
GL-TR- 89-0346

REMOTE SOUNDING OF ATMOSPHERIC TEMPERATURE
PROFILES USING THE OPTICAL MEASURE METHOD

AD-A244 828K. N. 0iu

Center for Atmospheric and Remote Sounding Studies (CARSS)
Department of Meteorology
University of Utah
Salt Lake City, Utah 84112

31 December 1989

DTI
Final Report ELECTE
12 September 1988 - 31 December 1989 JAN5 IS1O

Approved for public release; distribution unlimited J

GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
HANSCOM AFB, MASSACHUSETTS 01731-5000

0018 92-01226



This technical report has been reviewed and is approved for publication.

Contract Manager
Atmospheric Sciences Division

MDA. McCLATCHEY, Dire r
Mmospheric Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical
Information Center. All others should apply to the National Technical
Information Service.

If your address has changed, or if you wish to be removed from the mailing
list, or if the addressee is no longer employed by your organization, please
notify PL/TSI, Hanscom AFB, MA 01731-5000. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.



UJNLASSIFI ED
SECuR.,Tv CA~S'CArION OF T-'IS PA ,f

REPORT DOCUMENTATION PAGE
Is. RPQRT SECLAITY CLA5S4ICATION lb RESTRICl. sE MARK-NGS

Unclassi fied
2& SEC-RITY CLASSF-CATI0N AUTHORITY 3 OSTRIewT ON AVAILABILITY OF REPCPT

2b O%_LASIFCATIN DWNGRO.NSCHEQLEApproved for public release;
2b DC~ASIFIAT.O OONCRONGSCHEULEdistribution unlimited.

4 PEIAFCAMING ORGANIZATION REPORT NuMBERS) S M~oNITOP %G ORQANIZATION qEPORT N.A4BER.S)

CL-TR-89-0346
6a NAME OF PERFORAANG ORGANZATION o OFFICE SYMBOL 7& NAME OF MONITOR,.NG ORGANIZATION

Center for Atmospheric and iIt appi~cablei

Remote Sounding Studies CARSS Geophysics Laboratory
6c ACORESS tCit). State and ZIP Co~de) 7b ADDRESS City. Slate and ZIP Code)

Department of Meteorology/CARSS Hanscom Air Force Base
University of Utah Bedford, Massachusetts 01731-5000
S~alt Lake City, Utah 84112 _____________________________

5NAME OF FUNDING SPONSOR,NG Stb OFFICE STMO 9 PROCUREMENT INSTRU-MENT DENTF.CAT:ON NUTMBER&
ORGANIZATION j(it applw able)l92-8--04

Ac DO PE SS ICi y. State anl d IP C~de) 10 SOURCE OF FUNO-NG NOS

PROGRAM PROjECT TASK WORK UNIT

ITITLTE lIIci.de iecuily C~aL&,.car,o'ii Remote Sounding of EENTON.NOO

AtLmospheric Temperature Profiles Using the... I 61102F 2310 G8 AF
12. PERSONAL AUTHOR(S)

S. C. Ou, K. N. Liou *
3. TYPE OF REPORT 13b TIME CO ,ERED 114 DATE OF REPORT Yr. Mo. Da)) ' PAGE COUNT

Final 11FROM9A2.88 TO 12/31/-81 31 December 1989 68

6 SA PPEMENTARY NOTATON

'7 C.;SATi CODES iS SUBjECT TERMS lContiniie on rtee if neeja'7 and identify by block Plumber)

FIELD GROUP SUB GR Remote Sensing, Inversion Theory, Optical Measure Method,

- I I IDifferential Inversion Method, HIRS, Temperature Retrieval
ig ABSTRACT (Cuntinu# On mterse if necesiary and den hiy by block num"ber)

This report describes an exploratory investigation on the applicability of the
Optical Measure Method (0MM) to the retrieval of atmospheric temperature profiles
using both the simulated and HIRS-2 radiances. We first present the basic theory of
the 0MM. Then we describe the synthetic retrieval of temperature profiles using HIRS-2
channels. Without performing an adjustment to the radiances, temperature profiles
derived from both polynomial and polynomial-hyperbolic functional fitting of radiances
are poor. We identify two major sources of errors through a forward analysis. One
is the variation in the sharpness index of the weighting function with sounding channels,
while the other is the surface contribution to radiances. For these reasons, an
adjustment scheme has been developed using the concept of "scaling factors", which
encompasses the effects of variation in the sharpness index, surface discontinuity,
channel properties, and functional forms. Retrieved temperature profiles derived from

20 OS-R.BUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

-11CLASSIF-ED UNLIMITEO K SAME AS APT 0 OTIC USERS 0 Unclassified

.2& %AME OF RESP3'.S 9,E iND.IID.,AL 22 f-- '.E R Fj 122- :, A S *V5''L

Jean 1. F. King 3 7LY

UNCLASSIFIED



UNCLASSIFIED

3E :,rtTY CLASS, CATION O TMS 'AGE

polynomial-hyperbolic functional fitting of adjusted radiances are much improved. We show
that the Differential Inversion Method (DIM) for temperature retrieval and OMM are math-
ematically equivalent. In practice, the DIM works better because of the fitting of
radiances in the logarithmic pressure scale, which accounts for some of the surface
contribution. Application of the DIM to an archive of 3473 collocated temperature profiles
and radiance data sets shows that the accuracy of the retrieved temperatures is within
about 3 K below 250 mb. In order to obtain a better accuracy, modifications and refine-
ments are required for the DIM.

Continuation of block 11: Optical Measure Method.

Via
I

Just iflea i on

Avail abilil Codes .

i - id II I III I I



TABLE OF CONTENTS

Page

Section I

INTRODUCTION .... ................................................... . 1

Section 2

OPTICAL-MEASURE THEORY ..... ....................................... . 3

2.1 Polynomial Method .................................... 3

2.2 Optical Number System ................................ 5
2.3 Nonlinear Hyperbolic Method .......................... 7

Section 3

APPLICATIONS OF THE OMM TO TEMPERATURE RETRIEVALS USING
THE HIRS CHANNELS ................................................. .

3.1 Determining of Weighting Functions and
Radiances ............................................ 9

3.2 Fitting of Radiance .................................. 11
3.2.1 Formulation of the PH Function .................. 19
3.2.2 Prescription of m1 and m 2 . . .. . .. . . .. . .. . . .. . ..  22
3.2.3 A Least-Square Algorithm ....................... 22

3.3 Direct Application of the OMM Without Adjustments .... 25
3.4 A Forward Analysis on the OMM .......................... 26
3.5 Application of the OMM with Adjustments .............. 34
3.6 Optimum Functional Form for the Planck Intensity

Pro f ile .............................................. 38

Section 4

COMPARISONS BETWEEN THE DIM AND THE OMM ............................ 44

4.1 The Equivalence Between the DIM and the OMM .......... 44
4.2 Preliminary Applications of the DIM and HIRS Data .... 47

Section 5

CONCLUSIONS ... ..................................................... 52

REFERENCES ............................................................... 55

APPENDIX ... .............................................................. 56

iii



Section 1

INTRODUCTION

There are numerous schemes that are available for the retrieval of

temperature profiles. In most inversion approaches, certain a priori assumptions

on the temperature profile or constraints on its variation are required. The

root mean square (rms) errors of the retrieved temperature profile from the

traditional methods vary between I and 5 K (Phillips et al. 1988). The external

restrictions generally take the form of an initial trial profile and the

departure allowed from the initial guess is restricted. The methods with a

priori constraints may work well in an average sense but large errors may result

in extreme cases.

The inference of atmospheric temperature profile should be based on the

solution of the radiative transfer equation. The formal solution of the

radiative transfer equation is represented by the Fredholm integral equatiol of

the first kind. There are problems involving the instability of the solution and

the ill-conditioned property of the equation itself, since in practice the data

available for the performance of inversion are finite. Because the number of

unknowns are more than the number of equations, the solutions are not unique.

