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Effects , f Electron-Interface-Phonon Interactions on
Magnetopolaronic Impurity Transitions in Quantum Wells Koo F-5

Deparnent of Physics and Astrnony Stat Univeasiy of New York at Buffalo,
11 ~Buffalo, New York 14260 - "

ec-ived October 29,1991)

Electron interactions with interface phonon modes and strictly-confined bulk phonon
modes are considered for the first time to calculate the magnetopolaronic effect on the transition
energy of a hydrogenic impurity in the quantum well of a double heterostructure. The electron-
phonon interaction is treated as a perturbation on a hydrogenic impurity confined in a quantum
well under strong magnetic fields. The unperturbed states are obtained by the variational method
with trial wave functions constructed on symmetry considerations. It is found that the transition
energy, as a function of the applied magnetic field, breaks up into three branches with two
interaction gaps occuring at two-level and three-level resonances. The lowest branch lies below
the bulk TO energy. These results are found in good agreement with recent experimental data.

I. INTRODUCTION

The interface and confined bulk phonon modes in heterostructures and superlattices have
been discussed theoretically' and observed experimentally9 in the past. Very recently, optical
phonon modes supported by a semiconductor double heterostructure (DHS) have been solved
independently in the long wavelength limit by two groups? ,4 It is found that there exist two types
of phonon modes, the confined bulk modes and the interface modes. The former modes can
be either longitudinal optical (LO) or transverse optical (TO) with frequencies and a*.den-
tical to those of the bulk excitations, while the interface (IN) modes may have frequencies be- T
tween oand a4* Eigenvectors and dispersion relations for all these modes can be found in
Refs. 3 and 4. The Hamiltonian operator describing electron-optical-phonon interactions has
also been derived to study the polaron mobility and magnetophonon resonance spectra,4 and
the polaronic states in a DHS? The importance of interface modes are clearly demonstrated
in these calculations.

Recent experiments of far-infrared photoconductivity measurements 6 carried out for a
donor impurity doped at the center of GaAs quantum wells in a GaAs/AIGaAs multiple-quan-

tum-well (MOW) structure have revealed a surprising apparent pinning phenomenon. The
resonant magnetopolaron effect on the ls-2p + transition energy is found to be around wrT, in



contrast to the bulk case which has been well understood theoretically. 7 As the electron does
not couple to TO phonons, the data have been regarded as a significant deviation from
reasonable expectations based on the Fr6hlich model of interaction with the bulk GaAs zone-
center LO phonons, both in magnitude and in field dependence. The possibility of zone folding
of the optical phonon dispersion has been suggested6 to explain these results. Since all the bulk
modes are strictly confined in heterostructures or superlattices, there cannot be any traveling
wave in the, z-direction unless the adjacent layers in the MQW structure have matching optical
phonon frequencies.

We present, in this article, a detailed account of the theory, for which a brief outline has
been provided.8 The ls-2p + transition energy is caLulated as a function of the applied magnetic
field for a magnetopolaron bound to a hydrogenic impurity in the quantum well of a DHS. The
electron-phonon interaction Hamiltonian derived in Refs. 4 and 5 is treated as a perturbation
on tb hydrogen-like impurity atom confined in a quantum well under strong magnetic fields.
Since the unperturbed system cannot be solved exactly, the variational method is applied by
choosing trial wave functions with proper symmetry properties. It is found that interaction gaps
appear in the transition energy which then breaks into separate branches. The lowest branch
lies below the TO frequency arT. With just one adjustable parameter in the trial wave functions,
our results are already in good agreement with the newly-improved data.

Very recently, the experiment has been improved and extended in a series of measure-
ments."2 Both the two-level resonance (the Is-2p + transition energy AE is equal to the bulk LO
phonon frequency wL) and the three-level resonance (AE is equal wo-L plus the energy dif-
ference between levels 2p. and is) are observed by tuning the magnetic field. The data appear
to deviate smoothly from the calculated transition energy in the absence of electron-phonon in-
teractions, and the deviation is generally smaller than what is reported in Ref. In addition,
two interaction gaps corresponding to the two-level and three-level resonances are observed,

and many more points are measured above the first gap. As is shown later, these data agree
quite well with our theoretical curve, where possible sources of small corrections are given.

