AD-A244 653 - @) |

LT

Application

Developer’s
‘Guide

92-01309
LT llll
ﬁ\‘:::fe::e“:)rel:; pment V1e rrrrr Dfirgu 1991
&] 93 4. 15 00V

i

User’s Guide

August 1991
CMU/SEI-91-UG-7

Serpent: Ada Application Developer’s Guide

Accesion Fo-
P .

NTIS CRraui

!
|
i
}
l
~——

User interface Project

{

|
N
1

Q
o4
PR

(@

~d

1
H [
P . UV U W

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

éharlea J. Ian, Major, USAF

SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the Department of Defense.

Copyright © 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access o and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Atta: FDRA, Cameroo Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technica! Information Service. For information on
ordering, pleas~ oniat NTIS directly: National Technical Information Service, US. Department of Commerce,
Springfield, VA 22161.

Use of any trademarks in this document is not intended in any way to infringe on the rights of the trademark holder.

The Software Engineering Institute is not responsible for any
errors contained in these files or in their printed versions, nor
for any problems incurred by subsequent versions of this
documentation.

Table of Contents

1 Introduction 1
1.1 This Manual 1
1.1.1 Organization 1

1.1.2 Typographical Conventions 2

1.2 Other Serpent Documents 2

2 Overview 5
2.1 Serpent Architecture 5

2.2 Shared Database 7

2.3 Application Development 10

3 Specifying the Contract 13
3.1 Defining Shared Data 13

3.2 Data Types and Values 15

3.3 Initialization and Cleanup 18

4 Modifying Information 21
4.1 Sending Transactions 21

4.2 Adding Static Information 22

4.3 Modifying Information 24

4.4 Removing Information 25

5 Retrieving Information 27
5.1 Retrieving Transactions 27

5.2 Incorporating Changes 28

5.3 Examining Changes by Component 29

6 Finishing the Application 33
6.1 Error Checking 33

6.2 Recording Transactions 33

6.3 Dialogue Initiated Exit 34

7 Testing and Debugging 37
7.1 Formatting Recordings 37

Serpent: Ada Applicaticn Developer' s Guide (CMU/SEI-91-UG-7) i

7.2 Playback
Appendix A Data Structures
Appendix B Routines

Appendix C Commands for Testing Serpent Applications and
Dialogues

Appendix D Spider Example

38
39
47

83
87

i Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

List of Figures

Figure 1-1 Serpent Documents

Figure 2-1 Serpent Architecture

Figure 2-2 Shared Database

Figure 2-3 Shared Data Instantiation

Figure 2-4 Spider Chart Display 1

—\0 00 O\ N

Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) i

iv Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

List of Examples

Example 3-1
Example 3-2
Example 3-3
Example 3-4
Example 3-5
Example 3-6
Example 3-7

Example 3-8
Example 3-9
Example 3-10
Example 3-11
Example 4-1
Example 4-2
Example 4-3
Example 4-4
Example 5-1
Example 5-2

Example 5-3

Example 6-1
Example 6-2
Example 7-1
Example 7-2

Spider Shared Data Definition I'lle

Ada Language Package

Shared Data Definition

Generated Ada Package

Serpent Data Type

Assigning Values to String Components
Assigning Values to Integer, Boolean, or Real
Components

Buffer Structure

Assigning Values to Buffer Components
Setting Component Values to Undefined
Serpent Initialization

Sending Transactions

Adding Information to the Shared Database
Modifying Information in the Shared Database
Kemoving Information from the Shared Database
Transaction Processing

Processing Changes to Shared Data Records
(Simple Programs)

Processing Changes to Shared Data Records
(Large Systems)

Examining Status

Kacording Transactions

Formatting the Recording File

Testing the Application

14
15
15
16
16
16

17
17
17
18
18
21
23
25
26
28

29

30
33
34
37
38

Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

v

vi

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

1.1

Introduction

Introduction

Serpent is a user interface management system (UIMS) that supports the development and
execution of a user interface of a software system. Serpent supports incrementa)
development of the user interface from the prototyping phase through production to
maintenance or sustaining engineering. S=rpent encourages a separation of functionality
between the user interface and functional portions of a software system. Serpent is also
easily extended to support additional user interface toolkits.

This Manual

This manual describes how to develop applications using Serpent. Readers are assumed to
have read and understood the concepts described in the Serpent Overview, as well as to
have had experience using the Ada nrogramming language.

1.1.1 Organization

The contents of this guide include:

» Introduction and Overview. This chapter provides a general description of
the role of an application in a software system developed with Serpent. It also
describes a conceptual framework for application development.

» Specifying the Contract. This chapter describes the tasks necessary to define
the type, structure and values of data to be shared between an application
program and Serpent and to establish runtime communications with Serpent.

» Modifying Information. This chapter describes the tasks necessary to add,
modify or remove information to/from the Serpent shared database.

+ Retrieving Information. This chapter describes the tasks necessary to define
and retrieve changes to information from the Serpent shared database.

+ Finishing the Application. This chapter describes the finishing touches that
should be applied to the application, including error checking and exception
handling.

» Testing and Debugging. This chapter describes utilities available to assist in
the testing and debugging of the application.

+ Appendix A: Data Structures. This appendix is a complete reference of all
the constants, types, routines, and other data structures available to Serpent
application developers using the Ada programming language.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 1

Introduction

e Appendix B: Routines. This appendix is a complete reference of all the
routines available to Serpent application developers using the Ada
programming 'anguage.

« Appendix C: Commands for Testing Serpent Applications and Dialogues.
Thic appendix is a reference of commands available to Serpent application
developers from the operating system.

* Appendix D: Spider Example. This appendix is a complete application
example, developed in the Ada programming language.

1.1.2 Typographical Conventions

Code examples Courier typeface

Cn~'2 directly related to text Bold, courier typeface
Vanables, attributes, etc. Courier typeface

Syntax Courier typeface
Warnings and cautions Bold, italics

1.2 Other Serpent Documents

The purpose of this guide is to provide the information necessary to develop Serpent
applications. The following publications address other aspects of Serpent.

Serpent Overview
Introduces the Serpent system.

Serpent: System Guide {
Describes installation proc . dures, specific input/output file descriptions for intermediate
si.es and other information necessary to set up a Serpent application.

Serpent: Saddle User's Guide
Describes the language that is used to specify interfaces between an application and
Serpent.

Serpent: Dialogue Editor User’s Guide
Describes how 1o use the editor to develop and maintain a dialogue.

Serpent: Slang Reference Manual
Provides a complete reference to Slang. the language used to specify a dialogue.

2 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

L Wy

Introduction

Serpent: C Application Developer’s Guide

Describes how the application interacts with Serpent. This guide describes the runtime
interface library, which includes routines that manage such functions as timing, notification
of actions, and identification of specific instances of the data.

Serpent: Guide to Adding Toolkits

Describes how to add user interface toolkits, such as various Xt-based widget sets, to
Serpent or to an existing Serpent application. Currently, Serpent includes bindings to the
Athena Widget Set and the Motif Widget Se..

Serpent: Ada Application Developer’s Guide (CMU/SE]—91-UG-%) 3

Introduction

The following figure shows Serpent documentation in relation to the Ser-
pent system:

— —

Serpent

Overview

Dialogue Dialogue Editor
Editor User’s Guide

User’'s Guide

Saddle Slang . Slang Slang
Processor Compller |<&— : Program: R:Em\aﬁe
:appllcatlon:
« program |
Transa@
application | Processing dialogue presentation 1/0
layer Library layer layer Toolkits

Application
Developer’s
Guide

Guide to
Adding Toolkits

Figure 1-1 Serpent Documents

4 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

_

2.1

Overview

Overview

A main goal of Serpent is to encourage the separation of a software system into an
application portion and a user interface portion to provide the application developer with a
presentation-independent interface. The application portion consists of those components
of a software system that implement the “core” application functionality of a system. The
user interface portion consists of those components that implement an end-user dialogue.
A dialogue is a specification of the presentation of application information and end-user
interactions.

During the design stage, the system designer decides which functions belong in the
application component and which belong in the user interface component of the system.

Serpent Architecture

Serpent is implemented using a standard UIMS architecture. This architecture (see Figure
2-1) consists of three major layers: the presentation layer, the dialogue layer, and the
application layer. The three different layers of the standard architecture are viewed as
providing differing levels of end-user feedback.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 5

Overview

dialogue

interfacd manager

SRR
AN
RN

N

2

0208

. f;/ =
: 4
”.é‘if(,w %

Figure 2-1 Serpent Architecture

The presentation layer consists of various input/output toolkits that have been incorporated
into Serpent. Input/output toolkits are existing hardware/software systems that perform
some level of generalized interaction with the end user. Serpent is being distributed with an
interface to the X Window System, Version 11. Other input/output toolkits can be
integrated with Serpent. See Serpent. Guide to Adding Toolkits for a discussion of how this
can be accomplished.

6 Serpeni: Ada Application Developer's Guide (CMU/SEL-91-UG-7)

2.2

Overview

One way of viewing the three levels of the architecture is the level of functionality provided
for user input. The presentation layer is responsible for lexical functionality, the dialogue
layer for syntactic functionality, and the application layer for semantic functionality. In
terms of a menu example, the presentation layer has responsibility for determining which
menu item was selected and for presenting feedback that indicates which choice is currently
selected. The dialogue layer has responsibility for deciding whether another menu is
presented and presenting it, or whether the choice requires application action. The
application layer is responsible for implementing the command implied by the menu
selection.

