
-" ITATiON PAGE"°Form Approv'aaclITA ION AGEOPIE ft. 0704-0188

Public ors. ft21 for rfVWWQ kimnjctm sarchir ex"sn do&a soces goufwrtil &-W muakw ft datrAD- A244 6 .1 , ;@
HeadqurMn/(/#(/l/ ll (/ ivis HtiwAy, Suite 1204. A/InqWo, VA 22= 4302, xWt to ~t Office of InbtiKon sin R*WA NAkir. Offlos of

1. AGENC TE 3. REPORT TYPE AND DATES COVERED

I I Final: 06 Mar 1991 to 01 June 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Rockwell International Corporation, DDC-Based Ada/CAPS Compiler, Version 6.0,
VAX 8650 VMS 5.3-1 (Host) to CAPS/AAMP1 (bare machine)(Target),
910306W1.11129
6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-448-0891
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION COOE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Rockwell International Corporation, DDC-Based Ada/CAPS Compiler, Wright-Patterson, AFB, Version 6.0, VAX 8650 VMS
5.3-1 (Host) to CAPS/AAMP1 (bare machine)(Target), ACVC 1.11.

S ELECTi

14. SUBJECT TERMS . -. 1. BR OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE COOE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

N 7540-01-280-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std. 239-128

AVF Control Number: AVF-VSR-448-0891
21-August-1991

90-08-15-WL

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910306W1.11129
Rockwell International Corporation

DDC-Based Ada/CAPS Compiler, Version 6.0
VAX 8650 -> CAPS/AAMP1 (bare machine)

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

92-01157MIIIIIIIIIrII

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 06 March 1991.

Compiler Name and Version: DDC-Based Ada/CAPS Compiler, Version 6.0

Host Computer System: VAX 8650 VMS 5.3-1

Target Computer System: CAPS/AAMP1 (bare machine)

Customer Agreement Number: 90-08-15-RWL

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910306W1.11129 is awarded to Rockwell International Corporation. This
certificate expires on 1 June 1993.

This report has been reviewed and is approved.

Steven P. Wilson
Technical Director
ASD/SCEL eN
Wright-Patte'rson AFB OH 45433-6503

Dir tor ter & Software Engineering Division
Institute Defense Analyses
Alexandria VA 22311 Aeeession Yor

NTIS GRA&I
DTIC TAB
Uthnone 0

Ada Joint Program Office
Dr. John Solomond, Director BY
Department of Defense DistrlbutIOD/
Washington DC 20301 AvatlabilltY 608

ktvall aa/or
Dist Speelal

Attachment 2
Declaration of Conformance (AAMPl)

DECLARATION OF CONFORMANCE

Customer: Rockwell International Corporation

Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH

ACVC Version: 1.11

Ada Implementation:

Compiler Name: DDC-Based Ada/CAPS Compiler, Version 6.0

Host Computer System: VAX 8650 VMS 5.3-1

Target Computer System: CAPS/AAMP1 (bare machine)

Customer's Declaration

I, the undersigned, representing Rockwell International Corporation,
declare that Rockwell has no knowledge of deliberate deviations from
the Ada Language Standard ANSI/MIL-STD-1815A in the implementation
listed in this declaration. I declare that Rockwell International
Corporation is the owner of the above implementation and the
certificates shall be awarded in the name of the owner's corporate
name.

____ ____ ____ ____ Date:______

C. E. Kress, Manager of Processor Technology Department
Rockwell International Corporation
400 Collins Rd MS 124-211
Cedar Rapids, Iowa 52498

3

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-3

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1

3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-T ,_F5Feru-ary 1983 and ISO 8652-1987.

[Pro9O] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Ofice, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation . guidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 25 February 1991.

E28005C B28006C C34006D C35508I C35508J C35508M
C35508N C35702A B41308B C43004A C45114A C45346A
C45612A C45612B C45612C C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1BO2B BDlBO6A
AD1BO8A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA2O1E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 285 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

The following 21 tests check for the predefined type SHORTINTEGER:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORT INTEGER.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 47 or
greater.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINE OVERFLOWS is TRUE.

C46013B, C46031B, C46033B, and C46034B contain 'SMALL representation

clauses that are not integers or reciprocals of integers.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the
range of DURATION. There are no such values for this implementation.

CA2009C, CA2009F, BC3204C, and BC3205D check whether a generic unit can
be instantiated BEFORE its generic body (and any of its subunits) is
compiled. This compiler rejects the generic body at compilation. (See
section 2.3.)

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

2-2

IMPLEME4TATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

The following 264 tests check for sequential, text, and direct access
files:

CE21O2A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) :E3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE341LC
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A raise the exception USE ERROR because this
implementation does not support external file CREATE and OPEN
operations. (See Section 2.3)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 19 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B33301B B55AO1A B83E01C B83E01D B83EOlE BAI001A
BA1101B BCI109A BCI109C BC1109D

2-3

IMPLEMENTATION DEPENDENCIES

C83030C and C86007A were graded passed by Test Modification as directed by
the AVO. These tests were modified by inserting "PRAGMA ELABORATE
(REPORT);" before the package declarations at lines 13 and 11,
respectively. Without the pragma, the packages may be elaborated prior to
package Report's body, and thus the packages' calls to function
REPORT.IDENT INT at lines 14 and 13, respectively, will raise
PROGRAMERROR.

CA2009C, CA2009F, BC3204C, and BC3205D were graded inapplicable by
Evaluation Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that unit's
body; as allowed by AI-257, this implemenf:ation requires that the bodies of
a generic unit be in the same compilation if instantiations of that unit
precede the bodies. The compilation of the generic unit bodies was
rejected.

CE2103A, CE2103B, and CE3107A wre graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external
file. This is acceptable behavior because this imrlementation does not
support external files (cf. AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Dan Lyttle
Rockwell International Corporation
MS 124-211
400 Collins Rd NE
Cedar Rapids IA 52498

For a point of contact for sales information about this Ada implementation
system, see:

Charlie Kress
Rockwell International Corporation
MS 124-211
400 Collins Rd NE
Cedar Rapids IA 52498

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3468
b) Total Number of Withdrawn Tests 92
c) Processed Inapplicable Tests 61
d) Non-Processed I/O Tests 264
e) Non-Processed Floating-Point

Precision Tests 285

f) Total Number of Inapplicable Tests 610

g) Total Number of Tests for ACVC 1.11 4170

The above number of I/O tests were not processed because this
implementation does not support a file system. The above number of
floating-point tests were not processed because they used floating-point
precision exceeding that supported by the implementation. When this
compiler was tested, the tests listed in section 2.1 had been withdrawn
because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system and run. The results were uploaded from the PC which controls the
target to the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect

/NODEBUG Suppress generation of Debugger Symbol
Table files.

3-2

PROCESSING INFORMATION

/NOOPTIMIZE Suppress target-independent and peephole
optimizations.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$BIGIDI (l..V-i => 'A', V => 'I')

$BIGID2 (l..V-i => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(l..V-l-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &

(1..V-I-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (l..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (1..V-1-V/2 => 'A') & 'I' & '"'

$BLANKS (1..V-20 => '

$MAX LEN INT BASED LITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:" & (G..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL '"' & (1..V-2 => 'A') & '"'

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values:

Macro Parameter Macro Value

$PMAXINLEN 126

$ACCSIZE 32

$ALIGNMENT 1

$COUNTLAST 2 147 483 647

$DEFAULTHEMSIZE 16_777_216

$DEFAULTSTORUNIT 16

$DEFAULTSYSNAME AAMP1

$DELTA-DOC 2#1.0#E-31

$ENTRYADDRESS 16#40#

$ENTRY-ADDRESS1 16#80#

$ENTRYADDRESS2 16#100#

$FIELDLAST 36

$FILETERMINATOR ASCII.SUB,

$FIXED-NAME NO SUCHFIXED TYPE

$FLOATNAME NO_-SUCHFLOATTYPE

$FORMSTRING fl

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"

$GREATER-THAN DURATION
131_071.0

$GREATERTHANDURATION BASE LAST
131_03.0

$GREATERTHANFLOAT BASE LAST
- .'90141E+38

$GREATERTHANFLOAT-SAFE LARGE
l.UE+308

A-2

MACRO PARAMETERS

$GREATER THAN SHORT FLOAT SAFE LARGE
1. f+3O8-

$HIGH-PRIORITY 254

$ILLEGALETERAL-FILE NAMEI
NOSUCHFILENAME_1

$ILLEGALEXTERAL-FILE NAME2
NOSUCHFILENAME_2

$INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDE PRAGMA1 PRAGMA INCLUDE ("A28006D1.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006Fl.TST")