King (1985) proposed a differential inversion method (DIM), in which the

Planck intensity at pressure levels corresponding to the peaks of weighting

functions can be directly expressed in terms of the sum of the derivatives of

upwelling radiances in the logarithmic pressure coordinate. This inversion

technique that does not involve a priori assumptions was developed based on the

Laplace transform of the integral equation. In the follow-up effort, King (1987)



developed a similar retrieval algorithm referred to as the optical measure method

(OMM). The fundamental principle of both the DIM and OMM is that no initial

guess of the temperature profile or a prescription of specific constraints is

needed. The two methods represent pioneering efforts to break away from

conventional techniques. In the OMM, a certain functional form is needed to

represent the Planck intensity profile.

In our previous report, we have explored the generalization and applicability

of the DIM by way of a synthetic study (Liou, et al. 1989). We showed that the

retrieved temperatures at the lower four peak pressure levels of HIRS channels

4-7 are accurate to within 2 K. In this report, we present a similar

investigation on the OMM. In Section 2, the theoretical foundations for the OMM

are presented. Applications of the OMM to synthetic radiances of the HIRS 15 jim

CO2 channels for temperature retrievals are described in Section 3.

Subsequently, the advantages and shortcomings the DIM and OMM are discussed in

Section 4. Finally, conclusions are given in Section 5.
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Section 2

OPTICAL MEASURE METHOD

2.1 Polynomial Method

It is assumed that the radiance and Planck profiles are continuous and

differentiable over the optical pressure (p) and atmospheric pressure (p) spaces,

respectively, where p is the pressure corresponding to the peak of the weighting

function. It is associated with the absorption propertie. of spectral bands.

We may express the radiance over a certain spectral band with the mean wavenumwber

v in terms of a polynomial function of p as follows:

R[p(v)] r 0 + rlp + r~p2 + .... = rp'
1=0 (2.1)

The corresponding Planck function may also be expressed in terms of a polynomial

of p in the form

CD

B-(p) = b0 + b1p + b2p
2 + . Z.. = bjp' (2.2)

1=0

Based on the formal solution of the radiative transfer equation that is applied

to a plane-parallel atmosphere (Chandrasekhar, 1950), the radiance is related to

the Planck function in the form

R[p(v)] = J B-(p) W-(p/p) dp/p

(2.3)

where W-(p/p) is the weighting function for a certain spectral band, which is

defined as

3



W;(p/p) = dT-;(P/P) (2."1d(Inp)

and T-(p/p) is the transmittance from the level p to the top of atmosphere. We

substitute Eqs. (2.1) and (2.2) into Eq. (2.3) to obtain

£ r,p' = Z b, p p'' W;(p) dp (2.5)
2=0 2=0 '(JO

where p - p/p. The coefficients for the Planck function can now be determined

by matching the terms of equal power in p. Thus,

b,- r, [ ,- Wj;(p) dp (2.6)

and the Planck function can be written as

B-(p) -= r, W-(-) d p1=0 (2.7)

Equation (2.7) implies that the Planck function can be inferred through I

polynomial expression of p if the coefficients r,, are determinable. At

present, the number of sensing channels on board satellites are limited. For

example, the HIRS-2 radiometer has only seven channels in the 15 pm CO. band for

temperature retrievals. If we use the data from these channels, the degree of

polynomial expansions cannot exceed six because the coefficients of higher-degre,

polynomials are not unique.

Even with all the values of r, known, another obstacle inherent in the method

is the determination of the integral in Eq. (2.6). Although the integration from

p = 0 to p - w could be carried out numerically, its accuracy would be highly

questionable. King (1987) proposed a new "optical number system" to resolve thlc

problem of integration analytically.

4



2.2 Optical Number System

According to King (1985), the weighting function can be expressed in a

generalized form:

W( ) = CK(1)/Kc Pexp(-p K/) (2.8)

where P is the "sharpness index", and r the Gamma function. Two special cases

can be derived from this generalized weighting function. For K - 1,

W(p) = p exp(-p) (2.9)

This expression corresponds to the weighting function derived from the Goody-

Mayer random model. On the other hand, for K - 2, we have

(2.10)
W(p) = 2 -,rp exp(-p 2/2) ,

This corresponds to the weighting function derived from the Elsasser band model.

Using the generalized weighting function, integration in Eq. (2.5) may be

done analytically. Using properties of the Gamma function, we obtain

J " W' ~;(-)d- J exp(-p/K) dp

- r[(1l)/.] (2.11)

r(1/K)

A generalized Gamma function may be defined in the form

r,(p +l) = I- 'F (+),](2.12)

In this manner, Eq. (2.7) may be expressed by

B-(p) = Z r, p,(2+l)] p(
1=0

5



When K 1, the generalized Gamma function is reduced to the form of Gamma

function in terms of natural number system. Since the Gamma function has the

following property:

r(i+l) - r(1) , for I - 1,2,3, (2.14)

we can also construct an optical number system n, such that

r(1+ ) - i, r-(2) , for I = 1,2,3 ... (2.15)

This optical number system reflects the ratio of successive moment integrals of

the weighting function, i.e.

exp (-p"/r)dp

F p-1 exp(-p"/)dp (2.16)

For x > 1, which corresponds to a sharper weighting function with larger W-
vmax

and steeper slope on either side of the peak, I < 1 . For K < 1, 1. > 2. The

parameter 1E may be referred to as the sub-natural and super-natural number

systems for P1 < I and 2, > 2, respectively. For retrieval purposes, the sub-

natural number system is desired, because sharper weighting functions would giv

more accurate retrieval results (Liou and Ou, 1989).

In practice, there is a weighting function profile for each sounding channel.

A distinctive value of . can be assigned to each channel by fitting the

generalized form to the weighting function. Thus, if we evaluate B-(p) according

to Eq. (2.7), we will obtain several values of B-(p) that correspond to different

Pc. A conversion of B-(p) to temperature may not lead to a uniform r value at the

same pressure level. To determine a mean temperature profile, a weighting method

is usually used (Smith, 1910).
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2.3 Nonlinear Hyperbolic Method

The key to the success of the OMM lies in the adequate fitting of a finite

number of radiance measurements by a smooth function of a combination of smooth

tunctions. Higher-degree polynomials may fit every radiance data point ,.-ell, but

they may also carry spurious oscillations between data points. This will lIad

to unrealistic solutions of the Planck function. Thus, we are forced to seek the

fitting of radiances that will not produce unnecessary wiggles between data

pints, but at the same time the fitted curve will match each data point

reasonable accuracy.

One possible candidate for the radiance fitting is the nonlinear hyperboic

funcction. According to Chandrasekhar (1950), the upwelling intensitv tro:r

plane-parallel atmosphere can be expressed as a sum of hyperbolic funcci:cns

Thus, R[p(v)] may be expressed in the form

R[p(v)] = Z _

j=0 lmjp (2.17)

A-ctually, Eq. (2.17) is equivalent to a combination of geometrical series:

-' = r,[1 - mjp + (mjp) 2
- .. (

j=0 l+mjp j=0 (2.18)

Comparing Eq. (2.18) with Eq. (2.1), we note that

r,= j 1(-m,)'
j=0 (2.19)

and the coefficients of the Planck function are given by

r, = 0 r,(-m,)#
bt= E

0 - =O (2.20)
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Substituting Eq. (2.20) into Eq. (2.2) yields

0 ® ij(-mj)' IB;(p) = Z Z
j=O 1=0 7! (2.21)

By exchanging the order of summation in Eq. (2.21), we find

B-(p) = r, ii Z -i)' p = r e p
B j=0 I =0 j=O (2.22)

for x - 1. The Planck function is now given by a linear combination of

exponential functions with different Crguments. We may define an optical

exponential function such that

exp.(x) = Z x'/1"!
1=0 (2.23)

It follows that Eq. (2.21) may be generalized in the form

CO

B-(p) = Z rj exp.(-mjp)
j=O (2.24)

Using the combination of hyperbolic expressions for radiances, we obtain a

series expansion of B- in terms of the optical exponential function. Evaluation
V

of the optical exponential function must be done through Eq. (2.23). For K - 1,

this equation reduces to the exponential function.

8



Section 3

APPLICATIONS OF THE OMM TO TEMPERATURE RETRIEVALS

USING THE HIRS CHANNELS

In this section, we shall present the results of applying the 0-M to

temperature retrievals by performing synthetic analyses using the properties of

HIRS channels in the 15 Am CO2 band.