The end user interface for a software system is specified formally as a dialogue. The
dialogue is executed by the dialogue manager at runtime in order to provide an end user
interface for a software system. The dialogue specifies both the presentation of application
information and end user interactions. The Serpent dialogue specification language (Slang)
allows dialogues to be arbitrarily complex.

The application provides the functional portion of the software system in a presentation-
independent manner. It may be developed in C, Ada, or other programming languages. The
application may be either a functional simulation for prototyping purposes or the actual
application in a delivered system. The actions of the application layer are based upon
knowledge of the specific problem domain.

Shared Database

Serpent provides an active database model for specifying the user interface portion of a
system. In an active database, multiple processes are allowed to update a database. Changes
to the database are then propagated to each user of the database. This active database model
is implemented in Serpent by a shared database that logically exists between the
application and J/O toolkits. The application can add, modify, query, or remove data from
the shared database. Information provided to Serpent by the application is available for
presentation to the end user. The application has no knowledge of the presentation media
or user interface styles used to present this information.

Information in the shared database may be updated by either the application or I/O toolkits.
Figure 2-2 illustrates the use of the shared database in Serpent.

Serpent: Ada Application Developer’' s Guide (CMU/SEI-91-UG-7) 7

Overview

Athena Widget

Application /

N

Technology “Z”

v

/
technology

application
s/hafed data

shared data

dialogue layer

Figure 2-2 Shared Database

Serpent allows the specification of dependencies between elements in the shared database
in the dialogue. These dependencies define a mapping among application data,
presentation objects, and end user input. The dialogue manager enforces these
dependencies by operating on the information stored in the shared database until the
dependencies are met. Changes are then propagated to either the application or the 1/0
toolkits as appropriate. See the Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) for
a further discussion.

The type and structure of information that can be maintained in the shared database is
defined externally in a shared data definition file. This corresponds to the database concept
of schemas. A shared data definition file is required for each application.

8 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Overview

A shared data definition file consists of both aggregate and scalar data structures. Top-level
data structures become shared dara elements that may be instantiated at runtime. Nested
data structures become components that are considered part of the shared data element.
Serpent does not allow nesting of records.

Shar. d Data Record Instantiation Shared Data Instances
John Smith
101 Main Street
employee: record
name: string[50]; . (212) 555-1234
address: string[50];
phone: string[13]; Sue Scott
end record; — . 22 Park Avenue
Undefined
Harry Altair
L—» 64 Fifth Avenue
{212) 712-6873

Figure 2-3 Shared Data Instantiation

It is possible to define multiple instances of a single shared data element. Shared data
clements are instantiated by specifying the element name. Each shared data instance is
identified by a unique /D. IDs must be maintained by the application to identify shared data
instances when multiple instances of a single shared data element exist. Figure 2-3 provides
an illustration of shared data instantiation.

Since the dialogue manager, the application, and any toolkits participating in a particular
execution of Serpent are separate system processes that use the shared database, they can
potentially modify the database concurrently, possibly compromising the integrity of the
database. This problem is solved in Serpent through the use of database concurrency
control techniques. Updates to the Serpent shared database are packaged in transactions.
Transactions are collections of updates to the shared database that are logically processed
at one time. Transactions can be started, committed, or aborted. A transaction which has
been started but neither committed nor aborted yet is said to be open. Multiple transactions
may be open at the same time. Committing a transaction causes the updates to be made to
the shared database. Aborting a transaction causes termination of the transaction without
any update of the shared database.

Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) 9

Overview

2.3

10

Communicating with Serpent

The application communicates with Serpent using the shared database model described
earlier in this document. Information added to shared data is available to be presented to the
end user by the dialogue. Changes to application data are automatically communicated
back to the application.

Application Development

The application, or non-user interface portion of the system, provides the “core”
functionality of a software system developed using Serpent. The application can be written
in Ada, C, or other programming languages and can be either a simulation or an actual
application.

An application may only add information to shared data or it may only retrieve information
from shared data. For example, an application that monitors and displays the status of a
computer network may only need to add information to shared data to update the display.
An application such as an automatic teller machine (ATM) might only need to retrieve data
from the user interface.

All transactions to and from the application are handled explicitly in the application using
the routines and data structures available in the Serpent application interface. This
document describes the usage and definitions of these routines and data structures.

Error Checking and Recovery

Each routine in Serpent sets status on exiting. It is the responsibility of the application
developer to check this status to perform appropriate error recovery. Serpent provides
routines to both check and print the status.

Testing and Debugging

Serpent provides a record/playback feature that can be used in testing and debugging.
Transactions between the application and dialogue manager or between the dialogue
manager and the various toolkits can be recorded, then played back at a later time. This is
useful in isolating problems or in performing regression/stress testing of an application,
dialogue, or toolkit.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Overview

Spider Example

The spider application is an example of an application system developed using Serpent.
Figure 2-4 is an illustration of a “‘spider chart” display that is one possible end-user interface
for the application.

Adapted from a command and control application, the spider application monitors and
displays the status of various sensor sites and their associated communication lines to the
two correlation centers (Figure 2-4).

Warner-Robins

STATUS |red
ETRO wrbetro

RFO wrbrfo

EElgshtro

Figure 2-4 Spider Chart Display

Serpent: Ada Application Developer’s Guide (CMU/SE1-91-UG-7) 11

Overview

The columns of rectangular boxes on the right and left sides of the spider chart display (for
example, GS1, GS2) represent sensor sites, The rectangles in the middle of the display
represent the correlation centers that collect information from the sensors. Each sensor site
communicates with both correlation centers; this is represented by the duplication of sensor
site boxes on both the right and left sides of the display. The lines represent communication
lines between the sensor sites and the correlation centers. The status of sensors is
represented by the shading of the rectangles. On a color display, the status would be
represented using different background colors.

An operator may display detailed information concerning a sensor site by selecting a sensor
site box corresponding to that sensor. This causes a detailed window to appear, displaying
the status of the sensor, the date and time of the last message, the reason for outage (RFO)
and the estimated time to returned operation (ETRO). These fields may be modified by the
operator. Sensors may be in one of three states: operational, impaired, or down. For sensors
that are not fully operational (i.e., the status is yellow) the ETRO is displayed to the outside
of the sensor site box. ETROs are also displayed over communication lines that are not fully
operational. The operator may also dynamically reconfigure the network! by adding/
deleting sensors to/from the network.

'The capability of dynamically reconfiguring the network does not exist in the spider chant example distributed
with Serpent Version 1.0.

12 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

_

3.1

Specifying the Contract

Specifying the Contract

The first step in creating a software system using Serpent is to apportion system
functionality between the dialogue and the application. This involves creating a contract
between the two components: defining the type and structure of information to be
communicated, or shared, between the two components; establishing the range of values of
this data; and establishing runtime communication between the components.

Defining Shared Data

Shared data is information that is communicated or shared between the application and
dialogue. Defining shared data involves two steps:

1. Create the shared data definition file.
2. Run the created file through the Saddle processor.

The following is a brief description of each of these two steps. The Serpent.: Saddle User’s
Guide contains a more complete description of both these steps.

Step 1: Create the shared data definition file. The shared data definition file defines the
type and structure of information that can be shared between the application and dialogue.
The shared data definition is specified in Saddle. By convention, the file is given the name
of the application, followed by the extension .sdd.

Example 3-1 is an example of a shared data definition file for the spider application. The
content of the shared data definition file is independent of the implementation language

used. Note that these shared data record templates contain only information to define the
application objects; they do not specify how the information is presented to the end user.

<< spiderA >>
spider: shared data

sensor_sdd: record
site_abbr: string(3];
status: integer;
site: string(32];
last message: string[8]);
rfo: buffer(32];
etro: string(8];

end record;

cc_sdd: record
name: string[3];
status: integer;
end record;

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 13

Specifying the Contract

14

communication line sdd: record
from_sensor: id of sensor_sdd;
to_cc: id of cc_sdd;
etro: string(8];
status: integer;
end record;

end shared data;

Example 3-1 Spider Shared Data Definition File

The file shown in Example 3-1 contains definitions for the data shared between the
application and the dialogue for the spider application. The first line of the file contains the
name (and possible path information) of the executable image of the application. This
application is automatically executed by the Serpent command at runtime. (Serpent. System
Guide contains a complete explanation of this process.) The three shared data record
templates define the type and structure of the sensor, correlation center, and communication
line application objects.

Step 2: Run the created file through the Saddle processor. Once the shared data has been
defined in the file, it can be processed by Saddle to generate an Ada Package. This package
will have the same name as the shared data definition file with a different extension. For
example, the shared data file spiderA. sdd will generate the file spidera.ada. This
package can then be withed in the Ada application and used to declare local variables of
the shared data types. The Ada package generated by running the shared data definition file
shown in Example 3-1 through the Saddie processor is illustrated in Example 3-2.

