
Technical Report .

AD-A244 697 CMU/SEI-91-TR-22

Software Engineering nst;tute

OTIC
JAN 241992 Building Distributed Ada Applicationsfl Jfrom Specifications

8 F1;TO and Functional Components

ADennis L. Doubleday
Mario R. Barbacci

Charles B. Weinstock
Michael J. Gardner

Randall W. Lichota

* December 1991

for public releaseIM sale; its
distribution is unlimited.

*i

92-019831 1 2 3 ' 1,i 4klii~ll!l~ti!l'lill!!!l

BetAvail1able COPY

Nif ifollowinig statement of mi~liuranco ioi ffzi it S~tojn Fqure'iF mi &I", 014 ft;j F jj Ii j' toSar)411If' . t

pcoplo arri Included in [he dveraity Iiihich rnal~u- C am nego M alloti mi tF(,1~fj l a I ? rl nil kin j I t I' ' I, . Fji CFr-v lo V, F . I
onuinl. sex, handicap, religjion, creed, aije.ry. beFie~f, figoJ, voFOFIJI '~F FoF r sI nor'ii.11IF (
Carnagie Mellon Universily dos riot rJ~rr,mindl and carneie m olon t Fnn'vnIIV -% ton. lIid #,,.I (;I Iz d t ., jjt -
col or1, nai naaF orig in, w it~ or h iandienip i I OIIio aio nf i tl 1 of1110l Ie Civil Hiigfls At (f W0 4 , Ttle IX n? W e 0I dfir l m .1 A ji n r' n te i 1 !. I F A ti'Flehabiilniion ACt of 1913 or othier federl, qnI0e, or Foca1lFaws or riocnutVO orriorir F IIII iT ~IfI'j- M ofe lin t d' f r~ t ^ 'f ,~he batisIo FalgiFmOF, Cred. anrcstry, beie, go, veteran cILIIUR or w5tioa avtItrnnr vinfalnl'n Ni fvhrdmal 't lo, 1(1iF '.0- ."'h,Ing mlfAteaclionol it poicy rthould be directed Io Im Provost, (Camnpin Melon IIrnnim y. 5(0 rrivo .Aif, i IM Pvi A t rrFbiVice laPriesdnt for rnmtilmer, ratnifjh, Mellon Unive~rsity, r" O tyx Nih a errow 1Ir.iunnnl V~A I", ' ouI, 1)Y~lI n

Technical Report
CMU/SEI-91 -TR-22

ESD-91 -TR-22
December 1991

Building Distributed Ada Applications
from Specifications

and Functional Components

Dennis L. Doubleday
Mario R. Barbacci

Charles B. Weinstock
Michael J. Gardner

___________ Randall W. Lichota
Accesion For

Distributed Systems Project
NTIS CRA&I
DI IC TAB
U. a-,.cou,,,ced E

OiAt ibutionI

Availabiiity Codes
Avail AolIor

Dist S.ca

I Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Charles J. Rya j ,
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.

Copyright 0 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scentific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Motivation 1

2 Introduction to Durra 3
2.1 The Durra Language 3
2.2 The Durra Application Development Support Environment 8

2.2.1 Compilation and Libraries 8
2.2.2 Code Generation 9
2.2.3 Support for Prototyping Applications 9
2.2.4 Version Control 11

2.3 "me Durra Runtime Environment 11
2.3.1 Model of Interprocess Communication 11
2.3.2 The Durra Runtime Interface 12
2.3.3 Clusters 13
2.3.4 Dynamic Reconfiguration 14

2.4 Application Issues 15
2.4.1 Programming Language Restrictions 15
2.4.2 Support for Heterogenous Machine Architectures 15
2.4.3 Application Domain Independence 16

3 Related Work 17

References 19

CMU/SEI-91-TR-22

ii CMUISEI-91 -TR-22

List of Figures

Figure 2-1: A Template for Task Descriptions 4
Figure 2-2: A Primitive Durra Task Description 5
Figure 2-3: Generic Channel and Task Descriptions 6
Figure 2-4: A Compound Task Description 6
Figure 2-5: A Producer-Consumer Application Description 7
Figure 2-6: A Producer-Consumer Application

Description Featuring Dynamic Reconfiguration 8
Figure 2-7: Application Development Scenario 10
Figure 2-8: Durra Runtime Services 12
Figure 2-9: Interprocess Communication in the Durra Runtime 13

CMU/SEI-91-TR-22 iii

iv CMU/SEI-91 -TR-22

Building Distributed Ada Applications from
Specifications and Functional Components

Abstract: Durra is a language and support environment for the specification
and execution of distributed Ada applications. A Durra programmer describes
an application as a collection of processes and data links. More complicated
application descriptions may also include a structuring of this collection that
varies dynamically according to a set of reconfiguration conditions. Each
process defined in the application description is associated with an
independently compiled Ada subprogram that implements the behavior of that
process. The Durra programmer specifies the distribution of application
components by assigning them to virtual nodes called clusters. For each
cluster, the Durra compiler generates a multithreaded Ada program that
imports the code for the processes assigned to that node and manages their
execution. Durra also facilitates rapid prototyping through the use of tools that
interpret timing specifications associated with processes and generate Ada
code to simulate their expected behavior.

