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Applications of Approximation Theory in
Antenna Design, Signal Processing and Filtering

Abstract

This final report consists of eleven sections. The first is a list of the problems which were considered during
the period of performance. Second is the Introduction. Third is the paper Beam-forming applications
of polynomials with restricted coefficients, which has appeared in the Proceedings of the 1987 NATO ASI
on Electromagnetics (Kluwer Academic Publishers, 1991). Fourth is the paper An ideal omnidirectional
transmitting array, and optimal peak factor array, for less than half-wavelength spacing. Fifth is the paper
A random variables method for determining the poles of radar targets. Sixth is the paper A computationally
efficient notch filter. Seventh is the paper A new rational approximation to digital filters. Eighth is the paper
Concerning Prony's method. Ninth is the paper Barker sequences and Littlewood's "two-sided conjectures"
on polynomials with ±1 coefficients. Tenth is the paper A note on rational approximations to the Fresnel
integral. Eleventh and last is a list of the Prometheus Inc. personnel who performed the research reported
herein, and a list of the papers presented at seminars and conferences.
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A. Rational Approximation Problems, contract #F49620-90-C-0023

Note: problems 1-7 are on the unit circle

1. Approximate a rational function by a lower order rational function, usually in the sup norm. Usu-
ally the given rational function has poles only inside IzI = 1, and the same is required of the ap-
proximating one.

00

2. Approximate (in sup norm) a given H(z) = h(n)z - n by a rational function

RMN(Z) = ibkz-k a k-
k--O Ik =O

where a0 = 1, N and M are given, or N + M is given, or N - M is given, and all poles of RMN
o

are inside IzI = 1. Note: Can assume E jh(n)l < oo.
n =0

K
3. Same as 2, except H(z) = 1 h(n)z- ".

1=0

4-5. Same as 2-3, except only 1H(z) is given and you want IRMN(Z)I to approximate IH(z)I.

6. Approximate H(e " ) = w in the L' norm by rational functions.

7. Approximate (in sup norm) by rational functions:

1, if 0 < w < bp - 6 (Passband)
H(e) continuous and linear, if bp - 6 < w < bp + 6 (Transition Band)

0, if bp + 6 < w < 7r (Stopband)

B. Additional Problems, contract #F49620-90-C-0023
P

8. F(O) = j RieikdjcosG, k and P are known. You can sample F(O) at any O's. The Rj's and dj's

are real. Devise a sampling procedure so as to detemine the Rj's and dj's. This sampling proce-
dure can be adaptive; i.e., take some samples, then compute, then choose further samples based
upon these results, etc. Of course, the method should be as (computationally) efficient and stable
as possible.

9. Same as 8, except the Rj's and di's can be complex.

10. Same as 8, except you can only sample IF(0)I.

11-13. Same as 8-10, except you only have a bound on P (say P < 30).

14-19. Same as 8-13, except now the form of F is:

P R R

F(s) = E - Cm sm, s complex.
j=1 S m=-Q

If P, Q, R are not given, 10 is a reasonable bound on each. The poles s1 are usually the most im-
portant things to find.

20-25. Same as 14-19, except assume s is pure imaginary.

26-31. Same as 20-25, except assume F(s) is real.

32. Find a better approximation to the Fresnel integral (see page 8 of the proposal, attached)

33. Find a better solution to the problem of plane wave reflection from an infinite, planar rectangular
microstrip-patch array on a grounded dielectric substrate.
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Section 11
Introduction



Applications of Approximation Theory in
Antenna Design, Signal Processing and Filtering

Introduction

Among the numerous engineering applications of Approximation Theory, the following were those chosen
to be the major focus of the research reported herein:

1. Design of optimal codes for information transmission and reception,
2. Design of linear functionals (antenna weights) for meeting some pre-defined engineering objective,
3. Digital filter design and implementation.

The most important of these currently, for both military and commercial applications, is that of optimal
code design. The wireless communications marketplace is currently congested, a critical problem facing all
the service providers in major metropolitan areas today. Though there have been quite a few proposals for
increasing the capacity of these systems, one of the currently favored concepts is that of CDMA, or Code-
Division Multiple-Access. This spread spectrum technique basically tags each signal in a given frequency
channel with a unique code thereby allowing multiple users in the same channel. A critical issue facing
designers of such systems is the proper design of these codes for achieving the objectives of improving the
quality of service to the customer and the capacity of the overall system. This problem can be cast in
a polynomial approximation framework where the objective is to obtain a set of coefficient vectors that
have certain orthogonality properties, yet at the same time are it easy to compute with, ie, are ±1 for
example. Advances in the theory behind such sequences would be extremely important in the wireless world
of tomorrow, including that of the Air Force and other DoD components. Section IX of this report, regarding
Barker Sequences, describes some of our ideas along these lines.

In the design of antenna weights to meet certain engineering objectives, Approximation Theory again
comes into play. In many practical systems, arrays of identical antennas are placed in regular lattices. Then
a set of weights, one for each antenna, are sought which, when used as linear functionals on the array outputs,
perform various tasks which include location of targets/sources, nulling of interferences, minimization of noise
power through the system, and many more. In its full generality this is an extremely hard problem. However,
for these special regular array structures, the problem can be transformed into a polynomial coefficient design
problem. Note that significant hardware simplification can be realized if certain constraints on the coefficients
are maintained (eg constant modulus), and this may have a significant impact on cost.

As a note on weight design, in the past one of the main objectives has been the design of polynomials
that have unit modulus over only a small region of the unit circle and have minimal modulus elsewhere. The
design of such pencil beams has been of great interest in phased-array radar technology. With the advent of
modern direction finding techniques,,the design goals are in the process of being significantly altered. Pencil
beams are out, omni-directional sensitivity or gain patterns are in. For such patterns, the objective is to
match as closely as possible the output of simple dipole radiators with a large number of elements. The
advantage is that there is a significant increase in received energy by employing multiple antennas, energy
which is exceedingly important in obtaining accurate direction estimates. Several new Prometheus ideas on
antenna weight design are described in sections III, IV, V, and VIII.

Another application of Approximation Theory is in the design of digital filters. Although several of
the algorithms developed at Prometheus Inc. require a system of exponentially increasing order for their
implementation, and therefore are not immediately amenable to current hardware technology, near-future
optical and SAW device technology will provide for FIR filter implementations with many thousands of taps.
The approximation technique of Prometheus will be potentially very valuable here. Note that FIR filters are
ideal candidates for pipelining, which makes them prime candidates for video bandwidth filters. These will
become increasingly important with the advent of IIDTV and the next generation wireless networks. The
new Prometheus ideas in digital filter design are described in sections VI and VII.

I



In the Prometheus work on extracting the poles of radar targets by random sampling (section V), a
coding problem similar to the Barker sequence problem is being addressed. Here the approach is a stochastic
one, but the idea is the same. Obtain a sequence which generates a manifold vector which is maximally
orthogonal to all others (in this case with great probability). The reason that astronomical numbers of taps is
required is that when dealing with random variables, convergence rates of O(1/VN') must be contended with.
Again this is simple due to the one-dimensional nature of the solution. Investigations into multidimensional
extensions of these concepts could lead to improved convergence rates of the associated algorithms as well
as development of new algorithms altogether.

2
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Beam-forming applications of polynomials
with restricted coefficientst

James S. Byrnes
Prometheus Inc.
21 Arnold Avenue
Newport, RI 02840
USA
jbyrnesQcs .umb. edu

Also at University of Massachusetts at Boston.

1. Introduction

The basic mathematical question to consider in electronic beam steer-
ing with a discrete array consisting of omnidirectional elements spaced at
equal increments along a line is how coefficients of a polynomial may be
chosen so as to arrive at a desired beam pattern. In numerous applica-
tions, these coefficients are required to satisfy certain restrictions, such as
a bound on their dynamic range. Here, dynamic range refers to the ratio
of the largest to the smallest magnitude. Thus, particularly in null steer-
ing, it is often advantageous, or even necessary, for the shading coefficients
to all have the same magnitude.

Although the mathematical, statistical, and physical problems that
arise in the consideration of array shading have been studied for roughly
half a century, many interesting questions remain. In the linear array case
under consideration, letting n denote the number of elements, the pattern
function G(z) is a polynomial of degree n-1, z is a point on the unit circle,
and the shading coefficients are just the n coefficients of this polynomial.
An important reason for performing array shading is to shape the pattern
function G so that it has low sidelobes and small beamwidth. As is well
known, both of these quantities cannot be minimized simultaneously, and

t Research sponsored by the Air Force Office of Scientific Research (AFSC),
under Contracts F49620-88-C-0028 and F49620-90-C-0023.



Beam-forming applications of polynomials with restricted coefficients 2

the choice of shading coefficients results in a tradeoff between these two
desirable ends.

Electronic beam steering is another fundamental purpose of array
shading, and it is this application that we address here. In addition to
permitting the rotation of the main response axis of the pattern func-
tion, beam steering also allows the simultaneous formation of a number of
beams in different directions. In particular, if sources of interference lie at
bearings different from that of the desired source, then the signal-to-noise
plus interference ratio (SNIR) may be increased dramatically by directing
nulls of the pattern function toward these interfering sources, in spite of
the fact that the absolute power of the desired signal is thereby reduced.
Adaptive techniques have been developed by which array processing sys-
tems can electronically respond to an unknown interference environment.
However, although the basic adaptive array principles have been known for
some time, their application has been limited by hardware constraints and
by the lack of sufficiently robust, real-time algorithms. New approaches
to this latter consideration are described herein.

There are many cases when constaints must be placed upon the mag-
nitudes of the coefficients of the pattern function. Thus, as explained
by Hudson [Hud8l], when coefficients are implemented by attenuation,
they must be scaled so that the largest modulus is unity, since the ampli-
tude gain for the desired transmission, and even the overall output signal-
to-noise ratio (SNR), can be reduced by large coefficients. In discussing
main-lobe constraints on optimal arrays, Hudson observes that when a
main-lobe null is created, very large shading coefficients are formed, re-
sulting in enhaced output of uncorrelated noise. Hence, size restrictions
on the coefficients are again required.

On the other hand, in a situation such as occurs in an adaptive radar
receiver after clutter has decayed due to increasing range, so that there
will be few and widely spaced target echoes of minimal power compared to
a steady jamming source, it is necessary to constrain the adaptive array so
that the shading coefficients are prevented from falling to zero. A similar
situation occurs in an adaptive antenna using the least mean square (LMS)
algorithm, where the shading coefficients will decay to zero if either the
signal level falls to zero, or if the reference signal is absent for some reason.
One method of controlling this is to substitute the steered gradient system
described by Griffiths for the reference signal LMS antenna, but this has
the disadvantage of being very sensitive to errors in the assumed direction
of the desired signal.
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As mentioned earlier, another approach to these questions is to re-
strict the dynamic range of the shading coefficients. Although an informal
rule of thumb for this range appears to be "2 and everyone is happy, 10 and
some are happy, 100 and nobody is happy," a formal mathematical study
of the relevant properties of polynomials, whose coefficients are thereby
restricted, does not seem to have been previously undertaken. An im-
portant thrust of the research effort reported herein has been to initiate
such a study and to relate to the above applications the large amount of
work that has been accomplished by mathematicians on polynomials with
restricted coefficients.

Furthermore, there is an intimate relationship between the engineer-
ing questions described above and several areas of classical mathematical
analysis. Foremost among the problems of mutual interest is the question
of how close to constant the modulus of a polynomial can be along some
curve, typically the unit circle. This is of great concern to theoretical
mathematical analysts because of the fundamental nature of polynomi-
als and the simplicity and intrinsic beauty of the question. It is equally
important to engineers working in such fields as array design, adaptive
beamforming and null steering, filter design, peak power limited transmit-
ting, and the design of reflection phase gratings. This paper describes our
research into both aspects of this remarkable intertwining of the disciplines
of pure mathematics and engineering.

2. Mathematical results

Concerning the purely mathematical aspects of our work, note that prop-
erties of polynomials with restricted coefficients have been the subject of
much fruitful research in twentieth century mathematical analysis. Of
particular interest have been polynomials with coefficients ±1 or complex
of modulus one. The study of such functions was apparently initiated by
G.H. Hardy (see Zygmund [Zyg59, p. 199]), and furthered by J.E. Little-
wood, P. Erd6s and others.