MAIL BOX: constant string := “SPIDERA BOX”;
ILL_FILE: constant string := “spiderA.ill”;

type sensor_sdd is record

self: id type: -- (no element pointer)
site_abbr: string (1..4);
status: integer;
site: string (1..51);
last_message: string (1..9);
rfo: string (1..51);
etro: string (1..9);

end record;

type cc_sdd is record
name: string(l..4);
status: integer;
end record;

type communication line_sdd is record
from_sensor: id_type; -- (no element

Serpent. Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

3.2

Specifying the Contract

pointer)
to_cc: integer;
etro: string (1..9);
status: integer;
end record;

type communication_ line sdd ptr is access
communication_line_sdd;

end spiderA;

Example 3-2 Ada Language Package

In E -ample 3-2, the first two lines in the file define two well-known constants: MAIL_BOX
and 11L_FILE. These constants will be used in initializing Serpent. The three structures
correspond to the record templates defined within the shared data definition file.

Data Types and Values

One output of processing the shared data definition file through the Saddle processor is an
Ada package containing corresponding Ada structures for the shared data records. These
Ada structures can be used to declare local variables that correspond in size and structure
to shared data records. Components of shared data records can be declared as any of the
following types: boolean, integer, real, string, ID or buffer. The Ada records generated
from these declarations depend on the type of the components. Example 3-3 is unrelated to
the spider example used throughout this guide but includes a description of a shared data
record that contains an example of each type of component.

employee_sdd: record

name: string([32];

salary: integer;

exempt: boolean;
experience: real;
job_desc: buffer;

self: id of employee_ sdd;
end record;

Example 3-3 Shared Data Definition

Serpent: Ada Application Developer' s Guide (CMU/SEI-91-UG-7) 15

Specifying the Contract

Example 34 shows the Ada package that is generated when the employee_sdd record is
processed by Saddle processor.

type employee_sdd is record
name: string (1..33);
salary: integer;
exempt: boolean;
experience: float;
job_desc: buffer;
self: id_type;

end record;

Example 3-4 Generated Ada Package

Although each shared data component is now represented using an Ada language specific
type, there is still a Serpent data type associated with each of them. The Serpent data type
can be determined at runtime using the get _shared_data_type function illustrated in
Example 3-5. The serpent_data_type is an enumeration of the different Serpent data
types ana is defined in Appendix A.

serpent_data_type type;

-- Get the Serpent type of the employee record salary
-- component.

type := S.Get_Shared_Data_ Type (“employee”, “salary”);

Example 3-5 Serpent Data Type

Shared data values specified as strings in the shared data definition file are represented by
strings in the Ada package generated by the Saddle processor. It is therefore not necessary
to allocate memory for these strings, although it is necessary to convert the strings to null
terminated strings.

-- Declare a local shared data wvariable.

employee: employee_ sdd;

-- null terminate string.

employee.name := “Harry Alter” & ASCII.NUIL;

Example 3-6 Assigning Values to String Components

16 Serpent: Ada Application Developer' s Guide (CMU/SEI-91-UG-7)

Specifying the Contract

Shared data componeunts of type integer, boolean, real, or ID can be assigned directly to Ada
language variables. IDs are returned from a number of Serpent routines and are id_type.
Saddle integers and booleans correspond to the equivalent Ada types and Saddle reals are
actually of Ada type float. (See Example 3-7.)

-- Integer, boolean, or real components can be set

-- directly.

employee.salary := 45000;
employee.exempt := FALSE;
employee.experience := 3.2;

Example 3-7 Assigning Values to Integer, Boolean, or Real Components

Buffer is the only dynamic shared data type in that neither the size nor the type of the
information is predefined. Example 3-8 describes the buffer structure. Buffer type is
required and specifies the type of information stored in the buffer. Buffer length is the size
in bytes of the data and is required even if the data is of a well known type (i.e., integer).
Buffer body is a pointer to the actual data. The space used to maintain this data is not part
of the buffer structure and must be managed by the user.

type buffer is record
type: shared data_types
length: integer;
body: system.address;

Example 3-8 Buffer Structure

Buffers can be used to:
* Share untyped, contiguous data.
» Share large amounts of contiguous data (i.e., large strings).

+ Provide variant records.

Example 3-9 contains the example of the employee. job_desc buffer being used as a
string.

- —

=- This buffer is being used as a string.

employee. job_desc.type := sd_string;

string variable := “Look busy”;
employee. job_desc.length := string_variable’length;
employee. job_desc.body := string variable’address;

Example 3-9 Assigning Values to Buffer Components

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 17

Specifying the Contract

3.3

Shared data values can also be undefined. All uninitialized components of a shared data
record instance created using the add_shared_data function are initialized by Serpent to
be undefined. On the other hand, components of a local, shared data variable have whatever
values are left by the system—imost likely zeros. If this structure is used to initialize the
shared data instance (with the add_shared_dataOrput_shared_dataroutines), all the
components of the instance are initialized with these values. Components of local, shared
data variables can be explicitly set to undefined using the set _undefined routine
illustrated in Example 3-10. The is_undefined function can be used to determine if a
component value is undefined.

-- The set_undefined function is used to set the value of
-- a component to undefined.

*/

set_undefined (sd_buffer, employee.job_desc’address);

Example 3-10 Setting Component Values to Undefined

Initialization and Cleanup

The first task of any Serpent application is to initialize the system. Serpent initialization
establishes communication between the application and the dialogue. The final application
task is to clean up the Serpent system environment before exiting. The code segment from
the spider application shown in Example 3-11 illustrates the basic operations necessary for
Serpent initialization and cleanup.

with Serpent;
with S_Types; use S_types;

begin
Serpent.Serpent_ Init (MAIL BOX,ILL_FILE);
Serpent .Serpent_Cleanup;

end

Example 3-11 Serpent Initialization

Specification Steps:

1. Include Serpent package. The Serpent and S_Types packagescontain the
external definition for the Serpent interface.

2. Initialize Serpent. The serpent init procedure is used to initialize
Serpent. It takes as parameters the MAIL BOX and ILL_FILE constants
generated by the Saddle processor. This procedure establishes communication
between the application and the dialogue manager.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Specifying the Contract

3. Clean up. The serpent_cleanup routine must be invoked before exiting
the application. It is important to complete this step to release allocated system
resources.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 19

Specifying the Contract

20 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

4.1

Modifying Information

Modifying Information

The application can add, change, or remove information to and from the shared database
using the transaction mechanism described in the introductory chapter of this document.
Together, these are considered modifications to the shared database. The collection of
application data in the shared database is known as the view. This is the information that is
available to the dialogue writer to be presented to the end user. The view can be modified
by either the application or the dialogue.

Sending Transactions

Before information can be modified in the shared database, it is necessary to start a
transaction. All modifications to the shared database must be performed as part of a
transaction.

It is possible to have multiple transactions open at one time. Each transaction has a unique
transaction handle. Every operation performed on or to a transaction must specify this
transaction handle.

The actual change to the shared database does not occur until the transaction is committed.
Up to this point it is also possible to roll back the transaction so that none of the changes to
shared data occur.

The code segment from the spider application in Example 4-1 shows the operations
necessary for sending transactions. Code and comments directly related to the task are
emphasized in bold type.

begin
transaction : S_Types.Transaction Type; -~transaction handle

Serpent.Serpent_Init (MAIL BOX,ILL FILE);
transaction := Serpent.Start_Transaction;
Serpent .Commit_Transaction(transaction);
Serpent .Serpent_Cleanup;
end

Example 4-1 Sending Transactions

Specification Steps:

1. Declare transaction variable. A local variable of t ransaction_type can
be used to maintain a transaction handle.

Serpent: Ada Application Developer' s Guide (CMU/SEI-91-UG-7) 21

Modifying Information

4.2

22

2. Startatransaction. The start_transaction function returns a transaction
handle that must be passed to any subsequent commands operating on the
transaction.

3. Commit the transaction. The actual change to shared data does not occur until
the transaction is committed. Up to this point it is also possible to roll back the
transaction using the rollback_transaction routine so that none of the
changes to shared data occur.

Adding Static Information

This section makes some simplifying assumptions about the application that may in fact
hold true for simple programs. The primary assumption is that the application will create
only a fixed number of shared data instances so that the IDs of these instances can be
maintained in local variables. A secondary assumption is that the application will create no
more than one instance of each shared data element.

At any given moment, there can be up to three different versions of any given shared data
instance. First, there is a local copy in the application. Second, there can be a copy that is
part of an open transaction. Third, there is a copy in the shared database. Depending upon
whether the shared data instance has been last modified by the application or by the end-
user, the more current copy could be either the local application or shared database copy.
A shared data instance that is part of an open transaction is the delta from the more current
to less current copy of the shared data instance. The shared data copy being affected by any
given operation should be apparent from the context.

Variables of generated shared data types are referred to as shared data variables. The first
step in adding information to shared data is to assign values to these shared data variables.
The method for doing this is based on the Serpent types of the components and is explained
in detail in Section 3.2. These variables can then be used to initialize a record instance,
either a component at a time or the entire record at once.