3.1 Determination of Weighting Functions and Radiances

There are seven channels in the HIRS 15 Am CO2 band with central wavenuihbers

at 668, 679, 690, 702, 716, 732, and 748 cm-1 . The smaller wavenumber

corresponds to broader weighting functions with maxima located at higher

altitudes. The last two channels are also affected by the absorption/emission

clue to water vapor. Details of the channel characteristics are listed in Table

1.

Table 1. HIRS Channel Characteristics

Principal Level of

Channel I/ (cm-1) i V2 Al/ Absorbers Wma x

1 668 666 670 4 CO2  30

2 679 674 684 10 CO2  60

3 690 685 697 12 CO2  100

4 702 696 712 16 C02  250

5 716 708 724 16 CO2  500

6 732 724 740 16 C02/H20 750

7 748 740 756 16 C02/H20 900

9



We used the CO2 absorption coefficients computed by Chou and Kouvaris (1986)

based on line-by-line data compiled by Rothman et al. (1983) to compute

transmittances and weighting functions, using the k-correlated method. This

method transforms the spectral integral over the wavenumber space into an

integral over the domain of the accumulated frequency distribution of the

absorption coefficient. Furthermore, to account for the inhomogeneous

atmosphere, we assume that the variation in the absorption coefficient depends

only on pressure and temperature so that the frequency distributions of the

absorption coefficient can be correlated through pressure and temperature. In

practice, we use the cumulated frequency distribution (g) look-up table to

determine the relationship between the absorption coefficient at an arbitrary

level and that at the reference level. The reference absorption coefficient is

determined from each g value. The spectral transmittance is obtained by

numerical integration over the g space (Liou and Ou, 1988).

A numerical method was developed to fit the HIRS weighting functions to the

generalized form denoted in Eq. (2.8) to obtain the sharpness index, X,

associated with each channel. It is similar to the least-square method.

However, the quantity that is to be minimized is the weighted square sum of

errors. More weight is placed on the error near the peak of the weighting

function, because a significant portion of the upwelling radiance comes from

emission near the peak level. The resulting nonlinear algebraic equation is

solved by Newton's iteration method. The sharpness index of the fitted weighting

functions for Channels 1-7 are 0.49, 1.56, 1.50, 2.19, 2.34, 4.34, and 3.16

respectively. Except channel 1, the x values associated with all other channels

are larger than 1. The x value deviates from 1 and 2, implying that neither the

Goody random band model nor the Elsasser regular band model can properly simulate

10



the total transmittance in the 15 Jm CO2 band. The errors for the fitted

weighting functions are within + 0.02. Since the fitting method places more

weight on minimizing errors near the peaks than in the wings, the percentage

errors near the peaks (< 2%) is much smaller than those in the wing regions.

Figures l(a)-(g) show the weighting functions computed from the k-correlatcd

method and the fitted generalized weighting functions. The fitting for Chaninel

I is not as satisfactory as those for other channels, due to the secondary peak

above 10 mb. The figures also show that the weighting function of Channel I is

much broader than other channels. Channels 6 and 7 are the sharpest channels with

peaks close to the surface. The fitted weighting functions for these two channels

are slightly broader than those computed from the k-correlated method. The

present results were obtained by the systematic optimization method, and therefore

can be applied to any weighting function.

The channel radiance values were then obtained from synthetic computations.

We used the US Standard Atmospheric Temperature Profile and evaluate the radiances

according to Eq. (2.3). The generalized weighting functions were used. Table 2

lists the computed upwelling radiances for the first seven HIRS channels. e

notice that these radiances increase from the band center (Channels 2 and 3) to

the band wing (Channels 6 and 7).

3.2 Fitting of Radiance

The seven upwelling radiances were fitted to either a 5th-degree polynomial

function or a combined polynomial-hyperbolic (PH) function. In the case of the

5th-degree polynomial fitting, we used the subroutine DRCURV in the International

Mathematical and Statistical Library (IMSL). The resulting curve is shown in Fig.

2 as the solid line. There are two reasons for choosing the 5th-degree

polynomial. For a lower-degree polynomial, the fitting will not be exact. On the

11



10'
Channel 1 (668 cm*w-1)

K-correlated method
% % - -- Fitted generalized form

100

1011

10 3

10o
0 0.05 0.1 0.15 0.2 0.25 0.3

WEIGHTING FUNCTION

Fig. 1(a). The weighting function of HIRS-2 Channel 1. The solid and
dashed lines represent results computed from the correlated k-
distribution method and the generalized weighting function,
respectively.
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10-i

Channel 2 (679 cm**-I)

100

10'

109

0 0.05 0.1 0.15 0.2 0.25 0.9 0.35 0.4 0.45

WEIGH4TING FUNCTION

Fig. 1(b). Same as Fig. 1(a), except for HIRS-2 Channel 2.
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10

Channel 3 (690 cm**-1)

10*

104

10'

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.48

WEIGHTING FUNCTION

Fig. 1(c). Same as Fig. l(a), except for HIRS-2 Channel 3.
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10-1

Channel 5 (716 Cmww-1)

10*

10

110*
0 A . 0.8 0.4 0.8 .

WEISHTING FUNCTION4

Fig. 1(e). Same as Fig. l(a), except for HIRS-2 Channel 5.
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10 -1

Channel 6 (732 CM**-1)

100

10'-

100 0.1 0.2 0.3 0.4 0.5 0.6 0.7

WEIGHTING FUNCTION

Fig. 1(f). Same as Fig. 1(a), except for HIRS-2 Channel 6.
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10 -

Channel 7 (748 cmw*-l)

109

00.1 0.2 0.3 0.4 0.8 0.6
WEIGHTING FUNJCTION

Fig. 1(g). Same as Fig. l(a), except for HIRS-2 Channel 7.
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Table 2. Radiance values for HIRS channels.

Radiance

Channel (erg/cm2 -cm--sec-sr)

1 53.5

2 46.0
3 44.4
4 54.9
5 60.1

6 70.6

7 78.2

other hand, for a higher-degree polynomial, there will be unrealist ic

oscillations between data points. Figure 2 shows that the fitted curve has a

local minimum between p - 100 and 200 mb. The curve fits almost exactly to all

the radiances except those of Channels 2 and 3. In addition, there are slight

but noticeable oscillations between Channels 4 and 7.

In the case of fitting the radiances to the PH function, we have developed

an algorithm based on the principle of the least-square method. This is

described in the following subsections.

3.2.1 Formulation of the PH Function

The combined PH function can be written as follows:

N 1  N2
R[p(v)]= zr,p' + __

1=l 2=1 l+mtp

which is a combination of Eq. (2.1) and (2.17). The selection of such a form -:as

based on reasons related to the distribution of radiances. Since the peak of the

Channel 1 weighting function is well within the stratosphere, in which the

temperature is generally near isothermal or increases with altitude, the measured

19
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CLannel 1 radiance is usually higher than Channel 2 radiance. The radiances

increase from Channel 3 to Channel 7 as the peaks of the weighting function

gradually lower toward surface. The corresponding temperature at the peak

increases. Usually, radiances measured by Channel 2 or Channel 3 are the

smallest. This implies that the fitted curve must be able to generate such local

minima. Thus, a second- or higher-degree polynomial is required. However :i

the degree of the fitted polynomial increases, so does the amplitude of

fluctuation between data point, which may cause serious instability on the

solution. An alternative is to fit the radiances to a series of non-linear

hyperbolic functions denoted in Eq. (2.17). However, our preliminary studies

show that the resultant fittings based on the least-square principle are far from

s atisfactory. One serious defect is that it cannot reproduce the local min num

of Channel 2 radiances, because the functional form 1/(l + x) is monotonous on

either side of x - -I.

Finally, we find that the combined PH function can simulate the local

minimum, and at the same time it meets the smoothness requirement. Since the

number of data points in the present case is seven, the fitting should have no

wore than seven undetermined coefficients. If the number of unknown coefficicnts

kINceeds seven, the fitting is not unique unless additional constraints are

imposed. Thus, for best fitting, we can have only three combinations: (1) N,

I , N2 - 3 (7 unknowns), (2) N1 - N2 - 2 (6 unknowns), and (3) N, - 3, N = 2 7

unknowns). As stated above, case (1) is the sum of pure hyperbolic functions,

which c3nnot reproduce the local minimum. At present, we have selected case (2)

Js a preliminary test of the functional form since the coefficients in this cdse

,an be easily determined.
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3.2.2 Prescription of m, and m2

From Eq. (3.1), let N1 - N2 - 2. We have

- Li L2

R[ p(v) r =r r2p + --- =-
1 + mip 1 + m2 P (3.2)

where rl, r 2 , Ll, L2 , all, and M2 are coefficients to be determined.

