
AD-A244 653

Carnegie Mellon University
Software Engineering Institute

....d.a

JAN 17 1902 1J

D

Application
Developer's
Guide
92-01309

0 00 00 0 *0 0 0 0 0000 0 00 00 00 00 0 0 0 *0 0 0 0 00 00 00 060 00 00 0

System for User Version Date
Interface Development 1 August 1991

()PP)rovcd
ts . -----

)

in m n I m la n i Hinl I II2 I-'I I

User's Guide
August 1991

CMU/SEI-91 -UG-7

Serpent: Ada Application Developer's Guide

Acce~ioiUser Interface Project
NTlS r R

C.:1

A--i

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

C---a~~eJ-Rj nM or, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the Department of Defense.

Copyright C 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on
orderinR, plear- w,fat NTIS 1irectiy: National Technical Information Service, US. Department of Commerce,
Springfield, VA 2216l.
Use of any trademarks in this document is not intended in any way to infringe on the rights of the trademark holder.

The Software Engineering Institute is not responsible for any
errors contained in these files or in their printed versions, nor
for any problems incurred by subsequent versions of this
documentation.

Table of Contents

1 Introduction 1
1.1 This Manual 1

1.1.1 Organization 1
1.1.2 Typographical Conventions 2

1.2 Other Serpent Documents 2

2 Overview 5
2.1 Serpent Architecture 5
2.2 Shared Database 7
2.3 Application Development 10

3 Specifying the Contract 13
3.1 Defining Shared Data 13
3.2 Data Types and Values 15
3.3 Initialization and Cleanup 18

4 Modifying Information 21
4.1 Sending Transactions 21
4.2 Adding Static Information 22
4.3 Modifying Information 24
4.4 Removing Information 25

5 Retrieving Information 27
5.1 Retrieving Transactions 27
5.2 Incorporating Changes 28
5.3 Examining Changes by Component 29

6 Finishing the Application 33
6.1 Error Checking 33
6.2 Recording Transactions 33
6.3 Dialogue Initiated Exit 34

7 Testing and Debugging 37
7.1 Formatting Recordings 37

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

7.2 Playback 38

Appendix A Data Structures 39

Appendix B Routines 47

Appendix C Commands for Testing Serpent Applications and
Dialogues 83

Appendix D Spider Example 87

ii Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

List of Figures

Figure 1-1 Serpent Documents 4
Figure 2-1 Serpent Architecture 6
Figure 2-2 Shared Database 8
Figure 2-3 Shared Data Instantiation 9
Figure 2-4 Spider Chart Display 11

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) iii

iv Serpent -Ada Application Developer's Guide (CM1J/SEI-91 -UG-7)

List of Examples

Example 3-1 Spider Shared Data Definition File 14
Example 3-2 Ada Language Package 15
Example 3-3 Shared Data Definition 15
Example 3-4 Generated Ada Package 16
Example 3-5 Serpent Data Type 16
Example 3-6 Assigning Values to String Components 16
Example 3-7 Assigning Values to Integer, Boolean, or Real

Components 17
Example 3-8 Buffer Structure 17
Example 3-9 Assigning Values to Buffer Components 17
Example 3-10 Setting Component Values to Undefined 18
Example 3-11 Serpent Initialization 18
Example 4-1 Sending Transactions 21
Example 4-2 Adding Information to the Shared Database 23
Example 4-3 Modifying Information in the Shared Database 25
Example 4-4 kemoving Information from the Shared Database 26
Example 5-1 Transaction Processing 28
Example 5-2 Processing Changes to Shared Data Records

(Simple Programs) 29
Example 5-3 Processing Changes to Shared Data Records

(Large Systems) 30
Example 6-1 Examining Status 33
Example 6-2 kl:cording Transactions 34
Example 7-1 Formatting the Recording File 37
Example 7-2 Testing the Application 38

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) v

vi Serpent: Ada Application Developer's Guide (CM4U/SEI-91 -UG-7)

Introduction

1 Introduction
Serpent is a user interface management system (UIMS) that supports the development and

execution of a user interface of a software system. Serpent supports incremental
development of the user interface from the prototyping phase through production to

maintenance or sustaining engineering. Serpent encourages a separation of functionality

between the user interface and functional portions of a software system. Serpent is also

easily extended to support additional aser interface toolkits.

1.1 This Manual

This manual describes how to develop applications using Serpent. Readers are assumed to

have read and understood the concepts described in the Serpent Overview, as well as to

have had experience using the Ada nrogramming language.

1.1.1 Organization

The contents of this guide include:

Introduction and Overview. This chapter provides a general description of
the role of an application in a software system developed with Serpent. It also
describes a conceptual framework for application development.

" Specifying the Contract. This chapter describes the tasks necessary to define
the type, structure and values of data to be shared between an application
program and Serpent and to establish runtime communications with Serpent.

" Modifying Information. This chapter describes the tasks necessary to add,
modify or remove information to/from the Serpent shared 'latabase.

" Retrieving Information. This chapter describes the tasks necessary to define
and retrieve changes to information from the Serpent shared database.

" Finishing the Application. This chapter describes the finishing touches that
should be applied to the application, including error checking and exception
handling.

" Testing and Debugging. This chapter describes utilities available to assist in
the testing aud debugging of the application.

" Appendix A: Data Structures. This appendix is a complete reference of all
the constants, types, routines, and other data structures available to Serpent
application developers using the Ada programming language.

Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Introduction

" Appendix B: Routines. This appendi is a complete reference of all the
routines available to Serpent application developers using the Ada
programming 'anguage.

* Appendix C: Commands for Testing Serpent Applications and Dialogues.
Thi- appendix is a reference of commands available to Serpent application
developers from the operating system.

* Appendix D: Spider Example. This appendix is a complete application
example, developed in the Ada programming language.

1.1.2 Typographical Conventions

Code examples Courier typeface

C-',e directly related to text Bold, courier typeface

Variables, attributes, etc. Courier typeface

Syntax Courier typeface

Warnings and cautions Bold, italics

1.2 Other Serpent Documents

The purpose of this guide is to provide the information necessary to develop Serpent
applications. The following publications address other aspects of Serpent

Serpent Overview
Introduces the Serpent system.

Serpent: System Guide
Describes installation proc .iures, specific input/output file descriptions for intermediate
si.-s and other information necessary to set up a Serpent application.

Serpent: Saddle User's Guide

Describes the language that is used to specify interfaces between an application and
Serpent.

Serpent: Dialogue Editor User's Guide

Describes how to use the editor to develop and maintain a dialogue.

Serpent. Slang Reference Manual

Provides a complete reference to Slang, the language used to specify a dialogue.

2 Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Introduction

Serpent. C Application Developer's Guide

Describes how the application interacts with Serpent. This guide describes the runtime

interface library, which includes routines that manage such functions as timing, notification

of actions, and identification of specific instances of the data.

Serpent: Guide to Adding Toolkits

Describes how to add user interface toolkits, such as various Xt-based widget sets, to

Serpent or to an existing Serpent application. Currently, Serpent includes bindings to the

Athena Widget Set qnd the Motif Widget St..

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 3

Introduction

The following figure shows Serpent documentation in relation to the Ser-

pent system:

Dialogue
SaddleEditor

4 Sdi Slang Slang Sln
Processor_ Compiler -4- Porm eeec

Transaction
application Processing dialogue presentation 1/0

layer Library layer layer Toolkits

Figure 1-1 Serpent Documents

4 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Overview

2 Overview
A main goal of Serpent is to encourage the separation of a software system into an

application portion and a user interface portion to provide the application developer with a
presentation-independent interface. The application portion consists of those components

of a software system that implement the "core" application functionality of a system. The

user interface portion consists of those components that implement an end-user dialogue.
A dialogue is a specification of the presentation of application information and end-user

interactions.

During the design stage, the system designer decides which functions belong in the

application component and which belong in the user interface component of the system.

2.1 Serpent Architecture

Serpent is implemented using a standard UIMS architecture. This architecture (see Figure
2-1) consists of three major layers: the presentation layer, the dialogue layer, and the

application layer. The three different layers of the standard architecture are viewed as
providing differing levels of end-user feedback.

Serpent. Ada Application Developer's Guide (CMU/SEI-91-UG-7) 5

Overview

~..................... ." i

dialogue IN
itrfcmanager -,. .. dialogue

.... n e f c

.. ~~ ~4'.4 .' ."

interface

Toolkits :

..............-..................

Figure 2-1 Serpent Architecture

The presentation layer consists of various input/output toolkits that have been incorporated

into Serpent. Input/output toolkits are existing hardware/software systems that perform

some level of generalized interaction with the end user. Serpent is being distributed with an

interface to the X Window System, Version 11. Other input/output toolkits can be

integrated with Serpent. See Serpent: Guide to Adding Toolkits for a discussion of how this

can be accomplished.