Once a transaction has been started, you can begin to add, change or remove information
toffrom the shared database as part of this transaction. These changes are made as part of
the transaction and are not applied to the shared database until the transaction is committed.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Modifying Information

The code segment from the spider application in Example 4-2 illustrates the operations
involved in adding information to the shared database. Code and comments directly related
to the task are emphasized in bold type.

with Serpent; -- serpent interface definition
with 8§ Types; use S_Types;
with Spidexa -- application data structures
GREEN _STATUS: corstant := 0;
YELLOW STATUS: constant := 1;
RED_STATUS: constant := 2;
begin
transaction :S_Types.Transaction Type; —-- transaction handle
cmc: SpiderA.cc_sdd -- shared data variables
gsl: SpiderA.sensor_sdd -- shared data variables
cme _id,gsl_id: id_type -- object instances

Serpent .Serpent_Init (MAIL BOX,ILL_FILE);

-=- Initialize shared data wvariables.
cmc.name = “CMC” & ASCII.NUL;
cmc.status := GREEN_STATUS;
gsl.status := RED_STATUS;

-- Start a transaction to be sent to the dialogue.

transaction := Serpent.Start Transaction;
-- Create an instance of the correlation center shared data
-- record in the transaction and initialize using the shared
-=- data variable.
cmc_id := Serpent.Serpent.Add Shared Data (
transaction, “correlation_center”, ““, cmc’address
)
~- Create an instance of the sensor shared data record but
-- this time update only the name component.
gsl_id := Serpent.Add_Shared Data(
transaction, “sensor”, “name”, gsl.name'’address

):
Serpent.Commit_Transaction(transaction);

Serpent.Serpent_Cleanup:;
end;

Example 4-2 Adding Information to the Shared Database

Specification Steps:

1.

With Saddle generated header file. This file (spiderA.h in the example)
defines the structure of the shared data. The packages Serpent and S_Types
must be specified before spiderA.h because SpiderA uses types defined in

S_Types..

Serpent: Ada Application Developer’ s Guide (CMU/SEI-91-UG-7) 23

Modifying Information

2. Define constants. The spider example contains three constants:
GREEN_STATUS, YELLOW_STATUS, and RED_STATUS. These constants are
not required but help increase the clarity of the example.

3. Define shared data variables. Variables cmc and gs1 are both instances of
generated shared data structures. These variables are used to initialize
instances of shared data in the shared database.

The variables cme_id and gs1_id are used to store the ids of the created
shared data instances. These variables are declared to be of id_type. The ids
are necessary to perform further operations on these instances in the shared
database.

4. Assign values to shared data variables. The mechanism for accomplishing this
task depends on the component types. This is explained in detail in Section 3.2.

5. Addinformation to the shared database. The add_shared_data routine
creates a shared data instance as part of the specified transaction and returns
the ID of the instance. The routine allows you to initialize a single component
of the instance by specifying the name of the component and providing a
pointer to the initial value. Any uninitialized fields of the instance are left
undefined. It is also possible to initialize the entire instance by providing a
pointer to the structure and specifying * ” for the component name.

4.3 Modifying Information

Shared data instances in transactions or in the shared database can be modified using the
put_shared data procedure. This procedure takes as a parameter the ID of the shared
data instance.

It is possible to modify any single component of a shared data record instance, or the entire
record. Unmodified components in the transaction are marked as unchanged and maintain
their current values. This is different from components that are explicitly set to undefined,
which is actually a value.

The code segment from the spider application in Example 4-3 illustrates the operations
involved in adding dynamic information to the shared database. Code and comments
directly related to the task are emphasized in bold type.

with Serpent; -~ serpent interface definition
with S_Types; use S_Types;

begin
transaction :5_Types.Transaction_Type; transaction handle
gsl: SpiderA.sensor_sdd ~- shared data variables

24 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

4.4

Modifying Information

cme_id,gsl_id: id_type -- object instances

Serpent.Serpent_Init (MAIL_BOX, ILL_FILE) ;
transaction := Serpent.Start_Transaction;

~- Update the name component of the sensor using a
-- string constant.

Serpent .Put_Shared Data (
transaction, gsl_id, “sensor”, “status”, “GSl1l”’address

):

Serpent .Commit_Transaction(transaction);
Serpent.Serpent_Cleanup;
end;

Example 4-3 Modifying Information in the Shared Database

Specification Task

Modifying information in the shared database. The put _shared_data routine modifies
the values of shared data instances that have already been created and are part of a
transaction. This routinc works in an identical manner to the add_shared_data call
except that it takes an extra parameter, the ID of the shared data instance to be modified.
The put_shared_data routine in Example 4-4 is used to assign a value (a string) to the
name component of the first shared data instance.

Removing Information

Shared data instances in transactions or in the shared database can be removed using the
remove_shared_data procedure. It is not possible to remove components of shared data
record instances.

The code segment from the spider application in Example 4-4 illustrates the operations
involved in removing information from the shared database. Code and comments directly
related to the task are emphasized in bold type.

with Serpent; -- serpent interface definition
with S_Types; use S_Types;

begin
transaction :S_Types.Transaction_Type; transaction handle
gsl: SpiderA.sensor_sdd -- shared data variables
cme_id,gsl_id: id_type -- object instances

Serpent .Serpent_Init (MAIL_BOX,ILL_FILE);
transaction := Serpent.Start Transaction;
-= Update the name component of the sensor using a
-- string constant.

-

Serpent.Remove_Shared_pata(transaction, “sensor_sdd”,

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 25

Modifying Information

26

gsl_id);
Serpent .Commit_Transaction({transaction);
Serpent .Serpent Cleanup;

end; -

Example 4-4 Removing Information from the Shared Database

Specification Task

Removing information from the shared database. The remove _shared_data procedure
is used to remove a shared data instance from either the transaction or the shared database.
The procedure takes a transaction handle, the element name, and the ID of the shared data

instance to be deleted as parameters.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

5.1

Retrieving Information

Retrieving Information

Serpent implements an active database model from the perspective of the application
interface. This means that changes to application data resulting from end-user interactions
with the system are automatically communicated back to the application, using the same
transaction mechanism described in Section 4.3.

Transactions from the dialogue to the application consist of a list of changed shared data
instances. The following assumptions are true about incoming transactions:

» Incoming transactions are guaranteed to have at least one changed shared data
instance since empty transactions are automatically discarded by the interface.

 Changed shared data elements appear in random order in the transaction.

« Transactions remain unmodified in memory until the transaction is purged. This
allows the application developer, for example, to reexamine changed instances.

Retrieving Transactions

The code segment from the spider application shown in Example 5-3 illustrates the basic
operations of retrieving information from the shared database.

Specification Steps:

1. Get the transaction. The Serpent interface provides both synchronous and
asynchronous calls for getting information from the shared database. The
get_transaction routine waits until a transaction is availabie and then
returns a handle for this transaction. The get _transaction_no_wait
routine returns not_available when no transaction is available.

2. Geteach changedshareddatainstance. The get _first_changed_element
routine returns the first changed shared data element instance in the transaction
and marks it as the current element. The get_next_changed_element rou-
tine returns the element directly following the current element and marks it as
current. The null_id is returned if there is no next element instance on the list.

3. Purge the transaction. Once the transaction has been fully processed, it
should be purged from the system. This frees system resources that could
otherwise run out.

Code and comments directly related to the task are emphasized in bold type.

Serpent .Serpent_Init (MAIL_BOX,ILL FILE);

Serpent: Ada Application Developer s Guide (CMU/SEI-91-UG-7) 27

Retrieving Information

5.2

-~ Retrieve information from shared database.

done := false;
while not done loop

-- get next transaction. 1If there is none, the process
- is blocked until one arrives.

transaction := Serpent.Get_ Transaction;

id := Serpent.Get_First Changed Element (transaction);

~- Get each changed instance in the transaction.

while id /= null_id loop
id := Serpent.Get_Next Changed Element (transaction);
end loop;

Serpent .Purge_ Transaction (transaction);

end loop;

Example 5-1 Transaction Processing

Incorporating Changes

Changed element instances from the dialogue need to be processed for any changes in the
application domain to be affected. The Serpent application interface provides several
routines for the purpose of processing changed shared data elements.

This section makes some simplifying assumpticws about the application that may in fact
hold true for simple programs. The primary assumption is that the application has created
only a fixed number of shared data instances so that the IDs of these instances can be
maintained as static, local variables. A secondary assumption is that the application has
created no more than one instance of each shared data record.

The code segment from the spider application in Example 5-2 illustrates the operations
involved in incorporating changes to shared data elements in static, local variables. Code
and comments directly related to the task are emphasized in bold type.

-- Get each changed record instance in the transaction.

while id /= null _id loop

element name := Serpent .Get_Element Name (transaction, id);
-- If the record is a correlation center then this must
-- be the cmc shared data variable.

28

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Retrieving Information

if element name = “cc_sdd” then
Serpent . Incorporate Changes (
transaction, id, cmc’address);

-- Otherwise, this must be the gsl variable.

else
Serpent . Incorporate_Changes (

transaction, id, gsl’address);
end if;

id := Serpent.Get_ Next_Changed Element (transaction);

end loop;

Example 5-2 Processing Changes to Shared Data Records (Simple Programs)

Specification Steps:

1. Get the element name. This is a simple call that returns a pointer to the element
name. For simple programs that have no more than one instance of a particular
shared data record, the element name can be used to identify the shared data
instance. In larger, more complex systems it is often useful in determining a
class of shared data instances.

