associated with large-scale features (Uthe, 1991 personal communication). More recent 
data from improved lidar systems and correction for attenuation may resolve this question. 

Figure 13(a) is an example of the application of the multidimensional feature-analysis tech- 
nique to the lidar plume imagery. This figure is based on the occurrence of "edges" in the 
imagery. For purposes of comparison, Figure 13(b) shows a similar analysis of the same image, 
based on the occurrence of peaks [Eq. (14)]. In both cases, it is obvious that the fine resolution 
(one cell, or pixel) counts do not scale the same as the coarser features. This is certainly consis- 
tent with the findings from the spectral and box-counting analyses. It also appears that the two 
features—edges and boxes—have different scaling properties. Figure 13 shows the results for 
the three values of the exponent H that were judged to give the nearest congruence of the curves. 
Figure 13(a) suggests that the best estimate of fractal dimension derived from the edge analysis 
would be on the order of 2.6 or 2.7, reasonably consistent with the other methods. The peak 
analysis in Figure 13(b) gives an estimate nearer 2.9, considerably different from the other meth- 
ods. Although the congruence of the graphs in the figures is poor, especially compared to the 
ideal cases shown in Figure 10, the fact that the two features give very different results suggests 
that the scaling properties may depend on the nature of the feature selected. This in turn suggests 
that appropriate features may not have been selected. This will be discussed further in a later 
section of this report. 

3. Transmittance Imagery 

Applications of the fractal analysis techniques were least successful for the transmittance 
imagery. This may be a result of the data-reduction techniques that were used. As noted earlier, 
there appears to be an artifact in the data that produces peaks in the horizontal spectrum at wave- 
lengths on the order of a meter. Bleiweiss et al. (1991) discuss other data-reduction approaches 
in their paper that do not rely on the same assumptions. Future studies should compare results 
obtained from images using different data reduction methodologies. 
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In spite of problems with the data, some results were obtained. Figure 14 shows the power 
spectra for the three transmittance images in Figure 7. There is considerable variation among the 
images. It should also be noted that if the larger wave number (smaller wavelength) data points 
were ignored, the slope of the lines would be steeper, giving lower fractal dimensions. There is 
reasonably good agreement between the estimates of fractal dimension from the spectral slope 
and those from the box-counting method shown in Figure 15 for the first and last of the images. 
The other image is estimated to have a lower dimension from the spectral slope than from the 
box counting. 

As with the lidar images, the transmittance images do not give very good results with the 
multidimensional feature-analysis approach. The origin of the problem is not clear. It may be 
the use of inappropriate features, or the data-reduction techniques mentioned earlier. Because 
the transmittance data are appropriate for the study of questions of considerable interest to the 
Army, every effort should be made in the future to use these data to determine the nature of 
inhomogeneities in the transmittance through smoke plumes. 

D.    EXTENSIONS OF MULTIRESOLUTION FEATURE ANALYSIS 

1.   Vectors 

a.    Two-Dimensional Fields 

Scalar fields have been the focus of the discussion to this point, but multiresolution feature 
analysis can also be applied to vector fields. Two possible approaches exist: 

Apply any of the techniques to some scalar property of the vector field, such as diver- 
gence or the vertical component of vorticity. 

Define vector features and apply the multiresolution methodology directly to the vector 
field. 

Some of the conventional finite-difference approximations for vector field properties can be rep- 
resented by features like that represented in Figure 16. It shows the finite-difference operator for 
the vertical component of vorticity expressed as the sum of two features (like those presented 
earlier as matrices to be superimposed on the data field to define a sum of products): One of 
these "templates" is applied to the westerly (u) component, the other to the southerly (v) compo- 
nent. Ordinary scalar feature detectors can then be applied to the resulting feature intensity field, 
although the interpretation may not be straightforward. Figure 17 shows a flow field that would 
be associated with an "edge" in the vorticity field. 