$INTEGERFIRST -32768

$INTEGERLAST 32767

$INTEGERLASTPLUS_1 32768

$INTERFACELANGUAGE ASSEMBLY

$LESS THANDURATION -131_071.0

SLESS THANDURATION BASE FIRST
-- 131_073.0

$LINE-TERMINATOR ASCII.LF

$LOWPRIORITY 1

SMACHINE CODESTATEMENT
MACHINE CODE.CODE'("NOP;")

SMACHINECODETYPE CODE

$MANTISSADOC 31

$MAXDIGITS 9

$MAXINT 2147483647

$MAXINTPLUS_1 2147483648

$MININT -2147483648

A- 3

MACRO PARAMETERS

$NAME NOSUCHTYPEAVAILABLE

$NAMELIST AAMP1, AAMP2

$NAMESPECIFICATIONi [INAPPLICABLE IX2120A

$NAMESPECIFICATION2 [INAPPLICABLE JX2120B

$NAMESPECIFICATION3 [INAPPLICABLE] X212OC

$NEG BASEDINT 16#FOOOOOOE#

$NEWMEMSIZE 16_777_216

$NEIJSTORUNIT 16

$NEWSYSNAME AAMP1

$PAGETERMINATOR ASCII.FF

$RECORDDEFINITION RECORD INSTR: STRING (1. .80);
END RECORD;

$RECORDNAME CODE

$TASKSIZE 32

$TASKSTORAGESIZE 256

$TICK 0.0001

$VARIABLE-ADDRESS 16#02_FlOO#

$VARIABLE ADDRESS1 16#02F200#

$VARIABLE-ADDRESS2 16*02_F300*

$YOURPRAGMA. EXPORT

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

B-1

COMPILATION SYSTEM OPTIONS

The command to invoke the Ada Compiler has the following syntax:

ADAC (command-qualifier) source-file-spec

Examples:

ADAC/LIST TESTPROG

ADAC/LIBRARY=MY LIBRARY TEST

Parameter:

o source-file-spec

The source-file-spec specifies the text file containing the
source text of the compilation units to be compiled. If
this parameter is omitted, the user will be prompted for
it. If the file type is omitted, .ADA is assumed by
default. No wild card characters are allowed in the file
specification. The "name" portion of the file-spec is
limited to 32 characters, not counting any directory, file
type, or version specifications.

Qualifiers:

Default values exist for all qualifiers as indicated below. Any
qualifier name may be abbreviated (characters omitted from the
right) as long as no ambiguity arises.

/CHECK (default)
/NOCHECK [(option-list)]

Example:

ADAC/NOCHECK=(RANGE,INDEX) TESTPROG

This qualifier directs the compiler to omit run-time checks
from the generated object code. By default, or when /CHECK
is specified, all run-time checks required by the language
are generated.

When the /NOCHECK qualifier is used, the effect is the same
as if the unit(s) being compiled had included a Pragma
SUPPRESS for each check in the option-list, or for all
checks if the option-list is omitted.

The inclusion of Pragma SUPPRESS in the unit being compiled
takes precedence over the use of /CHECK as a compiler
option. The result of using either Pragma SUPPRESS or the
/NOCHECK option is a non-standard Ada program.

B-2

COMPILATION SYSTEM OPTIONS

The following checks may be individually suppressed:

ACCESS - Check for access value being non-null.
DISCRIMINANT - Check for record discriminant value.
ELABORATION - Check for subprogram being elaborated.
INDEX - Check for array index value in range.
LENGTH - Check for array length compatibility.
RANGE - Check for value within subtype range.
STORAGE - Has no effect.
ALL - All of the above checks suppressed.

/CMS GENERATIONS [= "quoted-string" I
/NOCMSGENERATIONS (default)

This qualifier is used to pass configuration management
information through the compiler system to the load module
created from the Ada program. The version identification
of each source file used in construction of the load module
can be displayed using the CTRACE tool.

When the /CMS qualifier is used by itself, the source file
is scanned to extract the history notes stored in the file
by the DEC Code Management System (CMS).

The CMS qualifier /HISTORY="-- B" must be in effect when
the source file is fetched, causing CMS to store the
information in the file for the compiler system to use.

If an optional value is specified, for example,
ADAC/CMS="2.1", this value is used instead. This allows a
configuration management system other than DEC CMS to be
used, e.g., the Rational Target Build Facility.

See the Ada CAPS Object/Load Module Information Trace
(CTRACE) User's Guide for further information.

/CONFIGURATION FILE = file-spec
/CONFIGURATION-FILE = ADACSCONFIG (default)

This qualifier specifies the configuration file to be used
by the compiler in the current compilation. If the
qualifier is omitted, the configuration file designated by
the logical name ADACS CONFIG is used. Section 3.3.2.1
contains a description-of the configuration file.

/DEBUG (default)
/NODEBUG

When /NODEBUG is active, the debugger file (having
extension .DST) will not be created. The default is to
create this file.

/KEEP = ([ASM, LST J)

B-3

COMPILATION SYSTEM OPTIONS

This qujalifier prevents the deletion of the assembly source
(.ASM) and/or assembly listing (.LST) files created during
compilation. The default is to delete the .ASM and .LST
files. No corresponding /NOKEEP qualifier is allowed.

/LIBRARY = file-spec
/LIBRARY = ADACSLIBRARY (default)

This qualifier specifies the current sublibrary and thereby
also the current program lbrary (cf. section 2).

If the qualifier is omitted, the sublibrary designated by
the logical name ADACS LIBRARY is used as the current
sublibrary (cf. section 2.1). Section 3.3.4 describes how
the Ada compiler uses the library.

/LIST
/NOLIST (default)

When this qualifier is given, the source listing is written
on the list file. Section 3.3.3.1 contains a description
of the source listing.

If /NOLIST is active, no source listing is produced,
regardless of any LIST pragmas in the program or any
diagnostic messages produced.

/MACASM - ([CROSS REFERENCE, STATISTICS, TIMING I)
/MACASM - (NOCROSS,-NOSTAT, NOTIMING) (default)

Inclusion of any of these parameters causes the macro
assembler to include cross-reference information, assembler
execution statistics, or instruction timing information
respectively, in its generated list file. The source
listing information is always included in the macro
assembler list file. By default, these sections are not
included in the macro assembler list file.

Note: The /MACASM qualifier has no visible effect unless
the /KEEP = LST qualifier is also present.

/OBJECT (default)
/NOOBJECT

This qualifier indicates whether object code will be
generated if the compilation is successful. Compilation is
considerably faster when /NOOBJECT is specified, but the
program cannot be linked if a required object file is
missing.

B-4

COMPILATION SYSTEM OPTIONS

/OPTIMIZE - (list-of-optimizations)
/NOOPTIMIZE (default)

This qualifier specifies whether any optimizations should
be performed on the generated code. Specifying /OPTIMIZE
without a list-of-optimizations will cause all
optimizations to be performed. The default is not to
perform any optimizations.

The following optimizations may be individually selected:

CHECK - The compiler will eliminate unneeded
run-time checks. This option should NOT
be used if /NOCHECK is used.

CSE - Common subexpression elimination is
performed.

PEEP - Peep-hole optimization is performed on
the generated code before object code
is produced. This involves scanning the
assembly source for the occurrence of
certain patterns of code which can be
replaced by simpler, equivalent patterns.

REORDERING - The compiler will reorder an aggeegate
with named component association into an
aggregate with positional association,
which may cause it to be placed in ROM
instead of generating initialization code.

STACKHEIGHT - The use of temporary variables in
expression evaluation is minimized.

ALL - Causes all optimizations to be performed.

Example:

ADAC/OPTIMIZE-(PEEP,CSE) TESTPROG

/PRAGMA-UNIVERSAL DATA

This qualifier is equivalent to placing
"Pragma UNIVERSAL DATA;" in the declarative part of the
unit(s) being compiled. This allows the user to overcome
the restriction that all stacks and volatile data be
located in a single 64K word memory sector when the program
is linked. It is only allowed when compiling a library
package spec or body. See Appendix F of the ADACS
Reference Manual for further information on this
implementation-dependent pragma.

B-5

COMPILATION SYSTEM OPTIONS

/PROGRESS
/NOPROGRESS (default)

When this qualifier is given, the compiler will output
information about which phase of the compiler is currently
running.

/SAVE SOURCE (default)
/NOSAVESOURCE

This qualifier specifies whether the source text is stored
in the program library. If the source file contains
several compilation units, the source text for each
compilation unit is stored in the program library.

The source texts stored in the program library can be
extracted using the PLU command TYPE. Using the /NOSAVE
qualifier will prevent automatic recompilation using the
Ada Recompiler.