2. Update local database. Shared data variables can be updated using the
incorporate_changes routine. This routine directly incorporates changes
in the shared data instance into the local variable. Components of the shared
data record that have not been changed are left untouched. By continually
incorporating changes into the initial shared data variable, the application
developer is guaranteed that application data remains consistent with user
input.

3. Update the local database based on the change type. The exact type of
processing required to update the local database is based primarily on the
change type. If this is a new shared data element (e.g., the change type is
create) the get _shared_data function can be used to create a copy of the
record instance. If the change type is modi fy, the local shared data instance
can be obtained from the hash table. The incorporate_changes routine can
then be used to update the contents of this instance with changed component
values.

5.3 Examining Changes by Component

The Serpent application programmer’s interface provides routines that allow the
application developer to examine each changed component in a changed record
individually.

Serpent: Ada Application Developer’ s Guide (CMU/SEIL-91-UG-7) 29

Retrieving Information

30

The operations are illustrated in Example 5-3, taken from the spider chart example. Code

and comments directly related to the task are emphasized in bold type.

id := Serpent.Get_First_Changed Element (transaction);

-- Get each changed record instance recording the transaction.

while id /= null_id loop

Serpent .Get Element Name (transaction,id,element name);
changed components :=
Serpent .create_changed component_list (
transaction, id

)

component _node =
Serpent .Get First_ Node (changed components);

while component node /= null_id loop

Serpent .Get _Component_Name (
coamponent node, component_name) ;

type := Serpent.Get_Shared Data_ Type(
elament_name, component _name) ;

if type = serpent_ id then
id data := Serpent.Get _Shared Data_id(
transaction, id, component name);
end if; -

component node :=
Serpent .Get_Next Node (changed_components,
component _node) ;

end loop; -- end loop through list
id := Serpent.Get_ Next Changed Element (transaction);
end loop;

Example 5-3 Processing Changes to Shared Data Records (Large Systems)

Specification Steps:
1. Get the list of changed components. A list of changed components can be
obtained by using the create_changed component list function.

2. Loop through the list. The get_first_node and get_next _node
routines provide a mechanism to sequence the changed components.
Get component name provides a mechanism to get the name from the
node.

Serpent: Ada Apnlication Developer's Guide (CMU/SEI-91 -UG~7;‘

Retrieving Information

3. Examine the type and/or data. The Serpent application programmer’s
interface provides routines to examine both the type and the data at the
component level. The get _shared_data_type returns a

serpent_data_type. The get _shared_data_id routines return the
component value.

Serpen:: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 3

Retrieving Information

32 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

6.1

6.2

Finishing the Application

Finishing the Application

Other than sending and retrieving data, the application can detcrmine errors from the use of
Serpent, record communication between the application and Serpent and exit according to
a signal received from the dialogue.

Error Checking

Each routine in Serpent sets status on exit. It is good software engineering practice to check
status after every call to make sure that the routine has executed correctly, and provide
appropriate recovery actions if it has not. Example 6-1 illustrates the routines provided by
Serpent for examining the status.

transaction := Serpent.start_transaction:

if Serpent.get_status /= 0 then
Serpent.print_status (“error during start_transaction”);
Serpent .serpent_cleanup;

end if;

Example 6-1 Examining Status

The first of these routines is get _status, which returns an enumeration of status codes.
Valid statuses returned by each routine in Serpent are defined in Appendix B. Successful
execution (or “OK”) is always set to zero; hence, it is possible to make a simple boolean
comparison for bad status.

The print_status routine prints a user-defined error message and the current status.

Recording Transactions

Transactions between the application and the dialogue can be recorded using the
start_recording and stop_recording procedures available in the Serpent
application programmers interface. After the call to start_recording is made,
transactions may be sent across the interface. Any number of transactions containing any
type or amount of data can be sent. Once start_recording has been called, all
transactions and associated data will be written to the specified file until the
stop_recording routine is invoked.

Transactions can be examined using the format command described in Section 7.1. This
is useful in debugging since it allows the examination of information flow across the
interface. Transactions can also be played back to simulate either application or dialogue
functionality using the playback command described in Section 7.2.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 33

Finishing the Application

6.3

Before testing the application or the dialogue, first record the transactions to be used in

testing. Example 6-2 illustrates the basic operations for recording transactions.

-- Start recording.

Serpent.start_recording(“recording”, “test data: 5.7.3");

-- Send test data.

transaction := Serpent.start_transaction;
Serpent.commié_transaction(transaction);
transaction := Serpent.start_transaction;
Serpent.commi%_transaction(transaction);

transaction := Serpent.start_ﬁransaction;

Serpent.commit_transaction(transaction);

-- Stop recording.

Serpent.stop_recording;

Example 6-2 Recording Transactions

Specification Steps:

1.

Startrecording. The start_recordingroutine takes as parameters both the
name of the file in which to save the recording and a message to help identify
the recording.

Send transactions. After the call to start_recording is made, transactions
may be sent across the interface.

Stop recording. The stop_recording function closes the current recording
file.

Dialogue Initiated Exit

The dialogue can terminate at any time using the exit command available to the dialogue
specifier. The exit command sends a SIGINT signal to the application. This signal will
cause the application to exit immediately, unless a signal handler has been registered with
the operating system.

Serpent: Ada Application Developer’s Guide (CMU/SEL-91-UG-7)

Finishing the Application

The signal handler describes the steps to be taken when the dialogue initiates an exit.
Typically, this involves saving data structures out to permanent storage and exiting the
system.

The steps necessary to accomplish ihis are compiler-dependent.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

35

Finishing the Application

36 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Testing and Debugging

7 Testing and Debugging

The recording capability discussed in Chapter 3 provides a mechanism to assist in testing
and debugging.

7.1 Formatting Recordings

Application recordings are saved in a binary format file. The format command distributed
with Serpent converts this file into a formatted, easy-to-read report. The information in the
file can be useful in isolating problems to either the application or the dialogue.

% format recording
FORMATTING JOURNAL FILE: recording

HEADER:

dialogue name:

message: no comment at this time
OWNER:

ill file name: se.ill

mailbox name: SE_BOX

PARTICIPANT:
ill file name: se.ill
mailbox name: DM_BOX

TRANSACTION:
Fri Jan 25 15:17:13:800 1991
Sender: SE_BOX
Receiver: DM BOX
Element name: dialogue_sdd Change type: create ID: 955

shared data buffer UNDEFINED_ BUFFER
termination buffer UNDEFINED BUFFER
macros buffer UNDEFINED_BUFFER
externs buffer UNDEFINED_ BUFFER
initialization buffer UNDEFINED BUFFER
count integer 0 -

name string UNDEFINED_STRING
prologue buffer UNDEFINED_BUFFER

Example 7-1 Formatting the Recording File

Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) 37

Testing and Debugging

7.2 Playback

38

Once you have made a recording, it is possible play back the recording to simulate one or
more of the Serpent processes. To simulate the spider application, for example, you would
run the playback command provided with Serpent specifying the name of the recording
file and the mailbox of the process to be simulated, as illustrated in Example 7-2.

% app-test recording SPIDERA_BOX
Playing back journal file: recording
Message: regression test data, 5.7.3
Playback completed successfully

%

Example 7-2 Testing the Application

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Data Structures

Appendix A Data Structures

This appendix presents in alphabetical order the type and constant definitions that are used
in the Ada language interface to the Serpent system. The following is a list and short
description of each of these types and constants. A more complete description immediately

follows:

Type/Constant
sd_buffer
change_type
id_type

null id

shared data_types

transaction_type

Description

used to define the structure of a shared data buffer
defines the type of modification made for an element
used to uniquely identify shared data elements
defines the null value for the id_type

defines the Serpent data types

used to define transaction handles

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 39

Data Structures

40 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

TYPE

buffer

buffer

Description

The buf fer type allows the communication of n bytes of application data
along with an indication of the type. Buffer is the only dynamic shared
data type in that neiiher the size nor the type of the information is predefined.
Buffers can be used to: share untyped, contiguous data; share large amounts
of contiguous data (i.e., large strings); provide variant records.

Definition

type

buffer is record

type: shared_data_types
length: integer;

body: system.address;

Components

length Size in bytes of the data. This field is required even
if the data is of a well known type (i.e., integer).

body A pointer to the actual data. The space used to
maintain this data is not part of the buffer structure
and must be managed by the user.

type The type of information stored in the buffer. This
field is also required.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 41

change_type

TYPE

change type

Description The change_type defines the type of modification made for an element.

Definition for change_type use(
no_change => -1,
create => 0,
modify => 1,
remove => 2,

get => 3
)

Components no_change Not changed or invalid change.
remove Existing shared data instance removed.
create New shared data instance created.
modify Existing shared data instance modified.
remove Existing shared data instance removed.

42 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

TYPE

id_type

id_type

Description

The id_type is used to uniquely identify shared data elements.

Definition

type id_type is new int;

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

43

null_id

CONSTANT

null id

Description The null_id constant defines the null value for the id_type. This

constant can be used to test for null ID values.

