AD-A244 635 ' * .
KRR

RL-TR-91-275
in-House Report
December 1991

A VISUAL PROGRAMMING METHODOLOGY
FOR TACTICAL AIRCREW SCHEDULING
AND OTHER APPLICATIONS

Douglas E. Dyer, Capt, USAF

APFPROVED FOR PUBLIC RELEASE,; DISTRIBUTION UNLIMITED.

92-01480
T

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

92 1 16 063

. b

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign nationms.

RL~TR-91-275 has been reviewed and is approved for publication.

W7 i

SAMUEL A. DINITTO, JR., Chief
C3C Software Technology Division

FOR THE COMMANDER: gj /<’

RAYMOND P. URTZ, JR.
Technical Director
Command, Control & Communications Directorate

1f your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CA), Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.

R=PORT DOCUMENTATION PAGE | &7 aoeroved

P&mwhm%dwtmmm‘Mmthmhmm SBrching ®Oosting ciata sousces,
gathenng and MENtaining the dits reeded, and cOMpIRNG and reviswng the colection of IFomstion. Send cormments regarding this burden estimate o ary othar sspect of ths
colsction of Irformation, iNch.ding sugpestions for reclucing this burdien, to Weshington Headouartars Services, Directarats for information Oparations andReporns, 1215 Jefferson
Davis Highway, Sults 1204, Aringgon, VA 222024302, i to the Offics of Meragemert s Burigst, Paperwork Reduction Project (0704-0188), Washingtan, DC 20503 -

1. AGENCY USE ONLY (Lsave Blanig 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1991 In-House Sep 87 - Apr 90

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A VISUAL PROGRAMMING METHODOLOGY FOR TACTICAL AIRCREW PE - 62702F

SCHEDULING AND OTHER APPLICATIONS . PR - 5581

TA - 27

A

6. AUTHOR(S) WU - 40

Douglas E. Dyer, Capt, USAF

-4

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Rome Laboratory (C3CA) REPORT NUMBER
Griffiss AFB NY 13441-5700 RL-TR-91-275

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Rome Laboratory (C3CA) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Douglas E. Dyer, Capt, USAF/C3CA/(315) 330-3528

12a. DISTRIBUTION/AVARLABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maxdmum 200 words)

This thesis describes the aircrew scheduling problem faced by US Air Force units flying
A-10 aircraft and a visual programming methodology used to automate A-10 aircrew
scheduling. Database, scheduling, and programming technologies are discussed in the
context of automated aircrew scheduling. The visual programming methodology developed
is based on Microsoft Excel, a commercial spreadsheet with database functionality, and
is unique because it focuses on the use of Excel as a general-purpose programming
language. Using Excel, an A-10 aircrew scheduler was constructed with greedy heuristicsg
which schedule based on priority, event requirements, and currencies subject to pilot
and resource availability. Three other applications were developed using the method-
ology described, and, from the programming experience to date, recommendations for
improvements are made.

14. SUBJECT TERMS ‘igznnenorpms
Planning, Resource Scheduling, Visual Programming 8 PRICE CODE
17. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION (19. SECURITY CLASSIFICATION [20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIET | LNCLASSLFIED UNCLASSIFIED U/L
NSN 7540-01-2009500 s-u-uﬁmnﬁ?gszgﬁa

Prescrbed by ANS!
2012

ABSTRACT

This thesis describes the aircrew scheduling problem faced by U.S. Air Force units
flying A-10 aircraft and a visual programming methodology used to automate A-10 aircrew
scheduling. Database, scheduling, and programming technologies are discussed in the
context of automated aircrew scheduling. The visual programming methodology developed
is based on Microsoft Excel, a commercial spreadsheet with database functionality, and is
unique because it focuses on the use of Excel as a general-purpose programming language.
Using Excel, an A-10 aircrew scheduler was constructed with greedy heuristics which
schedule based on priority, event requirements, and currencies subject to pilot and resource
availability. Three other applications were developed using the methodology described,
and, from the programming experience to date, recommendations for improvements are
made.

Aconssion Por “

NTIS 4SRa&l - !
DTIC TAR O
UuaLnounend O

JustLtfasation =

o

b_.f;.u‘;i.imt tons

Avanilability Caode
" lAvatil apd/of

bist Special

—

L S

iv

APPROVAL SHEET
ABSTRACT

........

TABLE OF CONTENTS

..

--

TABLE OF CONTENTS......cooviittiiintiiiineretecic s cscensesnsnestsnaesnaes
LIST OF FIGURES........iitiiiiitiiinitiintticinteectnteestraneeesennseenns

CHAPTER

1.
2.

3. COMPUTER TOOLS AND METHODOLOGIES FOR

AUTOMATIC AIRCREW SCHEDULING...................

DBMS QuUeries..cccciuuceiiirinirerenenreneierneenennns
Other Models......oceniininiiniiiiiiiiicceneeeeneee.
Object-oriented Databases..............cccevereeennnnee.
Lessons from Artificial Intelligence Research........
Database Interface........ccceevieerievnncerenncrnnnnnnnn.
Database ACCESS....ccceeeciuurernncnnninnnnnns ceeernene

Scheduling Methods.........ccccoivrviiiniiinaniirnniiecnnnnnne

Algorithms Based on operations Research............
Algorithms Based on Al Search........................
Algorithms Based on Heuristics............cccceeuu...

Programming Environments and Methodologies

for the Aircrew Scheduler.............cocceeeaannannnne.
Higher Ordered Languages (HOLs)...................
Object-Oriented Programming..........................
Visual Programming..........ccceoiiivueencacennnnnnnnn.
Program Animation........cccceeerereencenenenecnennnan.
Graphical Input to Programs............ ccccceenee...

4. A VISUAL PROGRAMMING METHODOLOGY BASED

ON MICROSOFT EXCEL ON THE MACINTOSH........

A Visual Programming Methodology Using Excel..
Excel's Interface......c..ccccoeeiiiiiiiiniiiiininnnnnnnnn.
Control Structures......ccc.cceeeecrieveececrncceneennenns
Data Structure Design......ccccceeeeerivvennnncacennnn.
Program Animation.........cc.ccceeerienicenenreannnn.
Rearrangements of Data and Programs................
Verification and Validation...........cccccoevueeeeeen..
Graphical Programming...........cccecerieiiinnnnnnene.
Use of Database Functions...........ccccovcvennnenanee
Windowing, Menus, and Mouse.......................

Page

Page
5. THE EXCEL AIRCREW SCHEDULING PROTOTYEPE........ 39
Design Considerations.........cccccceeecereennnnnenenne. 39
System Description of the Excel Aircrew
Scheduler Prototype.....ccccccceceiinennnneeneennnnene 40
Data Structures........ceceeriecrnncerancreacrrancenens 40
Data Representations..........ccceeeeeeeernnnneccennanes 46
Procedures........cccoviiiiiniiiiniiiiiiciiniinnnanee. 49
Interface......coouvieiiiiiiiiciiiiiniiiinnneennnnnn. 54
Using the Excel Scheduler.............................. 54
Constraints on Operations.........cccccccevuucereraneen. 56
Uncertainty in Schedule Development................. 56
Scalability..cccoiiiniiiiiiiiiiiii e 57
Expanding the Network...........ccccooeeirirnrnnnnnne. 57
6. OTHER APPLICATIONS AND
IMPROVEMENTS TO EXCEL.......cccoceviiiiireiriaennnn. 59-
Other Applications........cccceeiiivennicenrennneennnnn. 59
Difficulties Associated with Programming in Excel.......... 60
Data References........ccccooceiiinniirimeninnennennnnne 60
Programming Flexibility........ccccceevirianninnennnnas 60
ADStraction......c.ccoeeieiiuieniiniiiinnincicinionnnnns 61
7. SUMMARY.....ooiirnrnrcnenenrsneseeseseessseessesesssnssens 64
ConcClusions.......cueeiieiiiiiiiiiiire e, 64
Future WOorK....cccciiiiiiiiiinniiciiiniiiiiiiceiiennecennnn. 65
BIBLIOGRAPHY.....ccccviiiiniencnnasl eenteecesterestesastusrrtasestnernteraaresnnnes 67
APPENDIX A...oiiiiiiiiiiiiiiiiiesiesioteiisntassestustssssssscnssessassocsssassnssnsans 70
APPENDIX B....ccoiiiiiiiiiiniienieitiiaimateiiesiesasssssssssssessssassessnssssassonans 79
APPENDIX C....iiiiiiiiitiiiniiniicneicssecstontessssssessensansssssnnsensansannsans 89
APPENDIX D..ovriiiiiiiiiiiiiniieiiiniiasiniessssrscsnsscsossossassosnssassnssesassenses 104
APPENDIX E..ooiiiiiiiiiiiii it eter e ce s cens et sas e s ansnsannenes 133
APPENDIX Fo.oiiiiiiiiiiiiiiiiiiiiiiaceieiaciensiasioessesssssnsinsssscsscsensasaons 142
APPENDIX G cooreiiiiiniriinniiinineiinnresisetiesssessessesssscassssssessssssssesssosnes 146

vi
LIST OF FIGURES

Figure 1. A Partial Daily Schedule for A-10 Continuation Training.................... 7

Figure 2. The Consolidated Database and Criteria Array.......ccccccecrceirvererennans 41
Figure 3. Availability Data Linked to Pilot Tuples........cccccceevvreviriciccercncns 41
Figure 4. Partial Schedule and Priority List.....cccovccirivieiinisnnenricnicncrnnns 43
Figure 5. Additional Flight Data.......ccciiiviiiinnniiiiiniiiiiiiiiiiiniivnnencnncnn 43
Figure 6. Data Projected from the Consolidated Database................ccuveu...... 45
Figure 7. Example Analysis Graph.......ccccouviiieriiiciniiiiinnnnne eeseeesenns 46
Figure 8. Pilot Availability Timeline.........cccovveireiivervivnniriinnenccsnnnninnan. 47
Figure 9. Automatically generated Daily Schedule.............coucevuvenecnnennane. 48.
Figure 10. Excel Aircrew Scheduler Top-level Design..............cuuueeuenennen.n. 51

CHAPTER 1
INTRODUCTION

The Rome Air Development Center (RADC) is a large Air Force laboratory that
does exploratory development of Air Force command, control, communications, and
intelligence (C3I) systems. In 1987, RADC developed a knowledge-based aircrew
scheduler to meet the needs of single-seat aircraft unit continuation training. (See
APPENDIX A for a system description.) Unfortunately, the 1987 prototype was
developed in a LISP environment under a commercial expert system shell called
Knowledge Engineering Environment (KEE). The cost of the required LISP machine and
KEE prohibited direct installation of the prototype in operational units. Furthermore, the
complexity of the code comprising the 1987 prototype made modification an unpleasant
prospect. Because each operational unit schedules a little differently, the ability to modify
the scheduling system is an important con;idcration. In addition, the Air Force faces many
different types of scheduling problems other than single-seat aircrew scheduling. Some
examples of these other problems are scheduling of operational missions, multi-person
aircrews, air refueling, and aircraft maintenance. It would be nice if there were some
simple programming methodology for developing software solutions for these problems as
well. During 1989 and 1990, the 1987 KEE aircrew scheduler was ported to the Apple
Macintosh running in Microsoft Excel. (See CHAPTERs 4 and 5 and the APPENDIX).
In the process, a new methodology for programming generic scheduling systems was
developed. This thesis describes the new aircrew scheduling prototype and the '
methodology used in the context of other relevant research.

The following chapter describes the specific scheduling problem whiéh must be solved by
Tactical Air Command (TAC) units flying single-seat aircraft to complete required

continuation training. Requirements and constraints for A-10 continuation training are
described. Flying units are described organizationally because responsibilities and
information pathways are important to the problem solution. The manual process for
scheduling is described along with the current database support tool. The goals of
scheduling are identified and an automated information system for scheduling is proposed.

The third chapter discusses current technology applicable to scheduling and
programming in general. A scheduling system typically involves a moderate amount of
data, so database teqhnology is addressed. Specifically covered are shortcomings of
traditional database models and efforts to bridge them. Scheduling algorithms from
operations research and artificial intelligence are discussed. Different programming
languages, environments, and methodologies are described for implementing an aircrew
scheduler. Visual programming, a new methodology based on the computers increasing
ability to handle graphics, is presented as a new way to reduce the complexity of programs
and programming.

A

In CHAPTER 4, a visual programming methodology based on Microsoft Excel is
introduced. Using visually explicit data structures and animated programs, the
representational complexity of programs is reduced, making development and debugging
simpler. Software engineering concemns which arise from representational complexity such
as modifiability and verification and validation are treated. A visual programming
methodology also helps make the code easier to change and believe in. The graphical
programming possible in Excel is descnbed. The use of other attributes inherent in Excel
and the Macintosh are discussed. The high-level database functionality of Excel is credited

with simplifying scheduler applications. Windowing, pull down menus, and mouse input
are also given their due. ' |

CHAPTER 5§ is a system description of the new Excel aircrew scheduler prototype.
Data structures and data representation are described in detail. The algorithms and their
operation are discussed. User functionality is described. Shortcomings of the current

prototype are identified.

In CHAPTER 6, the use of Excel for other applications is discussed. There are a
number of difficulties associated with the use of Excel which could be reduced if suggested
improvements were implemented. The way data is referenced in Excel should be modified
to reduce inconsistencies. Excel's macro programming was designed to provide analysis
functionality, not as a complete programming language. The‘macm language needs to be
formalized or a complete language like LISP or Pascal should replace it. Finally, Excel
would serve better with additional means for data abstraction, including the ability to

support the object-oriented paradigm of programming.

CHAPTER 7 summarizes the thesis and indicates the direction of on- going and
planned research.

CHAPTER 2
PROBLEM DESCRIPTION

To fulfill its mission, the Air Force requires highly trained pilots. After
undergraduate pilot training in a particular aircraft, pilots move to their assigned squadron
and enter into continuation training which continues throughout their flying career.
Continuation training is designed to make pilots combat capable and to keep them that way
by frequently retesting critical skills. In addition, continuation training is used to upgrade
pilot qualification, a certification of enhar ced ab{lity and greater experience. Flying skills
are supplemented by a variety of ground training classes. Ground training includes

simulator time, bail-out practice, and survival training.

Pilots have additional duties (duties not including flying; DNIF) which impact their
availability for 'training. Staff jobs, such as Squadron Scheduling Officer or Training
Officer, can detract significantly from trammg opportunities. Sickness, medical and dental
appointments, and immunizations often require pilots to be suspended from flying for
physiological reasons. Daily tasking assignments like Squadron Safety Officer also
preclude flying. Currency ir all ground training events is a prerequisite for flying and can
limit the pool of pilots available to fly. For safety, pilots are not allowed to fly longer than
12 hours (length of flying day concept). Furthermore, pilots must be given 12 hours of
crew rest after flying before they fly again. '

The rules governing pertinent aspects of flying and flight training are spelled out in
detail in specific Air Force regulations. A-10 flight training requirements are listed in
Tactical Air Command Regulation TACR 51-50 Volume II. The hard constraints imposed
by TACR 51-50 make aircrew scheduling for A-10 continuation training a very difficult

process. For example, there are 17 different training events required and each of them
must be completed a certain number of times by each pilot during the six-month training
term. Each event has an associated currency period which reflects the frequency of
training. For example, for the landing event, the currency is thirty days. If a pilot fails to
land for thirty days, that pilot is out of currency for landing and must fly with an instructor
pilot to regain landing currency. "Instructor pilot” is a qualification rating which may be
achieved through the upgrade process. A-10 pilots have one of five different qualifications:
mission qualification training (an initial qualification given after completion of
undergraduate pilot training), mission qualified, two-ship flight leader, four-ship flight
leader, and instructor pilot. To upgrade, a pilot must complete a certain number of different
training events satisfactorily and must normally fly with an instructor pilot for evaluation
purposes. In continuation training, "flying with an instructor pilot” implies that an
instructor pilot flies in a separate aircraft but obsexves performance and issues instructions
and corrections orders as needed.

In addition to the hard constraints listed above, there are a number of soft -
constra_ats (preferences) which vary with the situation and can make scheduling objectives
nebulous. Pilots have preferences about when they take leave, who they fly with, and
when they perform uaining and other duties. Pilots often negotiate with the scheduling
officer to attain these goals. Squadron supervisors also have special desires, such as the
desire to improve a particular pilot's qualification. However, supervisors usually dictate
their needs to the scheduling officer, rather than negotiate with them. The primary goal of
the scheduling officer is to attin resources necessary to give all pilots ample training
opportunities, build partial schedules using these resources, and fill all partial schedules
with the most appropriate pilots.! Because ot the differing goals of different elements in

1Scheduling tasks are done in the order implied by the last sentence; relative difficulty of tasks increases
also in the order implied.

the organization, it is very difficult to arrive at a metric of schedule goodness that is

acceptable to all.

Operational Air Force units take flight training very seriously because of its impact
on combat capability and aircrew safety. It is a primary measure of unit mission |
cffectiveness and reflects directly on the leadership of the commander. Therefore,
commanders normally structure their organization to achieve required training and improve
the overall ability of their pilots. Operational A-10 units {wings) are often subdivided into
squadrons. Training officers report training progress to supervisors at each level and use
scheduling officers on staff to ensure that all pilots receive sufficient sorties to complete
training. Training officers, scheduling officers, and others are normally flying pilots who
must also complete continuation training. That is, their staff functions are additional duties
assigned which generally do not preempt the primary job of flying. Because pilots can ill-
afford additional work, automation of the scheduling process is highly desirable.

The problem of scheduling aircrews to single seat aircraft continuation training is
similar to the classical operations research problem of choosing the best way to allocate
resources to competing activities amidst constraints. Using this view, each pilot represents
an activity, or job, which requires resources to complete. Resources include aircraft,
munitions, gunnery ranges, and instructor pilots. (Note: instructor pilots are both

activities and resources).

In current pracnee, the resources (except instructor pilots) are typically allocated
based on availability and compiled in the form of a partial schedule based on the training
needs of the squadron. (See Figure 1.) After a partial schedule has been developed, with
aircraft, confizurations, and ranges filled in, it is completed by assigning pilots to each
sortie. This two-step process is used to reduce scheduling complexity and allow the

r
214 356TFS MON

LINE Tar LAND | MSN| PILOT CONAG | RANGE| REMARKS

go1 | osco | 1000 | wp p
603 1 osp | 1015 | wp pamp | p
=f04 L 0830 L 1015 o BEIMP i

805 p830 1 1015 ")) BEIMP. P
beos L oaso Lot Lwn BEMP p

607 1200 | 1330 | ACAT J A
L_60a, 1200 1330 ACRT L A

Figure 1. A Partial Daily Schedule for A-10 Continuation Training

scheduling officer to use knowledge available at the time. For example, resources must

typically be reserved before pilots have to be placed on the schedule. Squadrons which

must negotiate with each other and support organizations for aircraft, munitions and other
external stores, and weapons ranges about a month before they will be used. The
scheduling officer normally has only general knowledge about training needs that far in
advance. On the other hand, pilots must be scheduled to fly only one week in advance.
The scheduling officer therefore can make a partial schedule consisting of sorties first, then
complete the schedule at a later time by assigning pilots who need the scheduled training
missions the most . Events often preclude a pilot from flying (i.e., assignment to an
exercise) or increase a pilots requirements for a mission (i.e., failure to accomplish a

previous training event satisfactorily), so it is effective to schedule in this manner.

Scheduling is a dynamic process. Once a schedule has been completed, it must be
changed if any assumption used to make it is invalidated. Aircraft may fail or weather may
preempt a planned mission set. Pilots become ill, require emergency leave, or fail to
complete a previous event requirement. The squadron supervisor may re-order preferences
in light or in lieu of changes. These types of changes force the scheduling officer to
modify the schedule from four to eight tixl"lcs before flying it.2 However, schedule
consistency is also desirable because pilots must have time to plan for missions.

Therefore, the scheduling officer often posts a suboptimal schedule with a few changes,
rather than a completely reordered, optimal schedule.)

To add to the complexity, day-to-day scheduling is only the default case.
Operational units frequently deploy to joint or service exercises far from their assigned
base. Also, special missions are occasionally required to demonstrate unit capability in
non-standard tasks, aid in recruiting, or perform a ceremonial or public relations flight.

The scheduling officer must arrange for pilots and flight resources for these events as well

2Daaﬁomonesqmdmn.

14 :

as for ncrmal (local) training. These additional activities often require coordination
betwees units for needed support such as airfield support, air refueling, etc. The primary
commuiication medium between units is the telephone, implying that requests may be

missed and support may fail to materialize when needed.3

Pertinent pilot data are currently tracked in a database (AFORMS) managed by the
centralized computing facility on each Air Force base. The AFORMS database tracks pilot
event completions, currencies, and qualifications and generates reports of the data which
are distributed weckly. Squadrons update the database using optically-scanned forms or an

:nteractive input routine through a terminal.

From a squadron scheduler’s viewpoint, the AFORMS database is not adequate
because it does not store all the data, outputs the data infrequently and inflexibly, and is
difficult to get the data into. AFORMS does not track all required data, such as availability,
staff assignments, and event completion in preparation for qualification or rating change.
Therefore, the scheduling officer must remember or record this additional data using pencil
and paper or grease board. The AFORMS data is not readily available in real-time.
Therefore, schedule inputs and, ultimately, schedules are based on old data. In addition,
when the AFORMS data is delivered, it is in the form of a "core dump" resulting in a 20-50
page printout. Some reports in the printout are useful for determining priority pilots for
different events, but user requested reports are not possible. Nonstandard reports would
probably be of questionable value anyway, given the time frame of data delivery, but real-
time manipulation ofdxedatawouldbevalua!:leindcmnﬁ:ﬁng who should be scheduled or
which pilots can feasibly be flown in a particular slot. Scheduling officers usually present

data to squadron or unit supervisors (e.g., the Wing Director of Operations (DO) at standuo - . -

3Strasegic Air Command now uses a system called MASMS to automate reservations for low.jevel tracks
for B-52 training.

A\l

10
\
briefings. Slides used in these briefings contain data from AFORMS and could ~ #

conceivably be generated automatically, but the AFORMS is too inflexisle to suppor[this
function currently. AFORMS cannot present data graphically, a functicn whlch wontd m{d
analysis of training status and point out the need for resources of different types. In‘
addition, if automated scheduling were integrated with the database, schedules could be
generated and printed automatically, rather than being generated by hand from hard copy
data and then typed by a stenographer. Finally, AFORMS has no intelligence or
friendliness with regard to terminal data entry. The data input routine remembers nothing,
cannot suggest inputs, and lacks even menus or mouse support. Instead, each piece of data

must be painstakingly typed in by hand.

Clearly, the current level of automation (AFORMS database) does not meet the |
scheduling needs of operational flying units. Nearly all scheduling officers use a grease
board or pencil and paper to record additional data and current scheduling status, despite
the availability of automation equipment. The reasons for depending on the grease board
include a distryst of automation, the lack c;f powerful automated tools for data handling and
analysis, and significantly, the need for data visibility between pilots, scheduling officers,
and supervisors.

Scheduling officers have different methods of generating schedules using the data
available to them. Although some scheduling officers have formal training in operations
research, nearly all use heuristics and "common sense" to develop satisficing? schedules.
Human schedulers are able to determine relatively good heuristics and apply them, so long
as they have the data and the patience to manipulate it to fit the preconditions on the
heuristics. Unfortunately, human memory is volatile and human patience has its limits. In

4near optimal; satisfying

11

practice, human schedulers using heuristics constantly find themselves asking for data
manipulations to determine an appropriate pilot, for example, “Who is at least a two-ship
flight lead, current in night air-to-air refueling, has not flown since 3 AM. on Tuesday and
needs a night landing the most?” In addition, its easy for human schedulers to foréet one
or more hard or soft constraints during the scheduling proccss,- resulting in an inappropriate
or disgruntled pilot. There are few scheduling officers who have not generated a very bad
schedule, despite knowing reasonable scheduling heuristics.

As mentioned above, schedule optimality is desired, but "optimal" means different
things to different people. Fortunately, ample training resources generally exist for
completing minimum acécptable training requirements. Ordinarily, in day-to-day
operations, it is more important to arrive at a schedule which satisfies requirements, rather
than one that is optimal (in whatever sense). In context of a longer time frame, unit
commanders strive to maximize training, but also emphasize a host of other people- and
mission-oriented performance metrics. Training can be measured in terms of the
percentage of combat capable pilots, numi)cr of upgrades, and currency delinquency rates.
Commanders protect their people and therefore give attention to things like safety and
workload distribution. Commanders are tasked with enhancing unit performance which is
measured in ‘terms of rapid generation capability, weapons delivery and simulated air
combat scores, and other competence and effectiveness metrics. In short, schedule
optimization is the global goal, but the objective function for aircrew scheduling is a very
complicated equation.

Given the nature of the aircrew scheduling task and the level of automation
available, the scheduling officer does an admirable job of producing aircrew schedules.
However, the current process used is time-consuming, tedious, and error-prone, despite

the professional dedication of the scheduling officer. Current technology exists which

12

could improve the scheduling process dramatically. It consists of an integrated information
system based on a set of automated tools which flexibly transfers and presents data in real-
time and assists in the schedule generation. Automatic scheduling is included in the tool set
by employing heuristics (or another type of solution method) to generate “"good” schedules
which do not violate constraints. The tool set adapts to changes inherent in the domain and
still generates robust, rather constant schedules. The tool set supports resource and
training analysis for additional decision making. The information system is designed to
allow for rapid, lossless data flow between unit supervisors, local and distant support
elements, and the scheduling officer, if not the pilots as well. That the information system
described is possible with current technology is proved by the existence of one example:

the system described in CHAPTER S.

13

CHAPTER 3
COMPUTER TOOLS AND METHODOLOGIES FOR
AUTOMATIC AIRCREW SCHEDULING

Simply put, creating an effective schedule dcpends on having some generic method
of scheduling and applying the method to some specific data set which adequately describes
the world.5 Because data is the more fundamental problem for current tactical aircrew
scheduling, database technology will be discussed first and scheduling procedures will
follow. Then, because a program must be written to automate the scheduling process,

programming methodologies will be considered.
Database Technology

Most problems which are intcresﬁ{:g or useful to solve using a computer have large
data sets associated with them. Database management systems (DBMS) are used to store
and manipulate data efficiently, but the different views of the data required by different
users has made it desirable to improve upon current database models. The AFORMS
database management system is representative of early military database technology.
AFORMS and the centralized data processing model on which it is implemented
unnecessarily restrict the flow of information required to schedule pilots effectively.
Current DBMS products are friendlier than AFORMS, but many still lack needed
functions. DBMS shorwonﬂngg are being addressed by research, primarily research aimed
at folding in lessons learned from other fields to integrate richer representational schemes

S1n fact, problem solving in general depends on having some solution method and using it on current world
data. Typically, military planning suffers not from lack of a solution method, but from a lack of data or an
casy means to clicit data from clogged, unfriendly command and control systems. This is especially true
when a crisis arises.

14

and add general programming features.[39] Several attempts have been made along these
lines, but data modeling is still a research issue. Finally, database systems based on a
distributed processing model and implemented across a wide-bandwidth network facilitates
data dissemination better than the centralized data processing does.

Classical (machine-oriented) Data Modéls. There are a number of different data
models used by current database management systems. Most DBMS products are based on
one of the classical models: hierarchical, network, or relational. Data is organized as a
forest of trees in the hierarchical model and as a directed graph in the network model. Both
the hierarchical and network schemes have difficulty representing many-to-many
relationships and tend to require procedurally-oriented operations based on a knowledge of
the data structures involved. In contrast, the relational model is mathematically simple..
Data elements are stored as tuples in tables. Queries may be expressed in a declarative
fashion, freeing the user from having to think about the underlying procedures which
actually deliver the answer. As a result, users prefer relational DBMS over systems based
on one of the other two traditional models; and the commercial software industry has
rapidly responded with an increasing number of relational DBMS products. (3]

DBMS Queries. The relational model supports declarative queries to some extent,
making possible a simple query language based on a description of the desired data set,
rather than a procedure for getting it. However, the user must still know which data is in
which table and specify that information in the query. In addition, although the user may
get at any data view using the three available operations (join, select, project) on the global
database, there are two problems which can arise from this flexibility. First, query results
can be incorrect unless the schema are carefully designed. Second, it would be nice to be

able to update the data base when viewing it from any angle. However, it is not always

15

easy to input information into the database from a given virtual database relation because
ambiguity may result.[3]

Do any of the classical DBMS models satisfy current user’s requirements? For
many ai:plications (including a portion of the aircrew scheduler prototype), the relational
model is sufficient. However, classical models are based on the need for efficient machine-
implementations of databases, not on user's needs. Most DBMS models only have two
levels: the schema and the data. Inheritance of information inherent in a taxonomy of
objects is impossible to capture using two-le_vel models. Also, classical models often blur
the distinction between a set of data and a type of data. Different perspectives are possible,
but difficult to separate. The problem of updating virtual relations cannot be addressed
using a purely relational approach. Finally, no classical model supports temporal
modeling, the changes in data over time.