6 Serpent. Ada Application Developer's Guide (CMhU/SEI-91-UG-7)

Overview

One way of viewing the three levels of the architecture is the level of functionality provided
for user input. The presentation layer is responsible for lexical functionality, the dialogue
layer for syntactic functionality, and the application layer for semantic functionality. In
terms of a menu example, the presentation layer has responsibility for determining which
menu item was selected and for presenting feedback that indicates which choice is currently
selected. The dialogue layer has responsibility for deciding whether another menu is
presented and presenting it, or whether the choice requires application action. The
application layer is responsible for implementing the command implied by the menu
selection.

The end user interface for a software system is specified formally as a dialogue. The
dialogue is executed by the dialogue manager at runtime in order to provide an end user
interface for a software system. The dialogue specifies both the presentation of application
information and end user interactions. The Serpent dialogue specification language (Slang)
allows dialogues to be arbitrarily complex.

The application provides the functional portion of the software system in a presentation-
independent manner. It may be developed in C, Ada, or other programming languages. The
application may be either a functional simulation for prototyping purposes or the actual
application in a delivered system. The actions of the application layer are based upon
knowledge of the specific problem domain.

2.2 Shared Database

Serpent provides an active database model for specifying the user interface portion of a
system. In an active database, multiple processes are allowed to update a database. Changes
to the database are then propagated to each user of the database. This active database model
is implemented in Serpent by a shared database that logically exists between the
application and I/O toolkits. The application can add, modify, query, or remove data from
the shared database. Information provided to Serpent by the application is available for
presentation to the end user. The application has no knowledge of the presentation media
or user interface styles used to present this information.

Information in the shared database may be updated by either the application or I/O toolkits.
Figure 2-2 illustrates the use of the shared database in Serpent.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 7

Overview

Athena Widget

Application

Technology "Z"

application techrology

dialogue layer

Figure 2-2 Shared Database

Serpent allows the specification of dependencies between elements in the shared database
in the dialogue. These dependencies define a mapping among application data,
presentation objects, and end user input. The dialogue manager enforces these
dependencies by operating on the information stored in the shared database until the
dependencies are met. Changes are then propagated to either the application or the I/O
toolkits as appropriate. See the Serpent: Slang Reference Manual (CMU/SEI-91 -UG-5) for
a further discussion.

The type and structure of information that can be maintained in the shared database is
defined externally in a shared data definition file. This corresponds to the database concept
of schemas. A shared data definition file is required for each application.

8 Serpent. Ada Application Developer's Guide (CMUISEI-91-UG-7)

Overview

A shared data definition file consists of both aggregate and scalar data structures. Top-level
data structures become shared data elements that may be instantiated at runtime. Nested
data structures become components that are considered part of the shared data element.
Serpent does not allow nesting of records.

Shar, d Data Record Instantlation Shared Data Instances

John Smith
101 Main Street

name: strlng[50]; No (212) 555-1234
address: string[50];
phone: string[13]; Sue Scott

end record; No 22 Park Avenue
Undefined

Harry Altair
64 Fifth Avenue
(212) 712-6873

Figure 2-3 Shared Data Instantiation

It is possible to define multiple instances of a single shared data element. Shared data
elements are instantiated by specifying the element name. Each shared data instance is
identified by a unique ID. IDs must be maintained by the application to identify shared data
instances when multiple instances of a single shared data element exist. Figure 2-3 provides
an illustration of shared data instantiation.

Since the dialogue manager, the application, and any toolkits participating in a particular
execution of Serpent are separate system processes that use the shared database, they can
potentially modify the database concurrently, possibly compromising the integrity of the
database. This problem is solved in Serpent through the use of database concurrency
control techniques. Updates to the Serpent shared database are packaged in transactions.
Transactions are collections of updates to the shared database that are logically processed
at one time. Transactions can be started, committed, or aborted. A transaction which has
been started but neither committed nor aborted yet is said to be open. Multiple transactions
may be open at the same time. Committing a transaction causes the updates to be made to
the shared database. Aborting a transaction causes termination of the transaction without
any update of the shared database.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 9

Overview

Communicating with Serpent

The application communicates with Serpent using the shared database model described
earlier in this document. Information added to shared data is available to be presented to the
end user by the dialogue. Changes to application data are automatically communicated
back to the application.

2.3 Application Development

The application, or non-user interface portion of the system, provides the "core"
functionality of a software system developed using Serpent. The application can be written
in Ada, C, or other programming languages and can be either a simulation or an actual
application.

An application may only add information to shared data or it may only retrieve information
from shared data. For example, an application that monitors and displays the status of a
computer network may only need to add information to shared data to update the display.
An application such as an automatic teller machine (ATM) might only need to retrieve data
from the user interface.

All transactions to and from the application are handled explicitly in the application using
the routines and data structures available in the Serpent application interface. This
document describes the usage and definitions of these routines and data structures.

Error Checking and Recovery

Each routine in Serpent sets status on exiting. It is the responsibility of the application
developer to check this status to perform appropriate error recovery. Serpent provides
routines to both check and print the status.

Testing and Debugging

Serpent provides a record/playback feature that can be used in testing and debugging.
Transactions between the application and dialogue manager or between the dialogue
manager and the various toolkits can be recorded, then played back at a later time. This is
useful in isolating problems or in performing regression/stress testing of an application,
dialogue, or toolkit.

10 Serpent: Ada Application Developer's Guide (CMUISEI-91-UG-7)

Overview

Spider Example

The spider application is an example of an application system developed using Serpent.
Figure 2-4 is an illustration of a "spider chart" display that is one possible end-user interface
for the application.

Adapted from a command and control application, the spider application monitors and
displays the status of various sensor sites and their associated communication lines to the
two correlation centers (Figure 2-4).

.....i.

i!"-' I U. -TJ

Fiurr.4Sidr hrtDspa

22

~ STATUS

* ETROJ

* RFD

e . p_ _i / U

Figure 2-4 Spider Chart Display

Serpent. Ada Application Developer's Guide (CMU/SEI-91-UG-7) 11

Overview

The columns of rectangular boxes on the right and left sides of the spider chart display (for

example, GSI, GS2) represent sensor sites. The rectangles in the middle of the display
represent the correlation centers that collect information from the sensors. Each sensor site
communicates with both correlation centers; this is represented by the duplication of sensor

site boxes on both the right and left sides of the display. The lines represent communication
lines between the sensor sites and the correlation centers. The status of sensors is
represented by the shading of the rectangles. On a color display, the status would be
represented using different background colors.

An operator may display detailed information concerning a sensor site by selecting a sensor
site box corresponding to that sensor. This causes a detailed window to appear, displaying
the status of the sensor, the date and time of the last message, the reason for outage (RFO)
and the estimated time to returned operation (ETRO). These fields may be modified by the
operator. Sensors may be in one of three states: operational, impaired, or down. For sensors
that are not fully operational (i.e., the status is yellow) the ETRO is displayed to the outside

of the sensor site box. ETROs are also displayed over communication lines that are not fully
operational. The operator may also dynamically reconfigure the network' by adding/
deleting sensors to/from the network.

'The capability of dynamically reconfiguring the network does not exist in the spider chart example distributed
with Serpent Version 1.0.

12 Serpent. Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Specifying the Contract

3 Specifying the Contract
The first step in creating a software system using Serpent is to apportion system
functionality between the dialogue and the application. This involves creating a contract
between the two components: defining the type and structure of information to be
communicated, or shared, between the two components; establishing the range of values of
this data; and establishing runtime communication between the components.

3.1 Defining Shared Data

Shared data is information that is communicated or shared between the application and

dialogue. Defining shared data involves two steps:

1. Create the shared data definition file.

2. Run the created file through the Saddle processor.

The following is a brief description of each of these two steps. The Serpent: Saddle User's
Guide contains a more complete description of both these steps.

Step 1: Create the shared data definition file. The shared data definition file defines the
type and structure of information that can be shared between the application and dialogue.
The shared data definition is specified in Saddle. By convention, the file is given the name
of the application, followed by the extension .sdd.

Example 3-1 is an example of a shared data defimition file for the spider application. The
content of the shared data definition file is independent of the implementation language
used. Note that these shared data record templates contain only information to define the
application objects; they do not specify how the information is presented to the end user.

<< spiderA >>

spider: shared data

sensor sdd: record
site abbr: string[3J;
status: integer;
site: string[32];
lastmessage: string[8);
rfo: buffer[32];
etro: string[8];

end record;

cc-sdd: record
name: string[3];
status: integer;

end record;

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 13

Specifying the Contract

communication line sdd: record
fromsensor: id-of sensorsdd;
to-cc: id of cc sdd;

etro: string(8];
status: integer;

end record;

end shared data;

Example 3-1 Spider Shared Data Definition File

The file shown in Example 3-1 contains definitions for the data shared between the

application and the dialogue for the spider application. The first line of the file contains the

name (and possible path information) of the executable image of the application. This

application is automatically executed by the Serpent command at runtime. (Serpent: System

Guide contains a complete explanation of this process.) The three shared data record

templates define the type and structure of the sensor, correlation center, and communication

line application objects.

Step 2: Run the created file through the Saddle processor. Once the shared data has been

defined in the file, it can be processed by Saddle to generate an Ada Package. This package
will have the same name as the shared data definition file with a different extension. For
example, the shared data file spiderA. sdd will generate the file spiderA. ada. This
package can then be withed in the Ada application and used to declare local variables of

the shared data types. The Ada package generated by running the shared data definition file

shown in Example 3-1 through the Saddle processor is illustrated in Example 3-2.

