
AD-A244 635mul ii | iiil i ni am n
RL-TR-91-275
In-House Report
December 1991

A VISUAL PROGRAMMING METHODOLOGY
FOR TACTICAL AIRCREW SCHEDULING
AND OTHER APPLICATIONS

_DTIC
Douglas E. Dyer, Capt. USAF ,LEC E

_i i

APPROV FOR PUVSW ,AR64FSE,, aSMMIO 4PAMM.

92-01480

.Rome Laboratory
•Air Force Systems Command

Griffiss Air Force Bass, WY 1334l-5700

92 .1 16 063

=gTIC m mumm=rolmmllm

4

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign nations.

RL-TR-91-275 has been reviewed and is approved for publication.

APPROVED: 4 ~t

SAMUEL A. DINITTO, JR., Chief
C3C Software Technology Division

FOR THE COMMANDER:

RAYMOND P. URTZ, JR.
Technical Director
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CA), Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE FoM Aproved,

=1~ 0pa j cft nulV- ~ T~ W ewma ww dIakw d. .__._,gcghb~w I~u r Uu WVu C30 vui e in*I m f &5
nd bEm1mn rg "*&mu ft m"Ig Uf bjftn Whi*uM Meftmf Sauvs Dhm=" fo kftjob Op m_-WjdRaft1215 Jswon

Daft Koww SiAm 1XOK Nkgm VA Z=-d2 wwtotu OM=~ d Muuwwut wd Bufit PWnwof R PmW (7044q. Wa*i*w DC 20= -

1. AGENCY USE ONLY (eave BIan 2. REPORT DATE I REPORT TYPE AND DATES COVERED
December 1991 In-House Sep 87 - Apr 90

4. TTLE AND SUBTITLE & FUNDIN NUMBERS
A VISUAL PROGRAMMING METHODOLOGY FOR TACTICAL AIRCREW PE - 62702F
SCHEDULING AND OTHER APPLICATIONS PR - 5581

6. AUTHOR(S) TA - 27
WU - 40

Douglas E. Dyer, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Rome Laboratory (C3CA) REPORT NUMBER
Griffiss AFB NY 13441-5700 RL-TR-91-275

9. SPONSORINGMONITORING AGENCY NAME(S)" AND ADDRESS(ES) 10. SPONSORING/MONFrORING

Rome Laboratory (C3CA) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Douglas E. Dyer, Capt, USAF/C3CA/(315) 330-3528

12a. DISTRIBUTIONAVAILABIY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACTWAO-WI MC

This thesis describes the aircrew scheduling problem faced by US Air Force units flying

A-10 aircraft and a visual programming methodology used to automate A-10 aircrew

scheduling. Database, scheduling, and programming technologies are discussed in the

context of automated aircrew scheduling. The visual programming methodology developed

is based on Microsoft Excel, a commercial spreadsheet with database functionality, and

is unique because it focuses on tht use of Excel as a general-purpose programming
language. Using Excel, an A-10 aircrew scheduler was constructed with greedy heuristic
which schedule based on priority, event requirements, and currencies subject to pilot

and resource availability. Three other applications were developed using the method-

ology described, and, from the programming experience to date, recommendations for

improvements are made.

14. SUBJECT TERMS ia NUME OF PAGS
162

Planning, Resource Scheduling, Visual Programming ;aICECODE

17. SECURITY CLASSIFICATION II SECURITY CLASSIFICATION 1 SECURTv CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIE' uNCLASS1 IED UNCLASSIFIED U/L
NSN l 1 -4in St amlml Fom 2W

byANI ZW

ABSTRACT

This thesis describes the aircrew scheduling problem faced by U.S. Air Force units
flying A-10 aircraft and a visual programming methodology used to automate A-10 aircrew
scheduling. Database, scheduling, and programming technologies are discussed in the
context of automated aircrew scheduling. The visual programming methodology developed
is based on Microsoft Excel, a commercial spreadsheet with database functionality, and is
unique because it focuses on the use of Excel as a general-purpose programming language.
Using Excel, an A- 10 aircrew scheduler was constructed with greedy heuristics which
schedule based on priority, event requirements, and currencies subject to pilot and resource
availability. Three other applications were developed using the methodology described,
and, from the programming experience to date, recommendations for improvements are

made.

DTIC TAB 0

JU.t I f 1.%!tit, On ,

., L, z vt b .t !rzri

mblt Special

M d' f J -

iv

TABLE OF CONTENTS

Page

APPROVAL SHEET ii
A BSTRA CT .. iii
TABLE OF CONTENTS ... iv
LIST OF FIGURES ... vi

CHAPTER 1. INTRODUCTION .. I

2. PROBLEM DESCRIPTION 4

3. COMPUTER TOOLS AND METHODOLOGIES FOR
AUTOMATIC AIRCREW SCHEDULING 13
Database Technology .. 13

Classical (machine-oriented) Data Models............ 14
DBM S Queries .. 14
Other M odels ... 15
Object-oriented Databases 15
Lessons from Artificial Intelligence Research 17
Database Interface 17
Database Access 18

Scheduling Methods .. 18
Algorithms Based on operations Research 19
Algorithms Based on AI Search 19
Algorithms Based on Heuristics 20

Programming Environments and Methodologies
for the Aircrew Scheduler 20
Higher Ordered Languages (HOLs) 22
Object-Oriented Programming 24
Visual Programming 24
Program Animation 27
Graphical Input to Programs 27

4. A VISUAL PROGRAMMING METHODOLOGY BASED
ON MICROSOFT EXCEL ON THE MACINTOSH 29

A Visual Programming Methodology Using Excel.. 30
Excel's Interface 31
Control Structures 34
Data Structure Design 35
Program Animation 35
Rearrangements of Data and Programs 36
Verification and Validation 37
Graphical Programming 37
Use of Database Functions 37
Windowing, Menus, and Mouse 38

V

Page

5. THE EXCEL AIRCREW SCHEDULING PROTOTYPE 39
Design Considerations 39

System Description of the Excel Aircrew
Scheduler Prototype 40
Data Structures .. 40
Data Representations 46
Procedures ... 49
Interface ... 54
Using the Excel Scheduler 54
Constraints on Operations 56
Uncertainty in Schedule Development 56
Scalability .. 57
Expanding the Network 57

6. OTHER APPLICATIONS AND
IMPROVEMENTS TO EXCEL 59

Other Applications 59
Difficulties Associated with Programming in Excel 60

Data References .. 60
Programming Flexibility 60
Abstraction .. 61

7. SUMMARY ... 64
Conclusions ... 64
Future W ork .. .65

BIBLIOGRAPHY : ... 67

APPENDIX A .. 70

APPENDIX B .. 79

APPENDIX C .. 89

APPENDIX D .. 104

APPENDIX E .. 133

APPENDIX F ... 142

APPENDIX G .. 146

vi

LIST OF FIGURES

Page

Figure 1. A Partial Daily Schedule for A-10 Continuation Training 7

Figure 2. The Consolidated Database and Criteria Array 41

Figure 3. Availability Data Linked to Pilot Tuples 41

Figure 4. Partial Schedule and Priority List ... 43

Figure 5. Additional Flight Data 43

Figure 6. Data Projected from the Consolidated Database 45

Figure 7. Example Analysis Graph 46

Figure 8. Pilot- Availability Timeline ... 47

Figure 9. Automatically generated Daily Schedule 48

Figure 10. Excel Aircrew Scheduler Top-level Design 51

CHAPTER 1

INTRODUCTION

The Rome Air Development Center (RADC) is a large Air Force laboratory that

does exploratory development of Air Force command, control, communications, and

intelligence (01) systems. In 1987, RADC developed a knowledge-based aircrew

scheduler to meet the needs of single-seat aircraft unit continuation training. (See

APPENDIX A for a system description.) Unfortunately, the 1987 prototype was

developed in a LISP environment under a commercial expert system shell called

Knowledge Engineering Environment (KEE). The cost of the required LISP machine and

KEE prohibited direct installation of the prototype in operational units. Furthermore, the

complexity of the code comprising the 1987 prototype made modification an unpleasant

prospect. Because each operational unit schedules a little differently, the ability to modify

the scheduling system is an important consideration. In addition, the Air Force faces many

different types of scheduling problems other than single-seat aircrew scheduling. Some

examples of these other problems are scheduling of operational missions, multi-person

aircrews, air refueling, and aircraft maintenance. It would be nice if there were some

simple programming methodology for developing software solutions for these problems as

well. During 1989 and 1990, the 1987 KEE aircrew scheduler was ported to the Apple

Macintosh running in Microsoft Excel. (See CHAFFERs 4 and 5 and the APPENDIX).

In the process, a new methodology for programming generic scheduling systems was

developed. This thesis describes the new aircrew scheduling prototype and the

methodology used in the context of other relevant research.

The following chapter describes the specific scheduling problem which must be solved by

Tactical Air Command (TAC) units flying single-seat aircraft to complete required

2

continuation training. Requirements and constraints for A-10 continuation training are

described. Flying units are described organizationally because responsibilities and

information pathways are important to the problem solution. The manual process for

scheduling is described along with the current database support tooL The goals of

scheduling are identified and an automated information system for scheduling is proposed.

The third chapter discusses current technology applicable to scheduling and

programming in general. A scheduling system typically involves a moderate amount of

data, so database technology is addressed. Specifically covered are shortcomings of

traditional database models and efforts to bridge them. Scheduling algorithms from

operations research and artificial intelligence are discussed. Different programming

languages, environments, and methodologies are described for implementing an aircrew

scheduler. Visual programming, a new methodology based on the computers increasing

ability to handle graphics, is presented as a new way to reduce the complexity of programs

and programming.

In CHAFER 4, a visual programming methodology based on Microsoft Excel is

introduced. Using visually explicit data structures and animated programs, the

representational coimplexity of programs is reduced, making development and debugging

simpler. Software engineering concerns which arise from representational complexity such

as modifiability and verification and validation are treated. A visual programming

methodology also helps make the code easier to change and believe in. The graphical

programming possible in Excel is described. The use of other attributes inherent in Excel

and the Macintosh are discussed. The high-level database functionality of Excel is credited

with simplifying scheduler applications. Windowing, pull down menus, and mouse input

are also given their due.

3

CHAPTER 5 is a system description of the new Excel aircrew scheduler prototype.

Data structures and data representation are described in detail. The algorithms and their

operation are discussed. User functionality is described. Shortcomings of the current

prototype are identified.

In CHAPTER 6, the use of Excel for other applications is discussed. There are a

number of difficulties associated with the use of Excel which could be reduced if suggested

improvements were implemented. The way data is referenced in Excel should be modified

to reduce inconsistencies. Excel's macro programming was designed to provide analysis

functionality, not as a complete programming language. The macro language needs to be

formalized or a complete language like LISP or Pascal should replace it. Finally, Excel

would serve better with additional means for data abstraction, including the ability to

support the object-oriented paradigm of programming.

CHAPTER 7 summarizes the thesis and indicates the direction of on-going and

planned research.

CHAPTER 2

PROBLEM DESCRIPTION

To fulfill its mission, the Air Force requires highly trained pilots. After

undergraduate pilot training in a particular aircraft, pilots move to their assigned squadron

and enter into continuation training which continues throughout their flying career.

Continuation training is designed to make pilots combat capable and to keep them that way

by frequently retesting critical skills. In addition, continuation training is used to upgrade

pilot qualification, a certification of enhar zed ability and greater experience. Flying skills

are supplemented by a variety of ground training classes. Ground training includes

simulator time, bail-out practice, and survival training.

Pilots have additional duties (duties not including flying;, DNIF) which impact their

availability for training. Staff jobs, such as Squadron Scheduling Officer or Training

Officer, can detract significantly from training opportunities. Sickness, medical and dental

appointments, and immunizations often require pilots to be suspended from flying for

physiological resons. Daily tasking assignments like Squadron Safety Officer also

preclude flying. Currncy in all ground training events is a prerequisite for flying and can

limit the pool of pilots available to fly. For safety, pilots are not allowed to fly longer than

12 hours (length of flying day concept). Furthermore, pilots must be given 12 hours of

crew rest afr flying before they fly again.

The rules governing pertinent aspects of flying and flight training are spelled out in

detail in specific Air Force regulations. A- 10 flight training requirements are listed in

Tactical Air Command Regulation TACR 51-50 Volume I. The hard constraints imposed

by TACR 51-50 make airxrew scheduling for A-10 continuation training a very difficult

5

process. For example, there are 17 different training events required and each of them

must be completed a certain number of times by each pilot during the six-month training

term. Each event has an associated currency period which reflects the frequency of

training. For example, for the landing event, the currency is thirty days. If a pilot fails to

land for thirty days, that pilot is out of currency for landing and must fly with an instructor

pilot to regain landing currency. "Instructor pilot" is a qualification rating which may be

achieved through the upgrade process. A- 10 pilots have one of five different qualifications:

mission qualification training (an initial qualification given after completion of

undergraduate pilot training), mission qualified, two-ship flight leader, four-ship flight

leader, and instructor pilot. To upgrade, a pilot must complete a certain number of different

training events satisfactorily and must normally fly with an instructor pilot for evaluation

purposes. In continuation training, "flying with an insructor pilot" implies that an

instructor pilot flies in a separate aircraft but obseves performance and issues instructions

and corrections orders as needed.

In addition to the hard constraints listed above, there are a number of soft -

constaats (preferences) which vary with the situation and can make scheduling objectives

nebulous. Pilots have preferences about when they take leave, who they fly with, and

when they perform uaining and other duties. Pilots often negotiate with the scheduling

officer to attain these goals. Squadron supervisors also have special desires, such as the

desire to improve a particular pilot's qualification. However, supervisors usually dictate

their needs to the scheduling officer, rather than negotiate with them. The primary goal of

the scheduling offir is to an.in resources necessary to give all pilots ample training

opportunities, build partial schedules using these resources, and fill all partial schedules

with the most appropriate pilots.' Because ot the differing goals of different elements in

1 Scheding tasks an done in the order implied by the last sentence; relative difficulty of tasks increases
also in the ordr implied.

6

the organization, it is very difficult to arrive at a metric of schedule goodness that is

acceptable to all.

Operational Air Force units take flight training very seriously because of its impact

on combat capability and aircrew safety. It is a primary measure of unit mission

effectiveness and reflects directly on the leadership of the commander. Therefore,

commanders normally structure their organization to achieve required training and improve

the overall ability of their pilots. Operational A-10 units (wings) are often subdivided into

squadrons. Training officers report training progress to supervisors at each level and use

scheduling officers on staff to ensure that all pilots receive sufficient sorties to complete

training. Training officers, scheduling officers, and others are normally flying pilots who

must also complete continuation training. That is, their staff functions are additional duties

assigned which generally do not preempt the primary job of flying. Because pilots can ill-

afford additional work, automation of the scheduling process is highly desirable.

The problem of scheduling aircrews to single seat aircraft continuation training is

similar to the classical operations research problem of choosing the best way to allocate

resources to competing activities amidst constraints. Using this view, each pilot represents

an activity, or job, which requires resources to complete. Resources include aircraft,

munitions, gunnery ranges, and instructor pilots. (Note: instructor pilots are both

activities and resources).

In current practice, the resources (except instructor pilots) are typically allocated

based on availability and compiled in the form of a partial schedule based on the training

needs of the squadron. (See Figure 1.) After a partial schedule has been developed, with

aircraft, confi~raations, and ranges filled in, it is completed by assigning pilots to each

sortie. This two-step process is used to reduce scheduling complexity and allow the

7

214 356TFS MON

UNE TOT LAND MSN PILOT O2FIG R*QE REMARKS

~~.M OAAQ 9W 1UL .

.Z1 -mawlnO .p

1 n7 1330 ACR T j A

R 1 nn I=" A-.,T ,1 A

Figure 1. A P'artial Daily Schedule forA- 10 Continuation Training

scheduling officer to use knowledge available at the time. For example, resources must

typically be reserved before pilots have to be placed on the schedule. Squadrons which

- - - -

8

must negotiate with each other and support organizations for aircraft, munitions and other

external stores, and weapons ranges about a month before they will be used. The

scheduling officer normally has only general knowledge about training needs that far in

advance. On the other hand, pilots must be scheduled to fly only one week in advance.

The scheduling officer therefore can make a partial schedule consisting of sorties first, then

complete the schedule at a later time by assigning pilots who need the scheduled training

missions the most. Events often preclude a pilot from flying (i.e., assignment to an

exercise) or increase a pilots requirements for a mission (i.e., failure to accomplish a

previous training event satisfactorily), so it is effective to schedule in this manner.

Scheduling is a dynamic process. Once a schedule has been completed, it must be

changed if any assumption used to make it is invalidated. Aircraft may fail or weather may

preempt a planned mission set. Pilots become ill, require emergency leave, or fail to

complete a previous event requirement. The squadron supervisor may re-order preferences

in light or in lieu of changes. These types of changes force the scheduling officer to

modify the schedule from four to eight times before flying it.2 However, schedule

consistency is also desirable because pilots must have time to plan for missions.

Therefore, the scheduling officer often posts a suboptimal schedule with a few changes,

rather than a completely reordered. optimal schedule.

To add to the complexity, day-to-day scheduling is only the default case.

Operational units frequently deploy to joint or service exercises far from their assigned

base. Also, special rns are occasionally required to demonstrate unit capability in

non-standard tasks, aid in recruiting, or perform a ceremonial or public relations flight.

The scheduling officer must arrange for pilots and flight resources for these events as well

2Dm from on squanm.

F9

as for ncrmal (local) training. These additional activities often require coordination

betweeg units for needed support such as airfield support, air refueling, etc. The primary

commuication medium between units is the telephone, implying that requests may be

missed and support may fail to materialize when needed.3

Pertinent pilot data are currently tracked in a database (AFORMS) managed by the

cenn-Aized computing facility on each Air Force base. The AFORMS database tracks pilot

event completions, currencies, and qualifications and generates reports of the data which

are distributed weekly. Squadrons update the database using optically-scanned forms or an

interactive input routine through a terminal.

From a squadron scheduler's viewpoint, the AFORMS database is not adequate

because it does not store all the data, outputs the data infirequently and inflexibly, and is

difficult to get the data into. AFORMS does not track all required data, such as availability,

staff assignments, and event completion in preparation for qualification or rating change.

Therefore, the scheduling officer must remember or record this additional data using pencil

and paper or grease board. The AFORMS data is not readily available in real-time.

Therefore, schedule inputs and, ultimately, schedules are based on old data. In addition,

when the AFORMS data is delivered, it is in the form of a "core dump" resulting in a 20-50

page printout. Some reports in the printout are useful for determining priority pilots for

different events, but user requested reports are not possible. Nonstandard reports would

probably be of questionable value anyway, given the time frame of data delivery, but real-

time manipulation of the data would be valuable in determining who should be scheduled or

which pilots can feasibly be flown in a particular slot Scheduling officers usually present

data to squadron or unit supervisors (e.g., the Wing Director of Operations (DO) at standuo

3Srwgic Air Command now uses a system called MASMS to automate reservations for low.kvel tracks
for B-52 training.

10

briefings. Slides used in these briefings contain dam from AFORMS and could

conceivably be generated automatically, but the AFORMS is too inflexible to support this

function currently. AFORMS cannot present data graphically, a functin which woulid

analysis of training status and point out the need for resources of differeqt types. In'

addition, if automated scheduling were integrated with the database, schtules could be

generated and printed automatically, rather than being generated by hand From hard copy

data and then typed by a stenographer. Finally, AFORMS has no intelligence or

friendliness with regard to terminal data entry. The data input routine rermelul, nothing,

cannot suggest inputs, and lacks even menus or mouse support. Ihstead, each piece of data

must be painstakingly typed in by hand.

Clearly, the current level of automation (AFORMS database) does not meet the

scheduling needs of operational flying units. Nearly all scheduling officers use a grease

board or pencil and paper to record additional data and current scheduling status, despite

the availability of automation equipment. The reasons for depending on the grease board

include a distrust of automation, the lack of powerful automated tools for data handling and

analysis, and significantly, the need for data visibility between pilots, scheduling officers,

and supervisors.

Scheduling officers have different methods of generating schedules using the data

available to them. Although some scheduling officers have formal training in operations

research, nearly all use heuristics and "common sense" to develop satisficing4 schedules.

Human schedulers are able to determine relatively good heuristics and apply them, so long

as they have the dam and the patience to manipulate it to fit the preconditions on the

heuristics. Unfortunately, human memory is volatile and human patience has its limits. In

4ncw op Xma; sasfying

practice, human schedulers using heuristics constantly find themselves asking for data

manipulations to determine an appropriate pilot, for example, 'Who is at least a two-ship

flight lead, current in night air-to-air refueling, has not flown since 3 A.M. on Tuesday and

needs a night landing the most?" In addition, its easy for human schedulers to forget one

or more hard or soft constraints during the scheduling process, resulting in an inappropriate

or disgruntled pilot. There are few scheduling officers who have not generated a very bad

schedule, despite knowing reasonable scheduling heuristics.

As mentioned above, schedule optimality is desired, but "optimal" means different

things to different people. Fortunately, ample training resources generally exist for

completing minimum acceptable training requirements. Ordinarily, in day-to-day

operations, it is more important to arrive at a schedule which satisfies requirements, rather

than one that is optimal (in whatever sense). In context of a longer time frame, unit

commanders strive to maximize training, but also emphasize a host of other people- and

mission-oriented performance metrics. Training can be measured in terms of the

percentage of combat capable pilots, number of upgrades, and currency delinquency rates.

Commanders protect their people and therefore give attention to things like safety and

workload distribution. Commanders are tasked with enhancing unit performance which is

measured interms of rapid generation capability, weapons delivery and simulated air

combat scores, and other competence and effectiveness metrics. In short, schedule

optimization is the global goal, but the objective function for aircrew scheduling is a very

complicated equation.

Given the nature of the aircrew scheduling task and the level of automation

available, the scheduling officer does an admirable job of producing aircrew schedules.

However, the current process used is time-consuming, tedious, and error-prone, despite

the professional dedication of the scheduling officer. Current technology exists which

12

could improve the scheduling process dramatically. It consists of an integrated information

system based on a set of automated tools which flexibly transfers and presents data in real-

time and assists in the schedule generation. Automatic scheduling is included in the tool set

by employing heuristics (or another type of solution method) to generate "good" schedules

which do not violate constraints. The tool set adapts to changes inherent in the domain and

still generates robust, rather constant schedules. The tool set supports resource and

training analysis for additional decision making. The information system is designed to

allow for rapid, lossless data flow between unit supervisors, local and distant support

elements, and the scheduling officer, if not the pilots as well. That the information system

described is possible with current technology is proved by the existence of one exainple:

the system described in CHAPTER 5.

13

CHAPTER 3

COMPUTER TOOLS AND METHODOLOGIES FOR

AUTOMATIC AIRCREW SCHEDULING

Simply put, creating an effective schedule depends on having some generic method

of scheduling and applying the method to some specific data set which adequately describes

the world.5 Because data is the more fundamental problem for current tactical aircrew

scheduling, database technology will be discussed first and scheduling procedures will

follow. Then, because a program must be written to automate the scheduling process,

programming methodologies will be considered.

Database Technology

Most problems which are interesting or useful to solve using a computer have large

data sets associated with them. Database management systems (DBMS) are used to store

and manipulate data efficiently, but the different views of the data required by different

users has made it desirable to improve upon current database models. The AFORMS

database managemnt system is representative of early military database technology.

AFORMS and the centralized data processing model on which it is implemented

unnecessarily restrict the flow of information required to schedule pilots effectively.

Current DBMS products are friendlier than AFORMS, but many still lack needed

functionL DBMS shortconngs are being addressed by research, primarily research aimed

at folding in lessons learned from other fields to integrate richer repr sentational schemes

51n fact, problem solving in general depends on having some solution method and using it on current world
data. Typically, military planning suffers not from lack of a solution method, but from a lack of data or an
easy means t elicit data from clogged, unfriendly command and control systems. This is especially tru
when a crisis aries.

14

and add general programming features.[39] Several attempts have been made along these

lines, but data modeling is still a research issue. Finally, database systems based on a

distributed processing model and implemented across a wide-bandwidth network facilitates

data dissemination better than the centralized data processing does.

Classical (mchine-oriented). Data Models. There are a number of different data

models used by current database management systems. Most DBMS products are based on

one of the classical models: hierarchical, network, or relational. Data is organized as a

forest of trees in the hierarchical model and as a directed graph in the network model. Both

the hierarchical and network schemes have difficulty representing many-to-many

relationships and tend to require procedurally-oriented operations based on a knowledge of

the data structures involved. In contrast, the relational model is mathematically simple.

Data elements are stored as tuples in tables. Queries may be expressed in a declarative

fashion, freeing the user from having to think about the underlying procedures which

actually deliver the answer. As a result, users prefer relational DBMS over systems based

on one of the other two traditional models, and the commercial software industry has

rapidly responded with an increasing number of relational DBMS products. [3]

DBMS Queries. The relational model supports declarative queries to some extent,

making possible a simple query language based on a description of the desired data set,

rather than a procedure for getting it. However, the user must still know which data is in

which table and specify that information in the query. In addition, although the user may

get at any data view using the three available operitions (join, select, project) on the global

database, there are two problems which can arise from this flexibility. First, query results

can be incorrect unless the schema me carefully designed. Second, it would be nice to be

able to update the data base when viewing it from any angle. However, it is not always

15

easy to input information into the database from a given virtual database relation because

ambiguity may result.[3l

Do any of the classical DBMS models satisfy current user's requirements? For

many applications (including a portion of the aicr scheduler prototype), the relational

model is sufficient However, classical models are based on the need for efficient machine-

implementations of databases, not on user's needs. Most DBMS models only have two

levels: the schema and the data. Inheritance of information inherent in a taxonomy of

objects is impossible to capture using two-level models. Also, classical models often blur

the distinction between a set of data and a type of data. Different perspectives are possible,

but difficult to separate. The problem of updating virtual relations cannot be addressed

using a purely relational approach. Finally, no classical model supports temporal

modeling, the changes in data over time.

Other Models. Semantic data models have been developed to address the shortcomings

of classical approaches. Semantic data models like the entity-relationship model (Chen)

focus on capturing the meaning of data, rather than on being machine-implementable.

Other examples of semantic models are the Relational ModelfTasmania (Codd), Semantic

Data Model (McLcod and Hammer), and the Event Data Model (King and McLeod). All

semantic data models improve on the richness of data representation over classical models.

They differ primarily in the types of relationship between data which may be

expresed.[421

Object-4miented Database. Recently, some researchers have investigated the use of

an object-oriented approach to database modeling. Object-oriented programming is a

methodology which focuses on active data elements rather than procedures and passive

data. The data elements (objects) are encapsulated and modular because they communicate

16

with one another only by message-passing. If the state of an object must be changed,

typically another object passes it a message requesting the change and the procedures

bound to the requested object make the necessary change. Therefore, each object knows

how to alter its own state and react to incoming messages.[3, 4, 42]

The object-oriented data model also allows the programmer to take advantage of a

class hierarchy and use the inheritance property to reduce storage requirements. A class is

defined with known attributes, default values, and encapsulated procedures. An object

which is a particular member of a class becomes only an instantiation of the class. If

subclasses exist, they may inherit data and procedures from their superclass. For example,

a programmer might wish to represent a class transport-asset with subclasses truck, cargo-

plane, and ship. Attributes of transport-asset might be range, speed, location, and

capacity. Transport-asset would also have an associated set of procedures, for example, a

procedure for changing location. Truck and ship would, as subclasses, inherit all three of

those attributes, but trucks might also have a clearance attribute and ships might have a

loading-resource attribute. Ship might have additional subclasses like tanker, frigate, and

fast-cargo. An instance of the classfast-cargo might be the USS Atlas with loading-

resource for the instance having a value self-loading-crane. By inheritance, the data object

USS Adas would also have data slots for range, speed, location, and capacity, as well as

all default values and procedures known to all superclasses.[33, 40]

Using the object-oriented paradigm, database researchers can easily model

generalization and aggregation relationships (is-a and a-part-of relationships). Class

information is easily captured and manipulated using the inheritance property. In addition,

objects can be easier to manipulate when a collection is presented in a non-standard view.

Several object-oriented DBMSs have been implemented, there is increasing support for

graphical manipulation of data from an analytic view. Furthermore, complicated real-world

17

objects are more easily modeled and data modularity is enhanced. Therefore, the object-

oriented data model addresses some of the difficulties associated with classical models.

The primary disadvantage of the object-oriented model is that the mathematical simplicity

and declarative beauty of the relational model are forsaken for a highly procedural,

somewhat constricted message passing scheme. 6 (3, 4, 421

Lessons from Artificial Intelligence Research. Knowledge representation has

long been a research topic in the field of artificial intelligence (AI). Object-oriented

programming (frames/slots) is one representation method used widely for Al applications.

Other representations include predicate calculus, production rules, semantic networks, and

expectation schema. Data manipulated by Al systems are less structured and less certain

than data associated with most conventional databases. Therefore, knowledge and data

representation schemes in AI tend to be more flexible and less pleasing in a mathematical

sense. Moreover, there are a variety of ways of expressing uncertainty in databases due in

large part to Al research. Temporal aspects of data have been treated by a number of Al

systems. The biggest drawbacks from the rich expressive power of databases based on AI

knowledge representation are that they are generally complex and large databases are

difficult to manage and maintain.[3]

Database Interface. From a user's standpoint, a DBMS can be painful to use. Oddly,

the typical DBMS restricts input and output. It requires data in a certain way and is not

extroverted about "showing what it knows." Normally, a user must learn a command

language to do sorts, attain virtual views, edit data, or even to get raw data regurgitated

from an existing database table. Generating a non-standard repoxt is beyond the capability

of most casual users. The man-machine interface becomes crucial to the utility of the

6For more infomaion reprding object-oriened programing. we APPENDIX C.

18

DBMS, and most commercial DBMS products are incorporating features such as menus,

windows, and mouse input to make the user's tasks easier.

Database Access. Data must be accessible to those who need it. The current AFORMS

database is a good example of how a constricted data flow can hLl-dr decision making.

