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TECHNICAL REPORT

The main, long term, objective of this work is research and development of the
theory and constructive computational algorithms for synthesis of single and dual
reflector antenna systems. The work is based on analytic and numerical procedures for
solving the underlying nonlinear boundary value problems.

To this end we have been carrying out investigations in the following directions:

1. Conditions for solvability of the direct problem of reconstructing the reflector antenna
with uniform output density of the reflected rays from the given far field, input aperture,
and prescribed in advance (non-radially symmetric) input density.

2. Properties of reciprocal reflector and connections between the direct and inverse
problems.

3. Construction and testing of an algorithm based on a "diffusion" - type scheme for
solving numerically the boundary value problem formulated in 1.

4. Formulation of the dual reflector problem as direct and inverse boundary value
problems and investigation of appropriate solvability conditions.

In item 1 we succeeded in deriving the equation in concise and explicit form. As far as we
know, in such form this equation is obtained for the first time. All the terms in the
equation have a simple and clear geometric meaning and can be computed numerically
by efficient numerical procedures. Our derivation is based on a general procedure
utilizing differential geometric methods. We also use the same methods for deriving the
equations of the dual reflector problem in item 4. We have also shown, in explicit form,
the connection between the inverse and direct problems in the single reflector setting
(item 2). Using this connection we established conditions for solvability of direct
problem. Regarding item 3 we developed and tested an algorithm for solving numerically
the direct single reflector problem. Our approach here is via a certain special "diffusion"
-type procedure. With this approach it is possible to avoid a costly numerical inversion of
a highly nonlinear second order differential operator.

The results are being organized in a series of papers. Two of them "Differential-
geometric methods in design of single and dual reflector antennas" and "On one direct
problem in the reflector antenna theory" are complete and submitted for publication.
Copies of both papers are attached to this report. The third paper "On the theory of
dual offset reflector antennas" is being prepared for publication.



Differential-geometric methods in design of single and dual

reflector antennas'

by

Vladimir Oliker, Elsa Newman 2 , and Laird Prussner

Introduction

This paper is the first in a series of three papers in which we study
the theory and numerical methods in synthesis of reflector antennas.

The problem of synthesizing a single or dual reflector antenna
system producing a pre-specified intensity distribution on a far-field or
on a target domain continues to attract considerable attention of
researchers and practitioners. In the geometric optics approximation

(GO) the basic laws of reflection can be used to derive a system of
three first order partial differential equations (PDE's) corresponding to
the problem. This was done in the 60s by B. Kinber [7] and V. Galindo-
Israel (4]. This system of PDE's, roughly speaking, consists of two
"parts": two equations in the system express the Snell law, and the third

equation relates the output intensity distribution to the intensity of the
primary source. The latter is a strongly nonlinear equation which is
essentially a condition on the Jacobian of the "reflector" map
transforming the input spherical wave front into the output front.

It is well known (see, for example, (3], Ch. I) that a first order
system of PDE's admits a smooth solution only if certain integrability

conditions are satisfied. It was observed by Kinber [71 and Galindo-
Israel and Mittra (see [51 and further references there) that for the first
order PDE's system describing reflector antennas these integrability
conditions, in general, may not be fulfilled. In fact, it is not difficult to
write down explicitly the integrability conditions for the two equations

IThis research was supported by AFOSR under contract F499620-91-
C-0001. The United States Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any
copyright notation herein.

2The author is a graduate student.

The order of the last two authors is arbitrary
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expressing Snell's law; see [5], [6]. However, this is not sufficient, since
the third equation, relating the input and output intensities, is not taken
into account. Consequently, one can not expect, in general, that the
problem will have a solution.

The exceptional situation when the integrability conditions for the
entire system are always satisfied is the case of axially symmetric
reflectors and axially symmetric data. It has been known for some time
and was shown rigorously in [15] that in this case one can give explicit
necessary and sufficient conditions for solvability of the problem. In the
subsequent paper we will show that if the input domain and the far-
field are coaxial and there is an axially symmetric solution of the
problem with axially symmetric intensities then one can always find a
solution of the first order PDE's system for prescribed non-axially
symmetric intensities close in some norm to the axially symmetric one.

In reflector antenna systems with two or more reflecting surfaces
there are additional degrees of freedom to control the output amplitude
and phase. However, the more reflecting surfaces are in a system the
larger the number of PDE's describing it. Consequently, the complexity of
the system increases and its analysis becomes harder. As far as we
know up to present there are no rigorous results concerning such
systems. The authors usually use numerical computations to obtain some
acceptable variant of a "solution" (even when a true solution may not
exist). In the most recent works of K. Shogen, R. Mittra, V. Galindo-
Israel and W.A. Imbriale various difficulties in numerical treatment of
these equations are reported [17].

In 1972 J. Schruben [16] considered the problem of designing a
lighting fixture which would produce a pre-specified intensity pattern
on a plane aperture. In her approach, the reflector surface is described
as a graph of a scalar function over a domain on a unit sphere (the input
aperture) and the Jacobian of the reflector map is expressed in terms of
this function and its derivatives up to second order. The corresponding
expression is a second order nonlinear PDE of Monge-Ampere type.
Unfortunately, the use of a specific coordinate system made the
formulas in [16] quite complicated, and Schruben does not even derive
explicitly the equation of the problem. Her main concern was to
describe conditions for ellipticity of the operator involved.
The principal advantage in this approach is that instead of a system one
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has to deal here with one equation for one scalar function. This

equation, however, is of second order and strongly nonlinear.
In 1974 B. Westcott et al. initiated a different approach to

synthesis of reflectors. In case of a single reflector, required to produce
a prescribed far-field pattern, this approach to the problem corresponds
to formulating it as an inverse problem. It is based on the observation

that the reflector can be parametrized in a special way by points on the
far-field (or target) and actually recovered from one scalar function.
The latter must also satisfy a second order PDE of Monge-Ampere type
relating the intensity of the primary source and of the desired output.
This approach was pursued by Westcott and his colleagues in a number
of publications; see [11], [1], [21, [191, [181, and further references there.