MAIL_BOX: constant string := "SPIDERA_BOX";
ILLFILE: constant string := "spiderA.ill";

type sensor sdd is record
self: id-type; -- (no element pointer)
siteabbr: string (1..4);
status: integer;
site: string (1..51);
last-message: string (1..9);
rfo: string (1..51);
etro: string (1..9);

end record;

type ccsdd is record
name: string(l. .4);

status: integer;
end record;

type communication line sdd is record
fromsensor: id type; -- (no element

14 Serpent. Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Specifying the Contract

pointer)
to-cc: integer;
etro: string (1..9);
status: integer;

end record;

type communication linesdd_ptr is access
communication line sdd;

end spiderA;

Example 3-2 Ada Language Package

In E -ample 3-2, the first two lines in the file define two well-known constants: MAIL BOX

and ILLFILE. These constants will be used in initializing Serpent. The three structures

correspond to the record templates defined within the shared data definition file.

3.2 Data Types and Values

One output of processing the shared data definition file through the Saddle processor is an

Ada package containing corresponding Ada structures for the shared data records. These

Ada structures can be used to declare local variables that correspond in size and structure

to shared data records. Components of shared data records can be declared as any of the

following types: boolean, integer, real, string, ID or buffer. The Ada records generated

from these declarations depend on the type of the components. Example 3-3 is unrelated to

the spider example used throughout this guide but includes a description of a shared data

record that contains an example of each type of component.

employee_sdd: record
name: string[32];
salary: integer;
exempt: boolean;
experience: real;
job desc: buffer;
self: id of employee_sdd;

end record;

Example 3-3 Shared Data Definition

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 15

Specifying the Contract

Example 3-4 shows the Ada package that is generated when the employee sdd record is
processed by Saddle processor.

type employee_sdd is record
name: string (1..33);
salary: integer;
exempt: boolean;
experience: float;
job_desc: buffer;
self: id type;

end record;

Example 3-4 Generated Ada Package

Although each shared data component is now represented using an Ada language specific
type, there is still a Serpent data type associated with each of them. The Serpent data type
can be determined at runtimn using the get_shareddatatype function illustrated in
Example 3-5. The serpentdata type is an enumeration of the different Serpent data
typea ano is defined in Appendix A.

serpentdata type type;

-- Get the Serpent type of the employee record salary
-- component.

type := S.GetSharedDataType("employee", "salary");

Example 3-5 Serpent Data Type

Shared data values specified as strings in the shared data definition file are represented by
strings in the Ada package generated by the Saddle processor. It is therefore not necessary
to allocate memory for these strings, although it is necessary to convert the strings to null
terminated strings.

-- Declare a local shared data variable.

employee: employeesdd;

-- null terminate string.

employee.name := 'Harry Alter" & ASCII.NUI;

Example 3-6 Assigning Values to String Components

16 Serpent. Ada Application Developer's Guide (CMUISEI-91 -UG-7)

Specifying the Contract

Shared data components of type integer, boolean, real, or ID can be assigned directly to Ada
language variables. IDs are returned from a number of Serpent routines and are id._type.

Saddle integers and booleans correspond to the equivalent Ada types and Saddle reals are
actually of Ada type float. (See Example 3-7.)

-- Integer, boolean, or real components can be set
-- directly.

employee.salary := 45000;
employee.exempt := FALSE;
employee.experience := 3.2;

Example 3-7 Assigning Values to Integer, Boolean, or Real Components

Buffer is the only dynamic shared data type in that neither the size nor the type of the
information is predefined. Example 3-8 describes the buffer structure. Buffer type is
required and specifies the type of information stored in the buffer. Buffer length is the size
in bytes of the data and is required even if the data is of a well known type (i.e., integer).
Buffer body is a pointer to the actual data. The space used to maintain this data is not part
of the buffer structure and must be managed by the user.

type buffer is record
type: shareddata types
length: integer;
body: system.address;

Example 3-8 Buffer Structure

Buffers can be used to:

• Share untyped, contiguous data.

* Share large amounts of contiguous data (i.e., large strings).

* Provide variant records.

Example 3-9 contains the example of the employee, jobdesc buffer being used as a
string.

-- This buffer is being used as a string.

employee.job_desc.type := sdstring;
string variable := "Look busy";
employee.job_desc.length := string_variable'length;
employee.jobdesc.body := stringvariable'address;

Example 3.9 Assigning Values to Buffer Components

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 17

Specifying the Contract

Shared data values can also be undefined. All uninitialized components of a shared data
record instance created using the addshared data function are initialized by Serpent to
be undefined. On the other hand, components of a local, shared data variable have whatever
values are left by the system--most likely zeros. If this structure is used to initialize the
shared data instance (with the addshared data or put_shareddata routines), all the
components of the instance are initialized with these values. Components of local, shared
data variables can be explicitly set to undefined using the setundefined routine
illustrated in Example 3-10. The is undefined function Can be used to determine if a
component value is undefined.

-- The set undefined function is used to set the value of
-- a component to undefined.*/
setundefined(sd buffer, employee.job-desc'address);

Example 3-10 Setting Component Values to Undefined

3.3 Initialization and Cleanup

The first task of any Serpent application is to initialize the system. Serpent initialization
establishes communication between the application and the dialogue. The final application
task is to clean up the Serpent system environment before exiting. The code segment from
the spider application shown in Example 3-11 illustrates the basic operations necessary for
Serpent initialization and cleanup.

with Serpent;
with STypes; use Stypes;

begin
Serpent.Serpent_Init(MAILBOX,ILLFILE);
Serpent. SerpentCleanup;

end

Example 3-11 Serpent Initialization

Specification Steps:
1. Include Serpent package. The Serpent and STypes packages contain the

external definition for the Serpent interface.

2. Initialize Serpent. The serpent_init procedure is used to initialize
Serpent. It takes as parameters the MAILBOX and ILLFILE constants
generated by the Saddle processor. This procedure establishes communication
between the application and the dialogue manager.

18 Serpent: Ada Application Developer's Guide (CMU/SE-91-UG-7)

Specifying the Contract

3. Clean up. The serpent_cleanup routine must be invoked before exiting

the application. It is important to complete this step to release allocated system
resources.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 19

Specifying the Contract

20 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Modifying Information

4 Modifying Information
The application can add, change, or remove information to and from the shared databasef

using the transaction mechanism described in the introductory chapter of this document.
Together, these are considered modifications to the shared database. The collection of
application data in the shared database is known as the view. This is the information that is
available to the dialogue writer to be presented to the end user. The view can be modified
by either the application or the dialogue.

4.1 Sending Transactions

Before information can be modified in the shared database, it is necessary to start a
transaction. All modifications to the shared database must be performed as part of a
transaction.

It is possible to have multiple transactions open at one time. Each transaction has a unique
transaction handle. Every operation performed on or to a transaction must specify this

transaction handle.

The actual change to the shared database does not occur until the transaction is committed.
Up to this point it is also possible to roll back the transaction so that none of the changes to
shared data occur.

The code segment from the spider application in Example 4-1 shows the operations
necessary for sending transactions. Code and comments directly related to the task are
emphasized in bold type.

begin
transaction : S_Types. TransactionType; -- transaction handle

Serpent.Serpent_Init (MAIL BOX, ILL FILE);
transaction := Serpent.Start Transaction;
Serpent. ComitTransaction (transaction);
Serpent. Serpent_Cleanup;

end

Example 4-1 Sending Transactions

Specification Steps:
1. Declare transaction variable. A local variable of transactiontype can

be used to maintain a transaction handle.

Serpent: Ada Application Deeloper's Guide (CMU/SEI-91-UG-7) 21

Modifying Information

2. Start a transaction. The start transaction function returns a transaction
handle that must be passed to any subsequent commands operating on the
transaction.

3. Commit the transaction. The actual change to shared data does not occur until
the transaction is committed. Up to this point it is also possible to roll back the
transaction using the rollbacktransaction routine so that none of the
changes to shared data occur.

4.2 Adding Static Information

This section makes some simplifying assumptions about the application that may in fact
hold true for simple programs. The primary assumption is that the application wil create
only a fixed number of shared data instances so that the IDs of these instances can be
maintained in local variables. A secondary assumption is that the application will create no
more than one instance of each shared data element.

At any given moment, there can be up to three different versions of any given shared data
instance. First, there is a local copy in the application. Second, there can be a copy that is
part of an open transaction. Third, there is a copy in the shared database. Depending upon
whether the shared data instance has been last modified by the application or by the end-
user, the more current copy could be either the local application or shared database copy.
A shared data instance that is part of an open transaction is the delta from the more current
to less current copy of the shared data instance. The shared data copy being affected by any
given operation should be apparent from the context.

Variables of generated shared data types are referred to as shared data variables. The first
step in adding information to shared data is to assign values to these shared data variables.
The method for doing this is based on the Serpent types of the components and is explained
in detail in Section 3.2. These variables can then be used to initialize a record instance,
either a component at a time or the entire record at once.