The centralized data processing approach that AFORMS epitomizes separates the data from

the user both in terms of the flexibility of data manipulation possible and response time of

data access and update. Rather than giving the user terminal access to an inflexible DBMS,

it is wiser to distribute the data and the ability to manipulate it with powerful tools in a

cooperating information system. A distributed system comprised of personal computers,

high-power workstations, and minicomputers all networked over a high-speed channel is

becoming standard in many Air Force units.[31

Scheduling Methods

There are a number of variations on scheduling one of multiple agents to one of

severa tasks (i.e., scheduling activities). Scheduling algorithms discussed in the literature

generally have their basis in one or more of operations research, tradidonal Al search, or

knowledge-based greedy heuristic search or some combination.7 The systems with the

most impressive performance result from a combination of scheduling methods.

Constraints, both soft and hard, are pervasive and have great impact on scheduling

algorithms, especially in the area of botleneck resowves.[5, 101 Optimization is an implicit

gal, although optimization normally means different things to different evaluators in the

7Hunm sqdedule tend to qs the heuristics iteratively, with iwmions occurring only after a sufficiently
hd constraint, is volmd aid discovered It is a mistake to believe that humn planners consider multiple
altemaives, especislly in a time-coninined environment[21]

19

real world. Schedule flexibility, constancy, and explainabiity are all desirable for real

world systems.

Algorithms Based on Operations Research. Generally, linear programming can be

applied to scheduling problems only as an approximate method because the divisibility

assumption does not hold. That is, some or all decision variables must be integer-valued or

binary. In addition, some scheduling models are based on nonlinear equations which

require nonlinear programming techniques to solve. Nonlinear programming can become

computationally intensive; integer programming is not too bad, but soft constraints are

difficult to mode! and solutions tend to be sensitive (lack consistency) when new

constraints are added. Operations research methods attempt to provide a global maximum

over time, but in many domains, the world situation changes for reasons outside of any

plan (e.g. machines break, orders are re-prioritized). In practice, schedulers based on

operations research algorithms often cannot keep up with unplanned events in complex

systems, and a human supervisor must intervene to repair the plan. Operations research

algorithms are not easily explained automatically.[5, 8, 9, 10, 12, 14, 18, 26, 38, 41]

Algorithm Based on AI Search. Search may be applied to find a satisfying (or

optimal), robust solution based on so, objective function. Search techniques include

forgetful backtracking or memory-intensive depth- or breadth-first forward search. The

best first search (A*) may be applied if an estimation heuristic can be defined. The

objective function is typically knowledge-based as well. These search techniques are

commonly used in classical Al planning systems (generative planners) to generate a

solution path, and they work the same way for scheduling purposes. The A* algorithm

was used in the LISP machine/KEE version of the RADC Aircrew Scheduler.[11, 28, 32]

20

Algorithms Based on Heuristics. If enough knowledge can be derived from the

particular domain, a knowledge-based scheduling algorithm may be developed using

heuristics. Greedy heuristics are those that improve the solution the most at the point they

are invoked. An example of a greedy heuristic is "schedule a pilot who has less than five

days of currency remaining without taking into account future placement possibilities."

Like search-based methods, heuristic methods deliver robust, flexible solutions which can

be explained by a little extra code. These A[systems differ from traditional search-oriented

models by the degree of backtracking or search-memory required. Backtracking is

normally required only when constraints are changed or may not be implemented at all.

Some rule-based production systems are good examples of this type of system.[5, 7, 32]

Programming Environments and Methodologies for the Aircrew Scheduler.

Design requirements on the final aircrew scheduling product indirectly constrained

the choice of programming environment (because prototype programming environments

often become delivery environments). As implied by earlier discussion, data storage and

database functionality were required to manipulate the half megabyte or so of pilot and

schedule data. Several different types of data representation were required. Implementing

the scheduling algorithm made the flexibility of a general purpose programming language

desirable. A simple, aesthetically pleasing interface was considered mandatory to gain

acceptance by the user. Specifically, multiple windows were thought to be important for

intuitively generating different data views; mouse input was considered very desirable

(pilots prefer pointing devices to keyboards); and direct editing of displayed data was also

needed. The entire interface had to be simple and natural, with menus and context-

sensitive help available. The use of multiple fonts, color, and sound were considered non-

essential bonuses but would add appeal. The entire scheduling system had to run

21

acceptably on an IBM personal computer;, portability was considered an unnecessary

bonus.

The choice of programming environment and methodology were also directly

affected by the complexity of the programming project and the relatively short time

allocated to completing it. An object-oriented methodology or functional programming

approach would have addressed the complexity issue; the available development time

pointed toward the use of a software tool for building scheduling systems. A tool is a

software environment consisting of a higher ordered language together with powerful

functions useful for rapid development of a specific type of application. Tools cut

development time by raising the level of programming; they are essentially higher- higher-

ordered languages. For example, a tool for building expert systems might be Lisp-based

but have functions for specifying a windowing interface and an object-oriented knowledge

representation scheme lacking in Lisp. There was historical impetus for using a software

tool -- the original LISP machine version of the aircrew scheduler was built on KEE which

provides graphics, object-generation, and procedural functionality over and above the

environment of a LISP machine. Unfortunately, generic tools often restrict flexibility,

another way of saying this is that they lack needed functions and procedures. Tools are

useful when the application to be built fits entirely within the scope of the high-level

capability they provide. Furthermore, the tools available at the timeS were not appropriate

because high licensing fees would preclude distribution. Therefore tools were not

considered further.

The choice of programming methodology depends to a large degree on the amount

of program modification that will be required. Software has a life cycle that differs for

8tnwuicovps KEE and Gold Hili Computer's Gold Wort.

22

different applications, but the stability of the code generally increases throughout its life

cycle. Different types of software have different life cycles and different levels of stability.

For an application with a large user base like a commercial word processor, there is

economic justification for releasing a very complete product that will require few

modifications. A word processor may be prototyped using one methodology and when

complete, the prototype is ported to a hardware-oriented language for efficiency. Unlike

word processors, a very specific application like a single-seat aircrew scheduler for A-I0s

has a very small user base; there may not be funds for release of a complete product but

more importantly, specific applications require user input not available to the software

developer before release. Therefore, a specific application like an aircrew scheduler is

generally released sooner in the life cycle, and will normally require modification. A

specific application may never be hard coded into a faster language because of lack of

funding, the need for continuous modification, or suitability of current execution. Artificial

intelligence applications are typically very user-specific because current expert systems

have narrow domains. Very few expert systems ever get out of the development stage for

the reasons stated above.

If the prgramming methodology and environment of a user-specific application

remains with and is delivered as part of the application, then there is another factor to

consider. understandability. User acceptance depends on user understanding of the

software. This is especially true of artificial intelligence applications. Therefore, the more

the user can understand how the program arrives at an answer, the better the chosen

environnent. If users can understand the program and the programming methodology is

simple enough, they may even be able to modify the code themselves.

Higher Ordered Languages (HOLs). Standard languages like Pascal or C offer the

flexibility, execution speed, power, and portability required for the end product scheduling

23

system. The primary disadvantage of using a higher ordered language is that many needed

functions and routines must be programmed; an alternative tool might provide these

functions and routines and thus speed development. The n'adeoff between speed of

development and flexibility allowed by the programming environment is a prime design

consideration. Initially, we attempted to port the LISP Machine/KEE version of the RADC

Aircrew Scheduler to KEE running on a COMPAQ 386 personal computer running UNIX.

That effort ground to a halt because of differences in KEE versions and inflexibility of the

COMPAQ KEE environment, among other reasons. Our second porting attempt used the

popular and powerful Tubo C compiler. We made progress using C, but development

time was too slow to meet our milestones. Using our eventual programming environment,

Microsoft Excel, we were able to achieve in 3 days the same functionality that had taken us

20 days worth of C programming earlier, given our meager programming experience. (See

APPENDIX B).

Languages like Pascal and, more particularly, C are machine-oriented, procedural

languages. They guard computer memory resources diligently and ensure fast execution

speeds using efficient primitives and library routines. However, they require the user to

think procedurally, and some programmers find that thinking procedurally stifles creativity.

Other languages have been developed as alternatives to procedural languages. Declarative

languages like Prolog focus on a specification of a data set (like relational databases do) and

use a built-in backtracking procedure to generate query responses. In fact, it is easy to

implement a relational database in Prologg; Prolog was considered as a possible aircrew

scheduler development envionment because of its ability to answer questions which aise

when using a heuristic scheduling methodology. [231 Functional languages like LISP and

its derivatives (for example, Scheme) are similar to Pascal and C in some respects. LISP,

9The efficiency of a relational database unplemented in Prolog is limited by the linear search mechanism
used by is intep t.

24

unlike C or Pascal, almost demands the use of recursion and automates memory allocation

and reclamation. LISP was developed for artificial intelligence programming and allows

the programmer to use any data without requiring type declarations. LISP has a simple

syntax composed of seven primitives, the ones of primary importance to programmers

being those that construct and select (dissect) LISP data objects (lists).[1,17]

Object-Oriented Programming. The object-oriented programming paradigm can be

used in almost any language, but languages like Smalltalk-80 enforce it. The object-

oriented model is data-centered, promotes data abstraction and modularity, uses procedures

bound to data to make active data objects, and uses messages between data objects to

execute a program.10[33]

Experienced programmers tend to build up software modules that are later reused.

Commercial C libraries are now available, LISP programmers tend to develop whole

"worlds" of procedures useful in many contexts. A primary goal of object-oriented

programming is software module development and reuse. Software reuse requires much

documentation (writing and reading), but saves programming time, avoids undetected

errors, and standardizes higher-level functions. The distinction between a "tool" and a

programming language supported by an extensive library is getting blurry, but "tool" still

implies a neater, less flexible package.[J15, 33, 40]

Visual Programming. Using a LISP machine or a SmaUtalk development environment

clearly demonstrates that the total development environment impacts program development

at least as much as the particular language hosen. Specialized programming environments

such as these are typically single-user workstations having large displays with

10 See APPENDIX C.

25

windowing/menu interfaces, mouse input, and seamless integration of all programming

tools: editor, debugger, context-sensitive help, and compiler. All of these elements of the

environment aid in software development to some extent, although it is very difficult to

quantify the effect of environment attributes on software development. Rather, attribute

"goodness" must be described qualitatively and subjectively. Personal preferences and

histories have an impact. For example, many programmers (and users) would agree that a

mouse coupled with a point-and-click interface is preferable to typing a response, but some

never use a mouse because they can type faster or prefer not to switch from keyboard to

mouse and back again. [2, 34]

One attribute of the environment, the display, is of particular importance and is now

recognized as an important area of research commonly referred to as visual programming:

With the availability of graphic workstations has come the increasing
influence of visual technology on language environments. In this article we
trace an evolution that began with the relatively straightforward translation of
textual techniques into corresponding visual techniques and has progressed
to uses of visual techniques that have no natural parallel using purely textual
techniques. In short, the availability of visual technology is leading to the
development of new approaches that are inherently visual.[2]

Visual programming focuses on making computer systems easier for people, rather

than enhancing hardware performance. Part of the impetus for paying attention to visual

interfaces comes from the widespread use of personal computers by nonprogrammers.

Artificial intelligence research and expert systems have also helped make interfaces

important Display technology has advanced to the point where high-resolution bit-mapped

graphics are available to almost anyone. Using high resolution graphics, a mor visual

mode of programming is possible and attractive. Interactive graphics has the potential for

making input and output not only meaningful, but fast, interesting, and flexible as

well.[34]

26

Why are vision and graphics important to computer input and output? Humans deal

naturally and quickly with visual input and not so easily with serialized, one-dimensional

text or speech. One reason that a picture conveys so much more information than a strean

of words is that the "language" of pictures is a much richer, truer representation of objects

in the real world. Things like shape, relationship to other objects, color, and texture are

instantly recognized in a scene that would take hours to fully describe verbally. Another

advantage that visual images have over text strings is that humans can focus on information

they find interesting. The use of multiple fonts and columns (as in a newspaper, for

example) allows a reader to focus on information of interest. In contrast, a listener must

access information sequentially (as in a radio news broadcast), waiting for the desired

information. Both of these reasons result in a higher information transfer rate for visual

images than for one-dimensional text strings. The human visual-processing bandwidth is

much wider than the audio-processing one. Animated pictures are an even better

representation of dynamic real world objects. Animation further increases the potential

transfer rate of information to humans. [34]

Currently, programmers use a variety of non-automated visual techniques to

support programming. Among these are control-flow representations, like flow charts,

Nassi-Shneiderman diagrams, state diagrams, and Petri nets. Data flow diagrams, which

focus on data, rather than algorithms, are also used. In addition, more informal drawings

are used to help visualize the state of the system. For example, student programmers often

sketch out data structures like linked lists and trees to learn how they must be manipulated.

Even when the concept of a particular data structure is known, drawings am often used to

analyze programs and fix bugs. Finally, overall program structure is often conveyed as a

topological arrangement of code modules (boxes) as are used for top level diagrams.[16,

341

27

Program Animation. Some programs, particularly simulations, provide an animated

representation of the world being modeled. Programs can also be written to simulate the

internal state of the computer through animation. Animated programs display pertinent

variables, program instructions, and their interactions. As the program executes, each line

of code is shown along with the variables it accesses and the changes it causes. Animated

programs help programmers check program correctness, analyze execution speed in

different parts of the program, and determine which sections of code are inherently parallel

by explicitly showing what the program is doing.[2- 24, 29, 34]

Graphical Input to Programs. Languages are being developed for integrating

graphical images along with text as input symbols or output results in programming

languages. Some of these developments take the form of syntax-directed editors which

provide a template which allows for "programming by example" and syntactic error

checking.(2,341 Others support a graphical view of programming by allowing the

programmer to see a visual representation of data structures or code in execution.[6, 24,

27, 34] Windows may be used to support different views. Icons are used in some tools to

assign a visual abstraction to code or data. Still other tools are useful for designing and

documenting software, or generating it from a visual specification.[34] Newer research

has focused on the use of graphical symbols as inputs to the ogrammg language (either

along with or in lieu of text).[6, 37] The use of symbols to index data is also a research

topic.

Principally from artificial intelligence research and man-machine interface design,

the impact of vision on computing environments is now known to be great. Seeing

programs and data reduces the complexity of both by providing a way to move from the

abstract to the concrete very easily. The field of visual programming languages has arisen

as a result. It turns out that the best display is the largest display, as humans already have

28

the ability to focus attention on important parts of images. Debuggers and spreadsheets[35]

are examples of this "more is better" rule.[2, 341

Visual programming makes it easier to write programs. It enhances the

programmer's ability to debug programs while running various data sets. Thus, validation

and verification are easier in a visual environment. Modifying programs requires finding a

portion of code causing some behavior and changing it to alter the behavior. Animation

helps the programmer find the code causing a behavior, and a visual environment simplifies

writing and testing new code. Therefore, visual programming also makes it easier to

modify programs. [13, 25, 36].

29

CHAPTER 4

A VISUAL PROGRAMMING METHODOLOGY

BASED ON MICROSOFT EXCEL ON THE MACINTOSH

The new aircrew scheduling prototype is based on Microsoft Excel, a

spreadsheet/database/language with a spreadsheet interface. By using Excel, the new

scheduler is portable to IBM/MS-DOS personal computers or Apple Macintosh computers.

The principle development was done on a Macintosh llcx. The methodology used to

construct the Excel prototype is described in detail below.

A visual programming methodology based on the environment provided by

Microsoft Excel has two cornerstes. One is the continuously updated display of a two-

dimensional data array, the most apparent feature of any spreadsheet. The second

cornerstone is program animation resulting from using a particular style of programming.

Both features make program development and debugging easier by making data structures

and program execution explicit in a visual sense.

Excel is an integrated tool having spreadsheet utility, but also featuring an

interpreted macro programming language, graphics routines, and a powerful library of user

functions. 1 The database functions are the primary ones useful for programming

scheduling systems in ExceL Using the database functions and the macro programming

language, a heuristic scheduling system with a sophisticated visual interface may be written

with only a few hundred lines of code.

1 Excel is mresentative of several spreadsheets having similar functionality. Many comments made about
Excel am also ue of other spreadsheet podum.

30

Excel also supports graphical programming methods for generating dialog boxes.

These interactive, graphical, user input windows further refine the overall interface and

make the program even easier to use.

The visual programming methodology described is based on wide-bandwidth

output and animated execution, but takes full advantage of all attributes of Excel, including

the windowing operating system it resides on and other attributes of the Macintosh:

graphics, mouse, and built-in networking.

A Visual Programming Methodology Using Excel. The general methodology

used is outlined below and discussed in the following sections.

1. Without regard to procedures required, generate the applicable data structures in

portions of the Excel spreadsheet array. Use concrete representations which are as similar

to the modeled data structures as possible Group related data structures in appropriate

locations in the spreadsheet array. Fill the data structures with real or example data.

2. Make full use of functional programming to display abstract data.

3. Using the continuous display, mouse, and available commands, manually

manipulate the data to learn how to cause the desired program behavior as needed.

4. Using available functions, write small program modules to incrementally

automate data manipulations. Group related program modules in appropriate locations in

the two-dimensional program area. Modules should be called as subroutines. Access data

only by visiting its location to provide animation. For example, move data using "select-

copy-select-pate.' Continue until data manipulation is fully automated, testing modules

using animation. Rearrange data structures and program modules as appropriate.

5. Generate the user interface by graphical dialog box programming and menu bar

commands.

31

Excel's Interface. Like other spreadsheets, Microsoft Excel displays an array of data

cells which are continuously updated, should they contain a formula. Higher-ordered

languages (HOLs) like C, Pascal, and Ada require extra programming to get output, but a

spreadsheet interface is always the same (with minor variations): maximum output. The

programmer must only determine how to partition the data array into a useful display.

Data structures in Excel are visually explicit, in contrast to the hidden ones in C or

Pascal. Novice students learning about computers are often told, "Computer memory is

like a row of mailboxes at post office. Each mailbox has a physical address which the

computer knows about. Each mailbox has space to store data in. You name the mailboxes

so that you can access the data in them." Thus, the abstract notion of assignment becomes

concrete and understandable. In a Pascal program, the assignment might be "A = B + 1;"

andsuddenly, the notion is abstract again. What is value of B? WhatdoesA looklike?

(Perhaps A is an array!) Arrays, linked lists, and trees all had to be drawn and visualized

by every programmer who now understands them, yet in the language, these structures are

invisible. No wonder it is so difficult to program using them! A mental image of what is

going on is constantly required. What happens when the number of variables becomes

large? Questions like "What is the value of B?" begin to slow progress. Those questions

are not so difficult when their answers are continuously displayed.

Part of the representational complexity of programs comes from data structures (the

remainder comes from algorithms). The more concrete a data structure is, the easier it is to

understand. For many data sauctures and some real-world things (e.g., schedules), a

visual, two-dimensional army is a more concrete, truer repentation than the invisible data

structures available in Pascal or C. In Excel, an array looks like the array we visualize in

Pascal (at least, to two dimensions). A linked list in Excel looks natural also, and it is a lot

32

tougher to get lost in an explicit one. A real-world schedule is often represented as a table;

an Excel schedule can look identical.

Because of &xe two-dimensional array displayed, Excel lends itself to two-

dimensional data structures. Two-dimensional data structures include single variables (1 x

1 arrays), one-dimensional arrays (n x I arrays), two dimensional arrays, and tables,

relational database tables included. With a little imagination (using relative pointers), linked

lists, stacks and queues (as n x I arrays) can be implemented. Higher dimensional arrays

and trees are difficult to implement as visually explicit structures. For writing "real world"

applications, lack of support for higher dimensional data structures can be unimportant;

many "real world" data structures, such as invoices, bank statements, time-tables, etc, are

inherently two-dimenional because they are expressed on paper or some other two-

dimensional surface. For example,the data structures most used for scheduling are a

schedule (a table) and relational database schema (other tables).

In Pascal or C, variables are typed and allocated by name. After that they may be

used in the program. Stnng typing allows for some error checking and allows efficient

use of memory. However, in the iterative style of most programmers, there is a necessary

cycle between the discovery of the need for a variable and its required typing and

allocation. Languages such as LISP require no typing and allocate using definitions at run

time. In Excel, typing is discovered by the system from syntax (as in BASIC, and

alloan is made incrmu tally as data is entered into each cell. Furtmo, each

location where data may be stared has a default name.12 Thus, the programmer never

needs to scroll back to the top of a file to allocate additional variables, as in C or Pascal. In

12 A12 or B3. for example. User specified names are also suppoMd.

33

practice, it is more natural to put data and data structures onto the spreadsheet, and write

programs to manipulate them afterwards.

In Excel, simple variables, higher data strucures, and algorithms are all physically

located someplace on the two-dimensional spreadsheet. For example, one subroutine may

be eist, west, north, or south of another. This is fundamentally different from a language

like C or Pascal. In C or Pascal, data structures are invisible, existing sornewhere in the

ether of the computer's memory algorithms are a little better off, existing in a linear (one-

dimensional) text file. By inserting white space, Pascal and C algorithms can be written

with addex, limensionaLity. In other words, properly indenting code can give additional

meaning; thus, much of the power of structured programming arises because of

appearance, a visual extension of the one-dimensional alternative. However, indented code

is not really two-dimensional in the same sense as Excel programs can be. In Pascal, one

code module must come before or after another. The added dimensionality in Excel

provides additional impetus to write modular code for cognitive reasons (discussed below).

From a cognitive standpoint, Excel's visual, two-dimensional spreadsheet interface

is far superior to the programm g envinme of typical higher-ordered languages. The

primary advantage of a spreadsheet interface is that additional assocaions are possible that

relate a data structure or piece of code to familiar objects. There are three practical benefits

which result. Fu-st, it is easier to find a data structure or a piece of code because the data or

code always has some relation to what is known (visible). In a traditional HOL, "finding a

data structure" has no meaning, but finding a piece of code equates to scrolling a particular

distance from the current cursor position. The difference between finding something in

Excel versus Pascal or C is somewhat analogous to navigating by map as opposed to

getting directions. Directions tell you how far to go on a one dimensional route before

taking some action (e.g., turning), while using a map allows the use of external points of

34

reference. A second benefit of two-dimensional associations is added flexibility in

structuring programs. Different arrangements are possible. A top-level design diagram

may be implemented in similarly arranged code; alternatively, code modules may be

arranged hierarchically. The methodology used to create the Excel scheduling prototype

only requires related code modules to be placed close together in some natural order. A

thkJ benefit from extra-dimensional associations arises from the way human memory

functions. Remembering a piece of information is related to the number and strength of the

associations attached to it which relates it to something else already in memory. For

example, mentally picturing a new acquaintance standing with old friends with the same

name is a common procedure for learning names at a cocktail party. Current HOLs attach a

name to a data structure or procedure, although a procedure has a second memory

"handle," its location is in a-linear text file. In Excel, both data structure

have at least three handles: absolute cell address, user-defined name (if one is assigned),

and a relative position from some other cell. Note that the last handle is really many

handles, e.g., a variable called 'current pilot' in cell F19 is 3 cells west of 'current

comment', 12 cells- northeast of 'priority pilot, etc. ad infinitum. The utility of the extra

memory.handles is entirely semantic but is closely tied to locating code and structuring it.

Six months after aiting a procedure, not only can it be found and known to be related to

an adjacent procedure, but its meaning and function may also be recalled (especially when

the meaning of adjacent procedures is known). Because of this, writing code in a modular

fashion does not add to the complexity of the program as much. Modularity combats

complexity, but the overhead of remembering what all the modules do can, at some point,

begin to add complexity of its own. Because modularity is well supported by the Excel

environment, it is also a goal of the visual programming methodology described.

Control Structures. The Excel aircrew scheduling prototype makes extensive use of

IF-THEN-ELSE, subroutines, and GOTO control structures. Excel has a WHILE

35

primitive, but most modules are so small that the GOTOs used do not cause too many

problems because they are restricted to the module. Going outside the module should be

done using a subroutine call, under the methodology used. Using small modules keeps

branching limited. Although this is the most natural type of structured programming

supported by Excel (perhaps with the GOTOs replaced by WHILE), it occasionally made

modules slightly longer than necessary. Program branching can make code smaller, but it

can also add complexity.

Data Structure Design. When programming a solution to an unfamiliar, complex

problem, its not clear, from the start, what data is important, what data structures are

suitable, or what the relationships between data structures are. Using a visually explicit

language like Excel allows one to begin programming before having a complete

understanding of the problem and aids understanding along the way. This approach was

used during development of the Excel aircrew scheduler. First, the data thought to be

important was arranged in tables or simple variables in a way thought to be correct. Then,

simple programs were written to manipulate the data and discover what manipulations were

possible and naturaL This process uncovered several important relationships between data

structures and showed what additional data and data structures would be useful. The two-

step process was iterated a number of times to arrive at a reasonable product.

Program Animation. In Excel, there is always an active cell and a selected array of

cells, just as there is always some location stored in the program counter of a

microprocessor. (The selected array may be just the active cell, a I x I array). Macro

programs which operate on Excel data use the active cell and selected array to access data in

a fashion very similar to the way a microprocessor gets data from memory (one byte or

word at a time). While this arrangement appears rigid (and can be overcome), it forces

explicit manipulation of displayed data. By differentiating the active cell and selected array

36

from other cells, animated programs are possible. In Excel, the active cell is outlined in

color and the selected array (except for the active cell) is filled in with color. By

prog ig Excel to visit each data cell to access it, the active cell will, during program

execution, move around on the spreadsheet data array, thereby showing the programmer

exactly what it is doing. For example, a typical operation is to move data from one cell to

another (for example, the criteria array). To do this in Excel, a four line program is needed

to select the first cell, copy its contents, select the second cell, and paste the contents of the

first cell. The "select-copy-select-paste" program appears as a three step visual program

wherein the active cell visits the cell to be copied, visits the cell to be pasted, then pastes the

value of the first cell. Using this methodology, every time a program runs, the

programmer sees which data cells are visited and what changes occur to cells.

Furthermore, Excel has a single stepping feature which allows the programmer to slow

execution to see just what effect each line of code has.

Theprogram animation tossibilities using Excel makes it very easy to debug a

program. The programming process is also much improved because it is simple to see

inefficient pathways to the same end.

Rearrangements of Data and Programs, Excel uses relative addressing as a default

means. Relative addressing is more natural than absolute addressing if data is going to be

moved around. Excel expects rearrangements of data and provides for it in sophisticated

ways. For example, data arrays may be cut and pasted elsewhere on the spreadsheet.

When data is cut and pasted, all references to it in any Excel file are transferred to the new,

correct address. Functions on the spreadsheet which return data values also refer to new

addresses, making it possible to cut a function from one cell and paste it into a large array.

The formulas pasted into the array all return different values because they use relative,

rather than absolute references. Easy rearrangement promotes modular programming,

37

supports experimentation with different data structures, and supports experimentation with

the physical layout of code and data structures.[30, 31]

Verification and Validation. The combination of visually explicit data structures and

animated program execution are powerful tools for verification and validation (V&V).

There are a number of static and dynamic methods for ensuring V&V for traditional and

artificial intelligence software. Static methods include anomaly detection, structured walk-

throughs, and mathematical proofs of program specification and correctness. Dynamic

methods include random, regression and thorough testing. Static analysis of data structure

and algorithms is directly related to their visibility, a metric of relative obscurity. Visual

programming methods allow the easiest static analysis of data structures due to their explicit

representation. Proofs of program correctness are generally too cumbersome for complex

software. Routine testing has been found to be one of the most effective V&V methods,

especially for artificial intelligence applications. All testing methods are simple when the

program displays itself executing as Excel programs do.[13,25,36]

Graphical Programming. Excel supports graphical programming for generating data

for interface dialog boxes. The Excel dialog editor displays an empty dialog box and the

programmer may add elements such as list boxes, option boxes, cancel and accept buttons,

and text from a menu. The dialog box and its elements may be resized and moved using

the mouse. When an acceptable interface is designed, the data which creates it can be cut

and pasted into an Excel spreadsheet Then a one line program will generate the interface

and user inputs ae stored as data next to the interface data. Additional lines of code are

required to access stored user inputs.

Use of Database Functions. Although not part of the visual programming

methodology, use of Excel's fourth-generation functions make many applications simpler

38

to program. In the case of scheduling, the database functions are most important. To

heuristically select tuples from a database based on information in a schedule, items from

the schedule (e.g., qualification) may be pasted into the criteria array. This is one method

of applying a constraint to push solutions into a feasible region. Database functions such

as selection, the number of satisfying tuples, the maximum or minimum of an attribute

column, and extraction (projection) all use the current critea array to select tuples and

make programming easier by raising the level at which it is done. For example, a very

simple aircrew scheduler might be based solely on training need. To implement the

scheduler, a pilot database, schedule, and algorithm are needed. One algorithm which

satisfies the requirement would copy the mission type from the schedule, go to that mission

type in the criteria array, and paste in the maximum value of the corresponding mission

column in the database. That action would constrain a database selection to the pilot with

the largest training requirement for the mission under consideration. The algorithm would

simply select the pilot name, copy it, and paste it in the schedule.[30,311

Windowing, Menus, and Mouse. The Macintosh environment is a visual operating

system. The use of windows, a standardized pull-down menu interface across all

applications, and mouse input all contribute to the ease of using any application. The

integration been applicaions epitormd by the ability to cut and paste information

between applications is very helpful during application development and use. Graphical

icons are more meaningful than text identifiers when it comes to file manipulation. The

mouse simplifies the user interface for most applications and allows file icons to be

manipulated in a natural way. In ExceL using the mouse to select and move data is much

simpler and faster than using the cursor keys.

39

CHAPTER 5

THE EXCEL AIRCREW SCHEDULING PROTOTYPE

Using the visual programming methodology based on Microsoft Excel described in

the last chapter, the functionality of the LISP Machine/KEE version of the RADC Aircrew

Scheduler was ported to run in Excel on the Apple Macintosh IIcx. (Excel also runs under

Microsoft Windows on IBM personal computers and under Sun-OS (a Unix derivative) on

a Sun workstation).