Other Models. Semantic data models have been developed to address the shortcomings
of classical approaches. Semantic data models like the entity-relationship model (Chen)
focus on capturing the meaning of data, rather than on being machine-implementable.
Other examples of semantic models are the Relational Model/Tasmania (Codd), Semantic
Data Model (McLeod and Hammer), and the Event Data Model (ng and McLeod). All
semantic data models improve on the richness of data representation over classical models.
They differ primarily in the types of relationship between data which may be
expressed.[42]

Object-oriented Databases. Recently, some researchers have investigated the use of
an object-oriented approach to database modeling. Object-oriented programming is a
methodology which focuses on active data elements rather than procedures and passive

data. The data élcmcnts (objects) are encapsulated and modular because they communicate

16

with one another only by message-passing. If the state of an object must be changed,
typically another object passes it a message requesting the change and the procedures
bound to the requested object make the necessary change. Therefore, each object knows

how to alter its own state and react to incoming messages.[3, 4, 42]

The object-oriented data model also allows the programmer to take advantage of a
class hierarchy and use the inheritance property to reduce storage requirements. A class is
defined with known auributes, default values, and encapsulated procedures. An object
which is a particular member of a class becomes only an instantiation of the class. If
subclasses exist, they may inherit data and procedures from their superclass. For example,
a programmer might wish to represent a class transport-asset with subclasses truck, cargo-
plane, and ship. Auributes of zransport-asset might be range, speed, location, and
capacity. Transport-asset would also have an associated set of procedures, for example, a
procedure for changing location. Tr_uck and ship would, as subclasses, inherit all three of
those attributes, but rrucks might also have a clearance attribute and ships might have a
loading-resource attribute. Ship might haw;'e additional subclasses like Wr, frigate, and
fast-cargo. An instance of the class fast-cargo might be the USS Atlas with loading-
resource for the instance having a value self-loading-crane. By inheritance, the data object
USS Atlas would also have data slots for range, speed, location, and capacity, as well as
all default values and procedures known to all superclasses.[33, 40]

Using the object-oriented paradigm, database researchers can easily model
generalization and aggregation relationships (is-a and a-part-of relationships). Class
information is easily captured and manipulated using the inheritance property. In addition,
objects can be easier to manipulate when a collection is presented in a non-standard view.
Several object-oriented DBMSs have been implemented; there is increasing support for
graphical manipulation of data from an analytic view. Furthermore, complicated real-world

17

objects are more easily modeled and data modularity is enhanced. Therefore, the object-
oriented data model addresses some of the difficulties associated with classical models.
The primary disadvantage of the object-oriented model is that the mathematical simplicity
and declarative beauty of the relational model are forsaken for a highly procedural,

somewhat constricted message passing scheme. [3, 4, 42]

Lessons from Artificial Intelligence Research. Knowledge representation has
long been a research topic in the field of artificial intelligence (AI). Object-oriented
programming (frames/slots) is one representation method used widely for A applications.
Other representations include predicate calculus, production rules, semantic networks, and
expectation schema. Data manipulated by Al systems are less structured and less certain
than data associated with most conventional databases. 'Ih;rcfore, knowledge and data
representation schemes in Al tend to be more flexible and less pleasing in a mathematical
sense. Moreover, there are a variety of ways of expressing uncertainty in databases due in
large part to Al research. Temporal aspects of data have been treated by a number of Al
systems. The biggest drawbacks from thc. rich cxpréssive power of databases based on Al
knowledge representation are that they are generally complex and large databases are
difficult to manage and maintain.[3])

Database Interface. From a user's standpoint, a DBMS can be painful to use. Oddly,
the typical DBMS restricts input and output. It requires data in a certain way and is not
extroverted about "showing what it knows.” Normally, a user must learn a command
language to do sorts, attain virtual views, edit data, or even to get raw data regurgitated
from an existing database table. Generating a non-standard report is beyond the capability
of most casual users. The man-machine interface becomes crucial to the utility of the

SFor more information regarding object-oriented programming, see APPENDIX C.

18

DBMS, and most commercial DBMS products are incorporating features such as menus,

windows, and mouse input to make the user's tasks easier.

Database Access. Data must be accessible to those who need it. The current AFORMS
database is a good example of how a constricted data flow can hiader decision making.
The centralized data processing approach that AFORMS epitomizes separates the data from
the user both in terms of the flexibility of data manipulation possible and response time of
data access and update. Rather than giving the user terminal access to an inflexible DBMS,
it is wiser to distribute the data and the ability to manipulate it with powerful tools in a
cooperating information system. A distributed system comprised of personal computers,
high-power workstations, and minicomputers‘all networked over a high-speed channel is
becoming standard in many Air Force units.(3]

Scheduling Methods

There are a number of variations o'n scheduling one of multiple agents to one of
several tasks (i.e., scheduling activities). Scheduling algorithms discussed in the literature
generally have their basis in one or more of operations research, traditional Al search, or
knowledge-based greedy heuristic search or some combination.” The systems with the
most impressive performance result from a combination of scheduling methods.
Constraints, both soft and hard, are pervasive and have great impact on scheduling
algorithms, especially in the area of bottleneck resources.[S, 10] Optimization is an implicit
goal, although optimization normally means different things to different evaluators in the

THuman schedulers tend 10 use the heuristics iteratively, with iterations occurring only after a sufficiently
hard constraint is violased and discovered. It is a mistake to believe that human planners consider multiple
altematives, especially in a time-constrained environment.[21]

19

real world. Schedule flexibility, constancy, and explainability are all desirable for real

world systems.

Algorithms Based on Operations Research. Generally, linear programming can be
applied to scheduling problems only as an approximate method because the divisibility
assumption does not hold. That is, some or all decision variables must be integer-valued or
binary. In addition, some scheduling models are based on nonlinear equations which
require nonlinear programming techniques to solve. Nonlinear programming can become
computationally intensive; integer programming is not too bad, but soft constraints are
difficult to mode! and solutions tend to be sensitive (lack consistency) when new
constraints are added. Operations research methods attempt to pmﬁdc a global maximum
over time, but in many domains, the world situation changes for reasons outside of any
plan (e.g. machines break, orders are re-prioritized). In practice, schedulers based on
operations research algorithms often cannot keep up with unplanned events in complex
systems, and a human supervisor must intervene to repair the plan. Operations research

algorithms are not easily cxplained automatically.[5, 8, 9, 10, 12, 14, 18, 26, 38, 41]

Algorithms B.ased on Al Search. Search may be applied to find a satisfying (or
optimal), robust solution based on son.: objective function. Search techniques include
forgetful backtracking or memory-intensive depth- or breadth-first forward search. The
best first search (A*) may be applied if an estimation heuristic can be defined. The
objective function is typicaily knowledge-based us well. These search techniques are
commonly used in classical Al planning systems (generative planners) to generate a
solution path, and they work the same way for scheduling purposes. The A*® algorithm
was used in the LISP machine/KEE version of the RADC Aircrew Scheduler.[11, 28, 32]

20

Algorithms Based on Heuristics. If enough knowledge can be derived from the
particular domain, a knowledge-based scheduling algorithm may be developed using
heuristics. Greedy heuristics are those that improve the solution the most at the point they
are invoked. An example of a greedy heuristic is "schedule a pilot who has less than five
days of currency remaining without taking into account future placement possibilities."
Like search-based methods, heuristic methods deliver robust, flexible solutions which can
be explained by a little extra code. These Al systems differ from traditional search-oriented
models by the degree of backtracking or search-memory required. Backtracking is
nommally required only when constraints are changed or may not be implemented at all.

Some rule-based production systems are good examples of this type of system.[5, 7, 32]
Programming Environments and Methodologies for the Aircrew Scheduler.

Design requirements on the final aircrew scheduling product indirectly constrained
the choice of programming environment (because prototype programming environments
often become dcliver.y environments). As. implied by earlier discussion, data storage and
database functionality were required to manipulate the half megabyte or so of pilot and
schedule data. Several different types of data representation were réquired. Implementing
the scheduling algorithm made the flexibility of a general purpose programming language
desirable. A simple, aesthetically pleasing interface was considered mandatory to gain
acceptance by the user. Specifically, multiple windows were thought to be important for
intuitively generating different data views; mouse input was considered very desirable
(pilots prefer pointing devices to keyboards); and direct editing of displayed data was also
needed. The entire interface had to be simple and natural, with menus and context-
sensitive help available. The use of multiple fonts, color, and sound were consi_demd non-

essential bonuses but would add appeal. The entire scheduling system had to run

21

acceptably on an IBM personal computer; portability was considered an unnecessary

bonus.

The choice of programming environment and methodology were also directly
affected by the complexity of the programming project and the relatively short time
allocated to completing it. An object-oriented methodology or functional programming
approach would have addressed the complexity issue; the available development time
pointed toward the use of a software tool for building scheduling systems. A tool is a
software environment Eonsisting of a higher ordered language together with powerful
functions useful for rapid development of a specific type of application. Tools cut
deve.lopment time by raising the level of programming; they are essentially higher- higher-
ordered languages. For example, a tool for building expert systems might be Lisp-based
but have functions for specifying a windowing interface and an object-oriented knowledge
representation scheme lacking in Lisp. There was historical impetus for using a software
tool -- the original LISP machine version of the aircrew scheduler was built on KEE which
provides graphics, object-generation, and broceduml functionality over and above the
environment of a LISP machine. Unfortunately, generic tools often restrict flexibility;
another way of saying this is that they lack needed functions and procedures. Tools are
useful when the application to be built fits entirely within the scope of the high-level
capability they provide. Furthermore, the tools available at the time3 were not appropriate
because high licensing fees would preclude distribution. Therefore tools were not

considered further.

The choice of programming methodology depends to a large degree on the amount
of program modification that will be required. Software has a life cycle that differs for

8tntellicorp's KEE and Gold Hill Computer's Gold Works.

22

different applications, but the stability of the code generally increases throughout its life
cycle. Different types of software have different life cycles and different levels of stability.
For an application with a large user base like a commercial word processor, there is
economic justification for releasing a very complete product that will require few
modifications. A word processor may be prototyped using one methodology and when
complete, the prototype is ported to a hardware-oriented language for efficiency. Unlike
word processors, a very specific application like a single-seat aircrew scheduler for A-10s
has a very small user base; there may not be funds for release of a complete product, but
more irn;;ortandy, specific applications require user input not available to the software
developer before release. Therefore, a specific application like an aircrew scheduler is
generally released sooner in the life cycle, and will normally require modification. A
specific application may never be hard coded into a faster language because of lack of
funding, the need for continuous modification, or suitability of current execution. Artificial
intelligence applications are typically vex}; user-specific because current expert systems _
have narrow domains. Very few expert systems ever get out of the development stage for

the reasons stated above.

If the programming methodology and environment of a user-specific application
remains with and is delivered as part of the application, then there is another factor to
consider: understandability. User acceptance depends on user understanding of the
software. This is especially true of artificial intelligence applications. Therefore, the more
the user can understand how the program arrives at an answer, the better the chosen
environment. If users can understand the program and the programming methodology is
simple enough, they may even be able to modify the code themselves.

Higher Ordered Languages (HOLs). Standard languages like Pascal or C offer the
flexibility, execution speed, power, and portability required for the end product scheduling

23

system. The primary disadvantage of using a higher ordered language is that many nwded
functions and routines must be programmed; an alternative tool might provide these
functions and routines and thus speed development. The tradeoff between speed of
development and flexibility allowed by the programming environment is a prime design
consideration. Initially, we attempted to port the LISP Machine/KEE version of the RADC
Aircrew Scheduler to KEE running on a COMPAQ 386 personal computer running UNIX.
That effort ground to a halt because of differences in KEE versions and inflexibility of the
COMPAQ KEE environment, among other reasons. Cur second porting attempt used the
popular and powerful Turbo C compiler. We made progress using C, but development
time was too slow to meet our milestones. Using our eventual programming environment,
Microsoft Excel, we were able to achieve in 3 days the same functionality that had taken us
20 days worth of C programming earlier, given our meager programming experience. (See
APPENDIX B).

Languages like Pascal and, more particularly, C are machine-oriented, procedural
languages. They guard computer memory; resources diligently and ensure fast execution
speeds using efficient primitives and library routines. However, they require the user to
think procedurally, and some programmers find that thinking procedurally stifles creativity.
Other languages have been developed as alternatives to procedural languages. Declarative
languages like Prolog focus on a specification of a data set (like relational databases do) and
use a built-in backtracking procedure to generate query responses. In fact, it is easy to
implement a relational database in Prolog?; Prolog was considered as a possible aircrew
scheduler development environment because of its ability to answer questions which arise
when using a heuristic scheduling methodology.[23] Functional languages like LISP and
its derivatives (for example, Scheme) are similar to Pascal and C in some respects. LISP,

%The efficiency of a relational database implemented in Prolog is limited by the linear search mechanism
used by its interpreter.

24

unlike C or Pascal, almost demands the use of recursion and automates memory allocation
and reclamation. LISP was developed for artificial intelligence programming and allows
the programmer to use any data without requiring type declarations. LISP has a simple

syntax composed of seven primitives, the ones of primary importance to programmers
being those that construct and select (dissect) LISP data objects (lists).[1,17]

Object-Oriented Programming. The object-oriented programming paradigm can be
used in almost any language, but languages like Smalltalk-80 enforce it. The object-
oriented model is data-centered, promotes data abstraction and modularity, uses procedures
bound to data to make active data objects, and uses messages between data objects to

‘execute a program. 10[33]

Experienced programmers tend to build up software modules that are later reused.
Commercial C libraries are now available; LISP programmers tend to develop whole
"worlds" of procedures useful in many contexts. A primary goal of object-oriented
programming is software module develop'ment and reuse. Software reuse requires much
documentation (writing and reading), but saves programming time, avoids undetected
errors, and standardizes higher-level functions. The distinction between a "tool"” and a
programming language supported by an extensive library is getting blurry, but "tool" still
implies a neater, less flexible package.[15, 33, 40]

Visual Programming. Using a LISP machine or a Smalltalk development environment
clearly demonstrates that the total development environment impacts program development |

at least as much as the particular language thosen. Specialized programming environments
such as these are typically single-user workstations having large displays with

10See APPENDIX C.

windowing/menu interfaces, mouse input, and seamless integration of all programming
tools: editor, debugger, context-sensitive help, and compiler. All of these elements of the
environment aid in software development to some extent, although it is very difficult to
quantify the effect of environment attributes on softwére development. Rather, attribute
"goodness" must be described qualitatively and subjectively. Personal preferences and
histories have an impact. For example, many programmers (and users) would agree that a
mouse coupled with a point-and-click interface is preferable to typing a response, but some
never use a mouse because they can type faster or prefer not to switch from keyboard to

mouse and back again.[2, 34]

One atribute of the environment, the display, is of particular importance and is now

recognized as an important area of research commonly referred to as visual programming:

With the availability of griphic workstations has come the increasing

influence of visual technology on language environments. In this article we
trace an evolution that began with the relatively straightforward translation of
textual techniques into corresponding visual techniques and has progressed
to uses of visual techniques that have no natural parallel using purely textual
techniques. In short, the availability of visual technology is leading to the
development of new approaches that are inherently visual.[2]

Visual programming focuses on making computer systems easier for people, rather
than enhancing hardware performance. Part of the impetus for paying attention to visual
interfaces comes from the widespread use of personal computers by nonprogrammers.
Artificial intelligence research and expert systems have also helped make interfaces
important. Display technology has advanced to the point where high-resolution bit-mapped
graphics are available to almost anyone. Using high resolution graphics, a more visual
mode of programming is possible and attractive. Interactive graphics has the potential for
making input and output not only meaningful, but fast, interesting, and flexible as
well.[34]

26

Why are vision and graphics important to computer input and output? Humans deal
naturally and quickly with visual input and not so easily with serialized, one-dimensional
text or speech. One reason that a picture conveys so much more information than a stream
of words is that the "language"” of picturés is a much richer, truer representation of objects
in the real world. Things like shape, relationship to other objects, color, and texture are
instantly recognized in a scene that would take hours to fully describe verbally. Another
advantage that visual images have over text strings is that humans can focus on information
they find interesting. The use of multiple fonts and columns (as in a newspaper, for
example) allows a reader to focus on information of interest. In contrast, a listener must
access information sequentially (as in a radio news broadcast), waiting for the desired
information. Both of these reasons result in a higher information transfer rate for visual
images than for one-dimensional text strings. The human visual-processing bandwidth is
much wider than the audio-processing one. Animated pictures are an even better
representation of dynamic real world objects. Animation further increases the potential

transfer rate of information to humans.[34]

Currently, programmers use a variety of non-automated visual techniques to
support programming. Among these are control-flow representations, like flow charts,
Nassi-Shneiderman diagrams, state diagrams, and Petri nets. Data flow diagrams, which
focus on data, rather than algorithms, are also used. In addition, more informal drawings
are used to help visualize the state of the system. For example, student programmers often
sketch out data structures like linked Lists and trees to learn how they must be manipulated.
Even when the concept of a particular data structure is known, drawings are often used to
analyze programs and fix bugs. Finally, overall program structure is often conveyed as a
topological arrangement of code modules (boxes) as are used for top level diagrams.[16,
34)

27

Program Animation. Some pmgrams, particularly simulations, provide an animated
representation of the world being modeled. Programs can also be written to simulate the
internal state of the computer through animation. Animated programs display pertinent
variables, program instructions, and their interactions. As the program executes, each line
of code is shown along with the variables it accesses and the changes it causes. Animated
programs help programmers check program correctness, analyze execution speed in
different parts of the program, and determine which sections of code are inherently parallel
by explicitly showing what the program is doing.[2; 24, 29, 34] -

Graphical Input to Programs. Languages are being developed for integrating
graphical images along with text as input symbols or output results in programming
languages. Some of these developments take the form of syntax-directed editors which
provide a template which allows for "programming by example” and ;yntactic error
checking.(2,34] Others support a graphical view of programming by allowing the
programmer to see a visual representation of data structures or code in execution.[6, 24,
27, 34] Windows may be used to support- different views. Icons are used in some tools to
assign a visual abstraction to code or data. Still other tools are useful for designing and
documenting software, or generating it from a visual specification.[34] Newer research
has focused on the use of graphical symbols as inputs to the programming language (either
along with or in lieu of text).[6, 37] The use of symbols to index data is also a research

topic.

Principally from artificial intelligence research and man-machine interface design,
the impact of vision on computing environments is now known to be great. Seeing
programs and data reduces the complexity of both by providing a way to move from the
abstract to the concrete very easily. The field of visual programming languages has arisen
as a result. It turns out that the best display is the largest display, as humans already have

28

the ability to focus attention on important parts of images. Debuggers and spreadsheets(35]

are examples of this "more is better” rule.[2, 34]

Visual programming makes it easier to write programs. It enhances the
programmer’s ability to debug programs while running various data sets. Thus, validation
and verification are easier in a visual environment. Modifying programs requires finding a
portion of code causing some behavior and changing it to alter the behavior. ~Animation
helps the programmer find the code causing a MMﬁ&, and a visual environment simplifies
writing and testing new code. Therefore, visual programming also makes it easier to
modify programs. [13, 25, 36].

29

CHAPTER 4
A VISUAL PROGRAMMING METHODOLOGY
BASED ON MICROSOFT EXCEL ON THE MACINTOSH

The new aircrew scheduling prototype is based on Microsoft Excel, a
spreadsheet/database/language with a spreadsheet interface. By using Excel, the new
scheduler is portable to BM/MS-DOS personal computers or Apple Macintosh computers.
The principle development was done on a Macintosh Ilcx. The methodology used to

-

construct the Excel prototype is described in detail below.

A visual programming methodology based on the environment provided by
Microsoft Excel has two cornerstones. One is the continuously updated display of a two-
dimensional data array, the most apparent feature of any spreadsheet. The sécond
cornerstone is program animation résulting from using a particular style of programming.
Both features make program development' and debugging easier by making data structures
and program execution explicit in a visual sense.

Excel is an integrated tool having spreadsheet utility, but also featuring an
interpreted macro programming language, graphics routines, and a powerful library of user
functions.!! The database functions are the primary ones useful for programming
scheduling systems in Excel. Using the database functions and the macro programming
language, a heuristic scheduling system with a sophisticated visual interface may be written
with only a few hundred lines of code.

11Excel is representative of several spreadsheets having similar functionality. Manycommemsnudeabout
Excel are also true of other spreadsheet products.

30

Excel also supports graphical programming methods for generating dialog boxes.
These interactive, graphical, user input windows further refine the overall interface and

make the program even easier to use.

The visual programming methodology described is based on wide-bandwidth
output and animated execution, but takes full advantage of all attributes of Excel, including
the windowing operating system it resides on and other attributes of the Macintosh:

graphics, mouse, and built-in networking.

A Visual Programming Methodology Using Excel. The ’general methodology
used is outlined below and discussed in the following sections.

1. Without regard to procedures required, generate the applicable data structures in
portions of the Excel spreadsheet array. Use concrete representations which are as similar
to the modeled data structures as possible Group related data structures in appropriate
locations in the spreadsheet array. Fill the data structures with real or example data.

2. Make full use of functional meng to display abstract data.

3. Using the continuous display, mouse, and available commands, manually
manipulate the data to learn how to cause the desired program behavior as needed.

4. Using available functions, write small program modules to incrementally
automate data manipulations. Group related program modules in appropriate locations in
the two-dimensional program area. Modules should be called as subroutines. Access data
onl§ by visiting its location to provide animation. For example, move data using ‘select-
copy-select-paste.’ Continue until data manipulatim is fully automated, testing modules
using animation. Rearrange data structures and program modules as appropriate.

5. Generate the user interface by graphical dialog box programming and menu bar

commands.

31

Excel's Interface. Like other spreadsheets, Microsoft Excel displays an array of data
cells which are continuously vpdated, should they contain a formula. Higher-ordered
languages (HOLs) like C, Pascal, and Ada require extra programming to get output, buta
spreadsheet interface is always the same (with minor vériations): maximum output. The

programmer must only determine how to partition the data array into a useful display.

Data structures in Excel are visually explicit, in contrast to the hidden ones in C or
Pascal. Noﬁw students leaming about computers are often told, "Computer memory is
like a row of mailboxes at post office. Each mailbox has a physical address which the
computer knows about. Each mailbox has space to store data in. You name the mailboxes
so that you can access the data in them." Thus, the abstract notion of assignment becomes
concrete and understandable. In a Pascal progratﬁ, the assignment might be "A =B + 1;"
and suddenly, the notion is abstract again. What is value of B? What does A look like?
(Perhaps A is an array!) Arrays, linked lists, and trees all had to be drawn and visualized
by every programmer who now understands them, yet in the language, these structures are
invisible. No wonder it is so difficult to program using them! A mental image of what is
going on is constantly required. What happens when the number of variables becomes
large? Questions like "What is the value of B?" begin to slow progress. Those questions

are not so difficult when their answers are continuously displayed.

Part of the representational complexity of programs comes from data structures (the
remainder comes from algorithms). The more concrete a data structure is, the easier it is to
understand. For many data structures and some real-world things (e.g., schedules), a
visual, two-dimensional array is 2 more concrete, truer representation than the invisible data
structures available in Pascal or C. In Excel, an array looks like the array we visualize in
Pascal (at least, to two dimensions). A linked list in Excel looks natural also, and it is a lot

tougher to get lost in an explicit one. A real-world schedule is often represented as a table;
an Excel schedule can look identical.

Because of uic two-dimensional array displayed, Excel lends itself to two-
dimensional data structures. Two-dimensional data structures include single variables (1 x
1 arrays), one-dimensional arrays (n x 1 arrays), two dimensional arrays, and tables,
relational database tablcs included. With a little imagination (using relative pointers), linked
4 lists, stacks and queues (as n x 1 arrays) can be implemented. Higher dimensional arrays
and trees are difficult to implement as visually explicit structures. For writing "real world"
applications, lack of support for higher dimensional data structures can be unimportant;
many “real world" data structures, such as invoices, bank statements, time-tables, etc, are
inherently two-dimensional because.mey are expressed on paper or some other two-
dimensional surface. For example,the data structures most used for scheduling are a
schedule (a table) and relational database schema (other tabies).

In Pascal or C, variables are typed'and allocated by name. After that they may be
used in the program. Strong typing allows for some error checking and allows efficient
use of memory. However, in the iterative style of most programmers, there is a necessary
¢cycle between the discovery of the need for a variable and its required typing and
allocation. Languages such as LISP require no typing and allocate using definitions at run
time. In Excel, typing is discovered by the system from syntax (as in BASIC?, and
allocation is made incrementally as data is entered into each cell. Furthermore, each
location where data may be stored has a default name.!2 Thus, the programmer never
needs to scroll back to the top of a file to allocate additional variables, as in C or Pascal. In

12412 or B3, for example. User specified names are also supported.

KX

practice, it is more natural to put data and data structures onto the spreadsheet, and write

programs to manipulate them afterwards.

In Excel, simple variables, higher data structures, and algorithms are all physically
located someplace on the two-dimensional spreadsheet. For example, one subroutine may
be east, west, north, or south of another. This is fundamentally different from a language
like C or Pascal. In C or Pascal, data structures are invisible, existing somewhere in the
cther of the computer’'s memory; algorithms are a little better off, existing in a linear (one-
dimensional) text file. By inserting white space, Pascal and C algorithms can be written
with addec limensionality. In other words, properly indenting code can give additional
meaning; thus, much of the power of structured programming arises because of
appearance, a visual extension of the one-dimensional alternative. However, indented code
is not really two-dimensional in the same sense as Excel programs can be. In Pascal, one
code module must come before or after another. The added dimensionality in Excel

provides additional impetus to write modular code for cognitive reasons (discussed below).

From a cognitive standpoint, Excel's visual, two-dimensional spreadsheet interface
is far superior to the programming environment of typical higher-ordered languages. The
primary advantage of a spreadsheet interface is that additional associations are possible that
relate a data structure or piece of code to familiar objects. There are three practical benefits
which result. First, it is easier to find a data structure or a piece of code because the data or
code always has some'telation to what is known (visible). In a traditional HOL, "finding a
data structure” has no meaning, but finding a piece of code equates to scrolling a particular
distance from the current cursor position. The difference between finding something in
Excel versus Pascal or C is somewhat analogous to navigating by map as opposed to
getting directions. Directions tell you how far to go on a one dimensional route Lefore

taking some action (e.g., turning), while using a map allows the use of external points of

34

reference. A second benefit of two-dimensional associations is added flexibility in
structuring programs. Different arrangements are possible. A top-level design diagram
may be implemented in similarly arranged code; alternatively, code modules may be
arranged hierarchically. The methodology used to create the Excel scheduling prototype
only requires related code modules to be placed close together in some natural order. A
third benefit from extra-dimensional associations arises from the way human memory
functions. Remembering a piece of information is related to the number and strength of the
associations attached to it which relates it to something else already in memory. For
example, mentally picturing a new acquaintance standing with old friends with the same
name is a'common procedure for learning names at a cocktail party. Current HOL:s attach a
name to a data structure or procedure, although a procedure has a second memory
"handle," its location is in a"iir{ear text file. In Excel , both data structure
have at least three handles: absolute cell address, user-defined name (if one is assigned),
and a relative position from some other cell. Note that the last handle is really many
handles, e.g., a variable called ‘current pilot’ in cell F19 is 3 cells west of ‘current
comment’, 12 cells-northeast of ‘priority p.ilot', etc. ad infinitum. The utility of the extra
memory-handles is entirely semantic but is closely tied to locating code and structuring it.
Six months after writing a procedure, not only can it be found and known to be related to
an adjacent procedure, but its meaning and function may also be recalied (especially when
the meaning of adjacent procedures is known). Because of this, writing code in a modular
fashion does not add to the complexity of the program as much. Modularity combats
complexity, but the overhead of remembering what all the modules do can, at some point,
begin to add complexity of its own. Because modularity is well supported by the Excel
environment, it is also a goal of the visual programming methodology described.

Control Structures. The Excel aircrew scheduling prototype makes extensive use of
IF-THEN-ELSE, subroutines, and GOTO control structures. Excel has a WHILE

35

primitive, but most modules are so small that the GOTOs used do not cause too many
problems because they are restricted to the module. Going outside the module should be
done using a subroutine call, under the methodology used. Using small modules keeps
branching limited. Although this is the most natural type of structured programming
supported by Excel (perhaps with the GOTOs replaced by WHILE), it occasionally made
modules slightly longer than necessary. Program branching can make code smaller, but it
can also add complexity.

Data Structure Design. When programming a solution to an unfamiliar, complex
problem, its not clear, from the start, what data is important, what data structures are
suitable, or what the relationships between data structures are. Using a visually explicit
language like Excel allows one to begin programming before having a complete
understanding of the problem and aids understanding along the way. This approach was
used during development of the Excel aircrew scheduler: First, the data thought to be
iméonant was arranged in tables or simple variables in a way thought to be correct. Then,
simple programs were written to manipula.te the data and discover what manipulations were
possible and natural. This process uncovered several important relationships between data
structures and showed what additional data and data structures would be useful. The two-
step process was iterated a number of times to arrive at a reasonable product.

Program Animation. In Excel, there is always an active cell and a selected array of
cells, just as there is always some location stored in the program counter of a
microprocessor. (The selected array may be just the active cell, a 1 x 1 array). Macro
programs which operate on Excel data use the active cell and selected array to access data in
a fashion very similar to the way a microprocessor gets data from memory (one byte or
word at a time). While this arrangement appears rigid (and can be overcome), it forces
explicit manipulation of displayed data. By differentiating the active cell and selected array

36

from other cells, animated programs are possible. In Excel, the active cell is outlined in
color and the selected array (except for the active cell) is filled in with color. By
programming Excel to visit each data cell to access it, the active cell will, during program
execution, move around on the spreadsheet data array, thereby showing the programmer
exactly what it is doing. For example, a typical operation is to move data from one cell to
another (for example, the criteria array). To do this in Excel, a four line program is needed
to select the first cell, copy its contents, select the second cell, and paste the contents of the
first cell. The ‘select-copy-select-paste’ program appears as a three step visual program
wherein the active cell visits the cell to be copied, visits the cell to be pasted, then pastes the
value of the first cell. Using this methodology, every time a program runs, the
programmer sees which data cells are visited and what changes occur to cells.
Furthermore, Excel has a single stepping feature which allows the programmer to slow

execution to see just what effect each line of code has.

The program animation nossibilities using Excel makes it very easy to debug a
program. The programming process is also much improved because it is simple to see

+*

inefficient pathways to the same end.

Rearrangements of Data and Programs. Excel uses relative addressing as a default
means. Relative addressing is more natural than absolute addressing if data is going to be
moved around. Excel expects rearrangements of data and provides for it in sophisticated
ways. For example, data arrays may be cut and pasted elsewhere on the spreadsheet.
When data is cut and pasted, all references to it in any Excel file are transferred to the new,
correct address. Functions on the spreadsheet which return data values also refer to new
addresses, making it possible to cut a function from one cell and paste it into a large array.
The formulas pasted into the array all return different values because they use relative,

rather than absolute references. Easy rearrangement promotes modular programming,

37

supports experimentation with different data structures, and supports experimentation with
the physical layout of code and data structures.[30, 31]

Verification and Validation. The combination of visually explicit data structures and
animated program execution are powerful tools for verification and validation (V&V).
There are a number of static and dynamic methods for ensuring V&V for traditional and
artificial intelligence software. Static methods include anomaly detection, structured walk-
throughs, and mathematical proofs of program specification and correctness. Dynamic
methods include random, regression and thorough testing. Static analysis of data structure
and algorithms is directly related to their visibility, a metric of relative obscurity. Visual
programming methods allow the easiest Static analysis of data structures due to their explicit
representation. Proofs of program correctness are generally too cumbersome for complex
software. Routine testing has been found to be one of the most effective V&V methods,
especially for artificial intelligence applications. All testing methods are simple when the
program displays itself executing as Excel programs do.[13,25,36)

Graphical Programming. Excel supports graphical programming for generating data
for interface dialog boxes. The Excel dialog editor displays an empty dialog box and the
programmer may add elements such as list boxes, option boxes, cancel and accept buttons,
and text from a menu. The dialog box and its elements may be resized and moved using
the mouse. When an acceptable interface is designed, the data which creates it can be cut
and pasted into an Excel spreadsheet. Then a one line program will generate the interface
and user inputs are stored as data next to the interface data. Additional lines of code are
required to access stored user inputs.