/XREF
/NOXREF (default)

This qualifier is used to generate a cross-reference
listing. If the /XREF qualifier is given and no severe or
fatal errors are found during compilation, the
cross-reference listing is written on the list file.

The command to invoke the Ada Linker has the following syntax:

ADAC/LINK (command-qualifier) unit-name
I recompilation-spec I

<recompilation-spec> :-= <unit-spec> (+ <unit-spec> 3
I <unit-spec> [, <unit-spec> 3

<unit-spec> <unit-name>
I <unit-name> / SPECIFICATION

< (unit-name> / BODY

Parameters:

o unit-name

If a link is requested (no recompilation-spec was given),
unit-name specifies a main program which must be a library
unit of the current program library, but not necessarily of
the current sublibrary. The main program must be a
parameterless procedure. The linker does not check that
the main procedure has no parameters, but execution of a
main program with parameters is undefined.

B-6

COMPILATION SYSTEM OPTIONS

Note that unit-name is the Ada procedure name, not a file
name.

If an examination of the consequences of recompilations is
requested (a recompilation-spec is given), unit-name
specifies a set of program library units whose consistency
will be checked as if the hypothetical recompilations had
just occurred. The recompilation-spec may include wildcard
characters, which will be interpreted according to VAX/VMS
rules for wildcard characters.

The following applies to the different kinds of unit-names:

- If unit-name does not contain wildcard characters, it
designates the visible unit having the specified name.
The designated unit must be a parameterless procedure.

- If unit-name contains wildcard characters, it
designates all library units in the current sublibrary
with names matching the specified unit-name. All types
of library units may be designated.

o recompilation-spec

If this parameter is given, the linker will analyze the
consequences (for the unit(s) named by the unit-name
parameter) of hypothetical recompilations of the unit or
units given by the list.

A recompilation-spec is a sequence of unit-specs, separated
by pls or comma characters. Each unit-spec is a
unit-name, possibly with a /SPECIFICATION or /BODY
qualifier. If a unit-name does not have this qualifier,
/SPECIFICATION is the default.

Qualifiers:

/CLINK = ([FULL, LIST=file-spec, MAP, CROSS REFERENCE,
STATISTICS, SEGMENT=name, RAM, ROM T)

/NOCLINK
/CLINK = (FULL) (default)

This qualifier is used to pass qualifiers to CLINK, the
CAPS Linker, which is part of the linker system. All of
these qualifiers may be negated except for SEGMENT. The
use of LIST, MAP, CROSSREFERENCE, or STATISTICS implies
NOFULL.

To omit selected parts of the program from the load module
(for example, when the Executive is already in ROM), the
SEGMENT qualifier is recommended instead of the older RAM

B-7

COMPILATION SYSTEM OPTIONS

and ROM qualifiers. See the CAPS Link Editor User's Guide
for more information.

The /NOCLINK qualifier is used to prevent execution of the
target linker. This is typically used when special
processing is required before target linking. After the
linker terminates, the .LEC file produced by the linker can
be modified by the user, who then invokes the target linker
(CLINK) separately.

/DEBUG (default)
/NODEBUG

The /NODEBUG qualifier is used to prevent creation of a
.DMT Debugger Module Table file by the linker. By default,
the debugger file is created.

/LIBRARY = file-spec
/LIBRARY = ADACSLIBRARY (default)

This qualifier specifies the current sublibrary and thereby
also the current program library. The current program
library consists of the current sublibrary and its ancestor
sublibraries (cf. section 2.1).

If the qualifier is omitted, the sublibrary designated by
the logical name ADACSLIBRARY is used as current
sublibrary.

/LOG [- file-spec]
/NOLOG (default)

The qualifier determines whether a log file will be
produced. By default, no log file is produced. If a file
specification is given, this file will be used as the log
file. If /LOG is specified without a file specification, a
log file named main-program-name.LSF is created in the
current default directory. The log file contents are
described in Section 3.4.3.3.

/TARGET LINKER COMMANDS = file-name
/TARGET-LINKERCOMMANDS =

ADACSSUPPORTLIBRARY:exec target.LEC
(default)

where "exec" is TASKING or NOTASKING depending on the
/TASKING qualifier, and "target" is AAMP1 or AAMP2
depending on the target selected by the @ADACS:[TOOLS]USE
command (for example, TASKINGAAMP1.LEC).

This qualifier allows the user to specify that a Link Edit
Command (.LEC) file other than the default one be used as
input during linking. The .LEC file is used to instruct

B-8

COMPILATION SYSTEM OPTIONS

the linker how to construct the output module. As the
linker generates an intermediate file named
main-procedure-name.LEC, the user must not specify a file
with this name on this qualifier. For more information,
consult the CAPS Link Editor User's Guide or Application
Note 4.

/TASKING (default)
/NOTASKING

The /NOTASKING qualifier is used to indicate to the linker
that the program to be linked does not contain any Ada
tasking constructs. The linked code for a program which
uses this option will be smaller than if the option is not
used. The user's main program will run in executive mode
of the processor. The default is to allow tasking
constructs in a program to be linked.

Examples:

ADAC/LINK/LIBRARY=MYLIB.LIB MYPROG

The linker will generate an executable load module from the program
MYPROG found in the library defined by the current sublibrary
MYLIB.LIB.

ADAC/LINK/LOG MYPROG EXAMPLE/SPEC, UTILITY/BODY

This will examine the consequence of recompiling the specification
of EXAMPLE and the body of UTILITY. The linker will give a list of
necessary compilations to keep MYPROG consistent. The program
library is given by the default name ADACSLIBRARY.

ADAC/LINK PROGX A/SPEC + B*/SPEC + C% */BODY

Here, the linker will examine the consistency of the program "PROG X"
in case of a recompilation of the specifications of the library unit
"A" and all library units with names starting with "B", and a
recompilation of the bodies of all library units with names at least
3 characters long, whose first character is "C" and whose third
character is "

ADAC/LINK MYPROG DUMMY UNIT NAME

Assume no unit of the name DUMMY UNIT NAME exists in the current
library. Then this command will-examlne the consequences of no
recompilations; the linker simply checks the consistency of MYPROG
without linking it.

B-9

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32 768 .. 32 767;
type LONG INTEGER is range -2 147 493 648 .. 2 147 483 647;

type FLOAT is digits 6 range -16#0.7FFF FF8#E32 .. 16#0.7FFFFF8#E32;
type LONGFLOAT is digits 9 range -16#07FFF FFFF FFB#E32 ..

16#6.7FFFFFFF_FF8#E32;

type DURATION is delta 0.0001 range -16#2_0000.0# .. 16#1_FFFF.FFFC#;

end STANDARD;

C-I

APPENDIX F OF THE Ada STANDARD

* DDC-Based *

* Ada/CAPS Compiler System *
* Language Reference Manual *

* Document Identification: REFMAN *
Document Number: DADA-251 *

* Date: 31 January 1991 *
* Compiler System Version: 6.0 *

D. W. Lyttle

Computer Support System Section
Processor Technology Department
Advanced Technology Department

Collins Government Avionics Division

Avionics Group
400 Collins Road NE

Cedar Rapids, Iowa 52498

(c) Rockwell International Corporation, 1991
All Rights Restricted

Proprietary Data. Dissemination outside Rockwell
International Corporation must be cleared through

the Patent Department.

