
tfl4A.~SFI~nMASTER COPY -FOR R.EPRODUCTION~ PURPOSES
9 7 ZUIT LA551-ZAT1O? 0; TNiS PAGE

REPORT DOCUMENTATION PAGE
Iai. REPORT SECURITY CLASSIFICATION 1b. RESTRIC7TIVE MARKINGS

2a. 3. DISTRIBUTION~ iAVAILABILITY OF REPORT

AD-A244 786 Approved for public release;lfIIl ii fil1111I~ II~IIIl ~ __________ distribution ulmtd
4. P 1511 N111111111111111 . MONITORING ORGANIZATION REPORT NUMBER(S)

Report M-860

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(IN applicable)

Florida State University I_______ U. S. Army Research Office
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (Cty, State, and ZIP Code)
Department of Statistics P. 0. Box 12211
Tallahassee, FL 32306-3033 Research Triangle Park, NC 27709-2211

Ba. NAME OF FUNDING/ISPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION O (f applicable)

U*. S. Army Research Office D_____ tqL 3-9 6-. rroo03
Lc ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM IPROJECT ITASK - WORK UNIT

Research Triangle Park, NC 27709-2211 ELEMENT NO. NO. NO. IACCESSION NO.

11. TITLE (include Security Clasficat~on)
Testing the minimal repair assumption in an imperfect repair model.

12. PERSONAL AUTHOR(S)
Brett Presnell, Myles Hollander, and jayaram Sethuraman

13a. TYPE OF REPORT 137.TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
Technical FROM _____TO FSeptember, 1991 121

16.SUPLMETAY OTT]ONThe view, opinions and/or findings contained in this report are those
of the author($) and sh~uld not ,be.const -d as an ffcia1D~gartment of the Army position,

17. COSATI CODES IS. SUBJECT TERMS (Continue on reverse if neeuary and identify by block number)
FIELD GROUP SUB-GROUP Minimal repair, imperfect repair, repairable system,

nonhomogeneous PoisSon process, martingale.

'9. ABSTRACT (Continue on reverse if necessary and identify by block number)

IDT IC~ SEE BACKSE LECTE
SJAN 10192D

92-00634

20. DISTRIBUTION/IAVAILAILITY OF ASTRACT 21. ACSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIED/UINLIMITED 0 SAME AS RPT. C DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPH4ONE (include Area Code) 22c. OFFICE SYMBOL

DO FORM 1473,.84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. UNCLASSIFIED



TESTING THE MINIMAL REPAIR ASSUMPTION
IN AN IMPERFECT REPAIR MODEL

Brett Presnell, Myles Hollander,* and Jayaram Sethuramant

FSU Technical Report No. M-860
AFOSR Technical Report No. 91-266
USARO Technical Report No. D-123

Accesion For )
September, 1991 NTS CRAMI

0"10 lAB
Uii-aflouiwc d Li

Department of Statistics Jtitfic~itiori....
University of Florida ..... .. ......

Gainesville, Florida 32611 By.........

Department of Statistics AvaL~t Cix~
Florida State University Ava2- 7

Tallahassee, Florida 32306-3033 Ds

*Research supported by Air Force Office of Scientific Research Grant AFOSR
91-0048.

t Research supported by Army Research Office Grant DAALO3-90-0103.
AMS (1980) subject classifcations. Primary 62N05, 90B25; secondary 62E20,

62G05, 62G10, 62G15.
Key words and phrases: Minimal repair, imperfect repair, repairable system,

nonhomogeneous Poisson process, martingale.