In all of these approaches, rigorous general results concerning

existence and uniqueness of solutions are lacking. Eventually, the

authors always have to resort to numerical calculations. Some progress

towards establishing rigorous uniqueness results was made by Marder

[101, who considered the single reflector problem in the setting of the
approach by Westcott et al. Also, in the inverse problem setting

rigorous results establishing existence of non-axially symmetric
solutions with prescribed non-axially symmetric densities, close (in a
certain norm) to axially symmetric, were obatained by Oliker [13] (see

also [14] for related results) in the case when the problem is treated.
In this paper, we study the "direct" problem of synthesizing the

reflector surface. Our starting point is similar to that of Schruben in

the sense that we also describe the sought reflector surface as a graph

over a spherical domain (the input aperture) and look for a second order
PDE which the function describing the graph satisfies. However, in

contrast with the paper of Schruben, we succeed in deriving such an
equation in concise and explicit form. This is done in both cases of

single and dual reflector antennas. In this paper we present our results
for a single reflector antenna. The results for dual reflector antennas
will be presented in a subsequent publication.

The corresponding expressions are relatively simple and, most

importantly, contain familiar geometric quantities for which various

stable procedures for numerical computation are available. Our
derivations are based on differential geometric methods. We also show
that in the case of a single reflector surface our equation and the one
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derived by Brickell-Marder-Westcott [2] are connected by a simple

transformation. In fact, we show that the reflector surfaces described

in the direct problem and the reflector surfaces constructed in the

inverse problem are actually what is known as reciprocal reflectors. In

the complex analytic formulation, such a connection between the direct

and inverse problems was established in [2]. Our approach to

establishing this connection does not involve complex analysis. In the
real-valued form this connection becomes quite transparent and follows

easily from the formulas we develop. We also discuss the question of

optimal boundary conditions to be imposed on the solution. This
question is important. As we pointed out earlier, the problem, in

general, may be overdetermined and therefore lack a solution.
The paper is organized as follows. In section 1 we review some

facts from elementary differential geometry and develop basic

geometric formulas for reflecting surfaces. In section 2 we compute the

Jacobian of the "reflector" map and relate it to the input and output

power densities. The main result here is the formula (2.12) expressing

the Jacobian in geometric quantities. As far as we know, in such

explicit form this expression appears for the first time. This expression

turned out to be very useful. In section 3 we use it to construct the
reciprocal reflector and show the connection between the direct and

inverse formulations of the problem. In section 4 we present and

analyze in our framework the formulations of the problem as a first

order system of PDE's and as a boundary value problem for a second

order nonlinear PDE of Monge-Ampere type. In section 5 we give a

rigorous treatment of the axially symmetric case of the direct problem.
In section 6 a numerical algorithm based on formula (2.12) is presented.

1. Preliminaries

1.1. In three dimensional space R3 let 5 be a unit sphere centered

at some point 0. Fix a Cartesian coordinate system with the origin 0.

Let Q be a domain on 5, 2 its closure, and m a unit vector with endpoint

in !. Let p be a positive function in Q and set r(m) = p(m)m. Then r
defines a surface F projecting radially from 0 univalently onto 2.

Denote by n the unit normal vectur field on F and assume that F is
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oriented so that <m,n> > 0 everywhere on F. An illustration of this
situation is given on the figure on p. 8.

We now recall some basic notions from Differential Geometry that
will be needed later. These can be found, for example, in E. Kreyszig [9].

Let (u',u 2) be some smooth local coordinates on 5. Put u = (u',u2 ).

Then m = m(u) (=m(ul,uI)) is a vector valued function of u giving the
position vector of any point in ! c 5. For that reason m(u) is viewed as

a unit vector in R and also as a point in 2. As usual, we put f(m(u)) =

f(ul,u') for any function f:5-->R. Everywhere in the paper, we use the

following range of indices: 1_hi,j,k,..._2.

The first fundamental form e = eijduidu) of 5 has coefficients

eij = < mi'mj>

where < , > denotes the scalar product in R3 and m i = am/aui. Here and

everywhere below the summation convention over repeated lower and

upper indices is in effect. The matrix [eiji is symmetric and invertible;

its inverse is denoted by [eij].
We assume that the coordinates u1, u2 are chosen so that

<m,mlx m 2 > > 0 in 2.

The area element dcl of S (in Q) is given by

The first fundamental form g = g ijduiduJ of the reflector surface F

has coefficients

gij = <rirj> = PiPj + 92qeqlj
where r i = ar/aui and Pi = ap/aui. Additionally, we set

VP = pigil 1 p = pieiijm
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where [gi = [gj]-1 . Then

IvPIl <vp,vp> = PiPjg i J, ivp - <vp, p> = pipjeij.

The vectors m 1(u), m 2 (u), and m(u) form a basis of R3 at every

u E Q and any vector in R 3 can be expressed in terms of this "moving"

basis. In particular, we may express the unit normal vector field n(u)

on the reflector surface F as

pm- p (1.1)

V 2+p2  I1p 12

Since r i = pim + pmi, we have <ri,n> 0. Obviously, In I = 1 and

so n is indeed the unit normal field on F.

It follows from (1.1) that

(r,n) = p(m,n P' (1.2)
12 +P2

Since by our assumption <m,n> > 0 and I ri = > 0 on F, we see that

<r,n> > 0 on F. (1.3)

The covariant derivatives relative to the first fundamental form of

F are defined for any scalar function f: F->R as follows:

kV f f -r i
ij ii ij k

where
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f. =---= , f.j = 9i

au' ' au au'

and the r's are the Christoffel symbols associated with g.

Similarly, for !2 c 5 and f: Q -> R, the covariant differentiation is
defined as

Vi f = fit

k

iJ ij ii k

where the F's represents the Christoffel symbols associated with the
first fundamental form e of S.

If v = (v1 ,v2 ,v 3) is a vector field on F then

Viv = (Viv 1,ViV2,Vi 3)

and similarly one defines Vijv, and Viv , VijY if v is a vector field on

?i c S. The coefficients of thF second fundamental form b = b ijduidu j on

the surface F are given by

bij = <rij,n> =- <rinj>

where rij = a2r/auiauJ.