Use of Database Functions. Although not part of the visual programming .
methodology, use of Excel's fourth-generation functions make many applications simpler

38

to program. In the case of scheduling, the database functions are most important. To
heuristically select tuples from a database based on information in a schedule, items from
the schedule (e.g., qualification) may be pasted into the criteria array. This is one method
of applying a constraint to push solutions into a feasible region. Database functions Such
as selection, the number of satisfying tuples, the maximum or mlmmum of an attribute
column, and extraction (projection) all use the current criteria array to select tuples and
make programming easier by raising the level at which it is done. For example, a very
simple aircrew scheduler might be based solely on training need. To implement the
scheduler, a pilot database, schedule, and algorithm are needed. One algorithm which
satisfies the requirement would copy the mission type from the schedule, go to that mission
type in the criteria array, and paste in the maximum value of the corresponding mission
column in the database. That action would constrain a database selection to the pilot with
the largest training requirement for the mission under consideration. The algorithm would
simply select the pilot name, copy it, and paste it in the schedule.[30,31]

Windowing, Menus, and Mouse. ‘I‘he. Macintosh environment is a visual operating
system. The use of windows, a standardized pull-down menu interface across all
applications, and mouse input all contribute to the ease of using any application. The
integration between applications epitomized by the ability to cut and paste information
between applications is very helpful during application development and use. Graphical
icons are more meaningful than text identifiers when it comes to file manipulation. The
mouse simplifies the user interface for most applications and allows file icons to be
manipulated in a natural way. In Excel, using the mouse to select and move data is much
simpler and faster than using the cursor keys.

39

CHAPTER 5§
THE EXCEL AIRCREW SCHEDULING PROTOTYPE

Using the visual programming methodology based on Microsoft Excel described in
the last chapter, the functionality of the LISP Machine/KEE version of the RADC Aircrew
Scheduler was ported to run in Excel on the Apple Macintosh IIcx. (Excel also runs under
Microsoft Windows on IBM personal computers and under Sun-OS (a Unix derivative) on

a Sun workstation).

Design Considerations. To gain user acceptance, the Excel aircrew scheduler
prototype was designed to do aircrew scheduling in the same way as the current manual
method. The focus was not on improving the current scheduling algorithm, but on
improving the communication and presentation of data, providing analysis capability, and
automating the current algorithm. By autqmating the heuristic scheduling algorithm used,
the computer can aid the scheduling officer by finding appropriate pilots and never
forgetting constraints. Using this approach, the computer is allowed 1o do what it does
well (i.e., store and manipulate data) and the scheduling officer is left to do what he does
well (handling anomalies and determining smarter ways of doing things). Heavy emphasis
was placed on allowing the user to have control of the system. For each action
implemented, there is an analogous procedure for retracting it. An uninhibited display
attitude was a prime design requirement from the start, and Excel's constant output of all
data and functional results supported that requirement well. There was some concern that
the user would be flooded with data, but humans are well tuned for focusing on what they
consider important, and scheduling officers have not complained thus far. Using the
standard window interface, the user can access more data bj simply scrolling the window.
Editing is important for changing schedule data, and the direct editing interface supports the

40 -

user's need for natural interaction. Also, the same animation that helped the program
developer build the prototype will help the scheduling officer understand exactly what the
prototype is doing and thus build confidence in its scheduling choices. Because Excel
exists in a windowing environment, multiple user views are possible, including one which
minimizes the animation window, should it become boring. The prototype has been built
making maximum use of graphical dialog boxes, resulting in interactive routines that are
simple point-and-click operations.

System Description of the Excel Aircrew Scheduler Prototype:

Data Structures. Consolidated database. The current Excel prototype has a database of
pilots, their qualifications, event completions for the current training term, and currency
days remaining for each event (basic AFORMS data). (See Figure 2.) In addition, the
consolidated data base includes a row for preferences and the availability status of each
pilot based on the mission under consideration, pilot availability data, and timing constraint
data. (See Figure 3) Timing constraint data are those data items which arise from the
length of flying day and crew rest constraints. This data is added onto (i.c., linked with)
tuples in the consolidated data base. Pilot availability data is stored in a linked list which is
also attached to tuples in the database. Pilot availability status appearing in the
consolidated database is actually the result of a function operating on availability and timing
constraint data, using current mission start and stop times. Thus the abstract notion of
availability that the user has in mind is the actual data presented, and the details of how
availability is calculated are buried.

Associated with the consolidated database is a criteria array used to specify criteria
for selecting data. (See Figure 2.) It is composed of attributes from the consolidated
database and is displayed in tabular form. Because there is a one-to-one correspondence

41

PILOT Quaf Availability [WD I WD Cur DeysJACBT JACBT Cur D DACBT | DACBT Cur [Preference
Able, Adam 5 {Unavailable 7 10 10 12 9 8
Baker, Barry | 5|Unavailable | 3 91 14 22 8 9
Charlie, Chucd 5 | Free 10 18 9 20 3 9
Dingo, Dave | 5|Free 23 29 9 27 3 28
Edwards, Eric | _4{Free 14 1 3 1 9 13
Frank, Fred 4| Free 1 16 3 18 4 21
Gonzo, Gre 4 Etee 6 -6 1 -24 6 -21
Haris, Hary | 2 |Free 17 4 4 25 20 2
Tggy. Ian 2| Free 9 7 19 16 1 11
James, Jim 2 {Unavailable 11 18 20] 15 16
Kee, Ken 4{Unavailable | 9 11 7 0 20 8
Lin 1{Unavailable | 22 34 0 2 13 -30
Mason, Mike 1 {Unavailable 10 22 40 9 9 11
PILOT Qual Availability WD | WD Cur Days| ACBT | ACBT Cur Ds DACBT | DACBT Cur L] Preference
1

131Pilots fit criteria | 23 341 40 24 20 -30

Below is space allocated to aiternate criteria rows:
5 {Free 14{>=0
S | Free

PILOT Prev] Today last Land Match Availability list - each pair is a start and stop of available ume
Able, Adam 1015 1 0] 830] 1015] 2400

Baker, Barry 1000 2 0! 800] 1000] 2400

Charlie, Chuck 1 0] 2400

Dingo, Dave 1330 1 01 1200] 1330] 2400

Edwards, Eric 1 0] 2400

Frank, Fred 1 0] 2400

Gonzo, Greg 11 0] 2400

Harris, Harry 1 0] 2400 .
Iggy. lan] 0] 2400

James, Jim 1000 2 01 800] 1000] 2400

Kee, Ken 1000 2 01 800] 1000] 2400

Lint, 1330 1 01 8301 1015} 1200] 1330{ 2400

Mason, Mike 1000 2 0] 8001 1000] 2400

Figure 3. Availability Data Linked to Pilot Tuples

between column headings (attributes) in the criteria array and the consolidated database, the
criteria array is physically located directly below the consolidated database for aesthetics.

There are two areas below the criteria array used as a swap space for the current criteria. In

42

addition, there is an array below event and currency attributes in the criteria which hold
maximum and minimum values of corresponding database attribute tuples. Again,

"maximum” and "minimum"” are abstractions, the result of functions.

Th;apartial schedule to be filled is presented as a table containing schedule line
number (a key), take off time, landing time, mission type, pilot qualification fequirement,
aircraft configuration and range data for each sortie. (See Figure 4.) There are slots left
open in the schedule for pilot and scheduler comments. The schedule flight date and
schedule generation date are attached. Today’s date, the result of a function using the
computer system clock, is displayed and may be copied into the schedule generation date.

The priority list for the schedule appears as a table but is dynamically converted to a
database during program execution. (See Figure 4.) It contains relative priority number,
pilot, mission, and a requirement comment, if desire_d, from the supervisor who generated
it (typically the training officer or DO). Them is an attribute heading for a comment by the

scheduler because, when a supervisor establishes a priority, the schedujing officer needs to.

communicate how the priority was treated. As with the consolidated database, there is a
criteria array associated with the priority list (priority list criteria) containing the same
attribute headings and located directly below the priority list. In addition, there is an area
below the priority list criteria used to extract (project) the priority number and pilot name
from the priority list based on the selection criterion.

Flight data are displayed in another table. (See Figure 5.) This data specifies
which sorties are parts of which flights. Two- and four-ship flights are common, although

43

Schedule for Date Gen{Today's Date
1-May-90 2-Apr-90]2-Apr-90] :
Line Number] Take off time} Landing{ Mission | Pilot Reqy Pilot Confiuration { Range{ Comments
100 800{ 1000{ACBT ~|>=4 J A
101 800§ 1000} ACBT] A
102 800] 1000}ACBT |>=3 J A
103 300 000} ACBT J A
104 830{ 1015}DACBT [>=3 B61MP A
105 830{ 1015}DA B61MP A
106 1200f{ 1330{WD a3 Bé61 P
107 1200} 1330{WD B61 P
Priority List{__1-May-90 -
Number Pilot ____ {Missiorj Requiremj Commend
1{James, Jim {ACBT
2{Lint, Larry {WD
3{Lint, Larry }DACBT
[4{Gonzo, Greg | D.
End
Number Pilot Missiorg Requiremni Commend
Number Pilot

Flight Data
1-May-90

Line Number {Pilot R{No. of sircraft { Other aircraflt
100{>ad 4 101 102} 103
101 4 100f 102} 10
102§>=3 4 100] 101 103
103 4 100§ 101 102
104}>=3 2 105
105 2 104
106/>=3 2]_107
107 2] 106

Figure 5. Additional Flight Data

44

other configurations are possible. The configuration of the flight dictates what
qualifications are required by the flight leaders. For example, a two-ship flight would
require a two-ship flight leader, but a four ship flight would require a four-ship flight leader
aswella;atwoshipﬂightlcaderbemusctacﬁcalaimraftnormaﬂyﬂyinpairs(leadcrand
wingman). Currently the flight data are used only to reset pilot qualification when pilots
are removed from the schedule.

There are four tables which help the system provide different data views to the user.
Three of them result from projecting data from the consolidated data base. Pilot
qualification, event requirements, and event currencies may be viewed as tables or graphs
using these projecnons The fourth table is a manipulation of the pilot availability data used
to create a time line chart of pilot availability. (See Figures 6,7, and 8.)

There are other abstractions displayed and used by the program. Among these are
size data for the consolidated database and the number of pilots from the consolidated
database who meet the current criteria. There is a vector of match values for the availability
data. The match values are used to updat~ data and as an intermediate result for availability
calculation. Other data that are displayed and used are the number of days remaining in
currency before the scheduler becomes concerned and the last DNIF times.

Most arrays used are not the typical Pascal-like array but rather dynamic data
structures which may expand in length or width. 'Iheconsolidawddatabaselengthensby
the addition of pilots (tuples) and widens by the addition of training events. The associated
criteria also expands in width when training events are added. The availability data stored
in linked lists attached to each pilot (tuple) are able to expand to the limits of memory;
however, current algorithms used do not take into account more than five blocks of free
time or occupied time for a day. This limit is considered adequate for tracking

45

Pilot Qualifications Event Requirements
PILOT Qualification PILOT WD ACBT DACBT
|Able, Adam 5 Able, Adam 7 10 9
Baker, Barry S Baker, Barry 3 14 8
Charlie, Ch 5 Charlie, Chuc 10 9 8
Dingo, Dave 3 Dingo, Dave 23 9 3
Edwards, Eric 4 Edwards, Eric 14 3 9
Frank, Fred 4 Frank, Fred 1 18 4
Gonzo, Greg 4 Gonzo, Greg 6 11 6
Harris, Harry 2 is, Harry 17 4 20
Iggy, Ian 2 Igey, Ian 9 19 1
James, Jim 2 James, Jim 11 20 15
Kee, Ken 4 Kee, Ken 9 7 20
Lint, Larry 1 Lint, Larry 22 0 13
Mason, Mike 1 Mason, Mike 10 40 9

Event Currencies - Days Remaining

PILOT WD Cur Days} ACBT Cur Days{ DACBT Cur Days
Able, Adam 10 12 8
Baker, Barry 9 22 9
Charlie, Chuckd 18 20 9
Dingo, Dave 29 27 28
Edwards, Eric 1 11 13
Fred 16 18 21
Gonzo, Greg) 24 21
Harris, Harry 4 25 2
Iggy, Ian 7 16 11
James, Jim ' : 18 8 16
Kee, Ken 11 0 8
Lint, Larry -34 -2 -30

Mason, Mike 22 9 11

-

Figure 6. Data Projected from the Consolidated Database

availability and was chosen to constrain file sizes, but it may be easily changed. The
schedule will obviously be longer or shorter depending on the number of scheduled sorties.
The length of the priority list is also variable. The four tables derived from other data are
also dynamic. All program modules have been written to take into account the dynamic

nature of the data structures used.

46

Air Combat Training Event Requirements and Currency Days

B AcsT O AcBT Cur Days

40

30

20

10

Able, Baker, Dingo,
Adam Barmry Dave

-10

-20

-30

Figure 7. Example Analysis Graph

Data Representations. Data appearing on the interface window are either of simple
type, such as nm.nbexs, dates, or character strings, or an abstraction, the result of a function
applied to other data. Simple data may be edited directly without possibility of error.
Abstractions may also be edited, but the details of the function are presented in the editing
window. To edit screen objects, the user mouses on it (points to it and clicks) to select it.
When it appears in the editing window, normal editing commands are available and a
carriage return complem editing.

47

0 400 800 1200 1600 2000 2400

Able, Adam
3NN NN N (N A N N N N N N A N N O N O N AN AR
Baker, Barry

Charlie, Chuck

SN N O O N A N Y R R N N NN U N AN N B BN N N BN
Dingo, Dave

Edwards, Eric
Frank, Fred
Gonzo, Greg

-1 1 { ' ¢ ¢ (‘¢ ¢\ ¢+ 1 1 |/ J ¢/ 1 &t J [t 7|
Harris, Harry
X5 I I AN 1 N A N N N O AN N N BN B O O N AN N N B B

Iggy, lan

James, Jim

-{ I T I I P 1 J 3 T P I T I P It 01 0010
Kee, Ken ~
= [T [T P I P T T Tt I T It LT P I 1 0]
Lint, Larry
- 3 ¢ ¥ 4 P fr 7 1 J r (fr rf+{ifrtr 0§87 § §§
Mason, Mike

Figure 8. Pilot Availability Timeline

Pilots are represented by a string consisting of their names in the format shown. The user
must only type the name in once; thereafter, the name may be more easily copied and
pasted. Pasting names is useful when the user wants to manually insert a pilot into the
schedule. Pilot qualification levels are mapped to numbers in the following way: those in
mission qualification training are level 1, those who are mission ready are level 2, two-ship
flight leaders are level 3, four-ship flight leaders are level 4, and instructor pilots are level
5. This mapping is useful for selecting pilots with at lcast some level of qualification and is
simple for humans to assimilate. Pilot availability is displayed as either "Free" or

48

Schedule for Date Gend Today's Date
1-May-90{ 2-Apr-90] 2-Apr-90{

Line Number] Take off}{ Landing { Mission | Pilot Reqq Pilot _ Confiuri Range{Comments
100 800§ 1000}{ACBT 5{Baker, B J A 14§ Events Remainin
101 800} 1000{ACBT Mason, MikdJ A 40{ Events Remainin
102] _ 800] 1000JACBT |>=3 __ |Kee,Ken 1] A 0 of
103 800} 1000{ACBT James, Jim }{J A 11 on Priority List
104] 830[1075 CCBT I 3]Able, Adam |BGIMPIA 91 Events Remaining
105] _830] 1015{DART | _ _ |Lint Lay [B6IMPIA 3] on Priority List
106 1200f 1330 E 5 Dingo, Dave _§6 P 23] Events Remaining
107 1200¢ 1°20{WD Lint, Larry |B61 P 2{ on Priority List

Figure 9. Automatically generated Daily Schedule

“Unavailable" in context of the beginning and ending time of the activity under
consideration at the moment. Event requirements are numbers indicating the number of
events yet to be completed before the end of the six month training term to maintain combat
ready status. Event currencies are also numbers which are the days remaining before going
out of currency in a particular event. Operational units think of currency as a date, but
numbers were more easily manipulated, and again, humans can quickly adapt to the altered
representation. Preferences are normally user-specified character strings; the system
currently uses the preference attribute to temporarily preclude the scheduling of
unsupportable pilots. Times are represented in military format by numbers from 0 to 2400,
although there is no type checking to flag meaningless values such as 1062 or 4000. The
availability data are pairs of times indicating the start and stop time of a free block of
unallocated time (or, shifting one data point over, the start and stop of a slice of allocated
time). A manipulation of this representation is a list of durations of free time and allocated
time slices arranged in an alternating fashion. The duration list is used to create a time line
chart. This representation is acceptable for graphing purposes, but it is not aesthetic as a
primary representation because of the error induced by using normal numbers as time (there
are only 60 minutes in an hour). Missions, configurations, and ranges all are represented

49

by strings of their commonly used abbreviations. Explanations may be user-specified, but
automated ones are formed by appending a number to a string. (See Figure 9.)

There are a number of ways to access or reference data, as described earlier. At all
times, there is an active cell in a selected array which is similar to the address pointer in
assembly language programming. As discussed in the last chapter, data may be referenced
by its relative position to the active cell. This method was used commonly because the
visual nature of the display made relative addressing natural and understandable. Of
course, the spreadsheet interface names each data cell in an absolute sense as well. A third
alternative, often used to abstract data or procedures, is the assignment of a user defined

name to data.

Procedures. The primary focus of the aircrew scheduling prototype was, from the
beginning, data centered. The Excel-based visual programming methodology supported a
data orientation very well. However, Exgel's high level functions and relatively clean
separation between data and algorithms allow the procedures which manipulate the data to
appear very powerful. Three hundred lines of code implemented a sophisticated heuristic
scheduler which took over 2000 lines of LISP in the previous prototype. In reality, the
macro procedures have very little to do, and the power comes from the high level functions
and continuous display and update inherent in Excel's spreadsheet interface.

Some algorithms used were automatic functions whose results appear as data.
Availability and attribute maximums are examples. The availability calculation results in
"Free" or "Unavailable,” in part depending on whether or not the activity under
consideration fits entirely within a given pilot's free time block. (See Figures 3 and 8.)
The block of time required by an activity (e.g., flying ;a mission) is defined by its start and
stop times. Pilot availability data are stored as blocks of free time (start and stop times) in

50

the linked lists attached to each pilot tuple in the database. Therefore, its simple to calculate
availability by making sure the activity occurs completely within unscheduled time, i.e.,
does not spill into a previously allocated time block. The other constraints placed on
availability arise from Air Force regulations limiting the length of the flying day and
providing crew rest. The availability calculation uses last landing times for the current and

previous day to enforce these constraints.

Most algorithms are not the result of functions, but programs known in Excel lingo
as comrnand macros. Theéc procedures are distinct from the data; they're stored in a
separate file and are manipulated via another window. Modularity was used extensively.
The top level design is shown in Figure 10.

The scheduling algorithm to find an appropriate pilot uses three approaches to
heuristically select a pilot if one is needed. If a pilot has been suggested by the user, the
algorithm will check the pilot to make sure no constraints are violated by the user choice. If
constraints are violated, the system defaults to automatically finding an alternative, or the
user may direct the algorithm to halt. If no pilot is suggested, the routine find pilot’ first
checks the priority list for applicable pilots and attempts to schedule them in order of their
" assigned priority. If no priority pilot can be scheduled, the algorithm tries to find a pilot
who has only a few days of currency remaining. Why is currency important? Non-current
pilots require instructor pilots to regain currency, and instructor pilots are a resource for
achieving training goals. Therefore, it makes sense in most cases to assign greater priority
to flying pilots who will soon go out of currency. "Low" currency is a visible, user-
specified parameter; currently it is set at 7 days. If there are no pilots who may be
scheduled because of low currency, the algorithm looks for pilots with the largest number
of training events remaining. The pnnm'y task of the scheduler is to provide opportunities

51

Make A Schedule . Print Schedule
| Place a Pilot Show Schedule
Rgsct Schedule T
RemoveaPi#a @ | —~ —~ ——=—=— 7
Free a DNIFed Pilot
Scheduling Functions
Show Qualifications
Add Pilot | Show Requirements
- Show Currencies
Delete Pilot . Plot Dara
Plot Availability
Pilot Data Functions

Figure 10. Excel Aircrew Scheduler Top-level Design

for required training, regardless of currency status, qualification, or other factors. If no
pilot can be found!3 using these three approaches, the scheduler reports **NO PILOT**.
In later versions, the algorithm will backtrack and rearrange the schedule to fill all slots.

13This may occur in resource rich schedules.

52

Regardless of how a pilot is picked by the system, no pilot who violates constraints
may be scheduled. A pilot must be qualified, current, and available as specified by the
schedule. A pilot who is not current or who is in mission qualification training status must
fly with an instructor pilot. Qualification, currency, and availability are pasted into the
criteria array as needed by the algorithm; the criteria inputs serve to limit the scléctionof
pilots. When a pilot is picked, the need for an instructor pilot is calculated. There are three
possible results: no instructor pilot is required, an instructor pilot is required and there is at
least one who is available and current to fly, or an instructor is required, but none are
acceptable because of availability or currency. The first and third results are easily handled
by scheduling or disallowing scheduling. The second case, required instructors exist, must
be handled more carefully because the algorithm does not know (remember) the status of
scheduling done so far and must check. If the schedule slot where the instructor pilot is
needed has not yet been filled, the algorithm can upgrade the required qualification for that
slot and fill the slot below with the non-current or underqualified pilot currently being
considered. However, if the associated instructor pilot siot has been filled, the algorithm
must check to see if the pilot filling it is an instructor. If so, the algorithm will place the
non-current or underqualified pilot. Otherwise, it discards the non-current or
underqualified pilot, just as if no acceptable instructor pilot could be found, and selects
another pilot for consideration. The dual interpretation of instructor pilots as pilots (jobs)
and resources adds to the complexity of the problem and makes handling it in this
procedure the preferred way of scheduling.

If an available pilot qualifies for a mission and is supported by an instructor pilot (if
required), the algorithm updates the pilot's availability and places him on the schedule with
a comment explaining the choice. If the pilot was scheduled based on a specified priority,
the priority list is commented to communicate success and so that the pilot will not be
selected from the list again. |

33

There is an analogous routine for removing a pilot from the schedule. Operations
performed include clearing the pilot slot and comment, resetting any upgraded qualification
from the schedule, freeing the allocated time from the pilot availability data, and clearing

any associated comment from the priority list.

Routines for completing or resetting an entire schedule reuse the smaller routines.
For example, to automatically make a schedule, the ‘make schedule’ routine finds the last
slot on the schedule and, proceeding upward, fills all unfilled slots with the most
appropriate pilot using find pilot.’

There is a routine to update the availability of pilots who are busy with duties not
including flying (DNIF, e.g., medical, ground training, a staff job, etc.). A corresponding
routine for freeing DNIFed pilots is also implemented.

Several routines have been written to display different views of the data. One
shows the schedule, another prints the schedule, and three others display the three
projections from the consolidated database: pilot qualification, events remaining, and
_ currencies. A flexible graphics routine allows the user to specify up to four attributes from
the consolidated database to produce graphs in a number of standard formats. (See Figure
8.) Another graphics routine produces a time line or pilot availability. These graphs open
as windows and may be left open, although their continuous recalqulatim slows execution.

Pilots mily be added or deleted without distorting the data structures or affecting the
algorithms in any way. Similar routines could be written to add or delete training events,

but at this time, that process is manual.

54

Data updates are currently done using serial debriefing and data propagation
routines. There are important issues yet to be addressed concerning the uncertainty in the
database, i.c., expected versus real data. These issues are discussed below.

Additionally; there are no routines or data structures to support check rides or

variable currency values (30 days assumed for all events) in this demonstration prototype.

The Interface. On the Macintosh, Excel's interface is the standard pull down menus.
The aircrew scheduler prototype retains these menus and adds two additional menus,
Schedule and Pilot_data. All user functions described are available from mousing on the

different menu choices. (See Figure 10 for functions available on menus.)

Using the Excel Scheduler. As stated, the Excel scheduler has beel; developed to
provide the scheduling officer with real-time data, analysis, and flexible scheduling
support. In practice, the scheduling function and data updates will be used most because
automated scheduling reduces the need foz-' specific data and analysis is needed
infrequently. Data updates include initial development of the schedule, insertion of a
priority list, printing the final schedule, replying to the priority list sender, and posting
updates to the database resulting from flying the schedule. For the purposes of discussion,
it is assumed that the Excel prototype and supporting software exists on a local area
network (LAN) of Macintosh IIcx hosts (a LAN of different hosts is possible).

The scheduling officer typically schedules two weeks in advance. For each day,
the scheduling officer must develop a partial schedule manually (as is done currently) and
insert it in the appropriate format in the schedule data file. Schedule development on
Excel's tables is a natural analog to filling out the current schedule template form. The level
of automation support provided for this operation is similar to using a word processor,

55

instead of paper and pencil. The training officer or other supervisor will have free access to
pilot data and is expected to develop a priority list in an Excel data file to be sent
electronically, over the network, to the scheduling officer's compuier. The scheduling
officer pastes the priority list into the appropriate day’s schedule data file which is now
ready for scheduling. |

Onrdinarily, the scheduling officer might choose to let the system generate a straw
man schedule by itself. (See Figure 9.) The straw man schedule may be perfectly
acceptable, or the scheduling officer may choose to rearrange it or try unassigned pilots in
place of the prototype's picks. The prototype's ‘remove pilots’ and place pilot’ routines
support the scheduling officer by updating data automatically and constraint checking
changes. The scheduling officer may also use the consolidated database to find pilots
meeting certain criteria. Why might the scheduling officer want to schedule manually? The
scheduling algorithm used by the prototype is a kind of default which ordinarily works
well. However, the scheduling officer may have additional information which impacts the
schedule or simply know a better way to schedule. The Excel prototype, through
simulation, clearly shows the scheduling office what it is doing and explains its choices.
This visual feedback mat-zs the program more understandable; it may help the scheduling
officer discover cases which are not supported and suggest alternative algorithms. Because
the algorithm requires less than 300 lines of code, the scheduling officer may even choose
to implement changes himself.

Once the schedule is completed, it may be printed out directly and posted. The
priority list, having been commented as to who is scheduled, may be sent back to the
training officer or other supervisor. Using the appropriate commercial network software,
sending files across the network equates to dragging an icon into a folder.

56

When pilots return from flying the schedule, it is their responsibility to provide data
regarding which training events they completed. Normally, completed training events
differ slightly from scheduled ones. The current prototype does nd support anything but
sequential updates of the data using the same scheduling data file as the scheduling
algorithm uses. A software upgrade is planned to improve the debriefing process. The
scheduling officer is given the opportunity to review a pilot's data before inserting it into
the database (this is done currently in practice). An improvement on this manual check
would be an automatic constraint check using knowledge from the applicable regulations,
but the current prototype does not support such a check.

When analysis is required, the scheduling prototype allows the user to put multiple
graphs on the screen and can calculate average events remaining by a single standard
function. These analysis tools are helpful in determining the type of missions which are
needed in the future and what resources are required to fly those missions. Pilots may be
analyzed in relation to their peers as to thcxr training progress; deviations of data may be
quickly highlighted. Graphs may be printed out or used to generate slides for briefings.

Constraints on Operations. The interface allows direct editing of displayed data, so
any errors may be corrected easily. However, this wide-open, unprotected interface can
lead to data inconsistencies and wild algorithms. Excel supports dynamic protection of
data, but the current prototype uses standard programming techniques, rather than cell
protection, to put constraints on operations. For example, the place pilot’ routine will not
execuneunlessitisov_aaslotontlnschednﬂe. As another example, unDNIFing a pilot
reports an error if the requested time block was not previously allocated.

Uncertainty in Schedule Development. A current developmer:t task is the handling
of uncertainty in pilot data during different times of the schedule life cycle. At some point,

57

generally yesterday, the pilot data should be complete, up-to-date, and true. (This is
assuming all pilots debriefed on time.) However, schedules are made for two weeks in
advance. It makes more sense to schedule based on an expectation of what the data will be
for the day the schedule is to be flown. Therefore, future scheduling data files are created
with the database updated for expected events. When actual data are obtained, data
inconsistencies must be resolved. Resolving inconsistencies is not difficult, but has not yet
been implemented. Currently, expected data and its repair is a manual process.
Scalability. The current prototype database has 3 events and 14 pilots. A typical A-10
squadron may have 30 pilots and must track at least 17 different events. The prototype -
generates an cight-slot schedule in just over three minutes using the current database. With
a full complement of pilots and events, the same Excel prototype may require six minutes to
schedule eight pilots. This execution speed is considered acceptable for A-10 scheduling,
but may be too slow for B-52 aircrew scheduling. (B-52 pilots alone must track over 100
events.) The Excel prototype's speed is lmnted by its inncrpreted macro language and
display updates. Continuous display is very helpful for determining data structures,
relationships between them, and algorithms which operate on them to produce the desired
effects. Therefore, an Excel-based visual methodology may be useful for prototyping a
scheduling system even if the system must ultimately be ported and compiled using a non-
visual language to enhance execution speed.

Expanding the Network. Using a tabular data format is an effective way of
communicating a moderate amount of critical information. A computer network with user
friendly file transfer allows rapid transmission of tabular data and opens up the possibility
of automating data handling and analysis. For example, a unit-wide LAN might include
maintenance as well as aircrew scheduling and provide for communication between the two

types of schedulers as well. A wider area network would allow for better communications

58

between squadrons and distant support (airfields, air refueling, etc.) Already, some of

these communication links are in place, but automated data analysis has been slow in
coming.