For the purposes of this discussion, it will be convenient to introduce
the notation of Littlewood [Lit66]. Thus, let F,, and G,, be, respectively,
the class of all polynomials of the form

n

f(z) = -±lzk and g(z) = E exp(aki)z ,

k=O k=O
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where Izi = 1 and the ak are arbitrary real constants. Clearly, the L2

norm of g is V,+1 for all g E G (and hence for all f E F,, C G,,), and

the question "how close can such a g come to satisfying

Ig -=_ I+ 1

has long been the object of intense study.

The first qualitative result concerning the above question for Gn was

obtained by G.H. Hardy [Zyg59, p. 1991, who demonstrated the existence

of a positive constant C and a sequence {gn }, gn E Gn, satisfying Ign (z)j <

CV/'n for all n and z. The identical result for F,, was obtained by Shapiro

[Sha57] and published by Rudin [Rud59]. Littlewood [Lit62] conjectured

that there exist positi-," constants A and B such that, for any n, there is

an f E F, (g E G,,) satisfying

Avf/! < If(z)l < Bv/- (Av/ni < Jg(z)l < Bv/-)

for all z, while Erd6s conjectured [Erd57] that there is a positive constant

C such that for n > 2, 11g11,. -- (1 +C)v/ for all g E G. (and hence for all

f E F,). Analogous conjectures for the / norms of g E G,, were settled in

a series of papers by Beller and Newman [Bel7l, BN71, BN73]. Beller and

Newman [BN74] also proved the Littlewood conjecture for polynomials

whose coefficients have moduli bounded by 1, after observing that the

proof of this result given by Clunie [Clu59] depended on an erroneous

result of Littlewood. In [K6r80], K6rner was able to modify the result of

Byrnes in [Byr77] to prove the Littlewood conjecture for G,,, and then

Kahane [Kah80] showed that the Erd6s conjecture is false for G,,. These

conjectures for F,, remain unresolved.
One approach to the Erd5s conjecture for polynomials in F,, is to

consider their L4 norm. For polynomials in G,,, we have the following

result:

Theorem 2.1. For each positive integer n, there is a sequence of coeffi-

cients {c }=0 such that all Ic& I = 1 and

2 1r a 1

- ches dO < (n + 1)2+4(n + 1)3/2.
2 1 k=0

Proof. We show that, in fact, the Gauss coefficients,

ik
/(n+

l )

Ck 'r
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satisfy the required property. Toward that end, note that

ck e 2k E Cme = n'i+ 1+ I ~e- 9

k0O m=0 jtO m=O

Therefore, by Parseval's Theorem, assuming for convenience that n
is even,

214 
C j

1d i O =(n+1)2+
27r 0  1~ 1m0 e I(

I k=Oi-o

(n 1)2 + 2n sin2(j 2 r/(n + 1))
j=i sin2 (jir/(n + 1))

n/22

(n + 1)2 + 4 (sin(j
2 r/(n + 1))) 2

n=i sin(jr/(n + 1))

n/2

<(n + 1)2 + 4ZE min(j 2 (n + 1)2/(2j) 2 )
j=l

(n + 1)2 + 4(n + 1)3/2,

where we have used the facts that

Isinjx/sin xj j, and I1/sinxl <_ r/2x for 0< x < ir/2.

This completes the proof of theorem 2.1.
Another method of constructing polynomials with unimodular coeffi-

cients is to form a suitable weighted average of existing ones. For example,
we may employ a slight variation of the basic construction in [Byr77] as
follows:

For each m, 0 < m < N2 - 1, and for z = e2 i let

N-i N-I

P. (z)-- Pm(0) = E F, e"" '(IN +(j+kN)mIN2)zj + kN

k-O 1=O

Clearly, each Pm is a polynomial of degree N2 - 1 with coefficients of
modulus one. Furthermore, it follows from [Byr77] that, for a suitable
small positive c (i.e., of order N-'), IP,, (0)1 is essentially flat for

- m/N 2 < 0 < 1 - - r/N 2
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Now define P* (0) by

N 2-1

P'(0)= ZmPm().
m- -

P" is a polynomial of degree N 4 - 1 with coefficients of modulus one.

Also, by writing

N-1 N-I 1 -zN 4

E E e e2ri( +N)IN 2 e2NiN2#
k=O j=1

and letting

O=-N-4 (A+BN+CN2 ) forO <A,B <N-1, 0<C<N2 -1

it is seen that

P"(0) = N2e2vi(AB1N-(A+-N)(A+BN+CN 2 )1N 4 )

so that IP*(j)l = N2 .
In addition, the essential flatness of IP" (0)I in the interval e < 0 _<

1 - e, where now e is of order N - , follows as before. However, numerical
evidence suggests that P* (N 4 /2) = 0(l), a similar situation to that which
occured with the original polynomials [Byr77]. This being the case, P" is
not quite a Kahane-type polynomial, as we had originally hoped.

Note, however, that the above method of constructing P" (0) can also
be employed to create new flat spectrum sequences, which are periodic
sequences {at }' 0 with the property that their discrete Fourier transform
(DFT) has a power spectrum consisting of a very small number (usually
one or two) of distinct values. This is because the DFT can be thought of
as the values of the polynomial

n-1

P(z) = k

k=0

where n is the period, at the n-th roots of unity. Our construction yields
polynomials whose spectra are essentially flat at almost all points of the
unit circle, not just at the roots of unity. Observe that flat spectrum se-
quences constructed in this manner satisfy the additional property that all
of the terms of the original sequence have the same magnitude. Applica-
tions of these concepts to notch filtering and communications are discussed
elsewhere in this paper.
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Another method of viewing these questions is in the context of in-
terpolation problems. As noted earlier, for any P E G,, the Parseval
Theorem implies that the L' norm of P on the unit circle C is VTn+ 1.
Furthermore, since lP(z)12 is expressible as z-n Q(z), where Q is of degree
2n, there can be at most 2n distinct points zk where

IP(zk) = V + I

Let us call such a set of points an L' Interpolating Set for P A natural
question is which, if any, subsets of C consisting of 2n points can be an
L 2 Interpolating Set for some P of the required form.

In its full generality, this question appears to be quite difficult. For
n = 1, it is trivial to show that S = {a, b} is an L 2 Interpolating Set if
and only if b = -a. For arbitrary n, observe that for S = {Zk }=2 to be
an L 2 Interpolating Set, the coefficients of P must be chosen so that

2n

Q(z)-(n + 1)z"= a 1(z-Zk),
k=1

where a is a constant of modulus one. Furthermore, the coefficient of zn
on the left side of this equation vanishes, so the same must be true on the
right side. Clearly, this will be a very rare occurance, so that most sets
will not be L2 Interpolating Sets. In fact, it is not at all obvious that for
n > 1, there exist any L2 Interpolating Sets. Thus far, we are only able
to show that if S is to be such a set, its elements cannot be too close to
each other. More precisely,

Theorem 2.2. For any n, there is an c > 0 such that no S of the form
2n

S = {e'. } k= I, with 10kI < c for 1 <k < 2n,

is an L 2 Interpolating Set for any P E Gn.

Proof. Assume the contrary. Fix n. Then, for any c > 0, there is a set
2n

S- S(e, n) -- le, }k=l, with Ok <cfor 1 <k<2n,

such that S is an L 2 Interpolating Set for some P, say

n

P,,n (z) = a,,k Z, with all !a,k I = 1.
k=O

Choose a sequence of position E's, say {, }',, approaching 0.
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For each k, 0 < k < n, the sequence {aj, ,k }7f is bounded, and all

terms of each of these n + 1 sequences have modulus one. By the standard
method of choosing a convergent subsequence for one k at a time, we can
find a strictly increasing sequence of positive integers

fmj}'_1, and a set {ak}kno

of complex numbers all of modulus one, such that

{aem 'k}i--

la'm Aj=l

converges to ak for every k, 0 < k < n. Since

IPn, (e')I- v +1

can't change sign for

I I <0 <r,

we can assume, by taking another subsequence if necessary, that either

I PEj WO")I1- vn + 1

is always positive or always negative for

I~ml 1<0 < r.

Suppose the former (the argument being the same in the latter case), and
define

Po(z) = Z akzk.

k-O

Clearly,

{PM. (z)}

converges uniformly to Po(z) on IzI = 1, so that

IP(e ' ) I !V +1 for 0 < 0 < 27r.

Since the L2 norm of Po is v/n + 1, this is impossible, and the proof of
theorem 2.2 is complete.

Also of interest is the locations of the zeroes of polynomials with
unimodular coefficients. This is directly related to many other problems
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discussed herein and has obvious importance in the choice of pattern func-
tions for null steering. To quantify this question, let rj ei , 1 < j < n, be
the zeros of Pn E Gn, normalize Pn so that the coefficient of z. is 1, and
define

A=maxminll-r j and A, =max -r

where the maximum is taken over all such P, (z).
Since any Pi(z) = z - e'O1 for some real a,, it is obvious that

A, = Al,q = 0.

Considering the case n = 2,

P2 (z) = z' - (rie'* I + r 2 ei* 2)z + rir 2 ei(1+ '2)

so that

rlr 2 - Irle "Ia + r2 ei'2 = 1.

Assume that r, > 1. Since

1 = Irielal + r 2eia'2 > r, -r2 = r, - 1/rI,

the maximum value for ri - 1/r 1 (hence the maximum value for r, - 1)
is achieved when rl - 1/ri = 1, or

l+V 2
r,- + V-5-and r2 2

2+7

In this case,

r 1 -1 2 and l-r2= < 2

so that

V-1 3 - v/5
V5+l1 2

Also,

A2,2 =max - 1)2 + (1 - 1/r) 2).
t
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By an elementary calculus argument, it is seen that this maximum occurs
for r = (V1_+ 1)/2. Thus,

A2,2 = V'5 - 2v/5-.

We leave as an open question the behavior of other values of An and An,q.

3. Applications

As mentioned in section 1, applications of polynomials with restricted
coefficients abound in the engineering world. Those which we focus on
herein include null steering, adaptive beamforming, notch filtering, peak
power limited transmitting, and the synthesis of low peak-factor signals
and flat spectrum sequences.

Several new designs of analytic null steering algorithms for linear ar-
rays are described in [BN88]. Two of them, the O-Technique and the
Positive Coefficient Model, allow for placing an arbitrary number of nulls
in arbitrary directions while maintaining main beam and sidelobe level
control. A method of incorporating these deterministic null steering tech-
niques into existing adaptive algorithms is proposed. The resulting Direct
Adaptive Nulling System offers the possibility of significant increases in
array performance at very little cost.

A major reason for combining deterministic methods with existing
techniques is that arrays must ordinarily deal with significant random
noise. In these cases, one has no a priori information about the direction
or nature of such unwanted signals. Thus, in such applications, as well
as in cases where advance knowledge of jammer characteristics is lacking,
indirect statistical methods are unavoidable, although their efficiency may
be greatly increased by combining them with analytic approaches.

There exist applications, however, where much is known in advance
about the characteristics of both the desired signals and the undesired
noise. This is especially true where one has control of the generation of
these waveforms. Thus, in the case where one system is producing both of-
fensive signals (i.e., searching for and homing in on targets) and defensive
signals (i.e., identifying and tracking incoming weapons), so that mutual
interference becomes a predominant concern, the problem is almost exclu-
sively deterministic in nature. In such cases, robust and computationally
efficient analytic algorithms controlling both the individual performance
of the offensive and defensive signals and the interactive jamming between
them are crucial to mission success.
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A related problem is the determination of optimal shading coefficients
for a conformal array. As is well known, using various measures of optimal-
ity, this is a computational problem of order n3, where n is the number of
array elements. Thus, the computational load will be reduced by a factor
of 8 if the coefficients may be restricted to be real. Circumstances where
this occurs are described in [Byr88a]. A different method of improving
computational efficiency, namely a convex programming approach, will be
an important focus of further research.

Another interesting application of our concepts is to notch filters. A
nearly ideal notch filter employing coefficients of equal magnitude is given
in [Byr88b]. The construction is based upon earlier work of the author
involving polynomials with restricted coefficients [Byr77]. The fundamen-
tal idea employed in [Byr88b] to construct a notch filter with a single
notch may be combined with the concept of an n-nomial [Byr73] to pro-
duce nearly ideal filters with multiple notches. Furthermore, as noted
elsewhere, zero coefficients do not affect the dynamic range, so that these
multi-notch filters maintain the property of having unit dynamic range.