Abstract

We propose two nonparametric tests of the assumption that imperfectly re-
paired systems are minimally repaired in the models of Brown and Proschan
(1983) and Block, Borges, and Savits (BBS) (1985). The iarge sample theory
for these tests is derived from the asymptotic joint distribution of the survival
function estimator of Whitaker and Samaniego (1989) and the ordinary em-
pirical survival function based on the initial failure times of new, or perfectly
repaired systems. Simulation results are also provided for the null hypothesis
case, and under the alternatives proposed by Kijima (1989). Models assuming
minimal repair specify that upon repair, a failed system is returned to the
working state, while the effective age of the system is held constant; that is,
the distribution of the time until the next failure of the repaired system is the
same as for a system of the same age which has not yet failed. These models
are common in the literature of operations research and reliability, and prob-
abilistic results and the recently proposed inferential procedures of Whitaker
and Samaniego (1989) and Hollander, Presnell, and Sethuraman (1989) de-
pend on the minimal repair assumption. Though tests have been proposed
for goodness of fit of the model when a particular form of the distribution is
assumed, we know of no previous proposal of a nonparametric method to test
this assumption.

KEYWORDS: Imperfect repair, repairable system, nonhomogeneous Poisson
process, martingale.



1. INTRODUCTION

Models which allow for imperfect repair are clearly needed for reliability anal-
ysis of repairable systems, and minimal repair provides a mathematically
tractable approach to this modeling problem. Models involving minimal repair
appear frequently in the literature of reliability and operations research (see
Ascher and Feingold (1984) for references). A particular example is the age-
dependent minimal repair model (BBS model) of Block, Borges, and Savits
(1985), which generalizes the imperfect repair model of Brown and Proschan
(1983). In the BBS model, a system with survival time distribution F is put on
test at time zero. Upon failure at age t, one of two types of repair is performed:
with probability p(t) a perfect repair is performed and the system is returned
to the "good-as-new" state; otherwise, a minimal repair is performed and the
device is returned to the working state, but is only as good as a working item
of age equal to the age of the device at failure. In the former case, we consider
the effective age of the system to be returned to zero (a new item has effective
age 0), while in the latter case the effective age of the system is unchanged
from the effective age at failure. Thus, if a minimal repair is performed on an
item failing at age t, then the repaired item has survival function

F(slt) = I s >)
.IF(t)'sO

where we use the notation Y to indicate the survival function, 1 - F, of a
distribution F. The process is continued after repair, with each subsequent
failure being followed by a perfect repair with probability p(t), or a minimal
repair with probability q(t) = 1 - p(t), where t is the effective age of the failed
device.

Whitaker and Samaniego (1989) and Hollander, Presnell, and Sethuraman
(HPS) (1989) propose several inferential procedures for this model. These
procedures and their asymptotic distribution theory depend strongly on the
assumption that imperfectly repaired systems are minimally repaired, although
in practice this assumpticn is tenuous. Minimal repair is generally motivated
as an approximation to the situation where some failing component(s) of a
complex multi-component system is replaced or repaired, but we would not
expect the model to fit exactly the repairs of an actual system. This is dis-
cussed by Bergman (1985), who distinguishes between statistical minimal re-
pair (as defined above) and physical minimal repair, in which the failed system
is restored to its exact physical condition just before failure. Some interesting
arguments against the indiscriminate use of minimal repair models are also
given by Arjas and Norros (1989) and Natvig (1990), who refer to the type
of minimal repair considered here as 'black box' minimal repair, and contrast
this with models which take into account available information about the con-
dition of the system. In spite of the widespread use and criticism of minimal
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repair, however, we know of no previous proposal of a method for testing the
assumption of minimal repair which does not assume a particular form for the
underlying survival distribution of the system.

In this paper we propose two nonparametric tests of the minimal repair as-
sumption in the BBS model. These tests are based on the notion of contrasting
two available estimators of the system survival function. We assume that n
systems are observed under the BBS model, each until the time of its first
perfect repair (or equivalently, a single system is observed until the time of its
nfth perfect repair). Regardless of the mode of repair, a consistent estimator of
the system survival function is available, namely the empirical survival func-
tion, F., based on the initial failure times of the systems under observation.
Under the BBS model, the estimator of Whitaker and Samaniego (1989), F,
also provides a ..onsistent estimator of the system survival function, while if
the minimal repair assumption of the model fails to hold, this estimator might
diverge from the true system survival function. In Section 2. we propose a
Kolmogorov-Smirnov type test based on the maximum absolute difference be-
tween F and Fe, and a test based on a Mann-Whitney-Wilcoxon type statistic
of the form f A, dF. Theoretical justification of these procedures is given and
they are applied to the data of Proschan (1963). In Section 3. the results of
a simulation study of these procedures are given. Finally, in Appendix A. we
give proofs of the theoretical results presented in Section 2..