59

CHAPTER 6
OTHER APPLICATIONS AND IMPROVEMENTS TO EXCEL

A visual programming methodology based on Excel's spreadsheet display and
program animation is useful, not only for scheduiing applications, but as a general
pmMng methodology. Of course, there are a number of improvements which, if
integrated, would benefit the methodology: formalizing references, adding programming

functionality, and increasing support for abstraction in a number of ways.

Other Applications. Using Excel and the visual programing methodology described in
CHAPTER 3, several other applications were developed and appear in the APPENDIX.
They range from a simple form generator based on functional programming to a long
distance telephone data recorder which is used to record and deposit telephone data over a

network to an analysis center.

A solution to the eight puzzle described by Nilsson was programmed to
demonstrate the utility of visually explicit data structures. The eight puzzle is a matrix with
nine positions, eight of which are occupied by a moveable tile with a unique number. Tiles
are numbered from 1 to 8 and are arranged in what appears to be random order in the initial
state. The objective is to arrange tiles in increasing order around the periphery of the
matrix. Nilsson's first solution uses hill climbing. The hill climbing algorithm has been
implemented in Excel as a short program supported by several abstract procedures. The
resulting visual program displays the matrix of the eight puzzle in a concrete representation.
The eight puzzle solution appears as an animated program; the algorithm used is quite easy

to see.

60
Difficulties Associated with Programming in Excel.

Spreadsheets evolved into programming languages and databases because of user
demand. The primary users of Excel and other spreadsheets are business analysts, not
programmers. Therefore, the Excel programming language was developed for ease of use
and power. Itis not formally complete in the sense that LISP or Pascal are complete. Yet
its data presentation and representation capabilities are superior. There are two alternatives
to improving Excel programming capability. The first is to patch up the Excel macro
programming language. The second is to replace it with a standard language such as
Pascal.

Data References. In documentation and in operation, Excel often confuses the location
of data with its value. This is because Excel converts references to values whenever it
deems appropriate. Excel also converts types to other types when it needs to, rather than
giving any error indication. This amiablc.behavior is nearly always appropriate. However,
Excel can be inconsistent with both reference and type conversion.!4 For example, cells
may be referenced by absolute address or user-specified name. However, the standard
command for visiting a cell, SELECT, does not recognize user-specified names. If the
mACTro programming language is retained, it can be improved by allowing any naming

convention to be used for all instructions.

Programming Flexibility. Instead of enhancing Excel's macro language, it would be

nice to be able to use a standard programming language with Excel's spreadsheet display.
An already complete language like Pascal or Lisp extended to allow access to Excel's

14The Excel aircrew scheduler prototype was developed using Microsoft Excel version 1.5 rather than the
new version 2.2 currently available. Version 2.2 may be more consistent in treating reference and type
conversion.

61

spreadsheet cells would blend the best of both tools. Program animation could be retained
by having the Excel portion highlight cells as they are accessed or changed, still updating
changes continuously. A less ambitious environment would simply allow Excel code to
call a Pascal routine which accesses spreadsheet data and transfers control back to Excel
after execution. This would allow more sophisticated search algorithms to run on visual
data. Excel has the capability to exchange data with an external file; if it is difficult to call
an external routine from Excel directly, one could be still be run from the operating system.
A third alternative is implementation of a spreadsheet interface to Pascal (not a trivial
undertaking).

A spreadsheet naturally supports data structures such as tables and two dimensional
arrays. QJeues and stacks are projections of two-dimensional structures and are, therefore,
supported as well. Excel fails to support other data structures quite so well. It takes a little
creativity to implement a linked list or a tree in Excel. A LISP list would be very difficult to
represent.!5 However, Excel's spreadshqct interface strikes a good balance between the
appropriateness of a representation and the ease with which it can be implemented in a
program. It would be very difficult to program a better way of displaying a wee visually.
Until the job of programming a better visual representation becomes trivial, it is simpler to
use the standard interface provided by a spreadsheet.

Abstraction. When programming, there is a need to travel in both directions along the
spectrum of abstraction. When the program is not operating correctly, it is necessary to
look closely at the details. Excel supports this view very well. However, to address large
programming problems, one has to create abstraction batriers to avoid becoming

151¢ is interesting to note that visual improvements could be made to LISP as well. Consider how much
casier lists would be to read if different font sizes were used for parentheses and elements based on their
relative depth in the list!

62

overwhelmed by the details. Excel, like other programming languages, provides naming as
a procedural and data abstraction tool. However, in Excel, data abstraction is not
supported to the extent needed. Using LISP or even Pascal, it is possible to create very
complex data structures useful for data abstraction. In particular, objects in the object-
oriented paradigm are very useful for modeling complex, real world objects. Object-
oriented programming is not supported well in Excel currently, although some abstraction
is possible. For example, a functional result like availability is quite a cognitive leap,
considering the calculation going on in the background. However, it would be nice to
model a pilot as an object which encapsulates everything in a pilot tuple, as well as
procedures for updating data and responding to requests for information. That is not
possible using Excel because there is nothing to prevent access to cells. However, it is
easy to imagine a spreadsheet which can support the encapsulation required by the object-
oriented paradigm. The requirements are that cells must be able to be bound together and
accessible only through a specified interface. Cells may be bound by naming them as an
array. By arranging object-arrays physica_lly like nodes off a bus, a program can be writien
to ensure that only a single interface to each object is possible. To do so, the program must

continually check to make sure the active cell is either on the bus or in an object.

Inheritance and dynamic binding are also elements commonly associated with
object-oriented programming. Inheritance is not supported by Excel and would require a
significant effort to implement by programming. Excel currently translates types so well
that dynamic binding is not needed for primitive types. User-specified types (objects)
would require additional programming.

Originally, Excel version 1.5 was used to develop visual programs. Version 1.5
failed to provide enough abstraction support: visual abstraction. Every detail of the
program was animated. It is desirable to hide details, again suppressing them when

63

abstraction is desired, and looking at them when details become important. There are three
approaches which come to mind. First, a small amount of hidden memory which act as
registers in a microprocessor might be included. These registers would take the form of
additional buffers for copy and paste operations. A second alternative is to use higher -
level procedures which combine visit-copy and visit-paste (get and put, or perhaps,
get&put). The third possibility is to allow the programmer to specify which modules are
animated. The newest Excel (version 2.2) has the capability to turn off screen updates
during macro execution. With this functionality, the programmer now has control over

program animation.

64 -

CHAPTER 7
SUMMARY

From experience in developing the Excel aircrew scheduler prototype, a number of
conclusions are obvious. Further work is required to complete the prototype, but user
input is required to attain full functionality.

Conclusions

Visual environments are very important to program efficiency and program
development. Being able to see data and data structures makes them explicit and concrete.
Coupled with program animation, a dynamic display of changing data, visual data
structures improve the dcbqgging process and support verification and validation of the
program. Because Excel supports rearrangements of data and code very well,

modifications in the visual environment are relatively painless.

A spreadsheet is a natural interface for tabular data. The two-dimensional array of
the spreadsheet makes maximum use of the surface area of the display and serves as a good
generic interface for any data structure. The array default should be abandoned only when
it becomes trivial to program a better interface for a specific data structure.

A programming language with a spreadsheet interface is very useful for heuristic
scheduling systems but works well for other applications as well. Because spreadsheet
data structures are concrete, a visual programming language based on one is very useful for
prototyping and for teaching people about data structures. For example, an assembly

65

language programming class could benefit from using a spreadsheet to model a

' MiCToprocessor in operation.

When programming, there is a need to work near both ends of the abstraction
spectrum, either focusing on concrete representations or viewing large parts of the program
abstractly. The visual programming language suggested in CHAPTER 4 supports '
examining details, but does not support multi-level flexibility when it comes to program
animation. Improvements made to Excel version 2.2 allow the programmer to switch
animation on and off, improving the visual programming process considerably through
suppression of unwanted detail. Object-oriented programming might be useful in a visual
programming environment, but is probably too difficult to implement using Excel.

Future Work

The current aircrew scheduling algprithm is relatively complete and flexible.
However, it fails in the cases which the scheduling officer has the most difficulty with:
resource-rich schedules. When there are too few pﬁos, the current algorithm schedules
NO PILOT instead of checking the schedule to see if its greedy choices might be
rearranged to complete the schedule. Work is continuing to fix this problem.’

Another on-going effort addresses the generation of expected future data and
resolution of expected future data with actual data. No research is required to address this
problem; it is an implementation issue only. However, research is required to develop an
expert system for constraint checking pilot debriefing inputs.

The aircrew scheduling prototype is an example of very specific application
software designed to solve a very specific problem. Unfortunately, specific applications

66

require knowledge and expertise which is available only from the user. Successful
development of a specific application requires involving the user up front. Therefore, the
next step in improving the current aircrew scheduling prototype is to ask for user support in
testing and evaluation of the software. Without user feedback, it is easy to dcsi_gn software

which does not quite solve the user's problem.

67

BIBLIOGRAPHY

1 Abelson, Harold, and Gerald J. Sussman.
Computer Programs. The MIT Press, Cambridge MA, c. 198S.

2 Ambler, Allen L., and Margaret M Bumnett. "Influence of Visual Technology on
the Evolution of Language Environments,” Computer, October 1989, pp. 9-22.

3 Bic, Lubomir, and Jonathan P. Gilbert. “Leamning From Al: New Trends in
Database Technology," Computer, March 1986, pp. 44-54.

4 Blaha, Michael R., William J. Premerlani, and James E. Rumbaugh. "Relational
Database Design Using an Object-Oriented Methodology,” Communications of the ACM,
April 1988, pp. 414-427.

5 Bourne, David A., and Mark S. Fox. "Autonomous Manufacturing: Automating
the Job-Shop,"” Computer, September 1984, pp. 76-86.

6 Brown, Gretchen P., Richard T. Carling, Christopher F. Herot, David A.
Kramlich, and Paul Souza. "Program Visualization: Graphical Support for Software
Development,” Computer, August 1985, pp. 27-35.

7 Bruno, Giorgio, Antonio Elia, and Pietro Laface. "A Rule-Based System to
Schedule Production,” Computer, July 1986, pp. 32-39.

8 Chow, We-Min, Edward A. MacNair, and Charles H. Sauer. "Analysis of
manufacturing systems by the Research Queueing Package,” IBM Journal of Research and
Development, July 198S, pp. 330-342.

9 Engelke, H., J. Grotrian, C. Scheuing, A. Schmackpfeffer, W. Schwarz, B.
Solf, and J. Tomann. "Integrated Manufacturing Modeling System,” IBM Journal of
Research and Development, July 1985, pp. 343-355.

10 Fox, Mark S., and Bernard Nadel. Tutorial notes entitled "Constraint Directed
Reasoning,” from the Eleventh International Joint Conference on Artificial Intelligence,
given Monday, August 21, 1989.

11 Georgeff, Michael P. "Planning,” Annual Review of Computer Science, 1987,
pp. 359-400.

12 Gershwin, Stanley B., Ranakrishna Akella, and Yong F. Choong. "Short-term
production scheduling of an automated manufacturing facility,” IBM Journal of Research
and Development, July 1985, pp. 392-400.

68

g 13 Gries, David. The Science of Progamming, Springer-Verlag, Inc., New York,
c. 1981.

14 Haines, C. L. "An algorithm for carrier routing in a flexible material-handling
system," IBM Journal of Research and Development, July 1985, pp. 356-362.

15 Halbert, Daniel C., and Patrick D. O'Brien. "Using Types and Inheritance in
Object-Oriented Programming,” IEEE Software, September 1987, pp. 71-79.

16 Harel, David. "On Visual Formalisms," Communications of the ACM, May
1988, pp. 514-530.

17 Helman, Paul, and Robert Veroff. Intermediate Problem Solving and Data
The Benjamin/Cummings Publishing Company, Inc.,
Menlo Park. CA, c.1986.

18 Hillier, Frederick S., and Gerald J. Lieberman. Introduction to QOperations
Research, Fourth Edition. Holden-Day, Inc., Oakland CA, c. 1986.

19 Jacky, Jonathan P., and Ira J. Kalet. "An Object-Oriented Programming
Désciplinc for Standard Pascal,” Communications of the ACM, September 1987, pp.722-
76.

20 yacob, Robert J. K. "A State Transition Diagram Language for Vlsual
Programming,” Computer, August 1985, pp. 51-59.

21 Klein, Gary A. "Recognitional Decision Making in C2 Organizations,” a paper
presented at the 1989 Symposium on Command and Control Research sponsored by the
Basic Research Group, Joint Directors of Laboratories, and National Defense University,
June 27-29, 1989, in Washington D.C.

83 68822 in, Fred. "Visual Grammars for Visual Languages,” Robotics, 1987, pp.
683-688.

17623 Lassez, Catherine. "Constraint Logic Programming," Byte, August 1987, pp.
171-176.

24 Levien, Ralph. "Visual Programming," Byte, February 1986, pp 135-144.

25 Linden, Theodore A., and Same Owre. Verification and Validation of Al
Software, Technical Report prepared under US Air Force Contract F30602-88-C-0087 by
Advanced Decisions Sysuems, available as TR-3209-02.

26 Luh, Peter B., Debra J Hoitomt, Eric Max, and Krishna R. Pattipati. "Schedule
Generation and Reconﬁg\mon for Parallel Machines,"” 1989 IEEE International
Conference on Robotics and Automation, May 1989, Scottsdale, AZ, pp. 528-533.

27 Madhavii, Nazim H. "Visibility Aspects of Programmed Dynamic Data
Structures,” Communications of the ACM, August 1984, pp. 764-776.

69

28 McDermott, Drew, and Emest Davis. "Planning Routes through Uncertain
Territory,” Artificial Intelligence, Volume 2, 1984, pp. 107-156. '

29 Melamed, B., and R. J. T. Morris. "Visual Simulation: The Performance
Analysis Workstation," Computer, August 1985, pp. 87-94.

30 Microsoft Excel Arrays, Funtions, and Macros (for the Apple Macintosh).
Microsoft Corporation, c. 1987.

31 Microsoft Excel Users Guide (for the Apple Macintosh). Microsoft
Corporation, c. 1986. . ‘

32 Nilsson, Nils J. Principles of Arificial Intelligence, Morgan Kaufmann
Publishers, Inc., ¢. 1980

33 Pascoe, Geoffrey A. "Elements of Object-Oriented Programming,” Byte,
August 1986, pp. 139-44.

34 Raeder, Georg. "A Survey of Current Graphical Programming Techniques,"
Computer, August 1985, pp. 11-25.

35 Ronen, Boaz, Michael A. Palley, and Henry C. Lucas, Jr. "Spreadsheet
Analysis and Design," Communications of the ACM, January 1989, pp. 84-93.

36 Rushby, John. Quality Measures and Assurance for Al Software, Technical
Report prepared under NASA Contract NAS1-17067 by SRI International.

37 Shu, Nan C. "FORMAL: A Forms-Oriented, Visual-Directed Application
Development System,” Computer, August 1985, pp. 38-49.

. 38 Stark, Walter A., Jr., and Richard A. Reid. "An Operations Research
Scheduling Program,” BYTE, September 1983, pp. 549-579.

39 Stonebraker, Michael, Jeff Anton, and Eric Hanson. "Extending a Database
ggst%t;):ith Procedures,” ACM Transactions on Database Systems, September 1987, pp.

40 wilson, Ron. "Object-oriented languages reorient programming techniques,”
Computer Design, Vol. 47, November 1 1987, pp. 52-62.

41 Wittrock, Robert J. "Scheduling algorithms for flexible flow lines,” IBM
Journal of Research and Development, July 1985, pp. 401-412.

42 Zhao, Liping, and S. A. Roberts. "An Object-Oriented Data Model for Database
Modelling, Implementation, and Access,"” The Computer Journal, February 1988, pp.116-
124

70

APPENDIX A

The following paper provides a system description of the 1987 LISP machine/KEE
version of RADC's aircrew scheduler. It is useful as background, but doesn't indicate the
complexity of the KEE software.

Aircrew Scheduling: An
Application of Expert System
Technology

Capt Doug Dyer and Ms. Sharon
Walter

Rome Air Development Center
Griffiss Air Force Base, New York

ABSTRACT

This paper describes an expert system
developed by the RADC for scheduling
pilots of single seat aircraft in training
sorties. The aircrew scheduling problem
and technologies for solving it are
discussed.

A full system description of the RADC
aircrew scheduler is presented, along with
the algorithms that it uses. Present and
planned developments are listed. -~ -

Introduction
The Rome Air Development Center (RADC)
is a large Air Force laboratory responsible
for research and development of command,
control, communications and intelligence
(C3I) systems. Artificial intelligence
research is pervasive across the Center
because of its importance to command and
control (C2) systems. In 1986, RADC
initiated the Air Force Innovative Appli-
cations program, an in-house effort
designed to capture the expertise of Air
Force officers in deliverable, "bite-sized"”
expert systems. Maj Don Henager had
served as a squadron aircrew scheduler and,
under the program, developed software to
automate aircrew scheduling for A-10
aircraft. RADC's current aircrew scheduler
is an expert system designed to assist the
squadron scheduling officer of a single seat
fighter squadron in his daily task of
assigning pilots to a limited number of

71

sorties in order to meet semi-annual training
requirements. The purpose of this paper is
to describe the aircrew scheduling problem
and RADC's knowledge-based software for
solving it.

The A-10 Squadron Ai Scheduli
Problem

Globally, flying of the A-10 and other Air
Force aircraft is determined by the resources
available and the training requirements of
the pilots. Higher headquarters dictates the.
total number of flying hours for a given
year, based on funding allocations. Each
unit, or wing, tries to maximize training
within the flying hours constraint. Aircraft.
maintenance limits the number of aircraft
available and specifies turn-around times.
Munition ranges and runway times
constrain sortie profiles.

A wing scheduling officer negotiates with
and resolves conflicts between squadron
scheduling officers and is responsible for
setting the type and mix of sorties for each
day. As an example, for a given day a
squadron may be allotted 30 total sorties
consisting of 18 weapons delivery, 4 air-to-
air, and 8 instrument sorties. Each sortie
type can only fill certain training
requirements.

The squadron scheduling officer is
responsible for assigning pilots to complete
a daily schedule, like the one shown in
Figure 1. The scheduler may not place
pilots in sorties arbitrarily; pilot
qualification, currencies, flight training
requirements, ground training requirements,
and availability constrain aircrew

scheduling. Qualification is based on
training and reflects overall experience.
Qualification levels include mission
qualification training, mission ready, two-
ship flight leader, four-ship flight leader,
and instructor pilot. Currency is the last
date of completion of a particular training
event and reflects frequency of training.
For example, a pilot who hasn't landed in
30 days is not current for landing and must

12

land with an instructor pilot. Flight training
requirements are specified by regulation and
include many separate events designed to
train pilots in all aspects of flying the A-10.
Ground training events must be
accomplished before flight training. Pilot
availability is subject to duties not including
flying (DNIF) and leave. Pilots may be
placed on DNIF status for many reasons
including crew rest, illness or medical
appointment, TDY, staff responsibilities, or
ground training. Under the crew rest
concept,

)

214 356178 won
LINE | TOT |LAND |[MSN | PILOT CONFIG
601] 0800 11000 IWD B6I

602] 0800 | 1000 WD B61

603 | 0830 | 1015 |wp B6IMP
604] 0830 131015 Iwp BEIMP
605 [0830 J1015 fwp B6IMP
606 | 0830 1015 |wp B6IMP
607 | 1200 1;_3_9_533‘L i J

608 | 1200 1330 JACBT J

Figure 1. A Daily Schedule

pilots cannot fly for longer than 12 hours
and must have 12 hours of crew rest after
flying. Training often requires more
qualified pilots to fly with less qualified
ones. Two- and four-ship flight leaders are
always required for A-10s, depending on
the sortie. Instructor pilots are required for
qualification upgrade and to bring pilots
back into currency. Therefore, scheduling
a less-qualified pilot to fly generally implies
a constraint that a more-qualified pilot must
also be available to fly.

The current manual method of daily aircrew
scheduling is tedious, time consuming and
error-prone. The squadron scheduling
officer typically builds daily schedules two
weeks into the future and revises them as

needed when the scheduling situation
changes. The scheduler often receives a
priority list from the a squadron supervisor
(the supervisor may be privy to special
information, such as leave or TDY plans,
for example). If possible, the scheduler
will place pilots from the priority list on the
schedule or may negotiate with the
supervisor to remove pilots from the
priority list. The scheduler then completes
the schedule by essentially adding pilots to
the priority list and placing them on the
schedule. The scheduler makes every at-
tempt to maintain currencies and provide
opportunities for pilots to achieve training
events. Currency and training event data
are provided to the scheduler in the form of
hard copy reports from a centralized
database called AFORMS. Using the
reports, the scheduler selects pilots who
will go out of currency soon or pilots who
are getting behind in training. The
scheduler also tries to fly those pilots who
are attempting to upgrade their qualification
level. An upgrade to instructor pilot is
particularly appealing as instructor pilots are
a valuable resource to the scheduler.

Most operations done manually by the
squadron scheduling officer are analogous
to the relational database operations of join,
selection, and projection. Selection of
pilots based on currency data, training event
data and a ¢ on a priority list could
be done automatically by a relational
database management system. However,
additional inference is required to take into
account the constraint information contained
in applicable regulations and knowledge of
pilot availability.

The training and currency information from
the AFORMS database is neither updated
nor available in real-time. Therefore, the
scheduler must remember recent
information to work effectively. AFORMS
stores only training and currency
data. The scheduler must keep track of ail
other constraints which affect the
scheduling process. In addition, for pilots
attempting to upgrade or return to flying
status from a staff position, AFORMS fails
to record training events accomplished prior
to attaining upgrade status.

The AFORMS data are used by the Training
Officer, Squadron Commanders, and others
in addition to the scheduler. To insure
training opportunities, these supervisory
officers order corrective actions based on
the AFORMS data which can be incomplete
and slow in coming. AFORMS is managed
by a centralized base data processing center
and is not amenable to local manipulation.
Typically, the AFORMS data consists of
less than one megabyte of information;
neither storage nor processing requirements
lie outside the capability of a standard Air
Force microcomputer. Updates to the
database are accomplished using hard copy
optical scanner sheets filled out by pilots on
sortie completion. Pilot claims are checked
for feasibility and consistency by a review
board prior to updating the AFORMS
database.

Although the scheduler and others in the
flying unit benefit from the data provided by
the AFORMS database, there is a need for
additional data tracking and faster response.
In addition, data reports must be generated
in a more flexible manner, allowing
different users to obtain specialized reports
in a timely fashion. There is no reason, for
example, that briefing charts cannot be
generated automatically from existing data.
Finally, using database operations and
knowledge-based heuristics, the aircrew
scheduling process may be completely
automated, thus relieving the squadron
scheduling officer from about 80 percent of
the scheduling effort.

Scheduling is frequently assigned as an
additional duty in conjunction with flying
and requires 50-60 hours per week,
typically. Squadron aircrew schedulers,
after weeks of training, serve only 12 to 18
months in the job before "burnout” occurs.
The rapid turnover of pilots in a fighter
squadron, the task complexity, and the
frequent turnover in squadron scheduling
officers in the Air Force makes aircrew
scheduling an excellent domain in which to
provide computer assistance.

73

Scheduling Technology
Operations research techniques have been
developed to solve optimization problems.
Particularly, linear programming algorithms
such as the simplex method result in an
optimal value of some objective function on
solution. A scheduling problem may be
cast as an optimization problem; the simplex
method has been successfully applied to
scheduling problems. Although aircrew
scheduling constraints are not all linear, the
problem may be modelled as a linear
combination and linear programming may
be applied to solve it. However, there are at
least three reasons why a linear

programming approach is not the best one
to take for aircrew scheduling.

In practice, aircrew schedules change many
times between the initial draft and flight
date. Changes are required because pilots
become ill, fail to maintain currency, go on
TDY, or are required for a staff duty. Often
the scheduler arrives at a draft using
incomplete data and must revise the
schedule once the actual situation becomes
known. When a scheduled pilot becomes
unavailable to fly, another pilot must fill the
void in the schedule. The substitute pilot
usually must be as qualified as the original
one. Occasionally, large portions of the
schedule must be rearranged to fill the void;
however, it's best to keep changes to a
minimum, as the pilots must be aware of
and plan for the mission they are flying.
The scheduling changes that become
necessary in the aircrew scheduling domain
are the primary reason that linear
programming techniques are not suitable.
Because a linear programming solution is
always optimal, a void in the aircrew
schedule can cause the entire solution to
change. In contrast, when done manually, .
the schedule can stay relatively stable.

Computational efficiency is a secondary
reason that ions research methods are
less useful for aircrew scheduling. Casting
the aircrew scheduling problem as a linear
problem results in combinatorial explosion.
For example, given 30 pilots to fill 8 slots
on a schedule, there are nearly 236 billion

74

different solutions, neglecting any
constraints. Linear programming tech-
niques must be tempered with heuristics to
limit the search space before being applied.

Finally, a squadron scheduling officer is
generally an operational pilot with little
training in computer science. The officer
does not appreciate software which returns
recommendations without explanation, as
linear ing algorithms do. Instead,
the software should be able to describe why
a particular pilot was chosen or why some
other pilot wasn't. The scheduling officer
wants to retain control and understanding of
the scheduling process.

Aircrew scheduling does not require an
optimal solution, only a good one. The
algorithm used for manual scheduling is
adequate to provide training opportunities
for all pilots. These two facts suggest that
a knowledge-based approach is more
suitable for aircrew scheduling than linear
programming. A knowledg :-based
approach attempts to model the algorithm
and other knowledge used by the human
scheduler and to build an scheduling expert
system from that model. The resulting
expert system should solve problems in the
same way as the human expert does. ’

Development of a successful expert system
frequently depends on the availability of a
human expert and iterative knowledge
engineering to mine and refine the human's
expertise. In the tactical aircrew scheduling
domain, the constraints governing the
scheduling process are well-known and
published in regulations. Therefore,
although RADC's aircrew scheduling soft-
ware was developed by a human domain
expert, it could have been developed using
documentation alone.

Unlike linear programming, a knowledge-
based method a robust solution,
just as a human scheduler does. For
example, small changes in pilot availability
will normally result in small changes to the
schedule. In addition, the expert system
developed from the manual scheduling
model avoids searching the large solution
space. Instead, a few heuristics guide the

search to a nearly optimal solution in just a
few seconds. Another advantage of a
knowledge-based approach is in the
presentation and explanation of information.
Expert systems are a spin off from artificial
intelligence research; they are typically rich
in friendly man-machine interface features
including windows, mouse input, and
inference chain dumps. With a little extra
programming, the inference chain may be
used as the basis of a good explanation
capability, as it has been in the RADC
aircrew scheduling software. The level of
human expertise involved, the size of the
knowledge base, the need for an intelligent
search mechanism, and the large number of
disjoint and interrelated constraints posed
by the domain makes it appropriate for
expert system application.

Object-oriented programming is a
programming methodology for modelling
real world objects. The objects are
represented as active data modules which
communicate by message passing. Classes
of ¢bjects may be defined and objects may
be defined to be instances of a class;
instances of a class take on all procedures
and default data values of the class. Hierar-
chially organized classes may inherit both
data and procedures from classes above.
RADC used object-oriented programming in
the development of it's aircrew scheduling
prototype because the methodology allows
abstraction of data, rather than procedures,
strictly enforces modularity, and saves
coding through inheritance.

A Description of the RADC Ai
Scheduler

The aircrew schedvling expert system was
developed in-house at RADC by Major Don
Henager. The software was written in KEE
(Knowledge Engineering Environment) on
a Symbolics 3670 Lisp Machine. The KEE
development environment is an expert
system shell which supports object-oriented
programming and a transparent interface to
the Lisp environment of the Symbolics.
The combination of KEE and the Symbolics
Lisp Machine provide a powerful envi-
ronment for the development of artificial
intelligence applications. For portability

reasons, Common Lisp and Common
Windows were used; extensions to
Common Lisp (other than Common
Windows) and Zetalisp were avoided.

The interface to the aircrew scheduling
software is through a series of windows.
Pop-up windows are used to display menus
of available operations. Items on the menus
and on other selected objects have been
programmed as mouse “hot-spots” and
cause the software to react appropriately on
mouse input. A mouse documentation line
indicates what operations will occur when
one of the three mouse buttons are pressed
when the mouse cursor is resting on a hot-
spot. These features make the interface
very much a "point-and-click" affair.
Keyboard input is required only for
inputting items such as a pilot's name or a
new date. Mouse input is even used to edit
some items, as in the case of pilot
availability.

There are three classes of scheduling
operations: system administration, X
and scheduling. System administration
operations allow the human scheduler to
alter characteristics of the system display
and to make changes to some of the
scheduling criteria without modifying the
software code. Those operations will not
be described in this paper.

Database operations are used to store,
display, and edit all information pertinent to
the scheduling process. The scheduling
algorithm has access to all data and
propagates changes to the database as
needed. Like the AFORMS database, the
aircrew scheduling software stores an
identifying key (a name, in this case),
qualification level, and flying hours for each
pilot, as well as events remaining and
currency for each training event applicable
to the pilot. In addition, the system stores
pilot availability, flight information, the
current daily schedule (minus the pilots),
and the priority list for scheduling pilots.
These four data items are required inputs to
the scheduling system; their determination
lies outside the realm of aircrew scheduling.
At this time, they must be manualily entered
by the squadron scheduling officer, but the

75

system has been built for easy interfacing,
should the data become available on-line.
As the current aircrew scheduling software
is written in Lisp, the data structures used to
store the data are lists. Most data is stored
in a single large database and is associated
with the appropriate pilot. This does not
present a problem because of the relatively
small amount of information required.

Pilot qualification level, events remaining,
and currencies can be displayed in a tabular
format, just as they are in the current
AFORMS reports. However, because
currencies often drive the scheduling
process, currency information can also be
displayed graphically to allow the
scheduling officer to easily see who should
be flown rather immediately. The graphical
display is currently discreet, rather than
analog; only two types of pilots are
displayed: those who will go out of
currency within a week and those who have
already gone out of currency. Pilot
availability is also displayed graphically and
can be edited graphically using the mouse.
Flight iaformation, the priority list, and the
daily scu~dule are all displayed in a tabular
form to retain consistency with the hard
copy analogs currently being used by op-
erational squadrons.