In addition to their use in the construction of notch filters, Byrnes
Polynomials [Byr77, Kah8O, K6r8O] have potential applications to the de-
sign of peak power limited transmitters and the synthesis of low peak-
factor signals and flat spectrum sequences. In transmitter design, for
example, one is often faced with a peak power constraint. Under various
conditions, the transmitter output may be modeled as a polynomial. Here
the maximum modulus of the polynomial on the unit circle represents the
peak power, while the L2 norm of the polynomial is the average power.
Thus, the classical engineering problem of minimizing the peak-to-average
ratio becomes the mathematical question of minimizing the ratio of the
sup norm to the L 2 norm of a polynomial on the unit circle.

In the trivial case where one frequency is to be transmitted (i.e., the
polynomial can be a monomial), clearly the ideal value 1 for the peak-
to-average ratio is achieved, and the polynomial is indeed of constant
modulus on the unit circle. For the more interesting and practical case
of transmitting many linerarly increasing frequencies, it is usually desired
to transmit each frequency at the same power, which should be as large
as possible. As the power of each individual frequency is represented by
the modulus of the corresponding coefficient, the mathematical question
naturally arises of how close to constant the modulus of a polynomial with
equimodular coefficients can be on the unit circle.

More precisely, if n pure tones are transmitted with frequencies of
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the form fo + kA, where fo is the fundamental frequency and A is the
increment, then the waveform is

n-1

x(t) = E AL cos(21r(fo + kA)t + Ok)
k=O

= S(t) cos(arg S(t) + 2irfot).

Here,
n-1

S(t) = Ej, A ei ,# e '2 wkAt,

k0O

0k = phase, and Ak = power in kth tone.
As mentioned, almost always all frequencies are transmitted with

equal power, so that Ak = 1. To minimize the peak power of x(t), the
maximum (over t) of Jx(t)l must be minimized (over O). It is relatively
straightforward to see that the exact problem is to obtain

In-I

minmax e'° es2 -kAt,0tI,-0 I

a job which is performed by the Byrnes polynomials [Byr77] in nearly ideal
fashion.

The adaptation of such polynomials to these problems is important,
since in applications like the Link 11 Communications System, the average
power is usually maintained at one tenth or less of its theoretical ideal to
prevent transmitter overload. Employing concepts such as those described
above should yield a significant reduction in the peak-to-average ratio,
thereby allowing a large increase in average power, hence a more efficient
communications system. These considerations also show that the Byrnes
construction has direct application to the synthesis of low peak-factor
signals.

Now consider the problem of designing a flat spectrum sequence
{a _}' as defined earlier. These sequences have direct use in such di-
verse areas as concert hall acoustics, the quieting of an object's response
to radar and active sonar, and speech synthesis. Schroeder [Sch85] presents
many of the fascinating details of these applications.

As we observed, the DFT can be thought of as the values of the
polynomial

n- i

P(z) = ~ k
k=0
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where n is the period, at the n-th roots of unity. The Byrnes construction
[Byr77] yields polynomials whose spectra are essentially flat at almost all
points of the unit circle, not just at the roots of unity. Furthermore, they
have the additional property that all of the terms of the original sequence,
{ak }, have the same magnitude. Applications of these concepts to notch
filtering and communications are discussed elsewhere.

In our final application, we have begun to exploit the great success
of J.P. Kahane [Kah8O] in solving the Littlewood conjecture. As we note
in section 2, Kahane showed that there indeed exist polynomials with
unimodular coefficients whose modulus is essentially constant on the unit
circle. It is our opinion that the breakthrough of Kahane was due to his
ingenious use of randomness and probability in his construction. Behind
his and previous approaches was the idea of Gauss, viz. the "Gauss Sums."
To put it quite simply, we feel that Littlewood's problem was vanquished
by the "equation"

Kahane = Gauss Sums + Probabalisitic Choices

Our idea is to exploit the Kahane breakthrough by developing meth-
ods to judiciously make the "Probabalistic Choices" referred to above,
and thereby convert Kahane's "randomized" proof into a constructive one.
This would not only result in exciting new mathematics, but would also
be directly applicable to several important engineering problems. In ad-
dition to the areas of peak power limited transmitting and flat spectrum
sequences discussed earlier, such polynomials would find immediate use
in the design of reflection phase gratings, and thcrefore would be em-
ployable in solving concert hall acoustics problems and in quieting the
response of an object to sonar or radar. Another potential application
of this "educated randomness" construction is in the synthesis of multi-
element omnidirectional beam patterns.

In the concert hall acoustics application of reflection phase gratings,
it is desired to design the ceiling so that sound is widely scattered except
in the specular direction. As described earlier, in the context of notch
filter design, the Byrnes polynomials [Byr77 place a null in any given di-
rection while the coefficients maintain their other desirable properties of
being both flat spectrum and low correlation sequences. Thus, they might
even be perferable to the Kahane polynomials in this context. This also
appears to apply to monostatic radar, where the null would be placed in
the direction of the radar. For bistatic radar, on the other hand, the re-
ceiver direction is often unknown. Thus, if a construction based upon the
Kahane polynomials could be employed, radar energy would be reflected
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equally in all directions, thereby reducing the probability that there would
be enough energy reflected in any particular direction to enable detection.
A possible undersea application of these ideas occurs in the design of baf-
fles used to quiet machinery noise from submarines, in an attempt to pre-
vent the noise from escaping the hull. Note that our constructions would
complement the coatings that are already in use or are being designed
to attack these problems, since these coatings provide uniform attenua-
tion. Furthermore, surface structures based upon the Byrnes polynomials
would have the highly diffusing property over a large set of frequencies.
It is not yet clear whether the Kahane polynomials also yield this impor-
tant property. The design of two-dimensional arrays so that energy may
be scattered with equal intensity over the solid angle is also of considel.-
able interest. It appears that a straightforward product formulation gives
the desired results for the Byrnes polynomials, but the situation is not so
clear for the Kahane polynomials. We continue to focus our research on
the many fascinating questions raised in this final paragraph.
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Abstract

WVe give an explicit construction of an ideal omnidirectional transmitting array, and optimal peak factor
array, for the case of a linear array of identical omnidirectional elements with uniform spacing of less than
half-wavelength. The construction is based upon the Byrnes polynomials, introduced by the author in 1977.

Intro(Iiction

A consideration which is often important in the synthesis of an antenna pattern is the peak factor, which
is the ratio of the peak to average power of the array. For a line array of equally spaced omnidirectional
elements, the mathematical model for the pattern is a polynomial whose coefficients are the weights, or
slmading coefficzents, of the array. The quantity to be synthesized in this case is the magnitude of P(z) on
the unit circle C = {z : jz[ = 1}. and the peak factor is now the ratio of the sup norm to the L 2 norm of P.

Clearly the peak factor is bounded below by 1, and the classical problem is to make it a- close to 1 as
possible. In addition to arising in peak power limited transmitting and other aspects of antenna design, the
identical question occurs in digital filtering. Furthermore, the same polynomial problem has been the object
of intense study by mat hiematical analysts for more than fifty years, including such notable mathematicians
as P. Erd6s (31, G.Ii. lardy, J.. .;'alane [43, T. K6rner [53, J.E. Littlewood [6], and D.J. Newman [7].

A parallel concern, to enginers and mathematicians alike, is the question of synthesizing various antenna
patterns (i.e., constructing polynomials with specified moduli on the unit circle) when certain restrictions
are placed upon the coefficients. When transmitting, for example, one usually wants to maximize the total
power output of the array, which is achieved when each individual element broadcasts at full power. Thus,
in this case, the coefficients must have the same magnitude. In addition, the usual peak power limitation
means that the output power nust be as close to constant as possible in all directions, i.e., IP(z)I should he
as close to constant as possible on C. The fundamental result in this specific area is that of Kahane [.I]:

Theorem. There is an absolute constant c > 0 such that for each positive integer n, there is a polynomial
P(z) of degree n with unimodular coefficients which satisfies

IP(z)I= v + E for allz E C, where I El! ci 1log . ()

Since any such P has n+ I coefficients of modulus 1, so that its L 2 norm is obviousiy v/T +I. this shows
that the ideal peak factor of I is indeed achievable asymptotically, even when the coefficients are required
to have the same magnitude. Note that Kahanc's theorem shows that the ratio of the maximumi mod Ilus Of

P to the minimum modulus of P can be asymptotically 1 as well, a stronger result than the peak factor one
just mentioned. As an aside, we mention that the corresponding problem when the coefficients are required
to be ±1 is one of the important unsolved problems in this area of mathmeiatical analysis.

Although Kahane's beautifil result, was greeted with much enthisiasni by the mathematical conimunitv,
it has not found application in the engineering problems discussed above. This is because his proof is
ain rrstenre one: he shows prohabilist ically that such polynomials must occur. Thus far such funuctions
have not been actually constructed. This too is an important outstanding question, in both matheinatics

t The author is also Professor of Miatlhenlatics at lhe University of Massachusetts at Boston
[?esearch sponsored by the Air Force Office of Scientific Research (AFSC), under Contracts F.19620-

88 (')028 and F19620-90-C-0023



and engineering. The purpose of this note is to give an explicit construction of an ideal omnidirectional
transmitting array, and optimal peak factor array, for the case of a linear array of identical ominidirectional
elements with uniform spacing of less than half-wavelength. In certain circumstances such close spacing can
cause a notable increase in mutual coupling. This physical problem will not be addressed here.

Results

As is well known, for a linear array of n equally spaced identical omnidirectional elements the array
factor is the polynomial

7-1 dsin 0

P(z)=Laj:', E=e e it = n (2)

lere, the aj are the shading coefficients, d is the array spacing, A is the wavelength, and 0 is the angle
of incidence (0 = 0 is broadside).

Note that for d = A/2, generally considered the ideal case, 27ru goes from -7r to 7r as sin 0 goes from -I
to 1, so that z traverses C completely. However, if d < A/2, then a portion of C will be omitted by z. This
is precisely the property that we now exploit.

In fact, the construction follows immediately from earlier work of the author [2]. The crucial property
of the polynomials introduced there, and later called Byrnes polynomials [1, 5], is given by part (ii) of the
basic theorem in [2]:

Theorem. For n a posit.ive integer, let

n-In-I

P(E) = Zexp(27rijkn-)zj+kn, z = e27riu . (3)
4=0 j=0

Then for any -, n-l < <, we have IP(-)I = n + E for all u, E < lul <2 2'
where IEl < I + 2r-' +5(-r)'.

To clarify the significance of this result in the present context, suppose for simplicity that d = A/4, so
that z is now traversing exactly 1/2 of C as sin0 goes from -I to 1. The theorem immediately yields the
correct choice of coefficients, gotten by merely changing z to -: in (3). llence, the optimal polynomial is

n-In-I

P(z) = E I (-l)J+knexp(2irijk-' )ZJ+k, z =e 2TEu, U = sin (4)
k=0 j=' 4

This gives IP(z)I = n + E, I El < I + 22r- ' < 9 for all 0. Note that the degree of P is 712 - 1, So that its
L 2 norm is n and it represents an array with n2 elements. Furthermore, the error E is uniformly bounded
independent of n, so that we indeed have an optimal peak factor array. In addition, the coefficients of P
are unimodular, so that it. also represents an ideal onnidirectional transmitting array. These properties are
illustrated in Figures l.a-l.e, showing polar plots of IP(:)l in Equation (4) for various choices of n and for
-- r < 0 < ir. Observe that for small n the actual array patterns exhibit an error that is considerably smaller
than that obtained for the general case considered in [2]. Finally, the spread (i.e., the difference between the
maximum and minimmun, expressed in dB's) of I/'(:)I as a function of the number n2 of elements is shown
in Figure 2. This graph clearly ilhstrates the desired flatness of IP(z)I, as described above.
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1 Introduction

When the transient scattered field of a radar target is approximated by an
exponential sum

M

y(t) = Zbiet, 0 < t < ty, (notation from [HS89])
i=1

the si are the dominant resonant poles of the target. As they represent the
resonant frequencies of the target, they are ordinarily the most important
information available in the transient field. Since these frequencies are aspect
independent they give a signature of the object, and thus can be used as a
means of target identification [Per751.

The study of efficient methods for estimating the poles of radar targets,
apparently initiated by Kennaugh and Moffatt [KM65], remains an active
area of research. The techniques employed thus far include Prony's method
[BM75], the pencil-of-function approach [S+80, JSW83], and the E-pulse
method [RCN87, HS89]. Each of these methods have their particular ad-
vantages and drawbacks, with none being close to ideal in any global sense.
For example, one problem with Prony's method is its reliance on uniformly
sampled sinusoidal functions. In the E-pulse method, long integration times,
which could reduce the noise component in the smoothed signal x(t), may
have the adverse effect of increasing the sensitivity of the estimate poles to
the noise in x(t). Thus, new mathematical methods of estimating the error
in the approximation of the transient scattered field of a radar target by an
exponential sum, and of recoevering the resonant frequencies of the target
from this sum, are called for.