2. TWO TESTS OF MINIMAL REPAIR

2.1 The Model

The following model for sampling from an age-dependent minimal repair pro-
cess is given in (HPS) and is repeated here for convenience. To simplify the
exposition, we assume that F is continuous and that F(t) < 1 for all t < oo,
although we generally give expressions applicable to the more general case.

A sequence of failure ages obtained under a model of perennial minimal
repair may be defined as follows. Let F be a life distribution, and let {X0 
0, X 1, X 2,... } be a record-value sequence based on F; that is, (Xk)0.. is a
Markov process with the conditional distribution of Xk given X 0 ,...,Xk-l
being given by F(t I Xk.-) = F(t)/F(Xk_.), for t > Xk_1 and k > 1. Note
that the counting process

N*(t) = #{ k: X < t}

is just a nonhomogeneous Poisson process with mean function equal to the
cumulative hazard function of F,

A(1) t dF(s)

10 =-)
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Perfect repair is now introduced through the use of independent uniform (0,1)
random variables, { U1 , U2 ,... }, also independent of (Xk)=,. Defining 6& =
I(Uk < p(Xk)) and v = inf{k :6k = 1}, where we take infO = oo, we
see that P(Sk = lJX 1,...,Xk,61,... ,6k-,) = p(Xk). Clearly, observation
of {(X 1,, 6), ... , (X, S.,)} is equivalent to observation of a system under the
BBS model until the time of the first perfect repair, although v may in general
be infinite.

Let H be the subdistribution function defined by

H(t) = P(X <_ t,v < oo).

Then H has cumulative hazard function

AH(t) = jop(a) dAAs), (2.1)

and H is a proper distribution function if and only if

j p(s)dA(s) = +oo. (2.2)

In this case, X,, is almost surely finite with distribution function H. We will
assume that (2.2) holds for the remainder of the paper.

2.2 Theoretical Results
Now suppose that we observe n such systems, so that we have independent
record value sequences { (Xk)- : 1 < i n } from F, independent uniform
random variables { Ujk k > 1, 1 < j s n}, and we observe { (Xjk, 6 jk) :
1 < k < v, 1 < j S n }. Let F. be the empirical cumulative distribution
function formed in the usual way from the initial failure ages of the system,
X, 1,... , X, 1, let H? be the empirical c.d.f. of X, ,..., X,,, and let

N;(t) = #{ k : X < t}, (2.3)

N,(t) = N;(t A Xi.), (2.4)

and

N(t) = E Ni(t). (2.5)
j=1

Note that N(t) is the total number of observed failures through time t, and
nH(t-) is the number of systems still under observation, or "at risk," just
before t. Let T be the first failure age at which only one item is at risk:

T = sup{ t: H(t) =_1 } = min{ X(i): H(X(i)-) = -,
n n

3



where the X(,) are the ordered values of the combined observed failure ages of
the n BBS processes. A natural estimator of the cumulative hazard function
is then ithn A = it A-S) dN(s) = -. 1 (2.6)

H(s-) X(,)_tAT nH(X(,)-)

where J(s) = I(s < T), and we take 2 = 0. With this notation, the survival
function estimator of Whitaker and Samaniego (1989) is

F() = (1 - A(s))= II (1- -. 1 (2.7)
*St X(q) <tAT nH(X()- )

We define

C tf HdF() , t dF(s)
jo0 H(s-)F(s) (28)

1 1L(t)= -1-C(t), L(t)--( - 1 6(t), (2.9)
F(t) Ft

and G = LI(IL + L), Z-/L(1 + Z). (2.10)
The following results are proven in Appendix A.:

Theorem 2.1. As n -- oo,

-- ) v B(L) in D[0, oo),
F

where B is Brownian motion on [0, oo).