We outline the theory in Sec. II and describe the method of calculation in Sec. III. Our
results are discussed along with conclusions in Sec. IV.

I. THEORY

Consider a donor impurity at the center of the GaAs quantum well of width d in a
Ga V Ga~s DHS system. A magnetic field is applied along the growth direction. For con-

venience, we introduce the two-dimensional vectors K and psuch that k - rq) and t - (,z) Ac'--' i- - --

for the phonon momentum and electron position, respectively. The electron momentum is -- --- .1
W~T ,.* Vdenoted by' (I 1, kz). The total Hamiltonian can be written as IL"'

H =He + Hp,+ H._, I(

ID



where
e .. e- 2  

2
I

e= 1 -A) - IL + VB(z) (2a)

is the Hamiltonian for a hydrogenic impurity confined in the square well VB(z) given by

0, Iz < d/2 (2b)
B V,, IzI > d/2.

The free phonon Hamiltonian is

Hph = HLO + HIN (3a)

HLO = E>WL.' a (9)an(xh+ 2] (3b)

HIN = + + hwaa1 [4i()aaj(R ) l] }•  (3c)

In Eqs. (3), we have introduced the index v to label the material, with v 1 for the well and v

= 2 for the barrier. We have also defined the creation (annihilation) operators amt (c) (am(A:))

for the confined modes and atsj,ajQc) (asjaj(Kc)) for the symmetric and antisymmetric interface
modes of phonons. They obey the commutation relations

= 6a6(R- ") (4a)

[a() = ( )a(')] =0. (4b)

The interaction Hamiltonian He.ph is taken directly from Ref. 5. It consists of two terms:

the electron interaction with confined LO modes, and the interaction with interface modes. As

has been shown in Rel'3, 5, contributions of lattice vibrations outside the well to the polaron

effect are significant only when the well width d is extremely small. For d a 100 A they are com-

pletely negligible. Therefore we have

He-pi = H..LO + H-I ....- (5a)

where .

fm1l,3,...

+m . (kt)sin(! Mz)[am( ) +at (5b)
m:= ,4,..



represents the electron interaction with confined bulk LO phonon modes in the quantum well
in which q = mx/d is quantized, and

He,. (--) cosh(nz)H,-IN -E. .,(,)aoh ,,;, W)[, +, a.,(_
f cosh(tcd/2) (c

inh(z) 
(5c)"~~~ "aa (Rh snh ) + a!, (- 9)] IS- .) [aoi( ) + aa,

sinh~icd/2)I

represents the electron interaction energy with interface phonon modes in the well. The nor-

malization constants are given by

1 4ire2 n ( 1 1
B(")=A.-d; 2 + (mid)2 kc 0  £n' tA. :I. " ,(6a)

S- 're2  (6b)
lB (s)12 AK -1 tanh(icd/2)-. 7 (b

I B.,(r)12 = e2' ___( _ (6c)
Ax El coth(icd/2) + 12'

where A stands for the interface area, ecv and cov denote the optic and dielectric constants of
material v, and Z,(o) is defined by

1 1 1 (4(-w). = c,(,.) - ,. c€,w) - o, (7)

with the dielectric function of material v given by

c ~Lw . _W~(L ).)(w I Al (8)

I3I. : OD OF CALC ATION

We now proceed to calculate the transition energy by perturbation theory. For the unper-
turbed system, we take the hydrogenic impurity in the well with a magnetic field applied normal
to the interfaces. Thus Ho - He + Hpb and He-ph is treated as a perturbation. The energy
levels are calculated by means of Wigner-Brillouin perturbation theory to second order. The
result is

()n i(B) - E.(B) -o(R) (9)

where (B) stands for the corresponding unperturbed energy, and the state In > = nl; N >
is specified by the atomic state ni and the phonon number N.