According to the classical derivation formulas

k
r = rijrk + b..n (1.4)ii i II

1.2 Suppose a light ray is originated at 0 in the direction m and is
reflected at the point r(m) in the direction j.
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By Snell's law,

= m - 2 <m,n>n,

and we may consider the map 1: Q -- > 3, V(m) = y(m), m e S-. Put
= ) The may V transforms S? -- > w. Consequently, we can relate

the area elements in ! and in its image w by computing the Jacobian of
the map 1. Note that since y(m) is the unit vector in the reflected
direction, the Jacobian J(m(u)) is given by

J(m (u)) dW(m(u)) +Jdet<Y(u).yj(u))_+mu) = _________ (1.5)
dc(u)l - dt i(u ), mi)

We assign a ± sign to the Jacobian according to whether 6 preserves the
orientation or reverses it. This is equivalent to considering the
volumes' relationship

J(m)<m,(mlXM2)> =<9,(91X92)>.
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Since <M, m 1 x M2 > > 0, J is positive if <y, U x 92> > 0 and J is
negative otherwise. Note that I<U,(yXU2)> I = I det<yi,Yj> I.

1.3 We will need several different expressions for the vector
functions m(u) and g(u). First, Ye find an expression for m(u) in terms
of the basis r 1 (u), r(U), n(u). These vectors indeed form a basis since

I rl(u) x r2(u) I = p2(u)f{I p(u) 2 + p2(u)}det(ei1j u)) > 0,

and n(u) is perpendicular to r1 (u) and r2 (u).

Now, expressing m(u) in terms of rl(u), r 2(u), and n(u), we find
(omitting the argument u)

m = pig 'r 1 - I Vp I2n (1.6)

Obviously, this formula is valid only if I Vp 12 < 1. However, it follows

from (1.2) and (1.6) that

= - =I1- I1pI2 . (1.)

Since it is always assumed that <m,n> > 0 and p > 0 on F, the condition
1Vp 2 < 1 is fulfilled.

We may express g in terms of p, m, and their derivatives. It

follows from Snell's law and (1.1) that

p(pmn - 7 p)(16
2 = mP -P ( .8

I'PI 2 + p2

Using Snell's law and (1.7), we may express v without explicit use of m:

g = pig r1 - 1- IpI 2 n (1.9)
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2. Computation of the Jacobian of the map V
and the "balance- equation

2.1.Here we find an explicit expression for the Jacobian J(m). As
it follows from (1.5), we need an expression for detcYiYj>.

Proposition 2.1. Let F be a reflector surface as in section 1. Put

H Vp= +VPI -IVpI 2 b. (2.1)Ij Ij ij

Ps = gsk Pk

Then

det<y > Idet Hgijj I (2.2)
I etg.i 1 - IVpl

Remark. Note that since I Vp 12 < 1, (2.2) is well defined.

Proof. We begin by showing that

ke
> = HH gk + P P (2.3)iY'Y is ( 1 17pI12 )•

Using (1.9), we differentiate y covariantly relative to the form g and
obtain

VY = V jpgkJr gki 17 kppi n - 1 -IV pI 2 nj
I Yi k 1 -I JVp 2 i

To simplify this expression we use (1.4) and the Weingarten equations
[91, p. 126,
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ni =- bij gjkr k

Now we see that

=1 + i gk

+r Vp +1-Ib jl bi g r kIpl

-I VpI12

= P + 1 - IVpl 2 b g]jk r k + Pkn-]

and hence

9i H irk +k n1. (2.4)= ri k /1 -IjVpI2

Calculating <yi,Yj>, we immediately arrive at (2.3).

On the other hand, we have

det + 1-i ) det(g.)(1 1 l . (2.5)
I - VP1 detg )( Vp 1 2)*

Consequently, evaluating the determinants on both sides of (2.3), we
obtain (2.2). The proposition is proved.

2.2. It will be useful to find an expression of (2.2) in terms of p
and its derivatives on 8.

Proposition 2.2. Let Hi, bij, and eij be as before. Then
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Hij = 2bij<m,n> + peij (2.6)

Proof. It follows directly from (1.6) that

Hi j = 2bij<m,n> + VijP (2.7)

Since p2 = <r,r>, and ppi = <r,ri>, we differentiate covariantly and

obtain
pipj + pVijp = <rirj> + <r,Vijr> = gij + bij <r,n>.

Hence, pVijp = bij<r,n> - piPJ + gij" But

gij = <ri rj> = <Pim + PmiPjm + pmj> = PiPj + P2 eijs

Thus,
pVijp = bij<r,n> + P2eij.

Dividing by p and substituting in (2.7), we obtain (2.6). The proposition

is proved.
The following expression for the second fundamental form in terms

of p is derived in [12]

pOVijp - p02e..1 - 2p)ip1

b. - (2.8)'J /p2 + itpl2

Combining it with (2.6) and (1.2), we get the following expression

pH1 = 2[P 'ijP - p2 eij - 2PIP.] p2 + P2 e+(2.9)
2+ i Pi2 2 + I2 2
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2.3. We now express det(gij) in terms of det(e1j). Recalling that

o = <ri,rj> = PiPj + 2eij and evaluating the determinant of gij, we

find

detgij = p2 (p2 + 1Vpl.)det(eij). (2.10)

We use equations (2.6), (2.10), and (1.7) to rewrite the equation (2.2) as

I det(2b. <m,n> + peij)I
det<Yi,> I (2.11)=7 det(e..)

Ii

2.4. Summarizing the preceding results, we may now obtain the
expression for the Jacobian of the map 1: 2 -> w. Namely, taking into
account the sign convention, we obtain from (1.5) and (2.11)

det<v.,u.> det(2b. .<m,n> + pe..)
=_J- '= G(p). (2. 12)

i lj;det<m.,m.> p det(e..j) G . (.2

We use expressions (2.6) and (2.14) to find

det{2p ,ijp - (p 2 - 17pI)e.. -
4 ppi(J1J'= (2.13)

( 2 + 1I17FpI2) det(e..)