In this paper we consider the following special case.

Problem 1 Suppose f : R -- C is a function of the form

M

f(x) = E amexp(iAmx) (1)
m=

with am E C and Am E R [1 < m < M], but that we do not know the values
of the am and Am or even of M. The result of making an observation at a
point x, E R is given by

f(Xn) = f (Xn) + en (2)

2



where e,, is some unknown random error. We are allowed to make observa-
tions at x1 , X2 ,. . . , XN and wish to estimate the am and A, from the resulting
observations f(x1), f(x 2),..., (XN).

As it stands the question is not fully defined. We make the following
remarks.

(1) Unless the error e,, is zero it is unreasonable to expect to recover
all the Am however small the associated am. Even if there is no error we
would expect a method which claimed to recover Am for all non-zero a,, to
be numerically unstable.

(2) It is unreasonable to expect to recover those An outside a previ-
ously specified set A composed of a finite number of intervals. Dirichlet's
Theorem tells us that, given any function f of the form (1) together with
xl,X2 .... ,xN E R and any ( > 0 and K > 0 we can find A' E R such that

IA' - Am[ > K

but
M M

I E am exp (iA'xn) -Zan exp (2*Amxn)I < c
M=1 m=1

for all 1 < n < N.
(3) Next we observe that if f is given by

f(t) = exp (iAt) - exp (i(A + 77)t)

then If(t)l < c for all Itj < 17- 1 /2. It is thus unreasonable to seek a method
which does riot require previous knowledge of

A* = min IA, - A, 1.
ris

(4) We also need to know something about the errors en. In what follows
we shall assume that the e, are independent identically distibuted random
variables with mean E[en] = 0 and variance E[e ] = a2. We shall further
assume that the distibution of en is Gaussian (since we work in C this means
that arg en is uniformly distributed on [0, 27r) and Re en is a real Gaussian
random variable) but our arguments apply, with hardly any change, whenever
the distribution of en is reasonably well behaved. More complicated models

3



of errors exist in which the e, are not independent. I believe that the method
proposed will produce similar results for some of these as well.

(5) We must have some idea, not only of the cost of single computation,
but of the cost of making a single observation. The relative cost may lead
us to prefer a method requiring many computations but few observations or
vice versa. The absolute cost may make some methods impractical.

So far the considerations we have raised apply to all methods. Our dis-
cussion will make two specific assumptions which will not always be satisfied
in practice.

(6) We assume that the choice of x 1, X2,... ,XN precedes any of the ob-
servations. In other words our method is not adaptive (though, of course, it
could be incorporated into an adaptive scheme).

(7) Finally we assume that the x1 , x 2,... ,XN may be chosen freely from
the reals.

In order to illustrate the remarks above and to provide a comparison with
the methods we shall propose, consider the following standard procedure.
Suppose that f is as in equation (1) and we know that the Am all lie well
within A = [-a, a]. Choose T > 0 and set

x,, = -T + 2nT/N.

We now obtain the observations f given by equation (2) and compute the
'Fourier transform'

N

F(-a + 2ra/N) = N E f (x,)exp(-i(-a + 2ra/N)x,)
n=1

for r = 1,2,..., N, using the fast Fourier transform. If N is reasonably large
(specifically, that v-N/ log N is large compared to al minl<,<M lamI), it is
clear that F(-a + 2ra/N) will not differ appreciably from

N

F(-a + 2ra/N) = N 1: f(xn) exp(-i(-a + 2ro/N)x,).
n=1

In particular, provided that A*T is large, the graph of F will exhibit M typical
regions of disturbance centered on the Am of maximum amplitude Iainl and
typical width on the order T 1 . Thus, provided we take N roughly of the
same size as Ta, we can locate the A, to a precision of about T 1 . This

4



method thus requires on the order of a5-1 observations and a6b- log(ab- 1 )
computations to locate the frequences A, to within 6.

In the next section we give an informal description of our proposed
method along the same lines. Section 3 compares our method with the one
just described. The following section contains several examples employing
our method.

2 Description

Choose T > 0 and a reasonably large integer N (for simple problems N = 400
might be sufficient). Choose x1 , X2,... , XN at random in the interval [-T, T].
More formally, set x,, = X,., where X 1 , X 2 ,. ., XN are independent, iden-
tically distributed random variables each uniformly distributed on [-T,TI.
(Of course, the interval [-T, T] may be replaced by any other interval of
length 2T.)

Now suppose that f is as in equation (1) and we have the observations I
given by equation (2). We define an 'approximate Fourier transform' P(A)
for a frequency A by

N

F(A) = N-' E f(X,,)exp(-iAXn).
n=1

Observe that (keeping A fixed) P(A) is a random variable given by

N

Pt(A) =N-1 EY,,
n=1

where the
whe= (f(Xn) + en) exp(-iAXn)

are themselves independent, identically distributed random variables taking
values in C. We note that

EYn = E(f(Xn)exp(-iAXn)) = F(A)

where

F(A) = rf(t) exp(-iAt)dt

2T-



and that

EIYI 2 = E(I.f(X.)I2 + e,.(X,,) + e.f(X,)" + lI, '2)
= EIf(X,,)12 + Ele.I 2.

If A)T is sufficiently large the cross terms in the evaluation of Elel 2 will be
negligible, and so setting T2 = var(Y,,), we will have

M="r- < Z a,,I[+a 2" +11 (3)

where q is negligible. Applying the central limit theorem we see that
N

N'/"*". (A) = N-'-1 2 
E

n=1

is approximately Gaussian with mean F(A) and variance r2 . In other words

F(A) = F(A) + E(A) (4)

where E(A) is approximately equal to the normal random variable Z with
mean zero and variance r 2N - 1 . We think of E(A) as noise which is partly
natural, coining from the errors e,,, and partly artificially induced by the
random choice of the sample points. In the same way we intcrpret the ill-
equation (3) by saying that the variance r2 has a natural component a2 and
an artificially induced component r2 -a 2. Because of the nature of the Gaus-
sian distribution we would not be surprised to find izi uf size about rN - 1/2

or even about 2rN -" /2 but it would be extremely surprising to find IZI of
size 5rN - / 2 or greater.

With this in mind let us fix a K > 3. The probability that IZI > KrN- /2

is 1 - p(K) where p(K) is given by

.exp(-x'/2) dx.

Since

F(A) = "- f(t)exp(-iAt )dt
2T I1 T
Al sin((A,,m - A)T)

m= (Am - A)T

6



we see that, if IAm - Al is reasonably large compared with T- 1 for all n?, then
F(A) will be smaller than (K + 1)rN- '/2 with probability at least 1 - p(K).
On the other hand, provided that A*T is reasonably large, if lar _ 3KrN -1 2

then for A close to Ar the term

sin((A, - A)T)

(Ar - A)T

will dominate in the expansion

P(A) =M a sin((Am - A)T) + E(A)

m=1 (Am - A)T

with probability at least I - p(K).

So far we have looked at P(A) for a single value of A. Now suppose that
we are given A, the union of a finite number of disjoint intervals of total
length IAI. Provided R is reasonably large compared with the number of
intervals making up A, we can find R points v1 , V2 ,. . ., v E A such that if
A E A then JA - VrI < IAI/R for some 1 < r < R. It is, of course, not true
that the 'errors' E(vr) are mutually independent but the simplest possible
estimate shows that

IE(vr)l < KTN - ' /2 for all 1 < r < R (6)

with probability at least 1 - Rp(K). If (6) holds then the same kind of
considerations as applied in the previous paragraph and in the introduction
will apply, provided we have IAIR - ' of size about (6T) - 1 or smaller. If

lami _> 3rN - ' / 2 and Am is well within A we shall see a typical region of
disturbance centered on Am of amplitude roughly lamI ± KrN- 1/ 2 and width
of the order T 1 standing out from the surrounding noise. We may or may
not detect regions associated with smaller Ja,I but, provided we ignore all
v, with IF(vr)l :_ (K + 1)rN 1/2 we shall not obtain any 'false positives'.

A well-known estimate gives

J exp(-x 2 /2) dx

< x exp(-x 2 /2) dx

22 -.exp(-K 2 /2).

7



Thus, the procedure of the last paragraph will locate all the Am in the search
region for which lami > a* to a precision of about 6 (and not produce false
positives) with a probability of failure less than E provided the following
relations hold. (Here u >- v is to be read as u > Cv for some numerical
constant C.)

6 >- T-'

T -1 >- 1AIR -1

a* >- KrN -1 /2

c>- RK - 1 exp(-K'/2).

Thus we need

c1/ 2a r -  exp(N(aTr-1 )2/2) - R >- 1516 (7)

for our method to perform as desired. The inequality(7) tells us how we must
vary N, the number of sample points. Since the sample points are not in
an arithmetic progression we cannot use the fast Fourier transform and our
method will require on the order of RN computations.

3 Discussion

The reader who is worried by the probability c of error should observe that, if
we fix the other parameters, then N increases slower than log(c - ). Thus an
essentially trivial increase in the number of sample points and computations
will reduce the probability of failure inherent in the method below e.g. the
probability of some serious undetected computer error. It should also be
noted that if a > 0 then any method must inevitably have a strictly positive
probability of error.

Let us now compare our method with that discussed at the end of the
introduction. Let us fix e and a*; for example, we might take

a*= min (am).l<m<M

In the introduction we took A = [-a, a] and saw that the standard method
required on the order of AI6' sample points and 1A16-' log(IAI6-') com-
putations to locate the frequencies A, to within 6. Our method, which

8



allows A to be the finite union of intervals, requires, at most, on the order of
(log(IAI6-') 1/2 sample points and on the order of jAib-'(log(IAl6-1) '/2 com-
putations. We note, for later use, that the choice of A can be made after the
observations.

There are various remarks we should make at this stage.
(1) Although we have achieved a substantial reduction in the number of

sample points required, the number of computations has been only slightly
reduced. In future research, we expect to show that this weakness can, to a
large extent, be overcome.

(2) If we keep aI,a 2 ,...,am fixed but allow the Am to vary, it is not
hard to see that the accuracy 6 and the power of discrimination A* vary
in step with each other. Thus our method requires at most, on the or-
der of (log(IAIA*))1/ 2 sample points and on the order of [AIA*(log(IAIA*))l/ 2

computations. Although we have chosen the random variables X, to have
uniform probability distribution on [-T, T], smoothing them might well pro-
duce better discrimination in practice. For example, if we take the X, to
be independent, identically distributed random variables each with density
function

g(x) = T-'IT- xI for all IT- xI_ T
= 0 otherwise

and proceed as before, our method and the supporting argument are essen-
tially unchanged except that equation 5 becomes

M (sin((Am - A)T/2))2
F(A)= Ea,, ((Am - A)T/2) 2

We have thus localized the disturbance associated with the frequency rather
better than before.

(3) The 'detection/noise' ratio
a*

- N112(Ei laM I2 + a2)1/2

only decreases as fast as N - 1 2 . Thus to reduce p* by a factor of L while
keeping everything else unchanged requires us to multiply the number of
sample points, and so, also, the number of computations by a factor of order
L

2.
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At first sight this does not seem very good, but a simple example shows
that the rates of growth in the last sentence cannot be improved. Suppose
that we simplify our problem so that equation (1) becomes, simply,

f(x) =a

with a E C. Then equation (2) gives

f(x,) = a + e,

and our problem reduces to finding whether a = 0 or not. Simple statistical
considerations show that, in order to be reasonably confident of detecting
a 0 0 when jal > a* and not declaring a :A 0 when, in fact, a = 0, we need a
'detection/noise' ratio

a*
P** N1/2a

which is larger than 1. Since we must read the values of f(x,) in order to use
them we must make at least N computations. Just as before, to reduce p** by
a factor of L while keeping everything else unchanged requires us to multiply
the number of sample points, and so, also, the number of computations by
a factor of order L2 . It is, of course, true that p** only involves the 'natural
noise level' a while p* involves a noise level with an 'artificial component' of
order (E" ,am1 2 )1/2. In future work we shall sketch a way of getting round
this.