C-2

APPENDIX F OF THE Ada STANDARD

DDC-Based Ada/CAPS Compiler System Language Reference Manual Page 2

CONTENTS

1 Introduction. 2
1.1 References. 2
12 Generic Units 3
12.3 Generic Instantiation. 3
12.3.2 Matching Rules For Formal Private*Types .. 3

APPENDICES

A PREDEFINED LANGUAGE ATTRIBUTES

B PREDEFINED LANGUAGE PRAGMAS

C PREDEFINED LANGUAGE ENVIRONMENT

D GLOSSARY

E SYNTAX SUMMARY

F IMPLEMENTATION-DEPENDENT CHARACTERISTICS
F.1 Implementation-Dependent Pragmas F-i
F.1.1 Pragma EXPORT F-i
F.1.2 Pragma IMPORT F-3
F.1.3 Pragma STACK-SIZE. F-4
F.1.4 Pragma UNIVERSAL DATA. F-5
F.2 Implementation-Dependent Attributes.F-6
F.3 Specification Of The Package SYSTEM. F-6
F.4 Representation Clauses F-6
F.4.1 Length Clauses F-6
F.4.1.1 Size Specifications. F-6
F.4.1.2 Collection Size Specification. F-7
F.4.1.3 Task STORAGE-SIZE Specification.F-8
F.4.1.4 SMALL Specification. F-8
F.4.2 Enumeration Representation Clauses F-8
F.4.3 Record Representation Clauses. F-B
F.4.4 Alignment Clauses F-10
F.4.5 Implementation-Generated Names. F-10
F.5 Address Clause Expressions. F-10
F.6 UNCHECKEDCONVERSION Restrictions F-10

C-3

APPENDIX F OF THE Ada STANDARD

DDC-Based Ada/CAPS Compiler System Language Reference Manual Page 3

F.7 1/O Package Implementation-Dependent
Characteristics. F-10

F.7.1 Package SEQUENTIAL_-10 F-li
F.7.2 Package DIRECT 10 F-li
F.7.3 Package TEXT 10. F-il
F.7.4 Package LOW -LEVEL_10. F-il
F.7.5 Package LOW_-10 F-12
F.8 Other Implementation-Dependent Features F-12
F.8.i Predefined Types. F-12
F.8.1.1 Integer Types F-12
F.8.1.2 Floating Point Types. F-12
F.8.1.3 Fixed Point Types F-14
F.8.1.4 The Type DURATION F-15
F.8.2 Uninitialized Variables F-15
F.8.3 Package MACHINE_-CODE. F-16
F.8.4 Compiler Limitations. F-17

C-4

APPENDIX F OF THE Ada STANDARD

DDC-Based Ada/CAPS Compiler System Language Reference Manual Page 4

1 Introduction

This document is a supplement to the Ada Language Reference
Manual (RM), ANSI/MIL-STD-1815A, 22-Jan-83 (Chapters 1-14). The
appendices correspond to similar sections of the RM. Appendices
A, B, and C contain a superset of Annexes A, B, and C of the RM,
with added lines containing a vertical bar at the left,
indicating changes specific to Ada/CAPS. Appendix D is a
glossary of Ada/CAPS related terms and should be considered as an
extension of Annex D of the RM. Appendix E contains only a
reference to the RM since the syntax of Ada/CAPS is identical to
that of standard Ada. Appendix F describes the implementation-
dependent characteristics of the Ada/CAPS compiler system.

1.1 References

Each of the ADACS documents is available both as an .LNI file for
sending to a DEC LN03 laser printer, and as a .MEM file for
sending to a standard line printer.

1. Ada Language Reference Manual, ANSI/MIL-STD-1815A, 1983.
Describes the Department of Defense Military Standard
Ada Language. Available from the DoD Single Stock
Point, Commanding Officer, Naval Publications and Forms
Center, 5801 Tabor Avenue, Philadelphia PA 19120.

2. DDC-Based Ada/CAPS Cross Compiler System User's Guide.
Describes how to run the tools of the system. Available
by printing the file ADACS:[DOCUMENTS]USERSGUIDE.MEM.

3. DDC-Based Ada/CAPS Cross Compiler System Run-time
Reference Manual. Describes implementation details of
Ada/CAPS in the context of the target machine.
Available by printing the file:
ADACS:[DOCUMENTS]RUNTIMEREFERENCEMANUAL.MEM

4. CAPS Macro Assembler User's Guide. Contains information
on how to call macros, write assembly instructions, and
use the macro assembler. Available by printing the file:
ADACS:[DOCUMENTS]MACASM.MEM.

5. CAPS Link Editor User's Guide. Describes the CAPS
Linker. Available by printing the file:
ADACS:[DOCUMENTS]CLINK.MEM.

6. Memory Organization and Linking Considerations.
Available by printing the file:
ADACS:[DOCUMENTS]NOTE04.MEM.

C-5

APPENDIX F OF THE Ada STANDARD

DDC-Based Ada/CAPS Compiler System Language Reference Manual Page 5

12 Generic Units

12.3 Generic Instantiation

Order of Compilation

When instantiating a generic unit, it is required that the
entire unit, including body and possible subunits, is compiled
before the first instantiation or, at the latest, in the same
compilation. This is in accordance with the RM Chapter 10.3 (1).

12.3.2 Matching Rules For Formal Private Types

The present section describes the treatment of a generic
unit with a generic formal private type, where there is some
construct in the generic unit that requires that the
corresponding actual type must be constrained if it is an array
type or a record type with discriminants, and there exists an
instantiation with such an unconstrained type (see RM Section
12.3.2.(4)).

This is considered an illegal combination. In some cases
the error is detected when the instantiation is compiled; in
other cases, when a constraint-requiring construct of the generic
unit is compiled:

1) If the instantiation appears in a later compilation unit than
the first constraint-requiring construct of the generic unit,
the error is associated with the instantiation which is
rejected by the compiler.

2) If the instantiation appears in the same compilation unit as
the first constraint-requiring construction of the generic
unit, there are two possibilities:

a) If there is a constraint-requiring construction of the
generic unit after the instantiation, an error message
appears with the instantiation.

b) If the instantiation appears after all
constraint-requiring constructs of the generic unit in
that compilation unit, an error message appears with the
constraint-requiring construct, but will refer to the
illegal instantiation.

C-6

APPENDIX F OF THE Ada STANDARD

DDC-Based Ada/CAPS Compiler System Language Reference Manual Page 6

3) The instantiation appears in an earlier compilation unit than
the first constraint-requiring construction of the generic
unit, which in that case will appear in the generic body or a
subunit. If the instantiation has been accepted, the
instantiation will correspond to the generic declaration
only, and not include the body. Nevertheless, if the generic
unit and the instantiation are located in the same
sublibrary, then the compiler will consider it an error. An
error message will be issued with the constraint-requiring
construct and will refer to the illegal instantiation. The
unit containing the instantiation is not changed, however,
and will not be marked as invalid.

C-7

APPENDIX F OF THE Ada STANDARD

APPENDIX A

PREDEFINED LANGUAGE ATTRIBUTES

This annex summarizes the definitions given elsewhere of the
predefined language attributes.

P'ADDRESS For a prefix P that denotes an object, a
program unit, a label, or an entry:

Yields the address of the first of the
storage units allocated to P. For a
subprogram, package, task unit, or label,
this value refers to the machine code
associated with the corresponding body or
statement. For an entry for which an address
clause has been given, the value refers to

the corresponding hardware interrupt. The
value of this attribute is of the type
ADDRESS defined in the package SYSTEM (see
F.3).

To be consistent with the machine
architecture, a word address is returned for
a data object, but a byte address is returned
for code items.

P'AFT For a prefix P that denotes a fixed point
subtype:

Yields the number of decimal digits needed
after the point to accommodate the precision
of the subtype P, unless the delta of the
subtype P is greater than 0.1, in which case
the attribute yields the value one. (P'AFT
is the smallest positive integer N for which
(10**N)*P'DELTA is greater than or equal to
one.) The value of this attribute is of the
type universal-integer. (See 3.5.10.)

P'BASE For a prefix P that denotes a type or
subtype:

This attribute denotes the base type of P.
It is only allowed as the prefix of the name
of another attribute: for example:
P'BASE'FIRST. (See 3.3.3.)

C-8

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-2

P'CALLABLE For a prefix P that is appropriate for a task
type:

Yields the value FALSE when the execution of
the task P is either completed or terminated,
or when the task is abnormal; yields the
value TRUE otherwise. The value of this
attribute is of the predefined type BOOLEAN.
(See 9.9.)

P'CONSTRAINED For a prefix P that denotes an object of a
type with discriminants:

Yields the value TRUE if a discriminant
constraint applies to the object P, or if the
object is a constant (including a formal
parameter or generic formal parameter of mode
in); yields the value FALSE otherwise. If P
is a generic formal parameter of mode in out,
or if P is a formal parameter of mode in out
or out and the type mark given in the
corresponding parameter specification denotes
an unconstrained type with discriminants,
then the value of this attribute is obtained
from that of the corresponding actual
parameter. The value of this attribute is of
the predefined type BOOLEAN. (See 3.7.4.)

P'CONSTRAINED For a prefix P that denotes a private type or
subtype:

Yields the value FALSE if r dean Les an
unconstrained nonformal private type with
discriminants; also yields the value FALSE if
P denotes a generic formal private type and
the associated actual subtype is either an
unconstrained type with discriminants or an
unconstrained array type; yields the value
TRUE otherwise. The value of this attribute
is of the predefined type BOOLEAN. (See 7.4.2.)

P'COUNT For a prefix P that denotes an entry of a
task unit:

Yields the number of entry calls presently
queued on the entry (if the attribute is
evaluated within an accept statement for the
entry P, the count does not include the
calling task). The value of this attribute
is of the type universal-integer. (See 9.9.)