Scalar properties of the vector field need not be used; interpretation of the results may be 
much easier if vector features are defined and applied directly to the field. Figure 18 shows two 
particularly interesting vector features. The vector templates are applied in the same way as the 
scalar templates, except that the arithmetic product is replaced by the scalar (dot) product of each 
feature vector and the corresponding vector in the field being analyzed. If the vortex feature 
template in Figure 18(b) is applied to variously smoothed vector fields, then we are actually 
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FIGURE 16     FEATURE BASED ON THE FINITE-DIFFERENCE APPROXIMATION FOR 
THE VERTICAL COMPONENT OF VORTICITY 

pursuing the quantitative meaning of Richardson's doggerel that "Big whorls have little 
whorls..." (Richardson, 1922, as quoted by Mandelbrot, 1983). The whorls or vortices in 
Figure 18(b) are two-dimensional features, that might be associated with the feature in Figure 
18(a) oriented in a perpendicular plane. 

b.    Thr@e°Dim@nsionafl Fields 

One of the mechanisms suggested for the transfer of energy down the turbulent cascade is 
by the stretching of vortex filaments. Figure 18(a) shows a flow pattern that produces stretching 
along the axis between the upper left and lower right corners. If this transfer mechanism is 
important, then the feature shown in Figure 18(b) should have large (positive or negative) values 
on a smaller scale in the plane normal to the axis of stretching. This relationship needs to be 
studied in applications to observed and simulated flow fields. As just described, the method 
would be applied to two-dimensional features in two steps. It would be worthwhile looking at 
three-dimensional features, but to do so would be difficult. In the example just discussed, the 
features in Figure 18(a) will be of a smaller scale than those in Figure 18(b), and they will be ori- 
ented normal to the stretching axis. 

Figure 19 shows an example of a three-dimensional vector feature that corresponds to verti- 
cal stretching of an eddy in the horizontal plane. In this case, the value assigned for the feature at 
the center point would be the sum of the scalar products of the feature vectors with the corre- 
sponding vector in the field being analyzed. Once the feature strengths have been determined for 
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FIGURE 19     EXAMPLE OF A THREE-DIMENSIONAL VECTOR FEATURE 

variously smoothed vector fields, the information necessary for multiresolution analysis is avail- 
able. The dual Doppler radar wind data discussed earlier should provide a good basis for case 
studies. Although the number of data points in any one field may be too small, grouping the data 
should give sufficiently large samples for analysis. 

2.    Empirically Defined Features 

One problem that arises in the use of vector features (and to a lesser extent, scalar features 
as well) is that one quickly runs out ideas for features. Furthermore, unless one is careful, there 
may be considerable redundancy of information among the members of any set of features that is 
arbitrarily defined (i.e., they may be linear combinations of one another). Thus, to carry this 
approach the logical next step, it would be desirable to have an approach to the definition of fea- 
tures that was based on the characteristics of the data themselves, and that provided features that 
were independent of one another. It would also be desirable to have a measure of the relative 
importance of the different features. 

In the case of scalar features, an approach that is widely known is available. For example, 
Lorenz (1956) represented the patterns of variability of atmospheric pressure at 64 stations in the 
United States as a linear combination of independent patterns of variability, which he referred to 
as Empirical Orthogonal Functions (EOF). Lumley (1967, 1980) suggested that a similar kind 
of analysis could be used to extract coherent structures from turbulent flows. Ludwig and Byrd 
(1980) also applied the concept to vector fields. They identified patterns of variability in the 
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inputs used for a wind model in order to simplify the resulting calculations. Sirovich (1988) 
describes the analysis of turbulent flows by a similar procedure. According to Sirovich 
(personal communication, 1991), the patterns of variability can be identified without as much 
calculation as is required by the covariance matrix diagonalization approach described by Lorenz 
(1956), and adapted for use with vectors by Ludwig and Byrd (1980). The newer approach has 
not been tried yet. 