Design Considerations. To gain user acceptance, the Excel aircrew scheduler

prototype was designed to do aircrew scheduling in the same way as the current manual

method. The focus was not on improving.the current scheduling algorithm, but on

improving the communication and presentation of data, providing analysis capability, and

automating the current algorithm. By automating the heuristic scheduling algorithm used,

the computer can aid the scheduling officer by finding appropriate pilots and never

forgetting constraints. Using this approach, the computer is allowed to do what it does

well (i.e., store and manipulate data) and the scheduling officer is left to do what he does

well (handling anomalies and determining smarter ways of doing things). Heavy emphasis

was placed on allowing the user to have control of the system. For each action

implemented, there is an analogous procedure for retracting it. An uninhibited display

attitude was a prime design requirement from the start, and Excel's constant output of all

data and functional results supported that requirement well. Thee was some concern that

the user would be flooded with data, but humans are well tuned for focusing on what they

consider important, and scheduling officers have not complained thus far. Using the

standard window interface, the user can access more data by simply scrolling the window.

Editing is important for changing schedule data, and the direct editing interface supports the

..

40

user's need for natural interaction. Also, the same animation that helped the program

developer build the prototype will help the scheduling officer understand exactly what the

prototype is doing and thus build confidence in its scheduling choices. Because Excel

exists in a windowing environment, multiple user views are possible, including one which

minimizes the animation window, should it become boring. The prototype has been built

making maximum use of graphical dialog boxes, resulting in intractive routines that are

simple point-and-click operations.

System Description of the Excel Aircrew Scheduler Prototype:

Data Structures. Consolidated database. The current Excel prototype has a database of

pilots, their qualilicatins, event completions for the cuirent training term, and currency

days remaining for each event (basic AFORMS data). (See Figure 2.) In addition, the

consolidated data base includes a row for preferences and the availability status of each

pilot based on the mission under consideration, pilot availability data, and timing constraint

data. (See Figure 3.) Timing constraint data are those data items which arise from the

length of flying day and crew rest constraints. This data is added onto (i.e., linked with)

tuples in the consolidated data base. Pilot availability data is stored in a linked list which is

also attached to tuples in the database. Pilot availability statis appearing in the

consolidated database is actually the result of a function operating on availability and timing

constraint data, using current mission start and stop times. Thus the abstract notion of

availability that the user has in mind is the actual data presented, and the details of how

availability is calculated are buried.

Associated with the consolidated database is a criteria array used to specify criteria

for selecting data. (See Figure 2.) It is composed of attributes from the consolidated

database and is displayed in tabular form. Because there is a one-to-one correspondence

41

PELOT Availability WD W Am AM Cur DCDA DACB Cw Preferee
Able. Adan 5__ Unavailable 7 10 10 12 9 8
Baker. Bary 5 Unavailable 3 9 14 22 8 9
Charlie. Chuc 5 Free 10 18 9 20 8 9
Dingo, Dave 5 Free 23 29 9 27 3 28

Ew!bEi 4 es141 1 3 11 9 13 -

Frank, Fred 4 Free 1 16 18 18 4 21
Gonz, Greg 4 Free 6 -6 11 -24 6 -21
Harrs. Hary 2 Free 17 4 4 25 20 2
Im, Ian 2 Free 9 7 19 16 1 11
Jimes r 2 Unavailable 11 18 20 8 15 16
1W Ken 4 Unavailable 9 11 7 0 20 8
Link Lam 1 Unavailable 22 -34 0 -2 13 -30
Mas ,Unavailable 22 40 9 9 11

PROT Availabili WD Cur ACT I ACT Cur Do DACBT DACBT Cur Prferce

13 Pilots fit criteria 23 -34 40 -24 20 -30
Below is space allocated to altenae criteria rows: _

1) Free 14 >'0 __

Figure 2. The Consolidated Database and Criteria Array

PLO Pev Toda las Math ailabili list - air isas Ad stop of available time
Able, Adam 1015 1 0 830 1015 24001
Baker, Bary ... 1000 2 0 800 1000 2400 - -

Charlie.Chuk 1 0 2400
Dingo. Dae 1330 1 0 1200 1330 2400

Eae r 1 0 2400
Fre10d 1 01 240

Eo___Gi 1 01 2400 1
Hmr* Hwy 1 0 24001 1
htm. Ian 1 0 2400:
Jmes. Jun ,1000 2 -0 800 1000 2400

Ke, Ken 10001 2 0 800 1000 2400

Lin; lAM 1330 11 0 830 1015 1200 1330 2400
Mason Mike 1000 2 0 800 1000 2400

Figure 3. Availability Data Linked to Pilot Tuples

between column headings (attributes) in the citeria army and the consolidated database, the

criteria army is physically located directly below the consolidated database for aesthetics.

There are two areas below the criteria array used as a swap space for the current criteria. In

42

addition, there is an array below event and currency attributes in the criteria which hold

maximum and minimum values of corresponding database attribute tuples. Again,

"maximum" and "minimum" are abstractions, the result of functions.

The partial schedule to be filled is presented as a table containing schedule line

number (a key), take off time, landing time, mission type, pilot qualification requirement,

aircraft configuration and range data for each sortie. (See Figure 4.) There are slots left

open in the schedule for pilot and scheduler comments. The schedule flight date and

schedule generation date are attached. Today's date, the result of a function using the

computer system clock, is displayed and may be copied into the schedule generation date.

The priority list for the schedule appears as a table but is dynamically converted to a

database during program execution. (See Figure 4.) It contains relative priority number,

pilot, mission, and a requirement comment, if desired, from the supervisor who generated

it (typically the training officer or DO). There is an attribute heading for a comment by the

scheduler because, when a supervisor establishes a priority, the scheduJing officer needs to

communicate how the priority was treated. As with the consolidated database, there is a

crfitria way associated with the priority list (priority list criteria) containing the same

attribute headings and located directly below the priority list. In addition, there is an area

below the priority list criteria used to extract (project) the priority number and pilot name

from the priority list based on the selection criterion.

Flight data are displayed in another table. (See Figure 5.) This data specifies

which sorties are parts of which flights. Two- and four-ship flights are common, although

43

Scheml for Dawe T,,oday's Due
1-Ma -90 "2-Apt-90 2-Ar90 .

Line Nume Take off time Lendin Mission Pilot Req Pilot Confiuration Range Comments
100 800 100OW ACrBT - >=4 _ A
101 800 1000 ACBT 3 A -

103 800 I000 ACBT >-3 i A03 8o 00, 1ooo 0 a i ,A ,

104 830 1015 DACBT >-3 B61MP A
105 830 1015 - ,, B61MP A
106 1200 1330 WD >.3 B61 P
107 1200 1330 VWD B61 P

Priorit Lis 1-May-90
Numbe Pilot Missiot R Commen_

I James, Jim ACBT
2 L- . W- -
3 Lint. Lan DACET --

4 Gozo Gm DACBT
End

Number Pilot Missio Rei Commen-

Numb Pilot

Figure 4. Partial Schedule and Priority List

F ligh D ata
1-May-90

Lim Niumbr PiloiR No. of ancaft Otwaiscraft
100 >4 4 101 102 103,
101 4 100 102 103102 >-3 4 100 101 103

103 4 100 101 102
104 >-3 2 105
105 2 104 -

106 >-3 2 107
107 __ 2 106 -

Figure 5. Additional Flight Data

44

other configurations are possible. The configuration of the flight dictates what

qualifications are required by the flight leaders. For example, a two-ship flight would

require a two-ship flight leader, but a four ship flight would require a four-ship flight leader

as well as a two ship flight leader because tactical aircraft normally fly in pairs (leader and

wingman). Currently the flight data are used only to reset pilot qualification when pilots

are removed from the schedule.

There are four tables which help the system provide different data views to the user.

Three of them result from projecting data from the consolidated data base. Pilot

qualification, event requirements, and event currencies may be viewed as tables or graphs

using these projections. The fourth table is a manipulation of the pilot availability data used

to create a time line chart of pilot availability. (See Figures 6,7, and 8.)

There are other abstractions displayed and used by the program. Among these are

size data for the consolidated database and the number of pilots from the consolidated

database who meet the current criteria. The is a vector of match values for the availability

data. The match values ame used to updat-, data and as an intermediate result for availability

calculation. Other data that are displayed and used are the number of days remaining in

currency before the scheduler becomes concerned and the last DNIF times.

Most arrays used are not the typical Pascal-like array but rather dynamic data

structues which may expand in length or width. The consolidated database lengthens by

the addition of pilots (tuples) and widens by the addition of training events. The associated

criteria also expands in width when training events are added. The availability data stored

in linked lists attached to each pilot (tuple) ae able to expand to the limits of memory;

however, current algorithms used do not take into account more than five blocks of free

time or occupied time for a day. This limit is considered adequate for tracking

45

PilotQ ons Event Reaui_ _n

PILOT , af PILOT WD ACBT DACBT
Able. Adam 5 Able, Adam 7 10 9
Baker, Barry 5 Baker. Bary 3 14 8
Charlie. Chuck 5 Charlie, Chuck 10 9 8
DinaDave 5_ _ino_ Dave 23 9 3
d aric 4 - Edw i 14 3 9

Frank Fred 4 Frk Fred I 1s 4
Gowo.Grez 4 1G_, Gnm 6 11 6
Har Hany 2 - Har Hyry 17 4 _-

1I". an 2 _ ___-1, I 9 19 1
James Jim 2 James, J 11 20 15
Y" 4 iKee, Ken 9 7 20
Litj Lary I - Lar 22 0 13
Maso. i1e I Mason, Mike 10 40 9

Event Currencies - Days Remaining

PILOT WD Cur Days ACBT Cur Days DACBT Cur Days
Able, Adam. 10 12 8
Baker. Barry 9 22 9

, -Chwli Chuck 18 20 9
Dingo. Do"e 29 27 28

.... E.dwar i. ric .. 1 11 13
Fr-nk. Fred 16 18 21
Gon__GoGrz -- ---- -6 -24 -21

-arris. H 4 25 2
lggy, I=n -- 7 16 11

.... ___ _ _ IJames Jim 18 ' 8 16
_KeeKen 11 0 8
- L -34 -2 -30
1 Mason, Mike 22 9 11

Figure 6. Data Projected fom the Consolidated Database

availability and was chosen to constrain file sizes, but it may be easily changed. The

schedule will obviously be longer or shorter depending on the number of scheduled sorties.

The length of the priority list is also variable. The four tables derived from other data are

also dynamic. All program modules have been written to take into account the dynamic

nature of the data structures used.

46

Air Combat Training Event Requirements and Currency Days

N AC T 1ACBT Cur Days

40

30 --

20 -

10 1]
0 - -i a

Able. Baker, Dingo, Edwards, Frank. Go*zo. Harris. Kee, KaLi. Mason.
-10 Adom Barry Dave Eric Fred G q Hary - Larry Mike

-20

-30

Figure 7. Example Analysis (raph

Data Representations. Data appearing on the interface window are either of simple

type, such as numbers, dates, or character strings, or an abstraction, the result of a function

applied to other data. Simple data may be edited directly without possibility of error.

Abstractions may also be edited, but the details of the function are presented in the editing

window. To edit screen objects, the user mouses on it (points to it and clicks) to select it.

When it appears in the editing window, normal editing commands are available and a

carriage return completes ediing.

47

0 400 800 1200 1600 2000 2400

Able, Adamn

Baker, Barry

Charle, Chuck

Dingo, Dave

Edwards, Eric

Frank, Fred

Gonza, Greg

Harris, Harry

Iggy, Ian

James, Jim

Kee, Ken
Unt, Larry

Mason, Mike

Figure 8. Pilot Availability Timeline

Pilots are represented by a string consisting of their names in the format shown. The user

must only type the name in once; thereafter, the name may be more easily copied and

pasted. Pasting names is useful when the user wants to manually insert a pilot into the

schedule. Pilot qualification levels are mapped to numbers in the following way: those in

msion qualification training are level 1, those who are mission ready are level 2, two-ship

flight leaders are level 3, four-ship flight leader are level 4, and instructor pilots are level

5. This mapping is useful for selecting pilots with at least soe level of qualification and is

simple for humans to assimilate. Pilot availability is displayed as either "Free" or

48

Schedule for Dam en ToaysDue- -

1-May-90 2 -90 902-Af-9|
Lin Number Take off Landin Mission Pilot Req Pilot Confiu j Rnge Comments

100 800 1000 AQR 5 Baker, Barry J A 14 Events Remaining
101 800 1000 ACBT Mason. Mike I A 40 Events Remaining
IO2 800 1000 AC 3 Kee.Ken J A 0 DayofCurrency
103 800 1000 ACF - James, run IA I on Priorit List
104 830 10 5 3'CB -- Ae Ada B61IMP A 91 Events Remaining
105 830 101 Lin. Larry B61MP A 3 on Priority Lit
106 1200 1330 WD 5 Dingo, Dave 61 P 23 Events Remaining
107 1200 1,0 - int. L, i , 2 on Priority Lit

Figure 9. Automatically generated Daily Schedule

"Unavailable" in context of the beginning and ending time of the activity under

consideration at the moment. Event requirements are numbers indicating the number of

events yet to be completed before the end of the six month training term to maintain combat

ready status. Event currencies are also numbers which am the days remaining before going

out of currency in a particular event. Operational units think of currency as a date, but

numbers were more easily manipulated, and again, humans can quickly adapt to the altered

representation. Preferences are normally user-specified character strings; the system

currently uses the preference attribute to temporarily preclude the scheduling of

unsupportable pilots. Tmes are represented in military format by numbers from 0 to 2400,

although there is no type checking to flag meaningless values such as 1062 or 4000. The

availability data are pairs of times indicating the stam and stop time of a free block of

unallocated time (or, shifting one data point over, the start and stop of a slice of allocated

time). A manipulation of this representation is a list of durations of free time and allocated

time sicms arrged in an alternating fashion. The duration list is used to create a time line

chart. This representation is acceptable for graphing purposes, but it is not aesthetic as a

primary representation because of the enr induced by using normal numbers as time (there

are only 60 minutes in an hour). Missions, configurations, and ranges all are represented

49

by strings of their commonly used abbreviations. Explanations may be user-specified, but

automated ones are formed by appending a number to a string. (See Figure 9.)

There are a number of ways to access or reference data, as described earlier. At all

times, there is an active cell in a selected array which is similar to the address pointer in -

assembly language programming. As discussed in the last chapter, data may be referenced

by its relative position to the active cell. This method was used commonly because the

visual nature of the display made relative addressing natural and understandable. Of

course, the spreadsheet interface names each data cell in an absolute sense as well. A third

alternative, often used to abstract data or procedures, is the assignment of a user defined

name to data.

Procedures. The primary focus of the aircrew scheduling prototype was, from the

beginning data centered. The Excel-based visual programming methodology supported a

data orientation very well. However, Excel's high level functions and relatively clean

separation between dam and algorithms allow the procedures which manipulate the data to

appear very powerful. Three hundred lines of code implemented a sophisticated heuristic

scheduler which took over 2000 lines of LISP in the previous prototype. In reality, the

macro procedures have very little to do, and the power comes from the high level functions

and continuous display and update inherent in Excel's spreadsheet interface.

Some algorithms used were automatic functions whose results appear as data.

Availability and attribute maximums are examples. The availability calculation results in

"Free" or "Unavailable," in part depending on whether or not the activfty under

consideration fits entirely within a given pilotes free time block. (See Figures 3 and 8.)

The block of time required by an activity (e.g., flying a mission) is defined by its start and

stop times. Pilot availability data are stared as blocks of free time (start and stop times) in

50

the linked lists attached to each pilot tuple in the database. Therefore, its simple to calculate

availability by making sure the activity occurs completely within unscheduled time, i.e.,

does not spill into a previously allocated time blocL The other constraints placed on

availability arise from Air Force regulations limiting the length of the flying day and

providing crew rest. The availability calculation uses last landing times for the current and

previous day to enforce these constraints.

Most algorithms are not the result of functions, but programs known in Excel lingo

as command macros. These procedures are distinct from the data; they're stored in a

separate file and are manipulated via another window. Modularity was used extensively.

The top level design is shown in Figure 10.

The scheduling algorithm to find an appropriate pilot uses three approaches to

heuristically select a pilot if one is needed. If a pilot has been suggested by the user, the

algorithm will check the pilot to make sure no constraints are violated by the user choice. If

constraints are violated, the syq defaults to automaticay finding an alternative, or the

user may direct the algorithm to halt. If no pilot is suggested, the routine)Ind pilot' first

checks the priority list for applicable pilots and attempts to schedule them in order of their

assigned priority. If no priority pilot can be scheduled, the algorithn tries to find a pilot

who has only a few days of currency remaining. Why is currency important? Non-current

pilots require instructor pilots to regain currency, and instructor pilots are a resource for

achieving training goals. Therefore, it makes sense in most cases to assign greater priority

to flying pilots who will soon go out of currency. "Low" currency is a visible, user-

specified parmeter, currently it is set at 7 days. If there are no pilots who may be

scheduled because of low currency, the algorithm looks for pilots with the largest number

of training events remaining. The prmay task of the scheduler is to provide opportunities

51

MaeASchedul Print Schedule

Place a Pilot Show Schedule
-U

[Reset Schedule DNIF aPilot

I Remove a Pilot

1_Free a DNIFed Pilot

Scheduling Functions

Show Qaiiain

Add Pilot Show Requirnts

___Show Currencies j

Delete Pilot Plo Dam

Plot Avaability

Pilot Data Functions

Figure 10. Excel Aircrew Scheduler Top-level Design

for requred bing, regarles of currency status, ifico or other factos If no

pflot can be ft4d 13 using these three approaches, the scheduler reports **NO PILOT*.

In later versions, the algorithm will backtrck and reaange the schedule to fill all slots.

13'1a may occur in resowce rich ScbeduWL

52

Regardless of how a pilot is picked by the system, no pilot who violates constraints

may be scheduled. A pilot must be qualified, current, and available as specified by the

schedule. A pilot who is not current or who is in mission qualification training status must

fly with an instructor pilot. Qualification, currency, and availability are pasted into the

critmria array as needed by the algorithm; the criteria inputs serve to limit the selection of

pilots. When a pilot is picked, the need for an instructor pilot is calculated. There are three

possible results: no instructor pilot is required, an instructor pilot is required and there is at

least one who is available and current to fly, or an instructor is required, but none are

acceptable because of availability or currency. The first and third results are easily handled

by scheduling or disallowing scheduling. The second case, required instructors exist, must

be handled more carfuy because the algorithm does not know (remember) the stms ot

scheduling done so far and must check. If the schedule slot where the instructor pilot is

needed has not yet been filled, the algorithm can upgrade the required qualification for that

slot and fill the slot below with the non-current or underqualified pilot currently being

considered. However, if the associated instructor pilot slot has been filled, the algorithm

must check to see if the pilot filling it is an instructor. If so, the algorithm will place the

non-current or undiulifled pilot. Otherwise, it discards the non-current or

ued pilot, just as if no acceptable insructor pilot could be found, and selects

another pilot for consideraion. The dual incpretaion of instructor pilots as pilots (jobs)

and resources adds to the complexity of the problem and makes handling it in this

procedure the preferred way of scheduling.

If an available pilot qualifies for a mission and is supported by an instructor pilot (if

required), the algorithm updates the pilot's availability and places him on the schedule with

a comment explaining the choice. If the pilot was scheduled based on a specified priority,

the priority list is commented to communicate success and so that the pilot will not be

selected from the list again.

53

There is an analogous routine for removing a pilot from the schedule. Operations

performed include clearing the pilot slot and comment, resetting any upgraded qualification

from the schedule, freeing the allocated time from the pilot availability data, and clearing

any associated comment from the priority list.

Routines for completing or resetting an entire schedule reuse the smaller routines.

For example, to automatically make a schedule, the 'make schedde" routine finds the last

slot on the schedule and, proceeding upward, fills all unfilled slots with the most

appropriate pilot using find pilot.'

There is a routine to update the availability of pilots who are busy with duties not

including flying (DNIF, e.g., medical, ground training, a staff job, etc.). A corresponding

routine for freeing DNIFed pilots is also implemented.

Several routines have been written to display different views of the data. One

shows the schedule, another prints the schedule, and three others display the three

prjections from the consolidated database: pilot qualificaton, events remaining, and

currencie. A flexible graphics routine allows the user to specify up to four attributes from

the consolidated database to produce graphs in a number of standard formats. (See Figure

8.) Another graphics routine produces a time line or pilot availability. These graphs open

as windows and may be left open, although their continuous recalculation slows execution.

Pilots mly be added or deleted without distorting the dat structures or affecting the

algorithms in any way. Similar routines could be written to add or delete training events,

but at this time, that process is manual.

54

Data updates are currently done using serial debriefing and data propagation

routines. There are important issues yet to be addressed concerning the uncertainty in the

database, i.e., expected versus real data. These issues are discussed below.

Additionally, there are no routines or data structures to support check rides or

variable currency values (30 days assumed for all events) in this demonstration prototype.

The Interface. On the Macintosh, Excel's interface is the standard pull down menus.

The aircrew scheduler prototype retains these menus and adds two additional menus,

Schedule and Pilot_data. All user functions described are available from mousing on the

different menu choices. (See Figure 10 for functions available on menus.)

Using the Excel Scheduler. As stated, the Excel scheduler has been developed to

provide the scheduling officer with real-time data, analysis, and flexible scheduling

support. In practice, the scheduling function and data updates will be used most because

automated scheduling reduces the need for specific data and analysis is needed

irrequently. Data updates include initial development of the schedule, insertion of a

priority list, printing the final schedule, replying to the priority list sender, and posting

updates to the database resulting fiam flying the schedule. For the purposes of discussion,

it is assumed that the Excel prototype and supporting software exists on a local area

network (LAN) of Macintosh lHcx hosts (a LAN of different hosts is possible).

The scheduling officer typically schedules two weeks in advance. For each day,

the scheduling officer must develop a partial schedule manually (as is done currently) and

inser it in the appropriate format in the schedule data file. Schedule development on

Excel's tables is a natural analog to filling out the current schedule template form. The level

of automation support provided for this operation is similar to using a word processor,

55

instead of paper and pencil. The training officer or other supervisor will have free access to

pilot dam and is expected to develop a priority list in an Excel data file to be sent

electronically, over the network, to the scheduling officer's computer. The scheduling

officer pastes the priority list into the appropriate day's schedule data file which is now

ready for scheduling.

Ordinarily, the scheduling officer might choose to let the system generate a straw

man schedule by itself. (See Figure 9.) The straw man schedule may be perfectly

acceptable, or the scheduling officer may choose to rearrange it or try unassigned pilots in

place of the prototype's picks. The prototype's 'remove pilots' and "place pilot' routines

support the scheduling officer by updating data automatically and constraint checking

changes. The scheduling officer may also use the consolidated database to find pilots

meeting certain criteriLa. Why might the scheduling officer want to schedule manually? The

scheduling algorithm used by the prototype is a kind of default which ordinarily works

well. However, the scheduling officer may have additional information which impacts the

schedule or simply know a better way to schedule. The Excel prototype, through

simulation, clearly shows the scheduling office what it is doing and explains its choices.

This visual feedback ma"e the.pmga more undersm"dable; it may help the scheduling

officer discover cases which are not supported and suggest alternative algorithms. Because

the algorithm requires less than 300 lines of code, the scheduling officer may even choose

to implement changes himself.

Once the schedule is complted, it may be printed out directly and posted. The

priority list, having been commented as to who is scheduled, may be sent back to the

training officer or other supervisor. Using the appropriate commercial network software,

sending files across the network equates to dragging an icon into a folder.

56

When pilots return from flying the schedule, it is their responsibility to provide dam

regarding which training events they completed. Normally, completed training events

differ slightly from scheduled ones. The current prototype does not support anything but

sequential updates of the data using the same scheduling data file as the scheduling

algorithm uses. A software upgrade is planned to improve the debriefing process. The

scheduling officer is given the opportunity to review a piloes data before inserting it into

the database (this is done currently in practice). An improvement on this manual check

would be an automatic constraint check using knowledge from the applicable regulations,

but the current prototype does not support such a check.

When analysis is required, the scheduling prototype allows the user to put multiple

graphs on the screen and can calculate average events remaining by a single standard

function. These analysis tools are helpful in determining the type of missions which are

needed in the future and what resources are required to fly those missions. Pilots may be

analyzed in relation to their peers as to their training progress; deviations of data may be

quickly highlighted. Graphs may be printed out or used to generate slides for briefings.

Constraints on OperationL The interface allows direct editing of displayed data, so

any errors may be corrected easily. However, this wide-open, unprotected interface can

lead to data inconsistencies and wild algorithms. Excel supports dynamic protection of

data, but the current prototype uses standard programming techniques, rather than cell

protection to put constraints on operations. For example, the 'place pilot' routine will not

execute unless it is over a slot on the schedule. As another example, unDNIFing a pilot

reports an eiror if the requested time block was not previously allocated.

Uncertainty in Schedule Development. A current development task is the handling

of uncertainty in pilot data during different times of the schedule life cycle. At some point,

57

generally yesterday, the pilot data should be complete, up-to-date, and true. (This is

assuming all pilots debriefed on time.) However, schedules are made for two weeks in

advance. It makes more sense to schedule based on an expectation of what the data will be

for the day the schedule is to be flown. Therefore, future scheduling data files are created

with the database updated for expected events. When actual data are obtained, data

inconsistencies must be resolved. Resolving inconsistencies is not difficult, but has not yet

been implemented. Currently, expected data and its repair is a manual process.

Scalability. The current prototype database has 3 events and 14 pilots. A typical A-10

squadron may have 30 pilots and must tack at least 17 different events. The prototype

generates an eight-slot schedule in just over three minutes using the current database. With

a full complement of pilots and events, the same Excel prototype may require six minutes to

schedule eight pilots. This execution speed is considered acceptable for A- 10 scheduling,

but may be too slow for B-52 aircre scheduling. (B-52 pilots alone must track over 100

events.) The Excel prototype's speed is limited by its interpreted macro language and

display updates. Continuous display is very helpful for determining data structures,

relationships between them, and algorithms which operate on them to produce the desired

effects. Therefoe, an Excel-based visual methodology may be useful for prototyping a

scheduling system even if the'system must ultimately be pored and compiled using a non-

visual language to enhance execution speed.

Expanding the Network. Using a tabular data format is an effective way of

communicating a moderate amount of critical information. A computer network with user

friendly file transfer allows rapid tm on of tabular dama and opens up the possibility

of automating data handling and analysis. For example, a unit-wide LAN might include

maintenance as well as aircrew scheduling and provide for communication between the two

types of schedulers as well. A wider area network would allow for better communications

58

between squadrons and distant support (airfields, air refueling, etc.) Already, some of

these communication links are in place, but automated data analysis has been slow in

coming.

59

CHAPTER 6

OTHER APPLICATIONS AND IMPROVEMENTS TO EXCEL

A visual programming methodology based on Excel's spreadsheet display and

program animation is useful, not only for scheduling applications, but as a general

prgramming methodology. Of course, there are a number of improvements which, if

integrated, would benefit the methodology: formalizing references, adding programming

functionality, and increasing support for abstraction in a number of ways.

Other Applications. Using Excel and the visual programing methodology described in

CHAPTER 3, several other applications were developed and appear in the APPENDIX.

They range from a simple form generator based on functional programming to a long

distance telephone data recorder which is used to record and deposit telephone data over a

network to an analysis center.

A solution to the eight puzzle described by Nilsson was programmed to

demonstrate the utility of visually explicit data smcur The eight puzzle is a matrix with

nine positions, eight of which are occupied by a moveable tile with a unique number. Tiles

are numbered from 1 to 8 and are arranged in what appears to be random order in the initial

state. The objective is to arrange tiles in increasing order around the periphery of the

matrix. Nlsson's first solution uses hill climbing. The hill climbing algorithm has been

implemented in Excel as a short program supported by several abstract procedures The

resulting visual program displays the matrix of the eight puzzle in a concrete representation.

The eight puzzle solution appears as an animated program; the algorithm used is quite easy

to see.

60

Difficulties Associated with Programming in ExceL

Spreadsheets evolved into prOg g languages and databases because of user

demand. The primary users of Excel and other spreadsheets are business analysts, not

progrmers. Therefore, the Excel programming language was developed for ease of use

and power. It is not formally complete in the sense that LISP or Pascal are complete. Yet

its data presentation and representation capabilities are superior. There are two alternatives

to improving Excel programming capability. The first is to patch up the Excel macro

programming language. The second is to replace it with a standard language such as

Pascal.

Data References. In documentation and in operation, Excel often confuses the location

of dam with its value. This is because Excel converts references to values whenever it

deems appropriate. Excel also converts types to other types when it needs to, rather than

giving any error indication. This amiable behavior is nearly always appropriate. However,

Excel m- be inconsistent with both reference and type conversion. 14 For example, cells

may be referenced by absolute address or user-specified name,. However, the standard

command for visiting a cell, SELECT, does not recognize user-specified names. If the

macro programming language is retained, it can be improved by allowing any naming

convention to be used for all instructions.

P ogr"mming Fleibility. Instead of enhancing Excers macro language, it would be

nice to be able to use a standard programming language with Exce's spreadsheet display.

An aleady complete language lk Pascal or Lisp extended to allow access to Excers

141e Excel mcrew scheduler proype wa deloped using NMiooft Excel vesiom 1.5 ratha niut the
new version 2.2 cmenly availabie. Version 2.2 may be more consisent in uating reference and type
conver ol,

61

spreadsheet cells would blend the best of both tools. Program animation could be retained

by having the Excel portion highlight cells as they are accessed or changed, still updating

changes continuously. A less ambitious environment would simply allow Excel code to

call a Pascal routine which accesses spreadsheet data and transfers control back to Excel

after execution. This would allow more sophisticated search algorithms to run on visual

data. Excel has the capability to exchange data with an external file; if it is difficult to call

an external routine from Excel directly, one could be still be run from the operating system.

A third alternative is implementation of a spreadsheet interface to Pascal (not a trivial

undertaking).