C-9

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-3

P'DELTA For a prefix P that denotes a fixed point
subtype:

Yields the value of the delta specified in
the fixed accuracy definition for the subtype
P. The value of this attribute is of the
type universal-real. (See 3.5.10.)

P'DIGITS For a prefix P that denotes a floating point
subtype:

Yields the number of decimal digits in the
decimal mantissa of model numbers of the
subtype P. (This attribute yields the number
D of section 3.5.7.) The value of this
attribute is of the type universal_integer.
(See 3.5.8.)

P'EMAX For a prefix P that denotes a floating point
subtype:

Yields the largest exponent value in the
binary canonical form of model numbers of the
subtype P. (This attribute yields the
product 4*B of section 3.5.7.) The value of
this attribute is of the type
universalinteger. (See 3.5.8.)

P'EPSILON For a prefix P that denotes a floating point
subtype:

Yields the absolute value of the difference
between the model number 1.0 and the next
model number above, for the subtype P. The
value of this attribute is of the type
universal-real. (See 3.5.8.)

P'FIRST For a prefix P that denotes a scalar type, or
a subtype of a scalar type:

Yields the lower bound of P. The value of
this attribute has the same type as P. (See
3.5.)

P'FIRST For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the lower bound of the first index range.
The value of this attribute has the same type
as this lower bound. (See 3.6.2 and 3.8.2.)

C-10

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-4

P'FIRST(N) For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the lower bound of the N-th index range
The value of this attribute has the same type
as this lower bound. The argument N must be
a static expression of type universal integer.
The value ot N must be positive (nonzero) and
no greater than the dimensionality of the
array. (See 3.6.2 and 3.8.2.)

P'FIRST BIT For a prefix P that denotes a component of a
record object:

Yields the offset, from the start of the
first of the storage units occupied by the
component, of the first bit occupied by the
component. This offset is measured in bits.
The value of this attribute is of the type
universal-integer. (See 13.7.2.)

P'FORE For a prefix P that denotes a fixed point
subtype:

Yields the minimum number of characters
needed for the integer part of the decimal
representation of any value of the subtype P,
assuming that the representation does not
include an exponent, but includes a
one-character prefix that is either a minus
sign or a space. (This minimum number does
not include superfluous zeros or underlines,
and is at least two.) The value of this
attribute is of the type universal_integer.
(See 3.5.10.)

P'IMAGE For a prefix P that denotes a discrete type
or subtype:

This attribute is a function with a single
parameter. The actual parameter X must be a
value of the base type of P. The result type
is the predefined type STRING. The result is
the image of the value of X, that is, a
sequence of characters representing the value
in display form. The image of an integer
value is the corresponding decimal literal;
without underlines, leading zeros, exponent,
or trailing spaces; but with a one-character
prefix that is either a minus sign or a space.

C-I

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-5

The image of an enumeration value is either
the corresponding identifier in upper case or
the corresponding character literal
(including the two apostrophes); neither
leading nor trailing spaces are included.
The image of a character other than a graphic
character is implementation-defined. (See
3.5.5.)

P'LARGE For a prefix P that denotes a real subtype:

The attribute yields the largest positive
model number of the subtype P. The value of
this attribute is of the type universal real.
(See 3.5.8 and 3.5.10.)

P'LAST For a prefix P that denotes a scalar type, or
a subtype of a scalar type:

Yields the upper bound of P. The value of this
attribute has the same type as P. (See 3.5.)

P'LAST For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the upper bound of the first index
range. The value of this attribute has the
same type as this upper bound. (See 3.6.2
and 3.8.2.)

P'LAST(N) For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the upper bound of the N-th index
range. The value of this attribute has the
same type as this upper bound. The argument
N must be a static expression of type
universal integer. The value of N must be
positive (nonzero) and no greater than the
dimensionality of the array. (See 3.6.2 and
3.8.2.)

P'LASTBIT For a prefix P that denotes a component of a
record object:

Yields the offset, from the start of the
first of the storage units occupied by the
component, of the last bit occupied by the
component. This offset is measured in bits.

C-12

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-6

The value of this attribute is of the type
universal integer. (See 13.7.2.)

P'LENGTH For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the number of values of the first
index range (zero for a null range). The
value of this attribute is of the type
universal integer. (See 3.6.2.)

P'LENGTH(N) For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the number of values of the N-th index
range (zero for a null range). The value of
this attribute is of the type
universal integer. The argument N must be a
static expression of type universal integer.
The value of N must be positive (nonzero) and
no greater than the dimensionality of the
array. (See 3.6.2 and 3.8.2.)

P'MACHINEEMAX For a prefix P that denotes a floating point
type or subtype:

Yields the largest value of exponent for the
machine representation of the base type of P.
The value of this attribute is of the type
universalinteger. (See 13.7.3.)

The value 127 is returned for FLOAT or
LONGFLOAT.

P'MACHINE EMIN For a prefix P that denotes a floating point
type or subtype:

Yields the smallest (most negative) value of
exponent for the machine representation of
the base type of P. The value of this
attribute is of the type universal_integer.
(See 13.7.3.)

The value -127 is returned for FLOAT or
LONGFLOAT.

P'MACHINEMANTISSA For a prefix P that denotes a floating point
type or subtype:

C-13

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-7

Yields the number of digits in the mantissa
for the machine representation of the base
type of P (the digits are extended digits in
the range 0 to P'MACHINE RADIX - 1). The
value of this attribute is of the type
universalinteger. (See 13.7.3.)

The value 24 is returned for FLOAT, or 40 for
LONGFLOAT.

P'MACHINEOVERFLOWS For a prefix P that denotes a real type or
subtype:

Yields the value TRUE if every predefined
operation on values of the base type of P
either provides a correct result, or raises
the exception NUMERIC ERROR in overflow
situations; yields the value FALSE otherwise.
The value of this attribute is of the
predefined type BOOLEAN. (See 13.7.3.)

The value TRUE is returned for a
floating-point or fixed-point type.

P'MACHINERADIX For a prefix P that denotes a floating point
type or subtype:

Yields the value of the radix used by the
machine representation of the base type of P.
The value of this attribute is of the type
universalinteger. (See 13.7.3.)

The value 2 is returned for FLOAT or
LONGFLOAT.

P'MACHINEROUNDS For a prefix P that denotes a real type or
subtype:

Yields the value TRUE if every predefined
arithmetic operation on values of the base
type of P either returns an exact result or
performs rounding; yields the value FALSE
otherwise. The value of this attribute is of
the predefined type BOOLEAN. (See 13.7.3.)

The value TRUE is returned for a
floating-point type, or FALSE for a
fixed-point type.

C-14

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-8

P'IMANTISSA For a prefix P that denotes a real subtype:

Yields the number of binary digits in the
binary mantissa of model numbers of the
subtype P. (This attribute yields the number
B of section 3.5.7 for a floating point type,
or of section 3.5.9 for a fixed point type.)
The value of this attribute is of the type
universalinteger. (See 3.5.8 and 3.5.10.)

P'POS For a prefix P that denotes a discrete type
or subtype:

This attribute is a function with a single
parameter. The actual parameter X must be a
value of the base type of P. The result type
is the type universal integer. The result is
the position number of the value of the
actual parameter. (See 3.5.5.)

P'POSITION For a prefix P that denotes a component of a
record object:

Yields the offset, from the start of the
first storage unit occupied by the record, of
the first of the storage units occupied by
the component. This offset is measured in
storage units. The value of this attribute
is of the type universalinteger. (See
13.7.2.)

P'PRED For a prefix P that denotes a discrete type
or subtype:

This attribute is a function with a single
parameter. The actual parameter X must be a
value of the base type of P. The result type
is the base type of P. The result is the
value whose position number is one less than
that of X. The exception CONSTRAINT ERROR is
raised if X equals P'BASE'FIRST. (See
3.5.5.)

C-15

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-9

P'RANGE For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the first index range of P; that is,
the range P'FIRST .. P'LAST. (See 3.6.2.)

P'RANGE(N) For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the N-th index range of P, that is,
the range P'FIRST(N) .. P'LAST(N). (See
3.6.2.)

P'SAFE EMAX For a prefix P that denotes a floating point
type or subtype:

Yields the largest exponent value in the
binary canonical form of safe numbers of the
base type of P. (This attribute yields the
number E of section 3.5.7.) The value of this
attribute is of the type universal_integer.
(See 3.5.8.)

P'SAFE LARGE For a prefix P that denotes a real type or
subtype:

Yields the largest positive safe number of
the base type of P. The value of this
attribute is of the type universal-real.
(See 3.5.8 and 3.5.10.)