Once a transaction has been started, you can begin to add, change or remove information
to/from the shared database as part of this transaction. These changes are made as part of
the transaction and are not applied to the shared database until the transaction is committed.

22 Serpent" Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Modifying Information

The code segment from the spider application in Example 4-2 illustrates the operations
involved in adding information to the shared database. Code and comments directly related
to the task are emphasized in bold type.

with Serpent; -- serpent interface definition
with S Types; use STypes;
with SpiderA -- application data structures
GREEN STATUS: constant 0;
YELLOW STATUS: constant 1;
REDSTATUS: constant := 2;

begin
transaction :STypes.Transaction-Type; -- transaction handle
c: SpiderA.ccadd -- shared data variables
gsl: SpiderA.sensor sdd -- shared data variables
cmcid,gsl-id: id_type -- object instances

Serpent.SerpentInit (MAILBOX,ILLFILE);

-- Initialize shared data variables.

cmc.name := "CXC" & ASCII.NUL;
c-c.status : GREEN STATUS;
gsl.status := REDSTATUS;

-- Start a transaction to be sent to the dialogue.

transaction := Serpent. StartTransaction;

-- Create an instance of the correlation center shared data
-- record in the transaction and initialize using the shared
-- data variable.

cmc id := Serpent.Serpent.AddSharedData(
Eransaction, "correlation_center", "", cc' address

-- Create an instance of the sensor shared data record but
-- this time update only the name component.

gal_id := Serpent.Add Shared Data(
transaction, "sensor", "name", gsl.name' address

Serpent.CommitTransaction(transaction);

Serpent. Serpent_Cleanup;
end;

Example 4-2 Adding Information to the Shared Database

Specification Steps:
1. With Saddle generated header file. This file (spiderA.h in the example)

defines the structure of the shared data. The packages Serpent and STypes
must be specified before spiderA.h because SpiderA uses types defined in

S_Types..

Serpent. Ada Application Developer's Guide (CMU/SEI-91-UG-7) 23

Modifying Information

2. Define constants. The spider example contains three constants:
GREENSTATUS, YELLOWSTATUS, and REDSTATUS.These constants are
not required but help increase the clarity of the example.

3. Define shared data variables. Variables crric and gs 1 are both instances of
generated shared data structures. These variables are used to initialize
instances of shared data in the shared database.

The variables cmc_id and gsl id are used to store the ids of the created
shared data instances. These variables are declared to be of idtype. The ids
are necessary to perform further operations on these instances in the shared
database.

4. Assign values to shared data variables. The mechanism for accomplishing this
task depends on the component types. This is explained in detail in Section 3.2.

5. Add information to the shared database. The addshared data routine
creates a shared data instance as part of the specified transaction and returns
the ID of the instance. The routine allows you to initialize a single component
of the instance by specifying the name of the component and providing a
pointer to the initial value. Any uninitialized fields of the instance are left
undefined. It is also possible to initialize the entire instance by providing a
pointer to the structure and specifying . for the component name.

4.3 Modifying Information

Shared data instances in transactions or in the shared database can be modified using the
putshareddata procedure. This procedure takes as a parameter the ID of the shared
data instance.

It is possible to modify any single component of a shared data record instance, or the entire
record. Unmodified components in the transaction are marked as unchanged and maintain
their current values. This is different from components that are explicitly set to undefined,
which is actually a value.

The code segment from the spider application in Example 4-3 illustrates the operations
involved in adding dynamic information to the shared database. Code and comments
directly related to the task are emphasized in bold type.

with Serpent; -- serpent interface definition
with STypes; use STypes;

begin
transaction :S Types.Transaction Type; transaction handle
gsl: SpiderA.sensor sdd -- shared data variables

24 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Modifying Information

cnc_id,gsl_id: id-type -- object instances

Serpent.SerpentInit(MAIL BOX,ILLFILE);
transaction := Serpent.StartTransaction;

-- Update the name component of the sensor using a
-- string constant.

Serpent.Put Shared Data(
transactton, gsalid, "sensor", 'status", "GSl"'address

Serpent. Conmnit Transaction (transaction);
Serpent. SerpentCleanup;

end;

Example 4-3 Modifying Information in the Shared Database

Specification Task

Modifying information in the shared database. The put_shared data routine modifies
the values of shared data instances that have already been created and are part of a
transaction. This routinc works in an identical manner to the add shared data Call

except that it takes an extra parameter, the ID of the shared data instance to be modified.
The putshared._data routine in Example 4-4 is used to assign a value (a string) to the
name component of the first shared data instance.

4.4 Removing Information

Shared data instances in transactions or in the shared database can be removed using the
remove_shared_data procedure. It is not possible to remove components of shared data

record instances.

The code segment from the spider application in Example 4-4 illustrates the operations

involved in removing information from the shared database. Code and comments directly
related to the task are emphasized in bold type.

with Serpent; -- serpent interface definition
with STypes; use STypes;

begin
transaction :STypes.TransactionType; transaction handle
gsl: SpiderA.sensor sdd -- shared data variables
cmc_id,gsl_id: id type -- object instances

Serpent.Serpent_Init (MAILBOX,ILLFILE);
transaction := Serpent.StartTransaction;

-- Update the name component of the sensor using a
-- string constant.

Serpent.RemoveShared Data(transaction, 'sensor sdd",

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 25

Modifying Information

gsl_id);
Serpent.Conimit Transaction(transaction);
Serpent.Serpen _Cleanup;

end;

Example 4-4 Removing Information from the Shared Database

Specification Task

Removing informationfrom the shared database. The removeshareddata procedure

is used to remove a shared data instance from either the transaction or the shared database.
The procedure takes a transaction handle, the element name, and the II) of the shared data
instance to be deleted as parameters.

26 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Retrieving Information

5 Retrieving Information
Serpent implements an active database model from the perspective of the application

interface. This means that changes to application data resulting from end-user interactions
with the system are automatically communicated back to the application, using the same

transaction mechanism described in Section 4.3.

Transactions from the dialogue to the application consist of a list of changed shared data

instances. The following assumptions are true about incoming transactions:

" Incoming transactions are guaranteed to have at least one changed shared data
instance since empty transactions are automatically discarded by the interface.

* Changed shared data elements appear in random order in the transaction.

" Transactions remain unmodified in memory until the transaction is purged. This
allows the application developer, for example, to reexamine changed instances.

5.1 Retrieving Transactions

The code segment from the spider application shown in Example 5-3 illustrates the basic

operations of retrieving information from the shared database.

Specification Steps:
1. Get the transaction. The Serpent interface provides both synchronous and

asynchronous calls for getting information from the shared database. The
gettransaction routine waits until a transaction is available and then
returns a handle for this transaction. The gettransaction no wait
routine returns not-available when no transaction is available.

2. Get each changedshared data instance. The getfirstchangedelement
routine returns the first changed shared data element instance in the transaction
and marks it as the current element. The getnextchangedelement rou-
tine returns the element directly following the current element and marks it as
current. The null id is returned if there is no next element instance on the list.

3. Purge the transaction. Once the transaction has been fully processed, it
should be purged from the system. This frees system resources that could

otherwise run out.

Code and comments directly related to the task are emphasized in bold type.

Serpent.SerpentInit (MAILBOX,ILLFILE);

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 27

Retrieving Information

-- Retrieve information from shared database.

done := false;
while not done loop

-- get next transaction. If there is none, the process

-- is blocked until one arrives.

transaction := Serpent.GetTransaction;

id := Serpent.GetFirstChangedElement (transaction);

-- Get each changed instance in the transaction.

while id /= null id loop
id := Serpent.GetNextChanged_Element (transaction);

end loop;

Serpent. PurgeTransaction (transaction);

end loop;

Example 5-1 Transaction Processing

5.2 Incorporating Changes

Changed element instances from the dialogue need to be processed for any changes in the
application domain to be affected. The Serpent application interface provides several
routines for the purpose of processing changed shared data elements.

This section makes some simplifying assumpti:.s about the application that may in fact
hold true for simple programs. The primary assumption is that the application has created
only a fixed number of shared data instances so that the IDs of these instances can be
maintained as static, local variables. A secondary assumption is that the application has
created no more than one instance of each shared data record.

The code segment from the spider application in Example 5-2 illustrates the operations
involved in incorporating changes to shared data elements in static, local variables. Code
and comments directly related to the task are emphasized in bold type.

-- Get each changed record instance in the transaction.

while id /= null id loop

element.name := Serpent . GetElementName (transaction, id);

-- If the record is a correlation center then this must
-- be the omc shared data variable.

28 Serpent: Ada Application Developer's Guide (CMU/SEI-91 -UG-7)

Retrieving Information

if element name = 'cc add" then
Serpent. ncorporate-Changes(

transaction, id, cmc'address);

-- Otherwise, this must be the gal variable.

else
Serpent. Incorporate Changes (
transaction, id, gsl'address);

end if;

id :- Serpent.GetNextChangedEleinent (transaction);

end loop;

Example 5-2 Processing Changes to Shared Data Records (Simple Programs)

Specification Steps:
1. Get the element name. This is a simple call that returns a pointer to the element

name. For simple programs that have no more than one instance of a particular
shared data record, the element name can be used to identify the shared data
instance. In larger, more complex systems it is often useful in determining a

class of shared data instances.