2.5. Using the expression for J(m), we are now in a position to
relate the energy of the input primary source emitting a power density
I(m) to the desired output power pattern V(g). Namely, if Id6(m)l is
the area element in w expressed via the map 16, then we have the point-
wise balance equation

V(y(m)) Idt;(m)I = I(m)dc5(m), m E 2 (2.14)
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or by (1.5)

V(g(m)) J(m) = I(m), M E Q. (2.15)

Taking into account the sign of the jacobian we obtain from (2.15) and
(2.12)

bt( p(m)<m,n(m)>
det 2 + e. .(m)

V(y(m)) dt() =(m), m E S2. (2.16)
Ii

Integrating (2.15) over Q, we obtain

fV(U(m)) I J(m)I dc fI(m)d .
Q !2

Applying to the integral on the left tile known formula for change of
variables, we obtain

f V(Uj)Id-61 = JI (m) dc'(.7

This formula expresses the energy conservation property of the reflector
system. It is known in the literature as the "balance" equation; see [5],
[1.

3. The reciprocal reflector

3.1. The representation of F as a graph of a function p over the
"input" domain S? allows the construction of another reflecting surface

F * naturally associated with F. The surface F* is constructed so that
becomes the far-field domain while w± becomes the "input" domain.

Define the surface F* by the map

- r* = rp + (p--i)M, m E S?, (3.1)
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p I/p, =- (p2 + ijp I2)/(2p). (3.2)

It is shown in [151 that r* has the following properties:

0i) r1 := ar*/aui = qij ek(Mk - (Pk/p)m), i=1,2,

where qij = Vijp + (P--)eij;

(ii) the vector field

N '7p + pm
,1-p2 + i pI2'

satisfies the relation <r i N> = 0, and therefore, if r is an

immersion, then N is the unit normal vector field on F*;

(iii) put Z: ff -> 82, C(m) = r*(m)/Tg(m). Then obviously C, N, and
U are coplanar and -<C,N> = <m,N>, that is, the law of reflection is

satisfied. However, this time the reflector F* is parametrized by points
in ! .

Explicit computations give:

p2 + I pIl
2p 3  '

_ p p2 ~ I pI12-r* = -n, (3.4)p2  2p 3

3.2. Proposition. Suppose the map C defined by F* is a
diffeomorphism of !f onto some 2' c S. Assume that the map V: 2 -- >

is a diffeomorphism. Then, Z(m) = C(m) for all m E !, and,

consequently, $2' = o.
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Proof. Since m is a reflected direction relative to F , we have by
Snell's law

m = Z- 2<ZN>N. (3.6)

We compute, using (3.3) and (3.5),

=qZN -<cr*,N> =1p 2  ~f

P2P2 + 2 22g I p ,2

2JP2 + Ii71P

2p 2

Also, TI<,N>N ('p -pm)(2p) - , and

-qm = "qz - (p - pm) P-2 (3.7)

Since y = m - 2 <m,n>n, we obtain from (1.1)

Tqy = "Rm- (pm - rP)P- 2 , (3.8)

Then from (3.7), (3.8) we get

y(m) = (m) for all m E 2. (3.9)

The proposition is proved.

3.3. It follows from (3.9) that 6o- = Id: w -> -w. Therefore,

J(1) = J().

This is also confirmed by a direct computation. Namely, it was shown
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in [15] that

J(C)= M(p): det[V iP + (P-I)eij]
= 2det(e .)

I1

Then
det[2VIIP-P2- IpI2)e j- 4pI

( 1/ 12 2 e 4
G 2 + i P12Y2  det(e)

Comparing with (2.13), we see that

M1(11p) = G(p) (3.10)

This formula will be useful in several instances.

The surface F* is called the reciprocal reflector. With the use of
complex structure on 5, it has been described in [2] and {W], chapter 2,
section 6.

4. Differential equations of the problem

4.1. First Order System. In this approach, followed by Galindo-

Israel et al. [4-6] the analytic formulation of the problem is based on
the following considerations.

The equation (1.8) written in component form is a system of three
partial differential equations of the first order. However, since m and
g are unit vectors, we may reduce (1.8) to a system of two equations as
follows.

Observe that by (1.8)
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<y,m> = I - 2 . (4.1)
l pI2 + p2

Since p > 0, we may put v := Inp. Then vk =av/au k = PklP and we get

<1,m> 2 1 1=(4.2)
1+ ILvI 2  1 + I V2 '

Again from (1.8) we get

<ymk> = 2- Ppk 2 k k = 1,2. (4.3)
k I p 1 + 1 + I Vi12 k

We use (4.2) to solve for lv 12 + 1. The result is

I,7 V l 12 + 2 >I ~1 =1 -c<y,m>"

Then we obtain from (4.3)

<,m k >
Vk - <um>' k = 1,2. (4.4)

Thus, if both domains Q and w are given and we are given the vector
field U(m), then by solving (4.4) for v we can thea recover p and,
therefore, the reflector surface F. However, for the system (4.4) to be
solvable, an integrability condition must be satisfied [31, Ch. I. In this
case, the condition is

v12 - v21 (4.5)

where vik = a2v/auiauk, i,k = 1,2.

Therefore, for a reflector surface to exist, the following condition,
derived from (4.4), must be satisfied.
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('92,M2' - <y92,m 1>)(1 - <y,m>)

<ym2><yim> - <g,ml><y 2 ,m>. (4.6)

In a different form, this condition is given in [7] and in [4-6].
Following [5-6], one may formulate the problem of synthesizing a

reflector as a question o(solvability of the system (4.4) supplemented

with equation (2.17) with prescribed 2, w, and functions I: 2 -> (0,co)

and V: w -> (0,oo). Since in terms of the function v we have from (1.8)

1) = m - 2 (4.7)
+ I vI2

the system (4.4) and equation (2.16) appear as a first order system of
PDE's. However, as the formula (2.13) shows, the second derivatives are

involved in the expression for the Jacobian.
In a series of papers, Galindo-Israel and his coauthors show that

under some special circumstances, one can use heuristic arguments for
constructing approximate solutions of this first order system . As
mentioned earlier, their results rely on numerical calculations.