P'SAFESMALL For a prefix P that denotes a real type or
subtype:

Yields the smallest positive (nonzero) safe
number of the base type of P. The value of
this attribute is of the type universal real.
(See 3.5.8 and 3.5.10.)

P'SIZE For a prefix P that denotes an object:

Yields the number of bits allocated to hold
the object. The value of this attribute is
of the type universalinteger. (See 13.7.2.)

P'SIZE For a prefix P that denotes any type or
subtype:

C-16

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-1O

Yields the minimum number of bits that is
needed by the implementation to hold any
possible object of the type or subtype P.
The value of this attribute is of the type
universal integer. (See 13.7.2.)

P'SMALL For a prefix P that denotes a real subtype:

Yields the smallest positive (nonzero) model
number of the subtype P. The value of this
attribute is of the type universal-real.
(See 3.5.8 and 3.5.10.)

P'STORAGESIZE For a prefix P that denotes an access type or
subtype:

Yields the total number of storage units
reserved for the collection associated with
the base type of P. The value of this
attribute is of the type universalinteger.
(See 13.7.2.)

P'STORAGESIZE For a prefix P that denotes a task type or a
task object:

Yields the number of storage units reserved

for each activation of a task of the type P
or for the activation of the task object P.
The value of this attribute is of the type
universalinteger. (See 13.7.2.)

Yields the number of storage units (words)
reserved for the data stack of a task of type
P or of the task object P.

P'SUCC For a prefix P that denotes a discrete type
or subtype:

This attribute is a function with a single
parameter. The actual parameter X must be a
value of the base type of P. The result type

is the base type of P. The result is the
value whose position number is one greater
than that of X. The exception
CONSTRAINT ERROR is raised if X equals
P'BASE'LAST. (See 3.5.5.)

C-17

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-11

P'TERMINATED For a prefix P that is appropriate for a task
type:

Yields the value TRUE if the task P is
terminated; yields the value FALSE otherwise.
The value of this attribute is of the
predefined type BOOLEAN. (See 9.9.)

P'VAL For a prefix P that denotes a discrete type
or subtype:

This attribute is a special function with a
single parameter X which can be of any
integer type. The result type is the base
type of P. The result is the value whose
position number is the universalinteger
value corresponding to X. The exception
CONSTRAINT ERROR is raised if the
universal integer value corresponding to X is
not in the range P'POS(P'BASE'FIRST)
PPOS(P'BASE'LAST). (See 3.5.5.)

P'VALUE For a prefix P that denotes a discrete type
or subtype:

This attribute is a function with a single
parameter. The actual parameter X must be a
value of the predefined type STRING. The
result type is the base type of P. Any
leading and any trailing spaces of the
sequence of characters that corresponds to X
are ignored.

For an enumeration type, if the sequence of
characters has the syntax of an enumeration
literal and if this literal exists for the
base type of P, the result is the
corresponding enumeration value. For an
integer type, if the sequence of characters
has the syntax of an integer literal, with an
optional single leading character that is a
plus or minus sign, and if there is a
corresponding value in the base type of P,
the result is this value. In any other case,
the exception CONSTRAINT ERROR is raised.
(See 3.5.5.)

C-18

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ATTRIBUTES Page A-12

P'WIDTH For a prefix P that denotes a discrete
subtype:

Yields the maximum image length over all
values of the subtype P (the image is the
sequence of characters returned by the
attribute IMAGE). The value of this
attribute is of the type universalinteger.
(See 3.5.5.)

C-19

APPENDIX F OF THE Ada STANDARD

APPENDIX B

PREDEFINED LANGUAGE PRAGMAS

This annex defines the pragmas LIST, PAGE, and OPTIMIZE, and
summarizes the definitions given elsewhere of the remaining
language-defined pragmas.

It also summarizes the implementation-dependent pragmas EXPORT,
IMPORT, STACK SIZE, and UNIVERSALDATA which are described in
more detail iin Appendix F.

Pragma Meaning

CONTROLLED Takes the simple name of an access type as the
single argument. This pragma is only allowed
immediately within the declarative part or package
specification that contains the declaration of the
access type; the declaration must occur before the
pragma. This pragma is not allowed for a derived
type. This pragma specifies that automatic
storage reclamation must not be performed for
objects designated by values of the access type,
except upon leaving the innermost block statement,
subprogram body, or task body that encloses the
access type declaration, or after leaving the main
program (see 4.8).

This pragma has no effect, as no automatic storage
reclamation is performed before the point allowed
by the pragma.

ELABORATE Takes one or more simple names denoting library
units as arguments. This pragma is only allowed
immediately after the context clause of a
compilation unit (before the subsequent library
unit or secondary unit). Each argument must be
the simple name of a library unit mentioned by the
context clause. This pragma specifies that the
corresponding library unit body must be elaborated
before the given compilation unit. If the given
compilation unit is a subunit, the library unit
body must be elaborated before the body of the
ancestor library unit of the subunit (see 10.5).

C-20

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE PRAGMAS Page B-2

This pragma can help the compiler generate more
efficient code for calls to subprograms in the
unit, as it makes an elaboration check
unnecessary.

EXPORT Takes an identifier denoting a subprogram or an
object, and optionally takes a string literal (the
name of a CAPS object module entry/external name)
as arguments. This pragma is only allowed at the
place of a declarative item and must apply to a
subprogram or object declared by an earlier
declarative item in the same declarative part.

The pragma must occur in the same compilation unit
as the subprogram body to export a subprogram, and
in the same compilation unit as the declaration to
export an object. A subprogram to be exported may
not be nested within anything but a library unit
package specification or body. An object to be
exported must be a static object; the pragma is
not allowed for an access or a task object.

This pragma makes a subprogram or object visible
to non-Ada parts of the system. See Appendix F
for more detail.

IMPORT Takes an internal name denoting a subprogram and
optionally takes a string literal (the name of a
CAPS object module entry/external name) as
arguments. This pragma is only allowed at the
place of a declarative item and must apply to a
subprogram declared by an earlier declaration item
in the same declarative part or package
specification.

This pragma allows a subprogram written in another
language to be called from an Ada program. See
Appendix F for more detail.

INLINE Takes one or more names as arguments; each name is
either the name of a subprogram or the name of a
generic subprogram. This pragma is only allowed
at the place of a declarative item in a
declarative part or package specification, or
after a library unit in a compilation, but before
any subsequent compilation unit. This pragma
specifies that the subprogram bodies should be
expanded inline at each call whenever possible; in
the case of a generic subprogram, the pragma
applies to calls of its instantiations (see
6.3.2).

C-21

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE PRAGMAS Page B-3

INTERFACE Takes a language name and a subprogram name as
arguments. This pragma is allowed at the place of
a declarative item, and must apply in this case to
a subprogram declared by an earlier declarative
item of the same declarative part or package
specification. This pragma is also allowed for a
library unit; in this case the pragma must appear
after the subprogram declaration, and before any
subsequent compilation unit. This pragma
specifies the other language (and thereby the
calling conventions) and informs the compiler that
an object module will be supplied for the
corresponding subprogram (see 13.9).

The only language name allowed is ASSEMBLY. The
called procedure or function must conform to the
compiler conventions in terms of parameter
passage, etc. See pragma IMPORT above and in
Appendix F for a related capability.

LIST Takes one of the identifiers ON or OFF as the
single argument. This pragma is allowed anywhere
a pragma is allowed. It specifies that listing of
the compilation is to be continued or suspended
until a LIST pragma with the opposite argument is
given w-!ithin the same compilation. The prrgma
itself is always listed if the compiler is
producing a listing.

MEMORYSIZE Takes a numeric literal as the single argument.
This pragma is only allowed at the start of a
compilation, before the first compilation unit (if
any) of the compilation. The effect of this
pragma is to use the value of the specified
numeric literal for the definition of the named
number MEMORYSIZE (see 13.7).

This pragma has no effect.

OPTIMIZE Takes one of the identifiers TIME or SPACE as the
single argument. This pragma is only allowed
within a declarative part and it applies to the
block or body enclosing the declarative part. It
specifies whether time or space is the primary
optimization criterion.

This pragma has no effect.

PACK Takes the simple name of a record or array type as
the single argument. The allowed positions for
this pragma, and the restrictions on the named

C-22

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE PRAGMAS Page B-4

type, are governed by the same rules as for a
representation clause. The pragma specifies that
storage minimization should be the main criterion
when selecting the representation of the given
type (see 13.1).

When Pragma PACK is applied to an array type, and
the components are of a discrete type of 8 bits or
smaller (e.g., a subtype of INTEGER or an enumeration
type), the compiler will pack multiple elements
per 16-bit word. The component size in bits is
rounded up to a power of 2, i.e., 1, 2, 4, or 8.