Equation (3.2) is a non-linear function, if m, and m 2 are considered to be

unknown coefficients. However, if we prescribe m, and m 2 , then it becomes a

linear combination of three functional forms with one constant. The remaining.

coefficients can be found from a least-square method. In general, mi and M2 can

be real numbers from -- to +w. Fortunately, by carefully reviewing the

derivation of the retrieval formula, we find that in order for the method to be

mathematically consistent, m, and m2 must be within a certain range. We notice

that the equality,

1 1 - x x - x ... (-x)
+ x 1=0 (3.3)

is valid only when lxi < 1. Applying this restriction to Eq. (2.18), we conclude

that 1mlp1 and Im251 must be less than 1, or Imll and Iml must be less than i/p.

Otherwise, Eqs. (2.18) and (2.24) will not be valid. Since p ranges between 0

and 1000 mb, Imll and Im2 1 have to be less than 10
-3 . This small range allows us

to pre-select a few values of mi and m2 within this range to compute the best-fit

coefficients in Eq. (3.2) and the corresponding rms error.

3.2.3 A Least-Sauare Alorithm

Based on Eq. (3.2), the square sum of the difference between the fitted and

the actual values of R[p(;)] may be expressed by

22



7 L, L2
E = Z (r, + r2 p3 + + -%2  (3.4)j= I + m Pj + M

To minimize E, we set the partial differentials with respect to the coefficients

to zero, vis.,

8E aE . aE aE = 0

This minimization process leads to a system of four linear equations, which can

be expressed in the following matrix form:

7 1 rl

P X 1 P X2P r2  .-P

XI XP X X1X2 L, RX

X2 X2P XIX2 X2 L RX-2

whe re

7

= Z 1/(l + mpj) i = 1, 2
j= =

7
x2 Z 1/(l + mP) 2  1i=, 2j=l

7
Z 1/[(1 + m1pj) ( + M2Pj)]XlX2 j =1

- 7

j l

7 2E ,j
j=1
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7
X-P p z /(l i pj), i = 1, 2

J=1

7

,
j=1

7

J =1

7
E Rj/(l + npj) , i=1, 2

j =1

Solution of rl, r2 , L1 , and L2 depends on the prescribed value of m1 and m2 . The

rms error is defined by

e=VE/7 (3.7)

Since the values of mi and M2 should be between -10
-3 and 10 3 

, we select six

representative values: ± 3.5 x 10-1, ± 6.5 x I0-4, and ± 9.5 x 10-'. For each

pair of mi and M2 , we may solve the linear system of Eq. (3.6) and compute the

rms error from Eq. (3.7). The idea is to determine which pair of (ml,m 2) produce

minimum rms error. Table 3 lists the rms error for all pairs of (m1 ,M2) using

the synthetic radiances listed in Table 2. Clearly, Table 3 shows that the rms

error is generally smaller for mjm 2 < 0 (one negative) than for m1M2 > 0 (both

positive or negative). Furthermore, for the case mimn2 < 0, the rms error for the

pair of (ml,m 2) is the same as for the pair of (m2 ,MI). The minimum rms error is

2.8 for mi - 9.5 x 10-' and m2 - -3.5 x 10", and the coefficients in this case

are r, - 79.6, r2 - 0.498, L, - 445 and L2 - -473. The fitted PH1 function is also

shown in Fig. 2 as the dashed line. Although the general fitting ot the PH
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Table 3. The root-mean-square error of radiances for selected pairs of (mlm 2)

M2 x 104 
m1 x 104

-9.5 -6.5 -3.5 3.5 6.5 9.5

-9.5 4.2 3.8 3.7 3.5 3.4 3.4

-6.5 3.8 4.1 3.5 3.3 3.2 3.1

-3.5 3.7 3.6 3.9 3.2 2.9 2.8

3.5 3.5 3.3 3.2 3.7 23.4 13.9

6.5 3.4 3.2 2.9 8.5 3.7 4.6

9.5 3.4 3.1 2.8 5.1 3.2 3.6

function is less satisfactory than the polynomial function, particularly near the

local minimum, the PH function is smoother than the polynomial function. Better

fittings can be obtained with Im, I > 1 (Leon and King, 1989). However, as noted

above, the series will not converge and the OMM is not mathematically valid in

this case.

3.3 Direct Application of OMM Without Adjustments

Retrieval exercises were carried out based on the two functional forms for

radiances. Planck functions derived from the polynomial form can be written as

6 r, p,-1B(L'j' p ) = E
T- ( 1-1)-7 (3.8)

where K is associated with the ith channel. Planck functions based on the PH

form can be written as a combination of polynomial and optical-exponential
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functions as follows:

B(a i,p) = r, + r 2p/l ! + L, exp (-mlp) + L2 exp (-m2p) (3.9)

In this way, since there are seven channels, each with a different value for K,

we may obtain seven profiles for B(vi,p). Each Planck profile can be converted

to a temperature profile T(i 1 ,p). We used the method of weighted average (Smith,

1970) to obtain the final temperature profile as follows:

7 7
T(p) = E [W(vi,p) T(vi,p)] / Z W(v,p)

i=l i=l (3,10)

Figure 3 shows the retrieved temperature profiles based on Eqs. (3.8) and

(3.9), along with the reference standard temperature profile. Both retrieved

profiles deviate significantly from the standard temperature profile. The

profile derived from the PH function is better than that from the polynomial.

A further examination of the figure reveals that the profile from the PH function

is colder by 5-12 K below 250 mb but warmer by 0-5 K above this pressure level.

In an attempt to investigate the reason for discrepancies, we found two

problems that need to be resolved in order for the OMM to be practical for

temperature retrievals. The first problem is related to the variation in K.

while the second is associated with the discontinuity of the temperature profile.

These problems were identified through a forward-analysis procedure which will

be described in the following subsection.

3.4 A Forward Analysis on the OMM

In this section, a forward analysis will be performed to illustrate the

reasons for the deviation of the retrieved temperature profile from the standard

temperature profile.
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Fig. 3. Retrieved temperature profiles based on the fitting of synthetic

radiances shown in Fig. 2.
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According to the description in Section 2, the Planck profile can be

represented by either polynomial functions or optical exponential functions or

a combination of the two as shown by Eq. (3.9). It is not known how well such

functional forms can match the Planck profiles. In the previous subsection, we

demonstrated that the PH function yields better retrieval results than th,

polynomial function. For this reason the PE function defined by Eq. (3.9) if;

chosen to fit the standard Plank profile.

Given that mi and M2 are prescribed, we use the least-square method similar

to the one described in Sec. 3.2.3 to perform numerical fittings. We first

define a square sum of errors as

N
E - Z [r, + r 2 Pj/l ! + L, exp.(-mlp,)

(3.11)
+ L2 exp,,(-m2 Pj) - BJ] 2

Performing the minimization procedure, we obtain the following linear system:

N j~r~ B

i i n2 Zf 211 r2  (3.12)

x1 I X X BX

Xz X21" X1X2 X2 L t BX.

where

N
3X- 21 exp,(-miPj) i =1, 2

j =1

N
X= I exp,(-Hqpj) 2  , i = 1, 2

j-=1

N
WI-X2z exp,(-mlpj) exp,(-mzp)
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N

J=l

N
R2= Z (pJ/1"! ) 2

j=l

N
Xi' j i p, exp.(-m~p j ) , i 1, 2

J =1

N

j=l

N

j=l

N
= Z Bj exp,(-mpj) i 1, 2
j=l

In computing the preceding matrix elements, the evaluation of the optical

exponential function was done by the series summation method according to Eq.