1 Motivation

Computing environments consisting of loosely connected networks of special and general pur-
pose processors are becoming commonplace. The corresponding trend in software is away
from sequential programs running on large uniprocessor hardware toward concurrent pro-
grams distributed across multiple, possibly heterogeneous, platforms. Today, developers of
such applications typically "hard code" the allocation of computing resources into their appli-
cations by explicitly assigning specific tasks to run on specific processors at specific times.
The component tasks of such an application require built-in knowledge about the structure of
the application and the allocation of resources in order to communicate with other tasks. This
coupling of function to structure complicates modification of the application, poses obstacles
to runtime changes in the application structure, and prevents reuse of the tasks in other envi-
ronments. Developers new tools that allow them to abstract application structure from func-
tion.

In this paper we describe Durra, a language and support environment for the specification and
execution of distributed Ada applications1 .

1- An earlier version of this paper was presented at TRI-Ada'91, San Jose, California, October 22-25, 1991. Rnd
appears in the conference proceedings.

CMU/SEI-91-TR-22 1

2 CMUISEI-91 -TR-22

2 Introduction to Durra

2.1 The Durra Language

Durra [1] is a task-level application description language.2 The basic building blocks of the lan-
guage are the task description, which specifies the properties of an associated subprogram or
subsystem, and the channel description, which specifies the properties of an Ada package im-
plementing a communication facility. See Figure 2-1 for a Durra task description template.
Task descriptions may be either primitive or compound. A primitive task description represents
a single thread of control.3 A compound task description is a composition of other task and
channel descriptions. Channel descriptions are syntactically similar to primitive task descrip-
tions although the implementations exhibit different behaviors. Task implementations are ac-
tive components; they initiate requests to send or receive messages by calling procedures pro-
vided by the runtime environment. Channel implementations are passive components; they
wait for and respond to requests from the runtime environment. Task and channel implemen-
tations are "black boxes," i.e., the internal workings of a component are not a consideration in
the construction of a Durra application.

A Durra programmer describes an application as a collection of processes (instances of Durra
task descriptions) connected to each other in a graph structure via links (instances of channel
descriptions). Lower level components are used as building blocks for higher level task de-
scriptions. Application descriptions are simply compound task descriptions that describe a
complete application.

A component's input/output interface is specified by the ports section (see Figure 2-1) of its
description. Ports are named, unidirectional, locally-defined conduits through which processes
may transmit/receive data. Ports have a Durra data type associated with them to allow seman-
tic checking of intercomponent port connections.

Durra data type declarations define either a size type or a union type. A size type declaration
associates an identifier with a data size (or a range of data sizes) expressed in bits. A union
type declaration defines a new type as the union of one or more previously declared types.
This type concept is analogous to our 'black box" treatment of tasks--no semantic information
other than the type name and the size of the data is derived from a type declaration. Here are
some examples of Durra type declarations:

type byte Is size 8;
type scalar iS Size 4*sizeof (byte);
type message Is union (byte, scalar);

2- Throughout this document, the term task refers to a generalized 'thread of control" concept rather than to the

analogous Ada construct, except where noted.
I The actual Ada code that implements a Durra task may, in fact, be a multitasking program. However, from the
Durra perspective the program is a single thread of control.

CMU/SEI-91 -TR-22 3

task taskname (parameter-list)
-- Values for the parameters are provided in task selections
ports

port -declarations
-- A description of the input-output interface of the task

behavior
specification-list
-- Labelled formal specifications of the behavior of the task

attributes
attribute-value-pairs
-- A list of additional properties of the task

components --(for compound tasks only)
component -declarations
-- A list of task and channel selections

structures --(for compound tasks only)
component -connection-structure
-- A list of component connections

reconfigurations -- (for compound tasks only)
condition-transition-pairs
-- A list of conditional structure changes

clusters --(for compouni tasks only)
cluster-component-associations
-- A list of named physical groupings of components

nd taskname;

Figure 2-1: A Template for Task Descriptions

The behavior section of the component description includes zero or more formal specifications
of the behavicr of the component's actual implementation. These specifications are not inter-
preted by the Durra compiler directly, but by associated tools. Although behavioral specifica-
tions are not part of the Durra language, a Durra component description provides a convenient
placeholder for such specifications. Component descriptions containing behavioral specifica-
tions may then be used as components of an application description. A specification analysis
tool is thus provided with a framework for reasoning about the composition of the specifica-
tions within an application architecture.

The attributes section defines additional properties of the component, such as version number
or type of processor required. A primitive task description must be associated (via an attribute
value) with a specific Ada procedure that is its implementation.

4 CMUISEI-91 -TR-22

Figure 2-2 is an example of a primitive Durra task description. The task producer has one out-
put port for data of type message. It is intended to run on a Sun4 processor, and its implemen-
tation is the Ada procedure "producer" in the library "/usr/durra/srclib".

task producer
ports
output : out message;

attributes
processor = "sun4";
procedurename = "producer";
library = "/usr/durra/srclib";

end producer;

FIgure 2-2: A Primitive Durra Task Description

A channel description is always primitive and is associated with a specific Ada package that
implements it. Channels are intermediary processes which control the flow of data between
user processes. Channel implementations for many frequently used communication disci-
plines are provided as part of the Durra support environment. These include FIFO and priority
queue, broadcast, and merge, among others.