The procedures used to update the database
are tailored for the particular user (most
often the squadron scheduling officer). On
sortie completion, pilots can update event
and currency data using a debriefing rou-
tine. The debriefing routine is displayed as
a window similar to the optical scanning
sheets used currently and can be filled out
using the mouse. There are also routines
built for the training officer to edit training
or currency data. For the scheduler,
ordinary editing of pilot data may be
accomplished on the display screens as all
data items comprise mouse hot-spots.
Clicking on an item allows it to be edited.
The flight data, priority list, and schedule
may also be edited in this fashion. In ad-
dition, there are a several routines for
handling abnormal conditions. For
example, there are routine; for altering the
data items tracked; training regulations gov-
erning flight training change relatively

76

frequently. When pilots enter or leave the
flying squadron, there are special routines
to allocate database records for them, enter
them into training, and prorate their training
requirements. Prorating a pilot reduces the
number of training events required to match
the time remaining in the training term.
Routines exist for beginning a new training
term (six months in duration) or zeroing out
requirements for a particular pilot. Zeroing
a pilot out is necessary for pilots who leave
flying status but remain in the squadron.

Some updating procedures are used to
automatically propagate changes caused by
the scheduling procedure. For example,
once a pilot has been scheduled, the
availability display shows the pilot in
"unavailable” status.

The third type of operation available on the
system is associated with the scheduling
process itself, rather than data. Automatic
scheduling consists of matching different
types of sorties with pilots of varying
qualifications and training needs. There are
two different algorithms used based on the
nature of the training cycle. During the first
three months of the training term, the
training requirements of the pilots have no
noticeable trouble areas so the scheduling
algorithm can be simpler. The simple
algorithm ranks sorties in increasing order
of slots available and fills them with the
pilots who most need the training, taking
into account any requirements for instructor
pilots or flight leaders. For example, given
8 weapons delivery, 2 air-to-air, and 4
instrument sorties, the air-to-air sorties
would be filled first, followed by the
instrument sorties, and, finally, pilots
would be assigned to weapons delivery
sortics. The idea behind this simple
algorithm is that air-to-air sorties are most
precious, as there are least of them. This is
very simplistic reasoning, as the next day
may include 12 air-tn-air sorties. However,
during the first three months, the algorithm
works well.

During the second three months of the
training term, the scheduling algorithm
evaluates the current status of pilots and of
the squadron as a whole to determine

scheduling priorities. If any individual pilot
or the squadron average falls behind in an
event, that event becomes a high priority for
the pilot or the squadron, respectively. For
example, if a pilot has 50 percent of his
weapons delivery events remaining and
only 16 percent of the training time remains,
weapons delivery becomes a high priority
cvent for that pilot. Alternatively, if the
squadron has 20 percent of its weapons
delivery requirements remaining with 16
percent of the training time remaining,
weapons delivery events would become a
priority for all pilots. The more complex
scheduling algorithm ranks sorties ac-
cording to their relative ability to fill the
priority training requirements, rather than
on the relative number of slots available.
Those sorites that can fill the highe:t
number of priority requirements will be
filled first. Using this ranking, slots are
filled as with the simpler scheduling
algorithm, using pilots who reqmre the
training the most.

If the distribution of future sorties were
known, the scheduling process would be
much simpler. However, the distribution of
future sorties is not known. Indeed, if the
squadron requires additional sorties of one
type, the distribution may shift to
accommodate " the neced. However, the
distribution is also influenced and
constrained by other factors; therefore, the
flexible algorithms above are needed. The
algorithms described are based on the
experience and knowledge of an expert
human aircrew scheduler and have proven
to give robust, acceptable solutions in near
real time.

After ranking the sorties, the aircrew
scheduling system assigns pilots to slots. If
possible, all pilots on the priority list are
scheduled. The rationale for doing this is
that the squadron supervisor should have
the same level of control over the software
scheduling system as he does over the
human scheduler. Currencies are the next
criteria, and training needs are considered
last. The criteria order may be altered
without programming to match the
scheduling philosophy of the particular
squadron.

The actual scheduling procedure is
accomplished using rules as a means of
disqualifying pilots from sorties. The
sample rule shown below would disqualify
a pilot from a sortie for which he is not
available:

(IF
(AND
(THE TOT OF ?SORTIE IS 7START)
(THE LT OF ?SORTIE IS 7END)
(NOT (AVAILABLE-PILOT ?
PILOT ?START ?END)
(INVALID-SOLUTION ?PILOT
7SORTIE)

A pilot must pass through the entire gauntlet
of disqualification rules before being
assigned to the sortie. As the system
progresses through the daily schedule, it
builds a list of unused partial solutions. In
the course of assigning pilots to sorties, the
systcm may arrive at a point where the
remaining sorties cannot be assigned.
Instead of backtracking to the starting point,
the algorithm will look for alternative
solutions on the unused partial solution list.

Once an aircrew schedule has been
generated, the scheduling officer can click
on any pilot and receive an explanation as to
why the pilot was selected (pilot names are
also mouse hot-spots). This feature is ex-
tremely important because scheduling
officer often need to be able to explain their
choices to scheduled pilots and supervisors.
Moreover, schedule lines may be added or
deleted on the display screen to reflect, for
example, when an scheduled aircraft must
undergo maintenance instead of flying.

The squadron scheduling officer may use
the aircrew scheduling system in a semi-
automated mode as well. For example, the
officer may change a _Fhamcular pilot on a
generated schedule. The system will au-
tomatically check the candidate pilot and the
entire schedule for constraint violation. If
the new pilot violates constraints, the
system will report the violations, but it will
not rudely remove the pilot. The scheduling
officer can use the system in this way to
manually generate a schedule, if desired. If

77

two pilots appear on the schedule, the
scheduling officer can cause them to swap
positions. In addition, there are special
database operations available on the
scheduling window. With these operations,
the system can find all pilots who satisfy a
given criterion. For example, all two-ship
flight leaders who are current in weapons
delivery may be displayed. Also, the
priority list may be displayed and edited.

Future Development

The RADC aircrew scheduler prototype has
been demonstrated to many high-level DOD
members and has been enthusiastically
reviewed. However, its current hardware
and software requirements are too great for
an operational unit to afford. Parallel
efforts are ongoing at RADC to transport
the functionality of the system to an Intel
80386-based personal computer and an Air
Force-standard Zenith Z-248. Those
developments are expected to be complete
by 1990. The software will be modified to
include reasons for non-availability, such as
leave and TDY.

The artificial intelligence technology
required for well-defined scheduling is
generic enough to be applied to many other
types of scheduling problems that exits in
the Air Force and other DOD services. For
example, aircraft maintenance and air
refueling schedules can be automated using
knowledge-based techniques. These types
of scheduling problems are also being
considered by the Air Force Innovative
Applications program. It is hoped that the
expertise gained from treating these
problems may be formalized into a generic
"language" for scheduling.

The data which serve as inputs to the
aircrew scheduling problem seem to be
supplied and used in a distributed fashion.
Neither processing nor storage of the data
reqzuires anything more powerful than an
80286-based personal computer. Local
storage of data would enable less
constricted data flow and greater flexibility
in the use of the data. Moreover, different
automated tools for scheduling and database
operations are anticipated. For example,

78

pilot claims could be screened automatically
for feasibility and consistency before being
reviewed manually and inserted into the
database. Therefore, the ideal architecture
for scheduling in an operational squadron is
probably a local-area network (LAN) of
personal computers. RADC is currently
developing a LAN test bed for different
schedulers to operate in a cooperating
fashion.

References

Henager, Donald E. Unpublished notes.
1986-88.

Hillier, Fgedcrick, and Gerald Lieberman.

Introductions 1o Operations Research,
Holden-Day, Inc., Oakland California, 4th
ed., c. 1986.

79

APPENDIX B

The following paper discusses initial ideas related to a visual programming
methodology using Microsoft Excel and describes a currency-driven aircrew scheduler
developed in the summer of 1989 at RADC. The current Excel prototype uses two
additional scheduling drivers to arrive at better schedules that expand solutions to more of
the feasible space, in addition to providing many more user functions. However, the
currency-driven scheduler demonstrates how quickly a simple scheduler may be built using
the visual programming methodology based on Microsoft Excel. The currency-driven
scheduler required only 120 lines of code

80

AIRCREW TRAINING SCHEDULER:
AN EXPERT SYSTEM APPLICATION USING
VISUAL PROGRAMMING LANGUAGE

Capt Doug Dyer
Lt Jennifer Skidmore
Stephen Platis

Rome Air Development Center
Griffiss AFB, New York

Introduction

The difficulty with most expert system programming problems is that not only is building

an application complicated in itself, but also the complexity of the computer system

discourages the operational user, who is usually a novice programmer. What is needed is a

simple programming system so the domain expert doesn’t have to be a computer expert.

Although high-performance architectures allow for greater flexibility and speed, their
~complexity adds undesirable overhead to the development effort.

Some of the recent attempts to simplify software development have been expert system
shells, object-oriented programming, graphical interfaces, and fourth-generation
programming languages. Simple expert system shells do little more than formalize rule
representation and restrict ordinary programming languages to sequential if-then-else
structures. More powerful shells provide additional knowledge representation and
inference alternatives at the expense of increased complexity. The object-oriented
programming approach promotes the useful atributes of abstraction on data objects and
modularity between objects, but this igm is accompanied by new languages
(Smalltalk) or language extensions (C++) that are non-trivial and somewhat counter-
intuitive to programmers traditionally trained on procedural languages.

Graphical interfaces are more successful at conveying info:mation than text, and they treat
the computer’s output limitation very well from a user’s standpoint. Unfortunately, getting

- graphical ouptut requires complex programming. Fourth-generation programming
languages treat powerful procedures on complicated data structures as language primitives,
reducing complexity by abstraction. A fourth-generation language endowed with graphics
capability allows the programmer to utilize the tools provided by the higher-level language
to get output in the desired form, without the need for explicit programming. One example
of this kind of tool is a debugger, which displays variable values while the programmer
executes a program. This type of continuous visual display has a logical limit that has been
known to business users for years as a spreadsheet. A spreadsheet consists of a large, two-
dimensional array of cells which may contain constants or variables (i.e., the results of a
formmla). These cells are continuously calculated and displayed, an effective way of

. treating the computer’s shyness about output and avoiding complex graphics programming.
Although spreadsheets began life as "what-if" tools for business users, they quickly
expanded into database management systems and added the flexibility of programming
through macros. Current spreadsheets, like Microsoft Excel, feature powerful functions
and utilities, placing them in the category of fourth-generation languages.

Although spreadsheets are not often dlmghtofasgmmmnglanguages, spreadsheets
are appropriate for solving some of the problems of interest to the Rome Air Development

Center (RADC). In particular, well-defined, constraint-based scheduling problems (among
others) are easy to solve using a spreadsheet. As part of an aircrew scheduler
development, RADC has developed an innovative programming methodology based on the

81

use of a spreadsheet as a visual programming language. Not all of the desirable properties
of the visual programming language we envision are embodied in current spreadsheets.
However, for many problems, the advantages of using a visual programming language far
outweigh the shortcomings of current spreadsheets. We consider visual programming
methodologies to be important in reducing programming complexity, especially for novice
programmers. :

We devote the first portion of this paper to the advantages of visual programming
languages over conventional higher-ordered languages such as Pascal, C, or Ada, and then
admit some disadvantages. The second portion of the paper is a system description of the
particular application of interest, a daily aircrew scheduler which assigns pilots to training
missions. The scheduler is a prototype expert system which was ported a LISP
machine in the KEE 3.1 environment. The new prototype currently does not support the
entire functionality of the KEE version, but has been implemented by novice programmers
in only three weeks and a few hundred lines of code. This represents a code reduction of
at least one order of magnitude for a complete port. :

We have found this portion difficult to write, as many of the advantages are subtle and they
range from matters of convenience to cognition. In the discussion that follows, we do not
differentiate much between what we call a visual programming language and our current
spreadsheet, Microsoft Excel, except for Excel attributes which are clearly not associated
with the visual nature of the tool. . :

When developing a program using Pascal or C, the programmer must iteratively determine
the need for a variable in the program and allocate it in a type declaration. This is because
these languages efficiently guard memory resources. Each variable type is allocated the
least amount of memory that it needs, so the particular type is important and must be
declared by the programmer. Swapping from the program to the declarations block is
distracting to programmers, but useful for'runtime efficiency. Languages like LISP relax
the need for strong typing and dynamically allocate memory. Spreadsheets go even
further, by pre-allocating memory into a two-dimensional array (most convenient for visual
display on a two-dircenisional screen). Visual programming languages also allow any data
type or even a formuia (functional procedure) to occupy a data cell. Furthermore, cells
already have their own names, i.e., Al, J45, etc. Moreover, assigning values to data
locations is at least as simple as for conventional languages.

Also when using Pascal or C, if output is desired, output must be programmed. A
program that provides no output has no value, yet the programmer must go to special
lengths to obtain output. Visual programming languages supply continuous output in a
two-dimensional window stream without programming, which is clearly a more sensible
approach for data-centered problems. When executing a conventional program, i
display code (or a debugger) is required to discover values of pertinent variables for
program verification or debugging. The continuous calculation and display of a visual
programming language makes this extra code unnecessary.

From a cognitive standpoint, visual programming languages are superior. The continuous
display of data relieves programmers from having to remember variable names and
meanings and also provides additional (human) memory association opportunitics. By
default, pre-defined names for data cells are displayed and can be mentally derived by
projection (e.g., Al is the cell in column A and row 1). If the meaning of the data cell
needs commenting, the comment may occupy an adjacent ceil. Furthermore, the cell can be
referred to with a user-defined name, just as variables in a conventional programming

82

language are. User-defined names act as aliases for absolute addresses (e.g., A1). The
two-dimensional display also has a more subtle advantage: data exists in planar space. .
That is, each cell is in a definite location relative to other cells. A programmer knows a cell
both from its name and from its location on the display. Finally, data structures in
conventional programming languages are invisible, abstract, and seemingly unrelated to
one another in space; programmers often draw individual data structures to conceptualize
them (for example, linked lists). Both of these issues are addressed by visual
programming languages. Although limited by current spreadsheets to rectangular arrays,
the data structures of a visual programming language are displayed by the language. They
are quite concrete. Furthermore, because of the two-dimensional space, data structures are
physically related as well. Conceptually related data may be placed physically close
together, if desired. The physical display of data also works for the display of the program
source code. Typical conventional languages are edited essentially as linear strings.
Despite structured programming, one procedure follows another. This is not at all true for
the two-dimensional display area of a visual programming language. Although each
procedure (macro) occupies a linear column of cells, a second procedure can be placed
north, east, south, or west of the first. By using a two-dimensional programming area, a
higher degree of structure is added, and the advantages of structured programming are
amplified as a result.

Visual programming languages support data abstraction. A cell may be data or a functional
procedure, in which case the result is continuously calculated and displayed as data. Each
cell is similar to an object in the object-oriented paradigm, although the interface is rather
open and only one "method” may be stored inside. This is a limitation of the currently -
available spreadsheets; new "three-dimensional” spreadsheets might be better as visual
implementations of object-oriented languages.

As a general rule, languages should be extensible. Current spreadsheets support
extensibility of their fourth-generation capabilities by supporting user-defined functions. In
Excel, these are called "functional macros” and differ conceptually from the "command
macros” which are executable programs. Functional macros are applicative, rather than

procedural.

In terms of artificial intelligence programming (and many others domains as well), it is
often difficuit for the knowledge engineer to know what data is relevant and what
relationships exist between different data sets. Using a visual programming language
encourages the programmer to place data in displayed data structures before writing
procedures. The visual display of data structures seems to help in defining what
procedures are possible and determining the relationships between data. The idea of
throwing lots of data onto the computer screen without much regard for its relevancy is
similar to the approach chosen by many neural net programmers. It is not costly to either
type of programmer to use this approach, and the data that turns out to be unimportant can
be thrown away later.

Because data structures in spreadsheets are two dimensional arrays, relative addressing is
used much more frequently to access data than for other languages. For example, it’s
common to go “one column over and two rows down.” This characteristic is more useful
than abe~lute “by name” addressing when the data structure must be modified, because not
every cell has a user-defined alias. All current spreadsheets recognize the need for data
array changes; relative addressing is the default operating mode. Data structures may be cut
and pasted, and the system updates references to them automatically. -

Command macros, the programs of spreadsheets, typically access data on a spreadsheet by
“visiting” the cell where the data is located. The macro language can use the data to make

83

calculations and copy the results into another visited cell. This is exactly what happens in
any programming language, but with a spreadsheet, the process is displayed visually,
rather than being kept invisible. For example, Excel’s active cell is displayed as a colored
outline. As a macro éxecutes, the active cell indicator moves around on the screen.
Debugging is much simpler when every step of a program’s process is displayed. Witha
visual programming language, there is never any need to write test procedures. In the
particular case of Excel, macros may be single-stepped which is a good debugging feature.

Command macros can be executed by other macros. This feature encourages procedural
abstraction and code modularity. Although programs like C and Pascal also have this
feature, the two-dimensional placement opportunities and loose data typing of a spreadsheet

encourage programmers to break up the program properly. -

Spreadsheets have many primitive functions which are really sophisticated procedures,
qualifying them as fourth-generation tools. Among these primitives are mathematical,
statistical, database and date functions. In addition, advanced graphing utilities are
included. Excel features custom menus and dialog boxes, making user-interfaces easy to
construct. These features are not unique to visual programming languages, but they are a
useful aspect of all spreadsheet systems.

A Few Disad Visual P e]

Visual programming languages have an inherent processing overhead associated with
display and continuous calculation of formulas in cells. However, it is reasonable to trade
runtime execution speed for programming benefits in an era of faster hardware. Also, in
our experience, a visual programming language is useful as a prototyping aid, even if the
eventual product will be coded in an efficient ' - 1guage such as C. We initially tried to port
the KEE aircrew scheduler directly into C cods, but development was slow because
relationships between data were unclear. Now that a spreadsheet prototype exists, we feel
confident that a C version of the prototype could be quickly coded.

For many problems, a two-dimensional array is not the best data structure to use. The idea
of a visual programming language doesn’t preclude other data structures, but current

heets tend to discourage them. For example, current spreadsheets treat single cells
(variables) or arrays as default data structures. A linked list is not terribly difficult to
implement, but a tree structure might be. New three-dimensional spreadsheets certainly
offer other possibilities.

Designed as business tools, current spreadsheets are not as rigorous as a visual
programming languages should be. For example, there should be a clear distinction
between data meaning, value, and address. Our current Excel version frequently uses
“reference” to mean cither address or value. In addition, control and branching constructs
require more attention. Spreadsheet developers seem to be cleaning up thier products;
newer versions are reported to formalize macro languages and fix irregularities.

Finally, the database utility of spreadsheets could be enhanced by adding a join operation.
Selection and projection operations are currently supported. The addition of join would
make spreadsheets adequate as relational database management systems.

Single-seat aircraft aircrew scheduling is typical of well-defined, constraint-based
scheduling problems. Briefly, an aircrew scheduling officer in an operational squadron
must complete a schedule like the one shown in Figure 1 by filling in appropriate pilots.
Constraints include pilot qualification, pilot availability, training event requirements, and
event currencies. Pilot qualification ranges from Mission Qualification Training through
Mission Ready, 2-Ship Flight Leader, 4-Ship Flight Leader, and finally, Instructor Pilot.
These values are mapped into the numbers 1-5 in the database for convenience in
manipulation (See Figure 2). Pilot availability is subject to having been previously
scheduled to fly or a number of Duties Not Including Flying (DNIF). Typical DNIF are
things like medical reasons, leave, TDY, ground training, or staff duties. Each training
term, pilots must complete a certain number of training requirements for each mission or
event type (See Figure 3). Weapons delivery (WD), air combat training (ACBT), and other
types of training sorties give pilots training opportunities for different events. For most
events, pilots are required to maintain a currency; for example, a weapons delivery mission
must be flown every 30 days to maintain currency (See Figure 4). Pilots who go out of
currency in an event must have an instructor pilot fly the same mission along with them the
next time they fly that event. Instructor pilots are required for any pilot in Mission
Qualification Training and for any qualification upgrade, as well.

Training event requirements and currencies act as drivers in the scheduling process, while
currencies, qualifications, and availability constrain scheduling. Currencies are particularly
i t because instructor pilots are a valuable resource to the scheduler. Therefore, it is
to schedule pilots who will soon go out of currency before an instructor pilot will
have to be scheduled to fly with them. It is not immediately necessary to schedule non-
current pilots since they will have to fly with an instructor pilot anyway, but they have to be
scheduled sometime or they will be unable to complete training requirements. All other
things being equal, pilots requiring the most training events should be scheduled first.

Before scheduling pilots, it is necessary to decide which the mission type should be
scheduled first, as filling these slots will impact pilot availability. Our current prototype
doesn’t consider future availability of training missions. Instead, it schedules the scarcest
mission type first. Algorithmically, it fills the schedule from the bottom up, the idea being
that the scheduling officer should place the missions on the schedule in order of increasing
scarcity. Although this method is simplistic, it is used by many squadrons, particularly in
the early months of the training term. Future sortie types are not completely constrained
and are often not known. However, more rigorous algorithms are possible. For example,
our KEE scheduler uses scarcity initially, but then switches to an algorithm based on
assigning individual and unit mission priorities which are based on training events and time
remaining.

While the above description of the scheduling process is admittedly simplistic, it is
sufficient for describing the scheduling process and the visual programming methodology
used to construct the aircrew scheduling prototype. Additional elements of the aircrew
scheduling problem are contained in [1].

The data used by the prototype consists of the contents of Figures 2-4 and is consolidated
in the prototype into one database (See Figure 5). Below the consolidated database, there
is a row containing the same attribute headings as the database. This row and the row
below it make up a criteria array which essentially is the query specification for selection in
the database. By editing the criteria, different rows from the database will be returned
when a selection is requested. For example, the Availability criteria is “= [nothing],”
meaning that a selection will return any row with a blank value for Availability. Just under

85

1-Aug-89

Line Numberf Take off time]iLanding Time |Mission |Pilot Required Pilot Confiyration

100 800 1000{ACBT |>=4 J

101 800 1000{ACBT J
| 102 800 1000JACBT _ |>=3 J

103 800 1000{ACBT J

104 830 1015|DACBT {>=3 B61MP

105 830 1015{DACBT B861MP

106 1200 1330{WD >u=3 B61

107 1200 1330{WD B61
Figure 1. Daily Schedule

Event Requirements

PLOT Qualification {Availability PILOT WD ACBT {DACBT
Able, Adam 5 Able, Adam 7 10 9
Baker, Bar 5 Baker, Barry 3 14 8
Charlie, Chu 5 Charlie, Chuck 10 9 8
Dingo, Dave 5 Dingo, Dave 23 9 3
Edwards, Er 4 Edwards, Eric 14 3 9
Frank, Fred 4 Frank, Fred 1 18 4
Gonzo, 4 Gonzo, Gregq 8 11 -]
Harris, Har 2 Harris, Harry 17 4 20
lggy, lan 2 lggy, lan 9 19 1
James, Jim 2 James, Jim 11 20 15
Kee, Ken 4 Kee, Ken 9 7 20
Lint, Larry 1 Lint, Larry 22 0 13
Mason, Mik 1 Mason, Mike 10 13 9

Figure 2. Pilot Qualification and Availability

Figure 3. Training Events Required

Event Currencies - Days Remaining

PLOT WD Cur Days ACBT Cur Days {DACBT Cur Days

Able, Adam 10 12 8
Baker, Barry 9 22 9
Charlie, Chucl 18 20 9
Dingo, Dave 29 27 28
Edwards, E 1 11 13
Frank, Fred 16 18 21

Gonzo, Greg -8 -24 -21)
Harris, Harry 4 25 2
lggy, lan 7 18 11

James, Jim 18 4 16
Kee, Kon 11 0 8
Lint, Larry -34 -2 -30
Mason, Mike 22 9 11

Figure 4. Kemaining Currency Days

-

3npdyas Afre] pue ‘eLaIL) ‘aseqele(] pAIEpIosuo) ‘g m3Ly

d 198 aw[oeel [TH! 201

d 198 £=< —___QOW|OEE] 0021 901

v dni9d 180va|siot 0c8 501

v din19a £=< 180Va{Sio1 0c® ¥01

v r 180v]0001 008 €01

v r £=< 1689v]0001 009 F

v r 180V]0001 009 101

v r p=< 180V][0001 008 001
SUeWWo) ebuey| uoneinijuoy 10d| peanbey 1ofid UCISSIN| OwWiL Bulpue]| 6WN [jO 61| Jequni 6ur||

68-8ny- |
OIA OIA OIA OHA
01-> 01> 01-> 01->
> 0=<l02 1> 0=<|te

ep xew [0V [sAep Uil 1§V 180V]| skep xew OM| sAep U OM OW]| XiijiqejieAy| uonesy)iento 10%d
6 6 gl 2e ee 0} 1 O _UoSeyy
¢ e 0 ve- ye- 22 i Auel N
0 0 z i it 6 v Ue)j "6e)|
v v 0c T 81 il 3 wir sewer
91 91 61 Z Z 6 2 Ue] "ABB)
S¢ S¢C | 4 14 i i1 F Auel “siley
ve- ve- it 9- 9- 9 ¥ Bei9) "0zu09
8l 81 81 91 91 1 v peij ueiJ
X b1 [1 ! i [4 o3 ‘spremp3
ic Ze 6 6¢ 62 te S eAEQ 'obuIg
0¢ 0¢ 6 81 81 01 S ¥ony) eijieyy
(14 ce bl 6 6 € S Aueg iexeg
2l ! 0l 01 01] S wepy 'o|qy
Kep xew 160V EAep uiw 199V 180V] SKep xew QM| sKep uiw GM oW Xuiiqeiieay| uonesjijenp 10Wd

87

the criteria array is the daily schedule being filled in as the algorithm executes; its rows
contain data or data abstractions to be pasted into the criteria section each time a new
selection needs to be made.

During execution, the scheduler prototype selects the last unfilled mission, pastes the pilot
qualification requirement in the criteria, and pastes a currency range in the criteria for the
mission being filled. At that point formulas on the spreadsheet which calculate greatest
training requirements are recalculated. If these values are zero (blank), that indicates that
no pilot meets the current criteria, and the program relaxes the currency constraint by
pasting in an alternate range. Alternatively, the program pastes the result of the greatest
training requirement into the criteria, and selects the pilot specified. Next the program tests
to see if an instructor pilot is required and, if so, searches for one who is available and
current. If an instructor pilot is needed and none can fly, the program will not fly the
unqualified or non-current pilot. Otherwise, the program marks the pilot’s Availability
auribute “flying” and places the pilot on the schedule. If an instructor pilot is required, the
program updates the qualification requirement for the next pilot to be scheduled. The
algorithm continues until all sorties are scheduled or until pilot resources are exhausted.

The algorithm is not rigorous and doesn’t optimize on things like instructor pilot utilization.
In addition, it currently doesn’t do any backtracking to remove previously scheduled pilots
to fill other slots where they might be needed more. Any manual entries made to the
schedule should be constraint-checked, a feature not currently implemented. However, the
algorithm is less than 120 lines of code; these additional enhancements are planned and-
could be implemented by almost anyone. '

A dditional F f the Scheduler P

Our KEE-based aircrew scheduler has a number of utility features which are desirable.
Some of these features have been implemented in the new prototype, while others are yet to
be implemented. The prototype allows the addition and deletion of pilots, color graphs of
pilot data, pilot debriefing, automatic propagation of pertinent data throughout the database,
and display of database projections. The prototype runs under Microsoft Excel, version
1.5 on an Apple Macintosh or on any IBM-compatible personal computer. The Macintosh
version includes pull-down menus and plays a portion of Beethoven’s Fifth Symphony on
completing the schedule.

Our current scheduler lacks the ability to incorporate priorities from squadron commanders
or other supervisors. Events must be added, changed, and deleted manually. Certain data
structures on the prototype are sensitive to changes and should be protected by locking the
spreadsheet cells. Once the scheduler design is relatively stable, a user’s manual is
required. All of these enhancements are planned, as is a more rigorous scheduling
algorithm,

Concluding Comments

The use of spreadsheets as a visual programming language is particularly useful for a
number of different problems which have some or all of the following attributes: (1) data-
intensive, (2) hard to define, (3) require fourth-generation functions, or (4) benefit from
data abstraction. In addition, spreadsheets are friendly for novice programmers and helpful
for rapid prototyping as well.

88

References:

Dyer, Doug and Walter, Sharon; “Aircrew Scheduling: An Application of Expert System
Technology,” presénted at the 1989 Command and Control Research Symposium
sponsored by the Joint Directors of Laboratories and the IEEE Control Systems
Society, 24-26 Jun 89 at National Defense University.

Microsoft Excel User’s Guide.

Microsoft Excel Arrays, Functions, and Macros.

APPENDIX C

The following paper describes the object-oriented paradigm. It resultei trom
graduate seminar research into methodologies for neural network simulation, but many
comments made apply to object-oriented programming in general.

89

90

On Object-Oriented
Programming and Simulation
Douglas E. Dyer

Introduction

It is well known that small
computer programs are easier to
develop, debug, and modify than large
programs are. More accurately, it is the
complexity of the program that dictates
how well humans can work with a it.
Some very large programs are quite
well understood because they are
relatively simple. For example,
government accounting and payroll
applications are thousands of lines long,
but are made up of many similar
modules; accounting principles are well
understood. In contrast, a much
smaller expert system can elude
understanding for years because the
process it models is so difficult to
characterize.

The complexity of programs
arises from two basic reasons: the real-
world system to be modeled and its
coded representation. If the system is
not well understood, as in the study of
cognition, then a computer program
which attempts to model it cannot be
successful. Successful computer
programs are those which exploit the
power of the computer to solve
problems which (1) people find difficult
tosolveand(Z)canbepmgmmmed.
The computer is powerful because it has
non-volatile, expandable memory and
can process information quickly and
painlessly, once programmed.
Unfortunately, computers lack common
sense and most do not tolerate noisy
input. The above discussion is not
meant to imply that artificial intelligence
research is a waste of time.

ing can be used as a tool for
thought, for example, an aid in
cognitive model development and
testing.

If the system to be modeled is
not well understood, the main problem

is elucidating the system, and that
problem lies somewhat outside of the
realm of computer science.