(4) We turn now to the estimation of am. The obvious way cr doing this is
to guess am = F(vj) where vj is the point at which IP(vk)I is largest within
the disturbance associated with A,,,. Other schemes are possible, but the
reader should remember that the random errors E(vk) of equation (4) are
not independent. With our simple scheme there are two sources of error. The
first source is the distance of v, from Am. This error will be of order am162

and, provided b has already been chosen quite small, will not be important.
(In any case, once we have located A, as lying near Vk we can always calculate
F(v) for a group of closely spaced points near vk without adding noticab~y
to the computational load or to the number of sample points required.)

We are thus only worried by the second source of error, the noise E(A).
Almost exactly the same considerations as applied to the problem of detection
in note (3) show that this error will be on the order of N-1 /2r for our method
and that any method what so ever must have errors in the estimation of am

10



of order at least N- 1 2 a. The last sentence of (3) thus applies with p* and
p*" replaced by

error level error level
= - and cS =NI/2r N1/2o,

(5) The pure mathematician and the applied mathematician will each
have a further question. The pure mathematician may wonder if all the
'sufficiently large' and 'negligible' may not hide some basic flaw in the ar-
gument. In my view the arguments above are rigorous but future work will
be devoted to a formally stated and proved theorem. The applied math-
ematician is aware that 'order of' statements may hide impractically large
constants. Our answer is essentially 'Suck it and see' (though you should
wait until we complete our follow-on work alluded to above). Simple numeri-
cal experimentation on our Sun 3/60 suggests that the method is impractical
without a modern desktop computer, but that once a speed of 106 operations
per second is available realistic problems can be tackled.

4 Examples

In this section we illustrate our method by demonstrating several examples.
Lacking real data with which to exercise the algorithm, we input random
values of an "unknown" exponential sum (i.e., known to us, of course, but
unknown to the algorithm).

Thus, referring to equation (1), we input the frequencies ,,.... ,AM, and
the coefficients a,, .. am. We then choose the parameters and the number
of iterations, and turn the algorithm loose on the data. The results are
illustrated in the following graphs. Considering the accuracy achieved and
the speed with which it is done, on our relatively slow (3 MIPS) Sun 3/60,
they speak for themselves.

11
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Example 1 parameters

input frequencies = [10, 11, 12]

input coefficients - [i, 0.9, 0.81

noise threshold = 0.6

samples/iteration = 400

frequency search resolution/iteration = 100

number of iterations = 2

range of frequencies to search = [-20,20]

approximate running time = 18 seconds

reconstructed frequencies = [10.0000, 11.0000, 12.0000]
reconstructed coefficients = [-0.0138 + 0.9926i, 0.8689 - 0.0077i, 0.8162 + 0.0255i]
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1.2

o

0.8-

06

0 0.4-

0 0.2

8.5 9 9.5 10 10.5 11 11.5

frequency

Example 2b
3.5

- 3-

-~ 2.5

~0

2-

0O 0.5-

01
0 1 2 3 4 5 6 7

x (time)

14



Example 2c
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Example 2 parameters

input frequencies = [9.1000,9.2000, 10.0000, 11.0000]
input coefficients = [0.2000 + 0.8000i, 0.7000 + 0.6000i, 0.9000, -0.80001

noise threshold = 0.6

samples/iteration = 400

frequency search resolution/iteration = 100

number of iterations = 3

range of frequencies to search = [-20, 20]

approximate running time = 49 seconds

reconstructed frequencies = [9.1000, 9.2000, 10.0000, 11.0000]

reconstructed coefficients = [0.1861 + 0.7981i, 0.6913 + 0.5997i, 0.8977 - 0.0038i,

-0.7693 + 0.0270i]
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Example 3c
4'

!j'\ I ii
' 2 ' 'I :

~-0

-0 \ 
i

"4 0 
4 637

x (time)

Example 3 parameters

input frequencies = [3.2000, 4.0000, 4.2000, 8.0000, 170000]
input coefficients = [0 + 1.0000i, 0.7000, 0.8500, 0.6500 + 0.3000i, 0.9000]

noise threshold = 0.6
samples/iteration = 600

frequency search resolution/iteration = 150
number of iterations = 3

range of frequencies to search = [-20, 20]
approximate running time = 108 seconds
reconstructed frequencies = [3.2000, 4.0000, 4.2000, 8.0000, 17.0000]
reconstructed coefficients = [-0.0285 + 0.9624i, 0.6945 + 0.0003i, 0.8202 - 0.0066i,

0.6446 + 0.2729i, 0.9131 + 0.0284i]
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1. Introduction

In real-time applications, a digital filter designer may be willing to sacrifice some aspects

of performance in return for a significant reduction in computations. A finite impulse

response FIR (but not linear phase) notch filter design, in which the number of coeffi-

cient multiplications is less than half of the square root of the order N of the filter, is

presented h~re. This expands upon previous work of the author [Byr88]. The trade-off is

a considerable passband ripple and a wider notch versus a great computational savings

over other means of notch filtering. The deviation from a flat passband fluctuates at a

high rate across frequency, and thus may not present a difficulty where the subsequent

signal processing is relatively wide band. On the other hand, the notch is somewhat

wider than that which may be achieved using window design techniques.

The development arose out of a cla.ssic problem in complex analysis in which it is

desired to find polynomials, having coefficients of unit magnitude, with nearly a constant

magnitude when evaluated along the unit circle [Lit6l]. Such a polynomial may be

constructed by concatenating the Al basis functions of an Al-dimensional discrete Fourier

t Research sponsored by the Air Force Office of Scientific Research (AFSC), under Contracts
F49620-88-C-0028 and F49620-90-C-0023.



A computationally efficient notch filter 2

transform DFT into an A-_-length sequence [Byr77]. The magnitude of the z-transform

of the sequence, along the unit circle, oscillates about the value Al, taking on the precise

value at A12 equally spaced frequencies.

A notch filter, with the notch at zero frequency, is obtained by leaving out the

constant basis function, and reducing the dimension of the filter to M 2 - M. Multiple

notches may be introduced by setting to zero other basis functions in the sequence. The

magnitude frequency response of an example multiple notch filter is shown in Figure 1.

The two notches are at zero frequency and a normalized frequency of 0.625 Hz. The filter

coefficients are complex-valued and therefore the frequency response is not symmetric.

The response values for both positive and negative frequency complex exponentials are

shown.

As a consequence of the frequency shifting theorem of the :-transform, a single notch

can be moved to any other frequency by multiplying the 3I' - Al element coefficient

sequence by the corresponding complex exponential frequency. The general class of such

filters are referred to here as constant modulus filters (CM F) because the magnitudes of

the (nonzero) coefficients are equal, while the phase angles vary.

The reduction in coelficient multiplications is duie to the repeating DFT elements.

For an Al-dimensional DFT there are only At distinct, factors in an array of At 2 factors of

the basis functions. The il factors are repeated in a pattern of varying order, with some

occuring more frequently than others. In a direct-form, or transversal filter realization

of the notch filter, the input sequence elements which are to be multiplied by the samp"

factor may be added together before the coefficient multiplication. Further reduction

in coefficient multiplicat ios by a factor of two is achieved if If is an even number.

When If is even, each element in the sequence is accompanied by the negative value



3 Byrnes

of the same element. Thus the corresponding elemcnts in the input sequence may be

subtracted before the coefficient multiplication.

Table 1.1 shows the number of coefficient multiplications per time step for A =

4, 6,8, 10 and 12. Multiplication by 1 or by powers of the imaginary unit i (90, 183 and

270 degree phase shifts) are not counted because they can be implemented by adding

and subtracting.

filter AM 2 Al number of actual coeff.

dimension multiplications

12 16 4 none

30 36 6 2

56 64 8 2

90 100 10 4

136 144 12 4

Table 1.1: Coefficient mu'tiplications per time step

In section I the magnitude frequency responses of the filters listed in Table 1.1 are

compared to those which can be obtained using a Hamming window of similar dimension.

Section III presents the result of gross rounding of the remaining fractional coefficients

to further reduce the computational burden.

2. Frequency responses

Figures 2a through 2e are the magnitude frequency responses of the five filters of Ta-

ble 1.1. For comparison five notch filters, designed using Hamming windows, are alF-

shown. The "Hamming notch filter" coefficients were obtained using odd dimensional
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Hamming windows. An odd number of elements is required for such a design. All of

the filter coefficients except the center coefficient are made proportional to the negative

of a Hamming window. The center element is adjusted so that the average of the filter

T , ents is equal to zero.

The notch filters designed using Hamming windows do not yield the most narrow

notches which could be compared to the constant modulus filters, but they are used here

as a standard of comparison which is familiar to the reader. Indeed, if passband ripple

is of little consideration, a notch filter designed using a rectangular window will yield a

more narrow notch for a given dimension than any of the classical windows.

The filter magnitude frequency responses are not symmetric functions, as is the case

with real-valued filter coefficients, so they are shown over the entire range of normalized

frequency, from zero to the sample rate, with the sample rate normalized to 1 Hz. A sur-

prising feature of the set of frequency responses shown is that, the peak-to-peak variation

in response does not change significantly with the filter order. In each case the maximum

passband variation is approximately -20% to +25%; there is a slight improvement with

increase in filter order.

Whereas the width of the notch produced by the lamming filter decreases in inverse

proportion to the dimension of the filter, the CMF do behave so, but vary from a factor

of two to a factor of five times the width of the corresponding Ilamming notch filter.

Figures 3a through 3d show the frequency responses on a log-log basis for the 30-,

56-, 90-, and 132-dimensional CMF filters in comparison to the 31-, 57-, 91-, and 133-

dimensional Hamming notch filters. Only the negative exponential frequencies are shown.

These correspond to the right hand side of the corresponding curves in Figure 2. Each

of the lamming notch filters has a double zero at, 1, and therefore the curves approach
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a slope of 40 dB/decade at the lower frequencies. The CMFs, on the other hand, have

only a single zero at 1; these approach a slope of 20 dB/decade at lower frequencies.

The width of the notch is more easily read from the log-log plots than from the linear

frequency response plots. If the width is considered to mean twice the distance from zero

frequency to the first crossover of 0dB, or to the point of departure of the frequency

response from 0dB for the Hamming notch filter, the comparative notch widths are

shown in Table 2.1. The CMF notch widths will vary slightly depending on the notch

frequency. Also, the notches are not symmetric. The numbers shown in the table are

from the curves of Figure 3.

filter CMF notch Hamming notch ratio

dimension width (Hz) width (Hz)

30,31 0.130 0.060 2.2

56,57 0.030 0.011 2.7

90,91 0.090 0.020 4.5

132,133 0.068 0.014 4.9

Table 2.1: Half bandwidths of notches in normalized frequency

3. Rounded coefficients

Gross rounding of the filter coefficients was tested for tile dimension 30 and 56 filters

to see if they would retain their essential properties despite significant change in the

remaining two fractional coefficients. For the dimension 30 filter, these are:

b(1) = exp(i~r/4) (1)

b(3) = exp(i3xr/4) (2)
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These were adjusted to the values:

+(1) =1+: (3)

b(3) = -1 + i (4)

so that the actual coefficient multiplication could be performed by two additions. The

resulting magnitude frequency response is shown in Figure 4a for comparison to the

CMF. Note that the rounded version of the filter was not re-normalized to 0dB in the

passband. Therefore the magnitude frequency response curve of the rounded coefficient

filter is above that for the CMF. The variation in the response is approximnately the same

as that for the CMF, and the notch width has not changed noticeably.

More significant is the fact that the zero at I has been preserved after the rounding.

This fact follows from the symmetric pattern of rounding in which the average value of

the filter coefficient sequence remains zero.

For the 56-dimensional filter, the remaining fractional coefficients are:
6(1) = exp(ir/3) (5)

b(2) = exp(i27r/3) (6)

These were adjusted to:

b(I) = 1/2 + i (7)

b(2) = -1/2 +i (8)

The real parts are unchanged but the imaginary parts have been rounded from V312

to 1. The magnitude frequency responses of the rounded and CMF versions are shown

in Figure 4b. Once again, the rounded version has not been renormalized so that the

frequency response curve appears above the CMF. The variation in magnitude frequency

response has not significantly changed, nor has the width of the notch. Furthermore, the

zero at the origin has been preserved in the rounding off of coefficients.

In both of these cases, the notch cannot be moved to an arbitrary frequency while

retaining the computational savings of the rounding of the coefficients. But certain
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frequency shifts are possible. A shift to the folding frequency, for instance, can be done

by sign changes of the rounded coefficients.