Both task and channel descriptions may be parameterized to allow for more flexible use of
components. For example, one instance of a broadcast channel may be defined to have 3 out-
put ports and another instance to have 10 output ports. Figure 2-3 contains descriptions of a
generic channel (fifo) and a generic task (consumer). Each has a formal parameter that deter-
mines the data type of messages it can handle. The buffersize parameter for the fifo channel
specifies the number of messages that can be buffered by each input port of the channel. The
code parameter for the consumer task specifies the Ada unit that implements the task for the
given data type. Parameter values are supplied by task/channel selections. Selections are
templates (identical to primitive description templates) that are used in compound task de-
scriptions to select lower level components with the desired properties.

A compound task description must include additional information about its structure. Its com-
ponent processes and links are defined in its components section (see Figure 2-1) and the
manner in which they are logically connected (which may vary dynamically) is specified in its
structures section. If the structure of the compound task is allowed to vary, then there must be
a reconfigurations section that describes a set of structural changes and the conditions under
which the changes will occur. The clusters section specifies the physical grouping of compo-
nents into executable images, which may well be orthogonal to the logical connections de-
scribed in the structures section.

Figure 2-4 is an example of a compound task description. The task name consumer2was cho-
sen to avoid confusion in this presentation; however, we could have overloaded the name con-
sumer from Figure 2-3 without conflict since the two tasks have different parameter and port
profiles. Consumer2 defines two internal processes, each of which is an instance of the previ-
ously defined consumer. The process declarations in the components section are examples

CMU/SEI-91-TR-22 5

channel fifo(msgtype: identifier,buffer size: integer)
ports
input: in msgtype;
output: out msg_type;

attributes
processor = "sun4";

bound = buffersize;

package-name = "fifochannel";
library = "/usr/durra/channels";

end fifo;

task consumer (msgtype:identifier,code: string)
ports
input: in msgtype;

attributes
processor = "sun4";

procedure-name = code;
library = "/usr/durra/srclib";

end consumer;

Figure 2-3: Generic Channel and Task Descriptions

task consumer2
ports
inl: in byte;
in2: in scalar;

components
cl: task consumer(byte, "byteconsumer");
c2: task consumer(scalar, "scalarconsumer");

structure
Li: begin

baseline cl, c2;
bind inl = cl.input,

in2 = c2.input;
end Li;

end consumer2;

Figure 2-4: A Compound Task Description

of task selections that supply arguments to bind values to the formal parameters of the con-
sumer task description. The structure section in Figure 2-4 is very simple. In Durra, the struc-
ture of an application is described as a collection of labelled configuration levels, which may
be either nested or independent. There is only one configuration level (L 1) in this application
description. The baseline statement defines which processes and links are active at a given
level. The bind statement defines a binding between the external ports presented by the inter-
face of consumer2 and the ports of the internal consumer processes. Since the internal pro-
cesses do not communicate between themselves, no link declarations are required.

6 CMU/SEI-91 -TR-22

In Figure 2-5 we provide a Durra description of the classic producer-consumer problem as an
example of a compound task description which also happens to be an application description.
The building blocks for the task producerconsumerare the primitive components identified in
Figure 2-2 and Figure 2-3. Since this is a top-level description, there are no external ports to

task producerconsumer
components
p: task producer;
c: task consumer(message, "message consumer");
buffer: channel fifo(message,10);

structure
Li: begin

baseline p, c, buffer;
buffer: p.output >> c.input;

end LI;
clusters
cll : p, buffer;
c12 : c;

end producerconsumer;

Figure 2-5: A Producer-Consumer Application Description

bind, but we must establish the connections between the processes that are defined internally.
Connections are expressed in terms of the link implementing the connection. Thus, the link
buffer connects the port p.output to the port c.input. The Durra compiler ensures that all ports
are connected and that they are connected to ports of the proper data type and direction.

The Durra programmer specifies the distribution of application components by assigning them
to virtual nodes called clusters. The clusters section of the description specifies that process
p and link bufferwill be physically grouped together at runtime, but process c will be linked into
a separate executable program. This concept will be discussed in more detail in Section 2.2.2.

We require a more complex application description in order to demonstrate Durra's ability to
express dynamic reconfiguration requirements.Figure 2-6 is an extension of the description in
Figure 2-5. Two new components have been added: an instance of consumer2 and an in-
stance of a channel which implements a deal-by-type discipline. We omit the description of
deal bt channel here to conserve space. This channel accepts input of a generic type and
deals the input to a receiver requesting that type of data. The structures section in this example
has been expanded to include a second configuration level, L2, which is nested within level
L 1. This level incorporates the two new components, c2 and dealer, and excludes two of the
components from L 1, c and buffer. Since process p is not explicitly excluded from the nested
configuration description, it survives into the new configuration. The port p.output is reconnect-
ed to link dealerand the two input ports of c2are associated with the two output ports of dealer.
Note that this is not a data type conflict since the ports of dealer are defined to be of type mes-

sage, which is the union type encompassing the types byte and scalar, the types of ports

c2.inI and c2.in2, respectively.