Corollary 2.2.

S(P - P.) BO(G) in D[O, oo),

and
- (P - P.) Bo(G) in D[0, oo),

where B° is the Brownian bridge on [0, 1].

Corollary 2.3.

P.) - x B(L) in D[, oo].

4



Corollary 2.4. Let V = foA P. dF. Then

where
2( (2.11)

The result of Corollary 2.2 leads to a Kolmogorov-Smirnov type test of the
minimal repair assumption, to be carried out by referring the statistic

/At

S= sup V -= jP~) - 4to<t<-r Y(t)

to a table of the distribution of the supremum of the absolute value of the
Brownian bridge over the interval [0, G(r)] (Koziol and Byar 1975; Hall and
Wellner 1980). Corollary 2.4, on the other hand, suggests that we refer the
statistic

to a standard normal distribution, where

& 2  1 fooF ((s)bV, 12 J/12--:6_

V1 2  4 J 0 H() d )

(The consistency of & is demonstrated in HPS, pp. 27-28.) Other tests based
on the simple idea of searching for a statistically significant discrepancy be-
tween F. and P are also possible, but we will consider only these two.

Remark 2.5. A strictly monotone transformation of the time axis does not
alter the value of V* or the value of S, if " is also transformed. But if p(t) _ p
is a constant function, then the transformation Xjk = A(Xjk) reduces us to
the situation of observing the BBS model with the same constant p(.) and
with exponential F. Thus, when p(.) is a constant function, the distribution
of V* under the null hypothesis does not depend on F. If u is fixed and
T = F- 1 (u), then the null distribution of S, is also independent of F. Of
course the distributions in both cases depend on p and in the latter case on u.

2.3 An Example

As an example, we have applied the procedures above to the Boeing air condi-
tioner data of Proschan (1963). The data are reproduced in Table 1. For this
analysis, we have treated the intervals between failures as inter-failure times
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Plane Number
7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 8044 8045

194 413 90 74 55 23 97 50 359 50 130 487 102
15 14 10 57 320 261 51 44 9 254 493 18 209
41 58 60 48 56 87 11 102 12 5 100 14
29 37 186 29 104 7 4 72 270 283 7 57
33 100 61 502 220 120 141 22 603 35 98 54

181 65 49 12 239 14 18 39 3 12 5 32
9 14 70 47 62 142 3 104 85 67

169 24 21 246 47 68 15 2 91 59
447 56 29 176 225 77 197 438 43 134
184 20 386 182 71 80 188 230 152
36 79 59 33 246 1 79 3 27

201 84 27 ** 21 16 88 130 14
118 44 ** 15 42 106 46 230

** 59 153 104 20 206 5 66
34 29 26 35 5 82 5 61
31 118 326 12 54 36 34
18 25 120 31 22
18 156 11 216 139
67 310 3 46 210
57 76 14 111 97
62 26 71 39 30

7 44 11 63 23
22 23 14 18 13
34 62 11 191 14

** 16 18
130 90 163
208 1 24
70 16

101 52
208 95

Table 1. Intervals Between Failures of Boeing Air Conditioner Systems.

between minimal repairs. Proschan omits any failure interval immediately fol-
lowing a major overhaul (indicated by ** in Table 1), and we have omitted the
intervals following such an overhaul from our analysis, since it is impossible
to determine the age of the unit after the overhaul. Thus the values below
the **'s in Table 1 are not used. We have treated the age at which a major
overhaul occurs as the time of the first perfect repair for that airplane. This
affects planes 7908, 7909, 7910, and 7911. For purposes of this example, we
treat the last observed failure ages of the remaining planes as the times of
their first perfect repair.