A spreadsheet naturally supports data structures such as tables and two dimensional

arrays. Queues and stacks are projections of two-dimensional structures and are, therefore,

supported as well. Excel fails to support other data structures quite so well. It takes a little

creativity to implement a linked list or a tree in ExceL A LISP list would be very difficult to

represent. 15 However, Excel's spreadsheet interface strikes a good balance between the

appropriateness of a representation and the ease with which it can be implemented in a

program. It would be very difficult to program a better way of displaying a tree visually.

Until the job of programming a better visual representation becomes trivial, it is simpler to

use the standard interface provided by a spreadsheet.

Abstraction. When programming, there is a need to travel in both directions along the

spectrum of abstraction. When the program is not operating correctly, it is necessary to

look closely at the details. Excel supports this view very well. However, to address large

programming problems, one has to create abstraction barriers to avoid becoming

15It is interesting to note that visual improvements could be made to LISP as welL Consider how much
easier lists would be to read if different font sie were used for pentheses and elements based on their
relative depth in the list!

62

overwhelmed by the details. Excel, like other programming languages, provides naming as

a procedural and data abstraction tool. However, in Excel, data abstraction is not

supported to the extent needed. Using LISP or even Pascal, it is possible to create very

complex data structures useful for data abstraction. In particular, objects in the object-

onented paradigm are very useful for modeling complex, real world objects. Object-

oriented programming is not supported well in Excel currently, although some abstraction

is possible. For example, a functional result like availability is quite a cognitive leap,

considering the calculation going on in the background. However, it would be nice to

model a pilot as an object which encapsulates everything in a pilot tuple, as well as

procedures for updating data and responding to requests for information. That is not

possible using Excel because there is nothing to prevent access to cells. However, it is

easy to imagine a spreadsheet which can support the encapsulation required by the object-

oriented paradigm. The requirements are that cells must be able to be bound together and

accessible only through a specified interface. Cells may be bound by naming them as an

array. By arranging object-arrays physically like nodes off a bus, a program can be written

to ensure that only a single interface to each object is possible. To do so, the program must

continually check to make sure the active cell is either on the bus or in an object.

Inheritance and dynamic binding are also elements commonly associated with

object-oriented programming. Inheritance is not supported by Excel and would require a

significant effort to implement by programming. Excel currently translates types so well

that dynamic binding is not needed for primitive types. User-specified types (objects)

would require additional programming.

Originally, Excel version 1.5 was used to develop visual programs. Version 1.5

failed to provide enough abstraction support: visual abstraction. Every detail of the

program was animated. It is desirable to hide details, again suppressing them when

63

abstraction is desired, and loodng at them when details become important There are thre

approaches which come to mind. First, a small amount of hidden memory which act as

registers in a microprocessor might be included. These registers would take the form of

additional buffers for copy and paste operations. A second alternative is to use higher -

level procedures which combine visit-copy and visit-paste (get and put, or perhaps,

get&put). The third possibility is to allow the progammer to specify which modules are

animated. The newest Excel (version 2.2) has the capability to turn off screen updates

during macro execution. With this functionality, the programmer now has control over

program animation.

64

CHAPTER 7

SUMMARY

From experience in developing the Excel aircrew scheduler prototype, a number of

conclusions are obvious. Further work is required to complete the prototype, but user

input is required to attain full functionality.

Conclusions

Visual environments are very important to program efficiency and program

development. Being able to see data and data structures makes them explicit and concrete.

Coupled with program animation, a dynamic display of changing data, visual data

structures improve the debugging process and support verification and validation of the

program. Because Excel supports rearrangements of data and code very well,

modifications in the visual environment are relatively painless.

A spreadsheet is a natural interface for tabular data. The two-dimensional army of

the spreadsheet makes maximum use of the surface area of the display and serves as a good

generic interface for any data structure. The array default should be abandoned only when

it becomes trivial to program a better interface for a specific data structure.

A programming language with a spreadsheet interface is very useful for heuristic

scheduling systems but works well for other applications as well. Because spreadsheet

data structures are concrete, a visual programming language based on one is very useful for

prototyping and for teaching people about data structures. For example, an assembly

65

language programming class could benefit from using a spreadsheet to model a

microprocessor in operation.

When programming, there is a need to work near both ends of the abstraction

specmum, either focusing on concrete representations or viewing large parts of the program

abstractly. The visual programming language suggested in CHAPTER 4 supports

examining details, but does not support multi-level flexibility when it comes to program

animation. Improvements made to Excel version 2.2 allow the programmer to switch

animation on and off, improving the visual programming process considerably through

suppression of unwanted detail. Object-oriented progamming might be useful in a visual

programming environment, but is probably too difficult to implement using Excel.

Future Work

The current aircrew scheduling algorithm is relatively complete and flexible.

However, it fails in the cases which the scheduling officer has the most difficulty with:

resource-rich schedules. When there are too few pilots, the current algorithm schedules

NO PROT instead of checking the schedule to see if its greedy choices might be

rearranged to complete the schedule. Work is continuing to fix this problem.'

Another on-going effort addresses the generation of expected future data and

resolution of expected future data with actual data. No research is required to address this

problem; it is an implementation issue only. However, research is required to develop an

expert system for constraint checking pilot debriefing inputs.

The aircrew scheduling prototype is an example of very specific application

software designed to solve a very specific problem. Unfortunately, specific appUcations

66

require knowledge and expertise which is available only from the user. Successful

development of a specific application requires involving the user up front. Therefore, the

next step in improving the current aircrew scheduling prototype is to ask for user support in

testing and evaluation of the software. Without user feedback, it is easy to design software

which does not quite solve the user's problem.

67

BIBLIOGRAPHY

1Abelson, Harold, and Gerald J. Sussman. Structure and nrtationof
Comuter Pro rms. The MIT Press, Cambridge MA, c. 1985.

2 Ambler, Allen L., and Margaret M Burnett. "Influence of Visual Technology on
the Evolution of Language Environments," Computer, October 1989, pp. 9-22.

3 Bic, Lubomir, and Jonathan P. Gilbert "Learning From Al: New Trends in
Database Technology," Computer, March 1986, pp. 44-54.

4 Blaha, Michael R., William J. Premerlani, and James E. Rumbaugh. "Relational
Database Design Using an Object-Oriented Methodology," Communications of the ACM,
April 1988, pp. 414-427.

5 Bourne, David A., and Mark S. Fox. "Autonomous Manufacturing: Automating
the Job-Shop," Computer, September 1984, pp. 76-86.

6 Brown, Gretchen P., Richard T. Carling, Christopher F. Herot, David A.
Kramlich, and Paul Souza. "Program Visualization: Graphical Support for Software
Development," Computer, August 1985, pp. 27-35.

7 Bruno, Giorgio, Antonio Elia, and Pietro Laface. "A Rule-Based System to
Schedule Production," Computer, July 1986, pp. 32-39.

8 Chow, We-Min, Edward A. MacNair, and Charles a. Sauer. "Analysis of
manufacturing systems by the Research Queueing Package," IBM Journal of Research and
Development, July 1985, pp. 330-342.

9 Engelke, IL, J. Grorian, C. Scheuinr., A. Schmackpfeffer, W. Schwarz, B.
Solf, and J. Tomann. "Integrated Manufacturing Modeling System," IBM Journal of
Research and Development, July 1985, pp. 343-355.

10 Fox, Mark S., and Bernard Nadel. Tutorial notes entitled "Constraint Directed
Reasoning," from the Eleventh International Joint Conference on Artificial Intelligence,
given Monday, August 21, 1989.

11 Georgeff, Michael P. "Planning," Annual Review of Computer Science, 1987,
pp. 359-400.

12 Gershwin, Stanley B., Ranakrishna Akella, and Yong F. Choong. "Short-term
production scheduling of an automated manufacturing facility," IBM Journal of Research
and Development, July 1985, pp. 392-400.

68

13 Gries, David. The Science of Proeamming. Springer-Verlag, Inc., New York,
c. 1981.

14 Haines, C. L "An algorithm for carrier muting in a flexible material-handling
system," IBM Journal of Research and Development, July 1985, pp. 356-362.

15 Halbert, Daniel C., and Patrick D. O'Brien. 'Using Types and Inheritance in
Object-Oriented Programming," IEEE Software, September 1987, pp. 71-79.

16 Harel, David. "On Visual Formalisms," Communications of the ACM, May
1988, pp. 514-530.

17 Helman, Paul, and Robert Veroff. Intermediate Problem Solving and Data
Structures: Walls and Mirrors. The Benjamin/Cummings Publishing Company, Inc.,
Menlo Park, CA, c.1986.

18 Hillier, Frederick S., and Gerald J. Lieberman. Introduction to Operations
R Fourth Edition. Holden-Day, Inc., Oakland CA, c. 1986.

19 Jacky, Jonathan P., and Ira J. Kalet. "An Object-Oriented Programming
Discipline for Standard Pascal," Communications of the ACM, September 1987, pp.722-
76.

20 Jacob, Robert J. Y, "A State Transition Diagram Language for Visual
Programming," Computer, August 1985, pp. 51-59.

21 Klein, Gary A. "Recognitional Decision Making in C2 Organizations:. a paper
presented at the 1989 Symposium on Command and Control Research sponsored by the
Basic Research Group, Joint Directors of Laboratories, and National Defense University,
June 27-29, 1989, in Washington D.C.

22 Lakin, Fred. "Visual Grammars for Visual Languages," Robotics, 1987, pp.
683-688.

23 Lassez, Catherine. "Constraint Logic Programming," Byte, August 1987, pp.

171-176.

2 4 Levien, Ralph. "Visual Programming," Byte, February 1986, pp 135-144.

25 Linden, Theodore A., and Same Owre. Verification and Validation of Al
Softwa. Technical Report prepared under US Air Force Contract F30602-88-C-0087 by
Advanced Decisions Systems, available as TR-3209-02.

2 6 Luh, Peter B., Debra J Hoitomt, Eric Max, and Krishna R. Pattipati. "Schedule
Generation and Reconfiguration for Parallel Machines," 1989 IEEE Intemmaional
Conference on Robotics and Automation, May 1989, Scottsdale, AZ, pp. 528-533.

2 7 Madhavji, Nazim H. Visibility Aspects of Prgrammd Dynamic Data
Structures," Communications of the ACM, August 1984, pp. 764-776.

69

28 McDermott, Drew, and Ernest Davis. "Planning Routes through Uncertain
Territory," Artificial Intelligence, Volume 2, 1984, pp. 107-156.

29 Melamed, B., and R. J. T. Morris. "Visual Simulation: The Performance
Analysis Workstation," Computer, August 1985, pp. 87-94.

30 Microsoft Excel Aa s. Funtins. and Macros (for the Apple Macintosh).
Microsoft Corporation, c. 1987.-

31 Microsoft Excel Users Guide (for the Apple Macintosh). Microsoft
Corporation, c. 1986.

32 Nilsson, Nils J. Principles of Arificial Intelligence. Morgan Kaufmann
Publishers, Inc., c. 1980

33 Pascoe, Geoffrey A. "Elements of Object-Oriented Programming," Byte,
August 1986, pp. 139-44.

34 Raeder, Georg. "A Survey of Current Graphical Programming Techniques,"
Computer, August 1985, pp. 11-25.

35 Ronen, Boaz, Michael A. Palley, and Henry C. Lucas, Jr. "Spreadsheet
Analysis and Design," Communications of the ACM, January 1989, pp. 84-93.

36 Rushby, John. Oualily Measures and Assurance for Al Software. Technical
Report prepared under NASA Contract NAS 1-17067 by SRI International.

37 Shu, Nan C. "FORMAL: A Forms-Oriented, Visual-Directed Application
Development System," Computer, August 1985, pp. 38-49.

38 Stark, Walter A., Jr., and Richard A. Reid. "An Operations Research
Scheduling Program," BYTE, September 1983, pp. 549-579.

39 Stonebraker, Michael, Jeff Anton, and Eric Hanson. "Extending a Database
System with Procedurs" ACM Transactions on Database Systems, September 1987, pp.
350-376.

40 Wilson, Ron. "Object-oriented languages reorient programming techniques,"
Computer Design, Vol. 47, November 1 1987, pp. 52-62.

4 1 Witrck, Robert J. "Scheduling algorithms for flexible flow lines," IBM
Journal of Research and Development, July 1985, pp. 401-412.

42 Zhao, Liping, and S. A. Roberts. "An Object-Oriented Data Model for Database
Modelling, Implementation, and Access," The Computer Journal, February 1988, pp.116-
124.

70

APPENDIX A

The following paper provides a system description of the 1987 LISP inachine/KEE
version of RADCs anrerw scheduler. It is useful as background, but doesn't indicate the
complexity of the KEE software.

71

sorties in order to meet semi-annual training
requirements. The purpose of this paper is

Aircrew Scheduling: An to describe the aircrew scheduling problem
and RADC's knowledge-based software forApplication of Expert System solving it.

Technology

Capt Doug Dyer and Ms. Sharon The A-10 Squadron Aircrew Scheduling
Walter Proble

Globally, flying of the A-10 and other Air
Rome Air Development Center Force aircraft is determined by the resources

Griffiss Air Force Base, New York available and the training requirements of
the pilots. Higher headquarters dictates the.
total number of flying hours for a given

Ayear, based on funding allocations. Each
unit, or wing, tries to maximize training

This paper describes an expert system within the flying hours constraint. Aircraft.
developed by the RADC for scheduling maintenance limits the number of aircraft
pilots of single seat aircraft in training available and specifies turn-around times.
sorties. The aircrew scheduling problem Munition ranges and runway times
and technologies for solving it are constrain sortie profiles.
discussed.
A full system description of the RADC A wing scheduling officer negotiates with
aircrew scheduler is presented, along with and resolves conflicts between squadron
the algorithms that it uses. Present and scheduling officers and is responsible for
planned developments are listed. setting the type and mix of sorties for each

day. As an example, for a given day a
squadron may be allotted 30 total sorties

JItroductionI consisting of 18 weapons delivery, 4 air-to-
air, and 8 instrument sorties. Each sortie

The Rome Air Development Cent" (RADC) type can only fill certain training
is a large Air Force laboratory responsible requirements.
for research and development of command,
control, communications and intelligence The squadron scheduling officer is
(C31) systems. Artificial intelligence responsible for assigning pilots to complete
research is pervasive across the Center a daily schedule, like the one shown in
because of its importance to command and Figure 1. The scheduler may not place
control (C2) systems. In 1986, RADC pilots in sorties arbitrarily; pilot
initiated the Air Force Innovative Appli- qualification, currencies, flight training
cations program, an in-house effort requirements,. ground training requirements,
designed to capture the expertise of Air and availability constrain aircrew
Force officers in deliverable, "bite-sized" scheduling. Qualification is based on
expert systems. Maj Don Henager had training and reflects overall experience.
served as a squadron airrew scheduler and, Qualification levels include mission
under the program, developed software to qualification training, mission ready, two-
automate aircrew scheduling for A-10 ship flight leader, four-ship flight leader,
aircraft RADCs current aircrew scheduler and instructor pilot. Currency is the last
is an expert system designed to assist the date of completion of a particular training
squadron scheduling officer of a single seat event and reflects frequency of training
fighter squadron in his daily task of For example, a pilot who hasn't landed in
assigning pilots to a limited number of 30 days is not current for landing and must

72

land with an instrucw pilot. Flight training needed when the scheduling situation
requirements are specified by regulation and changes. The scheduler often receives a
include many separate events designed to priority fist from the a squadron supervisor
train pilots in all aspects of flying the A-10. (the supervisor may be privy to special
Ground training events must be information, such as leave or TDY plans,
accomplished before flight training. Pilot for example). If possible, the scheduler
availability is subject to duties not including will place pilots from the priority list on the
flying (DNIF) and leave. Pilots may be schedule or may negotiate with the
placed on DNIF status for many reasons supervisor to remove pilots from the
including crew rest, illness or medical priority list. The scheduler then completes
appointment, TDY, staff responsibilities, or the schedule by essentially adding pilots to
ground training. Under the crew rest the priority list and placing them on the
concept, schedule. The scheduler makes every at-

tempt to maintain currencies and provide
214 35 -r V= opportunities for pilots to achieve training

events. Currency and training event data
are provided to the scheduler in the form of

LINK TOT LAND U, PI~T COW, z hard copy reports from a centralized
database called AFORMS. Using the

601 0800 10oo WD L6. reports, the scheduler selects pilots who
602 0800 1000 WD B61 will go out of currency soon or pilots who
603 -30 15 - are getting behind in training. The
603 0830 1015 w- BEIM scheduler also tries to fly those pilots who
604 0030 LUA_ J_ B6IMP are attempting to upgrade their qualification

level. An upgrade to instructor pilot is
605 0830 o15 No - 6 imp particularly appealing as instructor pilots are6 00 15 -D Ba valuable resource to the scheduler.
606 0830 1015 MD DnlHI

607 1200 _30 Most operations done manually by the
squadron scheduling officer are analogous

608 1200 1330 ACBT J to the relational database operations of join,
I - selection, and projection. Selection of

Figure 1. A Daily Schedule pilots based on currency data, training event
data and appearance on a priority ist could
be done automatically by a relational

pilots cannot fly for longer than 12 hours database management system. However,
and must have 12 hours of crew rest after additional inference is required to take into
flying. Training often requires more account the constraint informaion contained
qualified pilots to fly with less qualified in applicable regulations and knowledge of
ones. Two- and four-ship flight leaders are pilot availability.
always required for A-10s, depending on The training and currency information from
the sortie. Instructor pilots are required for the AFORMS database is neither updated
qualification upgrade and to bring pilots nor avalal iatie therfodte
back into currency. Therefore, scheduling nor available in real-time. Therefore, the
a less-qualified pilot to fly generally implies scheduler must remember recent
a constraint that a more-qualified pilot must information to work effectively. AFORMS
also be available to fly. stores only training progress and currency

data. The scheduler must keep track of all
The current manual method of daily aircrew other constraints which affect the
scheduling is tedious, time consuming and scheduling process. In addition, for pilots
error-prone. The squadron scheduling attempting to upgrade or return to flying
officer typically builds daily schedules two status from a staff position, AFORMS fails
weeks into the future and revises them as to record training events accomplished prior

to attaining upgrade status.

73

The AFORMS data are used by the Training Scheduling Technolog
Officer, Squadron Commanders, and others
in addition to the scheduler. To insure Operations research techniques have been
training opportunities, these supervisory developed to solve optimization problems.
officers order corrective actions based on Particularly, linear programming algorithms
the AFORMS data which can be incomplete such as the simplex method result in an
and slow in coming. AFORMS is managed optimal value of some objective function on
by a centralized base data processing center solution. A scheduling problem may be
and is not amenable to local manipulation. cast as an optimization problem; the simplex
Typically, the AFORMS data consists of method has been successfully applied to
less than one megabyte of information; scheduling problems. Although aircrew
neither storage nor processing requirements scheduling constraints are not all linear, the
lie outside the capability of a standard Air problem may be modelled as a linear
Force microcomputer. Updates to the combination and linear programming may
database are accomplished using hard copy be applied to solve it. However, there are at
optical scanner sheets filled out by pilots on least three reasons why a linear
sortie completion. Pilot claims are checked programming approach is not the best one
for feasibility and consistency by a review to take for aircrew scheduling.
board prior to updating the AFORMS
database. In practice, aircrew schedules change many

times between the initial draft and flight
Although the scheduler and others in the date. Changes are required because pilots
flying unit benefit from the data provided by become ill, fail to maintain currency, go on
the AFORMS database, there is a need for TDY, or are required for a staff duty. Often
additional data tracking and faster response. the scheduler arrives at a draft using
In addition, data reports must be generated incomplete data and must revise the
in a more flexible manner, allowing schedule once the actual situation becomes
different users to obtain specialized reports known. When a scheduled pilot becomes
in a timely fashion. There is no reason, for unavailable to fly, another pilot must fill the
example, that briefing charts cannot be void in the schedule. The substitute pilot
generated automatically from existing data. usually must be as qualified as the original
Finally, using database operations and one. Occasionally, large portions of the
knowledge-based heuristics, the aircrew schedule must be rearranged to fill the void;
scheduling process may be completely however, it's best to keep changes to a
automated, thus relieving the squadron minimum, as the pilots must be aware of
scheduling officer from about 80 percent of and plan for the mission they are flying.
the scheduling effort. The scheduling changes that become

necessary in the aircrew scheduling domain
Scheduling is frequently assigned as an are the primary reason that linear
additional duty in conjunction with flying programming techniques are not suitable.
and requires 50-60 hours per week, Because a linear programming solution is
typically. Squadron aircrew schedulers, always optimal, a void in the aircrew
after weeks of training, serve only 12 to 18 schedule can cause the entire solution to
months in the job before "burnout" occurs. change. In contrast, when done manually,
The rapid turnover of pilots in a fighter the schedule can stay relatively stable.
squadron, the task complexity, and the
frequent turnover in squadron scheduling Computational efficiency is a secondary
officers in the Air Force makes aircrew reason that operations research methods are
scheduling an excellent domain in which to less useful for aircrew scheduling. Casting
provide computer assistance. the aircrew scheduling problem as a linear

problem results in combinatorial explosion.
For example, given 30 pilots to fill 8 slots
on a schedule, there are nearly 236 billion

74

different solutions, neglecting any search to a nearly optimal solution in just a
constraints. Linear programming tech- few seconds. Another advantage of a
niques must be tempered with heuristics to knowledge-based approach is in the
limit the search space before being applied. presentation and explanation of information.

Expert systems are a spin off from artificial
Finally, a squadron scheduling officer is intelligence research; they are typically rich
generally an operational pilot with little in friendly man-machine interface features
training in computer science. The officer including windows, mouse input, and
does not appreciate software which returns inference chain dumps. With a little extra
recommendations without explanation, as programming, the inference chain may be
linearl gramming algorithms do. Instead, used as the basis of a good explanation
the software should be able to describe why capability, as it has been in the RADC
a particular pilot was chosen or why some aircrew scheduling software. The level of
other pilot wasn't. The scheduling officer human expertise involved, the size of the
wants to retain control and understanding of knowledge base, the need for an intelligent
the scheduling process. search mechanism, and the large number of

disjoint and interrelated constraints posed
Aircrew scheduling does not require an by the domain makes it appropriate for
optimal solution, only a good one. The expert system application.
algorithm used for manual scheduling is
adequate to provide training opportunities Object-oriented programming is a
for all pilots. These two facts suggest that pogramming methodology for modelling
a knowledge-based approach is more real world objects. The objects are
suitable for aircrew scheduling than linear represented as active data modules which
programming. A knowledg --based communicate by message passing. Classes
approach attempts to model the algorithm of objects may be defined and objects may
and other knowledge used by the human be defined to be instances of a class;
scheduler and to build an scheduling expert instances of a class take on all procedures
system from that model. The resulting and default data values of the class. Hierar-
expert system should solve problems in the chially organized classes may inherit both
same way as the human expert does. data and procedures from classes above.

RADC used object-oriented programming in
Development of a successful expert system the development of i's aircrew scheduling
frequently depends on the availability of a prototype because the methodology allows
human expert and iterative knowledge abstraction of data, rather than procedures,
engineering to mine and refine the human's strictly enforces modularity, and saves
expertise. In the tactical aircrw scheduling coding through inheritance.
domain, the constraints governing the
scheduling process are well-known and A Descrimdon of the RADC AireW
published in regulations. Therefore,
although RADC's aircrew scheduling soft-
ware was developed by a human domain The aircrew scheduling expert system was
expert, it could have been developed using developed in-house at RADC by Major Don
docmntation alone. Henager. The software was written in KEE

(Knowledge Engineering Environment) on
Unlike linear programming, a knowledge- a Symbolics 3670 Lisp Machine. The KEE
based method generates a robust solution, development environment is an expert
just as a human scheduler does. For system shell which supports object-oriented
example, small changes in pilot availability programming and a transparent interface to
will normally result in small changes to the the Lisp environment of the Symbolics.
schedule. In addition, the expert system The combination of KEE and the Symbolics
developed from the manual scheduling Lisp Machine provide a powerful envi-
model avoids searching the large solution ronment for the development of artificial
space. Instead, a few heuristics guide the intelligence applications. For portability

75

reasons, Common Lisp and Common system has been built for easy interfacing,
Windows were used; extensions to should the data become available on-line.
Common Lisp (other than Common As the current aircrew scheduling software
Windows) and Zetalisp were avoided, is written in Lisp, the data structures used to

store the data are lists. Most data is stored
The interface to the aircrew scheduling in a single large database and is associated
software is through a series of windows, with the appropriate pilot. This does not
Pop-up windows are used to display menus present a problem because of the relatively
of available operations. Items on the menus small amount of information required.
and on other selected objects have been
programmed as mouse "hot-spots" and Pilot qualification level, events remaining,
cause the software to react appropriately on and currencies can be displayed in a tabular
mouse input. A mouse documentation line format, just as they are in the current
indicates what operations will occur when AFORMS reports. However, because
one of the three mouse buttons are pressed currencies often drive the scheduling
when the mouse cursor is resting on a hot- process, currency information can also be
spot. These features make the interface displayed graphically to allow the
very much a "point-and-click" affair. scheduling officer to easily see who should
Keyboard input is required only for be flown rather immediately. The graphical
inputting items such as a pilot's name or a display is currently discreet, rather than
new date. Mouse input is even used to edit analog; only two types of pilots are
some items, as in the case of pilot displayed: those who will go out of
availability, currency within a week and those who have

already gone out of currency. Pilot
There are three classes of scheduling availability is also displayed graphically and
operations: system administration, database, can be edited graphically using the mouse.
and scheduling. System administration Flight L-formation, the priority list, and the
operations allow the human scheduler to daily sclipdule are all displayed in a tabular
alter characteristics of the system display form to retain consistency with the hard
and to make changes to some of the copy analogs currently being used by op-
scheduling criteria without modifying the erational squadrons.
software code. Those operations will not
be described in this paper. The procedures used to update the database

are tailored for the particular user (most
Database operations are used to store, often the squadron scheduling officer). On
display, and edit all information pertinent to sortie completion, pilots can update event
the scheduling process. The scheduling and currency data using a debriefing rou-
algorithm has access to all data and tine. The debriefing routine is displayed as
propagates changes to the database as a window similar to the optical scanning
needed. Like the AFORMS database, the sheets used currently and can be filled out
aircrew scheduling software stores an using the mouse. There are also routines
identifying key (a name, in this case), built for the training officer to edit training
qualification level, and flying hours for each or currency data. For the scheduler,
pilot, as well as events remaining and ordinary editing .of pilot data may be
currency for each training event applicable accomplished on the display screens as all
to the pilot. In addition, the system stores data items comprise mouse hot-spots.
pilot availability, flight information, the Clicking on an item allows it to be edited.
current daily schedule (minus the pilots), The flight data, priority list, and schedule
and the priority list for scheduling pilots. may also be edited in this fashion. In ad-
These four data items are required inputs to dition, there are a several routines for
the scheduling system; their determination handling abnormal conditions. For
lies outside the realm of aircrew scheduling, example, there are routine- for altering the
At this time, they must be manually entered data items tracked; training regulations gov-
by the squadron scheduling officer, but the erning flight training change relatively

76

frequently. When pilots enter or leave the scheduling priorities. If any individual pilot
flying squadron, there are special routines or the squadron average falls behind in an
to allocate database records for them, enter event, that event becomes a high priority for
them into training, and prorate their training the pilot or the squadron, respectively. For
requirements. Prorating a pilot reduces the example, if a pilot has 50 percent of his
number of training events required to match weapons delivery events remaining and
the time remaining in the training term. only 16 percent of the training time remains,
Routines exist for beginning a new training weapons delivery becomes a high priority
term (six months in duration) or zeroing out event for that pilot. Alternatively, if the
requirements for a particular pilot. Zeroing squadron has 20 percent of its weapons
a pilot out is necessary for pilots who leave delivery requirements remaining with 16
flying status but remain in the squadron. percent of the training time remaining,

weapons delivery events would become a
Some updating procedures are used to priority for all pilots. The more complex
automatically propagate changes caused by scheduling algorithm ranks sorties ac-
the scheduling procedure. For example, cording to their relative ability to fill the
once a pilot has been scheduled, the priority training requirements, rather than
availability display shows the pilot in on the relative number of slots available."unavailable" status. Those sorites that can fill the highe t

number of priority requirements will be
The third type of operation available on the filled first. Using this ranking, slots are
system is associated with the scheduling filled as with the simpler scheduling
process itself, rather than data. Automatic algorithm, using pilots who require the
scheduling consists of matching different training the most.
types of sorties with pilots of varying
qualifications and training needs. Thc.e are If the distribution of future sorties were
two different algorithms used based on the known, the scheduling process would be
nature of the training cycle. During the first much simpler. However, the distribution of
three months of the training term, the future sorties is not known. Indeed, if the
training requirements of the pilots have no squadron requires additional sorties of one
noticeable trouble areas so the scheduling type, the distribution may shift to
algorithm can be simpler. The simple accommodate -the need. However, the
algorithm ranks sorties in increasing order distribution is also influenced and
of slots available and fills them with the constrained by other factors; therefore, the
pilots who most need the training, taking flexible algorithms above are needed. The
into account any requirements for instructor algorithms described are based on the
pilots or flight leaders. For example, given experience and knowledge of an expert
8 weapons delivery, 2 air-to-air, and 4 human aircrew scheduler and have proven
instrument sorties, the air-to-air sorties to give robust, acceptable solutions in near
would be filled first, followed by the real time.
instrument sorties, and, finally, pilots
would be assigned to weapons delivery After ranking the sorties, the aircrew
sorties. The idea behind this simple scheduling system assigns pilots to slots. If
algorithm is that air-to-air sorties are most possible, all pilots on the priority list are
precious, as there are least of them. This is scheduled. The rationale for doing this is
very simplistic reasoning, as the next day that the squadron supervisor should have
may include 12 air-trivair sorties. However, the same level of control over the software
during the first three months, the algorithm scheduling system as he does over the
works well. human scheduler. Currencies are the next

criteria, and training needs are considered
During the second three months of the last. The criteria order may be altered
training term, the scheduling algorithm without programming to match the
evaluates the current status of pilots and of scheduling philosophy of the particular
the squadron as a whole to determine squadron.