When applied to a record type, the compiler will
minimize the gaps between discrete components when
possible. The compiler will NOT re-order the
components to achieve denser packing, and will NOT
allocate a component to cross a word boundary
(except multi-word components, which always begin
and end on a word boundary). If more explicit
control over the placement of components is
required, a record component representation clause
can be used instead.

PAGE This pragma has no argument, and is allowed
anywhere a pragma is allowed. It specifies that
the program text which follows the pragma should
start on a new page (if the compiler is currently
producing a listing).

PRIORITY Takes a static expression of the predefined
integer subtype PRIORITY as the single argument.
This pragma is only allowed within the specification
of a task unit or immediately within the outermost
declarative part of a main program. It specifies
the priority of the task (or tasks of the task type)
or the priority of the main program (see 9.8).

SHARED Takes the simple name of a variable as the single
argument. This pragma is allowed only for a
variable declared by an object declaration and whose
type is a scalar or access type; the variable
declaration and the pragma must both occur (in this
order) immediately within the same declarative part
or package specification. This pragma specifies
that every read or update of the variable is a
synchronization point for that variable. An
implementation must restrict the objects for which
this pragma is allowed to objects for which each
of direct reading and direct updating is
implemented as an indivisible operation (see 9.11).

C-23

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE PRAGMAS Page B-5

STACKSIZE Takes a task type name and a static expression
of some integer type. This pragma is allowed
anywhere that a task storage specification is
allowed. The effect of this pragma is to use
the value of the expression as the number of
storage units (words) to be allocated to the
process stack of tasks of the associated task
type. (See the 'STORAGE SIZE length
representation clause mentioned in Appendix F for
a complementary capability.)

STORAGE UNIT Takes a numeric literal as the single argument.
This pragma is only allowed at the start of a
compilation, before the first compilation unit (if
any) of the compilation. The effect of this
pragma is to use the value of the specified
numeric literal for the definition of the named
number STORAGEUNIT (see 13.7).

This pragma has no effect.

SUPPRESS Takes as arguments the identifier of a check and,
optionally, also the name of an object, a type
or subtype, a subprogram, a task unit, or a
generic unit. This pragma is only allowed either
immediately within a declarative part or
immediately within a package specification. In
the latter case, the only allowed form is with a
name that denotes an entity (or several overloaded
subprograms) declared immediately within the
package specification. The permission to omit the
given check extends from the place of the pragma
to the end of the declarative region associated
with the innermost enclosing block statement or
program unit. For a pragma given in a package
specification, the permission extends to the end
of the scope of the named entity.

If the pragma includes a name, the permission to
omit the given check is further restricted: it is
given only for operations on the named object or
on all objects of the base type of a named type or
subtype; for calls of a named subprogram; for
activations of tasks of the named task type; or
for instantiations of the given generic unit (see
11.7).

The implementation only supports the following
form:

pragma SUPPRESS (check-name);

C-24

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE PRAGMAS Page B-6

i.e., it is not possible to restrict the omission
of a certain check to a specified type or object.

One of the following check-names can be specified:
ACCESS CHECK, DISCRIMINANT CHECK, INDEX CHECK,
LENGTH CHECK, RANGE CHECK, DIVISION CHECK,
OVERFLOW CHECK, ELABORATIONCHECK, or
STORAGECHECK.

SYSTEM NAME Takes an enumeration literal as the single
argument. This pragma is only allowed at the
start of a compilation, before the first
compilation unit (if any) of the compilation. The
effect of this pragma is to use the enumeration
literal with the specified identifier for the
definition of the constant SYSTEM NAME. This
pragma is only allowed if the specified identifier
corresponds to one of the literals of the type
NAME declared in the package SYSTEM (see F.3).

This pragma has no effect.

UNIVERSAL DATA This pragma has no argument and is only allowed
immediately within the declarative part of a
library package specification or body.

This pragma allows the static data of a library
package specification or body to be located
anywhere in memory. Otherwise, all static data
must be lccated in a single 64K data segment,
together with all user task process stacks.
Specifications and bodies of the same unit are
treated independently, and the pragma applies only
to the compilation unit it appears in. See
Appendix F, or Reference 6, for more detail.

C-25

APPENDIX F OF THE Ada STANDARD

APPENDIX C

PREDEFINED LANGUAGE ENVIRONMENT

This annex outlines the specification of the package STANDARD
containing all predefined identifiers in the language. The
corresponding package body is implementation-defined and is not
shown.

The operators that are predefined for the types declared in the
package STANDARD are given in comments since they are implicitly
declared. Italics are used for pseudo-names of anonymous types
(such as universal real) and for undefined information (such as
implementation defined and any fixedpoint_type).

[Only the implementation-specific portions of STANDARD are shown

below:

package STANDARD is

type INTEGER is range -32_768 .. 32 767;
type LONG INTEGER is range -2_147_493 648 .. 2_147_483_647;

-- The ranges for FLOAT and LONG FLOAT are approximate here.

type FLOAT is digits 6 range -1.70141E38 .. 1.70141E38;
type LONGFLOAT is digits 9 range -1.70141183E38

1.70141183E38;

type DURATION IS DELTA 0.0001 range -131 072.0 .. 131 071.0;

end STANDARD;

C-26

APPENDIX F OF THE Ada STANDARD

PREDEFINED LANGUAGE ENVIRONMENT Page C-2

The language definition also defines the following library units:

- The package CALENDAR (see 9.6)

- The package SYSTEM (see F.3)
- The package MACHINECODE (see F.9.3)

- The generic procedure UNCHECKED DEALLOCATION (see 13.10.1)
- The generic function UNCHECKEDCONVERSION (see 13.10.2)

- The generic package SEOUENTIAL 10 (see 14.2.3)
- The generic package DIRECT_10 (see 14.2.5)
- The package TEXT 10 (see 14.3.10)
- The package IO EXCEPTIONS (see 14.5)

The package LOW LEVEL_10 is not provided.

C-27

APPENDIX F OF THE Ada STANDARD

APPENDIX D

GLOSSARY

The following terms are an addition to those found in the Ada
Reference Manual (ANSI/MIL-STD-1815A, 22-Jan-83).

AAMP. Advanced Architecture Microprocessor. One of the CAPS
family of stack architecture processors, also known as
CAPS-9. It is a high-performance, general-purpose,
16-bit processor with floating point arithmetic on a
single chip. It is available in two versions, indicated
as AAMP1 and AAMP2 in this document.

CAPS. Collins Adaptive Processing System. The CAPS series of
microprocessors uses a stack architecture that supports
the use of high order programming languages for embedded
computer systems.

C-28

APPENDIX F OF THE Ada STANDARD

APPENDIX E

SYNTAX SUMMARY

See Ada Reference Manual (ANSI/MIL-STD-1815A, 22-Jan-83).

C-29

APPENDIX F OF THE Ada STANDARD

APPENDIX F

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent
characteristics of the DDC-Based Ada/CAPS Compiler.

F.1 Implementation-Dependent Pragmas.

F.1.1 Pragma EXPORT.

Pragma EXPORT takes an identifier denoting a subprogram or an
object, and optionally takes a string literal (the name of a CAPS
object allowed at the place of a declarative item and must apply
to a subprogram or object declared by an earlier declarative item
in the same declarative part or package specification. The pragma
must occur in the same compilation unit as the subprogram body to
export a subprogram, and in the same compilation unit as the
declaration to export an object. The subprogram to be exported
may not be nested within anything but a library unit package
specification or body. The pragma is not allowed for an access
or a task object. The object exported must be a static object.
Generally, objects declared in a package specification or body
are static; objects declared local to a subprogram are not.

This pragma makes a subprogram or object visible to non-Ada parts
of the system.

pragma EXPORT(internalname [, externalname]);

internal-name identifier

external-name ::= string_literal

If external name is not specified, the internal name is used as
the external name. If a string literal is given, it is used.
External name must be an identifier that is acceptable to the
CAPS linker, although it does not have to be a valid Ada
identifier.

C-30

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-2

Exporting Subprograms:

In this case, pragma EXPORT specifies that the body of the specified
subprogram associated with an Ada subprogram specification may be
called from another CAPS language (e.g., JOVIAL or assembly).

Exported subprograms must be uniquely identified by their
internal names. An exported subprogram must be a library unit or
be declared in the outermost declarative part of a library
package (specification or body). Pragma EXPORT is allowed for
a subprogram which is a compilation unit only after the
subprogram body in the compilation unit. It is allowed for a
subprogram in a package body after the body of the subprogram.
Pragma EXPORT is not allowed in a package specification.