However, complexity can also
arise from the program and coding
process. That is, given a well
understood system, a program which

- models the system may still be

unmanageably difficuit to develop,
debug, and maintain. A real-world
system does not have to be very large
before the complexity of its coded
representation becomes overwhelming.
Computer scientists have been
struggling with this problem for over
thirty years. Many solutions and
methodologies have been proposed and
accepted. The formal discipline of
software engineering is dedicated to
improving the process of building large
programs. In my opinion,
representational complexity is the
fundamental problem of computer
science.

Some of the developed tools and
methods for dealing with complexity in
computer programs have been very
good. Operating systems relieved the
programmer of much work by
abstracting house-keeping details.
Higher-ordered languages reduced the
amount of code required to do a task
and also work by abstracting lower
level operations. Structured
programming encompasses modularity
and structure; modularity allows us to
mentally break programs into separate
pieces and structure allows us to
mentally stack the pieces in a
recognizable way.

Other techniques for improving
programs and the programming process
include proofs, compiler syntax
checking, smart editors, using different
programming languages, and using a
single, standard programming
language. (Some languages are better at
certain problems than others are.
Another school of thought attempts to
use only one programming language to
reduce fluency requirements and give

programmers a common language.
Features of programming languages are
now studied extensively to find
strengths and weaknesses.) However,
none of these tools or approaches have
been shown to impact complexity like
abstraction, modularity, and structure,
which are clearly more fundamental
ideas.

Object-oriented programming, a

relatively new programming
methodology, is based on a data-

centered viewpoint. Object-oriented
programming grew from fundamental
roots: abstraction, modularity, and
structure. Its four identifying elements
are object encapsulation, message
passing, dynamic binding, and
inheritance. Those four elements can be
thought of as unique extensions of
abstraction, modularity, and structure.

: In object-oriented programming,
objects in the code represent elements
(nouns) in a real-world system. This
approach differs from most algorithmic
languages like Pascal or C, which tend
to focus on procedures. For this
reason, object-oriented programming is
a good methodology for handling
representational complexity of data-
centered models. Simulation is a one
example of a problem in which real-
world events are often data-centered,
rather than algorithmically-centered.

This paper discusses the three
traditional ways of handling
representational complexity,
abstraction, modularity, and structure,
as well as their extensions as elements
of object-oriented programming. Three
of the elements of object-oriented
programming, object encapsulation,
message passing, and dynamic binding,
will be further described in a discussion
of a Scheme digital circuit simulator.
Additional examples of the use of
object-oriented gin
simulation will be briefly described.

91

Abstraction, Modularity, and
Structure.

Abstraction. Because humans have
volatile memory, the number of items
we can mentally manipulate is limited.
Only through abstraction are we able to
cogitate on any but the simplest
concepts. It has been theorized that
only seven mental objects can be stored
and recalled; the abstraction process to
remember more than seven objects is
called "chunking" to indicate the need to
aggregate several objects as one. The
idea of chunking was fundamental in
breaking up identification numbers such
as social security numbers and
telephone numbers, but it also give
insight into the need for abstraction in

the programming process.

By definition, abstraction is
associating a group of objects with a
single “group-of-objects” idea. Often
we use a label to represent the concept.
As an example, the process of addition
is signified by "+" when it actually is a
procedure for mapping two numbers
into a third.

The power that abstraction
offers is that it relieves us of having to
think about details which we don't need
to think about and allows us to focus on
the real problem. Imagine how difficult
it would be to calculate the sum of two
numbers if not for abstraction! If you
have a calculator and want to calculate
"2 + 3" you have to know how to push
the buttons but not how the calculator
works. You don't need to know that the
calculator has to have registers, an
arithmetic/logic unit, control software,
data paths, and an input/output -
interface. At lower level, you don't
need to know how to implement a gate
or flip-flop; at a still lower level, you
don't need to know the solid-state
physics behind semiconductor
behavior. Clearly, you don't care how
the calculator works; that's not
important. You view it as an abstract

92

black-box that does the addition that
you need

'Using a label as a mnemonic
representation of an abstract idea seems
to be important for memory
maintenance and mental manipulation.
Once you have a name for something,
you can toss it around in you head, add
or delete facets from it, and relate it to
other mental objects without fear of
losing or misaligning it. It's yours to
keep. We use labelling or naming all
the time, but it is especially apparent in
technical fields in the form of jargon.
For example, names like "method,"”
"message,” and "package” have special,
complicated meanings to those who
study object-oriented programming.

- Abstraction can be used to
develop a higher-ordered language. A
set of related abstract objects can be
thought of as a language which can be
used to solve problems. Asan
example, if you consider the set (+ -

/ = {real numbers}), you get the
language of elementary arithmetic. In
computer science, all higher-ordered
languages like Pascal are based on a set
of abstracted machine language
operations and routines which have
been named things like "read,” "write,"
"if,” and "while-do" as well as "+," "-,"

etc. Object-oriented programming, asa -

methodology, helps generate abstract
languages. The language of digital
circuit simulation is one example.

Whenever the level of
abstraction is not great enough to
facilitate problem solving, further
abstraction may be used to make a still
higher level language. For example, it
may not help to think in terms of the
functions available in Pascal, like "read”
and "write”. Instead, you may prefer
"input-procedure” and "output-
procedure.” Abstracting clusters of
code in a given computer language can
yield a new, higher-level language of
software modules. The language of
software modules is currently a goal of
software engineering and is supported

by object-oriented programming. (Cox
calls these modules "software integrated
circuits.")

There are drawbacks to using an
abstracted language such as the
language of computer modules.
Naturally, you have to leamn the
language; that can involve reading a lot
of documentation. Sometimes the
language is not appropriate to your
problem. Sometimes the language was
not well thought out and, although
intended to solve your problem, it
doesn't do a very nice job. Sometimes
the language is reasonably good; but the
documentation is lacking. If the
programmer doesn't trust the language,

" much time may be wasted by wading

down into the depths of lower
abstraction layers to make sure they
work. Although all these problems are
real, they don't detract from the power

. of abstraction; rather, they are

implementation issues.

Gerald Sussman has said that
the best solution to complex problems
often looks more like layers of
languages rather than pieces of code
which solves pieces of the problem. In
his Computer Exercises work book,
there are many more examples of
languages built from abstracted objects,
including languages for, drawing
Escher diagrams, drawing squares and

_ triangles, and simulating space mission

operations. These examples clearly
illustrate that abstraction is a powerful
method for controlling complexity in
computer programming.

Modularity. Modularity is the practice
of building walls around pieces of code
and forcing different pieces to
communicate only by well-defined
communication channels. The idea of
"wall” and "contract” in Helman and
Veroff is the essence of modularity.

Modularity goes hand in hand
with the notion of abstraction.
Modularity is the package which binds

an abstraction and allows you to
manipulate it as a whole entity.

Modularity also allows different pieces

of code to be structured -- you must be
able to clearly define a piece before you
can arrange a group of pieces.

Code is modular when the
package binding it keeps it from
affecting anything outside of it except
through well-defined interfaces.
Theoretically, modular code may be
slapped in or ‘out of a software
environment by altering only the
interface between modules. Code
behavior can be isolated to each module;
bugs are easily contained, found, and _
corrected.

In practice, modularity does aid
in debugging and makes a program
more tractable. However, the interface
on each package must be explicitly
specified, constructed, and
documented. In addition, a good
inside each package be "bullet-proof™ so
that it's never necessary to give up
?lbsu'action to fix an implementation

etail.

Structure. The ﬁaiv:::l of1 ;t;t(;:tmed
programming in y gave
programmers a new, powerful tool for
dealing with representational complexity
in programs. Structured programming
made "goto" a four-lettered word for

; it showed that the
dangerous, undisciplined "goto" code
could be replaced in all cases by
sequential coding.

u'mnng‘e sl mmb“m o
programming is

modularity is enforced. However, an
important secondary contribution is that
the modular pieces are placed with some
relation to one another, and hence, have
a structure. The structure of the
modules can be rearranged to change
the program - in effect, these
rearrangements and the changes which
result make up the language of structure

93

in a program. More importantly, the
structure of the program is important in
helping the programmer to mentally
manipulate the program. This is true,
or programmer’s would not care
whether a program were properly
indented or merely a long string of
statements with no white space at all.

Structure also encompasses the

decxsxonabouthowlargetomakethe

program modules. In practice, a certain
balance between components at
different levels of abstraction is
important. It doesn't help to have ten
high- level components and just 1 low-
level one (or vice versa). Instead, it
often makes more sense to use two or
three higher-level components for every
five to seven lower-level ones. This
heuristic extends for multiple levels.

Abstraction, modularity, and
structure are all somewhat related. In
addition, they all serve to help the
programmer combat complexity when
trying to represent a model as a
computer program. Modularity tums a
program into individual code pieces.
Abstraction gives each piece a meaning
and a name. Structure shows how the
pieces are related to one another. If all
three are done correctly, the program
can fit into the brain and make sense.

Elements of Object-oriented
Programming: Object
Encapsulation, Message Passing,
Dynamic Binding, and
Inheritance.

Object-oriented programming
takes advantage of abstraction,
modularity, and structure, but extends
them in unique ways. In obgect
oriented programming, the focus is on
the "object." What is an object? In
most programming languages,
programs consist of procedures to and
from which data are passed. The
procedures "do" something and are like
verbs in the spoken language. In

94

object-oriented programming, programs
consist mainly of "objects” which
consist of "non-passive" data. That is,
if procedures are the verbs of spoken
language, objects are really more like
the nouns.

What does it mean to be “non-
passive?" Conventional programming
languages draw a clear distinction
between procedures and data.
Languages like Scheme question that
philosophy and treat both as first-class
objects. In many Scheme programs,
it's very difficult to say that a particular
entity is one or the other. Even in
speech, nouns rest on a scale between
extremes of passiveness and action.
Most humans would interpret the
sequence of nouns "rock,” "hammer,"

"recipe,” and "programmer” to have an
increasing implication of action.

Object Encapsulation and
Message Passing. Objects are
composed of data and the procedures
which operate on it, as well as an
interface to other objects. Objects
maintain an internal definition of state.
In this way, an object can be said to
"know" something about itself -- it
knows its own state and the operations
which can change its state.

Conventional programming
languages often abstract
primarily and data structures
secondarily. That is, the abstract data
type has relevance only in context of the
procedures which operate on it. In
object-oriented programming, this
viewpoint is reversed. It is data which
is abstracted in a primary sense.
Procedures which operate on an object
are only a part of the object itself. This
type of abstraction is unique to object-
oriented programming.

The object data, procedures, and
interface are all enclosed in a hard shell
of encapsulation. By design, it is only
through the interface that the object can
communicate with other objects. In this

manner, strict modularity is enforced.
Instead of using a direct procedure call
with data passing, the object-oriented
paradigm uses message passing
between objects to execute a program.
A message is a request from one object
to another to cause some action to take
place. Control is retained by the object
-- a request may be denied, and it often
is if the object is not working properly.
The Mvenulgn‘;l with-arguments” call
in a con programming
methodology seems to be a weaker kind
of modularity. Message passing is a
unique way implementing modularity
and is an extension on "procedure call”
modularity. In addition, by using
messages, it is easier to create a
standard interface for objects.

Dynamic Binding. Binding refers
to putting data together with the

which affects it.
Conventional languages like C and -
Pascal require the programmer to
manage binding up front. It's up to the
programmer to determine the correct
data type and pass that type to a type-
dependent procedure. Some languages
(Ada, for example) delay binding until
compilation. This approach allows the
programmer to use just one procedure
name for different types of data. The
compiler determines the data type and
selects the correct procedure to apply.
Only low-level procedures are type-

t The advantage of delayed
binding is that the programmer is
allowed to change data types without
changing high-level ures. Other
languages (Smalltalk) delay binding still
further until run time. This adds stll
greater flexibility as data types may be
changed on the fly. The program itself
may even change the type and still
operate pmperly Again, low-level
procedures will be type-dependent.

In terms of the object-oriented
design, late (dynamic) binding offers
some real advantages. With dynamic
binding, all but the lowest class of
object is type-independent. This is
another rather unique implementation of

modularity. When objects are type-
independent, they are more easily
manipulated and reused. Dynamic
binding does incur some overhead in
terms of space and execution time; it is
responsible for the object-oriented
paradigm'’s reputation for sluggish
performance. However, the added
flexibility derived from delayed binding
is very useful during prototyping.

Inheritance. Inheritance refers to a
certain way of structuring information.
It is recognized as a primary means of
classifying information in humans.
Inheritance is information stored in a
hierarchial structure, as a tree with
parents and children, and the children
gain information (inherit) from their
parent nodes. The "ISA" and "A-
KIND-OF" hierarchies found in
artificial intelligence literature are
examples of inheritance. Object-
oriented programming is relatively
unique in using inheritance as a way of

structuring a program.

Using inheritance, an object has
access to data and procedures of all of
its superclasses, as well as its own.

For cxamplc, an object "SHERMAN
TANK" might contain information
about the the thickness of its armor, its
maximum speed, and the size of its
gun. However, "SHERMAN TANK"
would also have access to general
information from its immediate
superclass "TANKS" which might
include situations in which tanks are
effective and weapons which are
effective against tanks. Progressing
further up the hierarchy, "SHERMAN
TANK" would also have access to
information from higher superclasses.
If "GROUND VEHICLES" were a
superclass, "SHERMAN TANK" might
gain useful information from it, for

example, ground vehicles can't operate
in deep water.

Inheritance makes it possible for
object-oriented designs to avoid storing
a lot of repetitive information. This
makes the code more compact and

95

simpler. It is an effective structuring
mechanism for reducing program
complexity. In addition, inheritance
adds greatly to the modularity and
modifiability of the code. Information
that is stored in only one place is easier
to modify than when it is scattered
throughout the program. Furthermore,
inheritance is powerful; a change to
information in that one place can affect
many child objects at once.

The elements of object-oriented
programming build upon and extend
traditional methods of dealing with
representational complexity. Object
encapsulation treats data as the primary
object to be abstracted and made
modular. Message passing is made
necessary by object encapsulation.
Messages are abstract, weak procedures
that act as requests for action by
objects. Messages promote modularity
because they are independent of the .
procedures they request. Dynamic
binding enhances modularity by
allowing higher-level objects to remain
type independent. Inheritance increases
modularity dramatically and is a
structural arrangement relatively unique
among programming methodologies.

Object-Oriented Programming
in Simulation.

In object-oriented programming,
there is often a one-to-one
correspondence between real-world
objects and objects in a programmed
model. In a war simulation, for
example, "TANKS" would represent
real tanks and would be expected to
model real tanks appropriately.
Therefore, the object-oriented
programming methodology would seem
to be well suited for simulation.

The Scheme programming
language is a dialect of LISP. The
Texas Instruments implementation of
Scheme includes SCOOPS, an object-
oriented programming environment.
Scheme is a small language developed

96

by MIT and other universities to show
that a single language could treat a wide
variety of different problems, including
traditional and symbolic ones.

Although there are some very
important differences between Scheme
and Common LISP, they both
dynamically check data types.
However, Scheme treats both
procedures and data as first-class
objects. That is, procedures can be
passed as arguments to other
procedures and can be returned by still
other procedures. This treatment
necessarily blurs the distinction between
data and procedure.

Abelson and Sussman present a
Scheme digital circuit simulator which
can be used to make elements of object-
oriented programming more concrete.
The SCOOPS environment was not
used to develop the code, however, so
the inheritance aspects are implied,
rather than explicit. Refer to the
Appendix for a modified version of the
simulator code.

In Abelson and Sussman's
circuit simulator, wires are the primary
object. Other objects such as inverters,
and- and or-gates and probes send
messages to wires requesting various
actions. Higher-level objects like half-
and full- adders are made from lower
level ones. An agenda and the various
data structures needed for it are also
implemented in the code.

Consider the wire object
identified in the Scheme code as the
MAKE-WIRE definition (under ;;
Objects mmm==x====). In the code, a
wire knows its voltage value initially
and at any time during the simulation as
SIGNAL-VALUE. The data type of
SIGNAL-VALUE is numeric, but that
doesn't matter until runtime, because of
Scheme's dynamic binding. If we
choose, we can alter SIGNAL-
VALUE's type without changing
MAKE-WIRE. The wire object also
knows the procedures that can affect its

data, namely SET-MY-SIGNAL and
ACCEPT-ACTION-PROCEDURE.
The latter procedure propagates signal
value changes to other wires to carry
out the simulation. Notice that only the
wire object can run either procedure. A
wire must receive an external message
before dispatching on it and executing
whatever procedure it chooses as
appropriate. Thus, the wire object is
firmly encapsulated in a hard shell. The
interface between the object and external
objects is identified as the message
handler DISPATCH. Messages
received are those to get or set a wire's
signal (GET-SIGNAL, SET-SIGNAL!)
or add a propagation action (ADD-
ACTION!). Any other message
received is erroneous. Because
messages only request action (as
opposed to procedures which, when
followed, cause it to happen), the
program can be quite modular.
Inheritance is not demonstrated by this
code, as it was not implemented using
SCOOPS; the simulator hasn't taken
full advantage of the object-oriented
paradigm.

The digital circuit simulator
serves as a new language. Instead of
using Scheme, it enables us to think in
terms of wires, probes, and- and or-
gates, and inverters. With this new
language, we can build even higher-
level abstractions like half and full
adders. Although the code is really quit
simple, its object-oriented design makes
it very powerful. The simulator shown
in the appendix served as the core of a
very complex computer simulation.

Those not familiar with Scheme
or other LISPs may not see the
simplicity and power of the digital
circuit simulator. However, object-
oriented methodology has been
developed for other, more conventional
languages as well. As an example,
Jacky and Kalet successfully developed
a large Pascal program using object-
oriented concepts.

There are other examples in the
literature of the use of object-oriented

programming in simulation. For
example, Eilbert and Salter developed a
neural network simulator in Scheme.
Their Scheme simulator was shown to
be more effective at modifying network
structure and the node updating process
than simulators based on standard
numerical languages. In addition, the
Scheme simulator was more successful
at modeling networks which are
hierarchially organized. There are three
major Scheme functions in the
simulator: "(1) a network generator
which specifies the structure and single
node response of the model; (2) the
network evolver, which controls
activity initialization and the updating
process for the network; and (3) the
Monte Carlo simulator, which finds the
stable states of the network and records
them.” Nodes in the system are the
primary objects. Computations on
nodes are distributed to the nodes
themselves. This is fundamentally
different from a FORTRAN simulator
that the authors studied; the FORTRAN
representation used a matrix of
connection weights between nodes to
calculate convergence. The authors
point out that the FORTRAN program
is intrinsically faster on von Neumann
machines, but is also more difficult to
transfer to a parallel architecture. Asa
neural net is a distributed processing -
architecture, it seems more natural to
model it using an object- oriented
design. The flexibility of using the
more accurate Scheme representation is
an added bonus. To generate a
representation for a particular model,
the object-oriented Scheme design only
has to call the network generator which
spPropeiste. Also e upeating
appropriate. Also, the updating
procedures of a node and its response
curve are attributes contained within the
object. Local or global changes can be
made very quickly without affecting the
rest of the program, because of
modularity. Eilbert and Salter were
very attracted to an object-oriented
simulator because they wanted to model
neural nets that are hierarchially
structured. The message-passing style

of Scheme allowed them to model
interactions between hierarchial levels
quickly and accurately.

Larkin, Carruthers and Soper
implemented a simulator of a ship's
navigation system in Flavors, an object-
oriented programming language often
found on LISP machines. They found
that object-oriented programming was
ideally suited to their simulation for
three reasons. First, the one-to-one
correspondence between code objects
and real-world objects helped make
development clearer. Second, the
advanced form of modularity inherent in
object-oriented programming helped
reduce the complexity and ease
maintenance of the simulation tools
developed. Finally, the structure and
modularity of the resulting code made it
very extensibie.

Stairmand and Kreutzer built a
process-oriented simulation
environment (POSE) in a locally
developed object-oriented programming
environment (flavors) running under
Scheme. The hierarchial structure
afforded by inheritance is key to
reducing complexity of the POSE
representation of process models.

Conclusions

Object-oriented programming is
an effective methodology for reducing
the complexity of

sentation of models. The focus on
objects, rather than procedures, is
fundamentally different from
programming in a standard way using
conventional languages. The four
elements of object- oriented
programming, object encapsulation,
message passing, dynamic binding, and
inheritance all extend traditional ways of
dealing with program complexity:
abstraction, modularity, and structure.
Object-oriented programming is well
suited to simulation because of these
unique attributes.

98

Bibliography
Abelson, Harold, and Gerald J.

Sussman. i
of Computer Programs. The MIT
Press, Cambridge MA, c. 198S.

Abelson, Harold, and Gerald J.
Sussman. Stycture and Interpretation

of Computer Programs, (Computer
Exercises) The Massachusetts Institute
og g'gchmloy, Cambridge MA, c.
1986.

Cox, Brad J. Object-Oriented

Programming: An Evolutionary
Approach. Addison-Wesley Publishing
Company, Reading MA, c. 1986.

Eilbert, James L., and Richard M.
Salter. "Modeling neural networks in
Scheme,” Simulation, Vol. 46, May
1986, pp. 193-99.

Helman, Paul and Robert Yemff.

Intermediate Problem Solving and Data
Structures. The Benjamin/Cummings
Pubgghing Company, Menlo Park CA,
c. 1986.

Jacky, Jonathan P., and Ira J. Kalet.

"An Object-Oriented Programming

Discipline for Standard Pascal,”

%mmunicaﬁons of the ACM, Vol.
21,

September 1987, pp.722-76.

Larkin, Timothy S., Raymond L.
Carruthers, and Richard S. Soper.
"Simulation and object-oriented
programming: the development of
SERB," Simulation, Vol. 52,
September 1988, pp. 93-100.

Lenat, D. B, and J. S. Brown. "Why
AM and Eurisko Appear to Work,"
Artificial Intelligence, Vol. 23, No. 3,
August 1984, pp. 269-294.

Newburger, Bruce. "Simulate any size
circuit with object-oriented modules,”
Electronic Design, Vol. 36, March 3
19889 pp- 75‘78.

Pascoe, Geoffrey A. "Elements of
Object-Oriented Programming," Byte,
Vol. 9, August 1986, pp. 139-44.

Edition,” (Texas Instruments) The
fgxseémﬁc Press, Redwood City CA, c.

Swirmand, Malcolm C., and Wolfgang
Kreutzer. "POSE: a Process-Oriented
Simulation Environment embedded in
SCHEME," Simulation, Vol. 46, April
1988, pp. 143-153.

Unpublished Class Notes from
"Fundamentals of Artificial
Intelligence,” Air Force Institute of
Technology, Fall 1986.

Wilson, Ron. "Object-oriented
languages reorient ing
techniques,” Computer Design, Vol.
47, November 1 1987, pp. 52-62.

APPENDIX

" SIMULATION -- DIGITAL CIRCUIT=—==================

Pt 3 St e e e 2

s Queuc OpCl'atiOns e e e R e e T
(define (make-queue) (cons 'Q '()))

(define (empty-queue? queue) (null? (front-ptr queue)))

(define (front queue)
(if (empty-queue? queue)
(error "FRONT called with an empty queue” queue)
(car (front-ptr queue))))

(define (insert-queue! queue item)
(let ((new-pair (cons item nil)))

(cond ((empty-queue? queue)
(set-front-ptr! queue new-pair)
(set-rear-ptr! queue new-pair)
queue)

(clse
(set-cdr! (rear-ptr queue) new-pair)
(set-rear-ptr! queue new-pair)
queue))))

(define (delete-queue! queue)
(cond ((empty-queue? queue)
(ci;mr "Delete called with an empty queue” queue))
(else .
(set-front-pt! queue (cdr (front-ptr queue)))
queue)))

(define (front-ptr queue) (car queue))

(define (rear-ptr queue) (cdr queue))

(define (set-front-ptr! queue item) (set-car! queue item))
(define (set-rear-ptr! queue item) (set-cdr! queue item))

(define (make-time-segment time queue) (cons time queue))
(define (segment-time $) (car)
(define (segment-queue s) (cdr s))

(define (segments agenda) (cdr agenda))

(define (first-segment agenda) (car (segments agenda)))

(define (rest-segments agenda) (cdr (segments agenda)))

(define (set-segments! agenda segments) (set-cdr! agenda segments))
(define (current-time agenda) (segment-time (first-segment agenda)))

100

(define (empty-agenda? agenda)
(and (empty-queue? (segment-queue (first-segment agenda)))
(null? (rest-segments agenda))))

(define (add-to-agenda! time action agenda)
(define (add- to-segments' segments)

(if (= (segment-time (car segments)) time)
(insert-queue! (segment-queue (car segments)) action)
(let ((rest (cdr segments)))

(cond ((null? rest)
(insert-new-time! time action segments))
((> (segment-time (car rest)) time)
(insert-new-time! time action segments))
(else (add-to-segments! rest))))))
(add-to-segments! (segments agenda)))

(define (insert-new-time! time action segments)
(let ((q (make-queue)))
(insert-queue! q action)
(set-cdr! segments
(cons (make-time-segment ime q)
(cdr segments)))))

(define (remove-first-agenda-item! agenda)
(delete-queue! (segment-queue (first-segment agenda))))

(define (first-agenda-item agenda)
(let ((q (segment-chcm (first-segment agenda))))
(if (empty-queue? q)
(sequence (set-segments! agenda
(rest-segments agenda))
(first-agenda-item agenda)) .
(front 9))))

(define (make-agenda)
(list '"*agenda® (make-time-segment 0 (make-queue))))

(define the-agenda (make-agenda))
;» Necessary Precursors

R R R R R N N T T R s T EE ST

(define (call-each procedures)
(f '(::ll: procedures)

(((proced
car ures))
(call-each (cdr procedures)))))

(define (logical-not s)
(cond ((=s0) 1)
((=s1)0)
(else (error "Invalid signal” s))))

(define (logical-and sl s2)
(cond ((and (=s1 0) (=52 0)) 0)
((and (=51 0) (=52 1)) 0)
((and (=s1 1) (=s520)) 0)
((and (=sl 1) (=s2 1)) 1)
(else (error "Invalid signals” s1 s2))))

(define (logical-or sl s2)
(cond ((and (=s1 0) (=s20)) 0)
((and (=51 0)(=s2 1)) 1)
((and (=s1 1) (=s20)) 1)
((and (=s1 1) (=s2 1)) 1)
(else (error "Invalid signals” s1 s2))))

;» Objects

(define (make-wire)
(let ((signal-value 0) (action- proccdurcs (9))]
(define (set-my-signal! new-value)
(if (not (= signal-value new-value))
(sequence (set! signal-value new-value)
(call-each action-procedures))
'done))

(define (accept-action-procedure proc)
(set! action-procedures (cons proc action-procedures))

(proc))

(define (dispatch m)
(cond ((eq? m 'get-signal) signal-value)
\(eq? m 'set-signal!) set-my-signal!)
((eq? m 'add-action!) accept-action-procedure)

((eq? m 'display-action-procedures) action-procedures)

(else (error "Unknown operation -- WIRE" m))))

dispatch))

(define (get-signal wire)
(wire 'get-signal))

(define (set-signal! wire new-value)
((wire 'set-signal!) new-value))

(define (add-action! wire action-procedure)
((wire ‘add-action!) action-procedure))

(define (display-action-procedures wire)
(wire 'display-action-procedures))

——— e et T e
—— s e —

101

102

(define (inverter input output)
(define (invert-input)
(let ((new-value (logical-not (get-signal input))))
_ (after-delay inverter-delay
(lambda
(set-signal! output new-value)))))
(add-action! input invert-input))

(define (and-gate al a2 output)

(define (and-action-procedure)

(let ((new-value (logical-and (get-signal al) (get-signal a2))))
(after-delay and-gate-delay
(lambda
(set-signal! output new-value)))))
{add-action! al and-action-procedure)
(add-action! a2 and-action-procedure))

(define (or-gate ol o2 output)

(define (or-action-procedure)

(let ((new-value (logical-or (get-signal ol) (get-signal 02))))
(after-delay or-gate-delay
(lambda (
- (set-signal! output new-value)))))
(add-action! o1 or-action-procedure)
(add-action! 02 or-action-procedure))

(define (half-adderabsc)
(let ((d (make-wire)) (e (make-wire)))
(or-gatca b d)
(and-gate abc)
(inverterc ¢)
(and-gate d ¢ s)))

;» Sample Simulation

(define (after-delay del action)
(add-to-agenda! (+ del (current-time the-agenda)) action the-agenda))

(define (propagate)
(if (gmpty-agcnda? the-agenda)
'done
(let ((first-item (first-agenda-item the-agenda)))
(first-item)
(remove-first-agenda-item! the-agenda)
(propagate))))

(define (probe name wire)
(add-action! wire
(lambda ()
(princ name)
(princ " Attime =")
(princ (current-time the-agenda))
(princ " New value = ")
(princ (get-signal wire))
(newline))))

(define inverter-delay 2)-
(define and-gate-delay 3)
(define or-gate-delay 5)

(define input-1 (make-wire))
(define input-2 (make-wire))
(define output (make-wire))
(define carry (make-wire))

(probe 'input-1 input-1)
(probe 'output output)
(probe 'carry carry)

(half-adder input-1 input-2 output carry)
(set-signal! input-1 1)

103

104

APPENDIX D

The code for the Excel aircrew scheduler is attached. User-specified names and
data structures are not included, as the code is intended only to show the visual
programming methodology more clearly. Code modularity, control structures used, and
placement is apparent, but the code has been expanded to show detail. Ordinarily, columns
are much more narrow, and lines of code that are wider than the column not entirely
visible. This is shown in the second copy of the same code.