4.2. In some special circumstances, the integrability conditions
(4.6) can be easily verified. For example, consider the case when Q is a

circular domain with center at the North pole of S and w is also a
circular domain with the center at the South pole. Let the vertical axis
Ox pass through the North pole and (c,$,) be spherical coordinates on S

such that 0 s (x s , 0 s $ s 27r, with $ 0 corresponding to the
positive direction of the z axis.

Suppose that the map 1 is such that g(m) describes w as a surface
of revolution about the z axis and U(m) is obtained from m by rotating
m in the plane passing through Oz and m; sca the fig. below.
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lAz

0
ry.ro

., im) (x,u)

We want to check that (4.6) is satisfied. Since me:= am/8] is

perpendicular to the plane spanned by m and the Oz axis, we have
<yVm),me = 0. Because Q and w are rotationally symmetric about the

Oz axis, <y(m),m> = f($) for some function f. Then <yJ,(m),m> = -

<y(m),ms> = 0 and substituting into the right hand side of (4.6) we

obtain (i =l<-->c, k=2<--> )

<ym$ ><y(Xm> - <U,m(x><Y4$,m> = 0

Differentiating <y,m$> in cx, we obtain

0 = <y(Xm$> + <yM ( $>.

But it is easy to check that m is perpendicular to m and to the Oz

axis. Hence, it is perpendicular to y(m). Then <yc0,m.> = 0.

Similarly, one checks that <y,mc> 0 0. Thus (4.6) is satisfied.

In general, one does not know a prioli the vector function U(m), but

if such a function exists, it must satisfy (4.6).

4.3. The Monge-Ampere Equation. In this approach, one attempts
to solve the equation (2.16). let us formulate the problem precisely.
Suppose we are given two domains Q and w on 5 and two positive
functions 1: f -- > (0,oo) and V: -w -> (O,oo). The problem consists in
finding a solution p > 0 of the equation
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V~(m))(G(p))(m) = I(m), m E 2, (4.8)

or
V((m))(G(p))(m) = -I(m), m E Q, (4.8)'

subject to the boundary condition

'6: aQ -> aw. (4.9)

In (4.8) U(m) is expressed in terms of p as in (1.8). The boundary
condition (4.9) is understood as the requirement that the boundary aQ is
mapped homeomorphically onto aw, but the map is not specified point-
wise. One can show that if Z is specified point-wise on 8Q, then the
problem is overdetermined.

The data I, V, Q, and w cannot be arbitrary since the energy
conservation requirement (2.18) must be fulfilled. The latter can be
rewritten as

JV(U)dcr(U) = fI(m)dcr(m) (4.10)

The operator G(p) in (4.8) and (4.8)' is of, so called, Monge-Ampere

type and whether it is elliptic or hyperbolic depends on the class of
functions on which it is considered. More precisely, G will be positively
(negatively) elliptic on any p for which the matrix

f2p'ijP _ (p2  -I i _ 4 piPj]-_ [aij(p)]

is positive (negative) definite. G will be hyperbolic on such p for which
[aij(p)] is indefinite but nondegenerate. Since [aij(p)] is a 2 x 2 matrix,

G is elliptic if and only if det[aij(p)] > 0 in Q and hyperbolic if

det[aij(p)] < 0 in Q. Respectively, equation (4.8) corresponds to elliptic

solutions, both positive elliptic and negative elliptic, and additional
restrictions on p needs to be imposed in order to specify one of them.

The following simple example illustrates this situation. Take a
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surface F given by the function p = c =const. > 0. Then F is a sphere of

radius c, aij(c) = -c2eij, G(p) = I (see (2.13)) and the matrix [a ij(c)] is

negative definite.

Consider now a surface F which is plane tangent to S at the North

Pole. One can calculate p and similarly compute the corresponding
[aij(p)]. However, a simpler way is to observe from (2.12) and (2.13)
that [aij(p)](p 2 + I pI2)-1= [2bij<m,n> + peij19-1 and then rerall that

for a plane bi1  0 [9]. Therefore, in this case [a. (p)] is positive

definite, since [eij] is positive definite.

Finally, note that the equation (4.5)' corresponds to those p on

which G is hyperbolic.

Thus, ,pt'ioi;, without considering G on a particular p, one cannot

describe the type of G even though I/V is positive. We emphasize this

standard point only because in [16] it was claimed that the

corresponding equation is elliptic.
Let us now show that on elliptic "solutions" the Jacobian J(m) is

always positive. Indeed, if the map V: 2 -> u preserves the orientation,

the products <m,mlx m 2 > and <y,YlxY2 > have the same sign. Since by

our assumption <m,m lxm 2 > > 0 in 2, the product <y,y 1 xy 2 > > 0 in 2

and consequently, J(m) > 0 in 2. In view of (1.5) and (2.13), J(m) and
(G(p))(m) must have the same sign. Therefore, (G(p))(m) > 0, which

means that J(m) is positive only on such p for which G is elliptic.

Similarly, one shows that J(m) < 0 on those p on which G is

hyperbol i c.

5. Radially symmetric case

5.1. Now we consider the special case in which the reflector has

axial symmetry. In this case, the PDE (4.8) reduces to an ordinary

differential equation for which we can find explicit solvability

conditions. It will be shown below that the situation here is very

similar to the case considered in [151, and we follow this work closely.

It will be convenient in this case to use spherical coordinates (x, .,

where -Tn/2 s c _s 'n/2, 0 _s $ f 2-r. Assume that both domains 2 and w
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are circular with centers being respectively the North and South Poles.

Q { (cc,$) I s - c:s Tf/ /2}, (XE (0,rV/2)

w = { (x, I -v/2 _s cc < }, cc E (-11/2,0).

In these coordinates,

[j] L Co2aK]

We are looking for elliptic solutions of (4.8) in the form p p~x).