Definition constant id _type := -1;

44 Serpent: Ada Application Developer’'s Guide (CMU/SEI-91-UG-7)

shared_data_types

TYPE

e
Y

shared caia_types

Description The shared_data_type type is an enumeration of defined Serpent data
types.
Definition for shared data_types use (

sd_boolean => o,
sd_integer => 1,
sd_real => 2,
sd_string => 3,
sd_record => 4,
sd_id => 5,
sd_buffer =6,
sd_undefined =7
sd_no_data_type =8
)

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 45

transaction_type

TYPE

transaction_type

Description Variables of t ransaction_type are used to define transactions.

46 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

Routines

Appendix B Routines

This appendix presents in alphabetical order the functions and procedures that make up the

C language interface to Serpent. These routines can be categorized as follows:

Initialization/Cleanup

+ serpent_init
* serpent_cleanup

Transaction Processing

» start_transaction

e commit_transaction
rollback_transaction

o get_transaction

+ get_transaction_no_wait
* purge_transaction

Sending and Retrieving Data

+ add_shared_data

* put_shared_data

» remove_shared_data

» get_first_changed_element
* get_next_changed_element
+ get_shared_data

o get_shared_data_buffer
 get_shared_data_boolean
o get_shared_data_id

o get_shared_data_integer

o get_shared_data _real
 get_shared_data_string

« get_first_node

» get_next_node

* incorporate_changes

» create_changed_component_list
» get_change_type

+ get_element_name

» get_shared_data_type

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

47

Routines

Undefined Values

« set_undefined
« is_undefined

Record/Playback

» start_recording
* stop_recording

Checking Status

o get_status
* print_status

48 Serpent: Ada Application Developer's Guide (CMU/SEL-91-UG-7)

FUNCTION

add_shared_data

add_shared data

Description

The add_shared_data routine creates an instance for the specified
shared data element and retums a unique ID. The shared data instance may or
may not be initialized.

Syntax

function add_shared_data (
transaction : in transaction_type;
element _name : in string;
component _name : in string ;
data : in system.address
) return id _type;

Parameters

transaction The transaction for which this operation is detined.

element_name The name of the shared data element.

component _name The name of a specific component to be initialized
with the data, or “” if the data corresponds to the
entire element.

data data or null pointer if non-initialized.

Retumns

The ID of the newly created shared data instance.

Status

ok, out_of memory, null element name, overflow

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 49

commit_transaction

ROUTINE

commit_transaction

Description The commit_transaction procedure is used to commit a transaction to
the shared database.
Syntax procedure commit_transaction (

transaction: in transaction_type

)

Parameters transaction Existing transaction ID.

Status ok, out_of memory, invalid transaction_handle

50 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

FUNCTION

create_changed_component list

create_changed component list

Description The create_changed_component_list function accepts a
transaction, an instance ID as a parameter and creates a list of changed
component names. This component list is managed using the
get_first_node and get_next node routines.

Syntax function create_changed_component_list (

transaction : in transaction_type;
id : in id_type
) return LIST;

Parameters transaction The transaction for which this operation is defined.
id Existing data instance ID.

Returns The list of changed component names associated with a data instance, or
NULL if none.

Status ok, invalid_id, out_of_memory, element_ not_a_record

Serpeni: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 51

get_change_type

FUNCTION

get change type

Description The get_change_type functionaccepts a transaction and an instance ID
as parameters and returns the associated change type.

Syntax function get_change_type (
transaction : in transaction_type;
id : in id_type
) return change_type;

Parameters transaction The transaction for which this operation is defined.
id Existing shared data ID.

Returns Change type associated with the shared data instance ID.

Status ok, invalid_change_type,invalid_transaction_handle,
invalid_id

52 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

FUNCTION

get_component_name

get component name

Description

The get _component _name procedure accepts a NODE from
get_first_node Orge:t next_node and retums the component
name.

Syntax |

function get_component name (
component_node : in node;
component name : out string
):

Parameters

component_node The node that describes a component .

component_name The component name.

Status

ok, invalid_change_ type,invalid transaction_handle,
invalid_id

Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) 53

get_element_ name

FUNCTION

get_element name

Description

The get _element name procedure accepts a transaction and an instance
ID as parameters and returns the associated element name.

Syntax

procedure get_element_rame (
transaction : in transaction_type;
id : in id_type ;
ada_element_name : out string

)z

Parameters

transaction The transaction for which this operation is defined.
id Existing shared data instance.
ada_element_name The string that contains the element name.

Status

54 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-T7)

ok, invalid_id

get_first_changed_element

FUNCTION

get first changed element

Description The get_first_changed_element functionis used to getthe ID of the
first changed element in a transaction.

Syntax function get first_changed_element (
transaction : in transaction_type
) return id_type:

Parameters transaction Existing transaction ID.
Returns The handle of the first changed element.
Status ok, invalid _transaction_handle, out_of_memory

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 55

get_first node

FUNCTION

get first node

Description The get_first_node function is used to navigate through the list
returmned by create_changed component_list.
Syntax function get_first_node(
list_arg : in LIST
) return NODE;
Parameters list_arg List returned by
create_changed_component_list.
Retumns The name of the first changed component.
Status ok, invalid transaction_handle, out_of memory.

56 Serpen:: Ada Application Developer’'s Guide (CMU/SEL-91-UG-7)

FUNCTION

get_next_changed element

get_next changed element

Description The get _next changed_element function is used to get the ID of the
next changed element on a transaction list or return null_id if the
transaction list is empty.

Syntax function get_next_changed element (

transaction_type : in transaction
) returns id _type;

Parameters transaction Existing transaction ID.

Returns The handle of the next changed element.

Status ok, invalid_transaction_landle, out_of memory

Serpcmi: Ada Application Developer’'s Guide (CMU/SEL-91-UG-7) 57

get _next_node

FUNCTION

get next node

Description The get _next_node function isused to navigate through the list returned
by create_changed_component list.
Syntax function get_first_node(
list_arg : in LIST:
node_arg : in NODE
) return NODE;
Parameters list_arg List returned by
create_changed component_ list.
node_arg Current node in the list.
Returns The node of the next element in the list.
Status ok, invalid_transaction_handle, cut_of memory.
58 Serpent- Ada Application Developer's Guide (CMU/SEI-91-UG-7) - -

get_shared data

FUNCTION

get shared data

Description The get _shared data function allocates process memory, copies
shared data into process memory, and returns a pointer to the data. It can be
used to retrieve either a whole shared data record or individual components
of shared data records.

Warning: Record components may nvi have been specified and,
therefore, would not contain valid data.

Syntax function get_shared data(
transaction : in transaction_type;/
id : in id_type;
component _name : in string
) return system.address;

Parameters transaction Transaction in which to find the shared data ID.
id Existing shared data ID.
component_name Name of component for which to retrieve data, or
entire element if “ .
Returns A pointer to changed data.
Status ok, invalid_id, out_of memory, incomplete_record

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 59

get_shared_data boolean

PROCEDURE

get shared data boolean

Description The get_shared _data_boolean procedure copies shared data into

process memory.

Syntax

procedure get_shared data_boolean(

)

transaction : in transaction_type;
id : in id_type;

component _name : in string;

value : out boolean

.
’

Parameters

“ransaction Transaction in which to find the shared data ID.
id Existing shared data ID.
component_name Name of component for which to retrieve data.

Component must be of type boolean.

value The value of the specified component.

Status

ok, invalid_id, out_of memory, incomplete_ record

60 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

get_shared_data_buffer

PROCEDURE

get shared data buffer

Description The get_shared_data_buffer procedure copies sharedd into
Pprocess memory.
Syntax procedure get_shared_data buffer(

transaction : in transaction_type;
id : in id_type;

component _name : in string;

value : out buffer

)

Parameters transaction Transaction in which to find the shared data ID.
id Existing shared data ID.
component_name Name of component for which to retrieve data.
Component must be of type buffer.
value The value of the specified component.

Status ok, invalid id, out_of_memory, incomplete_record

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 61

get_shared_data_id

PROCEDURE

get shared data id

Description

The get _shared_data_id procedure copies shared data into process
memory.

Syntax

procedure get_shared_data_ id(
transaction : in transaction_type;
id : in id_type;
component_name : in string;
value : out id

) ¢

Parameters

transaction Transaction in which to find the shared data ID.

id Existing shared data ID.

component_name Name of component for which to retrieve data.
Component must be of type id.

value The value of the specified component.

Staws

ok, invalid_id, out_of memory, incomplete_record

62 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

PROCEDURE

get_shared data_integer

get shared data_integer

Description

The get _shared data_integer procedure copies shared data into
process memory.

Syntax

procedure get_shared data_integer(
transaction : in transaction_type:
id : in id_type:
component name : in string;
value : out integer

)

Parameters

transaction Transaction in which to find the shared data ID.

id Existing shared data ID.

component_name Name of component for which to retrieve data.
Component must be of type integer.

value The value of the specified component.

Status

ok, invalid_id, out_of memory, incomplete_record

Serpens: Ada Application Developer's Guide (CMU/SEI-91.-UG-7) 63

get_shared_data_real

PROCEDURE

get shared data real

Description The get _shared_data_real procedure copies shared data into
process memory.