2. Update local database. Shared data variables can be updated using the

incorporate_changes routine. This routine directly incorporates changes
in the shared data instance into the local variable. Components of the shared

data record that have not been changed are left untouched. By continually

incorporating changes into the initial shared data variable, the application

developer is guaranteed that application data remains consistent with user

input.

3. Update the local database based on the change type. The exact type of
processing required to update the local database is based primarily on the

change type. If this is a new shared data element (e.g., the change type is
create) the get_shareddata function can be used to create a copy of the

record instance. If the change type is modify, the local shared data instance

can be obtained from the hash table. The incorporate_ changes routine can
then be used to update the contents of this instance with changed component

values.

5.3 Examining Changes by Component

The Serpent application programmer's interface provides routines that allow the
application developer to examine each changed component in a changed record

individually.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 29

Retrieving Information

The operations are illustrated in Example 5-3, taken from the spider chart example. Code

and comments directly related to the task are emphasized in bold type.

id := Serpent.GetFirstChangedElement (transaction);

-- Get each changed rec'ord instance recording the transaction.

while id /= null id loop

Serpent. Get ElementName (transaction, id, elementname);
changed_components :=

Serpent.create changed component list(
transaction, id

component node

Serpent. GetFirst_Node (changed_components);

while componentnode /= null id loop

Serpent. GetComponentName(
component-node, componentname);

type := Serpent.Get Shared DataType(
element_name, component name) ;

if type - serent id then
id-data :- Serpent.Get SharedData id(

transaction, id, componentname);
end if;

component-node
Serpent. GetNext_Node (changedcomponents,

component-node);

end loop; -- end loop through list

id := Serpent.GetNextChangedElement(transaction);
end loop;

Example 5-3 Processing Changes to Shared Data Records (Large Systems)

Specification Steps:
I. Get the list of changed components. A list of changed components can be

obtained by using the create_changedcomponentlist function.

2. Loop through the list. The get_firstnode and getnextnode
routines provide a mechanism to sequence the changed components.

Get_componentname provides a mechanism to get the name from the

node.

30 Serpent Ada Ap"lication Developer's Guide (CMIJ/SEI-91 -UG-7)

Retrieving Information

3. Examine the type and/or data The Serpent application programmer's
interface provides routines to examine both the type and the data at the
component level. The get_shareddatatype returns a
serpent_datatype. The get_shared data id routines return the
component value.

Serpent: Ada Applicaion Developer's Guide (CMU/SEI-91-UG-7) 31

Retrieving Information

32 Serpent:- Ada Application Developer's Guide (CMUISEI-91 -UG- 7)

Finishing the Application

6 Finishing the Application
Other than sending and retrieving data, the application can determine errors from the use of
Serpent, record communication between the application and Serpent and exit according to
a signal received from the dialogue.

6.1 Error Checking

Each routine in Serpent sets status on exit. It is good software engineering practice to check
status after every call to make sure that the routine has executed correctly, and provide
appropriate recovery actions if it has not. Example 6-1 illustrates the routines provided by
Serpent for examining the status.

transaction := Serpent.start transaction;
if Serpent.getstatus /= 0 then
Serpent.print status("error during start transaction");
Serpent. serpent_cleanup;

end if;

Example 6-1 Examining Status

The first of these routines is get_status, which returns an enumeration of status codes.
Valid statuses returned by each routine in Serpent are defined in Appendix B. Successful
execution (or "OK") is always set to zero; hence, it is possible to make a simple boolean
comparison for bad status.

The print-status routine prints a user-defined error message and the current status.

6.2 Recording Transactions

Transactions between the application and the dialogue can be recorded using the
startrecording and stop_recording procedures available in the Serpent
application programmers interface. After the call to startrecording is made,
transactions may be sent across the interface. Any number of transactions containing any
type or amount of data can be sent. Once startrecording has been called, all
transactions and associated data will be written to the specified file until the
stop_recording routine is invoked.

Transactions can be examined using the format command described in Section 7.1. This
is useful in debugging since it allows the examination of information flow across the
interface. Transactions can also be played back to simulate either application or dialogue
functionality using the playback command described in Section 7.2.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 33

Finishing the Application

Before testing the application or the dialogue, first record the transactions to be used in

testing. Example 6-2 illustrates the basic operations for recording transactions.

-- Start recording.

Serpent. startrecording ("recording", "test data: 5.7.3");

-- Send test data.

transaction := Serpent.start transaction;

Serpent. committransaction (transaction);

transaction := Serpent.start transaction;

Serpent.committransaction(transaction);

transaction :- Serpent.start transaction;

Serpent.cormit_transaction (transaction);

-- Stop recording.

Serpent. stoprecording;

Example 6-2 Recording Transactions

Specification Steps:
1. Start recording. The startrecording routine takes as parameters both the

name of the file in which to save the recording and a message to help identify
the recording.

2. Send transacions. After the call to startrecording is made, transactions

may be sent across the interface.

3. Stop recording. The stop_recording function closes the current recording
file.

6.3 Dialogue Initiated Exit

The dialogue can terminate at any time using the exit command available to the dialogue

specifier. The exit command sends a SIGINT signal to the application. This signal will

cause the application to exit immediately, unless a signal handler has been registered with
the operating system.

34 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Finishing the Application

The signal handler describes the steps to be taken when the dialogue initiates an exit.

Typically, this involves saving data structures out to permanent storage and exiting the

system.

The steps necessary to accomplish this are compiler-dependent.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 35

Finishing the Application

36 Serpent: Ada Application Developer's Guide (CMU/SEI-91 -UG-7)

Testing and Debugging

7 Testing and Debugging
The recording capability discussed in Chapter 3 provides a mechanism to assist in testing

and debugging.

7.1 Formatting Recordings

Application recordings are saved in a binary format file. The format command distributed
with Serpent converts this file into a formatted, easy-to-read report. The information in the

file can be useful in isolating problems to either the application or the dialogue.

% format recording
FORMATTING JOURNAL FILE: recording

HEADER:
dialogue name:
message: no comment at this time

OWNER:
ill file name: se.ill
mailbox name: SEBOX

PARTICIPANT:
ill file name: se.ill
mailbox name: DM BOX

TRANSACTION:
Fri Jan 25 15:17:13:800 1991

Sender: SEBOX
Receiver: DMBOX
Element name: dialogue_sdd Change type: create ID: 955

shared-data buffer UNDEFINEDBUFFER
termination buffer UNDEFINED-BUFFER
macros buffer UNDEFINED-BUFFER
externs buffer UNDEFINED-BUFFER
initialization buffer UNDEFINED-BUFFER
count integer 0
name string UNDEFINEDSTRING
prologue buffer UNDEFINED BUFFER

Example 7-1 Formatting the Recording File

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 37

Testing and Debugging

7.2 Playback

Once you have made a recording, it is possible play back the recording to simulate one or

more of the Serpent processes. To simulate the spider application, for example, you would

run the playback command provided with Serpent specifying the name of the recording

file and the mailbox of the process to be simulated, as illustrated in Example 7-2.

% app-test recording SPIDERABOX
Playing back journal file: recording
Message: regression test data, 5.7.3
Playback completed successfully

Example 7-2 Testing the Application

38 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Data Structures

Appendix A Data Structures

This appendix presents in alphabetical order the type and constant definitions that are used
in the Ada language interface to the Serpent system. The following is a list and short

description of each of these types and constants. A more complete description immediately

follows:

Type/Constant Description

sd buffer used to define the structure of a shared data buffer

changetype defines the type of modification made for an element

id-type used to uniquely identify shared data elements
null id defines the null value for the id-type

shareddata types defines the Serpent data types

transaction-type used to define transaction handles

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 39

Data Structures

40 Serpent. Ada Application Developer's Guide (CMU/SEI-9 I-UG-7)

buffer

TYPE

buffer

Description The buffer type allows the communication of n bytes of application data
along with an indication of the type. Buffer is the only dynamic shared
data type in that neither the size nor the type of the information is predefined.
Buffers can be used to: share untyped, contiguous data; share large amounts

of contiguous data (i.e., large strings); provide variant records.

Definition

type buffer is record
type: shareddatatypes
length: integer;

body: system.address;

Components length Size in bytes of the data. This field is required even
if the data is of a well known type (i.e., integer).

body A pointer to the actual data. The space used to

maintain this data is not part of the buffer structure

and must be managed by the user.

type The type of information stored in the buffer. This

field is also required.

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 41

changetype

TYPE

change_type

Description The changetype defines the type of modification made for an element.

Definition for changetype use(

nochange => -1,

create => 0,

modify => 1,

remove => 2,

get => 3

Components nochange Not changed or invalid change.
remove Existing shared data instance removed.
create New shared data instance created.
modify Existing shared data instance modified.
remove Existing shared data instance removed.