77

two pilots appear on the schedule, the
The actual scheduling procedure is scheduling officer can cause them to swap
accomplished using rules as a means of positions. In addition, there are special
disqualifying pilots from sorties. The database operations available on the
sample rule shown below would disqualify scheduling window. With these operations,
a pilot from a sortie for which he is not the system can find all pilots who satisfy a
available: given criterion. For example, all two-ship

flight leaders who are current in weapons
(IF delivery may be displayed. Also, the

(AND priority list may be displayed and edited.
(THE TOT OF ?SORTIE IS ?START)
(THE LT OF ?SORTIE IS ?END) Future D03_n
(NOT (AVAILABLE-PILOT?

PILOT ?START ?END) The RADC aircrew scheduler prototype has
(INVALID-SOLUTION ?PJLOT been demonstrated to many high-level DOD

?SORTIE) members and has been enthusiastically
reviewed. However, its current hardware

A pilot must pass through the entire gauntlet and software requirements are too great for
of disqualification rules before being an operational unit to afford. Parallel
assigned to the sortie. As the system efforts are ongoing at RADC to transport
progresses through the daily schedule, it the functionality of the system to an Intel
builds a list of unused partial solutions. In 80386-based personal computer and an Air
the course of assigning pilots to sorties, the Force-standard Zenith Z-248. Those
system may arrive at a point where the developments are expected to be complete
remaining sorties cannot be assigned. by 1990. The software will be modified to
Instead of backtracking to the starting point, include reasons for non-availability, such as
the algorithm will look for alternative leave and TDY.
solutions on the unused partial solution list. The artificial intelligence technology
Once an aircrew schedule has been required for well-defined scheduling is
generated, the scheduling officer can click generic enough to be applied to many other
on any pilot and receive an explanation as to types of scheduling problems that exits in
why the pilot was selected (pilot names are the Air Force and other DOD services. For
also mouse hot-spots). This feature is ex- example, aircraft maintenance and air
tremely important because scheduling refueling schedules can be automated using
officer often need to be able to explain their knowledge-based techniques. These types
choices to scheduled pilots and supervisor. of scheduling problems are also being
Moreover, schedule lines may be added or considered by the Air Force Innovative
deleted on the display screen to reflect, for Applications program. It is hoped that the
example, when an scheduled aircraft must expertise gained from treating these
undergo maintenance instead of flying. problems may be formalized into a generic

"language" for scheduling.
The squadron scheduling officer may use
the aircrew scheduling system in a semi- The data which serve as inputs to the
automated mode as well. For example, the aircrew scheduling problem seem to be
officer may change a particular pilot on a supplied and used in a distributed fashion.
generated schedule. The system will au- Neither processing nor storage of the data
tomatically check the candidate pilot and the requires anything more powerful than an
entire schedule for constraint violation. If 80286-based personal computer. Local
the new pilot violates constraints, the storage of data would enable less
system will report the violations, but it will constricted data flow and greater flexibility
not rudely remove the pilot. The scheduling in the use of the data. Moreover, different
officer can use the system in this way to automated tools for scheduling and database
manually generate a schedule, if desired. If operations are anticipated. For example,

78

pilot claims could be screened automatically
for feasibility and consistency before being
reviewed manually and inserted into the
database. Therefore, the ideal architecture
for scheduling in an operational squadron is
probably a local-area network (LAN) of
personal computers. RADC is currently
developing a LAN test bed for different
schedulers to operate in a cooperating
fashion.

Rteferences

Henager, Donald E. Unpublished notes.
1986-88.

Hillier, Frederick, and Gerald Lieberman.
Intrductions to Operations Research.
Holden-Day, Inc., Oakland California, 4th
ed., c. 1986.

79

APPENDIX B

The folowing paper discusses initial ideas related to a visual programming
methodology using Microsoft Excel and describes a currency-driven aircrew scheduler
developed in the summer of 1989 at RADC. The current Excel prototype uses two
additional scheduling drivers to arrive at better schedules that expand solutions to more of
the feasible space, in addition to providing many more user functions. However, the
currency-driven scheduler demonstrates how quickly a simple scheduler may be built using
the visual prgramming methodology based on Microsoft Excel. The currency-driven
scheduler required only 120 lines of code

80

AIRCREW TRAINING SCHEDULER:
AN EXPERT SYSTEM APPLICATION USING

VISUAL PROGRAMMING LANGUAGE

Capt Doug Dyer
Lt Jennifer Skidmore

Stephen Platis

Rome Air Development Center
Griffiss AFB, New York

The difficulty with most expert system progamming problems is that not only is building
an application conplicated in itself, but also the complexity of the computer system
discourages the operational user, who is usually a novice programmer. What is needed is a
simple programming system so the domain expert doesn't have to be a computer expert.
Although high-performance architectures allow for greater flexibility and speed, their

-complexity adds undesirable overhead to the development effort.

Some of the recent attempts to simplify software development have been expert system
shells, object-oriented programming, graphical interfaces, and fourth-generation
programmi~g languages. Simple expert system shells do little more than formalize rule
representation and restrict ordinary pogrammig languages to sequential if-then-else
smxcurs More powerful shells provide additional knowledge representation and
inference alternatives at the expense of increased complexity. The object-oriented
programming approach promotes the useful attributes of abstraction on data objects and
modularity between objects, but this aradigm is accompanied by new languages
(Smailtalk) or language extensions (++)that are non-trivial and somewhat counter-
intuitive to programmers traditionally trained on procedural languages.

Graphical interfaces are more successful at conveying information than txt, and they treat
the computer's output limitation very well from a user's standpoint. Unfortunately, getting
graphical ouptut requires complex programming. Fourth-generation programming
languag treat powerful procedures on complicated data structures as language primitives,
reducing complexity by abstraction. A fourth-generation language endowed with graphics
capability allows the programmer to utilize the tools provided by the higher-level language
to get output in the desired form, without the need for explic prgramming. One example
of this kind of tool is a debugger, which displays variable values while the programmer
executes a program. This type of continuous visual display has a logical limit that has been
known to business users for years as a spreadsheet. A spreadsheet consists of a large, two-
dimensional array of cells which may contain constants or variables (i.e., the results of a
formila). These cells are continuously calculated and displayed, an effective way of

, treating the computer's shyness about output and avoiding complex graphics programming.
Although speadshee began life as "what-if" tools for business users, they quickly
expanded into database management system and added the flexibility of programming
through ncros. Current spreadsheets, like Mkrosoft Excel feawre powerful functions
and utilities, placing them in the category of fourth-generation languages.

Although spreadsheets are not often thought of as prgmmig languages, spreadsheets
are appropriate for solving some of the problems of interest to the Rome Air Development
Center (RADC). In particular, well-defined, constraint-based scheduling problems (among
others) are easy to solve using a spreadsheet. As part of an aircrew scheduler
development RADC has developed an innovative programming methodology based on the

81

use of a spreadsheet as a visual programming language. Not all of the desirable properties
of the visual programming language we envision are embodied in current spreadsheets.
However, for many problems, the advantages of using a visual programming language far
outweigh the shortcomings of current spreadsheets. We consider visual programming
methodologies to be important in reducing programming complexity, especially for novice
programmers.

We devote the first portion of this paper to the advantages of visual programming
languages over conventional higher-ordered languages such as Pascal, C, or Ada, and then
admit some disadvantages. The second portion of the paper is a system description of the
particular application of interest, a daily aircrew scheduler which assigns pilo to training
missions. The scheduler is a prototype expert system which was ported from a LISP
machine in the KEE 3.1 environment. The new prototype currently does not support the
entire fiuctionality of the KEE version, but has been implemented by novice programmers
in only three weeks and a few hundred lines of code. This represents a code reduction of
at least one order of magnitude for a complete port.

Advantagcs of a Visual Progrmming Language Over Conventional Lan~tge=

We have found this portion difficult to write, as many of the advantages are subtle and they
range from matters of convenience to cognition. In the discussion that folows, we do not
differentiate much between what we call a visual programming language and our current
spreadsheet, Microsoft Excel, except for Excel attributes which are clearly not associated
with the visual nature of the tool.

When developing a program using Pascal or C, the programmer must iteratively determine
the need for a variable in the program and allocate it in a type declaration. This is because
these languages efficiently guard memoy resources. Each variable type is allocated the
least amount of memory that it needs, so the particular type is important and must be
declared by the programmer. Swapping from the program to the declarations block is
distracting to programmers, but useful forruntime efficiency. Languages like LISP relax
the need for strong typing and dynamically allocate memory. Spreadsheets go even
further, by pre-allocating memory into a two-dimensional array (most convenient for visual
display on a two-dirut sional screen). Visual progaming languages also allow any data
type or even a formnuia (functional procedure) to occupy a data cell. Furthermor cells
already have their own names, i.e., Al, J45, etc. Moreover, assigning values to data
locations is at least as simple as for conventional languages

Also when using Pascal or C, if output is desired, output must be programmed. A
program that provides no output has no value, yet the programmer must go to special
lengths to obtain output. Visual programming languages supply continuous output in a
two-dimensional window stream without programming, which is clearly a more sensible
approach for data-centered problems. When executing a conventional program, special
display code (or a debugger) is required to discover values of pertinent variables or
program verification or debugging. The continuous Wculdon and display of a visual
programmng language makes this extra code unnecessary.

From a cognitive standpoint, visual pormmng languages are superior. The continuous
display of darn relieves r from having to remember variable names and
meanings and also provides additional (human) memory association oppotuities. By
default, pre-defined names for data cells are displayed and can be mentally derived by
projection (e.g., AI is the cell in column A and row 1). If the meaning of the data cell
needs commenting, the comment may occupy an adjacent cell. Furthermore, the cel can be
referred to with a user-defined name, just as variables in a conventional programming

82

language are. User-defined names act as aliases for absolute addresses (e.g., Al). The
two-dimensional display also has a more subtle advantage: data exists in planar space.
That is, each cell is in a definite location relative to other cells. A programmer knows a cell
both from its name and from its location on the display. Finally, data structures in
conventional programming languages are invisible, abstract, and seemingly unrelated to
one another in space; programmers- often draw individual data structures to conceptualize
them (for example, linked lists). Both of these issues are addressed by visual
programming languages. Although limited by current spreadsheets to rectangular arrays,
the data structures of a visual programming language are displayed by the language. They
are quite concrete. Furthermore, because of the two-dimensional space, data structures are
physically related as well. Conceptually related data may be placed physically close
together, if desired. The physical display of data also works for the display of the program
source code. Typical conventional languages are edited essentially as linear strings.
Despite strucu ed programming, one procedure follows another. This is not at all true for
the two-dimensional display area of a visual programming language. Although each
procedure (macro) occupies a linear column of cells, a second procedure can be placed
north, east, south, or west of the first By using a two-dimensional programming area, a
higher degree of structure is added, and the advantages of structured programming are
amplified as a result.

Visual programming languages support data abstraction. A cell may be data or a functional
procedure, in which case the result is continuously calculated and displayed as data. Each
cell is similar to an object in the object-oriented paradigm, although the interface is rather
open and only one "method" may be stored inside. This is a limitation of the currently
available spreadsheets; new "three-dimensional" spreadsheets might be better as visual
implementations of object-oriented languages.

As a general rule, languages should be extensible. Current spreadsheets support
extensibility of their fourth-generation capabilities by supporting user-defined functions. In
Excel, these are called "functional macros" and differ conceptually from the "command
macros" which are executable programs. Functional macros are applicative, rather than
procedural

In terms of artificial intelligence programming (and many others domains as well), it is
often difficult for the knowledge engineer to know what data is relevant and what
relationships exist between different data sets. Using a visual programming language
encomages the programmer to p~lge data in displayed data structures before writing
procedures The visual display of data structures seems to help in defining what
procedures are possible and determining the relationships between data. The idea of
throwing lots of data onto the computer screen without much regard for its relevancy is
similar to the approach chosen by many neural net pror ja . It is not costly to either
type of programmer to use this approach, and the data that turns out to be unimportant can
be thrown away later.

Because data suures in spreadsheem are two dimensional arrays, relative addressing is
used much more frequently to access data than for other languages. For example, it's
common to go "one column over and two rows down." This characteristic is more useful
than abo'M!ute "by name" addressing when the data structure must be modified, because not
every cell has a user-defimd alias. All current spreadsheets recognize the need for data
array changes; relative addressing is the default operating mode. Data structures may be cut
and pasted, and the system updates references to them automatically.

Command macros, the programs of spreadsheets, typically access data on a spreadsheet by
"visiting" the cell where the data is l The macro language can use the data to make

83

calculations and copy the results into another visited cell. This is exactly what happens in
any programming language, but with a spreadsheet, the process is displayed visually,
rather than being kept invisible. For example, Excel's active cell is displayed as a colored
outline. As a macro executes, the active cell indicator moves around on the screen.
Debugging is much simpler when every step of a program's process is displayed. With a
visual proprming language, there is never any need to write test procedures. In the
particular case of Excel, macros may be single-stepped which is a good debugging feature.

Command macros can be executed by other macros. This feature encourages procedural
abstraction and code modularity. Although programs like C and Pascal also have this
feature, the two-dimensional placement opportunities and loose data typing of a spreadsheet
encourage programmers to break up the program properly.

Spreadsheets have many primitive functions which are really sophisticated procedures,
qualifying them as fourth-generation tools. Among these primitives are mathematical,
statistical, database and date functions. In addition, advanced graphing utilities are
included. Excel features custom menus and dialog boxes, making user-interfaces easy to
construct. These features are not unique to visual programming languages, but they are a
useful aspect of all spreadsheet systems.

A Few Disadvantages of Visual Programming Languages

Visual programming languages have an inherent processing overhead associated with
display and continuous calculation of formulas in cells. However, it is reasonable to trade
runtime execution speed for programming benefits in an era of faster hardware. Also, in
our experience, a visual progranmming language is useful as a prototyping aid, even if the
eventual product will be coded in an efficient - iguage such as C. We initially tried to port
the KEE aircrew scheduler directly into C codc, but development was slow because
relationships between data were unclear. Now that a spreadsheet prototype exists, we feel
confident that a C version of the prototype could be quickly coded.

For many problems, a two-dimensional array is not the best data structure to use. The idea
of a visual programming language doesn't preclude other data stuctures, but current
spreadsheets tend to discourage them. For example, current spreadsheets at single cells
(variables) or arrays as default data structures. A linked list is not terribly difficult to
implement, but a re structure might be. New three-dimensional spreadsheets certainly
offer other possibilities.

Designed as business tools, current spreadsheets are not as rigorous as a visual
programming languages should be. For example, there should be a clear distinction
between data meaning, value, and address. Our current Excel version frequently uses
"reference" to mean either address or value. In addition, control and branching constructs
require more attention. Spreadsheet developers seem to be cleaning up thier products;
newer versions are teport to formalize macro languages and fix irregularities.

Finally, the database utility of spreadsheets could be enhanced by adding a join operation.
Selection and pojection operations are currently supported. The addition of join would
make spreadsheets adequate as relational database management systems.

84

A Description of the Daily Aircrew Scheduling Problem and the Scheduler Protoype

Single-seat aircraft aircrew scheduling is typical of well-defined, constraint-based
scheduling problems. Briefly, an aircrew scheduling officer in an operational squadron
must complete a schedule like the one shown in Figure 1 by filling in appropiate pilots.
Constraints include pilot qualification, pilot availability, training event requirements, and
event currencies. Pilot qualification ranges from Mission Qualification Training through
Mission Ready, 2-Ship Flight Leader, 4-Ship Flight Leader, and finally, Instructor Pilot.
These values ae mapped into the numbers 1-5 in the database for convenience in
manipulation (See Figure 2). Pilot availability is subject to having been previously
scheduled to fly or a number of Duties Not Including Flying (DNIF). Typical DNIF are
things like medical reasons, leave, TDY, ground training, or staff duties. Each training
term, pilots must complete a certain number of training requirements for each mission or
event type (See Figure 3). Weapons delivery (WD), air combat training (ACBT), and other
types of training sorties give pilots training opportunities for different events. For most
events, pilots are required to maintain a currency; for example, a weapons delivery mission
must be flown every 30 days to maintain currency (See Figure 4). Pilots who go out of
currency in an event must have an instructor pilot fly the same mission along with them the
next time they fly that event. Instructor pilots are required for any pilot in Mission
Qualification Training and for any qualification upgrade, as well.

Training event requirements and currencies act as drivers in the scheduling process, while
currencies, qualifications, and availability constrain scheduling. Currencies are partcularly
important because instructor pilots are a valuable resource to the scheduler. Therefore, it is
imprtant to schedule pilots who will soon go out of currency before an instructor pilot will
have to be scheduled to fly with them. It is not immediately necessary to schedule non-
current pilots since they will have to fly with an insmtctor pilot anyway, but they have to be
scheduled sometime or they will be unable to complete training _nts. All other
things being equal, pilots requiring the most training events should be scheduled first.

Before scheduling pilots, it is necessary to decide which the mission type should be
scheduled first, as filling these slots will impact pilot availability. Our current prototype
doesn't consider future availability of training missions. Instead, it schedules the scarcestmission type firt. Algorithmically, it fills the schedule from the bottom up, the idea being
that the scheduling office should place the missions on the schedule in order of increasing
scarcity. Although this method is simplistic, it is used by many squadroms particularly in
the early months of the training term. Future sortie types are not completely constrained
and are often not known. However, more rigorous algorithms are possible. For example,
our KEE scheduler uses scarcity initially, but then switches to an algorithm based on
assigning individual and unit mission priorities which are based on training events and time
remaining.

While the above description of the scheduling process is admittedly simplistic, it is
sufficient for describing the scheduling process and the visual progamming methodology
used to comw the aucrew scheduling prototype. Additional elements of the aircrew
scheduling problem are contained in [1].

The data used by the prototype consists of the contents of Figures 2-4 and is consolidated
in the prototype into one database (See Figure 5). Below the consolidated database, there
is a row containing the same attribute headings as the database. This row and the row
below it make up a criteria array which essentially is the query specification for selection in
the database. By editing the criteria, different rows from the database will be returned
when a selection is requested. For example, the Availability criteria is "= [nothing],"
meaning that a selection will return any row with a blank value for Availability. Just under

85

1 -Aug-69
Une Num Take off time LingTime Mission Pilot Require(Pilot Confiuration

100 800 1000 ACBT >4 J
101 800 1000 ACBT J
102 800 1000 ACBT >3 J
103 800 1000 ACBT J
104 830 1015 DACBT >._ _ B61MP
105 830 1015 DACBT , B6iMP
106 1200 1330 .3 el61
107 1200 13301M 1 1Be61

Figure 1. Daily Schedule
Event Requiree nts

PILOT Qualification Availability PILOT WD ACBT DAC T
Adam 5 ____a]_Able, Adam 7 10 9

Baker Bar 5 Baker, Barry 3 14 8
Charlie, Chu 5 Charlie, Chuck 10 9 8
Dingo, Dave 5 Dingo, Dave 23 9 3
Edwards, Er 4 Edwards, Eric 14 3 9
Frank, Fred 4 Frank, Fred 1 S 18 4

G6onzo, Greg 4 Gonzo, Greg 6 11 6
Harris. Har 2 Harris, Harry 17 4 20
Iggy. Ian 2 Igay, Ian 9 19 1
James. Jim 2 James, Jim 11 20 15

4e, Ken 4 Kee, Ken 9 7 20
Lint, Larry . 1 _ Lint, Larry 22 0 13
Mason, Mike I Mason, Mike 10 13 9

Figure 2. Pilot Qualificatio and Availability Figure 3. Training Events Required

Event Currencies- Days Remainio

PILOT WD Cur Days ACBT Cur Days DACBT Cur Days
Able, Adam 10 12 8
Baker, Barry 9 22 9
Charlie, Chuc 18 20 9
Bingo, Dave 29 27 28
Edwards Erk1 11 13
Frak6 18 21

Gonzo- Grea .6 -24 -21
Harris, Har 4 25 2

Ig y a , ,7 16 11

James, Jim 18 4 16
Kee, Ken 11 0 8
Lint, Larry -34 -2 -30
Mason. Mike 22 9 11

Figure 4. Remaining Currency Days

86

.Cc1 ~ ' *~ Cmar 0.0c YM t

2 E

VVA 0

o< .- AM n ~0
us Cy Cm0 0M

"a--

.9 A.V

< - - - - - -0- - 1 A l1

N CY C

0 0) cc 0 W (DV O

(A

10 0
o C

*i- "10 0

Ce, 0I

.2 V- V.-

CO a 0 a 0 0 2 LU

(U VU

dU d4
2 (4 'C

Lu 31 1 le I I I I I t

87

the criteria array is the daily schedule being filled in as the algorithm executes; its rows
contain data or data abstractions to be pasted into the criteria section each time a new
selection needs to be made.

During execution, the scheduler prototype selects the last unfilled mission, pastes the pilot
qualification requirement in the criteria, and pastes a currency range in the criteria for the
mission being filled. At that point formulas on the spreadsheet which calculate greatest
training requirements are recalculated. If these values are zero (blank), that indicates that
no pilot meets the current criteria, and the program relaxes the currency constraint by
pasting in an alternate range. Alternatively, the program pastes the result of the greatest
training requirement into the criteria, and selects the pilot specified. Next the program tests
to see if an insructor pilot is required and, if so, searches for one who is available and
current. If an instructor pilot is needed and none can fly, the program will not fly the
unqualified or non-current pilot. Otherwise, the program marks the pilot's Availability
attribute "flying" and places the pilot on the schedule. If an instructor pilot is required, the
program updates the qualification requirement for the next pilot to be scheduled. The
algorithm continues until all sorties are scheduled or until pilot resources are exhausted.

The algorithm is not rigorous and doesn't optimize on things like instructor pilot utilization.
In addition, it currently doesn't do any backtracking to remove previously scheduled pilots
to fill other slots where they might be needed more. Any manual entries made to the
schedule should be constraint-checked, a feature not currently implemented. However, the
algorithm is less than 120 lines of code; these additional enhancements are planned and
could be implemented by almost anyone.
Aditn'.:al Feature of die Scheduler ProttvM

Our KEE-based aircrew scheduler has a number of utility features which are desirable.
Some of these features have been implemented in the new prototype, while others are yet to
be implemented. The prototype allows the addition and deletion of pilots, color graphs of
pilot data, pilot debriefing, automatic propagation of pertinent data throughout the database,
and display of database projections. The prototypie runs under Microsoft Excel, version
1.5 on an Apple Macintosh or on any IBM-compatible personal computer. The Macintosh
version includes pull-down menus and plays a portion of Beethoven's Fifth Symphony on
completing the schedule.

Our current scheduler lacks the ability to incorporate priorities from squadron commanders
or other supervisors Events must be added, changed, and deleted manually. Certain data
structures on the prototype are sensitive to changes and should be protected by locking the
spreadsheet cells. Once the scheduler design is relatively stable, a user's manual is
required All of these enhancements are planned, as is a more rigorous scheduling
algorithm.

The use of spreadsheets as a visual pmgramming language is particularly useful for a
number of different problems which have some or all of the following attibutes: (1) data-
intensive, (2) hard to define, (3) require fourth-generation functions, or (4) benefit from
data abstraction. In addition, spreadsheets are friendly for novice programmers and helpful
for rapid prototyping as well.

88

Dyer, Doug and Walter, Sharon; "Aircrew Scheduling: An Application of Expert System
Technology," presented at the 1989 Command and Control Research Symposium
sponsored by the Joint Directors of Laboratories and the IEEE Control Systems
Society, 24-26 Jun 89 at National Defense University.

Microsoft Excel User's Guide.

Microsoft Excel Arrays, Functions, and Macros.

89

APPENDIX C

The following paper describes the object-oriented paradigm. It resulte, trom
graduate seminar research into methodologies for neural network simulation, ou many
comments made apply to object-oriented programming in general.

90
On Object-Oriented is elucidating the system, and that
Programming and Simulation problem lies somewhat outside of the
Dougai E. Dyer realm of computer science.

However, complexity can also
Introduction arise from the program and coding

process. That is, given a well
It is well known that small understood system, a program which

computer programs are easier to models the system may still be
develop, debug, and modify than large unmanageably difficult to develop,
programs are. More accurately, it is the debug, and maintain. A real-world
complexity of the program that dictates system does not have to be very large
how well humans can work with a it. before the complexity of its coded
Some very large programs are quite representation becomes overwhelming.
well understood because they are Computer scientists have been
relatively simple. For example, struggling with this problem for over
government accounting and payroll thirty years. Many solutions and
applications are thousands of lines long, methodologies have been proposed and
but are made up of many similar accepted. The formal discipline of
modules; accounting principles are well software engineering is dedicated to
understood. In contrast, a much improving the process of building large
smaller expert system can elude programs. In my opinion.understanding for years because the representational complexity is the
process it models is so difficult to fundamental problem of computer
characterize, science.

The complexity of programs Some of the developed tools and
arises from two basic reasons: the real- methods for dealing with complexity in
world system to be modeled and its computer programs have been very
coded representation. If the system is good. Operating systems relieved the
not well understood, as in the study of programmer of much work by
cognition, then a computer prpgram abstracting house-keeping details.
which attempts to model it cannot be Higher-ordered languages reduced the
successful. Successful computer amount of code required to do a task
programs are those which exploit the and also work by abstracting lower
power of the computer to solve level operations. Structured
problems which (1) people find difficult programming encompasses modularity
to solve and (2) can be programmed. and structure; modularity allows us to
The computer is powerful because it has mentally break programs into separate
non-volatile, expandable memory and pieces and structure allows us to
can process information quickly and mentally stack the pieces in a
painlessly, once programmed. recognizable way.
Unfortunately, computers lack common
sense and most do not tolerate noisy Other techniques for improving
inpuL The above discussion is not programs and the rogrmming process
meant to imply that arificial intelligence include proofs, compiler syntax
research is a waste of time. checking, smart editors, using different
Programming can be used as a tool for programming languages, and using a
thought, for example, an aid in single, stndard prog m
cogitive model development and language. (Some languages are better at
testing. certain problems than others are.

Another school of thought attempts to
If the system to be modeled is use only one programming language to

not well understood, the main problem reduce fluency requirements and give

91

programmers a common language. Abstraction, Modularity, and
Features of programming languages are Structure.
now studied extensively to find
strengths and weaknesses.) However, Abstraction. Because humans have
none of these tools or approaches have volatri o. the numbe of items
been shown to impact complexity like we cnmthe nulae is ited.abstacton, oduarit , ad stuctrewe can mentally manipulate is limited.
abstraction, modularity, anda e Only through absracion are we able to
which ar clearly more fundamental on any but the simplest

concepts. It has been theorized that
Object-oriented programming, a only seven mental objects can be stored

relatively new programming and recalled; the abstraction process to
methodology, is based on a data- remember more than seven objects is
centered viewpoint. Object-oriented called "chunking" to indicate the need to
pgr ig grew from fundamental aggregate several objects as one. The
roots: abstraction, modularity, and idea of chunking was fundamental in

roots:n abtacpn modulaficaty, andesuc
structure. Its four identifying elements breaking up identification numbers such
are object encapsulation, message as social security numbers and
passing, dynamic binding, and telephone numbers, but it also give
inheritance. Those four elements can be insight into the need for abstraction in
thought of as unique extensions of the programming process.
abstraction, modularity, and strucr By definition, abstraction is

In object-oriented prgrammng, associating a group of objects with a
objecs in the code r t elements single "group-of-objects" idea. Often(nouns) in a real-word system. This we use a label to represent the concept.
approah differs from most algorithmic As an example, the process of addition

languages like Pascal or C, which tend is signified by "+" when it actually is a
to focus on procedures. For this procedure for mapping two numbers
reason, object-oriented programming is into a third.
a good methodology for handling The power that abstraction
representational complexity of data- offers is that it relieves us of having to
centemabout details which we dont needexample of a problem in which re- to think about and allows us to focus on
world events ae ofien data-centered, the rea problem Imagine how difficult
rather than algorithmically-centered, it would be to calculate the sum of two

This paper discusses tthree numbers if not for abstraction! If you
traditional ways of handling have a calculator and want to calculate
representational complexity, "2 + 3" you have to know how to push
abstraction, modularity, and structure, the buttons but not how the calculator
as well as their extensions as elements works. You don't need to know that the
of object-oriented prgamming. Three calculator has to have registers, an
of the eklmts of cject-oriented arithmetic/logic unit, control software,

data paths, and an input/output -
message pasing, and dynamic binding, interface. At lower level you don't
w be further described in a discussion need to know how to implement a gate
of a Scheme digital bdcit ai1torn or flip-flop; at a still lower level, you
Additional examples of the use of don't need to know the solid-state
object-oriented plofmithg in physics behind semiconductor
simulation will be briefly described behavior. Clearly, you don't care how

the calculator works; that's not

important. You view it as an abstract

92

black-box that does the addition that by object-oriented programming. (Cox
you need calls these modules "software integrated

circuits.")
Using a label as a mnemonic

representation of an abstract idea seems There are drawbacks to using an
to be important for memory abstacted language such as the
maintenance and mental manipulation, language of computer modules.
Once you have a name for something, Naturally, you have to learn the
you can toss it around in you head, add language; that can involve reading a lot
or delete facets from it, and relate it to of documentation. Sometimes the
other mental objects without fear of language is not appropriate to your
losing or misaligning it. It's yours to problem. Sometimes the language was
keep. We use labelling or naming all not well thought out and, although
the time, but it is especially apparent in intended to solve your problem, it
technical fields in the form of jargon. doesn't do a very nice job. Sometimes
For example, names like "method," the language is reasonably good, but the
"message," and "package" have special, documentation is lacking. If the
complicated meanings to those who programmer doesn't trust the language,
study object-oriented programming. much time may be wasted by wading

down into the depths of lower
Abstraction can be used to abstraction layers to make sure they

develop a higher-ordered language. A work. Although all these problems are
set of related abstract objects can be real, they don't detract from the power
thought of as a language which can be of abstraction; rather, they are
used to solve problems. As an implementation issues.
example, if you consider the set (+ - *
/ = (real numbers)), you get the Gerald Sussman has said that
language of elementary arithmetic. In the best solution to complex problems
computer science, all higher-ordered often looks more like layers of
languages like Pascal are based on a set languages rather than pieces of code
of abstracted machine language which solves pieces of the problem. In
operations and routines which have his Computer Exercises work book,
been named things like "read," "write," there are many more examples of
"if," and "while-do" as well as "+," "-," languages built from abstracted objects,
etc. Object-oriented progamming, as a including languages for, drawing
methodology, helps generate abstract Escher diagrams, drawing squares and
language e language of digital triangles, and simulating space mission
cicuit simulation is one example. operatiOL These examples clearly

illustrate that abstraction is a powerful
Whenever the level of method for controlling complexity in

abstraction is not great enough to computer programming.
facilitate problem solving, further
abstraction may be used to make a still Modularity. Modularity is the practice
higher level language. For example, it of building walls around pieces of code
may not help to think in tem of the and forcing different pieces to
functo available in Pascal, like "read" communicate only by well-defined
and "write". Instead, you may prefer comndication channels. The idea of
"input-procedure" and "output- "wall" and "contract" in Helman and
procedure." Abstracting clusters of Veroff is the essence of modularity.
code in a given computer language can
yield a new, higher-level language of Modularity goes hand in hand
software modules. The language of with the notion of abstraction.
software modules is currently a goal of Modularity is the package which binds
software engineering and is supported

93

an abstraction and allows you to in a program. More importantly, the
manipulate it as a whole entity. structure of the program is important in
Modularity also allows different pieces helping the programme to mentally
of code to be structured -- you must be manipulate the program. This is true,
able to clearly define a piece before you or programmer's would not care
can arrange a group of pieces. whether a program were properly

indented or merely a long string of
Code is modular when the statements with no white space at all.

package binding it keeps it furm
affecting anything outside of it except Structure also encompasses the
through well-defined interfaces. decision about how large to make the
Theoretically, modular code may be program modules. In practice, a certain
slapped in or out of a software balance between components at
environment by altering only the different levels of abstraction is
interface between modules. Code important. It doesn't help to have ten
behavior can be isolated to each module; high- level components and just I low-
bugs are easily contained, found, and level one (or vice versa). Instead, it
corrected. often makes more sense to use two or

three higher-level components for every
In practice, modularity does aid five to seven lower-level ones. This

in debugging and makes a program heuristic extends for multiple levels.
more tractable. However, the interface
un each package must be explicitly Abstraction, modularity, and
specified, constructed, and sucture are all somewhat related. In
documented. In addition, a good addition, they all serve to help the
ilementation requires that the code prorammr combat complexity when
inside each package be "bullet-proof' so trying to represent a model as a
that it's never necessary to give up computer prpgram. Modularity turns a
abstraction to fix an implementation program into individual code pieces.
detail. Abstraction gives each piece a meaning

and a name. Structure shows how the
Structure. The advent of structured pieces are related to one another. If all
prgamming in the early 1970s gave three are done correctly, the program
programmers a new, powerful tool for can fit into the brain and make sense.
dealing with representational complexity
iM programs. Structured programming Elements of Object-oriented
made "goto" a four-lettered word for Programming: Object
proprmmr; it showed that the
dangerous, undisciplined "goto" code Encapsulation, Message Passing,
could be replaced in all cases by Dynamic Binding, and
sequential coding. Inheritance.