Syntax procedure get_shared data_real(
transaction : in transaction_type;
id : in id_type;
component_name : in string;
value : out real
)

Parameters transaction Transaction in which to find the shared data ID.
igd Existing shared data ID.
component_name Name of component for which to retrieve data.
Component must be of type real.
value The value of the specified component.

Status ok, invalid_id, out_of memory, incomplete_record

64 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

PROCEDURE

get_shared data_string

get shared data_string

Description

The get_shared_data_string procedure copies shared data into

process memory.

Syntax

procedure get_shared data_string(

transaction

in transaction_type;

id : in id_type;

component_name

in string;

value : out string

)

Parameters

transaction
id
component name

value

Transaction in which to find the shared data ID.
Existing shared data ID.

Name of component for which to retrieve data.
Component must be of type string.

The value of the specified component.

Status

ok, invalid_id, out_of memory, incomplete_ record

Serpent: Ada Application Dev<loper’s Guide (CMU/SEI-91-UG-7) 65

get_shared data_type

FUNCTION

get_shared data_type

Description The get_shared_data_type functionis used to get the type associated
with a shared data element.
Syntax function get_shared_data_type (

element name: in string;
component name: in string
) returns shared_data_type;

Parameters element_ name The name of the shared data element.

component_name The name of the shared data component, or NULL.

Returns The type of the shared data element or record component.

Status ok, null element_name

66 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

get_status

FUNCTION

get status

Description The get _status function retums the current system status.
Syntax function get_status return status_codes;
Parameters None.

Retumns The cument status.

Status None.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 67

get _transaction

FUNCTION

get transaction

Description The get_transaction function is used to synchronously retrieve the ID
for the next completed transaction.

Syntax function get_ transaction return transaction_type:
Parameters None.

Returns The transaction ID for a completed transaction.

Status ok, system operation_failed

68 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 7

FUNCTION

get_transaction_no_wait

get transaction_no_wait

Description The get_transaction function is used to asynchronously retrieve the
ID for the next completed transaction.

Syntax function get_transaction_no_wait
return transaction_type;

Parameters None.

Returns The transaction ID for a completed transaction.

Status ok, system operation_failed, not_available

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 69

incorporate_changes

PROCEDURE

incorporate_changes

Description The incorporate_changes procedure is used to incorporate changes
into local process memory without destroying unchanged information.

Syntax procedure incorporate_changes (
transaction : in transaction_type:;
id : in id_type:;
data : in system.address
);

Parameters transaction Existing transaction ID.

id Existing shared data ID.

data Pointer to the local data structure to be updated.
Status ok, invalid_id

70 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

is_undefined

FUNCTION

is_undefined

Description The is_undefined function evaluates a data value of a specified type and
determines if the value is undefined. The is_undefined function cannot
be used with an entire shared data record at once.

Syntax function is_undefined(
type : in serpent_data_type;
data : system.address
) return boolean;

Parameters type The type of the shared data component.
data Pointer to the value being examined.

Returns True if data is undefined; false otherwise.

Status ok, operation_undefined_type

Serpent: Ada Application Developer's Guide (CMU/SEL-91-UG-7) 71

print status

PROCEDURE

print_status

Description The print_status procedure prints out a user-defined error message and
the current status.

Syntax procedure print_status (
error_msg : in string
);

Parameters error_msg User-defined error message.
Status None.
72 Serpent Ada Application Developer's Guide (CMU/SEI.91»UG-7)— 7 - S

purge_transaction

PROCEDURE

purge transaction

The purge_transaction procedure is used to remove areceived

Description
transaction once the contents of the transaction have been examined and acted
upon.
Syntax procedure purge transaction(
transaction : in transaction_type
)
Parameters transaction Existing transaction ID.
Status ok, invalid id, iilegal receiver

Serpeni Ada Application Developer's Guide (CMU/SEIL-91-UG-7) 73

put_shared_data

PROCEDURE

put shared data

Description The put_shared_data procedure is used to put information into shared
data. Either a whole record is placed into shared data or an individual
component. The use of *”” as the comporent name indicates that the entire
record is to be placed into shared data.

Syntax procedure put_shared data(
transaction : in transaction_type;
id : in id_type;
element name : in string;
component_name : in string;
data : in system.address
):

Parameters transaction The transaction to whic™ the shared data should be
put.
id Shared data ID.
element_name The name of the sharcd data element.

component _name The name of the shared data component or * " if the
whole element is to be moved to shared data.
data Shared data.

Status ok, undefined shared data_type, null_element_name,
invalid id

74 Serpent Ada Application Developer's Guide (CMU/SE7]-9I-UG-7)” N

remove_shared_data

PROCEDURE

remove_shared_data

Description The remove_shared data procedure is used to remove 3 specified
shared data instance from the shared database.

Syntax procedure remove shared data(
transaction : in transaction_type:;
element_name : in string;

id : in id_type
)i

Parameters transaction Transaction from which to remove the shared data
element.
element_name Name of element to be removed.
id Existing shared data ID.
Status ok, out_of memory, null_ element name, invalid_id

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 75

rollback_transaction

PROCEDURE

rollback transaction

Description The rollback_transaction procedure is used to abort a given
transaction and to delete the associated transaction buffer.

Syntax procedure rollback_transaction(
transaction : in transaction_type
):

Parameters transaction Existing transaction ID.

Status ok, invalid_transaction_handle

76 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

PROCEDURE

serpent_init

serpent_init

Description The serpent_init procedure performs necessary initialization of the
interface layer.
Syntax procedure serpent_init (
mailbox : in string;
ill file : in string
)
Parameters mailbox MAIL BOX constant defined in Saddle-generated
include file.
ill file ILL_FILE constant defined in Saddle-generated
include file.
Status

ok, out_of memory, null mailbox name,
null ill file name, system operation_ failed

Serpent: Ada Application Developer's Guide (CMU/SE1-91-UG-7) 77

serpent_cleanup

PROCEDURE

serpent_cleanup

Description The serpent_cleanup procedure performs necessary cleanup of the
interface layer.

Syntax procedure serpent_cleanup;

Parameters None.

Status ok

7877 o .?erpem Ad: A;;;Iication Developer's Guide (CMU/SEI-91-UG-7) - o

set_undefined

PROCEDURE

set undefined

Description The set_undefined procedure sets the value of the data pointed to by
value to undefined. The set_undefined procedure cannot be used with
an entire shared data record at once.

Syntax procedure set_undefined (
type : in serpent_data_type:;
data : in system.address
):

Parameters type The type of the shared data component.
data Pointer to the value being set to undefined.
Status ok, operation_undefined type

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 79

start_recording

PROCEDURE

start_recording

Description

The start_recording procedure enables recording. Once
start_recording has been called, all transactions and associated data
will be saved out to the specified file until the stop_recording procedure
is invoked.

Syntax

procedure start_recording(
file name : in string;
message : in string

):

Parameters

file naae File to which to write recording.

message Recording description.

Status

ok, io_failure, already_ recording

80 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

start_transaction

FUNCTION

start_transaction

Description The start_transaction function is used to define the start of a series
of shared data modifications.

Syntax function start transaction return transaction_type;

Parameters None.

Returns A unique transaction ID.

Status ok, out_of memory, overflow

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 81

stop_recording

PROCEDURE

stop_recording

Description The stop_recording procedure causes the current recording to be
stopped.

oyntax procedure stop_recording;

Parameters None.

Status ok, ic_failure, invalid process_record

§2 N Serpent: Ada .4;;;;Iic;1ion Developer's Guic;;_(CMU/SEI-91-UG-7))

Commands for Testing Serpent Applications and Dialogues

Appendix C Commands for
Testing Serpent Applications and

Dialogues

This appendix contains definitions of commands provided with Serpent to assist in testing
Serpent applications and dialogues. The following is a list and short description of each of
these commands. A more complete description immediately follows:

Command Description
format converts a recording file into an easy-to-read report
playkack used to play back a recording file

Serpent:CApplicationDeveloper’ sGuide(CMU/SEI-91-UG-6) 83

Commands for Testing Serpent Applications and Dialogues

84 Serpent. C Application Developer's Guide (CMU/SEI-91-UG-6)

format

COMMAND

format

Description The format command converts a binary Serpent transaction log to a
formatted, easy-to-read report. The report is written to standards output.

Definition format recfile

Parameters recfile The transaction log to be converted.
Retumns 0 ok

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

playback

COMMAND

playback

Description The playback command can be used to reenact a session based oo a
recordin - file.
Definition playback recfile host_mailbox correspondents
Parameters recfile The name of the file containing the recording to be
played back.
host_mailbox The mailbox for the process to be simulated.

correspondents List of correspondents (the default is “all”).