(2.23). We found that about 15 terms are sufficient for the series to converge

to a constant number. Since each channel has a different Planck intensity

profile, and since the optical exponential function varies with the sharpness

index x, the coefficients rl, r2 , L1 , and L2 depend on both the spectral band of

each channel for i. For the seven HIRS channels, there are 49 sets of

coefficients. These coefficients are listed in Table 4. It is evident that for

the same K, the coefficients vary slightly with channels. However, for the same

channel, the coefficients depend strongly on x. Also, these sets of values are

different from the values in Section 3.2.3. The first problem can now be stated
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Table 4. Goefficients of the fitted polynomial-hyperbolic functional form for the
seven HIRS channels in terms of different sharpness indices, Kc

Channel

0.49 .56.i.... 1.50 2.19 2.34 4.34 3.16
r1 0.315E+04 0.131E+04 0.186E+04 0.632E+03 0.575E+03 0.187E+i03 0.336E+03

I. r 2  0.250E+01 0.146E+01 0.195E+01 0.933E+00 0.894E+00 0.537E+00 0.690E+00
LI 0.989E+03 0.818E+03 0.107E+04 0.598E+03 0.585E+03 0.413E+03 0.493E+03

L 2 -0.409E+04 -0.208E+04 -0.288E+04 -0.118E+04 -0.112E+04 -0.554E+03 -0.783E+03

r Q.0*306E+04 0.130E+04 0.184E+04 0.626E+03 0.560E+03 0.183E+03 0.331E+03
2 r 2  0.236E+01 0.145E+01 0.154E+01 0.928E+00 0.890E+00 0.534E+00 0.886EIOO

L1 0.911E+03 0.816E+03 0.107E+04 0.598E+03 0.583E+03 0.411E+03 0.49lEi-03
L 2 0.393E+04 -0.207E+04 -0.286E+04 -0.118E+e04 -0.lliE+04 -0.548E+03 -0.778E403

r1 0.*302E+04 0.128E+04 0.182E+04 0.617E+03 0.560E+03 0.179E+03 0.325Et-03
3 r2 0.236E+01 0.144E+01 0.193E+01 0.923E+00 0.883E+00 0.531E+00 O.68l1iOO

LI 0.950E+03 0.813E+03 0.106E+04 0.593E+03 0.580E+03 0.410E+03 0.489EI03
L 2 -0.409E+04 -0.205E+04 -0.285E+04 -0.117E+.04 -0.110E+04 -0.545E+03 -0.770E+i03

rI 0.287E+04 0.127E+04 0.181E+04 0.606E+03 0.549E+03 0.173E+03 0.319E+03
O .240E+01 0.143E+01 0.191E+01 0.913E+00 0.874E+00 0.526E+00 0.676E+00

L 1 0.973E+03 0.808E+03 0..105E+04 0.588E+03 0.576E+03 0.407E+03 0.486E+03
L2 -0.405E+04 -0.203E+04 -0,281E+04 -0.115E+04 -0.108E+04 -0.539E+03 -O.762E 03

r1 0.287E+04 0.125E+04 0.178E+04 0.596E+03 0.540E+03 0.168E+03 0.312E+03
Dr 2  0.218E+'01 0.141E+01 0.189E+01 0.904E+00 0.866E+00 0.521E+00 0.669EfOO
L I 0.957E+03 0.799E+03 0.105E+04 0.584E+03 0.572E+03 0.404E4+03 0.482E+03
L 2 -0.368E+04 -0.201E+04 -0.279E+04 -0.114E+04 -0.107E+04 -0.532E+03 -0.753EI-03

r Q .287E+04 0.122E+04 0.175E+04 0.581E+03 0.528E+03 0.162E+~03 0.302E+03
6 r 2  0.227E+01 0.139E+01 0.186E+01 0.891E+00 0.854E+00 0.513E+0-0 0.658EsfOO

L I 0.970E+03 0.790+E03 0.103E+04 0.577E+03 0.566E+03 0.399E+03 0.477E+03
L2 -0.362E+04 -0.197E+04 -0.274E+04 -0.112E+04 -0.105E+s04 -0.522E+03 -0.740E+03

r1 0.271E+04 0.120E+04 0.171E+04 0.568E+03 0.514E+03 0.155E+03 0.293E+03
7 r2 0.223E+01 0.138E+01. 0.184E+01 0.879E+00 0.841E+00 0.506E+00 0.650E+00

L1 0.984E+.03 0.784E+03 0.102E+04 0.571E+03 0.558E+03 0.395E+03 0.471Et03
L2 -0.363E+04 -0.195E+04 -0.270E+04 -0.110E+04 -0.103E+04 -0,512E+03 -0.727EtO3
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as follows: "Due to the variation in the sharpness index with the channel, it

appears not practical to use only one set of coefficients to represent all the

measured radiances."

Since each radiance value corresponds to a different x, using a single set

of coefficients to represent all the radiances as has been shown in Subsection

3.2.3 would produce large temperature errors. In the retrieval exercise

described in Subsection 3.3, none of the retrieved temperature profiles is close

to the standard profile.

To show how well the PH function defined by Eq. (3.11) fits the input Planck

intensity profile, the rms errors for the Planck function and temperature are

presented in Table 5. Also in this table are temperature rms errors. For K <

1, the fitting is poor because the matrix approaches singular. On the other

hand, for x > 2, the temperature rms errors are on the order of 1.2 - 2.0 K.

This indicates that the PE function is potentially useful to produce real

atmospheric Planck profiles.

Next, we examine the errors in the radiances generated by the fitted Planck

profile. We compute three sets of "radiances". The first is based on the input

Planck profile with a contribution from the surface separate from the integral

as follows:

Rl(pi) = B-(p,) T;(p/pi)

+ J B-(p) W;(Ki,p/pj) dp/p (3.13)

Note that Eq. (3.13) is equivalent to Eq. (2.3), if the temperature for p > p,

is assumed to be isothermal. The second set of radiances was obtained from the

following equation:

RI(p1 ) = B;(p,) T;(p/pi)

+ , B-(p) W;(r.,p/p,) dp/p (3.14)
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Table 5. The rms error for the fitting of Planck profiles of the first seven HIRS
channels in terms of different sharpness indices, x

Channel

0.49 1.56 1,50 2.19 2.34 4.34 3.16

I EB 19.1 1.9 4.1 1.5 1.5 1.5 1.5

ET 14.6 1.7 3.5 1.4 1.3 1.3 1.3

2 EB 9.5 1.7 2.1 2.1 1.5 1.5 1.5

Et 7.4 1.5 1.7 2.0 1.4 1.3 1.3

3 AB ** 2.7 6.2 1.4 1.6 1.4 1.5

AT ** 2.4 5.6 1.3 1.5 1.3 1.3

4 B ** 1.7 2.9 1.5 1.6 1.4 1.4

T** 1.7 2.4 1.4 1.5 1.3 1.3

5 AB ** 1.5 1.7 1.4 1.4 1.4 1.4

t** 1.4 1.3 1.4 1.4 1.3 1.3

6 AB ** 2.0 2.4 1.4 1.5 1.4 1.4

E-T ** 1.9 2.2 1.3 1.5 1.3 1.2

7 AB 21.0 1.9 4.1 1.6 1.4 1.3 1.3

AT 20.5 1.9 4.0 1.5 1.3 1.2 1.2

** Error too big due to unstable matrix solution
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where B-(p) is the fitted Planck intensity profile. The third set of radiances,

R3(p), was obtained from Eq. (3.2) using the coefficients obtained in the

forward analysis. The "surface contribution" in this case Is obtained from the

difference between R3(pi) and the atmospheric contribution to the radiance as

follows:

R3(pi) (Surface Contribution)

R3(Pi) _ B;(p) W;(xi,p/pi) dp/p (3.15)

A comparison of Ri(p1 ) and R2 (pi) will reveal the effect of errors in B-(p) for

p < p,, while the difference between R2 (pi) and R3 (Pi) will show the impact of the

irregular behavior of B-(p) for p > p,. Table 6 lists the radiances that have

been computed for the first seven HIRS channels, where the numbers in parentheses

are associated with surface contributions. The errors in radiances produced by

B-(p) for p < p. are generally less than 5 erg/cm2/sec/cm'-/sr. The larger

differences for the first three channels are due to the fitting errors in B (p)

in the stratosphere. Surface contributions are significant for the last three

channels leading to different R2(pi) and R3(pO). This is because B-(p) behaves

irregularly for p > PS, where the values of weighting functions are still

comparable to the peak value. Clearly, errors will be generated in the

temperature retrieval due to the limitation of the functional form associated

with Bp). Thus the second problem can be stated as follows: "Due to the

irregular behavior of the fitted functional form of B(p), retrieved temperatures

near the surface and in the stratosphere will suffer large errors.