We have arbitrarily decided to compute the S statistic over the interval
from 0 to 500 hours. The value of S in this case is 0.7705, and 0(500) =
.9902. This value of S is less than the 50th percentile of its asymptotic null
distribution, so that the test yields no evidence against the minimal repair
assumption. For the Wilcoxon-like test statistic, V = 0.4984, &v = 0.1753,
and V* = -0.03323, again yielding no evidence against the minimal repair
assumption. In 7igure 1, we have plotted F and F. on the interval [0,500]. In
agreement with the results of the test procedures, there is little visual evidence
to suggest a meaningful discrepancy between the estimators. As we shall see
in Section 3., however, these tests appear to have very low power for -,. sample
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Figure 1. Plot of F (solid) and F. (dashed) for Boeing Data.

size as small as 13, so that a larger sample size is needed to effectively test the
minimal repair assumption in this example.

3. SIMULATION RESULTS

We have carried out simulation studies of both the size and power of the
tests proposed. Computations were carried out on the University of Florida
Statistics Department's system of DEC workstations. Simulation programs
were written in FORTRAN. The uniform generator used as a basis for all
other random numbers was the universal random number generator described
in Marsaglia, Tsang, and Zaman (1990). Exponential random variables were
generated using the function REXP given by Marsaglia and Tsang (1984). The
memoryless property of the exponential distribution makes it easy to gener-
ate record values by simply adding an independent exponential to the current
record value. For the general gamma(a) distribution, the initial record val-
ues were generated in the obvious way: generate gamma variates until the
current record is exceeded. These gamma random variables were generated
using the squeeze method of Marsaglia (1977). Once this sequence produced
a value greater than a (arbitrary, but it is clear that at some point the start-
ing algorithm must be abandoned), an algorithm described by Marsaglia and
Tsang (1984) f,r generating random variables from the tail of a distribution
was employed.

The sample sizes examined were 10, 20, 30, 50, 100, and 200. For each
sample generated, both S and V" were calculated. Since the interval [0, -]
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Figure 2. Size of S and V" with nominal size 0.10, with p held constant at
0.50 (-), 0.25 (-), and 0.10 (solid). Estimates based on 30,000 iterations.

on which the statistic is computed may affect the behavior of the S test, we
collected results of computing the statistic to the 9 0 th, 9 5 th, and 99th percentile
of the underlying distribution By a slight abuse of our earlier notation, we
will denote these statistics by S.o, etc. The tables of Koziol and Byar (1975)
were used to find the appropriate value of A.(K(,r)), after first rounding K(r)
to the nearest tenth. The BBS process was simulated with constant p taking
values .10, .25, and .50.

The estimated sizes of the tests based on S.95 and V* with nominal size
a = 0.10 are presented graphically in Figure 2. (The results for S.90 and S.99
are similar to those for S.95.) These estimates are based on 30,000 iterations of
the simulation. Recall that under the null hypothesis with constant p, the null
distributions of the statistics considered here do not depend on the underlying
F. The light dotted lines at a = 0.10 ± 1.96 x 0.3/V/7UO are provided
for reference. Both the S.95 and the V* 1-sts are conservative at the sample
sizes examined, with the discrepancy bctween the nominal and the true sizes
decreasing monotonically with the sample size. The value of p also has an effect
on the size, particularly in the case of V°, with larger p yielding a smaller size
for the test. Since the tests are at leas. aot anticonservative, we continue by
examining their power.

To study the power of the test procedures, we consider two alternatives to
minimal repair, Models 1 and 2 of Kijima (1989). Let Xk represent the actual
age (as measured by the clock) and let Yk represent the effective age (Kijima
calls this the ,irtual age) of the system at the kthfailure. Thus the conditional
survival function of AXk = Xk - Xk-1 given { X1,... Xk- 1, Y1 ,... , Yk-1 } is
F(sl Yk-1) = P(s+Yk-j)/F(Yk-1), for s > 0. In Kijima's Model 1, the effective
age of the system after the kthrepair is

Yk = Yk-1 + AkAXk,

where Ak is a random variable taking values in the unit interval independently

8



of Y1 ,... , Yk-1 and X 1,. .. ,Xk. The idea here is that the repair affects only
aging of the system accumulated since the last repair. In Kijima's Model 2 on
the other hand, the effective age of the system after the kthrepair is given by