We introduce a new unknown function p = lip, assuming, as always,

that p > 0. As it was shown in section 3, the operator G(p) =G(1/p) =

M(p). Using the expression for M(p) in the axially symmetric case as in
[15], section 3, we obtain from (4.8)

VQy~m))M(p) = V(g(m)) (2pp + p2 - p2)(-2pptan c< + p2 =(m), (5.1)
(12 + p2)2

a- <c< < T/2,

where p = dp/dcc p = d2p/d 2.
In order for p(cc) to be smooth in 2, we need to impose the condition

j(n(/2) = 0 (5.2)

which is equivalent to

I(Tf/2) = 0. (5.3)

We now set up the boundary conditions. This amounts to describing

(4.9) in analytic form. If one prescribes t: 8Q ->aw point-wise, then

the problem is overdetermined ( cf. [5], [61, [7], [8]). A way to relax this
restriction is to require that 16 maps 83 onto aw homeomorphically, but
without specifying the map point-wise.
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Thus, if u = Z(m), m E aQ, then

<m,(,0,1)>= cos(Tf/2 -c) = sincc on O ,

<=,(00,-I)> cos(Tf/2 - <) = -sin& on aw.

On the other hand, by (1.8) we have, taking into account thatl!Pj2 = I2,

2p(pm + 'p)
S+ p2

Then

- sina = -sin +- 2P 2 sin - 2 <1p,(0,0,- 1)>
i02 + p2  i2+p

Since Vp = p am/acc, we have < p,(0,0,-1)> = -pcosc and

p2_- p2 . _ 2plo
- sin& - sinc< + 0 cos-

p2 + p2  p2 + p2

or,

j32(sin& - sincc) = p2(sin& + sinc) + 2p cos = 0 (5.4)

where p and p are evaluated at cx = c-. This boundary condition is
identical with (2.3) in [15]. In the special case when the illumination

pattern is required to be uniform, that is, V(Q(m)) = const = V0, then the

problem (5.1), (5.3), and (5.4) is analytically the same as the one in [15]

and we can formulate the following result (cf. Theorem 3.5 in [15]).

Theorem 5.2. Let I(cc) be positive and continuous on [0,iI/2J. Let <

be any number in the interval (-T/2,0) an.d x the solution of the equation

+T

I + sin& f I(zicosz'dr, a- E (0,11/2).
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Then for each choice of p(c-, g(c) such that

p( ) 2 2

or

p(Y) 2 2 2

there exists a unique solution p > 0 of (5.1), (5.3), (5.4) of class
C 1 [-(,T /1] rC 2 (-c,T /1.

5.3. When the function p is constructed, then we return to the
function = /p and consider r(m) = p(c<,)m(ocx) where we set
p(c,$) - p(cc). The vector function r defines the reflector surface.
Clearly, the map 16 is defined and J(m) > 0. Thus V is a local
di f f eomorphi sm.

6. An algorithm for computing the output power density.

It follows from formulas (2.16) and (2.12) that the computation of
the output power intensity reduces to computation of the Jacobian of
the map 1. In this section we provide a discretization of (2.12) and
several computational examples. We preserve here the notation from
previous sections.
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ALGORITHM FOR THE COMPUTATION OF G(p)

Let U = {(a,): _: a5 - , 0< 3< 2r, where -- <CC< - and let
2' 2 2

fn= {m(a) = cos(ca)cos(o),cos(a)sin(j),sin(a): (r,f3) F U). If p is a nonnegative function on U, let

F = fr(ct3,) = p(c,0)m(a3,): (a,0) . U) be a reflector and let G(p) be the Jacobian of the reflector

map y as in (2.12). We give an algorithm for computing G(p) at the points (ca+sh,lt) in U, where
it2 t

h k s ....- Iand = 0,..JI-1.

Note: we do not compute G(p) on the boundary of F.

In the following we write v1 for a- and v2 or-.

Algorithm:

1. Approximate the tangent vectors to the sphere, S1 (at+sh,/k) and S2 (a+sh,/k), at m(a+sh,tk)

and the tangent vectors to F, T, (ct+sh,/k) and T2(ct+shk), at r(at+sh,/k) in one of 3 ways:

a. if s =$-§ (i.e. if m(ot+sh,/k)= (0,0,1)) let

-

S1 (a+sh,lk) = 2h

7 31 -

ni(c+(s-1)h, (+1 mod(O)k) - m(a+(s-I)h,(-+l mod(O)k)
S2(a+sh,k) = 42k 4

22r(ct+(s-1 )h, (4j+ mod(-))k) - r(a+(s-1)h,/k)

T (ct+sh,'k) = 2h

r(a+(s-1)h,( -+1 mod(O)k) - r(a+(s-1)h,(.L.+l modC(O)k)
T2 (ct+sh,k) = 2k

b. if0 < s <-l

m(ct+(s-1)h,/k) - m(ca+(s+l)h,Ik)
S1(a+shIk)= 2h

S2 (a+sh,/k) = m(a+sh,/+l) - m(a-+sh,/-1)
2k



T, (cx+shjlk) = r(ca+(s-1)h,lk) -r(ai(s+I)h,Ik)
2h

T2(cL+sh,lk) = r(cx+sh,1+1) - r(ct+sh,1-1)
2k

c. if s = 0 (i.e. m(cx+sh,Ik) lies on the boundary of ~)we make a one-sided approximation

of S, (a+sh,lk) and T, (a+sh,lk):

S1 cL~hk) r(cz-(s+1)h,lk) - m(cx-ish,lk)

S2(t~s~lk = (c+sh,1i1) - m(aish,1-1)

T1 ct~h,!) -r(ca-i(s+1)h,Ik) - r(ct-ish,lk)

T2(cx+sh,lk) -r(cx+sh,I-i1) - r(aish,1-1)
2k

-hRemark: T, (a,l1k) best approximates a tangent vector at the r(a-i---1k).