It is noted, however, that even the unperturbed problem is not exactly solvable. Thus we



employ the variational method to determine the unperturbed energy levels. The trial wave func-

tion is taken to be

f =f(z)G(p, z,0). (10)

The function f(z) in Eq. (9) is the solution to the square-well problem. It is given by

f W f cos(kz), Iz > d/2t~)- Aexp(-k'lzl), Izl > d/2F 1) i t

where the wave numbers kz and k' are related to the first electron subband energy 1 by

k, = /2m.E,/h2, k' = 2 m.(V. - Ei)/h 2 . (12)

The function G(p,zo) is chosen to reflect the symmetry properties of the system. It is given by

G(p, z, 0) = plmI exp(imO - yp 2/4 - f4 2z2 /4), (13)

where we have defined the parameter /

=w,/2R,, ( (14)

with the cyclotron frequency wc - eB/mec and the effective Rydberg Ry = mce 4/2k 2 for the im-
purity. Tequantum-numuer-Mi specifies the impurity levels such that k or the 2p

is, 2p. levels, respectively. The variational parameter is determined by minimizing the energy

of the level in question. All the other levels, for the particular samples used in these measure- /4 4%.
ments,9 can be neglected in these experiments Hence the Hilbert space in our perturbation cal-
culation is truncated to only the three states Is, 2p. and 2p+.

As the matrix element is generally small compared to the transition energy, the perturba-
tion energy in (9) becomes appreciable only when the energy difference in the denominator
matches the phonon energy. This implies immediately that the electron-phonon coupling has
negligible influence on the Is energy level. Hence it is sufficient to calculate AE = e2p + - Els

for the transition energy. Furthermore, we note that significant contribution from the second
----- rm- ) is expectedaround AE = E .. El, + -6 as wel as aroundAE m u.

As can be seen from Eqs. (), the calculation of energy levels involves the evaluatiuon of

four matrix elements

Mi(-f) =< 2p+,OIHI.-L.I2, 1 >.

Ms(7f) =< 2P+,OIH..LoI2P-., 1> (5

M4(7 ) =< 2p+, OIH....g 12p-.,1 I



Explicit expressions for these matrix elements are worked out in the Appendix. Here we just
present the results as a function of the applied field in Fig. 1. It is observed that in both the
two-level and three-level resonance cases, the interface modes always yield larger matrix ele-

ments than the corresponding confined bulk modes, and that M4 is the largest and is generally
3 to 4 times larger than the others. This is understandable because the first Bohr radius of the
impurity is of the order of the well width and the p-state wave functions extend out much farther

in the xy-plane than the s-state wave function.

100
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FIG. 1. Absolute value of the matrix elements of electron-phonon interactions calculated as functions of the

applied magnetic field in the GaAs well of a GaAs/GaAAs double heterostructure.

The energy of 2p + level is then given by

c2p+(-) = E2p+('I) + T(-,), (16)

where T(y) = Ti + T2 + T 3 + T4 represents the perturbation energy. More explicitly, we have

TaW) V f~I < 2p+Je"''sin~mir(J, + Dl)]Is > 12
irKd IJ (,I + (" )2](,2,+ - El. - WL)

a (AWLf & 2S2,(7) dtt2 /, (16a)

rd m 2p+ - El. - 1b12 + (mra,/d)2



T2 e2 / 2 A (hw,,(,c ) g(X) I < 2p+e'11cosh(Kz)I1s > I2
222= jK_ s K cosh 2 (&d) C2p+ - E,- hw,i(x)