CMU/SEI-91-TR-22 7

task dynamic_producerconsumer
coiponents
p: task producer;
c: task consumer(message, "message_consumer");
c2: task consumer2;
buffer: channel fifo(message, 10);
dealer: channel deal bt channel(2,message);
structure
Li: begin

baseline p, c, buffer;
buffer: p.output >> c.input;

L2: begin
include dealer, c2;
exclude c, buffer;
dealer: p.output >> c2.inl, c2.in2;

end L2;
end Li;

reconfigurations
enter -> LI;
Li => L2 when signal(c, 1);
clusters
cll : p, buffer, dealer;
c12 : c, c2;

end dynamicproducer consumer;

Figure 2-6: A Producer-Consumer Application Description
Featuring Dynamic Reconfiguration

The reconfigurations section of the dynamic producerconsumer application description pre-
scribes the conditions under which the configurations specified in the structures section shall
be entered. Transition from one configuration to another is indicated by a configuration name
pair on opposite sides of an arrow operator. When the application is in the configuration on the
left-hand side of the arrow, the application is eligible to reconfigure to the configuration on the
right-hand side of the arrow. A condition is usually associated with the transition, as in the tran-
sition from L I to L2 in Figure 2-6. In this particular case, the transition will occur when the Durra
runtime receives a signal (see Section 2.3.4) from process c. Durra assigns no semantic con-
tent to particular signal values; the interpretation of such signals is a function of the application
description. The transition to configuration L I is a special case-- L 1 is to be entered uncondi-
tionally at application start-up.

2.2 The Durra Application Development Support Environment

2.2.1 Compilation and Libraries
Compiled Durra descriptions are maintained in libraries in an intermediate attributed syntax
tree form. A Durra library may have multiple ancestor Durra libraries from which previously

8 CMU/SEI-91 -TR-22

compiled descriptions are inherited. A library manager tool is used to create and manipulate
these libraries.

Compilation of a primitive task/channel description results in a library entry which contains a
reference to the Ada unit that is specified as the implementation of the description. For a com-
pound Durra task description, the compiler uses the information provided in each task or chan-
nel selection to pick a component description that satisfies the selection requirements from a
Durra library. If more than one component satisfies the requirements, the compiler picks the
one most recently entered in the library (and warns the user about the ambiguity). The com-
pound description is then entered in the library with pointers to the library entries for its com-
ponent descriptions. Figure 2-7 shows graphically the relationships between the tools, librar-
ies, and environment described here and in the following sections.

2.2.2 Code Generation
If the compound description is a complete application description, then the Durra compiler can
generate an Ada package body for each cluster defined in the application. The package body
imports the implementations of the components assigned to the cluster, creates Ada tasks to
serve as threads for the implementations, generates code to evaluate reconfiguration condi-
tions (if any are specified), and defines an Ada task that modifies the cluster structure as re-
quired. All these activities are specific to the cluster for which the package body is generated.
The package body also defines a set of tables, common to all clusters in the application, that
describe the complete application structure. A hardware configuration table, which defines the
environment in which the distributed application will run, is optionally included. (If not included
here, it must be specified at runtime.) As part of the support environment, we provide a set of
runtime support packages that are used by all clusters. These support packages, the cluster-
specific package body, and a driver subprogram are combined into a single Ada program that
implements the cluster.

2.2.3 Support for Prototyping Applications
In general, the Ada implementation associated with a Durra task description will be hand-cod-
ed. However, for prototyping purposes, we provide two tools that interpret a particular type of
behavioral specification called timing expressions. Timing expressions specify the duration of
and intervals between port operations that the finished component is expected to demon-
strate. One of the tools is an emulator that mimics any such specification; the other generates
an Ada procedure that mimics a specific timing specification. The emulator or the generated
procedure can be specified as the "implementation" of the component and imported by a clus-
ter like any other user procedure.

We anticipate the development of additional tools to support emulation or code generation
from other types of formal behavioral specification. We are currently working with Hughes Air-
craft Company to develop a generator for a language based on restricted activity and data
graphs [2]. These graphs may be used to define the flow of control and data within a Durra
task as well as its logical, timing, and resource constraints. The Specification Methodology for

CMU/SEI-91-TR-22 9

Processors
Cll

Application
Description
(Durra)

Compiler Compiler

~Code

Generators

Durra Libraries Ada Libraries Cluster ExecutablesAssoc.

- Task descriptions Task implementations
- Appl. descriptions - Generated tables

- Runtime support

Figure 2-7: Application Development Scenario

Adaptive Real-Time Systems (SMARTS) describes how these graphs may be used in conjunc-
tion with the Durra language to specify the software architecture of highly adaptive real-time
systems. In particular, this methodology defines a strategy for implementing dynamic task pri-
orities using the facilities of the Durra language.