42 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

id-type

TYPE

id type

Description The id type is used to uniquely identify shared data elements.

Definition type id-type is new int;

Serpent: Ada Application Developer's Guide (CMU/SEI-91 -UG-7) 43

null id

CONSTANT

null id

Description The null-id constant defines the null value for the id-type. This

constant can be used to test for null ID) values.

Definition constant id-type :=-1;

44 Serpent Ada App lication Developer's Gu~ide (CM1JISEI-91-UG-7)

shared-data-types

TYPE

shared c --tv, types

Description The shared-data-type type is an enumeration of defined Serpent data

types.

Definition for shared-data-types use

sd-boolean => 0,

sd-integer => 1,

sd-real => 2,

sd-string => 3,

sd-record => 4,

sd id => 5,

sd-buffer =6,

sd-undefined =7

sd-no-data type =8

Serpent. Ada Application Developer's Guide (CMU/SEI-91-UG-7) 45

transaction-type

TYPE

transaction type

Description Variables of transact ion-type are used to defimne tAnsactions.

46 Serpent: Ada Application Developer's Guide (CMU/SEI-9 1-UG-7)

Routines

Appendix B Routines

This appendix presents in alphabetical order the functions and procedures that make up the
C language interface to Serpent. These routines can be categorized as follows:

Initialization/Cleanup
" serpent-imit
" serpent-cleanup

Transaction Processing
* start-ransaction
" commit-transaction
" rollback-transaction

" getjransaction
" getjransaction no -wait
" purge-transaction

Sending and Retrieving Data
" add-shared-data
" put...shared_data
" remove_shared_data
" get-first-changedelement
" get-nextchanged~element
" get-shared_data
" get-shared-data-buffer
" get-shared data-boolean
* getshared data_id
" getcshared data-integer
" get-shared-data _real
" get-shared data-string
" getcfirst-node
" get-next-node
" incorporate-changes
" create_changedscomponentjlist
" get-change-type
" get-element-name

* get-shared data-type

Serpent: Ada Application Del-eloper's Guide (CMUI5EI-91 -UG-7) 47

Routines

Undefined Values

" set_undefined

" is_undefined

Record/Playback

" startrecording

" stop recording

Checking Status
" get-status

" print_status

48 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

add shared data

FUNCTION

add shared data

Description The addshared data routine creates an instance for the specified

shared data element and returns a unique ID. The shared data instance may or
may not be initialized.

Syntax function addshareddata(

transaction in transactiontype;
element-name in string;

componentname : in string

data : in system.address

return idtype;

Parameters transaction The transaction for which this operation is detined.

element name The name of the shared data element

componentname The name of a specific component to be initialized
with the data, or if the data corresponds to the
entire element.

data data or null pointer if non-initialized.

Returns The ID of the newly created shared data instance.

Status ok, out of memory, nullelementname, overflow

Serpent: Ada Application Developer's Guide (CMU/SEI-91 -UG-7) 49

commit transaction

ROUTINE

commit-transaction

Description The commit-transact ion procedure is used to commit a transaction to
the shared database.

Syntax procedure commit transaction(

transaction: in transactiontype

Parameters transact ion Existing transaction 1D.

Status ok, out of-memory, invalid-transaction handle

50 Serpent" Ada Application Developer's Guide (CMU/SEI-91-UG-7)

create_changedcomponentlist

FUNCTION

create changedcomponent list

Description The createchangedcomponentlist function accepts a
transaction, an instance ID as a parameter and creates a list of changed

component names. This component list is managed using the

get first node and getnext node routines.

Syntax function createchanged-componentlist(

transaction : in transactiontype;

id : in id type

) return LIST;

Parameters transaction The transaction for which this operation is defined.

id Existing data instance ID.

Returns The list of changed component names associated with a data instance, or
NULL if none.

Status ok, invalidid, out of memory, elementnot_a_record

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 51

getchangetype

FUNCTION

getchangetype

Description The get change_type function accepts a transaction and an instance ID

as parameters and returns the associated change type.

Syntax function get_changetype(

transaction : in transactiontype;

id : in id type

return changetype;

Parameters transact ion The transaction for which this operation is defined.

id Existing shared data ID.

Returns Change type associated with the shared data instance ID.

Status ok, invalid changetype,invalid transaction handle,

invalidid

52 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

get_component name

FUNCTION

get_component-name

Description The get_component_name procedure accepts a NODE from

get_firstnode or get_nextnode and returns the component

name.

Syntax function getcomponent_name(

component_node : in node;

componentname : out string

Parameters componentnode The node that describes a component.

componentname The component name.

Status ok, invalid changetype,invalidtransactionhandle,

invalidid

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 53

getelementname

FUNCTION

getelementname

Description The get el ementname procedure accepts a transaction and an instance

ID as parameters and returns the associated element name.

Syntax procedure getelement_rame(
transaction : in transaction-type;

id : in idtype ;
ada element name : out string

Parameters transaction The transaction for which this operation is defined.

id Existing shared data instance.
ada element name The string that contains the element name.

Status ok, invalid id

54 Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7)

getfirst_changed element

FUNCTION

getfirstchangedelement

Description The get_f irst_changed-element function is used to get the ID of the

first changed element in a transaction.

Syntax function get_first_changed-element(

transaction : in transaction-type

return idtype;

Parameters transaction Existing transaction ID.

Returns The handle of the first changed element.

Status ok, invalid transactionhandle, out of memory

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 55

getfirst-node

FUNCTION

getfirstnode

Description The get_firstnode function is used to navigate through the list

returned by create_changed componentlist.

Syntax function get_firstnode(

list_arg : in LIST

return NODE;

Parameters list arg List returned by
create_changed_componentlist.

Returns The name of the first changed component.

Status ok, invalid-transactionhandle, outofmemory.

56 Serpent Ada Application Developer's Guide (CMU/SEI-91 -UG-7)

getnextchangedelement

FUNCTION

getnextchangedelement

Description The getnextchangedelement function is used to get the ID of the
next changed element on a transaction list or return null id if the

transaction list is empty.

Syntax function getnext_changedelement(

transaction type : in transaction

returns id-type;

Parameters transaction Existing transaction ED.

Returns The handle of the next changed element

Status ok, invalid transactionhandle, out of memory

Serpnt Ada Application Developer's Guide (CMUJ/SEI-91-UG-7) 57

get_nextnode

FUNCTION

getnext node

Description The get_nextnode function is used to navigate through the list returned

by create_changedcomponent list.

Syntax function get_first-node(

listarg in LIST;

nodearg in NODE

return NODE;

Parameters list_arg List returned by

createchangedcomponentlist.

node arg Current node in the list

Returns The node of the next element in the list.

Status ok, invalidtransactionhandle, out of memory.

58 Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7)

get_shareddata

FUNCTION

getshareddata

Description The getshareddata function allocates process memory, copies

shared data into process memory, and returns a pointer to the data. It can be

used to retrieve either a whole shared data record or individual components

of shared data records.

Warning: Record components may nu* have been specified and,

therefore, would not contain valid data.

Syntax function get_shareddata(

transaction : in transactiontype;/

id : in id-type;

componentname : in string

return system.address;

Parameters transaction Transaction in which to find the shared data ID.

id Existing shared data ID.
component-name Name of component for which to retrieve data, or

entire element if.

Returns A pointer to changed data.

Status ok, invalid id, out of-memory, incomplete_record

Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7) 59

get_shareddataboolean

PROCEDURE

getshareddataboolean

Description The get_shareddataboolean procedure copies shared data into
process memo.

Syntax procedure get_shareddataboolean(

transaction : in transactiontype;

id : in idtype;

componentname : in string;

value : out boolean

Parameters transaction Transaction in which to find the shared data ID.

id Existing shared data ID.

componentname Name of component for which to retrieve data.

Component must be of type boolean.
value The value of the specified component

Status ok, invalidid, out of-memory, incompleterecord

60 Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7)

get_shareddatabuffer

PROCEDURE

get shared data buffer

Description The getshareddatabuffer procedure copies shared d into

process memory.

Syntax procedure get_shareddata-buffer(

transaction : in transaction-type;

id : in idtype;

componentname : in string;

value : out buffer

Parameters transaction Transaction in which to find the shared data ID.
id Existing shared data ID.
component-name Name of component for which to retrieve data.

Component must be of type buffer.

value The value of the specified component

Status ok, invalidid, out of memory, incomplete_record

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 61

get_shared data id

PROCEDURE

get shared data id

Description The get_shareddata id procedure copies shared data into process

memory.

Syntax procedure get_shareddata id(

transaction : in transactiontype;

id : in idtype;

componentname : in string;

value : out id

Parameters transaction Transaction in which to find the shared data ED.
id Existing shared data ID.

component-name Name of component for which to retrieve data.

Component must be of type id.

value The value of the specified component.

Status ok, invalidid, out of-memory, incomplete-record

62 Serpent Ada Application Deieloper's Guide (CMU/SEI-91-UG-7)

get_shareddatainteger

PROCEDURE

getshareddata-integer

Description The get_shareddatainteger procedure copies shared data into

process memory.