The major contribution of t-oriented proramming
structinedogm ng is that takes advantage of abstraction,
modularity is enforced. However, ant scovdar cotrbuton s tatmodularty, and swtu but extends
impodtant secoda conmlabdion is o them in unique ways. In object-
the mdular pieces are placed with have oriented programming, the focus is on
relation to one another, and hence, have the "object." What is an object?. Ina StflctW'. The 5tt tB of the n~ rg-rglnugs
modules can be rearranged to change ogs consit of pocedges to and
the program - in effect, these from whit of proced. the
rearrangements and the changes which from which damt are passed. The
result make up the language of sructu procedures "do" something and are like

resut mke p te lnguae O Stli~ur~verbs in the spoken language. In

94

object-oriented programming, programs manner, strict modularity is enforced.

consist mainly of "objects" which Instead of using a direct procedure call
consist of "non-passive" data. That is, with data passing, the object-oriented
if procedures are the verbs of spoken paradigm uses message passing
language, objects are really more like between objects to execute a program.
the nouns. A message is a request from one object

to another to cause some action to take
What does it mean to be "non- place. Control is retained by the object

passive?" Conventional programming - a request may be denied, and it often
languages draw a clear distinction is if the object is not working properly.
between procedures and data. The "procedure- with-arguments' call
Languages like Scheme question that in a conventional program ng
philosophy and treat both as first-class methodology seems to be a weaker kind
objects. In many Scheme programs, of modularity. Message passing is a
it's very difficult to say that a particular unique way implementing modularity
entity is one or the other. Even in and is an extension on "procedure call"
speech, nouns rest on a scale between modularity. In addition, by using
extremes of passiveness and action. messages, it is easier to create a
Most humans would interpret the standard interface for objects.
sequence of nouns "rock," "hammer,"
"recipe," and "programmer" to have an Dynamic Binding. Binding refers
increasing implication of action. to putting data together with the

procedure which affects it.
Object Encapsulation and Conventional languages like C and
Message Passing. Objects are Pascal require the programmer to
composed of data and the procedures manage binding up front I's up to the
which operate on it, as well as an programmer to determine the correct
interface to other objects. Objects data type and pass that type to a type-maintain an internal definition of state. dependent procedure. Some languages
In this way, an object can be said to (Ada, for example) delay binding until
"know" something about itself-- it compilation. This approach allows the
knows its own state and the operations proglammr to use just one procedure
which can change its state. name for different types of data. The

compiler determines the dam type andConventional l__ra--.-g selects the correct procedure to apply.languages often absla p Only low-level procedure are type-
giryand da stctma Pce dependent. The advantage of delayed

secondarily. That is, the abstract data binding is that the programmer is
type has relevance only in context of the allowed to change data types without
procedures which operate on it. In changing high-level procedures. Other
object-oriented programming, this languages (Smalltalk) delay binding still
viewpoint is reversed. It is data which further until run time. This adds still
is abstracted in a primary sense. greater flexibility as data types may be
Procedures which operate on an object changed on the fly. The program itself
are only a port of the object itself. This may even change the type and still
type of abstraction is unique to object- operate properly. Again, low-level
oriented proX mming prcedus will be type-dependent.

The object data, procedures, and In terms of the object-oriented
interface are all enclosed in a hard shell design, late (dynamic) binding offers
of encapsulation. By design, it is only some real advantages. With dynamic
through the interface that the object can binding, all but the lowest class of
communicate with other objects. In this object is type-independent. This is

another rather unique implementation of

95

modularity. When objects are type- simpler. It is an effective structuring
independent, they are more easily mechanism for reducing program
manipulated and reused. Dynamic complexity. In addition, inheritance
binding does incur some overhead in adds greatly to the modularity and
terms of space and execution time; it is modifiability of the code. Information
responsible for the object-oriented that is stored in only one place is easier
paradigm's reputation for sluggish to modify than when it is scattered
performance. However, the added throughout the program. Furthermore,
flexibility derived from delayed binding inheritance is powerful; a change to
is very useful during prototyping. information in that one place can affect

many child objects at once.
Inheritance. Inheritance refers to a
certain way of sructuring information. The elements of object-oriented
It is recognized as a primary means of programming build upon and extend
classifying information in humans. traditional methods of dealing with
Inheritance is information stored in a representational complexity. Object
hierarchial structure, as a tree with encapsulation treats data as the primary
parents and children, and the children object to be abstracted and made
gain information (inherit) from their modular. Message passing is made
parent nodes. The "ISA" and "A- necessary by object encapsulation.
KIND-OF' hierarchies found in Messages are abstract, weak procedures
afica intelligence literature are that act as requests for action by
examples of inheritance. Object- objects. Messages promote modularity
oriented programming is relatively because they are independent of the
unique in using inheritance as a way of procedures they request. Dynamic
structuring a program. binding enhances modularity by

allowing higher-level objects to remain
Using inheritance, an object has type independent. Inheritance increases

access to data and procedures of all of modularity dramatically and is a
its superclasses, as well as its own. structural arrangement relatively unique
For example, an object "SHERMAN among programming methodologies.
TANK" might contain information
about the the thickness of its armor, its Object-Oriented Programming
maximum speed, and the size of its in Simulation.
gun. However, "SHERMAN TANK"
would also have access to general In object-oriented programming,
informafion from its immediate there is often a one-to-one
superclass"tANKS" which might correspondence between real-worldeffective and weapons which are objects and objects in a programmed
effective agnst wanks whioreg model. In a war simulation, foreffective against tanks. Progressing example, 'TANKS" would represent
further up the hierarchy, "SHERMAN real tanks and would be expected to
TANK" would also have access to model real tanks appropriately.
information from higher superelasses. Therfoe, the object-miented
If "GROUND VEHICLES" were a p--gram-ing methodology would seem
superclass, "SHERMAN TANK" might to be well suited for simoulation.
gain useful informion from it, for
example, ground vehicles can't operate T prgramming
in deep water, language is a dialect of LISP. The

Inheritance makes it possible for Texas Instruments implementation of
Inheitace akesit ossbleScheme includes SCOOPS, an object-

object-oriented designs to avoid storing Scheme insC P environment.
a lot of repetitive information. This cieme is a small language developed
makes the code more compact and

96

by MIT and other universities to show data, namely SET-MY-SIGNAL and
that a single language could treat a wide ACCEPT-ACTION-PROCEDURE.
variety of different problems, including The latter procedure propagates signal
traditional and symbolic ones. value changes to other wires to carry

out the simulation. Notice that only the
Although there are some very wire object can run either procedure. A

important differences between Scheme wire must receive an external message
and Common LISP, they both before dispatching on it and executing
dynamically check data types. whatever procedure it chooses as
However, Scheme treats both appropriate. Thus, the wire object is
procedures and data as first-class firmly encalated in a hard shell. The
objects. That is, procedures can be interface between the object and external
passed as arguments to other objects is identified as the message
procedures and can be returned by still handler DISPATCH. Messages
other procedures. This treatment received are those to get or set a wire's
necessarily blurs the distinction between signal (GET-SIGNAL, SET-SIGNAL!)
data and procedure. or add a propagation action (ADD-

ACTION!). Any other message
Abelson and Sussman present a received is erroneous. Because

Scheme digital circuit simulator which messages only request action (as
can be used to make elements of object- opposed to procedures which, when
oriented programmng more concrete, followed, cause it to happen), the
The SCOOPS environment was not program can be quite modular.
used to develop the code, however, so Inheritance is not demonstrated by this
the inheritance aspects are implied, code, as it was not implemented using
rather than explicit. Refer to the SCOOPS; the simulator hasn't taken
Appendix for a modified version of the full advantage of the object-oriented
simulator code. paradigm.

In AbKlson and Sussman's The digital circuit simulator
circuit simulator, wires are the primary serves as a new language. Instead of
object. Other objects such as inverters, using Scheme, it enables us to think in
and- and or-gates and probes send terms of wires, probes, and- and or-
messages to wires requesting various gates, and inverters. With this new
actions. Higher-level objects like half- language, we can build even higher-
and full- adders are made from lower level abstractions like half and full
level ones. An agenda and the various adders. Although the code is really quit
data structws needed for it are also simple, its object-oriented design makes
implemented in the code. it very powerful. The simulator shown

in the appendix served as the core of a
Consider the wire object very complex computer simulation.

identified in the Scheme code as the
MAKE-WIRE definition (under;; Those not familiar with Scheme
Objects). In the code, a or other LISPs may not see the
wire knows its voltage value initially simplicity and power of the digital
and at any time during the simulation as circuit simulator. However, object-
SIGNAL-VALUE. The da=n type of oriented methodology has been
SIGNAL-VALUE is numeric, but that developed for other, more conventional
doesn't matter until runtime, because of languages as well. As an example,
Scheme's dynamic binding. If we Jacky and Kalet successfully developed
choose, we can alter SIGNAL- a large Pascal program using object-
VALUEs type without changing oriented concepts.
MAKE-WIRE. The wire object also There are other examples in the
knows the procedures that can affect its literature of the use of object-oriented

97

programming in simulation. For of Scheme allowed them to model
example, Eilbert and Salter developed a interactions between hierarchial levels
neural network simulator in Scheme. quickly and accurately.
Their Scheme simulator was shown to
be more effective at modifying network Larkin, Carruthers and Soper
structure and the node updating process implemented a simulator of a ship's
than simulators based on standard navigation system in Flavors, an object-
numerical languages. In addition, the oriented proam in g language often
Scheme simulator was mor successful found on LISP machines. They found
at modeling networks which are that object-oriented program ing was
hierarchiaily organized. There are three ideally suited to their simulation for
major.Scheme functions in the three reasons. First, the one-to-onesimulator: "(1) a network generator correspondence between code objects
which specifies the structure and single and real-world objects helped make
node response of the model; (2) the development clearer. Second, the
network evolver, which controls advanced form of modularity inherent in
activity initialization and the updating object-oriented programming helped
process for the network; and (3) the reduce the complexity and ease
Monte Carlo simulator, which finds the maintenance of the simulation tools
stable states of the network and records developed. Finally, the structure and
them." Nodes in the system are the modularity of the resulting code made it
primary objects. Computations on very extensible.
nodes are distributed to the nodes
themselves. This is fundamentally Stairmand and Kreutzer built a
different fiom a FORTRAN simulator process-oriented simulation
that the authors studied; the FORTRAN enviromment (POSE) in a locally
representation used a matrix of developed object-oriented programming
connection weights between nodes to environment (flavors) running under
calculate convergence. The authors Scheme. The hierarchial structure
point out that the FORTRAN program afforded by inheritance is key to
is intrinsically faster on von Neumann reducing complexity of the POSE
machines, but is also more difficult to representation of process models.
transfer to a parallel architecture. As a
neural net is a distributed processing - Conclusions
arcitecture, it seems more natural to
model it using an object- oriented Object-oriented programming is
design. The flexibility of using the an effective methodology for reducing
more accurate Scheme reprsentmaion is the complexity ofp ed
an added bonus. To generate a
representation for a particular model, representation of models. The focus on

the object-oriented Scheme design only objects, rather than procedures, is
has to call the network generator which prografuig in a standard way using
makes new instances of nodes as conventional languages. The four
approprate. Also, the updating elements of object- oriented
procedures of a node and its response pro n g, object encapsulation,
cu've are attributeS contained within the message passing, dynamic binding, and
object. Local or global changes can be inheitnce all extend traditional ways of
made very quickly without affecting the dealing with program complexity:
rest of the program, because of abstraction, modularity, and structure.
modularity. Eilbert and Salter were Object-oriented programming is well
very attracted to an object-oriented suited to simulation because of these
simulator because they wanted to model unique attributes.
neural nets that are hierarchially
suructured. The message-passing style

98

Bibliography Pascoe, Geoffrey A. "Elements of

Abelson, Harold, and Gerald J. Object-Oriented Programming," Byte,
Sussman. Structure ad InMrtation Vol. 9. August 1986, pp. 139-44.
of Comuter ProgM'as The MIT "CShm sr ud n
Press, Cambridge MA, c. 1985. "PC Scheme User's Guide and

Abelson, Harold, and Gerald J. Edid=" (Texas Instruments) The
Sussman. Structure and InMa afin Scientific Press, Redwood City CA, c.
of Camoter Progme. (Conuter 1988.

Exerises The Massachusetts Institute
of Technology, Cambridge MA, c. Stinnand, Malcolm C., and Wolfgang
1986. Kieutzer. "POSE: a Process-Oriented

Simulation Environment embedded in
Cox, Brad J. Obect- d SCHEME," Simulation, Vol. 46, April

mi An Evoluion= 1988, pp. 143-153.
A2 .h. Addison-Wesley PublishingCompany, Reading MA, c. 1986. Unpublished Class Notes from

"Fundamentals of Artificial

Eilbert, James L., and Richard M. Intelligence," Air Force Institute of
Salter. "Modeling neural networks in Technology, Fall 1986.
Scheme," Simulation, Vol. 46, May1986, pp. 193-99. Wilson, Won. "Object-orientedlanguages reorient programming

Helman, Paul and Robert Veroff. techniques," Computer Design, Vol.
Internigae Problem Solving and Data 47, November 1 1987, pp. 52-62.
Strctre. The Benja niCmmings
Publishing Company, Menlo Park CA,
c. 1986.

Jacky, Jonathan P., and Ira J. Kalet.
"An Object-Oriented Programming
Discipline for Standard Pascal,
Commnications of the ACM, VoL

September 1987, pp.722-76.

Larin, Timothy S., Raymond L
Carruthers, and Richard S. Soper.
"Simulation and object-oriented
programming: the development of
SERB," Simulation, Vol. 52,
September 1988, pp. 93-100.

Lenat, D. B., ind J. S. Brown. "Why
AM and Eurisko Appear to Work."
Artificial Intelligence, VoL 23, No. 3,
August 1984, pp. 269-294.

Newburger, Bruce. "Simulate any size
circuit with object-oriented modules,"
Electronic Design, Vol. 36, March 3
1988, pp. 75-78.

99

APPENDIX

,: SIMULATION -- DIGITAL CIRCUIT--

Queue Operations - -- ------------

(define (make-queue) (cons '0 '0))

(define (empty-queue? queue) (null? (fromt-pt queue)))

(define (front queue)
(if (empty-queue? queue)

(error "FRONT called with an empty queue" queue)
(car (front-ptr queue))))

(define (insert-queue! queue item)
(let ((new-pair (cons item nil)))

(cond ((empty-queue? queue)
(set-front-ptr! queue new-pair)
(set-rear-pt! queue new-pair)
queue)

(else
(set-cdr! (rear-pt" queue) new-pair)
(set-rear-pt! queue new-pair)
queue))))

(define (delete-queue! queue)
(cond ((empty-queue? queue)

(error "Delete called with an empty queue" queue))
(else

(set-front-ptr! queue (cdr (front-ptr queue)))
queue)))

(define (front-ptr queue) (car queue))
(define (rear-pt" queue) (cdr queue))
(define (set-front-pt! queue item) (set-car! queue item))
(define (set-rear-pt! queue item) (set-cdr! queue item))

;; The Agenda

(define (make-time-segment time queue) (cons time queue))
(define (segment-time s) (car s))
(define (segment-queue s) (cdr s))

(define (segments agenda) (cdr agenda))
(define (first-segment agenda) (car (segments agenda)))
(define (rest-segments agenda) (cdr (segments agenda)))
(define (set-segments! agenda segments) (set-cdr! agenda segments))
(define (current-time agenda) (segment-time (first-segment agenda)))

100

(define (empty-agenda? agenda)
(and (empry-queue? (segment-queue (first-segment agenda)))

(null? (rest-segments agenda))))

(define (add-to-agenda! time action agenda)
(define (add-to-segments! segments)
(if (= (segment-time (car segments)) time)

(insert-queue! (segment-queue (car segments)) action)
(let ((rest (cdr segments)))

(cond ((null? rest)
(insert-new-time! time action segments))

((> (segment-time (car rest)) time)
(insert-new-time! time action segments))
(else (add-to-segments! rest))))))

(add-to-segments! (segments agenda)))

(define (insert-new-time! time action segments)
(let ((q (make-queue)))

(insert-queue! q action)
(set-cdr! segments

(cons (make-time-segment time q)
(cdr segments)))))

(define (remove-first-agenda-item! agenda)
(delete-queue! (segment-queue (first-segment agenda))))

(define (first-agenda-item agenda)
(let ((q (segment-reue (first-segment agenda))))
(if (empty-queue. q)

(sequence (set-segments! agenda
(rest-segments agenda))

(first-agenda-item agenda))
(front q))))

(define (makeagenda)
(is'*agenda* (make-time-segment 0 (make-queue))))

(define the-agenda (make-agenda))

;; Necessary Precursors

(define (call-each procedures)
(if (null? procedum)

'done
(sequenice
((car procedures))
(call-each (cdr pcedue)))))

(define (logical-not s)
(cond ((= s O) 1)

((=s)0)
(else (error "Invalid signal' s))))

101

(define (logical-and sI s2)
(cond ((and (= sI 0) (= s2 0)) 0)

((and (=sl O) (=s2 1)) 0)
((and (s 1 1) (= s2 0)) 0)
((and (=sl)(= s2 1)) 1)
(else (error "Invalid signals" sI s2))))

(define (logical-or sI s2)
(cond ((and (= sl 0) (= s2 0)) 0)

((and (=sl 0)(= s2 1)) 1)
((and (= s 1) (s2 0)) 1)
((and (=sl 1)(= s2 1)) 1)
(else (error "Invalid signals" sI s2))))

Objects

(define (make-wire)
(let ((signal-value 0) (action-procedures '0))

(define (set-my-sign-al! new-value)
(if (not (= signal-value new-value))

(sequence (set! signal-value new-value)
(call-eich action-procedures))

'done))

(define (accept-action-procedure proc)
(set! action-procedures (cons proc action-procedures))
(proc))

(define (dispatch m)
(cond ((eq? m 'get-signal) signal-value)

&(q? m'set-signal!) set-my-signal!)
((eq? m 'add-action!) accept-action-procedure)
((eq? m 'display-action-procedures) action-procedures)
(else (enor "Unknown operation - WIRE" m))))

dispatch))

(define (get-signal wire)
(wire 'get-signal))

(define (set-signal! wire new-value)
((wire 'set-signal!) new-value))

(define (add-action! wie action-procedure)
((wire 'add-acdlon!) action-procedure))

(define (display-action-procedures wire)
(wire 'display-action-procedures))

102

(define (inverter input output)
(define (invert-input)
(let ((new-value (logical-not (get-signal input))))

(after-delay inverter-delay
(lambda 0

(set-signal! output new-value)))))
(add-action! input invert-input))

(define (and-gate al a2 output)
(define (and-action-procedure)
(let ((new-value (logical-and (get-signal al) (get-signal a2))))

(after-delay and-gate-delay
(lambda 0

(set-signal! output new-value)))))
(add-action! al and-action-procedure)
(add-action! a2 and-action-procedure))

(define (or-gate ol e2 output)
(define (or-action-procedure)

(let ((new-value (logical-or (get-signal o1) (get-signal o2))))
(after-delay or-gate-delay

(lambda 0
(set-signal! output new-value)))))

(add-action! ol or-action-procedure)
(add-action! o2 or-action-procedure))

(define (half-adder a b s c)
(let ((d (make-wire)) (e (make-wire)))

(or-gate a b d)
(and-gate a b c)
(inverter c e)
(and-gate d e s)))

;; Sample Simulation

(define (after-delay del action)
(add-to-agenda! (+ del (current-time the-agenda)) action the-agenda))

(define (propagate)
(if (empty-agenda? the-agenda)

'done
(let ((first-item (first-agenda-item the-agenda)))
(first-item)
(remove-first-agenda-item! the-agenda)(rppgaef))

103

(define (probe name wire)
(add-action! wire

(lambda 0
(princ name)
(princ" At time =
(princ (current-time the-agenda))
(princ" New value = ")
(princ (get-signal wire))
(newline))))

(define inverter-delay 2)
(define and-gate-delay 3)
(define or-gate-delay 5)

(define input-I (make-wire))
(define input-2 (make-wire))
(define output (make-wire))
(define carry (make-wire))

(probe 'input- I input- 1)
(probe 'output output)
(probe 'carry carry)

(half-adder input- I input-2 output carry)
(set-signal! input-i 1)

104

APPENDIX D

The code for the Excel aircrew scheduler is attached. User-specified names and
data structures are not included, as the code is intended only to show the visual
programming methodology more clearly. Code modularity, control structures used, and
placement is apparent, but the code has been expanded to show detail. Ordinarily, columns
are much more narrow, and lines of code that are wider than the column not entirely
visible. This is shown in the second copy of the same code.

105

A
.. make schedule

RAMA Plaes ioS as needed using find pilot
.1.Move to "Missior* on schedule

A. -SELECT("Missioncolumn*)
5 down(I

j.. Find last mission
71. -IF(ISBLANK(ACTiVE.CELLfl). upA.GOTO(A5)l

9. Schedule remaining pilots
JR.-IF(ISBLANK(ACTIVE.CELLOfl.find pilotl. IF(ACTI VE.CELL(WPilotr GOTO(A1 3)

11 WGTO(AIO0)
_±2. A8EEPfl
14 -SELECT(*datahome-I

ii.SELECT(schodule*)
16 MRETURNO
17
18 find pilot

ji-IF(COLUMN ACTIVE.CEL OI<6.RETURN~l
_M.-IF(ROW(ACTIVE.CELLOk12.no. of db rows.RETURNO)

2..-define collsil
2..-constrain availabilityfl

.21. gconstrain flight loaderafl
=IF(ISBLANK(lcuffent slotl.GOTOfA2711

_M =check guvfl
_M3 =lF(A25uflnd another*.GOTO(A27) .RETURNO)
.27! mtrv P lietE
_I.3 -IF(A27u.TFUE.RETURNO)
_M1 -try low currencvfl
ALg -1F(A29-TRUE.RETURNO)

13 intrv hi events()
AL.2 -IFEA3I .TRUE.RETURNO)
3.3. rror tERw -- nO Dilots found
.3.3 =SELECTlocurrent flot)l

.31 LitRMLA.FLLf-- NO PILOT -- I
. - IJ~f
AL
.3M try to fly
_M3 -OATA.FINDO

Al-DEFINE. NAME(Ocurrent Rilot.ACTIVE. CELLO)
.4j1 -iD avail or not reaO

_1, IF(A410"IR not reg.GOTO(A48))
.&L .IFIA41-eo IR not avair.RETURNI FALSE)

mIFEA4Immg lo avail*.SELECT(ocurrent sloto).RETURN(FALSE))
_LL -IF(lSSLANK(ABS8REFfarf. I lclcurrent slotll.inc Log aual() check galfl
JAL aSELECT("current slot)
43! 7 AF(M5mFALSERETURN(FALSEI)

fly r the quX
33Msj~dats avail(oflyingol

_M =SELECT(*current slotol
Al. oFORMULA(icurrent RiOt)
_M RERMMRLM

106

A
_ii Inc rea aual
54 -SELECT(ABSREF(arf-llcf-il].!current slot))
5i 5 FORMULAt5)
5j 6 REflJRN(TRLUE)

_21. check aual
=SELECT(O~gssible IP.)

jf-FORMULAIABSREF(r-1 c*. current slot))
-I!UWlfau c.5A.RETURNTRUE.RETURN(FALSE)I

ji ;onstrain flight leaders
J. IFISBNK !wornt gaI)RETRN)
Ii. -SELECTI'aual criterion)l

"-FORMULA.FILL(icurrent guall
AZ. -SELECT(*curr criterional
Ji -FORMULA.FLW->.MO

" RErURN

71., constrain availability
12. -SELECT(wavail criterional
La.L =FORMULA'Fe

7 RErURNfl
?1

3.u~date avail
fl.ARGUMENTroeao2l

iJL =SELECT(ocurrent Dilor)l
arightfino. of db cols,11

jj IF(AND(reason-fving ISBLANK(ACGTIVE.CELLm).FORMULA(!current Land))
fl1 a rightf)

JZ. m.ACTIVE.CELLA+l
JLLa a right(A821

JA SELECT(orcercf1 1)

-FORMULAitcurront TOT)
_IL wSELECT('rcf11

.1. FORAMJLAficurrent Land)

U-DEFINE. NAME(current slin o..aBS)(rl5.cretso

9 4 =D E, NAT (Ocurrent msno.rABSE~rr20!cretso)

JM -MATCH(tcurrent man.ISASI :$1$1.01
In right(A991

-a SELEC-T(ACTIVE.CELA)l
in. uDEFINE.NAMErcurr criterional

JU=OEFI NE. NAME (msn cniterion".ABSREF(rc-ll.curr criterion))
iL' .RETUnMM

107

1.. try P list
.1.- -saye criteriafl

32.. =SELECTI*P list mission crital
4 oFORMULA(k.urrent msn)
§. =set db P IWtO
6. aSELECT(*Driorily x range')
7.. 4aTACTTRUEI
8. mst ft con db()
2 I F(ISBLANK(ABSREFC'rt 1 Ice J21ioriv ilot) 01restore criteriaf).GOTOIB1 3))

=1 SELEgT(oDilot critirionw)

-12. -RETURNIffALME
_ 4 =ELECT(*pilot criterion')
1± FORMULA(ASSREF('rf 110'.Wriority Dilot))

15. =IF(!possiblo Riloto-O.GOTOB1 9))
16. tSELECT(ABSREF('rf I id-I :rfl1 c*. !2fority OWo)

j.Z -EIT.ELETEM2
1A a WTO(Bg)
_jj =try to fly()
_2L. =lF(81 9.comment(*orioritv') .GOTO(Bl 6)1

g2. reset criteria()
w33uu~dato P list()

-M. MnAIO P list
asomet db P IWOtl

_ZL wSELE-CT(OP list crit nurn')
AL1 -uFORMULASREF('rl cr-I 1'. Iorioritv Rilot))
AL1 uDATA.FIND()
.31 SELECTf'rcf4l

.31 DEFINE.NAME('ol commentrACTIVE.CELLAl)
3.2.~FORULA(Icurrent line no.)