4. Conclusion

A very efficient family of FIR notch filters has been described. The filter coefficients

consist of M-dimensional DFT basis functions concatenated into M 2 - M element arrays.

The repetition of the DFT factors within the impulse response allows for a great reduction

in the number of coefficient multiplications. Gross rounding of the real and imaginary

parts of the fractional coefficients can be employed without changing the essential features

of the frequency response. The filters are expected to be useful in real-time filtering

applications where passband ripple may be traded for computational savings.
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30 Element Constant Modulus vs. 31 Element Hamming Notch Flters
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56 Element Constant Modulus vs. 57 Element Hamming Notch Filters
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132 Element Constant Modulus vs. 133 Element Haxmming Notch Filter
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30 Element Constant Modulus vs. 31 Element Hamming Notch Filter
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56 Element Constant Modulus vs. 57 Element Hamming Notch Flter
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90 Element Constant Modulus vs. 91 Element Hamming Notch iter

-5

-5

10- .0- .. 0.... 100.. .. ......... ....

-15 ~ ~ ~ ~ ~ ~ or aie .F....... ........ q..... ...u..............c.... ....

Figure..... 3c.......

-20 ..... ..... .6



132 Element Constant Modulus vs. 133 Element Hamming Notch Filter
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30 Element Constant Modulus and Rounded Notch Filters
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1 Introduction

A key electrical engineering application of approximation theory occurs in
the design of recursive digital filters. One ordinarily wants a preassigned fre-
quency selective behavior, requiring consideration of both the magnitude of
the filter frequency response and the desired characteristic which is to be ap-
proximated. Thus, in a typical lowpass filter approximation problem, one is
given the passband, the stopband, the maximum attenuation in the passband,

*Research supported by AFOSR, under contract F49620-90-C-0023



and the minimum attenuation in the stopband. The resulting mathematical
problem is to choose a rational function of appropriate degree, with correctly
placed poles and zeroes, which approximates the desired frequency response
according to the specified passband and stopband parameters. Vlkek and
Unbehausen [VU89J, expanding upon the work of Daniels [Dan74], offer one
analytic approach to this problem for the case of an IIR filter with equiripple
magnitude behavior.

More generally, the digital filter design problem requires the approxima-
tion of a (real-valued) filter amplitude characteristic, or a (complex-valued)
filter characteristic, by a realizable digital filter transfer function. This trans-
fer function is a (real or complex-valued, respectively) rational function of a
complex variable. Furthermore, in addition to being a good approximation
in some norm, it must also satisfy certain constraints, such as a bound on its
degree, the location of its poles, etc. Thus we are led, in many applications,
to the following type of minimization problem [CSS77].

Let
ooIIz - ) = a, z- z = e6 (1)

(the "z transform,"in engineering terms) be an L2 function on the unit circle
in the complex plane; let R be some class of rational functions of z; and let
11 11 be a norm (or semi-norm). Study the existence, uniqueness (local or
global), characterization, etc., of an r* E R satisfying

fIH- r-1l = inf {I1H- rlI:r E R}. (2)

The existence and uniqueness of such a best approximation, when I-II1
is the L2 norm, the degrees of both the numerator and denominator of r are
fixed, and the poles of r are given, is shown in [CSS77]. They also produce an
upper bound on the degree of approximation in this case, when the poles are
equally spaced on a circle about the origin and the degree of the numerator
is restricted to be equal to that of the denominator.

On the other hand, one many also approximate the one-sided z-transform

00

ft(z) = ,z - n

n=O

of the sample sequence {ihn} by matching the coefficients of the Maclaurin
expansion of the rational function with the response samples {a,} as far as
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possible. This, of course, leads to a Pad6 approximant of H(z-'). This tech-
nique has been used, but with limited success, in the synthesis of recursive
digital filters ([BS73], [MG83]).

These results are certainly of theoretical interest, but clearly for practi-
cal problems much remains to be done. For instance, there is no acceptable
algorithm for the approximation of an arbitrary frequency response or mag-
nitude characterisistic by a stable IIR filter in the Chebyshev norm. In the
frequency response case, there is no algorithm which, beginning from an arbi-
trary starting point, converges to an optimal solution. The existing near-best
approximation techniques are often unstable.

2 Discussion

In this note we present a new method of approximating a digital filter by a
rational function.

Our approach is to base the required rational approximation upon the
seminal paper [New6,1] of the first author. As this work was the first to
demonstrate a qualitative difference between rational and polynomial ap-
proximations, it is considered fundamental in the field. Once the concepts
of this paper are understood, their application to the construction of digital
filters is rather straightforward. Essentially all that is required is a change
of variable to transform the real interval [-1, 1] to the unit circle, a scaling,
an inversion of the poles outside the unit circle to move them inside, and a
further change of variables to adjust the passband. We illustrate the results
with two examples, done in MATLAB on a Sun 3/60.

For purposes of comparison, we also illustrate the standard Butterworth
filter, as its re ,uirements and performance are closest to the new filter de-
scribed here.

3 Examples
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U Example 1: lowpass filter
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Example 2: bandpass filter
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1. Introduction

When the transient scattered field of a radar target is approximated by an exponential
sum

M

y(') bie'", 0 < t < ty, (notation from [11S89])

the si are the dominant resonant poles of the target. As they represent the resonant
frequencies of the target, they are ordinarily the most important information available in
the transient field. Since these frequencies are aspect independent they give a signature
of the object, and thus can be used as a means of target identification [Per75].

The study of efficient methods for estimating the poles of radar targets, apparently
initiated by Kennaugh and Moffatt [KM65], remains an active area of research. The
techniques employed thus far include Prony's method [BM75], the pencil-of-function
approach [S+ 80, JSW83], and the E-pulse method [RCN87, HS89]. Each of these methods
have their particular advantages and drawbacks, with none being close to ideal in any
global sense. For example, one problem with Prony's method is its reliance on uniformly
sampled sinusoidal functions. In this paper we examine Prony's method from a more
mathematical viewpoint than is ordinarily taken, and we consider some alternatives.

2. Work

The Problem: We are given a sequence {co, .. cm} E C and we ask: are there complex
numbers a,, . . , a,. and z: .... , z, such that

ck= a k=0, ... m? (2.1)

t This research was supported by AFOSR under contract F49620-90-C-0023.
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Remark. We can think of r as given, r > 1. Note that if we choose r = m + 1, the
problem is solvable by taking any choice of distinct zl,..., Zm+l, and solving (2.1) for
the aj (Van der Monde system).

If r < m + 1 then, in general, there is no solution. Thus, take r = m in (2.1). If
co = cl = ... = c,-1 = 0 then all the aj must vanish, and cm = 0 too. Thus the values
m = 0,0,.. .,0, 1 can't be interpolated by a function of type (2.1). We'll see another
"reason" for this shortly. (Remark, p. 3)

In principle we want to take r as small as possible for the given {cj}. However, for
"physical" reasons we may want the {zj} to satisfy extra equirements, e.g., to lie in 1fl
(the unit disk), or D, or on the unit circle, or near it, etc. This may motivate a choice
of r larger than what, purely algebraically, is required by (2.1). (Also, we may want the
{ aj) subjected to certain bounds.)

Theorem 2.1 (Prony). This thoerem says that "generically", (2.1) always has a so-
lution when m is odd and r = (m + 1)/2 (so that the number of available parameters
{a, .... a., zl,. ... Zr) equals the number of "data points" {coCi, .. , c-1). A careful
analysis shows that Prony proves the following:

Theorem 2.2. Suppose the (Hankel) matrix

F CO Cl -.- Cr-I

C C C2. Cr (2.2)

e Cr- I ... C2r- 2

is invertible and m = 2r-l. Then there are complex numbtrs Iz .z.r} and {a1,...,at}
such that (2.1) holds. lere the zi need not be distinct. If (say) z, has multiplicity 2, i.e.,
zI = z2 , then the terms a Iz + a2 z must be interpreted as (a, + a 2k)zk (and similarly
for zj of higher multiplicity).

Remark. The term "generically" means here that C in (2.2) is invertible, i.e., that
(cO, - . - C2,-) lies off some set of zero measure, which here is a certain smooth surface
in R 2". It is also "generically" true that the {zj} will all be distinct; what this requires
will be clear from the proof.

Proof. Consider the system of equations

Cr = boco + bic1 + -. . + br-lCr-l
cr+l =bocl+biC2 +...+br-icr (2.3)

C2r- I bocr_ 1 + bie1Cr + • + br_ I C2r-2

If (2.2) holds it is solvable for b0 . b,- 1. That means the sequence CO, .C2r- satisfies
a recurrence of length r:

Cn = br-Icn-I + br- Cn-2 + .. + bocn-r (2.4)

for n = r, r + 1. 2r - I (indeed, {c,) can then be extended to an infinite sequence
by (2.4), i.e., co,. C.. - is a section of a sequence characterized by the recursion (2.4)
... and that is a natural way to think of what, (2.1) means).
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From the well-known results on solutions of difference equations it is then clear
that (2.1) holds for suitable {ai}, (zi}, when the proviso about multiple {zj} is taken
into account. However, for notational purposes let's carry out the calculation. The
recurrence (2.4) has "exponential solutions" cn -enX where

r-1

en
A = Zbke(n

- r+k)A

k=O

or

r-1

1 = (2.5)
k=O

where

( = e (2.6)

or, more conveniently with w = I/( =e

r _ br,-.WrI _ b._,,r 2  - - 0. (2.7)

Thus, the solutions of (2.4) are precisely functions of the form (2.1), where the {zj}
are the root of (2.7), and multiple roots are interpreted as described above (henceforth
we'll tacitly assume the roots are distinct).

Remark. The existence of a recurrence relation of order r implies that if the first r
elements are 0 so are all remaining ones.

Note. The condition of multiple roots of the associated polynomial zr- brizr- ... Z 1 bo
is equivalent to the vanishing of a certain polynomial ("discriminant") in b0 , . .. , br_ I and
hence in co, c, ... , C2r- (because of (2.3)) ... which is why simple roots are "generic".

At this point, the real problems begin. Namely, the "Prony" solution even when it
exists may be disadvantageous because the {zi ) are in the "wrong" places, or the {ai }
(in (2.1)) are too large. So we ask: can a larger (and hence "redundant") choice of r help
in this respect?

Another, apparently difficult question involves "erratic sampling". Suppose we look
for {ai), {zj}, such that (2.1) holds for values of k which are not consecutive? This
is equivalent to fitting an r-form recursive linear sequence to an "irregular" sequence of
values of k. We won't try to examine this here, but rather look at the first problem.

Let's illustrate the situation with m = 5. We are given co, cl, ... , c5 . Prony's
solution requires solving the system (here r = 3):

c3 = cobo + cb 1 + c2b2

C4 = c1bo + C2b + c3b2

CS = c2bo + c361 + c462

for b0 , bl, b2 ; then solving (2.7), i.e.,

z3 - b2 z2 - bz - bo = 0

to get the {zi }; then finding the {ai} by linear algebra from (2.1).
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Let's now consider the "redundant" value r = 4. We have to satisfy

C4 = Cobo + CbI + C2 b2 + c3b3  (2.8)

C5 = cbo + c2b1 + c3b2 + 4b3

an underdetermined system (in general) for b0 , bl, b2 , b3 . This will give us a solution
with (in general) two free parameters, so that (2.7) will be a fourth-degree polynomial
equation whose coefficients have two free parameters. The interesting problem is then,
how do the roots of (2.7) move as these parameters are varied?

Here is a very simple ad hoc optimization procedure that illustrates the possibilities.
The general solution of (2.8) is

bj=3j+pjs+qjt (j=0, ... ,3)

where i3 = (3o3, l12, 33) is any particular solution and 1, r'are 4-vectors that are a basis
for solutions of the corresponding homogenous systems. The left side of (2.7) is then:

3

f(w) := w 4 _E j + PjS + qjt)wd

j=0

or

f(z) = B(z) - sP(z) - tQ(z)

where

3

B(Z) W4 _ 3

j=O

3

P(z) = Z_,wpju
j=O

3

Q(z) = E qjw '
j=O

Thus, in this simple case the problem is: given the (monic) polynomial B(z) of
degree 4, and two cubic polynomials P(z), Q(z), choose complex parameters such that
the roots of

f(z) = B(z) - sP(z) - tQ(z) (2.9)

are "where we want them", or close to this set, e.g., in D, near D, etc. A very simple
starting point is to notice that

1 (02W

O(s, t) := 2 0 log If(e'")I dO

is F log zI1, summed over the roots {z,} off lying in {IzI > 1}.
It is an easy problem to minimize (numerically) ¢(s, t). If there is a solution with

all roots in D this procedure will find one.
Similar procedures can of course be applied with larger m and r.
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We might also want the {zj} to be on the unit circle (or near it). Even in the above
simple-minded example that seems to lead to nontrivial optimization problems. The
general theme seems to be controlling the roots of polynomials whose 'oefficients contain
parameters.