To make the OMM a feasible scheme for temperature retrievals, certain

modifications or adjustments are required in order to circumvent the preceding

problems.
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Table 6. The radiances for the first seven HIRS channels, where the numbers
in parentheses are the respective surface contributions. The unit
of radiances is erg/cm 2/sec/cm-/sr.

Channel 1 2 3 4 5 6 7

0.49 1.56 1.50 2.19 2.34 4.34 3.16

R 53.5 46.0 44.4 54.9 60.1 70.6 78.2
(0.0) (0.0) (0.0) (0.0) (0.2) (9.6) (28.4)

R2  47.6 42.7 37.6 53.8 60.0 70.3 77.4
(0.0) (0.0) (0.0) (0.0) (0.2) (9.4) (27.5)

R3  48.2 42.7 37.6 54.3 64.7 75.1 67.0
(0.0) (0.0) (0.0) (0.0) (4.9) (14.2) (17.1)

3.5 Application of OHM with Adjustments

Based on the forward analysis described in the previous subsection, we

conclude that the problems of the variation in the sharpness index of the fitted

weighting function for each channel and the limitation of the functional form

used are the two major sources of errors. The latter problem is also due to the

limitation of the OMM, which is developed under the assumption of an infinite

atmosphere. To ameliorate the preceding problems, measured radiances must lt.,

adjusted. We define a set of adjusted radiances as follows:

Rij= ijR , (3.16)

where R, is the measured ith channel radiance, and Oj the scaling factor for the

ith channel and the jth sharpness index. The scaling factors are introduced to

modify the measured radiances by taking into account both the effect of the

surface contribution and the variation in the sharpness index. The proper
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introduction of scaling factors are critical to the success of the retrieval and

can be approximately calcul-ted by:

oi = R3j/R" (3.17)

where denotes the synthetic radiance computed from Eq. (3.2), in which the

coefficients are those determined in the forward analysis for the ith channel and

the jth sharpness index, and Ri is the synthetic radiance computed from Eq.

(3.13), using the Planck intensity profile for the ith channel and weighting

function. In this way, the irregular behavior of the PH function for p > Ps and

the variation in the sharpness index can be removed in the retrieval analysis.

Note that Oij also depends on the spectral properties and atmospheric temperature

profile. Table 7 lists the values of Oij based on the spectral properties of the

HIRS channels and the US Standard Temperature Profile. The fitting of the Planck

intensity for x - 0.49 (j-1) is poor. Thus only the last six sharpness indices

were used in the analysis. We notice that 4lj < 1.00 for i - 1-3. This is

because the PH function is unable to simulate the stratospheric Planck intensitv

profile for p < pi. For i - 4 and 5, Oij values are close to 1 in view of the

fact that the stratospheric and surface contributions to the radiances are small.

For i - 6 and 7, surface effects are significant and become dominating for j -

2 and 3. Some of the adjusted radiances may not be realistic. Nevertheless,

they can be used in a consistent manner in the context of the OM to obtain

reasonable Planck profiles at the desired pressure levels.

For the jth sharpness index, the adjusted radiances Rij are fitted to the FH

function, using the prescribed values of m, and m2 . The coefficients rl, r2 , -1 ,

and L2 are subsequently computed. These coefficients are used to compute the

Planck intensity profiles according to Eq. (3.9). From each Planck intensity
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Table 7. Values of the scaling factor, Oij, based on the channel properties

of seven HIRS channels and US Standard Temperature Profile. The
channel and sharpness index are denoted by i and j, respectively.

i/j 2 3 4 5 6 7

1 0.787 0.788 0.818 0.810 0.821 0.824

2 0.928 0.929 0.947 0.922 0.920 0.915

3 0.989 0.847 0.938 0.918 0.929 0.936

4 1.060 1.080 0.989 1.000 0.925 0.959

5 1.050 0.999 1.080 1.080 1.010 1.050

6 0.589 0.192 0.931 0.971 1.070 1.040

7 0 0 0.585 0.639 0.964 0.857

profile, a temperature profile can be obtained. The weighted mean temperature

profile is then computed from Eq. (3.10). Figure 4 shows the retrieved

temperature profile using the values of Oij listed in Table 7 and the synthetic

radiances, R1 , listed in Table 6. Comparing Figs. 4 and 3, we notice that the

profile derived from the adjusted radiances is much more improved in accuracy

than that derived from the original synthetic radiances. The rms error for p >

34.7 mb is 1.92 K, and for p > 250 mb, it is about 1.71 K. The maximum error

occurs near the tropopause (- 4.5 K) due to the failure of PH function to fit

exactly the simulated radiance minima. The preceding temperature retrieval

results using the OMM appear to be encouraging.

In order to test the method on a variety of atmospheric conditions, we also

performed retrievals using synthetic radiances using tropical and sub-arctic

winter climatological temperature profiles (McClatchey, 1971). In each case, two

sets of scaling factors are used. One is the set listed in Table 7 (standard

scaling factor), while the other is the set from synthetic studies based on
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Fig. 4. Retrieved temperature profiles using the adjusted synthetic
radiances. The scaling factor set is derived using the US Standard
Atmosphere.
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respective climatological profiles. Figures 5a and b show retrieval results for

tropical and sub-arctic winter atmospheres, respectively. The input

climatological profiles are also shown for comparison purposes. As expected,

results using the climatological scaling factors are more accurate than those

using standard scaling factors. The rms error for tropical atmosphere is 2.36

K using tropical scaling factors for p > 250 mb. It is 4.77 K using standard

scaling factors. For sub-arctic winter atmosphere we find the rms errors of 1.87

K and 2.58 K, using climatological and standard scaling factors, respectively.

In the case of the tropical atmosphere, serious errors occur near the tropopause

where there is a strong temperature inversion. As mentioned earlier, the PH

function in the present form cannot properly simulate the minima in radiances.

However, the retrieved temperature profile in the lower troposphere using the

scaling factors is quite reasonable.

Future efforts should be focused on the investigation of the physical basis

of scaling factors, and the development of correlations between radiances and

scaling factors before this novel method can be applied to real data.

3.6 Otimum Functional Form for the Planck Profile

Based on the previous forward analysis, it is desirable to find a functional

form that can better simulate the Planck profile, particularly under the surface

(p > p,). Since the temperature is assumed to be constant for p > p., the Plauck

intensity for p > p, is also constant. If we subtract the surface Planck

intensity value from the Planck profile, we obtain a reduced Planck profile that

will be zero for p > p. In mathematical terms, we write

B-' (p) = B;(p) - B;(p.) (3.18)
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Fig. 5(a). Same as Fig. 4, except for the tropical atmosphere. The scaling
factor sets are derived based on the US Standard Atmosphere
(dashed-dot curve) and climatological profiles (dashed curve).
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Fig. 5(b). Same as Fig. 5(a), except for the sub-arctic atmosphere.
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It follows that BL(p) - 0, for p > p,. This indicates that, in order to fit

BL(p), we must find a functional form that approaches zero for p > p,. Many

mathematical functions are qualified for this purpose. However, for the purpose

of minimizing error propagation, we shall use the weighting function as our

functional form (Rodgers, 1976). The reduced Planck intensity may be expressed

in terms of the weighting function in the form

N
B-' (p) = Z bj Wi;(rj,pj,p) (3.19)

j =l

The advantage of using the weighting function as the base function for the

Planck profile is that the propagation of errors in the radiances into the

retrieved Planck profile is minimized. This is demonstrated below. If we

express B, as a linear combination of arbitrary functional forms such that

N
B.(p) - Z bj K(pj, p) (3.20)j =1

for discrete values pi, from Eq. (2.3) we have

N
R(p 1 ) = E Aij bj (3.21)

j =l

where

= 0 K(pj, p) W;(p, p) dp (3.22)

However, since bi is related to B- via Eq. (3.20), we may express B- in terms of

R. Combining Eqs. (3.20) and (3.21), we obtain

N N
B-(p) = Z [A1j]' K(pj, p)R(pl)

i=l j=l (3.23)