The approach that has been pursued here uses small 3x3x3 subsections of the observed 
wind field. Subtracting the center vector from each of the surrounding 26 vectors in the subsec- 
tion gives a difference vector (Av) for each of the points in the subsection, i.e., 

(AV» = 

Au 
ijk 

Av 
ijk 

Aw 
ijk 

m 

V U222 

v v 
222 

wi*- "
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m 

where Uük»Vjjk and Wjjk are vector components at point ijk (222 is at the center of the subsection) 
in the m*" subsection. The three-dimensional array of AVs shows the local pattern of motion 
about the center point. If we have this array and the vector V222 at the center point, then we can 
reconstruct the 26 surrounding vectors. Looking ahead to possible applications, we can envision 
that we have modeled the vectors on a coarse array (corresponding to the center point values). 
Then, if we have some way of estimating the array of AVs, we can obtain the field with finer 
resolution. 

Next, we determine the deviations AV about the means by subtracting the average (indi- 
cated by the overbar) over the same relative points in all N subsections from individual AVs, 
i.e.,: 

(Av;Jk) =Kk)-(
Av) 

m m (53) 

This relative variability about the center point is described by (3 x 3 x 3 grid points) x 3 
vector components. These 81 numbers are treated as the components of a column vector describ- 
ing the "state" of the subsection. A matrix of these "state vectors" is multiplied by its transpose 
to give the covariance matrix for the complete set of state vectors. The eigenvectors of this 
matrix that account for the most variance in the individual patterns can be used as the "features" 
in the modified multiresolution feature analysis methodology. These eigenvectors are the empir- 
ical orthogonal functions (EOFs) that will be used for subsequent feature analysis. 

The same approach can as easily be applied to scalar fields, differing only in that there is but 
one number associated with each grid point, so that it is computationally feasible to look at larger 
patterns of variability with scalars. Identification of the major patterns of variability in scalar 
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fields and how they scale with size could probably be used to guide smoke plume simulation 
methodologies like that recently described by Hoock (1991). He redistributes smoke material to 
smaller size elements based on the space-fillingness derived from an estimate of the fractal 
dimension. It is easy to see that the redistribution could be guided by the observed patterns of 
variability and their relative frequencies, rather than by purely random redistribution. 

FORTRAN programs have been written to determine the most important features in three- 
dimensional vector arrays and two dimensional scalar arrays. The programs were applied to 
determine the vector features for the dual Doppler radar observations of winds near Boulder, 
Colorado for 1246 MST on 22 June 1984 (Schneider, 1991). The average variability about the 
center point of 3 x 3 x 3 subsections of the wind field and the three vector EOFs that explain the 
most variance are shown in Figure 20. The strong shear in the wind field is evident in the aver- 
age pattern of variability. The first EOF indicates a tendency for small-scale patterns (on the 
order of 400 m on a side) to show strengthening and weakening of vortex patterns tilted in the 
approximate direction of the shear. The second most important pattern of local spatial fluctua- 
tion (explaining almost as much variance as the first), is a general strengthening or weakening of 
the existing shear. The third EOF is somewhat more complex (and higher order EOFs tend to be 
even more so); its most important feature is that it accounts for local strengthening (and weaken- 
ing) of the horizontal shear in approximately the north-south direction. The results of this appli- 
cation are encouraging. It is hoped that the techniques alLded to by Sirovich (1988) can reduce 
the required calculations. In any event, I expect to continue development and application of 
these techniques to atmospheric wind measurements. 