There's lots of room to experiment here. For example, instead of minimizing the
geometric mean of the polynomial f(z) = f(z; s, t) given by (2.9) we could minimize
11f(.; s, t)Iip for some small positive p. This is a subject for continuing research.
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1. Introduction

One purpose of this note is to mention two conjectures going back to the 1960's,
both still unproved to the end of 1990, and to give a very simple proof of the (apparently
unnoticed) fact that at least one of them is true. These two conjectures are :

(A) TURYN'S CONJECTURE (around 1960 ?) : There are only a finite number of binary
Barker sequences. (The definition of Barker sequences will be recalled in § 3).

(B) LITTLEWOOD'S TWO-SIDED CONJECTURE (1966): For infinitely many integers
n, there is a polynomial P of degree n, with all its coefficients equal to ±1, such that

AV -T -1 _1 P(ei' ) 1<_ Bv'n +I (on the whole unit circle)

where A and B are positive absolute constants.

This note may also be considered as the embryo of a somewhat expository note, in
thaiu we first recall (in § 3) a few facts about Barker sequences ; then, in § 4, we recall
the two versions (i.e., strong and weak) of Littlewood's two-sided conjectures ; in § 5 we
mention some partial results for the Littlewood conjectures ; in § 6 we prove the theorem
mentioned at the beginning of this introduction.

We wish to thank J.-L. Nicolas and A. M. Odlyzko for bibliographical information.

2. Terminology

We define the length L(P) of a polynomial P(z) = = akzk with complex coeffi-
cients by

n

L(P)= Ia I.
k=O

This work was supported by AFOSR, under contract F-49620-90-C-0023.
t Also at Universit6 de Paris-Sud, Dept. de Mathmatiques.
t Also at the University of Massachusetts at Boston.
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This follows the standard terminolgy (of Number Theory). We also set, as usual,

11 P112 = ( [ i dt)=1/2[ ak 12 /

0 (k=0

and

I P 1Io0= max I P(e) I.0<t<2r

P is called a unimodular polynomial if all its coefficients ak have modulus one. Thus, for
any unimodular polynomial,

L(P) =11 P 11' = deg P + I = number of terms in P(z)

= length of the finite sequence {ao, a, ", an}.

P is called a ±1 polynomial if ak = ±1 for all k = 0, ,., n.

3. Barker sequences

Historically, such sequences arose from telecommunication engineering. Shortly after
the publication of Barker's paper [1] in 1953, it became customary to say that a finite se-
quence {ao, al,'-', a.} all of whose terms are ±1 is a Barker sequence if the autocorrelation
coefficients

n-j

(1)c akak+j

k=O

satisfy
Scj 1_< 1 for all j = 1, 2,.--.,n

or, equivalently,
cj 1=or0 (forj=1,2,...,n)

since here c, is an integer for all j. (The "central" autocorrelation co satisfies, of course,
co = n + 1 =length of the ±1 sequence).

It has been proved by Storer and Turyn [21], and independently by Poliak and
Moshetov [16], that there are only five possible odd values > 3 for the length L = n + 1,
namely L = 3,5,7,11,13. As for even lengths, there are only two such values of L which
have been discovered so far, namely L = 2 and L = 4. Turyn has shown that if there is
another Barker sequence (necessarily of even length), then L must be quite large. Turyn's
work has been somewhat refined by recent (unpublished) work. There is also overwhelm-
ing theoretical evidence (among which D. J. Newman's conjecture for the L' norm of ±1
polynomials, which we hope to treat in detail elsewhere) for the truth of the following
conjecture:
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CONJECTURE (Turyn and others) : There are only a finite number of Barker sequences.

This conjecture is generally believed to be true, and also its stronger form which
asserts that there are no Barker sequences of even length > 4.

The Barker sequences (and their generalizations) have been the object of much re-
search and many publications, both from the communication engineering view-point and
the pure mathematics view-point. We shall not attempt here to give a list of those contri-
butions. Instead, we just mention a couple of open problems (conjectures) on "generalized
Barker sequences ". A finite sequence {ao, a,, *, a } of complex numbers is called a
"generalized Barker sequence" if I ak J= 1 for all k = 0, 1,. , n and if the autocorrelation
coefficients

1'?-j

ci= &4 ak+ j

k=O

satisfy

cj Il 1 for allj = 1,2,---,n.

(Again, co = n + 1 obviously). A generalized Barker sequence all of whose terms are d'h

roots of 1 (for a fixed integer d > 2) is called a "d-phase Barker sequence". In the case
d = 2, the "classical" ±1 Barker sequences mentioned at the beginning of this § 3 are
naturally referred to as "binary Barker sequences". (In general, a binary sequence is any
sequence taking only two values).

To the best of our knowledge, for no value of the integer d > 2 it is known whether there
are infinitely many or only a finite number of d-phase Barker sequences. We conjecture
that the number of d-phase Barker sequences is finite (but, of course, depends on d).

On the other hand one would conjecture that the set of lengths of all possible general-
ized Barker sequences is unbounded if no additional condition whatsoever is imposed. An
additional condition may change things drastically. Thus we have the following result :

THEOREM. If a gereralized Barker sequence {ao, a,., a, } is self-inversive, that is,
satisfies

(2) a,,- = ak for all k = 0, 1,-.,n

then the length n + I cannot exceed 2, (that is, we have n = 0 or n = 1).

This result and some of its generalizations are corollaries of a 1989 theorem due to
Fredman, Saffari and Smith [81. (The paper [8J is in French, because of its appearing in the
Comptes Rendus de l'Acad6mie des Sciences de Paris, but the first author also wrote an
English translation of the manuscript). Yet, in contrast to the above result on self-inverse
generalized Barker sequences, the following problem remains open
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PROBLEM. Do there exist generalized Barker sequences {ao, a, ", an } of arbitrarily large
lengths which are palindromic (or symmetric), i. e. such that

(3) a,-k = ak (for all k = 0,1,-..,n) ?

This problem was mentioned to the first author in 1988 by Dr. Ning Zhang and is due (if
his memory is faithful) to Prof. S. W. Golomb (or to S. W. Golomb and R. A. Scholtz).
Anyway, despite our pledge not to give in this note any references to work on Barker
sequences, we cannot refrain from quoting the very interesting 1965 paper [11] of Golomb
and Scholtz.

Let us emphasize that conditions (2) and (3) (i.e. self-inversiveness and symmetry)
are, in fact, very different and require different methods of attack.

To finish this § 3, let us return to the binary Barker sequences and just mention a few
additional facts about such sequences

FACT 1. If there is any (binary) Barker sequence of length L > 13, then L is of the form

(4) L = 4s2 where s is some odd integer.

This has been proved in 1965 by Turyn [22] on considering (v, k, A) cyclic difference
sets related to Barker sequences.

'.T 2. The length L of a (binary) Barker sequence cannot be of the form

L = 4p" where p is a prime number.

This is due to Richard Turyn, but we cannot find the reference (and unfortunately we
did not contact Turyn to ask him). This reference will be given, however, in a forthcoming
expository paper [14] by S. Y. R. Li and Ning Zhang.

FACT 3. If there is any (binary) Barker sequence of length L > 13, then L is not divisible
by any prime p = 3 (mod 4).

This is proved, as a corollary of a much more general result on "Golay complementary
sequences", in the 1990 paper [5] by Eliahou, Kervaire and Saffari. A much simpler proof
of this same result (again, in the more general context of Golay sequences) will appear in
a forthcoming paper [6] of Eliahou, Kervaire and Saffari. The first author presented an
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oral exposition of that very nice simple proof of Kervaire in the Harmonic analysis seminar
at Orsay [191. The previous proof was due to Shalom Eliahou, who improved on weaker
results of Kervaire and the first author.

The next "Fact" assumes the definition of the monoid of Golay pairs of complementary
sequences. For a quite thorough treatment of the subject we refer to [6]. Since "Fact 4"
below is unrelated to the analytic problems of § 4, 5 and 6, the reader may ignore "Fact
4" and move to § 4.

FACT 4. If there is any binary Barker sequence of length L > 13 (so that L = 4s 2 , s
odd, by Fact 1), then there exists a Golay pair (G1 , G2) of common length L/2 = 2s2, and
(G1, G 2) is necessarily irreducible in the monoid of all Golay pairs.

COROLLARY (to Facts 1, 2, 4) :
(A) If the monoid of all Golay pairs is finitely generated, then there are only a finite

number of binary Barker sequences. In fact, if the monoid of all Golay pairs contains only
a finite number of (necessarily irreducible) elements whose length is of the form 2s , where
s > 3 is odd and not a prime power, then there are only a finite number of binary Barker
sequences.

(B) If the monoid of all Golay pairs has no (necessarily irreducible) element whose
length is of the form 2s2 , with s > 65, odd and not a prime power, then there are no binary
Barker sequences of length > 13. (Remark : s > 65 implies 2s 2 > 8450).

REMARK. The argument leading to part (B) of this corollary also yields : If there is any
binary sequence of length L > 13, then necessarily L > 16900. In fact, thesequence of
candidates for L reads : {16 900, 28 900, 84 100, 136 900, 168 100, etc.}.

4. Littlewood's "two-sided conjectures"

The weak version : For infinitely many integers n, there is some ±1 polynomial P of
degree n, such that

Av/'T+ 1 < P(e") 1< Bv'-n+ 1 (on the whole unit circle)

where A and B are positive absolute constants.

The strnig version : For every integer n > 2, there is some ±1 polynomial P of degree
n, such that

Cv/W + 1 P(e') 1< DV' +I1 (on the whole unit circle)

where C and D are positive absolute constants.
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Both of these versions are due to Littlewood [151. There are several reasons for con-
sidering the weak version as well as the strong version, among which :

(A) Even the "weak version" remains unsolved to this date (end of 1990).

(B) Quite conceivably the "weak version" might hold true with better constants (A
and B) than the respective constants (C and D) of the "strong version". One reason for
suspecting such a phenomenon is the analogy with the supremum norm conjectures for
±1 polynomials on the unit circle. (Cf. the appendix). Thus, if in addition to a proof
of Littlewood's two-sided conjecture(s) we also look for best possible constants, then the
distinction between the weak and strong versions might be essential.

(C) Assuming the truth of the weak conjecture, we do obtain some partial information
for every n > 2, as shown in our Theorem 1 (in § 5).

5. Partial results for Littlewood's "two-sided conjectures"

There are several such results which deserve to be recalled in a systematic exposition
of the subject. In this note we just quote three breakthroughs, due to K6rner [13], Kahane
[121 and Beck [2].

KORNER'S THEOREM. For all integer n > 2, there is a unimodular polynomial P of
degree n such that :

Cvln.+7V +1 P(eit) 1_< DVW _+1 (on the whole ,,nit circle)

where C and D are absolute positive constants.

This theorem of K6rner actually proved another conjecture of Littlewood formulated
in the same paper [15], which was the analogue of (the strong version of) the two-sided
conjecture, but for the class of unimodilar polynomials instead of the class of ±1 poly-
nomials. For the latter class the problem appears to be much tougher. K6rner used a
construction of Byrnes [31 and probabilistic ideas. That same year (1979-1980) Kahane
[12] substantially refined K6rner's method and proved the following extremely surprising
result :

KAIANE'S THEOREM. There is a sequence f,, > 0 with lim ,, = 0, such that for each
7- o

integer n > 2 there is some unimodular polynomial P satisfying

(1 - n)vn - !1 P(e') 1_ (1 + cn)v'4- 1 (on the whole unit circle).

Actually Kahane obtained quantitative estimates for fn, both in [12] and afterwards.
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A by-product of Kahane's theorem is the disproof of the 1957 conjecture of Erd6s on
the sup-norm of unimodular polynomials (see Problem 22 in [7]). The Erd6s conjecture and
some of its variations will be dealt with elsewhere. (See also [81). The first author coined
the term "Kahane's ultra-flat polynomials" to describe the unimodular polynomials P of
Kahane's theorem. They have some remarkable properties and will be studied elsewhere.