41



where (Aij] "l is the element of the inverse of matrix, [Aij]. By denoting

N
D1(p) - E [Aij.-K(pj, p)J-1 (3.24)

we have

N
B;(p) - E Di(p)R(p )iffiml (3.25)

Thus, if we minimize Dj(p), the propagation of noise in R(p) into B-(p) would be

reduced to a minimum. There is one constraint, however. For the retrieved

Planck profile to be exact at discrete points, we must have

fo Dj(p) W;(pj, p) dp = 5i (3.26)

where 6j4 is the Kronecker delta function. By jointly minimizing every element

of D2(p), subject to the constraint expressed by Eq. (3.26), the best value of

Dj(p) may be found using the calculus of variation in the form

N
D1(p) = Z [w j -  W(Pj, p) (J=l (3.27)

where

Wj - W;(Pj, p) W;(pi, p) dp , (3.28)

and [W is the element of the inverse of matrix, Wij wij.
By comparing Eqs. (3.24) and (3.27) along with Eqs. (3.22) and (3.28), it is

clear that if

K(pj, p) -W-(pj, p) (3.29)

the propagation of errors in the radiances into the retrieved profile will be

42



minimized, since Eq. (3.29) satisfies the requirement of minimization as shown

in Eq. (3.27).
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Section 4

COMPARISONS BETWEEN DIM AND OMM

In this section, we shall first demonstrate that the DIM and OMM for

temperature retrievals are equivalent. Preliminary results on the application

of the DIM to real-time radiance data set obtained from polar-orbiting satellites

are then presented.

4.1 On the Equivalence Between DIM and OMM

The basic theory of the OMM has been described in Section 2. The radiances

can be expressed in terms of a polynomial function of p as shown in Eq. (2.1).

The Planck function can then be computed from Eq. (2.7) using this function. We

shall begin with Eq. (2.1) and derive Eq. (2.7) using the DIM. Since the DIM is

basically a method of linear transformation, we single out an arbitrary term of

the nth power of p in the radiance expression for the sake of clarity. We will

attempt to show that the Planck function can be expressed in terms of the nth

power of p. We may write

(4.1)
R(p) = pn

Using the OMM, the corresponding Planck function is

B(p) = n-' W;(p) dp jpn (4.2)

Define

p= e - Y  or y = -inp (4.)

so that Eq. (4.1) can be rewritten as
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R(y) = e "y  (4.4)

According to the theory of the DIM, the Planck function can be expressed as the

linear sum of higher-order derivatives of R with respect to the logarithm of

pressure as follows:

Co dJR(x)
B(x) = Z A (

j=O --0 dx (4.5)

where

(4.6)x = -Inp (46

and X, are coefficients obtained by the Laplace transform. Since R is an

exponential function, its higher-order derivatives are given by:

dJR(x) - (_n)Je-nl (4.7)

dxj

On substituting Eq. (4.7) into Er,. (4.5), we obtain

B(x) = c e (4.8)

where

c E X. (-n)
j0 (4.9)

In order to have an analytic expression for Xj, Eq. (4.2) may be written as a

bilateral Laplace transform as follows:

w(-s) = f el y W(y)dy (4.10)

where s is a transform parameter. We then expand I/w(-s) into a McLaurin series

in the form
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[w-s]- Z X kSk
k=O (4.11)

with

Ak [w(-s)J =.o / k! (4.12)

Comparing Eq. (4.11) with Eq. (4.9), we find

c = [w(-n)]-l (4.13)

Using Eq. (4.10), we obtain

c P I -1 W;(p) dp] (4.14)

Since e-nx - pn, Eq. (4.8) is identical to Eq. (4.2). We have showed that the DIM

is equivalent to the OMM. Further, we may also compute the coefficients Aj from

known values of c by a matrix inversion.

In an attempt to provide mathematically more rigorous proof of the uniqueness

of the solution of either the DIM or the OMM, Liao (1989) showed that the

convolution transforms arising from geophysics, such as Eq. (2.-), are of the

Laguerre-Polya class. The special characteristics of the Laguerre-P6lya class

is that its inversion function is the convergence limit of any sequence of

polynomials having real roots only. It follows that a unique solution can be

obtained for the convolution transform whose kernel can be shown to belong to

such a class. Details are given in the form of a short research note in the

Appendix.

In our previous work (Liou and Ou, 1989), we used a polynomial in Rnp

(instead of p) to fit radiances. The retrieved temperature profile based on a

polynomial in Inp (Fig. 7 in Liou and Ou, 1989) is more satisfactory than that

based on a polynomial in p (Fig. 3) for p > 250 mb. However, for p < 250 mb, the
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DIM also suffered large errors. Apparently the DIM depends less on the surface

contribution. To understand the reason as to why the DIM works better in the

temperature retrieval, we perform analysis on the behavior of the fitted Planck

function for p > PS.

By fitting the radiances using the nth power in -In P, we have

R(-in p) = (-In p)n (4.15)

The Planck function is then given by

n
B(-In p) = Z j (-In p)n,

j=O (4.16)

where j's are coefficients to be determined. The Planck function is also a

polynomial in In p. The Planck function profile of HIRS Channel 7 is fitted to

4th-degree polynomials both in p and In p, as shown in Fig. 6. The fitting in

both cases are quite satisfactory above the surface. However, below the surface

the fitting in In p is much closer to an isothermal profile than that in p. Also

shown in the figure is the generalized weighting function of Channel 7, which has

significant contribution for p > 1000 mb. For this reason, the behavior of the

fitting for p > p, will greatly affect the radiance of Channel 7. The preceding

analysis explains why the DIM performs better than the OMM near the surface.

4.2 Preliminary Applications of the DIM to HIRS Data

We have shown that the OHM needs modifications in order to be practical in

t mperature retrievals and that the DIM is better than the OMM. We have made an

attempt to investigate the applicability of the DIM to the inference of

atmospheric temperatures using real-time data.

An archive of 3473 collocated clear-sky temperature profiles and radiance
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Fig. 6. The fitting of 4th-order polynomials in pressure (dashed curve) and
in logarithm of pressure (dashed-dot curve) to the Channel 7 Planck

intensity profile (solid curve) using the US Standard Atmosphere.

Also shown is the Channel 7 weighting function.
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data sets (kindly provided to us by Dr. L. McMillin) were used to perform the

retrieval analysis. The temperature profiles were based on local sounding, while

the radiance data were obtained from HIRS instruments on board NOAA 10 polar-

orbiting satellites. For each profile, the latitude, longitude, time, date, land

or sea, solar zenith angle, and water vapor mixing ratio profile are also

specified. The data are randomly distributed over lands and oceans. There were

1964 cases over lands and 1509 cases over oceans. The data were largely obtained

between March 21 and April 10, 1987. Al' the cases correspond predominantly to

clear atmospheres with a minimum amount of cloud contamination. Temperature

soundings over land were obtained from land stations. Sounding over the oceans

were obtained from coastal stations, island stations, platforms, and ships. The

observed radiances are corrected to the nadir direction.

To perform retrieval exercises, we first convert the brightness temperature

values of Channels 1-7 to radiances, we then follow the procedures outlined by

Liou and Ou (1989) to obtain the retrieved temperature profile. The retrieved

results are compared with co-located sounding profiles. Specifically,

temperature values at the peak pressure level of the weighting functions are

selected and analyzed. In general, the rms errors at each pressure level is

about the same magnitude as the error from the previous synthetic computations

(Liou and Ou, 1988). The rms errors at the lower four pressure levels are on the

order of 2-5 K. The rms errors at the lowest pressure level (1000 mb) are about

3 K. The cause for this error is produced by the problem of the surface

discontinuity.

Figure 7 shows the retrieved temperature vs. sounding temperatures at 1000

mb. There are about 728 points, which were all located between 30°N and 60°N.

The straight line denotes that the two temperatures are equal. Most of the data
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Fig. 7. The retrieved temperatures vs. the sounding temperatures at 1000

mb. The radiance data were collected from NOAA 9 during the period

between March 21 to April 10, 1987, and distributed in the latitude

zone between 30°N and 60°N. The straight line represents that the

retrieved temperature is equal to the sounding temperature.
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points fall close to the line. The correlation coefficient is 0.93. The errors

of its individual points can be attributed to the combined effects of many

factors. These include the topographic effects, cloud contamination, uncertainty

of the water vapor contamination in the radiances of Channel 6 and 7, errors in

the weighting function due to different temperature profiles, errors generated

due to a least-square fitting of weighting functions, errors in the fitting of

radiances, etc.