Syntax procedure get_shareddatainteger(

transaction : in transactiontype;

id : in idtype;

component-name : in string;

value : out integer

Parameters transaction Transaction in which to find the shared data ID.

id Existing shared data ID.

componentname Name of component for which to retrieve data.
Component must be of type integer.

value The value of the specified component

Status ok, invalidid, out of memory, incompleterecord

Serpent: Ada Application Developer's Guide (CMfU/SEI-9 I-UG-7) 63

get shared data-real

PROCEDURE

getshareddata real

Description The get-shared-datareal procedure copies shared data into
process memory.

Syntax procedure get_shareddatareal(

transaction : in transactiontype;

id : in idtype;

component_name : in string;

value : out real

Parameters transaction Transaction in which to find the shared data ED.
id Existing shared data ID.
component-name Name of component for which to retrieve data.

Component must be of type real.
value The value of the specified component.

Status ok, invalidid, out of-memory, incomplete-record

64 Serpent. Ada Application Developer's Guide (CMU/SEI-91-UG-7)

get_shareddatastring

PROCEDURE

getshareddata_string

Description The getshareddatast ring procedure copies shared data into

process memory.

Syntax procedure get_shareddatastring(

transaction : in transactiontype;

id : in id-type;

component_name : in string;

value : out string

) ;

Parameters transaction Transaction in which to find the shared data M.
id Existing shared data ID.

componentname Name of component for which to retrieve data.
Component must be of type string.

value The value of the specified component

Status ok, invalidid, out of-memory, incomplete_record

Serpent: Ada Application Dev,4oper's Guide (CM/SEI-91-UG-7) 65

get_shareddata_type

FUNCTION

getshareddatatype

Description The getshareddatatype function is used to get the type associated

with a shared data element.

Syntax function getshareddata_type(

element name: in string;

componentname: in string

returns shareddatatype;

Parameters element-name The name of the shared data element

componentname The name of the shared data component, or NULL.

Returns The type of the shared data element or record component.

Status ok, null element name

66 Serpent: Ada Application Developer's Guide (CMU/SE-91-UG-7)

get status

FUNCTION

get status

Description The getstatus function returns the current system status.

Syntax function get-status return status-codes;

Parameters None.

Returns The current status.

Status None.

Serpent. Ada Application Developer's Guide (CMU/SE1-91-UG-7) 67

gettransaction

FUNCTION

gettransaction

Description The get_transaction function is used to synchronously retrieve the ID

for the next completed transaction.

Syntax function get_transaction return transactiontype;

Parameters None.

Returns The transaction ID for a completed transaction.

Status ok, system operationfailed

68 Serpent- Ado Application Developer's Guide (CMU/SEI-91-UG-7)

gettransaction no wait

FUNCTION

get transaction no wait

Description The get_transaction function is used to asynchronously retrieve the

ID for the next completed transaction.

Syntax function gettransaction no wait

return transaction-type;

Parameters None.

Returns The transaction ID for a completed transaction.

Status ok, system operationfailed, notavailable

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 69

incorporatechanges

PROCEDURE

incorporatechanges

Description The incorporate_changes procedure is used to incorporate changes
into local process memory without destroying unchanged information.

Syntax procedure incorporatechanges(

transaction : in transactiontype;

id : in idtype;

data : in system.address

Parameters transaction Existing transaction ID.

id Existing shared data ID.

data Pointer to the local data structure to be updated.

Status ok, invalid id

70 Serpent: Ada Application Developer's Guide (CMU/SEI-91 -UG-7)

is undefined

FUNCTION

is undefined

Descrirtion The is undefined function evaluates a data value of a specified type and

determines if the value is undefined. The is undefined function cannot

be used with an entire shared data record at once.

Syntax function is-undefined(

type in serpentdatatype;

data system.address

return boolean;

Parameters type The type of the shared data component.

data Pointer to the value being examined.

Returns True if data is undefined; false otherwise.

Status ok, operationundefined_type

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 71

print_status

PROCEDURE

print status

Descnption The print_st at us procedure prints out a user-defined error message and
the current status.

Syntax procedure print_status(

error msg : in string

Parameters error.msg User-defined error message.

Status None.

72 Serpent Ada Application Deieloper's Guide (CMU/SEI-91-UG-7)

purge_transaction

PROCEDURE

purge transaction

Description The purgetransaction procedure is used to remove a received

transaction once the contents of the transaction have been examined and acted

upon.

Syntax procedure purgetransaction(

transaction : in transactiontype

Parameters transaction Existing transaction ID.

Status ok, invalid id, illegalreceiver

Serpent Ada Application Dc% eloper's Guide (CMU/SEI-91 -UG-7) 73

put_shareddata

PROCEDURE

putshareddata

Description The putshareddata procedure is used to put information into shared

data. Either a whole record is placed into shared data or an individual

component. The use of as the component name indicates that the entire
record is to be placed into shared data.

Syntax procedure put_shareddata(

transaction : in transactiontype;

id : in idtype;

element name : in string;

componentname : in string;

data : in system.address

Parameters transact ion The transaction to whic'i the shared data should be

put.

id Shared data ID.

element-name The name of the shared data element-
component-name The name of the shared data component or if the

whole element is to be moved to shared data.

data Shared data.

Status ok, undefinedshared_data_type, null_elementname,

invalid id

74 Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7)

remove shared data

PROCEDURE

remove shared data

Description The remove-shared-data procedure is used to remove a specified

shared data instance from the shared database.

Syntax procedure removeshareddata(

transaction in transaction-type;

element-name in string;

id : in id-type

Parameters transaction Transaction from which to remove the shared data

element.

element-name Name of element to be removed.

id Existing shared data ID.

Status ok, out of memory, null_elementname, invalid id

Serpent: Ada Application Developer's Guide (CMU/SEI-9 I-UG-7) 7S

rollback-transaction

PROCEDURE

rollback-transaction

Description The rollbacktransaction procedure is used to abort a given

transaction and to delete the associated transaction buffer.

Syntax procedure rollbacktransaction(

transaction : in transactiontype

Parameters transaction Existing transaction ID.

Status ok, invalid transaction handle

76 Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7)

serpent init

PROCEDURE

serpent init

Description The serpent_init procedure performs necessary initialization of the

interface layer.

Syntax procedure serpent_init(

mailbox in string;

ill file in string

Parameters mailbox MAILBOX constant defined in Saddle-generated

include file.

ill file ILLFILE constant defined in Saddle-generated

include file.

Status ok, out of memory, null mailboxname,

nullill filename, systemoperation failed

Serpent: Ada Application Developer's Guide (CMU/SEI-9 I-UG-7) 77

serpent_cleanup

PROCEDURE

serpent cleanup

Description The serpent_cleanup procedure performs necessary cleanup of the

interface layer.

Syntax procedure serpent_cleanup;

Parameters None.

Status ok

78 Serpent Ado Application Developer's Guide (CMU/SEI-91.UG-7)

set undefined

PROCEDURE

set-undefined

Description The setundefined procedure sets the value of the data pointed to by
value to undefined. The set undefined procedure cannot be used with

an entire shared data record at once.

Syntax procedure set-undefined(

type : in serpent_data type;

data : in system.address

Parameters type The type of the shared data component.

data Pointer to the value being set to undefined.

Status ok, operation_undefined type

Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 79

startrecording

PROCEDURE

startrecording

Description The startrecording procedure enables recording. Once

startrecording has been called, all transactions and associated data
will be saved out to the specified file until the stop_recording procedure
is invoked.

Syntax procedure startrecording(

file name : in string;

message : in string

Parameters file naae File to which to write recording.

me s sage Recording description.

Status ok, io_failure, already_recording

80 Serpent. Ada Application Developer's Guide (CMU/SEI-91-UG-7)

start-transaction

FUNCTION

start-transaction

Description The start-transact ion function is used to define the start of a senies
of shared data modifications.

Syntax function start-transaction return transaction-type;

Parameters None.

Returns A unique transaction ID).

Status ok, out-of-memory, overflow

Serpen: Ada Application Developer's Guide (CMU/SEI-91-UG-7) 81

stoprecording

PROCEDURE

stop_recording

Description The stoprecording procedure causes the current recording to be
stopped.

3yntax procedure stop_recording;

Parameters None.

Status ok, io_failure, invalid_process_record

82 Serpent- Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Commands for Testing Serpent Applications and Dialogues

Appendix C Commands for

Testing Serpent Applications and

Dialogues

This appendix contains definitions of commands provided with Serpent to assist in testing

Serpent applications and dialogues. The following is a list and short description of each of

these commands. A more complete description immediately follows:

Command Description
format converts a recording file into an easy-to-read report

playback used to play back a recording file

Serpent: CApplicationDeveloper'sGuide(CMUISEI-91-UG-6) 83

Commands for Testing Serpent Applications and Dialogues

84 Serpent. C Application Developer's Guide (CMU/SEI-91-UG-6)

format

COMMAND

format

Description The format command converts a binary Serpent transaction log to a

formatted, easy-to-read report. The report is written to standards output.

Definition format recfile

Parameters recfile The transaction log to be converted.