- T, (a-ish,Ik)xT2(ct+sh,Ik)
2. For 0:5s:5'9-1 and 1 5 15 1-1 estimate n(aish,lk) as I 1 (~hI~T(~isk

3. We approximate the directional derivatives of n(cx-ish,lk) with respect to T1 (a-ish,Ik) and

T2(ct+sh,Ik) once again in 3 ways:

a. if s =g-1I

n(cz-+(s-1)h,(-L+1 mod-l)k) - n(c-(s-I)h,lk)
22(h

~~1 31 -n(a+(s-1)h, (-L+1 mod(O)k) - n(a+(s-I)h, (-+l mod(O)k)
n2(cL+sh,Ik) = 2

b. if I < s'9-1

n1(~--shIk -n(cz-i(s-l)hjk) - n(cz-i(s+l)hjlk)
nj (ash, k) =2h

n2(a-ish,Ik) = n(ct-ish,I+I) - n(cz+sh,/I)
2k

c. if s = 1, we use the remark after step Ic to conclude that since T, (a,Ik) best approxi-

mates the tangent vector at r(cx+ 2 k), n(a,Ik) best approximates the normal at
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- h
r(cc+- ,k):

2'

n (a+sh,/k) = n(a+(s-I)h,lk) - n(a+(s+l)h,lk)1.5h

n2(c+sh,lk) = n(a+sh,([+I)k) - n(a+sh,(l-I)k)

2k

4. Approximate the metric at m(a+sh,lk) with respect to S1(a+sh,lk) and S2(a+sh,/k) as

eij(a+shlk) = <Si(c+sh,/k),Sj(a+sh,Ik)> for i = 1,2 andj = 1,2.

5. Approximate the second fundamental form at r(c+sh,lk) as

bij (a+sh,/k) = -<nj(a+sh,Ik),Tj(a+sh,Ik)> for i = 1,2 and j = 1,2.

6. Evaluate G(p(a+sh,lk)) for 05 <s <5'-2 and 0:< 1!<7-1 as

det(eij (ct+sh, 'k))- det [2 bij (a+sh, Ik)<m(a+sh, Ik),n(a+shlk)> +eij (-+sh'/k

We used this algorithm for examples where G(p) is known. These were for p(ca,3) = 1 (the unit
2

sphere with the center at the origin), for p(cz,p3) = csc(cz) (the plane z = 1) and for p(a,p3) =
1+sin(a)

(the paraboloid with equation z = 1 - -(x 2 + y2) with its focus at the origin).
4

For all three surfaces we took a = =25 and=24.

4,

Example 1: For the unit sphere G(p) a 1. Our algorithm had a maximum error of 8.9x10 - ,

which occured for s = 1.

Example 2: For the plane G(p) 1- 1. Our algorithm computed this with no error since it com-

puted the second fundamental form as precisely 0.

Example 3: For the paraboloid G(p) 0. Our algorithm had a maximum error of 7.6x10 7 ,

which occured for s = 1.

We have also used this algorithm on offset examples.
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On one direct problem in the reflector antenna theorg
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Abstract

This paper is the second in a series of papers in which
we use differential geometric methods to investigate
systematically the problem of synthesis of single and dual
reflector antennas. In our first paper we considered the
direct problem for a single reflector and, in particular,
established rigorously existence of radially symmetric
solutions in the case when the data is radially symmetric. In
present article we prove existence of reflectors solving the
direct problem in the case when the data is not radially
symmetric but close to such in some Holder norm.

1. Introduction

This paper is the second in a series of papers in which we study the
theory and numerical methods in synthesis of reflector antennas. We use
the geometric optics (GO) approximation to describe and study the
problem. A brief history of the work of other researchers' in
constructing reflector antennas using GO can be found in our paper
[ONPI.
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Building upon our previous work [ONPI and [0], we show now
existence of nonradially symmetric solutions do direct problem in the
case where the density of distribution of reflected rays is uniform and
the density of the distribution of the incidence rays is- not radially
symmetric but close in a certain norm to a radially symmetric function.

2. Preliminaries and the main result.

2.1 We begin by recalling the notation used in [ONPI. In three

dimensional space R3 let S be a unit sphere centered at the origin 0 of a
Cartesian coordinate system. Let 5? be a domain on 5, !f its closure, and
m a unit vector with endpoint in Q. Let p be a positive function Of class

C2(p)nC 1 (?) and set

r(m) = P(m)m. (1)

The map r defines a surface F projecting radially from 0 univalently
onto ?i. Denote by n the unit normal vector field on F and assume that F
is oriented so that (m,n) > 0 everywhere on F. Here, ( , )denotes the

usual scalar product in R 3.

If a light ray originates at 0 in the direction m, reaches F, (the
reflector) and is reflected, then we can put in correspondence with m a

unit vector u e 5 parallel to the reflected ray. Thus, we have the
"reflector" map V: 5-->S, g = -6(m). The laws of geometric optics tell us
that the vectors m, n(m), and 1(m) lie in one plane and 1(m) =m -

2(m,n)n. The image W = V(?2) is called the "far field".

Let u = (ul,u 2 ) be some smooth local coordinates on S such that
lies inside one coordinate patch (it is always assumed that !f r 5). Then

M(u) m(ul,u 2 ) is a smooth vector valued function giving the position

vector of any point in 52. For that reason m(u) is viewed as a unit vector

2



in R and also as a point in Q. As usual, we put f(m(u)) - f(u) for any
function f: 5-->R. Everywhere in the paper we use the range of indices
1_s i ,j ,k,..s 2.

The first fundamental form e = eijdu'duJ of S has coefficients

eij = (mi,mj) where m i = am/au i . Here and everywhere below the

convention about summation over repeated lower and upper indices is in
effect. The matrix [eij 1 is symmetric and invertible; its inverse is

denoted by [eij].

Set

Vp = pieijrnj.

Then
I pI2 =p= pipjeii.

It is shown in [ONPI that for any P e C1(S), p > 0 in Q, the vector field

pm-Vp (2)
n p 2

1P2+ I'P 2l

is the unit normal vector field on the surface F defined by (1). In

addition, (r,n)> 0 on F. Further, if U = Z6(m) is the unit vector parallel to
the reflected ray corresponding to m then

P(PM - p)
u =m - 2  - p (3)

2.2 In the direct r-ef/ector" plvb/em the following data is given: the
domains 2, _w on 5, a positive function I: S2-->(O,oo), and a positive
constant Vo . We have to find a reflector F subject to the requirements:

3



() the rays originating at 0 and going through points of Q project
F univalently onto 52;

(ii) w is the far field;
(iii) for the given density I(m) of the incidence rays the density of

the distribution of rays reflected of F in the direction Z(m) is uniform
and equal to VO;

(iv) finally, it is also natural to require, in this setting, that F be
such that the reflector map 16 is a diffeomorphism of 52 onto -o.