33 .SELECT(OP list crit numo)
J. &C.EA WI

IA.-st db con dbl
31 SELCTIcurrent slotal

_M± try low currency
=..-save critorial)

_L SELECT(*curr criterion*)

_4L .SELECT('rI11c
_LL =IFACTIVE.CELL03-11ow currMc.GOTO(B5411
A4L -COPYn

_Li SELECT(*purr crfterion")
ALL mPSeMMSPE-CAL(3.11
Al. mIFf Ipossible milots=O.GOTO(854))

aZ try to fly()
.3.. -F(B9.comment(*curroncM*))

21 -IF(849.GOTO(8571.mako tenio unavaslfl)
.L W.TO(FAI I

108

B

-I. grestore criteriafl
AL -RETURN(FALSE)
56

jZmrset criteriaA
33 SELECT(scurrent slotol

_iZ. try hi ivents-
ja =save criteripfl

JA SELECT(Omsn criterionol
_M uSELECT(-dl le)

67 uSELECT(fmsn criterionol
_M -PASTE.SPECIAL(3.11

" IF(!possible pilots=O.GOTO(B54))
70~f =try to fly()
1 WRFB70,comment("events"))

-IF(870, GOTOfB57). make temp unavail~fl
LI GOTO(864)

_M pdate unavail
1_M uARGUMENTI-reason-21

7 SELECT(current RiOM
-a right(tno. of db cols.1)

81 -IF(AND(reasonuflying'ACTVE. CELLOl !current Land)..GOTO(B9311
.M DEFINE.NAMEfolast Lando)

.3-SELECT(ocurrent slotol

-IF(ACTIVE.CELLA-PILOr.GOTO(B91).IFfACTIVE.CELLA.-urrent .iot..GOTO(B84)l)
=3. l eft(3)

-SELECT(-last Land)j
.3-PASTEO

= -CTO(893)
=i SELECT(*last Lando)

.31-rightt)
-I. ACTIVE.CELLfl

=33 righttB94l
JM uSELECT(orcoodllsl
JM .i~freasonmdnt'GOTO(B10)
J33 uIF(ACTIVE.CELLNo~current TOT.DIALOg.BOX(SSO:Y52).GOTO(81 00))

1.9 right()
jfJ IFfACTIVE.CELLO<>!current Land.DIALOG.BOX(S50:Y52).GOTO(B1 03fl
93-RETURNn

10 3 -D IT.DEE 11
110 41 RETUN)

109

1 iR avail or not rag
_2, -save crit ria()
3 -SELECTIopilot criteriong)
4 wFORMULA(!current pilot)
5.. =SELECT(*gual criteriona)
8. -FORMULACA 1
7.. aSELECT(ocurr criteriong)
8* -FORMULA1>O4-
... -F(!ROssibleq Rilot8s'O.RETURN(*iR not real))

_9. =SELECTfmcriteria2u)

AL.2 =SE LECT("current criteriaw)
= PASTEI)

14. uSELET orr criterion'
_±9 -FORMUAM.EO
1j -ulpossible pilots
17 arestore criteriaf)
1I. -F(Cl6>0,RETURN(*reo ip avail"),RETURN("reg ip not avail'))

2±comment
_M. wARGUMENT(Measo.2)
_M .lFfreasonu~currnv GOTO(C30).lF(reasonu~vnts.GOTO(C38).GOTO(C24))
_M± .lFfriason-ouser soeified.GOTO(MI3.RETUJRN(Il

=J SELECT(ABSREF(rcle.jcurrent slot))
AL. -FORMULA(ABSREF(r1 10-1 1. 1orioritv pilot))
-IL. -SELECT(frcf11-1
_M1 oFORMULAf' on Priority Listl
_M1 URETURN()
.39. aSELECT(*curr criteriong)
AL. wSELECT('rflIC!)

.33 SELECl(ABSREFI'rcf3l*. Icurrent slot))

.3wPASTE.SPFIAL(3.11
-M -SELECT(-vgl 11
_M =FORMULAI' Day of Curol

3..-SELECT(ABSREF(rc3l0.!current slot))
.31. FORMLA(!msn criterion)
Al. -SELET(*rcill')
Al...FOMULAV Events Remaining*)

-42. uFETURJf
±3 SELECT(ABSREF*rcI31'.current slot))

4L 4 FORMAL~UOK
_&L uSELEC~trdl 11

AL-FORMULA0 - User Sacoi

AjL .RET~ftfM
JL

1i2

110

jjremove pilot
54 -DEFINE. NAME(current sloto)
-23 -ACTIVE.CELLO

- left(3)
AZ. -DEFINE.NAMEfecurrent Land)
AL3- - left(1
J.3± -DEFINE.NAMEf*current TOT)
fJa -SELECT(ocurrent slotal

Ii Copvn
*SELEGT(opilot criterion")

AL. -PASTEfl
AA. -DATA FINDAI

=D .EFINE.NAME("current Riloto.ACTIVE. CELLO)
AL nuadato unovail(ftlying')
_IL -SELECT(oDilot criterion*)
.31. ..CLEARM1

-3 SELECT(ocurrent slot")
.Z.q_ uSELECT(orf-l1 cf- 11*)
71 =lF(AC IVE.CELLfl=5..GOTO(C76)
._L -SELE-CT('rcf 121")
73 uGOPYn

1± SELECT(*rcf-1 21")
7 5. -PASTEQ
L. mSELECT(ocurrent slot")

77Z w rlght(3)
J13. DEFINE.NAMEfwcurront comment")

Z.-righti)
rl(ATVE.CELLfl-" on Priority List ..GOTO(Cgg)l

81. =set db P listfl
.32. uSELECTf~fl lc:rrl 1c1410)

II CLEAR(l)
fj.-SE ECT("current commenr)

-IA -COPY()
.3.3 .SELECTV"P list crit'l
_LL .SELECTrf1Ic"

13 PASTEf)
31MOATAFINOl

=i rightf41
2 1 -SELECT(ACTIVE.CELUI)

.1.-CLEARMI

...MSELECTI"P list critol
IA. =SELECT("df 1 T:rfl 1 ct4le)
IA. ..q.EAR~l)

I2L inset db con dbl)
AL. .SELE.CT(*current commental

tO SE LECTV"rc:rctl 1)
iJl =CLEARII)
t1U =SELECT(ocu.-rent slot")
t91 -CLEARE 1)

1±4 .URMf

1Schedule
21. Make Schedule

__L Place a Pilot
4Remove a Pilot

6 NIF a Pilot
7.L Free a DNIFed Pilot

Show Schedule
jjPrint Schedule
1.Reset Schedule

141

_UA Pilot data
.16 Pilot Qualifications ________________________
17Z Event R!Iuirements
.11 Event Currencies

_M, Add Pilot...
Zi Delet Pilot-.
za Pro at Data

iiDebrief Pilot...
_&L1 Debrief Uodate
-M .
_M1 Groo Data..

8j Plot Availability

IfM on ooen
_J1. -ACTIVATE. PREVO

ja ADO.MN1.D315:2911

Jton close
-M1 -mLECTLAT.CELLfl

Ii SELECT(ACTIVE.CELLO:ABSREF~srcf 1*2121ot area))
-IL uEDI.DELETE(2)
A4& -DEFINE.NAMEIfend ilot area ABSREF'rc[11'plot area))
_3.1 oSELECT(odalahome'l

AZ SAVE.AS?fl
ALL magamf
AA
_AL make temp unavail
_f&1 wSELECT('currenvt oi1lotli
AL1 a rlahtflno. of db cola-1 I
_4L *FORMULAIURS IP not sval*1

5I 0SE ECT(amsn criterion*)
-CLEARC 1

Eff s FTJRfMf

112

...dnif
AC =SELECT(nonavaifl

fl DIALOG.BOX(S36:Y441
=I ~FfD55..RETURNO)

.31FORMULA(Y 391
31 u.DEFINE.NAMECucurlmn TOT*)

=33 rightf)
U FORtAJLAIY421

31. nDEFINE.NAME7current Land*)
iZL uSELECT('datahorn.')
.31 = downlY38)

=~ DEFINE. NAME(current Rilot*)
=3 SELECT ODilot criterionw)

.3, FORMULA(icurrent pilOt
1!7 gcofletrain availabiiitvl)

wID=!ossible pilots
339 =reset criteria()

_af =I F(D68=0. DIALOG. BOX(S46:Y481 .update avail(*dnir))
1 .IRETURNO

.1.undnif

.u SELECT('rionavai
=1 DlALOG.BOX1S36:Y441

11 IF(D75.RETURN)
7i 7 FORMLULYr

.7 D.EFIWE.NAMECcurmMn TOT-i

.12 FORMULAIY42)
=3 DEFINE.NAMEf'current Lando)

.na ELECT('datahomeal
=1 dow (Y381

.34 DEFINE.NAME(current OlOM
J3. muodate unavail1'dniM'

AM
L. check guy

J33 .SELECT(opilat criterionol
nFORMULA('current slot)

_Ri IF(!Ossible Rilots=O.DIALOG. BOX(S21 :Y26).GOTO(D95))
A.11 SELECT(wailot criterion')

A.3. .F(Y26.RETURN~fnd anothtr).RETURN(FALSE)l
gtry to fly()

U usF(D~u.ALSE.DIALOG. BOXtS29:Y3j4).GOTO(D1 01)1
AZ uSELECT(opilot criteriono)

AL =LEARL11)
33 -FrY34, ETURN~flnd anotherl.RETURN(FALSE)l

.JU nreset criterla()
1.0. acom ment(ouspr sRecifiedo)
11041 E~h

113

21. Macrol1 make schedule
31. Macrolffind piot
4. Macr01 !remoye hiot

5L arldi
6Macrol 'udnif

9. Macrol Ishow schedule
_IL Macrol lorint schedule
_tL Macrol reset schedule
L

1..4
141
_IL Macrol 1 'ual
17Z Macro 1events

_M. Macrol'cur

2f.Macrol 1!add pilot
2.MNacrol 'del Rilot
2..Macroi !DrO~igate

231
_M4 Macro 1 debrief
_=. Macro i debrief uodato
AL
_M.Z Macrol !RlOt

.21Macrol1!RlOt avail

AL

.1.=SELECTlauallficatlons)l

e1 vents
21-SELECT(vnts)

.22 UFAETUWNI)
2M

aQ SELECTf*currencies")

_4.2 show schedule

114

_I rocedures for moving coil:
IA
_M MOVe to mission

6f m richt(A99-11
5 7. -RETUIM

-M1 UD
ii =AFIGUMENT(moves.1 7)

IL SE LECT(.*df.1 l
U .F(tSNAtmovee).RETURNO)

JM -mIEfmovemi .RETURNA)
=j-SETLE(EGOrmo1 1c)

-IR.mFE66cl.RETURNO.GOTOIE651)

70j ARGUMENTOmove,1 7)
=. -.SELECT.rfllc) _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _

fL =lF(ISNAlmaos).RETURNA)
_LL. wIFf moeemi RETURNA)
7A 4 SET.VALUEIE76.mw*e-1I

11 MLECTL'rf11cO
Z.=E76-1

flM aRFEMSuETURNMGTO(E5)

Z left
Ii AFGUMEKWR~ee.17)
ILSELECTI.*rcf-l 1)

.IF(ISNAfmovmi.RETURNO)
J3L wIF(moveml .RETURN)

hi SETVALUELES6.moves-1)
JM1 -SELECT(.-ci-1

33 =mF(E8Scl .F&-rRA.GOTO(EWI)

_U right
-M ARGUMENTrffwvse25)
AL± -SELECT(.rdl11)
_I wIF(ISNAfmovo).RETURNf)I

31 i~fmovml .RETURNO)
hi SET.VALUEIE96.maves-11

AL. .. ELECT(.rdl
3LL =EW-I

hi IEEA. FOLAlGOTOME9S1
AL
AL. HandY-And teM mRaM:
inD

1~jtest
Jil uOOG.BONfS3:Y70i
lii .iF(EIQ2.GOTOElO2))
I" *FEMFVM

115

F
. reset schedule
.2. =SELECT(*Missioncolumn*)
31. - downi)

4Find last mission
j IFflSBLANK(ACTIVE.CELLO). uo.GOTO(F3))

*J. Move to last iot slot
7 right(21

_L Remove remaining pilots
-IF(ISBLANK(ACTIVE. CELL .. E(ACTIVE CELLfwPjio.GOTO(F1 2). remove Rilotfl))

15 rsvet criteria
2AJ .SELECT("current criterial

17 CSLERO" lIa'
18l -RETURNOBSE

=1 SELECTfPscet crite')~

AL .SELT.C critrial

AL SELECTfcrod rll

.IL =SET.CT(ren RIM) ra*
uPASTRnf

i-9
AL

116

F

5i 4adbox3f)
5 5 =IF(NOT(F54).RETURNO)

i..SELECT(mend Rlot areal)
-. 7. -1Ff ISBLANK(!end Riot area).GOTOfF61)
JIt -SELECT(.*rcf 1 1*
_M mIFf ISBLANKIACTIVE.CELLf)).DEFINE.NAMEr mend Riot ara").GOTO(FS811

jfl.GOTOEF571
jjL -mF(ISBLANK(PSSI.RETURNf)
_2. -FORMULAfP58)
JM =IF(NOT(ISBLANKP62W)SELECT(-rcfI).GOTO(F691
6 4 -FORMULAfPS21

-f IF(NOT(I SLANK(P65).SELECT(fr-c1 1.GOTOCF69)I
i.=FORMULAIPO5)

_t. -IF(NOT(ISBLANK(P69W)SELECTf'rcf11'.GOTOfF69)I
11-FORMULAf P691

-jSELECT(!end Rlot area:ACTIVE. CELL)
70. usEXTRACT(FALSE)
1 -NEWC2

.2 -F(ISBLANKIP65I.LEGEND(FALSE).LEGEND(TRUE)
7A 4 FETURMf

77.Z -.8ELECTfgaiai I OI formulae)

_M -SELECT("avail piot hours*')
jj. .PASTEtl
JLL -SELECT(*avail Riot area*)

J2_ -PASTE.SPECIALf3.11
JIL -NE Wf 2

i.-reset criteria()
Ii-SELECT('aual data)
1.-M(RACTf FALSE)
.2.-0EFINE.NAME(Nualificationsl
jj .SLECofvent data)

IAJ .. XTRACT(FALSE)
if& MOFINE.NAMEE~wwet-)

AZ W .~TA FALSE)
UM mDEFINE.NAMEi'raffomis)

AL =SELECTfrdatahamn
tIn .RETURNQ
101l
11 2 dbox3

.1 DLALOGBOXfJ56:P72)
jQS..ETRNfFlO3)

117

a
1.. add DilOt
2.L mdbox 10
.3 -IF(NOT(G2).RETURNo
4 '.SELECT!A)

5- right(Ino. of db cols)

71. -OEFINE.NAME(*end of rowl
8 SELECT(!A3: lend of row)

- INSERT 21
10. -FORMULAfP5)

jj-FORWULALP8.-cf 1 1)
j. -SELECT(rf-1 lcf1-l

14 -SELCT('rfll
_±9 .PASTEO
_]1 - righttlno. of db cots)
.171 mSELECT(rf-llc)l

8i 1 COPYA
JAL .SELECT("df 1Ic"

ZR PASTEO
-22 FORMULAfO.-rcf 110

.22 FORMULA(240Q.rc[21*1

.3. SLE-CT(IAB2:AM261

IAL =SELECT("con avail datao)
_M. =SORTf(IIAA.l I
AL abrO~aaat*Q

o3 SELECT(RilOt HIMr
j..COPY()
.2 -SELECT(*avail Rlo1 Rilotam)
31 wRASTEO

-=3 -SELECTrdatahome.1

3.2-

J. aDIALOG.BOXIJ3.PIOI
ILR _ RN(G371

AL
41. debrief

_LL -dbox4l)
AL -afl
AL
JL dbox4
AL MOI..OG.OXS3:y1)
AZ. .RETURN(G48)
.A$
421

-LL
AL

118

_Ldel RHIo
5 4 dbox2f)

AL =IFiNOT(G54).RETURNil)
-U =FORMULA(P22. loilot criterion)
5i 7 .OATA.FIND(I

-M -SELECT(ACTIVE.CELLA)
AL -DEFINE.NAME(current RilOtal

_a rightflno. of db cols)
itL mSELECTtrcf15j-)
.12 wDEFINE.NAME(end of rove)

3l =reset criteria()
.j SELECT(!current Rilot:!end of row)

LI-EDIT.DELETE(2)
LI_ =SELECT(tAB26:IAM261
AL7 -EDIT.DELETE(2)

JUL =SELE.CT("RilOt HIMt"
.1.-COPY()

70.9 =SELECT(*avaiI plot piots")
ii. =PASTEI)

Za =SELECTrdatahomeal
7 4. -RETURNfl

LIdbox2
1.L-uOALG.BOWfJ20:P251

.J.L RMTRWG771

81.

AS. debrief update
JLL =clear criterpaO
-M -.SELECT(criteriahomo'l
AZ. -SELECT(.rf11co

LI FORMULANS5
.12. .OATA.FNDE)
_M. =SELECT(rcf31)
itL -FORMULA(ACTIVE.CELLO-Y1 0)
.2.2 -IF(ACTIVE.CELLMcO.ORMULA0)

11 SELECT(.rcI3I)l
15. fRMULACTMV.CELLI)-Yl3)

51. mIRfACT1VECELLfl.O.ORMULMfOll
JL =SELECTUrcMr
_IL MFRMULAWTnffi.CELLi)-Yl 6)-

I FATVCELLflO.ORMULA011l
LI wueset criterlat)

1U9. =RORoaateAI
im. 4AELECTrdateftme")

103

119

I J IK L M N 0 P
I Add Pilot Box Item HorizVert Item Item Text initial/Resul
Z Num Pos Pos Hght Wdth
3

4 Static Text 5 Name:
5 Edit Text 6 Dyer.-Do
.L Static Text 5 Qualification:
7 .Edit text box 6 FL
8L Combo list box 16 typo
9 Ok Button 1 .20 4 Enter

J&0. Cancel Button -2 Cancel

14

17

18 Del Pilot Box Item Horiz Vert Item Item Text Initial/Resul
AL Num Pos Pos Hght Wdth
A0

S tatic Text 5. Pilot:
22. Edit text box - Qyer. Doug
23 Combo list box is - loilot list 6
.2& Ok Button 1 200 4 Enter
AS Cancel Button 2 - Cancel
2s
27
28
291
301
311
321

341

J5
AL
A7

AL
42
431

44

AL
AL
A7

48.

A0
AL
AL

It_ __

120

S K L N p
AL

54 Plot box Item HorizVert Item Item Text Initial/Resul
55_ Num Pos Pos Haht Wdth
561

AL Static- Text - -X-Axis:

58 Edit text box 6 PIOT
5. Combo list box is !db headings 1

_OMStatic Text
i1 Static Text s -Attribute 1:

Edit text box 6 DACBT
AL 3 Combo list box 16 !db headings 8
J4L Static Text 5 259 4 Attribute 2:
Jj5 Edit text box 6
.3.3 Combo list box 16 1db headings 9
S7 Static Text 5

Sf Static Text 5 Attribute 3:
6 9 Edit text box 6
70 Combo list box 16 ldb headings 8
71 Ok Button 1 1350 Enter
72L Cancel Button 2 340 1350 Cancel
731
741
731
761
77__

781
721
801

821

831
841

_u
AL
AL

A2
AL

L

28

_u

102

101

10 _ __

103
104

121

R 8 1 T IU V W IX y
1 Debrief Box Item Horiz Vert Item Item Text Init/Resul
2 Num Ogg Pos Hght Wdth
3

4 Static Text 5 -Name:

5 Edit Text 6 Able, Adam
6 Combo list b 16 - tve2 1
7 Static Text 5_

8Static Text 5 yo)

9 Static Text S No. completed:
1 0 Edit Text 8

11 Static Text 5 -ACST

12 Static Text 5 No. comRleted:
1L E-it T-xM 6
14 static Text 6[-- ACBT
I1- Static Text 5 No. comRleted:
1 Edit Text 6
17 Ok Button 1 200 4 Enter
18 Cancel Buttor 2 Cancel
19
20

21 Enmro boxes: 1295 199 294 151 Oh-ohl
L 1 127 109 64 K

.2 _ 9 9 -Because of aualiflcation,
2 _5 10 35 _ _availability, or currency.
2. 5 10 58 you can't fly this Rilot.
2a1 13 . 11 - Place someone else TRJE
.27
18

_2 1295 199 294 151 Oh-oh!
30 1 207 109 .64 0K

31 1 ; 9 9 This pilot requires an instru
2 5 10 35 - - ilot. Either none is avalabi

AL 5 10 58 -the fliaht leader slot is fille
AL 13 .6 113 -Place someone else TRUE
351

A DNIF Box 359 188 189 277 DNIF/UnDNIF a Pilot
AL __ _ L.. L. - Who and When? _ _

AL. _____ 30.. 171... U..... L 2...!ilot list 10
AL _ 9 156 171 730
40. 5 9 189 To:
41 5 110 135 - -From:

A2 7 19 208 171 -600

AL 2 i13 245 4 Cancel
AL 1 1111 245 64 K
45.

4 CaL'tDNIF 52 199 217 e1 Oh-ohl
47 5 9 5 That pilot is alreadv busy! _

AL 4 40 44 1.33. Cancel DNIF
AL__

0 Can' UnONIF - 2 199 217 81 Oh-ohl
51 _ is L L) 5 Time mismatch.
512 14 4 44 1133 Cancel UnDNIF

122

R 9 1 T U V W IX y

A3 Debref box 1165 96 323 372 !Debrief
4 6 7 9 171 Dingo, Day

5L 16 9 40 171 .114 !pilot list 4
5. . 11 164 Event
M _15 LO 185 12 9 1181 Hevent list 1

A8 1 .202 15 105 1 Store Event
591 2 202 53 105 Done
AL 11 150S 167 156 199 iNo. Completed2
al 12 173 183 :0
62 1J2, 173 202 1 1

S12 .173 220 - 2
AL 1 173 238 -

AL2 173 256 4
Be. 12 173 272 .5
I7 14. 173 290 6
i8 12 173 308 7
A9 12 173 326 8
70 12 173 344 9
71
721

73
74
78
78

-M - - _ _ _ _77

78
79

81
82

AL
114

11
A9
A0

AL__

10

1021
903
IIt

ini
Sin'
in,__
1 n0_ _ _ _

123

A C _ _ _ _

I.. make schedule try P list iD avail or not rea
2.~. Places pilots as needed ui =save criteria() -.save criteriafl

3Move to "Mission" on sched -SELECTI'P list mission -SELECT(*Dilot criterion"I
.. L SELECT('Missioncolumn'l -FORMULAficufrent msnI -FORMULA(icurrent qilot)
5- down() =set db Plist() -SELCT !uaI criteriona

6L Find last mission =SELECT(*orioritv x ran~ge=FORMULAr*>Iw
7 IF(ISBLANK(ACTIVE.CELL UEXT ATTUE) -S C(Ocurr criteriong)

J. w right(2) =set db con dbA -FORMUJLAr>-Owi
9. Schedule remaining pilots -IFIISBLANK(ABSREF(orfl .IF(!Rossible Rilots>O. RET

_jl IFRISBLANKIACTIVE.CIELL -SELECTVpI2t criterion") aSELECT(*criteri§20)
= UROf CLEARM -COY(
!W GTO(AIO) =RETURN(FALSE) -SELECT(acurrent criteria

.J3.UBEEPl =SELECT(opilot criterions) -PASTEO
14 =SELECT 'atahome") -FO RMULA(ABSREF(*rfllc -SELECT(scurr criterion")

_11 wSELECl M'schedules) -IFftlossible oilots>O.GO -FORMUL t".O*
.11L -RETURNfl -SELECT(ABSREF(wrrllcf-, =Ioossible oilots
.11 =EDIT.DELETE(2) =restore 'criteria()
_ijf.find pilot '=WTO(B9) .IF(C16>0.RETURN(*rea
19 -IF(COLUMN(ACTh/E.CELLO) -try to fivo___________

_M-IF(ROW(ACTIVg. CELLOW l .F(BI1 9.commentl*orioritv*____________
2j usdefing cellsfl -reset criteria() comment

s33 constrain availabilty) nuodate P list() =ARGUMENT(greasona.21
_3.Muconstrain flight leaders 4RE1JTURNM =IF(reason-*currenc.GOTd

_LL =lF(lSBLANK(lcurrent slot) ___________ IF(reasona"user soecified"
3j lF(A2SuMfifd another' GO -set db P lIWOf -FORMULASASREWO~l

gtry IWO SELECT(*P list grit num'-SELECT(urcrl11)
33 .F(2-TRUE.RETURNA) -FORMULA(ASREFtrIJ =FORMULA(* on Prioritv Li

_. try low currencvfl -DATA.FINDII URETURC
uIF(A29wTRUE.RETURN8I -SELECtrcl4l -SELECT~ocurr criterion*)

.31. -try hi events() wIEFINENAMEfgirioritv co -SELECT("rllc m)
_M3 ulF(A31.mTRUE.RETURNfl) =FORMULA(icurrent line n4 -OPYQ

error I--n olts fou wSELSC (OP list crit num -S6ELECTA8SREF(*rc(31'.'
J = SE LECT(*currerit slot' -"CLEARMI 1 aPASTE. SPECIAL(3.1)
ii -ORMLA.FILL(t '* NO PI seot db con dbl utSCLECT(Orcri11

A _________________ ELECT~ocurrent slot") =FORMULA(* Das of Curr,,

try _________ to____fly____-SELECT(ABSREF(9rcf31w.!

-M.DAT .FIND) - try low currency -FORMULA(!msn criterion)
_&L -DEFINE, NAME(Ocurrent oil asave criterial) -SELECT(srcl10
JL -a avail or not rea() =SELECT(*curr criterion") wFORMULMO Events Remalr
_42. ..IFIA41wl uI o ra.O FORMLLAf'?2M =P&TURNO

U3 IFlA41usrea la not Nvair. wSELECT(Ofllc" -SELECTfABSREFf'rcI3'1
_&A -iF(A41 =Oea lo ayail'.SE wlF(ACTIVE.CELL(1,llgw SM a-FOONLLA='K

_L-1Ff ISBLANK(ABSREF(r- mSELECT(*Mrcf*
_43 =SELECT(urront sloto) uSELECT("curr criterion*) oFORMULA(- User SociV

=((A5FASER rRN PASTE. SCIAL(3. 1 -RErURMf
fly___th ____guy__ IFfIaossib;e oilots=O.GOT =REflJRNf

124

A a_ _ _ _ _ _ _ _ _

_ii Ing rag gas remove pilot
_§A .SELECT(ABSREF(*rf-llcl- =restore criteria() -DEFINE. NAME(*current si
AL -FORMULA(S) -RETURN(FALSE) -uACTIVE.CELLfl

,wRE. -=~cu ~ ___________ left(31
AL.___________ -reset criteripO -DEFINE.NAMEf'current Lw
_M c~heck gual IMSELECT 7current slotl = lefto
_M1 -SELECT(*ooseible 136 -RETUFKTU -DEFINE.NAMEecurrent T

=l FORMULAIASR .f1 10 -SELECTcurront slota)
NIF(!uW ce .RTURN-COPYn

12tr hi_______________SELECT("Dilat criterional
JL. onstrain flight leader&s -save criteriafl -PASTEO
_§A -lF(ISBLANK(lcurrent aual) =SELECT('msn criterion') wDATA.FINDfl

ii SELECT(:gual criterional =SELECTfrr1lel -DEFINE. NAME(Ocurrent oil
JM -FORMULA, FILL~!current C -OPYOl "ucdate unavail(*flying")
Az. uLCTcurr criterion*) SE CTmsn criterion~l =SELECT(*RilOt criterionol
AL aFORk4ULAFLUf"'-On -PASTE, SPECIAL(3,11 -CLEARM -

jj-RET1JRNO -IF(!Dossibis ojlots=OGOT =SELECT(ocurrent slote)
71 ___________________ SELECT(*rI-1 lcr-11*1
.1.1 constrain availability -IRSB70commentlaeventsm -IF(ACTIVE.CELLA-5..GOTC
J1.2 -.SELECT~oavail criterionn) -IF(B70.GOTO(857) .make -SELECT(orcf I21")
_Mj -FORMULA'Free -GOTO(BB41 -COPMf
7j 4RETLJIM =SELECT(*rc-1 21-1
731 =_________ PASTEfl

_M uRndate avail USELE TV"current slotni
7l 7 ARGUMENrlrmono2l u~date unavail - riaht(3)

JJL =SELECT(*current RiOM =ARGUMENTrreason-&) -DEFINE.NAME(*cuffent co
21 w, right(!no. of db cols.I OSL cf'urront Dioro) at rlahtf)

11 IFANDreasonoflvinoIS w, right(!no. of db cols+1 I IF(ACTIVE.CELLA-0 on Pr
81 an riahti) -1_RANDMreason-*flving.AC -set db P listO

_M2 -ACTIVE.CELLA.1 -DEFINE .NAME(*Iast Land) uSELECT(Orf1lcrfl1 Jr4lul
JjL a righttA821 =SELEC lcurrent slote) =CLEAR11)
.3± =SELECTirrc:rdlial an URO MISELECT acurrent common

.3 .INSERT(l) _____________________QM

jj-FRMLA(Icurrent TOT) a IOUt() =SELECT(OP list critw
.31. -SELECT(*rcf11l uOOPYfl .SELECT(*drflc
JUL nFRMULAflwrent LandL wSELF M(ast Land*) -PASTECI

MF -Eru~ ___ __ ___ __ ___ __ ____ ___ ___ ___ ___

-WTt________gt(4
_21 define cells =SELECT(*last Land-) uSELECT(ACTIVE.CELLO)
.12. -DEFINE, NAME(Ocurrent s1 xrCLEARM1 =CLEARMI
J =DEFINE, NAME(Ocurrent a- rightl) -SELECT(OP list crital

3.-DEFINE.NAME(*currn -TI.VE.CELLO -SELECT(rflcg:rllcI"l)
LNAME - - rightfB941 CLEARMI

_M± -DEFINENMlcrn T -SELECT'rcomillel leftO
-M=EIENMrurn 1wFf reasonudnr..GOTOMB =F0RMULWr'-

IL-SELECTlocurrent criterta %IAW.EL-alcreme db con dbil
. -MATH!urn ms.SAg.BSELECTrocurront commer

tfl. a rightUA991 a rlahtt) -uEEC .r:rcfl1Il
g= -SELECT(ACTVErcElA w,-ATVCLQc uCLEARMl