105

—

make schedule

Places pilots as needed using find_pilot
Move to "Mission” on schedule
=SELECT("Missioncolumn*®)

=_down()

Find last mission

=IF(ISBLANK(ACTIVE.CELL()), up().GOTO(AS))

=_right(2)

Schedule remaining pilots
=|F{ISBLANK(ACTIVE.CELL()).find pilot{).IF(ACTIVE.C ="Pilot". GOTO(A13

=_up()
=GOTO(A10)
=BEEP()
=SELECT("datahome")

=SELECT("schedule”)

:

tind pilot

=lF(COLUMN(ACTIVE.CELL())<>6,RETURN()
=|F{ROW(ACTIVE.CELL())<12+!no. of db_rows RETURN())
=define celis()
=congtrain availability()

scongtrain_flight leaders()
=IF(ISBLANK(lcurrent siot), GOTO{A27))
=check guy()

=iF(A25="find_another®, GOTO(A27), RETURN())
stry P_list()

=|F{A27=TRUE.RETURN()) _

=try low currency()

={F(A29«TRUE . RETURN())
=try hi_events()

| =|F(A31=TRUE RETURN())
rror - i found
=SELECT("current_slot”)
=FORMULA FILL("™** NO PILOT)

il

try to fiy
=DATA.FIND(}
=DEFINE.NAME("current pilot" ACTIVE.CELL())

-ln !!g! of Q! req()

MGOTOM48n
- i TUR E))

» -' * * lot”® N(FALSE))

il{"flying"®)
=SELECT("current slot®)

3333333333333333333333333939399333393333393 S wa s

sFORMULA(!current_pilot)
=RETURNTRUE)

106

A

inc_req qual

=SELECT(ABSREF(“r[-1]c[-1]".!current slot})

=FORMULA(S)

| =RETURN(TRUE)

check qual

=SELECT("possible_1P®)

=FORMULA REF("r{-1]c",lcurrent slot))

=lF(!

constrain_flight leaders

slF(] NK(!curren al) RETURN())

= T("qual_criterion*) _

=FORM [FILL(!current qual)

=SELECT("curr criterion”)

=FORMULA. FILL(">=0")

=RETURN(

consirain_availability

=SELECT("avail_criterion®)

=FORMULA("Free”)

=RETURN(

update avail

=ARGUMENT("reason".2)

=SELECT(*current pilot”)

- righ!(',gg of db_cols+1)

=|F(A n="flying”.| NK(ACTIVE.CELL{))),FORMULA(lcurrent Land
- right()

|=ACTIVE.CELL()+1

= i)

s SELECT("re:ref1]%)

=INSERT(1)

=FORMULA(Icyrrent TOT)

=SELECT("re{1])

=FORMULA(Icurrent Land)
| =RETURN()

define_celils

DEFINE.NAME(“current slot®)

DEFINE NAME("current_qual® ABSREF("r¢[-1]",!current_siot))

_Qsﬂuﬁusmm_ms_mmmuom

BEREERERE I=I=hl=l=l=bklflzl=t==l= =I=hﬂ 3333333333333333°

_QEWAMEL&HU&M_LQN
=QEFINE.NAME(*current_line_no.". ABSREF(*rc[-5]".!current_siot))
=SELECT ("current criteria®)
|=MATCH(lcurrent_msn.!A1:$1$1,0)

100}=_right(A99)

m-_w.ac_nmmgsum

102]|=DEFIN M rr_criterion®)

1103!1=DEFINE . NAME("msn_criterion®, ABSREF("rc[-1]°,!curr criterion))

10 4]=RETURNO

107

try P list

sgave criteria()

=SELECT("P list mission crit")

=sFORMULA(!current_msn)

=get_db P list()

=SELECT(®priority x range"®)
T

=EXTRACT(TRUE)

=sot_db_con db()
E NK(A .
=SELECT("pilot_criterion®) -

=CLEAR(1)

| =RETURN(FAL SE)

- T("pil riterion®)

ABSREF("r{1]c", lpriori ilot

=I=I=§|=h=l§l__-_:l°~l++k‘r

ible pilots> TO(B19))

§§LECT(A§§R§F(ri1lef-1]):r{1]c" !priority pilot))

=EDIT.DELETE(2)

=GOTO(B9)

=try to_fly()

={F(B19,comment("priority") GOTO(B16))
=reget criteria()

=ypdate P _list()

=RETURN(TRUE)

update P _list

=set db P list()

=SELECT("P list grit aum”)

=FORM A *r[1lc[-1]".lpriority pilot})

=DATA.FIND()

=SELECT("rcl4]")

DEFINE.NAME("priority comment” ACTIVE.CELL())

b

= * m‘)

=CLEAR(1)

=get db con db()
=SELECT(*current slot")

=RETURND

low_currency

=SELECT("curr criterion®)

-lF(ﬂg,m TO(B57).make_temp unavail())

333333333333333:33333333333333333

=GOTO(B41)

arestore criteria()

| =RETURN(FAL SE)

=reset criteria()
=SELECT("current_sliot")

 =RETURN(TRUE)

333333333333333

=gave criteria()

=SELECT("msn_criterion®)

=SELECT("r{1]c")

=COPY(

aSELECT("msn_criterion®)

=PASTE.SPECIAL(3.1)

=|F(!possible pilots=0.GOTO(B54))

=try to fly()

i~y
.

=|F(B70,comment("events”))

S

=|F(B70 TO(B57) . make temp unavail())

=GOTO(B64)

I~
Ty

I~
~

ypdate unavail
=ARGUMENT("reason".2)
=SELECT("current pilot")

=_right(Ing, of db cols+1)

=|F{AND(reasons="flying", ACTIVE. CELLl)-'current Land), . GOTO(B93))

=DEFINE.NAME("last Land")

=SELECT("current siot®)

=_up()

[\ =" T 1 CTIVE.C =lcurren

OoT

=SELECT("last Land")

=CLEAR(1)

=_right()

=ACTIVE.CELLO

=_right(B94)

__QELEQICLQJSH I

]
e

|]
>3

)

=_right()

BOX(S50:YS TO(B103))

~RETURNQ

=EDIT.DELETE(1)

3 E%Eﬁhhkhthkkkkkhkhkbkkkbb

| =RETURNO

109

ip_avail or not req

=5ave criteria()
=SELECT("pilot_critericn®)_

=FORMULA(!current pilot)

[=SELECT("qual_criterion)
| =FORMULA(*>17)
=SELECT("curr_criterion”)

aFORMULA(">=0")
=lF(! ible_pilots>0.RETURN("ip _not _reg®))

aSELECT(“criteria2®)
=COPY()

=SELECT("current_criteria”)
=PASTE()
=SELECT("curr criterion”} _

=FORMULA(">=0")
=!possible_pilots
=rostore_criteria()

333333333 N uaanus

=IF(C16>0 RETURN("req ip avail"),RETURN("req ip not avail”))

comment

| =ARGUMENT ("reason®.2)
=iF{reason="cyrrency®.GOTO(C30),IF{reason="events’. GOTO(C38).GOTO(C24))) : ‘

=IF(reason="user_specified".GOTO(C43). RETURN())
SELECT(ABSREF("ref3]".lcurrent_siot))

=FORMULA(ABSREF(*r{1]c{-1]".lpriority_pilot))

=SELECT("re{1]) _
FORMULA(® on Priority List")

| =RETURN()
SELECTY(“curr_criterion®)
=SELECT("r{1]c")

«SELECT(ABSREF("rc[3]".lcurrent_siot))
=PASTE SPECIAL(3,1)

=SELECT(Cre(1]%)
=sFORMULA(" Days of Currency”)

| =RETURNQ
- T(ABSREF{"rc[3]", Icurrent_siot))
=FORM Imsn_criterion)

¥

3333333333333333333 333

[

=sFORMULA(® Events Remaining”)
=RETURN() :
=SELECT(ABSREF(°rc[3]".!current siot))
=FORMULACOK?

337

=SELECT("rel1
=FORMULA(" - User Specified”)

%

3

|

3

[

10

remove_pilot

=DEFINE.NAME(*current slot")

=ACTIVE.CELL()

=_left(3)
=DEFINE.NAME(“current Land")

=_left()

=DEFINE.NAME("current TOT")

=SELECT("current slot®)
| =COPY()

"pilot_criterion")

=PASTE()

=DATA.FIND()

=DEFINE.NAME("current_pilot® ACTIVE.CELL())

=sypdate_unavail(*flying"”)

=SELECT(pilot_criterion®)
=CLEAR(1)

=SELECT("current_slot")

=SELECT("r{-1]c{-1]")

=lF(ACTIVE.CELL()=5,,GOTO(C76))

=SELECT("rc[12]")

=COPY()

=SELECT(*re(-12]")

=PASTE()

=SELECT("current slot")

=_right(3)

=DEFINE.NAME("current comment®)

=_right()

=got db_P_list()

=|F(ACTIVE. =" on Priority List’, GOTO(C99))

=SELECT("r{1]c:r{1]cl4]")

33333333333333393333393339999995F 333333933939 3333:

=CLEAR(1)
=SELECT("current comment")

=COPY()

=SELECT("P_list crit")
=SELECT(Cr{1]c")

;&TEO
=DATA.FIND(

=_right(4)

|=SELECT(ACTIVE.CELL())

=CLEAR(1)

=SELECT(*P list crit")

=SELECT("r{1]c:r{11c(4]7

=CLEAR(1)

= _loft()

sFORMULA("=")

=set_db con db()

=SELECT("current comment’)

=SELECT (*re:ref1]")

=CLEAR(1)

=SELECT("cusrent_siot")

:

1)

111

Schedule

[Make Schedule

Place a Pilot

Remove a Pilot

DNIF a Pilot

Free a DNIFed Pilot

EFFEFFEERR

Show Schedule

Prin hedul

Reset_Schedule

Pilot data

Pilot _Qualifications -

Event Requirements

[Event Currencies

Add_Pilot...

Delete Pilot...

Propagate Data

.Qs_hm!_ﬂqt

Debriet Update

Graph Data...

Plot _Availability

on_open

=ACTIVATE.PREV()

=sADD MENU(1,01:€20)

1-
15:£29)
=RETURND

on_cloge

=SELECT.LAST.CELLO

T(ACTIVE.CELL():ABSREF("rc{1]",!plot_area))

=EDIT.DELETE(2)

=DEFINE.NAME("end plot area" ABSREF(“rc[1]".!plot area))

=SELECT("datahome”)

=SAVE.AS?()

=RETURNG

imake_temp_unavail

=SELECT("cyrrent pilot™)

=_right(ino, of db_cols-1)

=FORMULA(*Req IP not avail)

=FORMULA("=".lpret criterion)_

=SELECT("msn_criterion”)

33333333333333333 333333373333393339357

=CLEAR(1)
=BETURNO

[

12

gnif

=SELECT("nonavail")

aDIALOG.BOX(S36:Y44)

=lF(DSS,.RETURN())

| =FORMULA(Y39)

sDEFINE.NAME("cyrrent TOT™)

= figh“)
| =sFORMULA(Y42)

=DEFINE.NAME("current Land

me*)
=_down(Y38)

=DEFINE.NAME("current pilot*)

=SELECT(pilot_criterion®)
=sFORMULA(!current pilot)

=constrain_ availabiiity()

=lpossible_pilots _ -

=reset criteria()

=|F(D68=0,DIALOG.BOX(S46:Y48) update avai I('dmf"))

=RETURN(

lundnif

=SELECT(*nonavail")

=DIALOG. BOX(S36:Y44)

=IF(D75,.RETURN()

=FORMULA(YJ9)

| =DEFINE. NAME("cyrrent TOT")

- right(L

sFORMULA(Y42)

=DEFINE.NAME("current Land")

ﬁELEQI(‘.dﬂ!ﬂlq_')

)

E

JEE&EJ!AMELMQM”

=update uynavail(*dnif®)

;

check guy
=SELECT("pilot_criterion")

=FORMULA(!current_siot)

=IF(! ible_pilots=0.DIALOG.BOX(S21:Y26), GOTO(D9S5))

=SELECT("pilot criterion”)

=CLEAR(1)

= N(FALSE))

=try to fly()

33333333333359333333339 999399393399 33333 3933393

113

1

E

Macro1!make_schedule

Macro1!find pilot

Macroiiremove piiot

4
-
4

Macro1!dnif

Macro1!undnit

33

M 1!show_schedyl

1lprin h |

Macro1ireset schedule

14

Macro1!

Macro1ievents

|Macro1 'cur -

Macro1!add pilot

(Macro1!del pilot

Macro1ipropagate

[Macro1!debriet

[Macro1ldebrief_update

333333333333

(Macro1 Iplot

rolipl vail_

- ® i ‘)

3333333333

f
=RETURNQ

show_schedule

=SELECT("datahome”)

=SELECT Cachedyle®)

=RETURNQ

ri

T)
=SELECT("schedule”

| =SET.PRINT.AREA(

33933333333

=PRINT()
[=RETURNO

114

4 ures for _movin \:

imove to mission

=_right(A99-1)
| =RETURN(

33333333333333°

_Up
| =ARGUMENT("moves®,17)

=SELECTL"d-1]c")

=IF(ISNA(moves), RETURN()
1)

=IF(movee=1,RETUAN()
=SET.VALUE(EGE,moves-1)

=SELECT(. rf-1]c")

=E66-1

| =IF(E66<1, RETURN().GOTO(EES))

down

[sARGUMENT("moves®y17)

=SELECT(r{1]c")

_left

3333333333333333339333339 393993

115

reset schedule

=SELECT("Missioncolumn®)
=_down()

Find last migsion

=|F(ISBLANK(ACTIVE.CELL()}, up(),GOTO(F3))
Move to last pilot siot
= rLLhﬂZ)

-

Remove remaining pilots
slF(ISBLANK(ACTIVE.CELL()),.IF(ACTIVE.CELL()="Pilot®, GOTO(F12),remove_pilot()))
=_up()
=GOTO(F9)

3333 3N aaaas

=)
[

[=BEEP)
| sRETURN(

reget criteria
=SELECT("current criteria®)
=CLEAR(1)

| =RETURN()

set_db P list
=SELECT("P_list")

=SET.DATABASE()
=SELECT("P list crit®)

333333333333332 Hkkhﬁ 37333393333353;

—

16

plot

adbox3()

=IF(NOT(F54) RETURN())

=SELECT("end plot_area”)

=IF(ISBLANK(lend_plot area) GOTO(F6&1))

=SELECT(,"rc[1]%)

=alF(ISBLANK(ACTIVE.CELL()),.DEFINE.NAME("end_plot_area") GOTO(F58))

=GOTO(FS7)

siF(l N RN(Q)

=sFORMULA(PS8)

=IF(NOT(l NK(P62)),SELECT(*re[1]").GOTO(F69))

=FORMULA(P62)

=IF(NOT(ISBLANK(P65)) SELECT("rc[1]"), GOTO(F69))

=FORMULA(PE5)

=|F(NOT(ISBLANK(P69)), SELECT("rc{1]"), GOTO(F69))

=FORMULA(P69)

=2SELECT(lend plot area:ACTIVE.CELL())

sEXTRACT(FALSE)

=NEW(2)

| =GALLERY.COLUMN(1)

| =IF(ISBLANK(P65) LEGEND(FALSE) LEGEND(TRUE))
=RETURN(Q

plot_avail

=SELECT("avail plot formuia®)
=COPY()

- T("avail plot _hours")
=PASTE()

=SELECT("avail plot area”)
=COPY()

=PASTE, SPECIAL(3,1)

=NEW(2)

=RETURNQ

propagate

=roset criteria()

=SELECT("qual data®)

=EXTRACT(FALSE)

=DEFINE.NAME("qualifications")

=SELECT("event data®)

=EXTRACT(FALSE

=DEFINE. NAME Covents”)

=SELECT("cur_data®)

333333333333393933393339339833333333333333333

|

117

add_pilot

adbox1()

=IF(NOT(G2), RETURN())

=SELECT('A3)

=_right(!n f db_cois)
=SELECT("ref15]")

=DEFINE.NAME("end_of row")

=SELECT(!A3:lend_of row)
[=INSERT(2)

| =FORMULA(PS)

=FORMULA(P8,rc{1]")

=SELECT("{-1]e[2]")
0

=SELECT(*rf1]c")

EEEEREERFRERFEFE

-
by

=PASTE()

= _right(ino. of db_cols)

aSELECT("r{-1]c")

=COPY()

=SELECT("r{1]c”)

=PASTE()

=FORMULA(0. rc[1]")

=FORMULA(2400,"rcf2]")

)
|=INSERT(2)

SELECT("con avail data®)

_EB_IJ.JA-AJ)

E

§EL§§ (o g lot_list®)

§ELEQT(“avail plot pilots”)

=PASTE()

»sSELECT("datahome”)

=RETURNQ

BER hkkhbkﬁbkhbhbh

dbox1

=DIALOG. BOX(J3:P10)

=RETURN(G37)

333335

B

—

18

de! pilot

=dbox2()

=lF(NOT(G54), RETURN())

=FORMULA(P22, ipilot_criterion)

=DATA FIND()

=SELECT(ACTIVE.CELL()

=DEFINE.NAME("current pilot")

=_right(ino. of d is)

=SELECT("ref15])

=DEFINE NAME(*end of row")

=reset criteria()

=SELECT(lcurrent pilot:lend of row)

=EDIT.DELETE(2)

=SELECT(IAB26:IAM26)

=EDIT.DELETE(2)
=SELECT("pilot list")

=COPY()

=SELECT("avail plot pilots")

=PASTE()

apropagate()

=SELECT(*datahome")

=RETURN()

rg?ﬁm;mmezs)

BRRERERERBERERREREEERRERRE

=RETURN(G77)

debrief_update

°)

SELECTL" 1"
~FORMULACYS)

A

=DATA,FIND()

| =FORMULA(ACTIVE.CELL()-Y10)

al T <0,FORMU

|

33333333333333333933-

119

] | K M N o P_
Add Pilot Box HHem |Horiz}Vert |item {ltem |Text Initial/Resull
Num |Pos [Pos |Hght |Wdth

4 IStatic Text 5 Name;
r_LEs!i! Text) Dyer, Doug |
6 |Static Text S ualitication:
7 _IEdit text box 8 2FL
Q‘ mbo list box 16 type 3
|9 IOk Button 1 [200 {4 Enter
10 | | _Button Cancel
11
14
17

Del Pilot Box Item |Horiz|Vert [Item |Item |Text Initial/Resul

Num |Pos {Pos [Hght |Wdth -

21 {Static Text S Pilot:
| 22 Edit text box (] Dyer, Doug |
rz;_rgggg_m_bg 1 ipilot list 3
| 24 10k Bytton 1 4 Enter
’_zg_ 2 ancel

41

120
{ J 1 K | M| N (o) P
Plot box Item |HorizjVert |item [item | Text initial/Resul
Num |Pos [Pos |Hght |Wdth
| $7 |Static- Text S X-Axis:
| §8 |Edit text box 6 PILOT
| 59 |Combo list box 168 'db _headings |1
 § 0 IStatic Text
| §1 IStatic Text 5 Attribute 1:
[62 |Edit text box 8 DACBT
[83 |Combo li X 16 !db_headings (8
| 84 |Stati X -] 250 14 Attribute 2:
| 65 |Edit text box 8
[66 [Combo list box 16 !db_headings 19 |
| §7 |Static Text S :
| 88 |Static Text 5 Attribute 3:
[69 |Edit text box 6
[70 |Combo list box 16 Idb_headings |8
7.1 |Ok Button 1 350 Enter -
| 72 ICancel Button 2 340 1350 Cancel
14
17

EEEES

121

R 1 U vy W X Y
1 _|Debrief Box |item [Horiz|Vert|item jitem |Text Init/Resul
Num |Pos |Pos |Hght |Wdth
4 |Static Text Name:
| 8 |Edit Text o le, Adam
| § [Combo list bg16 itype2 1
Z |Static Text |5
| 8 |Static Text WD
10 [Edi 6 2
11 |Static Text ACBT
12 {Static_Text 1S No. completed:
113 |Edi 6
14 [Static Text |S DACBT
r_l.i__s_csk:__u_t Toxt IS No. completed:
1 16 |Edit Text 8
17 10k Button 1 200 |4 Enter
| 18 [Cancel Buttorj2 Cancel
21 {Error boxes: | . [295 {199 1294 1151 [Oh-ohl
1 207 1109 |64 x
$ 19 Because of qualification,
S 10 135 ilabili rrency,
5 10 (58 this pilot,
13 |8 113 Place someone eise TRUE
27
295 (199 [294 [151 |Oh-oh!
1 207 109 |64 X
- 9 This pilot requires an instru
1 35 i ither none is avail
S 10 58 th ht_leader slot is fil
13 16 13 Place someone eise TRE
|38 JONIF Box 359 1188 1189 1277 IDNIF/UnDNIF a Pilot
-1 Who and When?
15 |9 130 {171 [92 [!pilot list 10
7 9 156 171 730
189 To:
41 -] 10 {135 Erom:
7 208 [171 1600
2 13_@_5_4 64 Cancel
44 1 1111]245 164 (9,4
46 ICan't DNIF 352 1199 1217 81 Oh-ohl
47 9 IS That pilot is already busy!
4 140 l44 |1 Cancel DNIF_
[§0 {Cant UnDNIF 352 [199 1217 (81 |Oh-ohi
[31 :] S Time mismatch.
4 140 144 11 Cancel UnDNIF

122

R I U ') w X Y
53 [Debrief box 165 (96 [323 |372 |Debrief
6 7 9 171 Dingo, Davel
16 |9 40 (171 114 |Ipilot list 4
5 11 (164 Event
1S |10 [185 129 (181 [levent list 1
1 15 1105 Store Event
2 202 |53 {105 Done
11 |150 [187 {156 1 INo. Completed
12 1173 |183 0
12 {173 |20 1 .
12 [173 [220 2
12 (173 (238 3
12 1173 [256 4
12 (173 [272 5
12 [173 (290 8
12 1173 [308 7
12 1173 {326 8 .
12 |173 {344 9
71
14
17

104

123

A B8 c
1 _Imake schedule try P_list ip_avail or _not req
Places pilots as needed u3y=ssave criteria() =5ave_criteria()

Move 1o "Mission" on sched|=SELECT("P_list mission |=SELECT("pilot_criterion")

=SELECT("Missioncolumn®) {=FORMULA(!current_msn) -FORMQLA('gurrent pilot) |
=_down() -_Ot__d_b_E_!ﬁl(l_____. i
Find last mission = “priori ran

=IF(ISBLANK(ACTIVE.CELL(] ﬂ[ﬂ&ﬂlﬂ;ﬁ) =SELECT("curr_criterion®) |

=_right(2) =g6t db con_db() =FORMULA("*>=0"

Schedule remaining pilots |=IF{ISBLANK(ABSREF("r[1|=IF(!possible_pilots>0. RETH
=lF(l NK(ACTIVE.C = T(*pil titerion®) | =SELECT(“criteria2")
=_up() =CLEAR(1) =COPY()

| =GOTO(A10) =RETURN(FALSE) =SELECT("current criteria
=S CT("pilot criterion")|=PASTE()

=BEEPO 000
=SELECT("datahome”) =FORMULA(ABSREF("r[1]c|=S CT("curr_criterion"

=SELECT("schedule”) =|F(!possible pilots> T{=FORMULA(">=0"

=RETURN() =SELECT(ABSREF("r[1]c[-{=!possible_pilots
=EDIT.DELETE(2) =restore criteria()

find pilot _ =GOTO(B9) ¥ =|F{C16>0 RETURN("req i
| =IF(COLUMN(ACTIVE.CELL{)Y=try to fly()
=|F(ROW(ACTIVE.CELL())<1|=IF(B19,comment(*priority"}
mdefine celis() =rgset criteria() comment
sconstrain_availability() |=update P_list() =ARGUMENT(“reason”.2
=constrain_flight leaders(=RETURN(TRUE) -W reasons" *.GOT
=IF(ISBLANK(Icyrrent siot) =iF(reason="user_specified”,
iwcheck _guy() Pl = T(A "ref31°.44

- - P_list() =FORMULA(ABSREF(°r{1]d
stry P_list() =SELECT("P list crit num{=SELECT("rc[1]")}
=|F =T RETURN aFORMULA(ABSREF("r[1]c|=FORMULA(" on Priority Lif
=try low currenc =DATA.FIND() _ =RETURN(
alF TRUE.RETURN =SELECT("rc(4]") =SELECT("curr_criterion®) |
=try hi_events() =DEFINE.NAME("priority cot= CT("r1lc” ‘
Wwﬁ R rrent line_n 0

[- ilots fourls T(°P_li numis= T(ABSREF("rc[3]".!
=SELECT("current siot’) |=CLEAR(1) =PASTE SPECIAL(3,1) |
- o Pl=get db con db() =SELECT("re[1]")
| =RETURN(=SELECT("current siot®) |=FORMULA(® Days ot Currer|
= =RETURND_

try to fly =SELECT(ABSREF("rc[3]".d
=DATA.FIND() try |0W_J$LLN_"£¥___F-_E%MULA(W_SLM
= IN ME(“current pil{=save criteria() =SELECT("re[1]")

=ip_avail or not req() - T("curr_criterion®) |=FORMULA(" Evenits Remair

o'l "GOT(=FORMULAr>=0) |-RETURNO
* j i it : T R WAL |

333333333333333933333393339333333339399339339 30 J

L =» .]' » - -r
=l =" i " =l { >llow
= rf-1=COPY()_ = re{1]"
- . lot) |=SELECT(*curr criterion”) [=FORMULA(" - User Specifi
= =P IAL(3,1 | =RETURN()
fly the quy =iF(Ipossibie_pilots=0,GOT{=RETURN(
=ypdate avail(*flying®) !=try to fly()
- T{"current slot” =IF(849.comment(“currenc
a rrent pilot) '=IF(B49 make
B41)

124
A B __ c
| 53 linc_reqg qual remove pilot
=SELECT(ABSREF("r[-1]c[-|=restore_criteria() =DEFINE.NAME(("current_siq
| $ 3 |=FORMULA(S) aRETURN(FAL SE) =ACTIVE.CELL() .
| § 6 |=RETURN(TRUE) =_left(3)
=reset criteria() =DEFINE NAME("current Lgl
| $8 Icheck qual =SELECT("current slot”) |= left()
[59 |= T("possible 1P") |-RETURN(TRUE) =DEFINE.NAME("current TO]
| 60 |=FORM ABSREF("r{-1 =SELECT("curren .
[61 |=IF(!qual check=5 RETURN(T =COPY()
try hi evenis =SELECT("pilot criterion®)
| 63 Iconstrain_flight leaders [=save_criteria() =PASTE()
(64 |=IF(ISBLANK(lcurrent qual)|=SELECT(*msn_criterion®) |=DATA.FIND()
[68 1=SELECT("qual_criterion®) |=SELECT("f1)¢") =DEFINE.NAME("current pil¢
| 66 |=F FiLL(! nt_qu=COPY() supdate unavail(*flying")
ryas =CT(" riterion®) |=SELECT("msn_criterion®) |=SELECT("pilot_criterion®)
| 68 |-FOR FiLL("> =PASTE.SPECIAL(3,1) =CLEAR(1)
1 69 |=RETURN(Q =IF(!possible_pilots=0,GOT{=SELECT("current_slot*)
=try to “fly() =SELECT("r{-1]c{-1]")
71 |constrain_availability |=IF(B70.,comment("events")=IF(ACTIVE.CELL(}=5,,GOTQ
_121 §EL§QT(avail_criterion”)|=IF(B870,GOTO(B57),make |=SELECT("rc[12]")
[73 |=FORMULA("Free") =GOTO(B84) =COPY()
7.4 |=RETURN(«SELECT("rc[-12]")
=PASTE()
| 7.6 lupdate_avail = “current_slot”
17 |=ARGUMENTCreason®2) | nav =_right(3)
1 78 |= * ilot® = ME(“current_co
([79 l= r rrent pilot™) = right()
| 80 |=IF{AND(reason="flying",ISBl=_right(!no. =|F(ACTIVE.CELL()=" on Pr
81 |= right() =IF(AND(reason="flying",ACl=set_db P_list()
=ACTIVE CELL()+1 =DEFINE . NAME("last_Land")|= *d1]c:r[1]c[4]"
| 83 |= right(A82) MM"
(84 |=SELECT("re:rc(1]7) =_up() . T(" mme
[83 |=INSERT(1) -WM‘L
1 86 |= T) (= left(3) = (°P_list_crit®)
87 |=-SELECT(re[1]) =COPY() . =SELECT(*1)c") |
| 88 |-FORMULA(Icyrrent Land) [«SELECT("last Land") =PASTEQ
| 89 |-RETURNQ =sPASTEQ) = |[=DATAFIND(
=GOTO(B93) =_right(4)
| 91 ldefin i = T("last Land” =SELECT(ACTIVE.CELL()) |
1 92]= INE.NAME(("current si¢=CLEAR(1) =CLEAR(1)
1 93 |=-DEFINE NAME(“current qis=_right() S_EJ.EQTl'P lis_qrit')
| 94 |=DEFINE. NAME("current m{=ACTIVE.CELL() *r1]c:r{1]cl4]"
(95 i=0 NE.NAME("current La=_right(B94) gﬂ.ﬁbﬂ(‘l)
| 96 =D NE.NAME(“current T(=S! ref117) =_loft()
97 1=0 N INAM gurren |=iF{reasons="dn 2 1O M”
1 98 |=S ° 1 [18 1 =1 (A 11 Lil<>icurmeni =g b()
99 |=MATCH(!current msn i =85 TURN(SQELEQI‘_MQ_'_Q[D__I'!
1100}=_ right(A99) =_right() =SELECT("re:re(1]%)
(101]=SELECT(ACTIVE.CELL() = >! =CLEAR(1)
102]=-DEFINE.NAME("curr_criter] =RETURN() - aSELECT("current slot”) |
103{=DEFIN . i |=CLEAR(1)
10 41=RETURNO =RETURNO =BETURNQ

12§

D_ E_ E
Schedule : reset schedule
Make Schedule Macro1!make schedule =SELECT("Missioncolumn®)
Place a Pilot Macro1!find pilot a_down()
Remove a Pilot Macrot!remove_pilot Find last mission ‘

DNIF a Pilot

Macro1!dnif

Free a DNIFed Pilot

Macro1{undnif

=1F(l NK(ACTIVE.
Move last pilot sl
= fimz)

Remove remaining pilots

EFFEFFEEEF

=PRINT()

=RETURNG

Show Schedule Macro1ishow schedule =IF(ISBLANK(ACTIVE.CELL]
rin ul Macro1lprint schedule =_up()
11 !Reset Schedule ro1lireset schedul | =GOTO(F9)
=BEEP()
=sRETURN(Q
14
Pilot data reset criteria
ihPi!gg Qualifications Macrotiqual =SELECT(“current criteria
17 |Event Requirements Macro1levents =CLEAR(1)
| 18 |Event Currencies Macro1lcur =RETURN()
20 | Pilot... Macro1!add pilot
| 21 |Delete Pilot... Macro1!del_pilot Criteria, DB Swaps:
22 |Propagate Data _____ |Macrotlpropagate
- ve criteri
24 ilot.., M 1!debri = T("current criteria
| 23 1Debrief Update Macro1idebrief update =COPY()
26 |- =SELECT("criterial®) ‘
| 27 |Graph Data... Macro1! =PASTE()
| 28 |Plot Availability _ Macrotlplot avail _ |=RETURN()
[30 lon open restore criteria
L 31 |=ACTIVATE PREV qual =SELECT("criterial®) |
[32 |=-ADDMENU(1.D1:E20) |=SELECT("qualifications”) |=COPY()
|33 |=ADDMENU(1,.D15:E29) |=RETURN() = Y(°current_criteri
[34 |=RETURNQ =PASTE()
events _ =RETURNQ
| 36 lon_ciose =SELECT("events”)
| 37 |=-SELECT.LAST.CELLD |=RETURN()
(38 |= T : set db P list |
1 39 |=-EDIT.DELETE(Q) cur =SELECT("P list®)
_1_9_4. AME("end pl = T{"currencies” =SET.DATABASE()
41 * «RETURN() =SELECT("P_list_crit”) ‘
42
| 43
| 43
.46)
s
[48
| 49
30
[51
[352

Pary

26

D
dnif :

=SELECT("nonavail®)

E F
Procedures for moving cell[plot
=dbox3()

aDIALOG.BOX(S36:Y44)

move_ to mission

=IF(NOT(F54) RETURN())

=} R RN =_right(A99-1) sSELECT("end piot area”)
| =FORMULA(Y39) =RETURN(atF(l NK(lend plot
=DEFINE.NAME("current TO =SELECT(ref1]%)
=_right() _up =IF(ISBLANK(ACTIVE CELL(|
=ARGUMENT("'moves".17) |=GOTO(F57)

INE.NA rrent Lans T rf-1]¢" | =IF(ISBLANK(P58), RETURN{
=SELECT("datahome”) ___ |=IF(ISNA(mov AN()=FORMULA(PS8) |
= _down(Y38) =iF(movesat RETURN() |=IF(NOT(I NK S
= | AME("current pil=SET.VA moves-1
= *pil titerion®)|=sSELECT(,"r{-1]¢") = T(l NK(P
=«FORMULA(!current pilot) |=E66-1 =sFORMULA(PSS5)
acon in ilabilit =|F 1 RN TO(=IF(NOT(ISBLANK(P69)).SEY
-!ggsgiglo pilgts -FORM_JM]P_Q]
=areset criteria() down =SELECT(lend plot area:AC

=IF(D68=0,DIALOG.BOX(S4 =ARGUMENT(*moves®,17)

=EXTRACT(FALSE) ‘

=RETURN() =SELECT{(,"r{1]c") =NEW(2)

sIF(ISNA(moves) RETURN() ~GALLERY.COLUMN(1) |
lundnit siF(moves~1 RETURN() _ |=IF(ISBLANK(P65),LEGEND(H
=SELECT("nonavail®) =SET.VALUE(E76.moves-1) |=RETURN(
FQ!AL&BQZ(&QM_' =SELECT(,"r{1]¢%)
=IF(D75 . RETURNQ) =£76-1 plot_avail
=FORMNA(YIS) ___ I=IF(E768<1,RETURN().GOTO(|=SELECT("avail piot forms
| =DEFINE.NAME("current TO! =COPY()
=_right{} lott =SELECT("avail plot hourq

=sARGUMENT({"moves",17)

SELECT("datahome®)

| =FORMULA(Y42)
DEFINE.NAME("current Lan=SELECT(,"rc{-1]")

=IF(ISNA{moves).R RN

=PASTE()
=SELECT("avail plot area”
| =COPY

3333333333333333333334333939393999333333333339333337

=_down(Y38) : slF{movess=1,RETURN()) |=PASTE.SPECIAL(3,1) |

=DEFI . i 1) [=NEW(2)

supdate unavail(*dnif®) | “ref-1 =RETURNG)

=RETURNO =£86-1 ’ 5 .