10 CMU/SEI-91 -TR-22

2.2.4 Version Control
We rely on vendor-supplied Ada library management tools to ensure version control for the
Ada implementations associated with the Durra components. Since we are working in a Unix
environment, we support version control of Durra application descriptions through automatic
generation of a "make" file for each application. This is made possible by description depen-
dency information maintained in the Durra libraries. The "make" file also coordinates the two
control activities, ensuring that regeneration of the clusters due to changes in the Durra appli-
cation description always uses the appropriate Ada units.

2.3 The Durra Runtime Environment

The Durra runtime environment:

* Establishes communications between clusters.

* Starts and terminates Durra processes and links.

* Transports data between Durra processes and links.

* Evaluates reconfiguration conditions.

* Performs reconfigurations.

The Durra runtime has no responsibility for scheduling Durra processes and links other than
starting and terminating them. Since they are implemented by Ada tasks, they are scheduled
by the Ada runtime and, where applicable, the host operating system scheduler. The priority
of a Durra process can be passed to the Ada runtime via a "priority" attribute in the task de-
scription.

2.3.1 Model of Interprocess Communication
Durra implements a buffered message passing model of interprocess communication. Recall
from Section 2.1 that Durra channels may have a "bound" attribute. The value of this attribute
determines the size (in number of messages) of the buffer associated with each input port of
the channel. When a producer process attempts to send data to a channel, the producer will
block (i.e., be suspended) if the buffer associated with the port is full. Conversely, a consumer
process attempting to read data from a channel will block if the buffer is empty.

Application designers thus have control over the flow of data between processes. Setting the
buffer bound to zero forces synchronous communication, since either process will block until
the other arrives. For practical purposes, one can achieve asynchronous communication by
setting the bound to a very large number.

It should be noted that a Durra process may have additional input/output capabilities beyond
its Durra ports. An example Is reading data from a file; this can be modelled with a Durra chan-
nel, but it is not strictly necessary.

CMU/SEI-91-TR-22 11

2.3.2 The Durra Runtime Interface
An Ada procedure that implements a Durra task accesses Durra runtime services via the
DurraInterface package. Figure 2-8 lists the services available to the Ada programmer. A pro-

Finish
-- Inform the Durra runtime that the process is preparing to terminate.
GetApplicationTime
-- Get elapsed time since this application entered its initial configuration.

Get Attribute
-- Get value of an attribute defined in the Durra description of this process.

Get Port
-- Get data from a Durra port.

GetPortID
-- Obtains a handle for a Durra port name.
GetProcess Time
-- Get elapsed time since this process started.
Get_TypeID
-- Obtains a handle for a Durra type name.

Initialize
-- Obtains a ProcessID, a handle for further runtime service requests.

Raise Signal
-- Send a signal to the runtime.
Safe

-- Indicate that it is safe to perform a reconfiguration involving
-- this process.

Send Port
-- Send data to a Durra port.

TestInputPort
-- Returns the number of messages now available on this port, as well as
-- the type and size of the next message that will be delivered.
TestOutputPort

-- Returns the number of messages that the process is guaranteed to be
-- able to send without blocking.

Figure 2-8: Durra Runtime Services

cedure will typically begin by calling Initialize and then make one or more calls to GetPortD
and Get TypelD. This establishes the presence of the process with the runtime and provides
the process with the Durra object handles necessary for interprocess communication. It can
then use the SendPort and GetPort calls to transmit and receive data. The Test InputPort
and TestOutputPort calls may be used to test the status of the port in order to avoid blocking
when sending and/or receiving. When the procedure has completed its work it must call Finish;
failure to do so causes unpredictable application behavior.

The implementation of the port-related calls varies depending on the distribution of the pro-
cesses and the link involved in the transaction. In Figure 2-9 we see an example of two differ-
ent kinds of interprocess communication. The gray boxes in the figure represent Ada tasks. In
Cluster 1, user processes P and Q are communicating through link A. Process P is also com-
municating with remote user process R through remote link B. Links are passive tasks; they
are servers for requests from processes. So in order for process P to send data to process Q,

12 CMU/SEI-91 -TR-22

,ni...s...l Interprocess Communication - . Ada rendezvous

Cluster I .Cluster 2

...aagssm n m l.i

Figure 2-9: Interprocess Communication In the Durra Runtime

both must rendezvous with link A. If P is blocked while attempting to send data, then its ren-
dezvous must be ended to allow link A to process other requests. Process P must then issue
a second entry call to wait for notification that the buffer is no longer full. Similarly, process Q
will block if the buffer is empty. The rendezvous must be released and process Q must issue
a second entry call and wait for data to arrive. So if all three processes are local, a minimum
of two and a maximum of three rendezvous are required to transfer the data. For non-local
communications, each cluster uses a pair of Ada tasks, RemoteOut and RemoteIn. In order
for process P to send data to process R through link B, a total of six or seven rendezvous are
required, as well as two network messages. Although the work load is distributed, this is obvi-
ously a high overhead for message delivery and we are currently examining ways to reduce it.

2.3.3 Clusters
The result of the compilation process described earlier is an executable program for each clus-
ter named in the application description. A wide range of distribution choices is available to the
programmer, from assignment of all components to a single cluster (the degenerate case, in
which the application is not actually distributed), to assignment of a single component per clus-
ter. The clusters themselves may then be assigned to processors in various combinations
ranging from all on one processor (in multiprocessing environments) to one cluster per proces-
sor.