Yk = Ak(Y-1 + AXk),

where Ak is as in Model 1.
In our simulation study, the Ah's in these models were taken to be constant

(variously, 0.75, 0.50, 0.25, and 0.10). The underlying distributions considered
were gamma with shape parameters 2, 4, and 6. In lieu of tables of the
simulation results, we provide Figures 3-8. Again we provide results only for

.s95, as the results for .90 and S.99 were similar. These figures support the
following conclusions:

9 The power of both tests increases as Ak decreases. This is to be expected
since values of Ak close to one in either model correspond to models which
are "close" to the minimal repair model.

* With all other factors being constant, the power of both tests tends to
be higher for Model 2 than for Model 1. This is not surprising, since for
the same value of Ak, repair under Model 2 has a greater effect on the
effective age than repair under Model 1.

9 The power of both tests increases as p decreases. Again, this is expected,
since smaller values of p correspond to the observation of more repairs
and hence more information about the mode of repair.

* The power of both tests increases as the gamma shape parameter a
increases away from 1. This again is not surprising, since values of a close
to 1 correspond to an underlying distribution closer to the exponential,
for which both Models 1 and 2 are equivalent to the minimal repair
model.

9 The test based on V* tends to have greater power for large sample sizes
(> 30), while the test based on S.95 has greater power for small sample
sizes (< 30). We have no obvious explanation for this behavior.

Since we know of no competing procedures which do not assume a partic-
ular form for F, it is difficult to make an overall qualitative judgement of the
power of these testz. In either of the models considered, a procedure based on
estimation of a parameter of the distribution of Ak (such as the mean when the
Ak's are random and i. i. d.) might have better power, but might not perform
as well against other types of alternatives as our more general approach.

9
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A. PROOFS

In this section, we follow the usual convention of taking all a-fields to contain
the P-null sets of F, where (f, .', P) is our basic probability space. Most of the
results on stochastic integration which we need here are conveniently collected,
with references, in Appendix B of Shorack and Wellner (1986): in particular,
we will generally use Theorem B.3.1 without further citation. In this regard,
we note here that for all the local martingales below, the localizing sequence
of of stopping times may be taken to be any sequence of constants diverging
to positive infinity (Hollander et al. 1989, Remark 2.2). Also, integrands are
readily verfied to be predictable, and generally are bounded on finite intervals
by some constant, so that, e.g., condition (b) of this theorem is easily verified.
Additional results which we will need are the related Proposition 18.13 of
Metivier (1982) and Lemmas A.1 and A.2 of Doss and Chiang (1991). Since
the localizing sequences for the processes considered may be taken to be a
common sequence of constants, we can use the latter two lemmas (which are
stated for martingales) without modification.

A.1 The Basic Martingale Dependence Structure
Returning to the basic model of Section 2., let N, be defined as in (2.3) and
let a =,({ (s(,) : s < tj U { U ,k : k > 1})

Then
M;(t) = N,(t) - A(t)

is a locally square-integrable martingale with respect to Y7tj ) with predictable
quadratic variation

(M;)(t) = j - AA(s)) dA(s),

and with N, as in (2.4),

M,(t) = N,(t) - A(t A X 1,) = jo I( X, , > s ) d M(s)

is a locally square-integrable YP)-martingale with

f0t(M,)(t) = j (Xj,, > s)(1 - AA(i))dA(s)

(Hollander et al. 1989). Similarly, we note that I(Xi1 _ t) = N;*(t AX 1 ), and
that (note that both I(X 1 > t) and I(X,, > t) are predictable),t

M;(t) = I(X,1 :_ t) - A(t A X,1 ) - I(xj, > s) dM;(s)

13



is a square-integrable YtF')-martingale with

(Mi)(t) = CI(X > s)(1 - AA(s)) dA(s).