54 



FIGURE 20 AVERAGE VARIATION ABOUT THE CENTER POINT AND THREE MOST 
IMPORTANT PATTERNS OF VARIATION IN AN OBSERVED WIND FIELD 
(PERCENTAGE OF EXPLAINED VARIANCE IS SHOWN) 
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IV        FUTURE RESEARCH 

A.    SUBGRID FLOW SIMULATION 

1.    Deterministic Approaches 

It is quite possible that the EOFs will depend on the prevailing meteorology. For example, 
there is a tantalizing hint of this in the first EOF shown in Figure 20. Although it may just be 
happenstance that it has an axis that tilts from the vertical in the direction of the large-scale shear, 
it would not be surprising to find that the EOFs are affected by such things as the large-scale cir- 
culation, thermal stratification, and so forth. Furthermore, the most important EOFs may exhibit 
important changes from one level of resolution to the next. Such variability would complicate 
matters, but should not prevent the kinds of analyses discussed below from being performed. 

It should somehow be possible to characterize the nature and strength of the most important 
features at a small scale from information available at coarser scales. If the field is fractal, then it 
should at least be possible to define the probability distribution of feature strengths, opening the 
way to probabilistic simulations of small-scale features. Of course, it will be easier if some rea- 
sonable correlations can be found between feature strengths at on scale and those at smaller reso- 
lutions. This would open the door to a simpler, more "deterministic" relationship between 
scales. There are two possibilities, but in either case the process begins by defining the several 
most important EOFs for a combined set of wind fields that correspond to similar meteorological 
conditions. The EOFs will be defined for each resolution and for the combined data set compris- 
ing of all the different smoothings. Then, either the EOFs for the combined resolutions closely 
resemble those derived for each of the smoothings, or they differ substantially from one another. 
In the first case, we choose one set of EOFs from those that have been calculated. Initially, this 
will probably be a subjective choice, but an objective selection scheme based on the inner prod- 
ucts of the EOFs (which are actually large vectors) should not be difficult to devise. The next 
step is to use the most important EOFs as features and determine their strength at the grid points 
for each smoothing in each of the wind fields of the set. These feature strengths can then be used 
directly in the scheme adapted from Jones et al. (1991) to estimate fractal dimensions and 
determine whether different values are associated with different features. These same data also 
provide the information necessary for developing deterministic or probabilistic relationships as 
described later. 

If the EOFs are substantially different for different resolutions, then we can still use the 
EOFs derived from the combined smoothings as a basis for estimating fractal dimensions. How- 
ever, for estimating smaller-scale circulations, it will be better to calculate feature strengths for 
each smoothed field based on the EOFs that have been found to explain the most variance for 
that particular resolution. Again, this will lead to a set of feature values associated with each grid 
point in each of the smoothed fields, However, those feature strengths will refer to different 

56 



features at the different resolutions. This will not necessarily present a problem when we search 
for deterministic or probabilistic relationships between features at different scales, but it is likely 
to introduce some difficulties in practical applications. 

One approach to the analysis would begin by calculating the linear correlations between the 
feature strength (for each of the most important small-scale features) at points on the smallest 
scale grid, and the feature values for the most important features at nearby points on the next 
coarser grid. There are some limitations on the choice of variables that are imposed by the 
geometry, i.e., the coarse grid points for which feature values can be calculated will all be farther 
removed from the edges of the domain than the finer scale points. Nevertheless , it is likely that 
we will end up with a correlation matrix of about 4 (important fine-scale features) x 108 
(representing four features for each of the nearest 27 points). If the linear correlation table does 
not have any high correlations, it would probably be worthwhile to repeat the process using rank 
correlations in case there are significant monotonic, but nonlinear, relationships in the data. 

If significant correlations are found, their distribution through the table may be very enlight- 
ening. For example, if the correlations are higher for feature values at more distant points than 
for the values at the central point, it suggests that the transfer of motion to smaller scales involves 
small-scale features "attached" to the larger features, rather than "embedded" in them. Correla- 
tions between different kinds of features could provide hints about the physical processes 
involved. For example correlation between small scale "eddy-like" features and larger-scale 
"stretching" features might be evident if the oft-suggested cascade via vortex stretching is 
important. 