To avoid starting all the clusters of a Durra application independently, a tool external to the
Durra runtime may be required. In the UNIX environment, we use a program called the
Durra_Launcher to start all clusters except the first, which is started by hand. This cluster is
considered the master, a first among equals. The master cluster is then responsible for in-
structing the DurraLauncherto start all the other clusters. Once started, a cluster attempts to

CMU/SEI-91-TR-22 13

establish communications with the other clusters in the configuration by means of an estab-
lished protocol.

Mastership is a dynamic status that may be passed among clusters as the structure of an ap-
plication evolves. The master differs from the other clusters primarily in its responsibility for
control of the reconfiguration process. There are two reasons for the designation of a master.
The first is that a reconfiguration condition expression may be composed of subconditions
which are detected in separate clusters. A logical conjunction of these subconditions must be
evaluated in either a single cluster or in all clusters. We have chosen a single master cluster
since this requires less intercluster communication. For example, assuming the structure
shown in Figure 2-9, the subexpressions in the condition "signal(P,1) and signal(R,2)" would
be detected in Cluster 1 and Cluster 2 independently. The evaluation of the complete expres-
sion would be performed in the cluster designated as master. The master should therefore be
designated as the cluster where reconfiguration condition evaluation can be done most effi-
ciently (locally). This may vary at different configuration levels, so the master designation is
assignable. Once an entire reconfiguration condition evaluates to true, the reconfiguration
must be initiated. That is the second reason for the single master approach. One cluster must
control the initiation of reconfigurations in order to avoid concurrent incompatible reconfigura-
tions. The master cluster notifies the other clusters when a reconfiguration is beginning. Then
the reconfiguration is carried out in parallel by the individual clusters, with each cluster respon-
sible for the changes that affect its local component set. In case of failure of the master cluster,
the surviving clusters must agree on a new master. User components in the failed cluster can
be restarted on a new cluster, but their computation states will be lost unless the application
has provided some means of recovering them.

As mentioned earlier, the hardware configuration on which the distributed application will run
must be specified either at compile time or at runtime. The hardware configuration information
is contained in a file. If this file is supplied to the Durra compiler when Ada code is generated,
then the information can be included in the cluster-specific tables being generated. If supplied
at runtime, the file must be read and the tables modified. In either case, the specification of
hardware resources must be complete; Durra does not support dynamic reconfiguration of the
application platform. Hardware specification at compile time decreases cluster initialization
overhead at the cost of experimental flexibility. The reverse is true of runtime specification.
Since the runtime specification overhead is small and the cost of code regeneration and
recompilation can be high, the likely best choice is to use runtime specification during devel-
opment or experimentation and compile time specification for a production system.

2.3.4 Dynamic Reconfiguration
Dynamic reconfiguration of an application is the modification of its structure while the applica-
tion is running. This may involve addition or subtraction of processes, or simply redistribution
of the existing processes. Reconfiguration in the Durra world does not involve process migra-
tion. A task that is expected to run in two different clusters during the lifetime of an application
must be declared as two separate process components.

14 CMU/SEI-91 -TR-22

A Durra reconfiguration condition is a Boolean expression involving information available to
the clusters at runtime as well as signals from application processes. If reconfiguration condi-
tions are present in the application description, then part of the code generated for each cluster
is a case statement that allows evaluation of the conditions enabled at each configuration lev-
el. Conditions based on elapsed time are implemented as delay statements; when the delay
expires, the condition is true. When an expression evaluates to true, the case statement pre-
scribes an entry call to the StateChangertask, which is also generated by the Durra compiler.
The master cluster passes the information to the other clusters. In each cluster, State Chang-
er carries out the reconfiguration, starting new tasks and terminating old ones as required to
transition to the new configuration.

2.4 Application Issues

2.4.1 Programming Language Restrictions
Most Durra tasks will be implemented in the Ada programming language. In some Ada envi-
ronments, one may be able to incorporate procedures written in other languages as Durra
tasks. To do this, one has to have an environment that allows for Ada to interface to the other
language and that also provides a mechanism to call Ada subprograms from the other lan-
guage so that the foreign procedure can call Durra runtime services.

In our original implementation of Durra, each user component was mapped onto an operating
system process. The Durra runtime support for each processor was also in a separate pro-
cess. An advantage of this approach is the ability to support mixed-language applications eas-
ily; one only needs an implementation of the Durra runtime interface for each language to be
used. There are several disadvantages associated with this approach, though. One is the cost
of interprocess communication. In applications where multiple Durra processes are assigned
to a single processor, it is more efficient to model the concurrency using Ada tasking within a
single operating system process. The original Durra runtime was also less portable; "ince it
assumed a multiprocessing operating system environment, it could not be ported to bare ma-
chine targets. Because we felt these disadvantages outweighed the value of language inde-
pendence, we made a conscious decision to provide only minimal support for mixed language
Durra applications.