Finally, by Proposition 18.13 of M~tivier (1982),

A(MPM)W = joI(Xn. > .)I(X 1 > s) d(M;) (s)

= foI(X l > -)(1 - AA(s))dA(s). (A.1)

Now let

j=1

Then, noting that nPR(t) = 1 I(Xii _ t), nF(t-) = y= I(Xjl >_ t),

and nH(t-) = = I(Xj,, _ t), and recalling the definition of N in (2.5),
it follows from the independence of the yi) (Doss and Chiang 1991, Lemmas
A.1 and A.2) that

M.(t) = _ M;(t) = nP'(t) - n fF(s-) dA(s) (A.2)
3=1

and

M(t) E M(t) = N(t) - n ] H(s-) dA(s) (A.3)
1j=1

are locally square-integrable Yt-martingales with

(M.)(t) E (M;)(t) = n Z P.(s-)(1 - AA(s)) dA(s)
j=1

and

(M)(t) - Z(M)(t) - ,nH(-)1 - AA(s)) dA(s).
3=-01

Since M, and Me, are independent when j 6 j', we may again apply Lemma
A.2 of Doss and Chiang (1991) to get (Mi,Mje,) 0. Thus, by (A.1) and the
bilinearity of the (., -)-operator

n n n

(M M.) (t) =Z(,Me)i =NO 3 M~)t
j=1 j1=1 j=1

E ,fJ I(Xi1 > s)(1 - AA(s)) dA(s)

n j fo (-)(1 - AA(s)) dA(s). (A.4)

14



These results provide us with the basic martingale structure needed to

prove the results of Section 2.. The first step is to establish a martingale
representation for (P-

A.2 Martingale Representations

Recalling (2.6) and (2.7), we define

(t = 1 A(s),

and note that
F,(t) = J(i - AA(s)).

*<t

For brevity, let Z = V (P - F)/F, Z. -- (e - F)/F, and Z _ Z - Z.
vfi-(P - Pe)/P. Using Duhanmel's equation (Gill and Johansen 1990; or see
Shorack and Wellner 1986, Lemma 7.2.1) and (A.2), we find that

Z()() d[.e(S A(s)]

S j 1 dM (9)1 (A.5)

and similarly (Hollander et al. 1989),

Z (t) = /n it s d[A(s) - A(s)]
foF(,s)

1 =~ (-) dM(.-). (A.6)

In both (A.5) and (A.6), the integrand on the right-hand side is predictable

and bounded on any finite interval (0, T] by a constand (1/P(T)). Thus Z, Z.,
and Z are locally square-integrable martingales with

(Ze)(t) 1 1t
1- d(M.)(s)

(Z.) 10 2()

= dF(s)

and

(Z)(i W ~ ( d(M)(.s)

f t1(s-) 
dF()Jo R(S_)p2 )()
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Also, applying Proposition 18.13 of Metivier (1982) to (A.4), (A.5), and (A.6),
we see that

t F(s-)(s-) dF(s)
= - p2cq_)p(S) -

These results combine to give

(2)(t) =(Z)(t) + (Z.)(t) - 2(Z, Ze)(t)

= jt (s-) - (2 j 1)P ) 2 ) (A.7)

The martingale representation for Z will be used below with Rebolledo's
Martingale Central Limit Theorem to prove Theorem 2.1. In particular, (A.7)
will be used to determine the vaxiance-covariance function of the of the limiting
Gaussian process found in the theorem.

A.3 Proof of Theorem 2.1

By the Glivenko-Cantelli Theorem, F and H are uniformly strongly consistent
for F and H respectively. Similarly, F is uniformly (strongly) consistent for F
(Whitaker and Samaniego 1989; Hollander et al. 1989). Thus it follows from
(A.7) that for t < oo,

{ )( P t ' 1 )dF(S)L()

The result of Theorem 2.1 will follow upon verification of Rebolledo's strong
ARJ(2) condition for Z. For an arbitrary local martingale m and e > 0, let

a[m](t) = E IAm(s)12 (IAm(s)I > E),
<t

and let '[m] be the compensator of a[m]. Then we must show that .,'[Z](t)
converges in probability to 0 for each t < oo. For this, we first note that by
(A.2), (A.3), (A.5), and (A.6),

1 1 1 1
Z(Cs) = -)Me( ) - (s)

and 1 F(s-) 1_____-_

AZ(S) AM(s) - AN(s).
16s)H(s-)
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Thus the jumps of Z, and Z are postitive, and since JA2(s)1 = AZ() -

AZ.(s)l, we have

12C(S) J(IAZ(.9)i > f)
_ IAZ(s)JJ( AZ(s)l > 6) + IAZG)l 2 JAZ.G()l > C).