+hW~j(1) gi() I < 2p+Ie"sinh(ocz)ls > 12 }
sinh 2 (ld) 2p - E, - hw(ic)(16c)

fo cosh (td/ao) j=1 i.2p+ - El, - hw,(t)J

T3_= 2_(L)_ _ -" d_2_N < 2p+Ie'1 'sin[mr('d - -)]12p- > 12  h 1'V
223 2c~hL)2 Z~2K K2 (2(2p+ - E2 p-. - hWL)2 2 /O t(2 t2e -/2-)2 (16b)

aJ~L)2 zI- (y) S,2(7) dt td2i
27rpdZ- ~p -E 2p- - hWL J0 t2 + (rnraa/do

", ¢1 - T= e2 2r d h " ''(x gj (o) I< 2p+le"T'Ocosh (. z )12p - > !2

224 f i ]d 2  K cosh 2(d/2) Cp E2p - - h~(C

-w,(9) j (r.) I < 2p+Ie'4'sinh(z)2p. > 1
sinh 2(d/2) ,2p+ - E2p_ - aw ()

0 ;../ 7)2 (16d)

_ Ry dt' 2 2 -f t2et 2 /21)2!4 hwj (i)f 1 (t,) 10
8 cosh2(td/a.) j_= C2p_ - E2 p - hws,(t) .'

where 41 and 2 are the variational parameters for Is and 2p. states, respectively, and are deter-
mined by minimbing the energy level in question, ao is the first Bohr radius of the impurity atom,
and m 0L)1 /2 measures the size of the polaron due to LO phonons. We have also
defined in Eqs. (16) the variable t = iao and the functions

S.,(00 = fd2 z-'Yf snITd/-a)z+. Z
Sd/2 . 2 (18)

f/. I da,
= g(t)[J/ d ( +)"/cosh(tz) cosl(k~z)

g, (t) = c., /[! (w,) tanh(td/2a) + !2(wj)]. (19)

The integrals in (16) are still very difficult to evaluate. We adopt a numerical iteration pro-
cedure to compute the transition energy. Let X(y) = e2pAI- Ei. and r(y) - E2p!- E,,. Then -pt
Eq. can be rewritten as gar+

x(T ) = r(,) + T(sy, X). t (20) +

The function r(y) represents the transition energy in the absence of the clectron-phonon inter-



actions and is already known from the variational calculations. Therefore, we start the iteration

with X = r(y) in T for a fixed y. A new X value is obtained from (20) and employed to compute

a new T. The procedure goes on until self-consistency is achieved. The iteration procedure

repeats when y changes, and eventually the transition energy is found as a function of y, which

is proportional to B.

IV. RESULTS AND DISCUSSION

Results of our numerical computation are presented in Fig. 2 in which the ls-2p + transi-

tion energy is plotted as a function of B. The parameters used in the numerical work are d =

125 A, me = 0.067 too, ao = 98.7 A, Ry = 5.83 meV and Vo = 2.30 meV. The solid line includes

the effect of the nonparabolic band mass10 and the dashed line does not. The detted line rep-
A

420 .1

380 ---------- -L0+ 1E12PJ -E fts)

. .. TO+ (E 12p.] -E [is) J
340 -

300 -...
U To
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140 Gets/A1° s Ga ° , As

6'20

0 4 8 12 15 20 24
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FIG. 2. Comparim of experimental data with the calculated is-2 p transition energy as a function of the
apphed field B. The solid line represents results from the present theory including nonparablic band

,,ass. The dashed-dotted line does am include the nonparabolicity correction, and the dashed line
is the transition energy in the absence of lectron-phown interactions calculated from Greene-Bajaj
wa functions with nonparabolic maos corrections included.



resents the transition energy without electron-phonon interactions. It is calculated from
Greene-Bajaj wave functions11 and corrected for the nonparabolicity effect. Experimental data
are taken from a series of measurements reported in Ref. 9. It is striking that the theoretical
curve breaks into three branches separated by two gaps, in good agreement with experimental
data. The pinning effect, or the unperturbed energy level repelling, is apparently a result of
the strong resonance interaction when the denominator of the second-order perturbation energy
vanishes. As the electron does not interact with TO phonons, the appearance of *0paps can
only be attributed to the coupling of the electron with interface phonons which oscillate at fre-
quencies between the bulk art and on,