2.4.2 Support for Heterogenous Machine Architectures

Durra allows distribution of a single application across some number of physical processors.
There is no requirement that these processors be homogeneous. We have run small experi-
mental applications that were distributed across Sun4, Sun3, VAX/ULTRIX, and VAX/VMS
hosts in various combinations. Of course, each processor in any potential Durra platform must
have a validated Ada compiler available. Since the components of a Durra application are
standard Ada programs, there are no special requirements on the Ada compiler or runtime.
The Durra runtime library must be ported to each target architecture in the platform and all the

CMU/SEI-91-TR-22 15

processors must support a common communication protocol. We have used the TCP protocol
in our experiments to date.

Data representation issues are not addressed by the Durra runtime. This is a natural result of
Durra's treatment of component tasks and types as 'black boxes." Durra tasks do not know
what happens to data once it has been sent to a port. Therefore, it is up to application design-
ers, who do know about the target architectures and the distribution of processes, to account
for required data representation changes in their designs. This can be done by either inserting
additional processes or special purpose links that transform the data as they transfer it.

2.4.3 Application Domain Independence
The Durra language and runtime environment are domain-independent. They support the de-
velopment of applications consisting of distributed, message-passing components. The nature
of the components and messages is a domain-specific concern, above Durra and its imple-
mentation. For example, one could implement a distributed programming environment in
which various tools (compiler phases, library managers, etc.) execute as cooperating Durra
tasks, sending various kinds of data structures (annotated syntax trees, module dependency
lists, etc.) through channels which provide the appropriate data transformation and filtering op-
erations. Both tasks and channels could be user written or automatically generated by compil-
er-compilers or similar tools using formal language specifications and interface description
languages such as IDL[3]. These domain-specific tools are outside the scope of our project.

16 CMU/SEI-91 -TR-22

3 Related Work

There are two distinct areas of ongoing research to which Durra is related. One is support for
distribution of Ada programs in particular. The other is programming languages for the speci-
fication and prototyping of large-grained parallel applications in general.

Numerous projects are underway to develop tools and methodologies for the support of dis-
tributed Ada software. These attempts fall into two broad classes: either the application is writ-
ten as a single Ada program and then partitioned for distribution, or the application is written
as multiple programs which communicate through some standardized interface. Examples of
the former include APPL [4], Aspect [5], and DARTS[6]. Examples of the latter include DIA-
DEM [7] and DARK [8]. Single program approaches have many advantages, including com-
munication via standard Ada facilities and type and consistency checking enforced by the lan-
guage. However, APPL requires extensive compiler support which makes distribution to het-
erogenous processor environments problematic. In DARK and DIADEM, separate program
components communicate via a remote procedure call and a remote rendezvous mechanism,
respectively. DARK does not provide language support for distribution specification, so appli-
cation structure is not separated from function. The virtual node approach taken in DIADEM is
similar to ours, but DIADEM allows for compile-time checking of interfaces like single program
approaches. Durra's advantages over all these approaches are its language support for recon-
figuration and component reuse in multiple application environments, and its provision of sig-
nificant flexibility (via user-defined channels) in the forms interthread communication may take
(asynchronous versus synchronous, FIFO versus priority message arrival, etc.).

The three systems most like Durra are NAS[9], CSL/Model [10], and Conic [11]. NAS, which
is being used in at least one fielded software product, is probably the most mature technology
in this arena. Its distributed application structure model is very similar to Durra's. NAS provides
operator interfaces in support of performance/error monitoring and operator-controlled dynam-
ic reconfiguration. However, Durra's method of software architecture specification and its ap-
plication program runtime interface is simpler than that of NAS. CSL is used to specify appli-
cation interconnection and distribution in the same manner as Durra. A CSL application can
incorporate implementations generated by the Model compiler from behavioral specifications.
CSL's support for reconfiguration and communication flexibility is limited, though. Conic's con-
structive approach is similar to Durra's but since Conic applications must be written in Pascal,
their virtual nodes cannot be multithreaded. Unlike Durra, both CSL and Conic offer graphical
front ends to their respective specification languages.

Polylith [12] and Reality [13] are highly flexible distributed application description languages
focused on support for prototyping. Polylith provides a more flexible approach to dynamic
reconfiguration than Durra, but it requires user intervention. Polylith modules are connected
via a software bus, to which a user can attach new modules at arbitrary times. A framework
for application-controlled reconfiguration is under development[14]. Reality is a more ambi-
tious project; Its long-term goals include facilitating the evolution of prototypes to production
quality software/hardware systems.

CLA/SEI-91-TR-22 17

18 CMU/SEI-91 -TR-22

References
[1] Barbacci, M.R., D.L. Doubleday, C.B. Weinstock, M.J. Gardner, J.M. Wing. Durra: A Task-

Level Description Language Reference Manual (Version 3), SEI Technical Report
CMU/SEI-91-TR-18, December, 1991, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa.

[2] Muntz, A.H., and R.W. Lichota. "A Requirements Specification Method for Adaptive Real-
Time Systems," to appear in Proceedings of the IEEE Real-Time Systems Symposium,
December, 1991.

[3] Nestor, J. R., J. M. Newcomer, P. Giannini, and D. L. Stone. IDL: The Language and Its
Implementation, Prentice Hall 1990. ISBN 0-13-450214-0.