- =IF(€66<1,RETURN(.GOT

check_guy r

- *pil i |_right =reset criteria()

=FORMULA(!cyrrent slot) | oves” =SELECT("qual data™) |

=IF(Ipossible_pilots=0,DIALQ=SELECT("re[1]") | =EXTRACT(FALSE) |

» T("pilot_criterion®)|=IF(ISNA(m RETURN()) =DEFINE.NAME("qualificatig

=sCLEAR(1) siF(moves=1,RETURN() _ |=SELECT("event data") |

= - A =EXTRACT(FALSE) |

=try_to fly() =SELECT(, re{1]) =DEFINE.NAME(Covents”) |

= =599- =SELECT("cyr data”) |

= “pi %) =IF{E98<1,RETURNO.GOTO(I=EXTRACT(FALSE) |

=CLEAR(1) ' =DEFINE. NAME("currencies™

- t :|=SELECT(dstahome™) |

=RETURND

acomment(‘yser ified{=DIALOG. BOX(S53:Y70) __ |d

=RETURN(TRUE) =IF(E102.GOTO(E102)) _ |=DIALOG.BOX(JS6:P72) |
=BETURN(‘ =

L]

add_pilot

=dbox1{;

=l T(G2),RETURN

=SELECT(!A3)

=_tight(In f db_cols

= T{"rc[15]"

ErPrEERERE

=3
=

=SELECT(!A3:!lend of row)

E

|]
3
0
.
=

- “r{-1 "

0

i

=SELECT(*re[1S]) |
=DEFINE.NAME(end_of row

=SELECT("r{1lc")

333333

=PASTE()
=_right(Ino. of db_cols)

=SELECT("r[-1]c")

=COPY()

=SELECT(*r{1]c")

ERBEEEREE

=PASTE()
=FOR “ref1]”
- M 400 " =

LR
3

d

-

aad

EREEEEEEE

REEEERE

127

o

28

[]
—
—
—
b
=3

]
]
2

!

]
=]
-~

FEF

T("pilot list"

=COPY()

=S CT("avail plot pilots
=PASTE()

=propagate()

E

:

g

E

13933393933333333933333933°

E

EEFEEFEEFEEEEEEE

:

129

1 g | K | L | M| N Q P
1 _JAdd Pilot Box item |Horiz|Vert |Item |item |Text Initial/Resul|
Num |Pos |Pos [Hght |Wdth
4 _|Static Text 5 Name:
Edit Text 6 Dy 0
Static Text Qualification:
Z_JEdit text box 6 FL_
Combo list box 18 type_ 3
Ok_Button 1 200 |4 Enter
| 10 Cancel Button Cancel
11
14
17
18 |De!l Pilot Box item HorizjVert |Item item |Text Initial/Resul
Num |Pos Pos~ Hght |Wdth
[21 {Static Text S_ Pilot:
| 22 1Edit text box 8 Dves._my.q_T
,.zusgmm_mm 16 Ipilot ligt IS
| 24 |0k Buytton 1 4 Enter
| 23 1Cancel Button Cancel
41
44
47

130
| J K N (o] P
Plot box ftem |Horiz|Vert {ltem |Item | Text initial/Resul
Num {Pos |Pos |Hght [Wdth
| §7 |Static_ Text] X-Axis:
28 Edit text box 6 PILOT -
| 59 [Combo_list box 18 Idb_headings |1
L 60 |Static Text
| 81 |Static Text Attribute 1:
[§2 |Edit text box 8 DACBT
| 83 |Combo list box 16 idb_headings |8
| 84 |Static Text 5 250 |4 Attribute 2:
| 868 |Edit text box]
| 66 |Combo list box 16 !db_headings |9
| §7 |Static Text S
| 68 |Static Text 5 Attribute 3:
| 89 IEdit text box 6
| 70 {Combo list box 16 idb_headings |8
71 10k Button 1 350 Enter
| 72 {Cancel Button 2- 1340 [350 Cancel
14
17

131

R S Il vl VIlWw X Y
1 IDebrief Box |ltem [HorizlVert |item [item |Text Init/Resul
Num |Pos |Pos |Hght |Wdth
4 |Static Text |5 Name:
| 3 _|Edit Text 6 le am
| 6 [Combo list bd16 type2 1
Static Text |5
IStatic Text |5 WD)
iﬁ.ﬁﬁ_h_t i xt 15 No. completed:
Edit Text
FJL% Static Text |5 ACBT
L_sz§t§tig Toxt |5 No. completed:
[13 |€dit Text 6
14 |Static Text |5 DACBT
1,"_‘ Static Text |5 No. completed:
| 16 [Edit Text 6
17 [Ok Button 1 200 4 Enter
| 18 {Cancel Button2 Cancel
[21 lError boxes: 295 (199 (294 [151 [Oh-oh!
1 207 {109 |64 (0.4
S _ Because of qualification,
S 10 (3§ availabilit £ _currency,
5 10 |58 an't fly this pilot, A
13 |6 113 ace someone elise TRUE
295 (199 294 |151 |Oh-oh!
1 7 {109 |64 X
5 9 This pilot require instru
s I 35 ilot. Either n i ail |
S 10 |58 the flight le lot is fill
13 _16 1113 Place someone eise TRUE
:]_‘_QMF_&; 359_‘3_3_9_1§g 277 |ONIF/UnDNIF a Pilot
‘ S 19 IS Who and When?
15 19 Q 171 19 Ipilot_list 10
7 156 171 730
5 9 189 To:
41 S 10 1135 From:
7 171 1600
13 1245 164 |
44 1 111 [245 l64
48 |Can't ONIF 352 [199 [217 [81 [Oh-ohl
S 9 IS That pilot is already busy!
4 40 144 133 Gancel DNIF
1 50 [Cant UnDNI 352 (199 [217 .[81 _{Oh-ohi
9 5 Time mismatch,
[§2 4 (40 (44 (133 Cancel UnDNIF

132

R S 1 I Y w X Y
| §3 |Debrief box 165 |96 323 [372 |Debrief
6 7 9 171 Dingo, Davel
-(16_ 19 40 171 |114 |lpilot list 4
[111164 Event
15 |10 (185 |129 [181 |levent list 1
1 202 |15 (10§ Store Event -
2 (202 1S3 1105 _ Done
11 {150 {187 |156 |1 [No. Completed_ 2
12 1173 [183 0 :
12 [173 [202 1
12 173 [220 2
64 12 1173 (238 3]
12 1173 [256 4
12 1173 |272 5
12 [173 |290 8
12 [173 |308 7
12 1173 1326 8
12 [173 |344 9
71
y 4
17

133

APPENDIX E

The following code is an example of the functional programming used by most
spreadsheet programmers. The program uses four inputs to generate and print out data on
a form used to justify rental cars for government travel. All parameters are visible to the
user and may be edited directly. The only non-automated requirement is a data-of-travel
text change on the form. Formulas used to do the calculations are shown.

134

RADC/CO Capt Doug Dyer 8-May-90

1. No adequate government or public transportation exists between pomts of arrival,
TDY location(s) and lodging/meal facilities.

2. Date of travel 13-14 Jun 90 Number of travelers 3

3. COMMERCIAL TRANSPORTATION (Circle appropriate mode)

Limof/taxi - airport to motel: $4.00 X Nr of Travelers 3 = $1200
Taxi/ - motel to TDY station $16.00 X Nrof R/T 6 = $96.00
Limo/taxi - motel to airport: $4 00 X Nrof Travelers 3 = §1200-

Total Cost: $120.00

4. RENTAL CAR:
$33.00 perday X 2 day $66.00
$1.00 per gal. of gas X 1 gallon (20 miles) $1.00

Total Cost: $67.00
5. SAVINGS TO THE GOVERNMENT: $53.00

6. Rental Vehicle arrangements completed by SATOon 8-May-90

x2973 DOUGLAS E. DYER, Capt, USAF

Automated Rental Car Justification: TO USE, CHANGE FIRST FOUR ITEMS BELOW
'CHANGE DATES OF TRAVEL, SATO RESERVATION TO LEFT, THEN PRINT |

135

FIRST PAGE ON FORM 1820, CHECK RENTAL CAR AND SIGN

| l l
The following data are required for calculation

Comments
Distance from Airport to Motel Loc Miles Change each time
Distance from Hotel to TDY Locatiq 8| Miles Change each time
Number of Days at TDY Location: 2| Days Change each time
Number of travelers 3|Travelers [Change each time
| -

Common Carrier Costs
Cost/mile of airport carrier (limo/ ~$2.00 Change Occasionaily
Solo Travel Cost to Motel from At ~$4.00 —
Solo Travel Cost to Airport from M ~$4.00
| Total Travel Cost to and from Ai $24.00
Cost/mile of local carrier (taxi): . $2.00 Change Occasionally
Number of trips between hotel and 1 2
Travel to and from Hotel: $96.00

i l
Total Common Carrier Costs: $120.00
Lﬁe | 1

ntal Car Costs
Cost per day of rental car: ~$33.00 Change Frequently
Cost of gas (per gallon): “$1.00 hange Occasionally
|Estimated miles of travel required: 20 B
Estimated Fuel Costs: (20 mpg) -~ $1.00
Total Cost of Rental Car: ~ $67.00
| |

Cost savings to the Government $53.00| NOTE: MUST EXCEED $25 |

136

(14

'TDY location(s) and lodgi]

1. No adequate governme;

16

2. Date of travel

13-14 Mar 90

3. COMMERCIAL

Limo/taxi - airport to mote

Taxi/ - motel to TDY stati{

Limo/taxi - motel to airpoq

26 [4. RENTAL CAR:

perday X

=P25

per gal. of gas X

33

3. SAVINGS TO THE

35 [6. Rental Vehicle arrangej

x2973

DOUGLAS E. DYER, Cj

6

14

16
=P13
=P7*P17
=P14

6

day
=P26/20

137

138

’ G
1 [Capt Doug Dyer

14

16 |Number of travelers

20 | X Nr of Travelers
21 | X Nrof R/T
33 | X Nt of Travelers
Total Cost:
on (=P26 miles)
K1 e
Total Cost:
ETZY ’
=NOW(

L
1 =NOW(
4
3
6
11
13
16 |=P9
18
9
= = =F20*120
=P18*P9 = =F21*J21
=) = ~ |=F22%J22
=L20+L21+L22
=B28*E23
=B29*E29
=L28+L29
7§y |

139

140

M

Automated Rental Car Jus|

CHANGE DATES OF TR

FIRST PAGE ON FORM

The following data are

Distance from Airport to N

EECOEEE

Distance from Hotel to TD

Number of Days at TDY L

Number of travelers

11

Common Carrier Costs----]

(13]

Cost/mile of airport carries

Solo Travel Cost to Motel

14
15

Solo Travel Cost to Airpod

Total Travel Cost to and 1

16

Cost/mule of local carrier (

19

Number of trips between h

Travel to and from Hotel:

Tl""l'otal Common Carrier Co|

(23]

'Rental Car Costs

Cost per day of rental car:

(26

Cost of gas (per gallon):

Estimated miles of travel 1

38 [Towal Cost of Rental Car-

Estimated Fuel Costs: (20

Cost savings to the Goverr

141

P Q R
T
3
4 _
Comments
2 Miles Change each time
8 Miles Change cach time
EBp Days Change cach time
3 Travelers Change each time
l e
1212 ' Change Occasionally
13 [=P6*P12
14 |=P13
13 [=P6%2*P9*P12
16
2 Change Occasionally
H?- =IF(P8>1,(P8-2)*2+2,0)
19 [=P7*P18*P9*P17 _
21 |=P15+P19
33 Change Frequently
1 Change Occasionally
26 [=P6%2+P7*P18
27 [=P2 *P25
28 |=P21+(P8*P24)
EICZE NOTE: MUST EX

142

APPENDIX F

The following code is a solution to the 8-puzzle describe in Nilsson's book. Note
that the spreadsheet representation closely matches Nilsson's Figure 1.2. Concrete data
structures are much easier to work with than invisible ones. During execution, the program
explores the possible moves and picks the one which reduces the error most (hill climbing).

143

Beginning Eight Puzzle:

2 8
1 6
5

IR

Out-of-place matrix:
-1 -1
-1
0 -1

(=} =}[=]

The value of the Hill Climbing Function is: -4
(Hill Climbing Function is a summation of the out-of-place matrix,
or "minus” the number of tiles out of place).

Desired puzzle configuration at completion:
1 2 3
8 4
7 6 5

144

A

1_iSolve

[Explore

=SET.VALUE(n North(})

=South()

=SET.VALUE(e,East())

=West()

=SET VALUE(s South(})

=N ot () N

=$SET.Valy'Ew, vest())

=East()

Test_and Move

=|F(n>=MAX(e.5.w) North().IF(e>=sMAX(s.w) East().IF(s>=w.South() West())))

—

n

=|F('Dyer:Public:Current :8 puzzie'!$D11<>0.GOTO(Explore))

| =BEER()

E

Macros_for_moving the cell

| left

=SELECT(, rcf-1])
=RETURN(

right

=SELECT(“rel1]"
- RETURNG,

5

=SELECT(, r{-1]c")

:

_down

=SELECT(. r{1])c?)
=RETURN(G

33333333333333333333333333 33 dudaane

Wi X the m :_(Ne

out

North

= _up()

41

=|IF(ISNUMBER(ACTIVE.CELL()),COPY().RETURN(-10))

=_down()

=PASTE()

=_up()

3333:

47

=CLEAR(1)

|=RETURN(Dyer:Public:Current -8 puzzie$D49)
-2 !

k

145

B < D
1 North
=_up()
. =IF(ISNUMBER(ACTIVE.CEL
4 =_down() _
=PASTE()
=_up()
7 =CLEAR(1)
=RETURN('Dyer;Public:Curr:
-2 East
| 10 [West nt =_right()
11l]l= left() =IF(ISNUMBER(ACTIVE.CEL
| 12 1=IF(ISNUMBER(ACTIVE.CE! = _left{)
H_;_J- right() =PASTE()
14 |=PASTE() = right()
| 18 | _loft() =CLEAR(1)
| 1.8 |=CLEAR(1) =RETURN('Dyer:Public:Currd
17 1=RETURN('Dyer:Public:Curre South 0
-10 =_down(} e
wh =|F(ISNUMBER(ACTIVE.CEL
= up()
=PASTE()
=_down()
=CLEAR(1)
=RETURN('Dyer:Public;Currq
-2
41
44
47
(48

146

APPENDIX G

The following code is used to record long distance telephone data using a visual
input and as much default information as possible. The program uses pull-down menus to
start and end a call and paste the called party’s data into a database. If the party has not
been called before, the data is stored in a table which may be edited or sorted. At the end of
the month, the user sends the data file produced by the program across a network to an
analysis center. The analysis center has another program which consolidates data into one
file and applies the analysis functionality inherent in Excel to flexibly analyze the data and
discover errors.

\,&

147

ON[PO ® SU13¥5001] Apuodm.)
atisniu] Juiuield AV WG |92 Ve b 6zse | BAalec8 106 XOW-11
T1VD 404 NOSVAUNOLLVYNG ANVIWNOD GWYN)N INOHJI TALALVLS ALD| I1X3| aNVN| ¥NOH aLvd|
ALV IdWAL
aanvinu] Juruield JQV W/edva|00:10:0 0] ANVS| BYNLTIE 2G| WrceLti] VO] Vool Miuivs|6Zst 81Vl [06-Wf-¢
[nnwniuf Juind >qv 62:00°0 o] ANVS| PN TIE 20| VOPOE6E-E1T] VOl Voruop miuvs|6zse SS'ST [06-Wef-C
iUl Furwueld DQV 1£:00 - WHH| oan) 5%of “X0| 09VE-P2L-619] VO| 09aig s |62sE niqjzool [06- 1T
dAlvniu] SUlUwNlg DAV 10°70°0 i0) GNVS| PNL TG 0| WOPOE6E-E1T] VO| VOO ®1ivs|676E 991 |06-9(-T
snwiu] Juiuivig DGV WG [91:10:0 10D ONVS| BPNL TG 34| WOPO-C6E-€1Z] VO VOWOW Muvs|62SE $0:01 _ |06-U%(—¢
ansiu] Funnivid DAV /AR |0s:20°0 10D ANVS; B¥NL ' 20| VOPOE6E-EIT] V| Voo mims|6ese TEIT j06-W[¢
SUOITRASY 1910H | 00:10°0 [910H $330Yg d1jiong SUOL| TIZ8-ISKEIZ] Vo[wotwojy mitvs|6zse 8C11 |06V ¢
anEnIu] Furuwl] DAV 20°10°0 0D ANVS[S0 i'd G| vOME6E-EIZ] VD[Voriop mimvs |6t BAQ(er Tl (06w
Al Juinivlg DAV Wedivd | 15:10°0 WEH] oABn) 3%o(2a] 09VE+TZ619] VO o831 WS |675E 0STL [06-5(-91
aansniu] Juwavld DAV 6¢:00°0 KUy o, UM % $Trl-ce9-819] I a4V 1095 [6TsE 609t |06- €T
‘[eaumnu] Sunnmig SavuAdea|Lp:50°0 Kiuiyse iy BN ANM | vZre-2e9-819] CII a4V 153516zt LO°TT_ [06-W(-yT
SUOIIRATIS3Y 1910H 05100 T w) Wl 0000-TSK-¥08] VA YO}ON|6TSE TFEL [06-We(-1¢
SUOTIPAIDSIY [510H[00°10°0 NN IpneID| 0099-v6v-L19] VA UoIOg[6Z5E LY |06-Pd-tl
SUCHIRAIS®SY [910H | E4°€0:0 1910H VoINS WAl 008Y-L¥S-LI9 VW UOIOH|6T5C 61°El |0692d€1
aanentu] Jurnmig JAV UG |E 1061 1 Kiduiysey By UM ¥®| vIvT-2€9-819] Ui g4V 1035{625¢ 0E511_ [06-9°d-8C |
SUOTRAIRSIY [9WOH[00:70°0 0Ly MIpRRID 0099-V6r-L19] VN U108 |6ZSE 901 |06 PIN-T
SUOITRAIIS3Y [910H[90:10:0 0L wpe Dl 0099-b67-L19] VW uo10g | 6Z5¢ BAGIoE Tl j06- AT
datRTIU] BTN g SOV WG| 20-20°0 sumisks unydjoy) Awoxvads qod| 1279-225-50L] VA umowyun 675 266 |06 SN0
__Buinpajds I8 | 24000 J, JO runsuf sex31| g Wof 3A] 066-2PL-908] XL X209qn|625¢ BAAI8E6 (06 IN-0T
aaTTI] JUTuw|d DAV W/RAIed | o¢ +0°0 UGS M 101y AN| $959-672-L19] VW uoIsuIIng 675 BIGI9EIT j06-"N-6T
aanenu] g HqvaAdeal6i:z0:0 AIVS | o£sc9LzE0L] VA UV (6TSE 858 |06 ™NOF
atnIu] SUTu g DV U/edG|9¢ vS 8 (OANIVATHQ) NIVS pous Ao~ 99.1-$69-60L] VA uoIB WiV [6T5E BAalYe8 |06 PO
aanviiu] Juiield gy 95:00°0 NOW| Jom e ial Zesc-e9c-ciy] vd qEmqendezse | BAA[80E] Jo6-MV-T
T1VD 304 NOSVANINOLLYANA ANVAWNOD FWVYNIN INOHIT TALALVLS ALD| 1XA| JFNVN| ¥NOH ALVQ,

148

Help Info:

The data to the left is important (Times 9 Font).

You may manually input any data, or use Long Distance macros provided.

New information about who you're calling is normally stored in the list below.

You may edit that list and sort it using some assi frequency.
When make a data file and TOPS this file to Mary. L
Only a duplicate of the data file will go. You may save it or trash it.)

Tobcufc.da;'ldelelcmcmhmﬁl(lluyu;uluﬂtwomaﬂhoui

See Doug Dyer for additional info. This is an experimental application.

L —
Last Insert to Frequently Disled Numbers:
Pitsburgh [PA 412-268-3842 Dr Bill Wolf MCU
Frequently dialed nurmbers SHHEHNHERNNMNHRNARIMIEEHEHS
(Freq.) CITY STATE |TELEPHONE NO.|USE DATA TO LEFT |COMPANY CALLED
Piusburgh _|PA__ |412-268-3842 ___|Dr Bill Wolf MCU
Arlington _ |[VA 703-695-1766 Lucy Snodgrass SAIK (DRIPA/INFO)
Arlington _ |[VA 703-276-3530 Peggy SAIK |
Burlington |[MA _ 1617-229-6565 Mable Marriot Bu “ington
Lubbock |TX 806-742-3904 Dr John Smith Texas Institute of Technol
Uninown |VA 703-522-6221 Bob Speakeasy Dolphin Systems :
Norfolk [VA 804-451-0000 Jean La Greene Comfort Inn |
Scon AFB _ |IL 618-632-2424 Jack White Miter Machinery
- Santa Monica [CA 213-393-0404 Dr. Bill Tucker SAND Corp
SanDiego [CA 619-224-3460 Dr. Jose Cuervo BBM

149

=|F(lprocessing_flag="Yes",GOTO(A39))

=ALERT("No call in process”,3)

<RETURN(_

=SELECT(IA2:K2)

=EDIT.DELETE(2)

=FORMULA(*No", Iprocessing flag)

=RETURNQ

A : B
1 |[start call end call
2 [=FORMULA("Yes",lprocessing_flag) =SELECT("duration calc")
3 |=SELECT(IA2:K2) : =CALCULATE.NOW()
4 |=INSERT(2) =COPY()
5 |=DEFINE.NAME("current row") =SELECT("duration”)
6 |=SELECT(,"rc[1]") =PASTE.SPECIAL(3,1)
7 |=DEFINE.NAME("start time",ACTIVE.CELL())|=FORMAT.NUMBER("h:mm:ss")
8 |=SELECT(,"rc[8]") =FORMULA("No",Iprocessing fla
9 |=DEFINE.NAME("duration", ACTIVE.CELL()) |=RETURN(
10 |=SELECT("rc[1]")
11 |=DEFINE.NAME("reason")
12 |=SELECT("template”)
13 |=COPY()
14 [=SELECT("current row")
185 |=PASTE.SPECIAL(3,1)
16 {=SELECT("rc[4]")
17 |=DEFINE.NAME("city")
18 |=RETURN(Q
19
20
21 jon_open on_close
22 |=ADD.MENU(1,A26:B32) =DELETE.MENU(1,9)
23 |=ADD.MENU(5,A26:832) =DELETE.MENU(5.9)
24 |=RETURN(=CLOSE(TRUE)
25 =RETURN()
26 [Long Distance
27 |Begin Call 'Log Macros'istart_call
28 jWho's Called?... ‘Log Macros'ipaste_who
29 |Comment... ‘Log Macros'icomment
30 |End Call ‘Log Macros'lend_call
31 |Cancel Call '‘Log Macros'ican_it
3 2 {Make data file ‘Log Macros'imake_data_file
33
34
35 |can it
36
37
38
39
40
41
42
43
44
48
46

150

=|F(C45<1,RETURN(),GOTO(C44))

C D
1 |paste_who process data
2 |=DIALOG.BOX(SE$2:$K$17) =SELECT(IM18)
3 [=IF(NOT(C2),RETURN()) =FORMULA(K10)
4 |=IF(K15=1,GOTO(process data)) =SELECT(IN18)
S |=K15 =FORMULA(K12)
6 |=-SELECT("datahome"”) =SELECT(I018)
7 |= up() =FORMULA(KS5)
8 |= down(CS5) =SELECT(IP18)
9 |=SELECT("rc:rc[4]") =FORMULA(KS)
10 |=COPY(=SELECT(IQ18)
11 |=SELECT("city") =FORMULA(K8)
12 |=PASTE() =|F(K16,insert _data())
13 |=RETURN(Q =SELECT(IM18)
14 =GOTO(C9)
15
16 insert _data
17 =SELECT("datahome")
18 =SELECT("r[1]c:r[1]c[4]")
19 =INSERT(2)
20 . =SELECT(IM18)
21 |make data file =SELECT("rc:rc[4]")
22 |=-SELECT("Database”) =COPY()
23 |=COPY() =SELECT("datahome”)
2 4 |=sNEW(1) «SELECT("r{1]lc")
25 [=PASTE() =PASTE()
2 6 |=DEFINE.NAME("data")) =RETURN(
27 |=SAVE.AS(1C2&" Long Distance Data”,1) -
28 |=CLOSE() comment
29 |=RETURN(=SELECT("reason®)
30 : =DIALOG.BOX(E 19:K23)
31 =|F(D30,FORMULA(K21))
32 =RETURN(Q
33
34
35
38
37
38
39 | down up
4 0 |=ARGUMENT("moves",17) =ARGUMENT("moves",17)
41 |=SELECT(,"r{1]c") =SELECT(,"r{-1]c")
4 2 |=IF(ISNA(moves), RETURN()) =|F(ISNA(moves),RETURN())
43 |=SET.VALUE(C45,moves-1) =SET.VALUE(D86,moves-1)
44 |=SELECT(,"r{1)c") =SELECT(,"r[-1]c")
48 |=C45-1 =D86-1
46

=IF(D86<1,RETURN(),GOTO(D85))

151

E F G H | J K
Dialog Box Data text result
Who are you callingd149 1148 |410 |297 [Who are you calling
3 363 {10 34 X
5 18 21 Telephone #
6 18 44 171
6 18 97 171
5 18 131 Company
6 17 151 171
5 17 187 City
] 16 205 {171
5 18 242 State
6 16 263 171
5 19 77 Name
5 212 (18 Select one:
15 212 |45 189 (208 |[ir21c16:r81c16 2
13 212 [270 Store Data TRUE
2 330 |260 |64 Cancel ’
Why are you calling3162 102 253 |74
5 8 13 Reason
(-] 7 45 232
1 174 |8 64 X
2 97 9 64 Cancel

a&A&Aohuuuuuuuuua»»»nn»nu»»-‘-ﬂ-h-a-t--t--n-aooqo“‘w”_‘
R lbiWiINi4iOl0GvioiniaiwiN=I0l0 i IN sV INI<lOl0l® N[RIaiVINI=IO

3 rd i 2 3 2 3 rJ 027 rt 2 & I I
MISSION

OF
ROME LABORATORY

Rome Luioratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of cir systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Alr Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sclences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

2 3 2 2 2 2 2 2 2 2 3 >3 I 2