Further studies, both theoretical and experimental, are necessary for a complete under-

standing of the problem. The determination of the transition frequency from experimental data
is difficult, as the observed intensity distribution in the resonance region deviates greatly from
the Lorentz shape. Theoretical study of the influence of electron-phonon interactions on the
transition probability is needed for detailed comparison with the experimental line shapes and
observed rapid decrease in intensity in this energy region. Furthermore, as we have noted pre-
viously, the trial function (13) has only one adjustable parameter. More accurate functions must

be constructed, for more accurate results.
In conclusion, we assert that it is the interaction of the electron with interface phonon

modes that change the polaronic properties in the reduced geometry. These modes should al-
ways be included in the interpretation of such experiments. Since the coupling constant of the
bulk Frbhlich type cannot be clearly defined for the interface modes, polaronic phenomena ob-

served in the reduced dimensionality should be analyzed by varying the coupling strength

in terms of the bulk Fr6hlich interaction. , 4
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APPENDIX

The integration of tlimatrix elements can be evaluated in the following manner. We start
with Mi = Im Mim where

Mi, =< 2p+le"';sin mr( + )I18 >. (Al)

av, 3
Using the wave functions from Eqs. ( )-(X wea

M I,. = C oV S ( ) j dP 'I 2 I/2p2 w "2 Y e od~ei'-' m(coo 0- isinob) (A2)



//

where we have defined the function .

~d/2 _r(2f2 ./
Sme 1 3 sin m7r(a-.. + (A3)

dl -. 2 -d 2

As we have already noted before, the integration of z can only be done numerically. Here, we

shall work on

I,= j doe i °a4 p  cos ° Cs

JOO

00o _ ,)n ( p)2n+l 02v

= 'i (-)+ j dO(cos 0)2(ft+I)= 0 2(n + 1)!! 1

- . (-l)n(a0°Cp) 2n+ [2(n + 1) - 1]!! (A4)
n=0 (2n+ 1)! 2n+l + 1) (2r)

= -0 (-1)n(ao p) 2n+ 1

-- 22n(n + 1)!n! = 21riJi(a.ip)

where JI(aocp) is the Bessel function. The sine term in (A2) vanishes by direct integration.

To evaluate I MIM 12, we need

[jo" dpp2e-P0/2Ji(aoKp)]

= (-l)(aK./2)2n+1  00 dpp2n+3e - p2/2]

= (n + 1)!n! JO(A,5)

00 [ I(f~2fl 'n+z1 1 [1] -(n+2) ]- = n + )!n! 2' -2 2 r(n + 2)

= (aoc/9r) 2eU-°.,,)/7T.

A combination of (A2), (A3) and (AS) then yields the last line of Eq. (16a).
In the calculation of M2, we need only to consider the symmetric term, as the antisymmetric

term vanishes. Thus

M2 =< 2p+le i'acoeh(Cz)ilS >, (A6)

which has the same form as Mim except for the z-dependence. Hence, the above procedure ap-
plies provided that Sm(y) is replaced by the function fi(ty) as given by (18).

The matrix element M3 - I M3m where



M31m =< 2p+Ieisin mW( + 1p

P3dpe-1PI2 f21 d4ei'°PC (cos 20 - isin 20).

Again, the sine term vanishes by direct integration, and we are left with the cosine term, which

is

13 = j d4e'a.go CO0 cos 20

= 1 dO cos 0 cos(a.,Kp cos4)

- (-1)'(ao.p)2, o2v A8

=
=(,,=) COs" 4 cos 2,)d4)

00 (-1)-(ajCp) 2-  (2n)!!
E (2n)! 2n+l(n + IT

= 2s[1 - J2(a.icp)].

Substituting (AS) into (A7), we have

2w ]o Ppe-0 2"(1 - J2 (a..p)]dp

= (-e)"(,'-,,,, ,p3d,

Ir_~ 2: 00 -1(n - 1)(n + 1)!" dp (9

£ (-)n(aocp) 2n 1(7)-(2n+4)/2 + 2)

n=Z. 2n-'(n - 1)(n + 1)! 2 2)r +

1 1 2(a.c) es2
If 73

The evaluation of M4 is basically the same except for a different z-dependence, and we shall not

repeat it here.
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