It is shown in [ONP] that in terms of function p the Jacobian of
the map Z6 is given by

G(P)det [2pV. ij(p Ip )e. - 4pPi (4)
2 det [e.. (4)

Thus, in order to find a reflector F satisfying (iii) we need to solve the
PDE (cf. [ONPI, subsection 2.5)

G(p(m)) = I(m)/V O  in S1. (5)

If the reflector map Z , determined by F, saLisfies (i) and (iv) then it is
necessary that

': 2--8 .(6)

By (2), 6 is expressed in terms of p, and, therefore, (6) is a condition on
p on 8Mo Hence, we may view it as a boundary condition to be satisfied
by solutions of (5). However, if (6) is understood as a pointwise
condition, then the problem (5), (6) is overdetermined and, in general,
will not have a solution. For this reason (6) is treated as a requirement
that the boundary of 52 be mapped onto the boundary of w.
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2.3 In order to formulate our main result we need some more notation.

Let (c,,$), -Tn/2 s c s 1T/2, 0 s s 211, be the spherical coordinates

on 5. Let

((c,$) c _s cK s /2), c e (0,T/2),

w _x,j _ / 2 &}, & e (-TI/2, 0).

Let I be a positive function of class C1 [0,T1/21. Put

CX2

E(c cl 2 = J c r os -r dr.
(

For 8 e (0,1) put

H { e C0(0) I d = 2TTV0 0 + sin&)), (7)

where dcl is the area element of 5.

Theorem A. Suppose that Q, w and fare such that

E(c, T1/2) = V0 (1 + sin &). (8)

Then there exists an E > 0 such that for any I e H satisfying III - I < E,

where II II denotes the Holder norm in C0,S(Q), the equation

G(p) = I/V 0 in Q (9)

with the boundary condition

(6(m ),(0,0,-1)) I a = geodesic radius of w (10)
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admits two classes of solutions e C2,8(i). Within each class the
solution is determined uniquely up to a positive multiplicative constant.
Furthermore, the corresponding reflector surfaces satisfy the conditions
(i)-(iv) as described previously.

Remarks.

(a) The condition I e H together with (7) expresses the requirement
that the data must satisfy the energy conservation law (cf. [ONPI,
subsection 2.3).

(b) If for cx :s _ 11/2, 0 _$ s21f, we set I(oc) 1() then (8)
implies that I-s H. It is shown in [ONPI, Theorem 5.1, that for 2, w, I,
and V0 satisfying (8) one can construct two classes of radially

symmetric solutions to (9), (10) (with Ion the right hand side of (9))
and in each class two solutions differ at most by a positive
multiplicative constant. The role of the function I and any of the
corresponding radially symmetric solutions is that these special
solutions serve as approximations to nonradially symmetric solutions of
(9), (10). In this article this connection remains in the background and is
not explicitly shown, since the proof of Theorem A is based on a
reduction of the direct problem to the inverse problem investigated in
[0]. For the inverse problem this connection is explained in detail in [0].

(c) Let I e HnC 1(). Put
21

Im(OC) f j I(cq,$)d$.
0

It is easy to see that the function Im satisfies all the conditions

imposed on . Thus, the hypothesis regarding existence of the function I
can be replaced by the requirement that III - Iml < .

3. Proof of Theorem A

Step 1. First we show that there exist two distinct classes of

6



functions satisfying (9), (10). Following [ONPI, section 3, we introduce a
new unknown function p = 1/p. Then (9) becomes

det [r7 ip + (p-rQ)e]ij
M(p) := in S2, (11)

q2 det [e. 1 V01J

where -q = (p2 + I pIZ)/2p. Since (10) is not written explicitly in
terms of p, it will remain the same, but in order to emphasize that we
are using the function p, we rewrite it as

(-6p(m),(0,0,-1)) 1a2 = geodesic radius of w. (12)

With any p > 0, which is a solution of (11), (12), we associate the

reciprocal reflector F, that is, the surface

-r* = Vp + (p-ij)m, m eS

We check by a direct computation that Ir~ = I -q and , := r*/ r1 p in

?i. Thus, the problem (11), (12) is identical to the problem (3.1), (3.2) in
[0] (with the roles of 2 and w interchanged). On the other hand, if in
Theorems 2.1 and 3.1 in [0] we set f= I/V 0 and interchange the roles of

cc and c then the hypotheses of our Theorem A imply the hypotheses of
Theorems 2.1 and 3.1 in [0]. Consequently, we conclude that the problem

(11), (12) admits two classes of positive solutions in C2(52) and within
each class the solution is unique up to a positive multiplicative
constant. Furthermore, in case I a T the solutions of (11), (12) are
radiaily symmetric.

We return now to the original unknown function p = 1/p and that
completes the step I of the proof.

Step 2. Let p be a solution of (9), (10) and F the surface defined

by (1). On this step we check the conditions (i)-(iv) in subsection 2.2.
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It follows from the discussion in sections 2.1 and 2.2 that F is a

reflector surface with the normal field given by (2) and the far field

described by vectors y = 16(m) given by (3). The condition (i) is obviously

satisfied. Condition (iii) is satisfied because (9) is satisfied. It remains
to check (ii) and (iv).

Since the Jacobian J(06) = G = IV 0 > 0 in S, the map *6 is a local

diffeomorphism. Because of (10) 1 maps 2 into w. By Corrolary 4.7 in

[KN], since 2 is compact, the map 1% is a covering projection. On the

other hand, if 16 is not a global diffeomorphism of 2 onto w then, since
J(70) > 0,

area of w = 2110 + sin &) < fJ(-6)dc = fJG(p)dcl = d$J dC.~ V0

The latter contradicts the hypothesis that I e H. Now the conditions (ii)

and (iv) are also verified and the theorem is proved.
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