If some instances of high correlations are found, then those coarse features that are most 
highly correlated with the smaller-scale feature values would be used as input to an optimized 
multiparameter regression scheme to provide a functional relationship between the values of 
coarse-scale features and those of the most important smaller-scale ones. If the relationships 
were generally valid for all cases with similar meteorological conditions, then the regression 
results would provide all the required information for an extrapolation to smaller scales. The 
larger-scale feature intensities can be derived directly from the large-scale grid values, whether 
obtained by simulation or observation. Those feature values in turn are used to estimate the fea- 
ture values for the next smaller scale, which serves as basis for estimating small-scale values 
from the center point value (which is at a coarse grid point), average variations about that point, 
and a linear combination of the features, using their estimated strengths as the coefficients. 

2.    Probabilistic Approaches 

If there are no strong correlations between feature strengths at the smallest scale and those 
at the next largest, the problem is much more difficult, but there are at least two possible 
approaches that can be tried. Both are related to the probability of occurrence of feature 
strengths (or combinations of feature strengths) on the small scale to those on the larger scale. 
The fact that little or no correlation was found, combined with the presumed fractal nature of the 
fields, suggests the use the scaling properties to define the small-scale feature intensity probabil- 
ity distributions and use them in a Monte Carlo scheme to define a small-scale feature strength 
for each important feature around each coarse grid point. The orthogonality of the features 
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guarantees that their strengths are uncorrelated, so the probability distributions can be used 
independently without worrying about possible cross correlations. Once a feature strength has 
been defined for each feature type at each grid point, the process of constructing the smaller scale 
values proceeds just as described above for the deterministic case. 

If no strong correlations are found between the strengths of individual feature types at the 
different scales, it would be worth exploring the possibility of using "clusters" of feature 
strengths to stratify the analysis. One of the standard cluster analysis programs would be used to 
identify groupings of feature strengths at the coarse and fine scales. Each coarse grid point 
would be identified with one of the coarse clusters and with one of the fine clusters. Then, con- 
tingency tables would be constructed to show the probability of occurrence for each fine-scale 
cluster, given the occurrence of a specified coarse cluster. These contingency tables could be 
used in a Monte Carlo scheme to select a fine-scale cluster for each grid point, given the coarse 
cluster that was appropriate to that point. We could calculate an average value for each feature 
strength, based on the members of the cluster, and use those feature strengths as described before 
to construct a local fine scale field. In essence, if this approach were applied to scalars, it would 
be a refinement of that described by Hoock (1991). He selects the smaller cells in which material 
is to appear randomly (with the average number of such cells defined by the fractal dimension), 
rather than by having preferred patterns of distribution. 

With incomplete approximation (not all EOFs used), it is likely that the local vector (or 
other fields will violate various laws of physics—especially if full set of dynamic variables are 
included. Thus, it may be necessary to adjust the first-guess field to be compatible with govern- 
ing equations. Possibilities include iterative relaxation schemes and variational calculus 
approach to get minimum adjustment. 

B.    FRACTAL/SCALING FROPERTIES 

The multiresolution feature-analysis methodology requires the calculations of "feature 
strength" fields at all scales. These are scalar fields (regardless of whether the original field was 
scalar or vector) that can be used as input to any of the other fractal dimension calculation 
schemes, which would provide a link to other studies. It would also serve as another method for 
examining whether different aspects of the field are distributed in space with different scaling 
properties. This would not be surprising, as the different patterns represent different aspects of 
the flow (or scalar distribution). As an example, it was shown earlier that the vertical component 
of vorticity can be expressed as a vector feature. Its distribution might well be expected to be 
different from that of other scalars, such as speed, divergence, or other flow characteristics. 

One interesting question that may need to be addressed is the following: Does the variance 
explained by the EOFs come from many common "events" of modest size, or from a few 
extreme cases? The former would be more useful for ordinary fluid flow parameterization appli- 
cations. The latter would be more useful for addressing extreme value concerns, but it seems 
unlikely that it would be possible to acquire large enough data sets with the required wide range 
of scales. 
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