Lt= -OEINE.NAMEf*curr crite T J R N) - SELECT(*current slotul
M -DFN.AE-s Nri -EUMTDELETEM 1) CARl

01]00 .RETURNA wREIRMI RTRf

I. Schedule --___________reset schedule
2j Make Schedule Macrol1!make schedule -SELECT(OMissioncolumnal

_2__LPlace a Pilot -Macrolifind pilot don
4..Remov a Pilot MacrolIremove pilot Find last mission

.L DNIF a Pilot Macvol !dnif Move to last pilot Slot
7Free a DNIFed Pilot Macrol Iundnit _______________

a- Show Scheule' Macrol Ishow schedule =IF(ISSLNK(A TIVE.0EL
jtL Print Schedule MacrollRLnt schedule -0 uRO
±1j Reset Schedule Macvol Ireset schedule -GOTO(ff)

-

_j j Pilot data reset________ criteria_______

16. Pilot Qlualifications Macl I gual USELECT(*current criteria'
17Event Flecuirements Macrol1!events CE M
i-Event Currencies Macvol cur ________________

ALAdd Pilot... Macvol !add pilot ___________

_ji. Delete Pilot,. Macvol de I ilot Criteria. IDS Swmas:
AL PCrGA00# AE1ipagateDaa__________

AL -s__ _ _ _ _eri
.2.Debrief Pilot.. MacrolI Idebrief =SELECT(ocurrent criteria

DeJe Update Macroli Idebrlef update =CP(

Gah Data.. Macvol IRlot ______________

jf.Plot Availability Macvol !Rlot avail -F~

..jon open restore________ criteria_______

.. i..ACTIVATE.PREVO gual =SELECT(acriterial "I
.1.-ADO.MEKLXt.Dl:E20) uSELECU'gualificationsw) -OPYfl

W 4~.EUlD15:E2911 WRETURM- SLCTeurntciei

LIon ClO"e wSELECTtEavents' _________

-IL -SELECT.LAST.CELUf =RETLJN__________
AL uSELECT(ACTIVECE)f:A set db P list
-I AEODIMETEC2 cur -SELECT('P list*)

=DEFINE. NAME(Oend Rlo -SELECTlocurrencies") -SET.DATABASEO
Si. .,ETrdatahome .REtMRNO- WSELECTP list crit")

J.L nMAE.AS?fl .SET.CBITERMA
AX aSEBJM show schedule =-RETJFl

mak t.Ruavi SELECT1"Schedul** etd cnd
J3.5 aSELECTrocurrent WWIof PEFl.M .. ELECTrcon db~l

_4 =RUL.5oI.nt f print schedule uSELECT(*con db crir)
A. -FORMULA(no!Prof criterf wSELECTsC~gbauleol .SET.CRITERIAO

aj SLCT(smsn criterigo) .SEPRNTAREAO -FfffRNfl

126

_§2 dnif Proceduresf for moving cell ot
IA-SELECT(*nonavail') -dbox30
Ji DLALOG.BOX(S36:Y441 move to mission =IF(NOT(F54).RETURNO)
U IF(D55..RETURNA) -richt(Agg-11 .SELECT(Oend Riot area")
IL-FORMULA= a9 .EMN miFf ISBLANK(!end ROlt are
if OEFINE.NAMEfrcurront TO __________-SELECT(.c goa I*)

=rgt)UR WIF(f IS NK(ACTI VE.CELLt
.FOMJA(TZ ARGUMENTfrmoves".1 7) uiGOTOfF57)

LI. INE.NAM rr fnt mSELECT(.'rf-llc) -IE(ISSLANK(PSSI.RETURNI
La...ELECT("datahorm." =IF(ISNA(moves).RETURNOI gFORINALAIP58)

-M down(Y381 MIF(movem1 .RETURNtll -IF(NOTH SLANK(P62))SE
JIL .OEFINE.NAME(*current pi -SET.VALUE(E66.mgves-l1I -FORMULP62)

31'SELECT~opilot criterionol =SELECT(.Orf.1 Jc") =IRf N(ISBLANK(P651I.SE
FORMLA(curontWOO=E6-1 FORMUA P65)

-L constrain av ailabilityf) =IFf EO6cl .RETURN0.gOTO(uIF(NOTfISSLANKfP6911.SE
______________RHOS -FORMULA(PSO)

==. reset criteriaf) down -SELECT('end plot area:AC
j IF(D68u.O.DIALOG. BOX(S wARGUMENT(moves.17) -EXTRACTf FALSE)

______________ -SELECTf.*dllc") -NEW 2)
________________ IFISNA(oves).RETJRNf) aGALLERY.COLLI()

J_____________ miFf moves-i.RETURNA) -1Ff ISBLANKIP65).LEGEND(F
.Z SELECTf*nonavail~l =SET.VALUE(E76.moves-11 -RETURNO
fl .IALOG.60836:4 =SELECTf.-'rj"
LA IF(D7..RETURWI) =E76-1 olot avail

.. m FOFAA~nM IF(E7kl.RETURNA.GOTOE =SELECT~gavail plot form
2L -DEFINE.NAME-cumfft TO________ opmf

ai rightf) left wSELECT(oaval plot houri
jt-FORMULAfV42) uARGUMENTfomoveso.17) =PASTEf)

=j. DEFINE, NAMEf'current Lai =SELECTf.Orcf-110) -SELECT(eavail plot area
JM2 .SELECTfwdatahome~n =IF(lSNAImoves).RETURNf) &QM~f
ta = downiY381 . MIFf moves=.1.RETURNA) -PASTE. SPECIALf3.11

n3 .EFINE.NAMEI"cuffent or .oSETVALUEIES6,moves-1) I Wf2)
J3.3 =uodat* unavaill"dnifol -SELECT(.-mi--1 -RHrO Jf

check auv ___________ rOoaaate
=3.SELECT~oilot criterion) rlaht =reset critoriaf)

i.L -FORMULAf 'current slot) *ARGUMENT('mov"25) wSELECT(eoual date')
JL IaFfOosaible oot-.ALC -SELECTi.-rcf 11) -EXTRACT(FALSE)

.32.SELECT(*RilOt criteriond) -IF(ISNA(moves).RETURNf) -DEFINE, NAMEfogualificatic
_______________ =IFfmovos~l.RETURNA) -SELECTfoovent daa"

=RY0.1IETRN~indanoh-SET.VALUjEfE96.move9s-l I =EXRACT(FALSE)
_________tofly() -SELECT(.-Mcf 1 1IE.A~rmlo

uIRD5w-ALSDUM .80=E9-1 SELECT(ocur dat'
j= SELECT(opilot criteria o !E9lE.sBR31TURN 1.GL(uiEXTRACTIFALSE)

iA PCLARW) ________-EN NA~ME r~
=[. Y4.ETR in Handy-dandy test oRoram: wSELECT("dmtahome")

JMl mreset criteriaf) test11? mcommont(ouser soecitied'arIALO.SOMfS53:Y701 dbox3
1.3 -FEMURWTRUE) -alfl "2.GOTO(E1 2)) =DIALOG.BOX(J56:P721
101 __________-EUII RETURNIF1 031

127

1.. add Rilot
__-dboxl f;
3-1F1NOT(G2).RETURNI))

A-SELECT!A3)
5 .- rightIno atdb cos)
L -SE LECT(orcrl 5101

-. SELECT(IA3:[ond of rowl

.11 SEET(2f1)

fl wFORMULAi24O.rgirl

.1. ELECrcnvaldt

.14 uSELECT(-di~l)

-1- -I&Q.BOLS3:1 S

128

_L .dbox2f)
-LL -IFNOT(G541,RETURNO)

.12 .ATA.FINDO

AL -SELECT(ACTVaiCLDitDLOt

fLL -SELECTf'8datahom

JM -ETMGM

_M Wn_______AAM

_M wSELECT(wRilttist*)lp

_M1 -SELECT(*avail lt io

_M -SELECTrsth3en
1± -FORML(C1ECLA

129

1 J K _L K 0 p
I Add Pilot Box Item Horiz Vert Item Item Text Initial/Resul

2 Num Pos Pos Hght Wdth
3

Static Text 5 Name:
5 Edit Text -- Dyer. Doug
0 Static Text - Qualification:
7 Edit text box 6 2! .
8 Combo list box i - tYDO 3
9 Ok Button 1 200 14 IEnter
10 Cancel Button -2 - -nCceI

12.

14
is

18 el Pilot Box Item Horiz.Vert Item Item Text Initial/Resul
Num Pos Pos Haht Wdth

21 Static Text 5 Pilot:
2 Edit text box 6 -e -

.23 Combo list box is,. -- ilot list 5
24 Ok Button 1 1200 4 Enter
2S Cancel Button 2 - - - ancel

AL
2-1

31
32

A3-Lc

340

42
A

37
ALAL

40
421

4so

AL47 __ _
48
49__ _

so __ _iit
51

130

J K L M

54 Plot box Item Horiz Vert Item Item Text Initial/Resul
55 Num Pos Pos Hoqht Wdth
56

_I Static Text 5 X-Axis:
8Edit text box 6 PILOT

59 Combo list box 16 _ db headings 1
80Static TextIS tatic TeXt Attribute 1:

2 Edit text box a _ACST

j Combo list box 16 -db headings 8
AL Static Text 5 250 4 Attribute 2:

J S Edit text box 6 -

ji Combn list box 16 !db headings 9
_7 Static Text -

ES8 Static Text 5 Attribute 3:
69 Edit text box 6
70 Combo list box 16 !db headings 8
71 Ok Button 1 350 Enter
72 Cancel Button 2- 340 350 Cancel
73_ _

74
71

81
81

850

871

92
23

JI_ _

A5
AL
AL

1 2

1031
1041

It_ __

101__ _
10 _ _ _
103
i10

131

R .1 T.U V v W X Y
I Debrief Box Item Hori[Vert Item Item Text Init/Resul
2 Num Pos Pos Hgoht Wdth
3

4 Static Text 5 Name:
5 Edit Text 6 Able, Adam
6 Combo list Ix 16 t yMe2 1
7 Static Text 5

Static Text 5. -%-

1.0 Static Text j No. completed:
ItJ Edit Text 6 -_

11 Static Text 5 ACBT
1 Static Text 5 No. completed:

E13 Edit Text 6
1. Static Text 5 DACBT
1IS Static Text 5 No. completed:
i16 Edit Text B

17 Ok Button 1 200 4 Enter
1 Cancel Buttor 2 Cancel
19
20.

21 Error boxes: 2_95 199 294 151 Oh-oh!
22 1 207 109 64 O
23 5 9 9 Because of gualification.
24 5 10 35 availability. or currency.
2. _ 10 58 you can't fly this DilOt,.
26. 13 .6 1 Place someone else
.27
.28

2 295 199 294 151 Oh-oh!
30 1 207 109 64 __K

31 5 9 9 -This pilot reuires an instru
321 5 10 35 -oilot Either none is availab l
3 10 58 - - the flight leader slot is fille

AL 13 6 !13 -Place someone else 1HE
381

3 ONIF Box 359 188 189 277 DNIF/UnDNIF a Pilot
327 5 -9 -Who and When?
38 _15 9 .30 171 92 loilot list 10
3L 7 19 156 171 730
40 _5 9 189 To:
41 5 10 135 From:
42 7 -9. 20 171 1600
43 2 13 241L 4 Cancel

1I 111 245_ 64 _K

46 Can'tDNIF __3 27 81 Oh-oh!
47 5 1 - That pilot is already busyl
41 4 40 44 133 Cancel DNIF

.0 Can't UnDNIF 352 199 217 -81 Oh-oh!
5 9 5 _ Time mismatch.

s2 _ 4 40 44 1 Cancel UnDNIF

132

R 8 T U V W I xY

3 Debrief box 165 96 323 .72 Debrief
AA. _ 6 7 9 171 Dino. Dav
55 16 9 40 171 114 !Pilot list 4
5i 5 11 164 - Event
57 15 10 185 129 181 !event list 1
A8 1 202 15 105 Store Event
A9 2 2 -53it105 Dmne
60 !1 15Q 167 1l6 19 No. ComRleted 2
61 ! 1 173 163 0

21:2 173 2021
AL 12 173 220 2
JAL _ 12 173 238 3

65 12 173 -56 4
.31 12 173 272 5
671 12 173 290 6
68 12 r173. 308 7

12 173 326 8
70 12 173 344 9
71
72
73
74

76
77
781
721
84.

831

820
81

AL

AL__

it

Sl

211

10_
IiI
AZ__

ii
ii
10__
101
10__
10__
10__

133

APPENDIX E

The following code is an example of the functional programming used by most
spreadsheet programmers. The program uses four'inputs to generate and print out data on
a form used to justify rental cars for government travel. All parameters are visible to theuser and may be edited directly. The only non-automated requirement is a data-of-travel
text change on the form. Formulas used to do the calculations are shown.

134

RADC/CO Capt Doug Dyer 8-May-90

1. No adequate government or public transportation exists between points of arrival,-

TDY location(s) and lodging/meal facilities.

2. Date of travel 13-14Jun90 Number of travelers 3

3. COMMERCIAL TRANSPORTATION (Circle appropriate mode)

Limo/taxi - airport to motel: $4.00 X Nr of Travelers 3 = $12.00
Taxi/- motel to TDY station $16.00 XNrofR/T 6 = $96.00
Limottaxi-moteltoairport: $4.00 XNrofTravelers 3 = $12.00

Total Cost: $120.00

4. RENTAL CAR:

$33.00 perdayX 2 day $66.00
$1.00 per gal. of gas X 1 gallon (20 miles) $1.00

Total Cost: $67.00

5. SAVINGS TO THE GOVERNMENT: $53.00

6. Rental Vehicle arrangements completed by SATO on 8-May-90

x2973 DOUGLAS E. DYER, Capt, USAF

135

Automated Rental Car Justification: TO USE, CHANGE FIRST FOUR ITEMS BELOV
CHANGE DATES OF TRAVEL, SATO RESERVATION TO LEFT, THEN PRINT
FIRST PAGE ON FORM 1820, CHECK RENTAL CAR AND SIGN

The following data are required for calculation Comments
Distance from Airport to Motel Loci 2 Miles Change each time
Distance from Hotel to TDY Locati 8 Miles Change each time
Number of Days at TDY Location: 2 Days Change each time
Number of travelers 3 Travelers Change each time

Common Carrier Costs -----

Costmle of airport carrier (limo/ta_ $2,0 Change Occasionally
Solo Travel Cost to Motel from Air4 $4.00
Solo Travel Cost to Airport from M($4.00
Total Travel Cost to and from Aip $24.00_

Cost/mile of local carrier (taxi): . $2.00 Change Occasionally
Number of trips between hotel and 2
Travel to and from Hotel: $96.00

Total Common Carrier Costs: $120.00

en Car Costs- I _
Cost per dayofrental car. $33.00 Change Frequently

of gas (per gallon): $1.00 Change Occasionally
Estimated miles of travel required: 20
Estimated Fuel Costs: (20 mpg) $1.00
Total Cost of Rental Car. $67j.0

Cost savings to the Government $53.00 NOTE: MUST EXCEED $25

136

A B CT RADCICO _____

4

7

17

191

11 Taxi/_ _ -_ mtelto _ _ _

21

43 1. No adequate governme11 TDY location(s) and lod __________

31

12. Date of travel _ ________ 13-14 Mar 90
17
18 3. CMMERCI To T _RA

20. Rl Limo/taxi- airport tom
21 __ __ __ _ Tiaxi/ - motel mo TDY stanf

___ __ __ _ imo/ta -motel toaip

3

4
41

26 4. RENTAL CAR:

2u

___ __ _=___ __ __ __ _ _ _ _ _ _ _ _ per day X
x2973 =_ -per gal. of gas x

3! 6. Rental Vehicle arrange _ _ _ __ _ _ _

_ _ __3_ _ _ _U6R

137

D E F

9

12

-T __P_*P_7
23

TT ____day

36

1

11 _ _ _ _ __ _ _ _

14_ _ _ _ __ _ _ _ _ __ _ _ _= 1

20 __ __ __ __ _13Sda

21 _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _=PT*P17

22 _ _ _ _ _ _14 _ _ _

138

GH
T capt Doug Dyer H
4
2

6-r _ _ _ _ _ _ _ _

8
9
1011 _ _ _ __ _ _ _

14

1W Number of travelers
17

20 X Nr of Travelers
21 X Nr of R/T
22 X Nr of Travelers

Total Cost:

25
26

29 alon(=P26 miles)

Total Cost:

33 =P30
341

3S =NOWO

37

43
44

31_ _ _ _ _

139

_ _ _ _ _ _ _ _ _ _ _ _ _

9 _ _ _ _ _ _ _ _ _ _ _ _

6 hJowo
7 1_ _ _ _ _ _ _

19_ _ _ _ _ _ _ _ _ _ _

20 ______________

21 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

22 1___P9_________

T231_ __

24 - _ _ _ _ _ _ _ _ _ _

25_ _ _ _ _ _ _ _ _

21 =B28*E28
291_________ =B29*E29

311 =L28+L29

371
381_ _ _ _

140

M N 0
Automated Rental Car Jus
CHANGE DATES OF 7M
FIRST PAGE ON FORM

The following data are req
T Distance from Airport to N
7 Distance from Hotel to T _

T Number of Days at TDY I
Number of travelers

11 Common Carrier Costs---
12 Cost/mile of airport came
3 Solo Travel Cost to Motel

i4 Solo Travel Cost to Airpoi
IS Total Travel Cost to and fi
1

17 Cost/mile of local carrier (
18 Number of trips between h
W Travel to and from Hotel:

21 Total Common CarrierCo
221
23 lRental Car Costs-
24 Cost per day of rental car.
25 Cost of gas (per gallon):
26 Estimated miles of travel r
27 l iiatd uel Costs: (20

23 Total Cost of Rental C:_.
291
30 Cost savinp to the Gver_

.311__ _

331
341
3S5

371
3'1

401

421
431
441
451

141

P _Q R
1

5 Comments
7 2 Miles Change each time
r 8 Miles Change each time
T 2 Days Change each time
9 3 Travelers Change each time

12 2 Change Occasionally
13 =P6*P12
'14 --P13 _ _ _ _ _ _ _ _

1 -P6*2*P9*P12
16

17 2 Change Occasionally
1W =IF(P8> 1,(P8-2)*2+2,0) " _

1 -P7*P18*P9*P17
20

21 =P15+P19

24 33 Change Frequently
2I Change Occasionally
26 =P6*2+P7*P18
27r =P26/20*P25
28 =P27+(P8*P24)
-W
31 =P21-P28 NOTE: MUST EX _ __

31 _ _ _ _ __ _ _ _
321
331
34

37 _ _ _ _ __ _ _ _

38
39
4O

42
73
7w
r5

142

APPENDIX F

The following code is a solution to the 8-puzzle describe in Nilsson's book. Note
that the spreadsheet representation closely matches Nilsson's Figure 1.2. Concrete data
structures are much easier to work with than invisible ones. During execution, the program
explores the possible moves and picks the one which reduces the error most (hill climbing).

143

Begining Eight Puzzle:
2 8 3
1 6 4
7 5

Out-of-place matrix:
__ __ __-1 -1 0 _ _ _ _ _ _

0-1 0
0 -1 0

The value of the Hill Climbing Function is: -4
(Hill Climbing Function is a summation of the out-of-place matrix,
or "minus" the number of tiles out of place).

Desired puzzle configron at completion:
1 2 3
8 4
7 6 5

144

A
1Solve

2 Exolore
31. -SET.VALUEln.Northfl
4. -Southfl
5. uSET.VALUE(e.Eastfl
j.. uWestA
7.. =TVALUE(s.SouthA)

.1± Tt% Vand Move

.1.Test Don*
IFe'yer:Public:Current :8 RUZZle!SD1 1 oO.GOTO(Ex~lorefl

16. -RETRNO

Is
19Macros for moving the cell

2±left
22.=SELECT(.rcf-1 10

ILright
21 SELECT(.Orcfl]a)

-2.L Up
_Ml =SELECT.rf-llcm)

*jdown
-IL -SELECT(.-dl11cI

B. 3ow it an exRansion of one of the einloration magos: (Next RANe shows Imyout)
AL
21 North
A40 a upf)

jj IF(ISNUMBER(ACTIVE.CELLA).COPYO.RETURN-1 0))
=Z downA

Al-PASTE()
-AA. -uat)

Al CLEARt1)
_IL uRETURNf'DverPubllc:Current :8 RUZZIW1SD4O)
47 -2
AX M

145

__ _ _ _ __ _ _ _ _ North

3 _________ -IF(ISNUMBER(ACTIVE.CEL__________
____________ - -downftl

J. =_________ PAST fl
6 a URI)
7 CLEARM)_________

a3.__________ -RETURN('Dver:Public:Currf
21 __ _ _ _ __ _ _ _ 2 East

-Mj West ______e_____ - right I

J -a~t WHO________ -IF(ISNUMBER(ACTIVE.CEL
_12, -IF(ISNUMBER(ACTIVE.CE = left()
_JL = right() -PASTED

-A PASTE(- right()
I~ttfl =CEA-RO1

1j -CLEAR(1) -RETURWeDver:Public:Curri
17. =RETURN(CDver:Public:Currf South 0

i-10 - downO
19 WA -IF(ISNU BER(ACTIVE.CELI__________

.2.1. MPASTEOl__________

AL.2 __________ _ = down(L___________
.22 __ _ _ _ __ _ _ _ CLEARI I) _ _ _ __ _ _ _

241 __ _ __ _ __ _ _ -RETURN('Ovor.Public:Curr _ _ _ _ _ _ _ _ _

231 .__ _ _ __ _ _ _ 2 _ _ _ _ _ _ _ _

281
271 _ __

AL
AL
34.
3± _ _ _ _

Sal

AL
AL_ _ _ _

AL
AL__ _ _
t__ _ _

481 _ __

146

APPENDIX G

The following code is used to record long distance telephone data using a visual
input and as much default information as possible. The program uses pull-down menus to
start and end a call and paste the called party's data into a database. If the party has not
been called before, the data is stored in a table which may be edited or sorted. At the end of
the month, the user sends the data file produced by the program across a network to an
analysis center. The analysis center has another program which consolidates data into one
file and applies the analysis functionality inherent in Excel to flexibly analyze the data and
discover errors.

147

00 0 0 00c 40 45oo 0 *b6a4

agall

I le -11664

0: 1
1z

-W%

X
~~C4

0 AA

UIlI1911fe M V G e
<9 ~ I0001Ca! ~ ~ ~ 2181111U

Bill
PRIA loll I

1,191110" Z: AIMN

M, -4

...

148

HeW Info: *********.*********,*, **********.**

T__ daa to d left is impmm (imes 9 Fact).
You may manually input my data or use Long Distmce mwo provided.
New informaton about who yourc calling s normally sto d in the list below.
You may edit that list and sort it using some manmally assisned frequency.
When rrnte, make a daa file and TOPS this feto _Mry.

(Only a duplicate of the data file wil o You may save it or trsh it.)
To be safe, don't delete ru m* unl th a at leas two maohs old.

See Doug r for sldorinal info. This is gmvt etl plcdn

Last Inset to Prgg Dialed Numbe __
Pi u [h PA 412-268-3842 Dr Bill Wolf MCU

Frequently dialed numbers WNW, ...-,.,I :__"____
(Freq.) CITY STATE TELEPHONE NO. USE DATA TO LEFT COMPANY CALLED

Pittsburh PA 412-268-3942 Dr Bill Wolf MCU I
Arlbntton VA 703-95-1766 Lcy Snodgrass SAM (DIPARNO
Arlington VA 703-276-3530 Pegy SAM
Bu__nmn_ MA 617-229-6565 Mable MaMuot Bw ingm
Lubbock TX 806-742-3904 Dr John Smith Texas mating of Tednology
Unknown VA 703-522-221 Bob Spakeas l in Syst
Norfolk VA 8 I44514000 JnLa J rew n Cunfot Jin
Scon AFM IL 618-632-2424 Jack Whiz. Mitr Madzie
Santa Monica CA 213-393.0404 Dr. BM Tucker SAND Corp
Sam Dimso CA 619-224-3460 Dr. Jose Cuervo BBM

149

- AB
I start call end call
2 - FORM ULA(Yes", Iprocessing flag) -SELECT(wduration calc")
3 -SELECT(A2:K2) -CALCULATE.NOWO
4 -INSERT(2) -COPYp
5 ..DEFINE.NAME(*current roW6) -SELECT(odurationa)
6 -SELECT(,wrc[1 I") -PASTE.SPECIAL(3,I)
7 -DEFINE.NAME(start tlme,ACTIVE.CELLo) -FORMAT.NUMBERMhinms*
8 -SELECT(arc[8fl) FORMULA(*No", Iprocessing flag)
9 -DEFINE.NAME('duration-ACTIVE.CELLo) ;METRNO

1 0 -SELECT(orcf 11")
1 1 .DEFINE.NAME(reasore)
1 2 -SELECT("templatea)
1 3 -COPYO
14. -SELECT(ocurrent row")
1 5 -PASTE.SPECIAL(3,1)
1 6 -SELECT(rc[41")
1 7 -DEFINE.NAME(city-)
1 8 RETURNM
19
20 __ _ _ _ _ _ _ _ _ _ _ _ _ _

21 0IoDn-o on close
22 -ADD.MENU(1 A26:832) -DELETEMENU(1 9)
23 -ADD.MENU(5A26:B32) -DELETE.MENU(5,)
24 -RETURN -LSCRE
25 __ _ _ __ _ _ __ _ _ __ _ _ __ _ __ _ _ __ _ _ __ _ _

26 Long Distance ______________

2 7 Becin Call 'Loa Macros'lstart call
28 Whos Called?... 'Log Macros'lpaste who
29 Comment.. 'Log Macroslcomment
30 End Cal 'Log Macros'lend call
31 Cancel Call 'Loa Macros'lcan it
32 Make data file 'Log Macros'lmake data file
33 _ _ _ _ _ _ _ _ _ _ _ _

34__ _ _ _ _ _ _ _ _ _ _

35 can-it _ _ _ _ _ _ _ _ _ _ _ _

36 -IF(lprocessingjflag-Yes,GOTO(A39))
37 -ALERT(*No call in proceSs*,3)______________
38 -RETURNO _____________

3 .4-ELECT(IA21(2)
40 -EDIT.DELETE(2) ___________

41 wFORMULA(No,lprocssinajlag) __________

42 -RETURNO_____________
43 _ _ _ _ _ _ _ _ _ _ _ _

44 _ _ _ _ _ _ _ _ _ _ _ _

45__ _ _ _ _ _ _ _ _ _ _

46 6 -_ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _

150

C __ _ _ _ _ _ _ _ _ _ _ _

1 paste who poesdt
2 -DIALOG.BOX(E2:K17) -SELECT(1M18
3 -IF(NOT(C2),RETUJRN) -FORMULA(K1 0)
4 -IF(Kl 5.1 ,GOTO(process data)) -SELECTIN1 8)
5 -K1 5 -FORMULA(K1 2)
6 -SELECT("datahome") -SELECT(1018)
7 - _up() MFORMULA4K5)
8 1- down(CS) -SELECT(IP1 8)
9 -SELECT(urc:rc[410) -FORMULA(KS)

10 -CPG-SELECT(118)
I1I -SELECT('citya) -FORMUWAKS)
1 2 -PASTEO -IF(K1 6,Insert datao)
13 -RErUJRNO -SELECT(IM1 8)
14 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-GOTO(c9)

15is_ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _

16 ________ __________insert data
17 _________________-SELECT(*datahome")

is __________________ SELECT(or[1 c:r[I Jc[41*)
19 _________________ INSERT(2)
20 _______________-SELECT(1M18)

21 make-data file -SELECT(orc:rc[41I)
22 -SELECTC'Database*) -oPY
23 -COPO -SELECT(datahome")
24 -NEW(l) -SELECT(rf I1W)
25 -PASTEO UPASTEO
26 -DEFINE.NAME(-data) -RETURNO
27 -SAVE.AS(IC2&* Long Distance Data,11_____________
28 -CLOSEO comment
29 -RErURNO -SELECT(reason7)
30 ______________-DIALOG.BOX(Eigim2)

31 _________________-IF(D30,FORMULA(K21))

32,_________________ -RETURNO
33 1_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _

34 __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

35 __ _

36 __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

37 __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

38 __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

39 down up
40 -ARGUIMENTC'moves.1 7) -ARGUMENTC'ove,1 7)
41 -SELECT(er[1JcO -SELECT(,*r[-1WC)
42 I-IF(ISNA(oe),RErURNo) -IF(ISNA(moves),RETURNo)
4 3 -SET.VALUE(C45,moes-1) -SET.VALUE(D06,moves-1)
44 -SELECT(,*rlWl) -SELECT(,r[-llcw)
45 -C45-1 wD86-1

r46 l.F(C4UIl RETURNoGOTO(C44)) uIF(D86<'1 ,RETURNO,GOTO(D85))

151

E F G H I J K
1 Dialoo Box Data text result
2 Who are you calling 149 148 410 297 Who are you calling
3 3 363 10 34 CK
4 5 18 21 _ Telephone #
5 6 18 44 171
6 6 18 97 171
7 5 18 131 Company
a 16 17 151 171
9 5 17 187 City

10 6 16 205 171
11 15 18 242 state
12 6 16 263 171
13 5 19 77 Name
14 5 212 18 Select one:
15 15 212 45 189 208 Ir21c16:r81cl 6 2
16 13 212 270 1 Store Data TRUE
17 2 330 260 64 Cancel
18
19 Why are you calling 162 102 253 74
20 5 8 13 Reason
21 6 7 45 232
22 1 174 8 64
23 2 97 9 64 Cancel
24

25
26
27
28

29
30

32
33
34
35
36
37
30
39
40
41
42
43
44
451
461

OMINOO

OF

ROME LABORATORY

Rome Lcsoratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 3) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engtneering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3! systems. 1h addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technrology, super-
conuactivity, and electronic reliabillty/maintainability and testability.