Very recently (May 1990) Beck added more sophisticated ingredients to Kahane's
method and obtained [2] :

BECK'S THEOREM. For sufficiently large (integer) d, say d > 300, and sufficiently large
n > no(d), there is a polynomial P of degree n, all of whose coefficients are dh roots of 1,
such that :

CV-+ 1 !1_P(e") 1_ Dv-n'_+1 (on the whole unit circle)

where C and D are absolute positive constants.

The value d = 300 in Beck's theorem can be lowered somewhat, but the theoretical
limit to his approach is d = 3, so the case d = 2 (that is, Littlewood's two-sided conjecture
for ±1 polynomials) probably requires completely new ideas.

It is worth noting that all of these remarkable three theorems (of K6rner, Kahane
and Beck) are "ineffective", in that they prove the existence of P by probabilistic methods
without providing explicit constructions of such P.

For ±1 polynomials there are several partial results in the litterature, but those per-
taining to the lower bound are quite weak (except in [4], but there simultaneous upper
bound conditions are not considered). Here is an observation (of the first author, unless
it is not new) establishing a (very loose) link between the two versions (i.e. weak, resp.
strong) of Littlewood's two-sided conjecture :

THEOREM 1. Suppose that the weak form of Littlewood's two-sided conjecture for ±1
polynomials is true. Then there is a sequence E, > 0 with lim f, = 0 such that for all

I .- o

integers n > 2 we can find some ±1 polynomial of degree n satisfying:

(n + 1)1/2 1'z< P(eit) 1< (n + 1)1/2+ (on the whole unit circle).

This result is extremely unsatisfactory as far as the upper bound is concerned). (If the
lower bound condition is ignored, one has of course the upper bound B/-n + 1, B =some
absolute constant, see the appendix). For this reason we shall not prove Theorem 1 here,
but hope to replace it by a sharper result in a new version of this note. Let us nevertheless
mention that the proof of (the present form of) Theorem 1 uses largely the method of
proof of Theorems 2.4 and 2.5 of the interesting paper [4].
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6. Barker polynomials of length greater than 13
An analytic observation.

To any Barker sequence {ao, a,-. ", an} we assign the "Barker polynomial":

(5) P(z) = Zakzk.
k--O

We now state and prove the result mentioned at the beginning of the introduction

THEOREM 2. Either there are only a finite number of binary Barker sequences. Or else, if
there is an infinite sequence of binary Barker sequences of respective lengths L 1 , L 2 , - , LP

with lim LP = oo, then the corresponding Barker polynomials given by (5) (with of

course n + 1 = Lp) satisfy:

(6) A. \V-nV +1 I P(eit ) [<_ BVq-+ I (on the whole unit circle)

with

lim An = v-0 = 0.579...
(7) n-00(7)

hm B, = / +0 = 29...

where

(1 - cos a)sin a 2 cos 3sin3/3
(8) 0 = sup = sup = 0.6639...

a>0 a > /3

(6) implies an affirmative answer to the weak form of Littlewood's problem, with constants
A and B as close as we wish to the two respective numerical values (7).

Proof of Theorem 2. It is extremely simple. Let P be our Barker polynomial given by
(5), with n arbitrarily large. Of course n is odd, since the length L = n + 1 must be even.

Let us recall two facts about P. The first fact is that (for n > 3) L is a multiple of 4

(9) L = 4m.

Of course (9) is just a weak form of (4), but for the reader's convenience we shall give here
a straightforward (and well known) direct proof of (9). It is as follows : from the definition
of Barker sequences we immediately see that the autocorrelation coefficients cj satisfy, for
even L (i.e., odd n)

(10) fc =0 for even j0
(10) c = ±1 for odd j (j= 1,3, n).

8



We only use the top line equalities in (10) (i.e., rj = 0 for even J -4 0). On setting j = 2
and on splitting the sum in the right side of (1) as two sums corresponding to even and
odd subscripts k, we can rewrite the top line equalities in (10) as

(n-1 -2)/2 (n- 1-2t)/2n-(11) Zt a2ha2h+2t -'(- + 2z a2h+la2h+1+21 =0 (for all I = 0,1,.-. ,

h=0 h=O

(11) means that the two finite ±1 sequences {ao,a 2 ,...,a,_} and {ajaa,...,a,} of
common length (n + 1)/2 form a pair of Golay complementary sequences. Equivalently, if
we write P(z) as a sum of an even polynomial and an odd polynomial

(12) P(z) = S(Z2 ) + zT(Z2 ),

then the fact that {a0,a,-.. a-} and {a, a3 ,'", an} form a Golay pair of complementary
sequences is equivalent to the identity

(13) IS(() 12+IT(() 12= n+ l  (for all(ECwithiI=1)

and also to the identity

(14) 1 P(C) 12 + I P(-) 12= 2(n + 1) (for all C E C with I C = 1).

Now it is well kmwn (and easily proved, by Golay himself [10] as early as 1951) that the
common length of a pair of Golay complementary sequences is even. Thus (n + 1)/2 is
even, hence n + 1 = 0 (mod .1), hence the desired relation (9).

The second fact we use (Storer and Turyn [211) is this : with n = 4m, we have

(15) c4m-j = -cj (for all j = 1,2,. -,4m - 1).

Of course cj is of interest for odd values of j only, since here cj = 0 for even j - 0.
(15) easily follows from the definition of the autocorrelations cj and by using the following
straightforward lemma : If {Cl,. ", N} is a ±1 sequence of length N, then

(16) EE 2 ...''N =(-l)(N -S)/2 where S= (1 +C2 +..+EN.

Let us now prove Theorem 2. We have, for all real t,

'I

(17) I P(e") 12= Z cC ik t.
k=-n

Here the central autocorrelation coefficient is co = n+l = L = 4rn, and otherwise c_ = ck.

Thus, on setting

(18) f(t) =1 P(eit ) 12 -4m,

9



we have from (17)

n

f(t) = 2 ckcos kt (with n = 4m - 1)
k=1

2m-1

= 2 E c(coskt- cos(4m - k)t) (because of (15))
k=1

m
= 2Z C2h-aI (cos(2h - 1)t - cos(4m - 2h + 1)t)

h=1
(because cj = 0 for even j # 0)

m

= 4 Z C2h-Isin 2mt sin(2m - 2h + 1)t
h=1

4(sin 2rt) E C2m- 2 h+lfsin(2h - 1)t.

h=1

We use this to crudely majorize I f(t) I

I f(t) < 4 sin 2mt I  sin(2h - )t 15 4mOm
h=1

where

Om = max 1sin 2mt )t
O<t<2 Msirh

h=l

A computation shows that

/ 1

lim Om =Sup I sinaf I sinaxIdxm-0 c a>O ) j

(1 -cos -)sin y-- sup
-Y>O -Y

2 cos /3 sina3

= sup = 0.6639 ...

whence (6) with An = 1- Om, B" = 1 +-OM.

This completes the proof of Theorem 2.

REMARK. By refining the above calculations one can replace the numerical constants
of equalities (7) and (8) by better constants.
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7. Appendix : Upper bound problems for ±1 polynomials
on the unit circle.

Let
If. = min (11 P 11. / II P 112) = min (11 P 11l /v4-T)

p p

where the minimum is taken over the set of all ±1 polynomials P of given degree n. There
are many interesting (and mostly open) problems on the behaviour of K", among which
What are the exact values of

K + = lim sup K, and K- = lim inf & ?
n - - 0 - 0 0

(Trivially 1 < K- < K+). Since the exact determination of K + and K- seems exceedingly
difficult, as sharp as possible upper bounds and lower bounds for both of K+ and K- would
be most welcome.

Lower bound results are so far quite poor : The Erd6s conjecture [7] of 1957 for ±1
polynomials, that is,

(19) K- > 1

is still unsolved, and so is the weaker conjecture

(20) K + > 1.

The upper bound results are less disappointing. Shapiro [20] proved in 1951 (via the
consideration of the famous "Rudin-Shapiro polynomials", known to Golay [9], [10] in a
different form as early as 1949, and rediscovered by Rudin [17] in 1959) that

(21) K- < '/ and K + < 2 + v'2.

The first author proved [18] in 1987 that

K+ < v2,

but he no longer believes his conjecture that K + = v/2-. There is some evidence that
K+ < v.

It is not known whether K + = K-. (If we had K+ :A K-, the truth of Conjecturc
(20) would of course follow !). No upper bound better than (21) is known for K-. If there
were infinitely many Barker sequences (which is very unlikeley), then by Theorem 2 of this
note we would have K- < 1.289
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These problems on K,, and related matters on ±1 polynomials will be treated in detail
elsewhere.
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1. Introduction

In some problems of applied mathematics, the evaluation of the Fresnel integral

f(W) = eiw e-it2 dt

is needed. It is therefore of interest to have easily computable approximations to f(w),
primarily for positive values of w, but also for complex w.

The function f(w) has been studied by many authors and in particular by J.B.
Rosser in the monograph [Ros48].

In diffraction anaiysis, a closed-form estimate for the modified Fresnel integral,

K±(X) = - F (X)e :i(x 2+ r/4), where

F±(X) = e±"2dt,

is often required. The error in the James approximation [Jam79]

K+(X) _ 1 e ± i(tan °
'(x 

2 +1.5x+l
) - r /4) , for x > 02V/ 'x2 + x + 1

is as much as two percent for the phase component and eight percent for the amplitude
component. Abuelma'atti [Abu89] gives numerical evidence, but no proof, indicating
that his approximation,

K ['2*2 + 1 ] e*i(tan-(x 2 +1.5X+I)_i/4) (X > 0),
Thi rese~h w s rt+ x + +onrat-46 -

t This research was supported by AFOSR under contract F49620-90-C-0023.



A note on rational approximations to the Fresnel integral 2

where a = 0.022 and # = 0.29, improves the result of James by yielding an error

which is at most two percent for the phase component and 3.4 percent for the amplitude

component. We offer a different approach.
In section 2, we investigate the approximation of f(w) by rational fractions. We also

present numerical results for approximation by rational fractions of low degree.

2. Results

By [Ros48, (1.17), p. 7 ; Theorem 1.2, p. 12],

f +0 0 dt (jarg w1 < r/4) (2.1)V/- f( ) t2 + -"

If R(s) is a rational function satisfying

le-' - R(s)I < c (0 < s), (2.2)

then, for w > 0,

V0 (e- w2' - R(W2 t2 ))(t 2 + i) - dt <C c j2 + i - 1 dt

(I +o t4)-1/2
< (OF dt

By (2.2), R(s) is of the form
,n nk

R(s) = ao +E E a(s - O)',
k=1 1--=-

Uk in the upper half-plane; therefore,

r(w) 1j R(W2t 2 )(t 2 + i)- 1 dtxf-) = -

is equal to a finite linear combination of terms of the form

= j (W2t2 - a2 )-'(t 2 + i) - 1 dt.

By an easy application of the residue theorem,
2o 2 21j +I = ni/4)

1, = 1/2 (Wt2_ - 2 )-i(t+)-ldt= (o 1 e -

11 is obtained from I, by applying the operator 1/(l- l)!(-a and is therefore

a rational function with a pole of order 1 at roi and with no other poles. It follows that

r(w) is a ratiotial function of order n with poles at the points Y7Uk. By (2.2) and (2.3),

If(w) - r(w)I < r 2( 1/4)/(41r). (2.4)



3 Fuchs, Hayman, Byrnes

We now quote a known result ([GR39]; see also [Var86]):

Lemma 2.1. There are rational functions Rn(z) of degree n such that

(sup le-, - Rn(s)1)1 /" -. A = 1/9.289 ...
S>0

Letting R(s) = Rn(s), we obtain

Theorem 2.2. For n > no(6) one can find a rational function rn(W) such that

sup If(w) - rn(W)l < (r 2( 1/4)/47r)(A + )f for 6 > 0. (2.5)
w>0

We conjecture that the A + 6 on the right hand side of (2.5) cannot be replaced by
any number < A.

We have also considered other ways of choosing R(s) in (2.2). In particular, for

R(s) = (1 + sin)- n

we found:

Theorem 2.3. If

rn(w) = /i4-n (n+k-l)xk. - n ,

k=O

X = (1 + (w/nl/'))/2,

then, in

-(3x/4)+ 6<arg w <(r/4)-6 for0<6<r,

if(w) - rn(W)I < .6/(nmax(1w1, 1)sin6) (n > 4)

and the .6 can be replaced by .252, if n > 100.
The explicit formula for rn(w) is achieved here at the expense of the much larger

error term.
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