[4]Jha, R., and G. Eisenhauer. "Distributed Ada - Approach and Implementation,"
Proceedings of TRI-Ada '89, Pittsburgh, Pa., October 23-26, 1989, pp. 439-449.

[5] Hutcheon, A.D., and A.J. Wellings. "Supporting Ada in a Distributed Environment,"
Proceedings of the Second International Workshop on Real-Time Ada Issues, Ada
Letters, Vol. VIII, No. 7, Fall 1988, pp. 113-117.

[6] Wengelin, D., and L. Asplund. "Application of Ada on a Distributed Missile Control
System", Proceedings of TRI-Ada '90, Baltimore, Md., December 3-7, 1990, pp. 300-305.

[7] Atkinson, C., and S. J. Goldsack. "Communication between Ada Programs in DIADEM,"
Proceedings of the Second International Workshop on Real-Time Ada Issues, Ada
Letters, Vol. VIII, No. 7, Fall 1988, pp. 86-96.

[8] Bamberger, J., C. Colket, R. Firth, D. Klein, R. Van Scoy. Kernel Facilities Definition,
Distributed Ada Real-Time Kernel Project. Technical Report CMU/SEI-88-TR-1 6, DTIC:
ADA198933, July 1988, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa.

[9] Royce, Walker. "Reliable, Reusable Ada Components for Constructing Large, Distributed
Multi-Task Networks: Network Architecture Services (NAS)," Proceedings of TRI-Ada '89,
Pittsburgh, Pa., October 23-26, 1989, pp. 500-516.

[10] Shi, Y., and N. Prywes. "Generating Multitasking Ada Programs from High-Level
Specifications", Proceedings of the Third International Conference on Ada Applications
and Environments, Manchester, N.H., May 23-25, 1988, pp. 137-149.

[11] Kramer, J., and J. Magee. "A Constructive Approach to the Design of Distributed
Systems", Proceedings of the 10th International Conference on Distributed Computing
Systems, Paris, France, May 28-June 1, 1990, pp. 580-587.

[12] Purtilo, J.M., and R Jalote. "An Environment for Prototyping Distributed Applications",
Proceedings of the Ninth International Conference on Distributed Computing Systems,
Newport Beach, Calif., June 5-9, 1989, pp. 588-594.

CMUISEI-91-TR-22 19

[13] Belz, F.C., and D.C. Luckham. "A New Approach to Prototyping Ada-based
Hardware/Software Systems," Proceedings of TRI-Ada '90, Baltimore, Md., December 3-
7, 1990, pp. 141-155.

[14] Purtilo, J.M., and C.R. Hofmeister. "Dynamic Reconfiguration of Distributed Programs,"
Proceedings of the 11th International Conference on Distributed Computing Systems,
Arlington, Texas, May 20-24, 1991, pp. 560-571.

20 CMU/SEI-91 -TR-22

UNLIMITED. UNCLASSIFIED
SECURMIY Q.ASSWICATION OF TIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release

2b. DEASSFICA.ON/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-91-TR-22 ESD-91 -TR-22

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

Sa. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGAIZAMTION (if applicable) F1 962890C0003
SEI Joint Program Office ESD/AVS

Sc. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.Caregie Mellon University PROGRAM PROJECT TASK WORK UNITPittsburgh PA 15213 ELEITNO NO. NO NO.
63756E N/A N/A N/A

11. TITLE (Include Sectuity Claification)

Building Distributed Ada Applications from Specifications
12. PERSONAL AUTHOR(S)

Dennis L. Doubleday, Charles B. Weinstock, Michael J. Gardner, and Randall W. Lichota
I3a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT

Final FROM T December 1991 24 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (Continue on revere of necmary and identify by block number)
GROUP SUB. GIL Ada code generation Durra programmer, compiler,

Durra task application, and renting
distributed Ada applications

19. ABSTVACI (Conue on reve if neenary and identify by block number)

Durra is a language and support environment for the specification and execution of distributed Ada applica-
tions. A Durra programmer describes an application as a collection of processes and data links. More com-
plicated application descriptions may also include a structuring of this collection that varies dynamically
according to a set of reconsideration conditions. Each process defined in the application description is asso-
ciated with an independently compiled Ada subproram that implements the behavior of that process. The
Durra programmer specifies the distribution of application components by assigning them to virtual nodes
called clusters. For each cluster, the Durra compiler generates a multithreaded Ada program that imports the
code for the processes assigned to that node and manages their execution. Durra also facilitates rapid pro-
totyping through the use of tools that interpret timing specifications associated with processes and generates
Ada code to simulate their expected behavior.

(please turn over)

20. DISTRIBUTION/AVAIABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSn1EDANUT n SAME AS RPTDTIC USERS* Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area CoW, 7 2c. OFFICE SYMBOL

Charles J. Ryan, Major, USAF (412) 268-7631 ESD/AVS (SEI)

DO FORM 1473.13 APR EDITION of I JAN 73 IS OBSOLETE UNI MITED, UNCLASSIFIED
SIMCtKJ INY CLASSEFICATION OF THIS

STRACT -a.tind f.u ppg sc blok 19