Returns 0 ok

Serpent: Ada Application Developer's Guide (CMU/SEI-91 -UG-7)

playback

COMMAND

playback

Description The playback command can be used to reenact a session based on a

recordin- file.

Definition playback recfile hostmailbox correspondents

Parameters recfile The name of the file containing the recording to be

played back.

host-mailbox The mailbox for the process to be simulated.

cor respondents List of correspondents (the default is "all").

Returns 0 ok

1 dialogue not found

2 playback file not found

3 error during playback

86 Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Spider Example

Appendix D Spider Example

-- Title: Spider chart demo.

-- Creation: June 21, 1991
-- Author: Len Bass
-- Description: Demonstrate use of Ada interface to Serpent
-- This program places data for the spider'chart

-- into shared data and retrieves the data entered by

-- the operator

with TextIO; use TextIO;

with Serpent;
with STypes; use Stypes;

with SpiderA;

GREEN STATUS: constant := 0;
YELLOWSTATUS: constant := 1;
REDSTATUS: constant := 2;

procedure Spider is

package Int_IO is new Integer_IO(integer); use Int_IO;
package Flt_IO is new Float_IO(longfloat); use Flt_10;

-- Serpent-specific defs

Transaction :S Types.TransactionType; -- transaction handle
cmc: SpiderA.ccsdd -- shared data variables
sensorrecord: SpiderA.sensorsdd -- shared data variables
cclid, cc2_id, sensorid: id_type -- object instances
Changedid : S_Types.IdType; -- ID of returned

shared data
temporary : integer;
Change_Instance_Type : changetype;
Component_Type : shareddata types;

Change_List : LIST;
ComponentNode : NODE;

ComponentName : string(l..32);
String_Data : string(l..32);
IntegerData : integer;
Real-Data : longfloat;

* ******* ****** * ******** *** **

Serpem: Ada ApplicationDeveloper's Guide (CMUJ/SET-91-UG-7) 87

Spider Example

procedure Get Data Value is

-- PURPOSE

-- This procedure retrieves only the changed components for a record.

begin

-- verify that change type is modify

-- if not there is something wrong

Change_Instance_Type := Serpent.Get_ChangeType (Transaction,

Changedid);
If Change_Instance_Type /= MODIFY then

Text IO.Put Line("Error in Change Type");

end if;

-- now get list of changed components

Change_List := Serpent.CreateChangedComponentList(Transaction,
Changedid);

ComponentNode := Serpent.GetFirstNode(Change_List);

while ComponentNode /= NULL loop
Serpent.GetComponent_Name(Componenit_Node, ComponentName);
TextIO.Put(ComponentName);

TextIO.Put(": ");

ComponentType

Serpent.GetSharedDataType("sensorsdd",ComponentName);

-- Switch based on type of component

case Component Type is
when sdstring =>

Serpent.GetSharedDataString(Transaction,
Changed-id,
ComponentName,

String_Data) ;
TextIO.Put (String_Data);
TextIO.PutLine("");

when sd real =>

Serpent.GetSharedDataReal(Transaction,
Changed id,

ComponentName,
RealData);

Flt_IO.Put (RealData);
TextIO.PutLine(");

when sdinteger =>

Serpent.GetSharedDataInteger(Transaction,

Changedid,

88 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Spider Example

ComponentName,
IntegerData);

Int_IO.Put(IntegerData);
TextIO.PutLine("");

when OTHERS =>

TextIO.PutLine("type not in list to process");

end case;

ComponentNode := Serpent.GetNextNode(Change_List,

ComponentNode);

end loop;
Text IO.Put Line***;

return;

end;

procedure InitializeSensorRecord
site abbreviation : in stxzng;

status in integer;

site in string;

etro in string;

) is

-- PURPOSE

-- This procedure initializes all of the data foi a sensor shared
data record.

begin

sensor record.site abbr := site-abbreviation & ASCII.NUL

sensor record.status := status;
sensor-record.site := site & ASCII.NUL;
setundefined(sd string.sensor record.lastmessage);

setundefined(sdbuffer, sensorrecord.rfo);

sensor record.etro := etro & ASCII.NUL
sensor id := Serpent.AddSharedData(

Transaction,"sensor sdd","",sensor record'address);

-- now add two communication lines for the new sensor

commline.from := sensorid;
commline.to := cclid;

setundefined(sdstringcommline.etro);

comm line.status := GREENSTATUS;

Changed_id := Serpent.AddSharedData(
Transaction,"coMnunicationlinesdd","",commline address);

commline.to := cc2_id;
Changedid := Serpent.AddSharedData(

Transaction, 'cormunication line sdd","", commline'address);

return;

end;

Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7) 89

Spider Example

begin

Serpent.Serpent_Init(FD.MAILBOX, FD.ILLFILE);
Transaction :=Serpent.StartTransaction;

if Serpent.get_status /= ok then

Serpent.print status ("bad status from start transaction");

return;
end if;

-- create shared data for the two correlation centers

~l .~dSerpent.AddSharedData(
Transaction, "cc sdd", "name", "CMC"'ddress);

temporary :=GREEN -STATUS;

Serpent.PutSharedData(

Transaction, ccl -id, "*cc-sdd"f,"status",temporary'address);

cc2 id :=Serpent.AddSharedData(

Transaction,"cc sdd", "name 1 , "OFTff' address);
Serpent.PutSharedData(

Transaction, cc2_id, "cc-sdd","status",temporary'address);

-- create sensor and communication records in shared data

Initialize SensorRecord(
"IGSl", GREENSTATUS,"Ground Station 1"1, 116/1245Z");

Initialize Sensor Record(

"GS2-, GREENSTATUS,"Ground Station 2", 116/1634Z");
Initialize SensorRecord(

"GS3", GREENSTATUS,"Ground Station 3", 112/1245Z");
Initialize SensorRecord(

"CLR-, YELLOW_-STATUS,"Clear", '"10/1145Z");
Initialize SensorRecord(

"TliL-, GREEN STATUS,"Thule", "16/1255Z");
Initialize SensorRecord(

~FYL-, REDSTATUS,"Fylingdales", "16/1245Z");
Initialize SensorRecord(

"BLE", GREENSTATUS,"Beale", 106/1325Z");
Initialize SensorRecord(

MOTS", YELLOW STATUS,"OTS-, "08/1245Z-);
Initialize SensorRecord(

"ELD-, GREENSTATUS,"E1 Dorado", "13/0245Z');
Initialize SensorRecord(

"WRB", REDSTATUS,"Warner Robins", 111/1856Z");
Initialize SensorRecord(

"SHY", GREEN STATUS,"Shemya"l, "14/1254Z");
Initialize SensorRecord(

"CAy", GREENSTATUS,"Cavalier"f, 1109/0529Z"f);

-- cormmit transaction. After this procedure call, the data is available

90 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

Spider Example

-- to Serpent for display to the end user

Serpent.CommitTransaction(Transaction);
if Serpent.getstatus /= ok then

Serpent.printstatus ("bad status from CommitTransaction");

return;

end if;

-- get changes

loop
Transaction := Serpent.Get Transaction;

Changed id := Serpent.GetFirstChangedElement(Transaction);

while Changed id /= STypes.Null ID loop

Get DataValue;
Changedid := Serpent.GetNe.t_ChangedElement(Transaction);

end loop;

Serpent.PurgeTransaction(Transaction);
end loop;

Serpent. Serpent_Cleanup;

end Spider;

Serpent Ada Application Developer's Guide (CMU/SEI-91-UG-7) 91

Spider Example

92 Serpent: Ada Application Developer's Guide (CMU/SEI-91-UG-7)

UNLDTED. UNCLASSIFIED
SECLRY CLASSIRCATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUM1ER(S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-91-UG-7 CMU/SEI-91-UG-7

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if ajlicable) SEI Joint Program Office
SEI

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable) F 1962890C0003
SEI Joint Program Office ESD/AVS

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOb.

Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENT NO NO. NO NO.

63752F N/A N/A N/A
1. TTIE (Include Security Classification)

Serpent: Ada Application Developer's Guide

12. PERSONAL AUTHOR(S)

User Interface Project
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

Final FROM re June 1991 104
16. SUPPLEMETARY NOTATION

17. COSATI CODES 1S. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

FIELD GROUP SUB. GR. Serpent, UIMS, user interface management system, user inter-

,,face generators, Ada, application development

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Serpent is a user interface management system (UIMS) that supports the development and imple-
mentation of user interfaces, providing an editor to specify the user interface and a runtime system
that enables communication between the application and the end user. This manual describes how
to develop applications using Serpent. Readers are assumed to have read and understood the con-
cepts described in the Serpent Overview, as well as to have had experience using the Ada program-
ming language.

(please turn over)

20. DLSTRIBUTION/AVAILABBUMY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITEDI SAME AS PT[] DTC USERS Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL

John S. Herman, Capt, USAF (412) 268-7630 ESD/AVS (SEI)

DD FORM 1473.83 APR EDITION of I JAN 73 IS OBSOLETE UNLIEOTED, UNCLASSIFIED
SECURrrY CLASSIFICATION OF THIS

Cr -vo.uud from page onc. block 19