In order to improve the performance of the DIM, it is necessary to undertake

modifications and refinements of the methodology similar to those described in

Section 3.
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Section 5

CONCLUSIONS

In this report, we first present the basic theory involving the OMM. It is

shown that the Planck function profile can be directly related to the upwelling

radiance through polynomial expansions in the pressure coordinates. In order to

perform temperature retrievals, an optical number system has been constructed

based on the generalized weighting function. A specific form for the OMM has

been developed based on the fitting of non-linear hyperbolic functions to the

measured radiances. The inferred Planck profile is shown to be the combination

of the optical exponential function.

We apply the OMM to the retrieval of temperature profiles using the HIRS-2

channel in the 15 Am C02 band. The radiances are calculated based on the

spectral properties of seven channels using the US Standard Atmosphere profile.

They are subsequently fitted to both a 5th-degree polynomial and a combined

polynomial-hyperbolic (PH) function. Retrieved temperature profiles in both

cases deviate significantly from the standard temperature profile. The profile

derived from the PH function is better than that from the polynomial. A further

examination reveals that the retrieved temperatures using the PH function are

colder by 5-12 K and warmer by 0-5 K below and above 250 mb, respectively.

To investigate the reasons for large deviations in the retrieved temperature

profile, we perform a forward analysis. A combination of a linear function and

two terms of the optical exponential function are fitted to the Planck profile.

For smaller sharpness indices, i.e., broader weighting function, the fitting is

poor and produces large rms errors in the retrieved temperature profiles. For

sharpness indices larger than 2.0, the rms errors are on the order of 1.2-2.0 K.
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In the forward analysis, we also identify two problems, which are the major

reasons for the deviation of the retrieved temperature profile. The first

problem is associated with the variation of the sharpness index with the sensor

channels. Fitting all the radiances to the PH function using only one set of

coefficients is mathematically inconsistent. This problem can be seen from the

variation pattern in the coefficients of the PH function for different sharpness

indices. The second problem is caused by the irregular behavior of the fitted

Planck profile for p > p., using the optical exponential function. The retrieved

temperatures suffer large errors because the below-surface contribution could not

be properly accounted for. The below-surface contribution is particularly

significant for channels with the weighting function peaks in the lower

atmosphere. In view of the above, certain modifications on the OMM or

adjustments to the measured radiances are necessary in order for this method to

be a practical scheme for temperature retrievals.

We have developed a scheme to adjust and augment the measured radiances

through a set of scaling factors, which includes the effects of the sharpness

index variation, surface discontinuity, channel characteristics, and functional

forms. We show that mathematically consistent retrievals can be performed on the

adjusted radiances to obtain an optimum functional form, which is most effective

in simulating the Planck profile and minimizing the error propagation.

Through a simple derivation following the fundamental principles of the DIM,

we show that the DIM and OMM are mathematically equivalent. A rigorous proof on

the uniqueness of the solution of both methods is also given. However, in our

previous work (Liou and Ou, 1988), we demonstrated that retrieved temperatures

based on synthetic computations using the DIM are within about 3 K. However, in

the present work, the retrieved temperature results using the OMM without
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adjustments are less satisfactory. The superiority of the DIM is due to the fact

that it was the radiance polynomial fitting in In p, whereas the OMM uses that

in p. The fitting in the In p coordinate accounts for some surface contributions

to the radiances. Finally, we apply the DIM to an archive of 3473 collocated

temperature profiles and HIRS radiance data sets from NOAA 9. The accuracy of

the retrieved temperature profiles is within about 3 K, which is comparable to

that obtained from synthetic analyses.
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APPENDIX
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ABSTRACT

A class of convolution transforms (generalized Laplace transforms) arising

from geophysics are shown to be Laguerre-P6lya, i.e., their inversion function

is the limit of real polynomials whose roots are all real. It follows that, by

applying Widder's theory, the convolution transforms can be inverted by using

operational calculus.
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Section A.1 Generalized Laplace Transforms

The transforms that we will study are of the form

f~x W fN(x - y) g(y) dy (.1

where the kernel

N(x) - el * e- /  , M> 0

To link Eq. (A.1) to the atmospheric temperature retrieval, we refer to King

(1985). The mathematical problem is to invert Eq. (A.1), i.e., to determine

g(x), given f(x).

The following analysis shows that if m - 1, Eq. (A.1) reduces to the

unilateral Laplace transform, which is usually given by

0(s) = FO e-st y(t) dt (A.2)

To see this, let s - el, and t - e-7 . Then dt - -eY dy, and

(e ) = e-'x * Y * -y(e-y) e-y dy (A.3)

Thus

ex O(ex) ex-Y * e-0X-Y * y(e-Y) dy
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Section A.2 Laguerre-P61ya Class

Definition: The reciprocal of the bilateral Laplace transform of the convolution

kernel, N. is called the inversion function of the convolution transform.

To compute the inversion function, E(s), of Eq. (A.1), we take the Laplace

transform as follows:

1 J e_ ex e-meJM dx= e- = I.

=f mms-m" m m-ms e-U du (A.4)

by variable transformation v - m eX/l . Hence

E(s) = m-ms - m 1

r[m(l - s)]

In particular, if m - 1, then

E(s) = 1 (A.5)Trl -s)

Since

sinws [ 2 I -

r(s) r(l - s7 s k=l k2

and

= s+ s/kk=l

we have the well-known product expansion
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E(s) 1 s[elk

where -f is Euler's constant:

.lim~ n 1 on

Definitione An entire function. E(s). is said to belong to the Laguerre-P6lya

class if it can be expressed as

E(s) a * exp(bs - cs 2 ) 9 sP * II I - s exp ,k-l ji (A.6)

where a. b. c.and Ah are real. C > 0. 2 is a non-negative integer, and

0o 1
k-l q

Clearly, E(s) - is Laguerre-Polya.
" '(1 - s)

The inversion problem could be solved if the inversion function, E(s).

belongs to the Laguerre-P6lya class as follows (Widder, 1971). Replace s in E(s,

by the differentiation, D, to get a differential operator, E(D). The function

g(x) can be determined by

g(x) = E(D) f(x)

in the sense of operational calculus.
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Section A.3 The Inversion Function

4 As computed in Section A.2, the inversion function E~s) for Eq. (A.l) is

given by

E(s) - M- * -1 m> 0 (A.7)

We shall now confirm that E(s) belongs to the Laguerre-Polya class.

Our argument is based on the criterion described in Shell-Small (1989, Lerma

4), which says that a real entire function f(z) is in the Laguerre-P61ya class

if, and only if, Im.L(z) < 0 for z e II*, where L(z) - f'(z)/f(z) and R* is th2e

tipper half plane.

Proposition: Im E()< 0 for s e HE(s)

Proof:

mi-rn e E'(s) =m m5 (-m)lnm. m-',r' (mal - s))(-m)

M TMi(- ' run m(l -)1(A8

= ~(M 11 1--s) r'On(l s))) A8

Let s -x + ty, y > 0. We have

l" (m(l - s)) 1 cc, +~ E m -s)
TT7 -s)) n=1 n(m(l - s) +n7 (A.9)

where -yis the Euler number. The infinite series on the right side of the

equation is absolutely an uniformly convergent in any closed region of H".

Substituting Eq. (A.9) into Eq. (A.8), we get
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El s) M~ -nS )j

[ nz . n(m(1 - s) + n7

Compute

1 1 1x +iy

and

M(1 - s) + Fn m + n - xmi - irny

I= (1- x - iy) (m + n - xm + iy)
(m + n - ,w)Z + mTyZ7

(1-x) my y y(m +n - xii)
(a + n - xm)4 + m'y'

my - mxy - my - yn + mxy

(ma - xun)Z Z

-yn
(m + n - xm) 2 + MZ yz

Thus,

IaE(S +11 -1 E m1

_______ + -yn 2+M
(1 - X)2 +7 nm n (m n - xm) my 2

62



(1- 'y n=1 (m + n -xn)
2 

+z ny z

if y > 0.
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