From this inequality we see that

o'[Z](t) + a'[Z](t) - 0,[:](t)

= Z(IA .)2IiZ(s)I > E) + IAZ(CS)l 2I(IAZ.(S)I > C)
a<t

-IA(3)J2 (JA(3)l > ,))

is an increasing, nonnegative process. This implies that Fr[Z], the compensator
of a"[Z], is bounded by the sum of the compensators of a"[Z] and a [Ze]. (To
see this, note that more generally, if A and B are increasing. processes, and
A - B is increasing, then A - B has compensator equal to A - B, the difference
of the compensators of A and B, respectively. Since the compensator of an
increasing process is nonnegative, this implies that A > P.) Noting now that
(Hollander et al. 1989)

&9____t =__ Fs-) > vfn)dA(s),F H)) (s-) "ys)(3-

and similarly,

3*[e(t F 2 (s) (.F(s) >V/e) dA(s),

it follows easily that &[Z](t) --+ 0 and 3.[Z](t) --+ 0 in probability for all
t < o Co

A.4 Proofs of Corollaries

A.4.1 Proof of Corollary 2.2

The first part of Corollary 2.2 follows directly from Theorem 2.1 by a check
of covariances. This is a standard transformation, sometimes called Doob's
transformation. The second part of the corollary follows from the first, and
the uniform consistency (on finite intervals) of O/F. This consistency follows
easily from the definition of 0 in (2.10) and the consistency of P., F, and H.
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A.4.2 Proof of Corollary 2.3

Weak convergence in D[O, ool of /(F - F) is established in Hollander et al.
(1989), and of course convergence of V/'f(F. - F) in D[O, oo] is well known.
This is enough to establish tightness of the joint distribution of v/(.P - F) and
vl' (-P. - F) in (D[O, oo]) 2 . Since the limiting distributions are concentrated
on C[O, oo], and since addition and subtraction are continuous at continuous
points in D[O, oo], it follows that V/(P - Re) is tight in D[O, oo]. Theorem 2.1
indentifies the finite-dimensional distributions of the limiting process, and the
corollary follows.

A.4.3 Proof of Corollary 2.4

Corollary 2.4 can be proved directly in the same fashion as the proof of The-
orem 5.1 of Hollander et al. (1989), or by using the Wilcoxon example of Gill
(1989). We pursue the latter method here. In what follows, convergence in
distribution indicates weak convergence is in D[O, ao] with the usual Skorohod
topology.

By Corollary 3.1 of Hollander et al. (1989), v/'(F - F) converges in dis-
tribution to a Gaussian process with covariance function .(s)F(t)C(s A t),
while it is well known that V/'(P - F) converges in distribution to a Gaus-
sian process with covariance function F(s A t)iP(s V t). These results together
with Corollary 2.3 identify the limiting joint distibution of vf/(.P - F) and
v/' (-P - F) in (D[O, 0o]) 2 as that of (W1, W, + W2), where W = FB 1(C) and
W2 = FB 2(L). Here C and L are as defined in (2.8) and (2.9), and B, and B2
are independent Brownian motion processes.

Now, by Lemma 3 and Theorem 3 of Gill (1989),

v V - -D F d(W + W2) + W, dF

= W2 dF.

This implies that the limiting distribution of Vfn(V- 1/2) is normal with mean
0 and variance

= j2 F(s).F(t)L(s A t) dF(s)dF(t)

which simplifies to (2.11).
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