Retumns 0 7 ok

1 dialogue not found
2 playback file not found
3 error during playback

86 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Spider Example

Appendix D Spider Example

-- Title: Spider chart demo.
-~ Creation: June 21, 1991
-- Author: Len Bass

-- Description: Demonstrate use of Ada interface to Serpent
- This program places data for the spider chart
- into shared data and retrieves the data entered by

- the operator

with Text IO; use Text_IO;
with Serpent;

with S_Types; use S_types;
with Spidera;

GREEN_STATUS: constant := 0;
YELLOW_STATUS: constant := 1;
RED_STATUS: constant := 2;

procedure Spider is

package Int IO is new Integer IO(integer); use Int_IO;
package Flt_IO is new Float_IO(long float); use Flt_IO;

——KkAkA Ak A AT ARk AR AR KA R RA K

-~ Serpent-specific defs
——kAhk Ak A A R ARR A AR AR X h Kk

Transaction :S_Types.Transaction_Type;

cmc: SpiderA.cc_sdd

sensor_record: SpiderA.sensor_sdd
ccl_id, cc2_id, sensor_id: id_type
S_Types.Id_Type;

Changed_id

temporary : integer;
Change_Instance_Type : change_type;
Component_Type : shared_data_types;
Change_List : LIST;
Component_Node : NODE;

Component Name

String Data : string(l..32);
Integer Data ¢ integer;

Real Data : long_float;

string(1l..32);

transaction handle
shared data wvariables
shared data variables
object instances

ID of returned

shared data

LA R A AR A SRS SRR RS iRt sl R i R R X R X R R R R R R R R R R X R R R R R R R

Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) 87

Spider Example

procedure Get Data Value is

-= PURPOSE
-- This procedure retrieves only the changed components for a record.

begin

- verify that change type is modify
-- if not there is something wrong

Change_Instance_ Type := Serpent.Get_Change_Type (Transaction,
Changed_id) ;
If Change_Instance_Type /= MODIFY then
Text_IO.Put_Line (“Error in Change Type”);
end if;

-- now get list of changed components

Change_List := Serpent.Create_Changed Component_List (Transaction,
Changed_id):;

Component _Node := Serpent.Get_First Node (Change_ List);

while Component Node /= NULL loop
Serpent .Get Component_Name (Component_ Node, Component_Name) ;
Text IO.Put (Component Name) ;
Text_IO.Put (™: ™);
Component_Type :=
Serpent .Get_Shared_Data_Type (“*sensor_sdd”,Component Name) ;

- Switch based on type of component

case Component Type is
when sd_string =>
Serpent .Get_Shared Data_String(Transaction,

Changed id,
Component Name,
String Data);

Text_IO.Put (String_Data);

Text_IO.Put_Line (“%);

when sd_real =>
Serpent .Get_Shared Data_ Real(Transaction,
Changed id,
Component_Name,
Real Data);
Flt_IO.Put (Real Data);
Text_IO.Put_Line(™“);

when sd_integer =>
Serpent .Get_Shared Data_Integer (Transaction,
Changed_id,

88 Serpen:: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

Spider Example

Component _Name,
Integer_ Data);
Int_IO0.Put (Integer_Data);
Tex*_IO.Put_Line(“™%“);
when OTHERS =>
Text_ IO.Put_Line (“type not in list to process”);

end case;

Component_Node := Serpent.Get_Next_Node(Change_List,
Component Node) ;

end loop;

Text IO'Put—Line (“***************************************”) ;

return;
end;

AR A A A AT A A AT AT A AR A A AT A A A A A AR AR AR AR A R A AR AAA AR AR AAR A AA A AR AR A Ak hkh ko kkkx

procedure Initialize_ Sensor_Record (
site_abbreviation : in string;
status : in integer;
site : in string;
etro : in string;
} is

-- PURPOSE
-- This procedure initializes all of the data for a sensor shared
data record.

begin
sensor_record.site_abbr := site_abbreviation & ASCII.NUL
sensor_record.status := status;
sensor_record.site := site & ASCII.NUL;

set_undefined(sd_string.sensor_ record.last_message);
set _undefined(sd_buffer, sensor_ record.rfo);
sensor_record.etro := etro & ASCII,NUL
sensor_id := Serpent.Add_Shared Data(
Transaction, "sensor_sdd”,””, sensor_record’address);

- now add two communication lines for the new sensor

comm_line.from := sensor_id;

comm_line.to := ccl_id;
set_undefined(sd_string,comm_line.etro);
comm_line.status := GREEN_STATUS;
Changed_id := Serpent.Add Shared Data(
Transaction, “communication_line sdd”,””,comm_line’address);
comm_line.to := cc2_id;
Changed_id := Serpent.Add Shared Data(
Transaction, “communication_line_sdd”,””,comm line’address);
return;

end;

KAR I AR AR IR IR A A AR R AR A AN KRR A A AR AR AR AR AR A AR AT AR AR AR ARk kA hhkkkkk

Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-T7) 89

Spider Example

begin

Serpent.Serpent_Init(FD.MAIL_BOX, FD.ILL_FILE);

Transaction := Serpent.Start_ Transactior;

if Serpent.get_status /= ok then
Serpent.print_status (“bad status from start transaction”);
return;

end if;

-- create shared data for the two correlation centers

cel_id := Serpent.Add_Shared_Data(
Transaction, “cc_sdd”, “name”, “CMC”’ address) ;

temporary := GREEN_STATUS;

Serpent .Put_Shared Data(
Transaction, ccl_id, “cc_sdd”,"status”,temporary’address);

cc2_id := Serpent.Add_ Shared Data(
Transaction, ”“cc_sdd”, "name”, “OFT”’ address) ;

Serpent .Put_Shared_Data(
Transaction, cc2_id, “cc_sdd”,”status”,temporary’address);

-- create sensor and communication records in shared data

Initialize_Sensor_Record/(

“GS1”, GREEN_STATUS, “Ground Station 1%, “16/12452");
Initialize_Sensor_Record(

“GS2”, GREEN_STATUS,”Ground Station 27, “16/16342");
Initialize_Sensor_Record(

“GS3”, GREEN_STATUS,”Ground Station 37, %“12/12452");
Initialize_Sensor_Recoxd (

“CLR”, YELLOW_STATUS,”Clear”, “10/11452”");
Initialize_Sensor_ Record(

“Til”, GREEN_STATUS, “Thule”, “16/12552”);
Initialize_Sensor_Record(

“FYL”, RED_STATUS,”Fylingdales”, “16/12452");
Initialize_Sensor_Record(

“BLE”, GREEN_STATUS, “Beale”, “06/13252");
Initialize_Sensor_Record(

“OTs”, YELLOW_STATUS,”QTS”, “08/12452");
Initialize_Sensor_Record(

“ELD", GREEN_STATUS,”El Dorado”, “13/02452");
Initialize_Sensor_Record(

“WRB”, RED_STATUS,”"Warner Robins”, “11/18562");
Initialize_Sensor_ Recorxrd(

“SHY”, GREEN_STATUS, “Shemya”, “14/125427);
Initialize_Sensor_Record (

“CAV”, GREEN_STATUS, “Cavalier”, “09/05292");

-- commit transaction. After this procedure call, the data is available

90 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Spider Example

-- to Serpent for display to the end user

Serpent.Commit_Transaction(Transaction);

if Serpent.get_status /= ok then
Serpent.print_status (“bad status from Commit_Transaction”);
return;

end if;

-- get changes

loop
Transaction := Serpent.Get_Transaction;
Changed_id := Serpent.Get_First_Changed_Element(Transaction);

while Changed_id /= S_Types.Null ID lcop
Get_Data_Value;
Changed_id := Serpent.Get_Neuit_Changed Element (Transaction);

end loop;

Serpent.Purge_Transaction(Transaction);
end loop;

Serpent.Serpent_Cleanup;
end Spider;

Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) 91

Spider Example

92 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

I REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION

16. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited

N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S
CMU/SEI-91-UG-7

5. MONITORING ORGANIZATION REPORT NUMBER(S)
CMU/SEI-91-UG-7

6a. NAME OF PERFORMING ORGANIZATION 6b. OFHCE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION

Software Engineering institute é‘fé;”'”“’k) SE! Joint Program Office

6c. ADDRESS (City. Statc and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESD/AVS

Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDING/SPONSORING slt;. OPFIM‘C!? ?YMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (i applicable F1962890C0003

SEI Joint Program Office ESD/AVS

8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOs.

Camegie Mellon University PROGRAMNO PROJECT TASK WORK UNIT

Pittsburgh PA 15213 ELEMENT No. :

9 63752F N/A N/A N/A

11. TTTLE (Include Security Classification)

Serpent: Ada Application Developer’s Guide

12. PERSONAL AUTHOR(S)

User Interface Project

13a. TYPE OF REPORT 13k. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

Final FROM o June 1991 104

16. SUPPLEMENTARY NOTATION
I 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)
| e GROUP SR OR ___|Serpent, UIMS, user interface management system, user inter-
l face generators, Ada, application development

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Serpent is a user interface management system (UIMS) that supports the development and imple-
mentation of user interfaces, providing an editor to specify the user interface and a runtime system
that enables communication between the application and the end user. This manual describes how
to develop applications using Serpent. Readers are assumed to have read and understood the con- I
cepts described in the Serpent Overview, as well as to have had experience using the Ada program-

ming language.

(picase tum over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED l SAME AS nn[] DTIC USERS]

21. ABSTRACT SECURITY CLASSIFICATION
Undlassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL
John S. Herman, Capt, USAF

22b. TELEPHONE NUMBER (Include Area Code) 22¢. OFFICE SYMBOL
(412) 268-7630 ESD/AVS (SEl)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS

[ABSTRACT —continucd from page one, block 19