Example:

procedure BUILTINTEST (MODE: in INTEGER) is

end BUILT IN TEST;
pragma EXPORT (BUILTINTEST);

Exporting Objects:

In this case, Pragma EXPORT specifies that an Ada object is to
be accessible by an external routine in another CAPS language.

Exported objects must be uniquely identified by their internal
names. An exported object must be a variable declared in the
outermost declarative part of a library package (specification or
body).

The object must be allocated to static storage. To guarantee
this, the subtype indication for the object must denote one of
the following:

o A scalar type or subtype.

o An array subtype with static index constraints whose
component size is static.

o A simple record type or subtype.

Example:

SYSTEM STATUS : INTEGER;
pragma EXPORT (SYSTEM STATUS, "SYS$STS");
-- SYS$STS is the external name corresponding to the
-- JOVIAL/AAMP identifier SYS'STS.

C-31

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-3

F.1.2 Pragma IMPORT.

Pragma IMPORT takes an internal name denoting a subprogram, and,
optionally, takes an external name (the name of a CAPS object
module entry/external name) as arguments. This pragma is only
allowed at the place of a declarative item and must apply to a
subprogram declared by an earlier declaration item in the same
declarative part or package specification.

This pragma allows the import of a procedure or function from a
non-Ada environment.

pragma IMPORT (internalname [, externalname]);

internal-name ::= identifier I stringliteral

externalname identifier I stringliteral

Internal name may only be a stringliteral when designating an
operator-function for import. If external name is not specified,
the internal name is used as the external name. If an identifier
or string lijeral is given, it is used. External-name must name
an identifier that is acceptable to the CAPS target linker,
though it does not have to be a valid Ada identifier.

Importing Subprograms:

In this case, pragma IMPORT specifies that the body of the
specified subprogram associated with an Ada subprogram
specification is to be provided by another CAPS language. Pragma
INTERFACE must also be given for the internal name earlier for
the same declarative part or package specification. The use
of pragma INTERFACE implies that a corresponding subprogram
body is not given.

Imported subprograms must be uniquely identified by their
internal names. An imported subprogram must be a library unit or
be declared in the outermost declarative part of a library
package (specification or body). Pragma IMPORT is allowed
only if either the body does not have a corresponding
specification, or the specification and body occur in the same
declarative part.

If a subprogram has been declared as a compilation unit, pragma
IMPORT is only allowed after the subprogram declaration and
before any subsequent compilation unit. This pragma may not be
used for a subprogram that is declared by a generic instantiation
of a predefined subprogram.

C-32

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-4

Example:

function SIN (X: in FLOAT) return FLOAT;
pragma INTERFACE (ASSEMBLY, SIN);
pragma IMPORT (SIN, "SIN$$");

Importing Objects:

In this case, pragma IMPORT specifies that a non-Ada object
is to be made available to an Ada environment.

Objects must be uniquely identified by their internal names.
Because it is not created by an Ada elaboration, an imported
object cannot have an initial value. This has the following
implications:

o It cannot be a constant (explicit initial value).

o It cannot be an access type (implicit initial value of
null).

o It cannot be a record type that has discriminants (which
are always initialized) or components with default
initial values.

o It cannot be an object of a task type.

Example:

IO FLAG: BOOLEAN;
pragma IMPORT (IOFLAG, "10.1");

F.1.3 Pragma STACKSIZE.

Pragma STACK SIZE has two arguments: a task type name and an
integer expression. This pragma is allowed anywhere that a task
storage specification is allowed. The effect of this pragma is
to use the value of the expression as the number of storage units
(words) to be allocated to the process stack of tasks of the
associated task type.

C-33

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-5

Example:

task type DISPLAYUNIT is

entry UPPER DISPLAY;
entry BOTTOMLINE;

end DISPLAY-UNIT;

for DISPLAY UNIT'STORAGE SIZE use 20 000; -- Data Stack.
pragma STACKSIZE (DISPLAY_UNIT, 1006); -- Process Stack.

F.1.4 Pragma UNIVERSALDATA

Pragma UNIVERSAL DATA allows the static data of a library package
specification or body to be located anywhere in memory.
Otherwise, all static data must be located in a single 64K data
segment, together with all user task process stacks.

Use of this pragma causes less efficient code (in both space and
speed) to be generated by the compiler for most references to
data declared in the package to which it applies. Specifications
and bodies of the same unit are treated independently, and the
pragma applies only to the compilation unit in which it appears.

Pragma UNIVERSAL DATA must appear in the declarative part of a
package specification or body, and must appear before any other
object declaration.

The functionality of this pragma is also available as the
compiler command option /PRAGMA = UNIVERSAL DATA.

Example:

package DATABASE is
pragma UNIVERSALDATA;

-- object declarations

end DATABASE;

C-34

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-6

F.2 Implementation-Dependent Attributes.

No implementation-dependent attributes are supported.

F.3 Specification Of The Package SYSTEM.

package SYSTEM is

type ADDRESS is range 0..16#FF FFFF# -- 24 bit address
subtype PRIORITY is INTEGER range 1 .. 254;
type NAME is (AAMP1, AAMP2);
SYSTEM NAME: constant NAME :f AAMPx;
STORAGE UNIT: constant := 16;
MEMORY SIZE: constant := 16 384 * 1024;
MIN INT: constant := -2-147 483 647-1;
MAX-INT: constant := 2 _47 483 _47;
MAXDIGITS: constant := 9;
MAX-MANTISSA: constant := 31;
FINE DELTA: constant 2#1.0#E-31;
TICK: constant 0.000_1;

type INTERFACELANGUAGE is (ASSEMBLY);

EXCEPTO : exception; -- Raised by EXCEPTO instruction
-- (see run-time package MACHINEEXCEPTIONS).

end SYSTEM;

F.4 Representation Clauses.

The representation clauses that are accepted are described below.
Note that representation clauses can now be given on derived
types, and that the "Change of Representation" feature described
in RM 13.6 is supported.

F.4.1 Length Clauses.

Four kinds of length clauses are accepted: size specification,
collection size specification, task STORAGE SIZE specification,
and SMALL specification.

C-35

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-7

F.4.1.1 Size Specification.

The size clause for a type T is accepted in the following cases.

- If T is a discrete type (integer or enumeration), then
the specified size must be greater than or equal to the
number of bits required to represent the type, and no
larger than 32 bits.

Note that when the number of bits needed to hold any
value of the type is calculated, the range is extended
to include zero if necessary. For example, the range
6 .. 7 cannot be represented in one bit, but requires
three bits. A range with a negative lower bound is
allowed.

- If T is a fixed-point type, then the specified size must
be greater than or equal to the smallest number of bits
needed to hold any value of the type, and no larger than
32 bits. Note that the Reference Manual permits a
representation where the lower and upper bounds are not
included. Thus, the type:

type FIX is delta 1.0 range -1.0 .. 7.0;

is representable in 3 bits. As for discrete types, the
number of bits required for a fixed-point type is
calculated using the range extended to include 0.0.

- If T is a floating-point type, an access type, or a task
type, the specified size must be equal to the number of
bits used to represent a value of the type. A
floating-point type requires 32 or 48 bits. An access
or task type requires 32 bits.

If T is a record type, then the specified size must be
greater than or equal to the number of bits per storage
unit (16) times the number of storage units required for
an object of the type. In other words, a record cannot
occupy a partial storage unit.

- If T is an array type, a size clause is accepted only if
the size of the array is static, i.e., known at compile
time. The specified size must be greater than or equal
to the number of bits required to represent a value of
the type.

C-36

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-8

F.4.1.2 Collection Size Specification.

Using the STORAGE SIZE clause on an access type will cause the
specified number of storage units to be allocated from the heap
and set aside for future allocations for the access type. The
maximum size of a collection is limited only by the size of the
heap, which, in turn, is limited by the machine's 24-bit address
space.

F.4.1.3 Task STORAGESIZE Specification.

When the STORAGE SIZE clause is given for a task type, the data
stack for each olject of the task type will be the specified
size. The default storage size for a task, and for the main
program and the primal task, are specified in the linker command
(.LEC) file.

F.4.1.4 SMALL Specification.

Any value equal to or smaller than the specified delta can be
given as the SMALL specification for a fixed point type, as long
as the value is either an integer (e.g. 1.0, 1000.0), or the
reciprocal of an integer (e.g. 0.5, 0.2, 0.01, 1.0/180.0,
2.0**(-15)). Other fractions are not allowed, e.g. 2.0/3.0,
0.375.

F.4.2 Enumeration Representation Clauses.

An enumeration representation clause may specify representation
values in the range INTEGER'first .. INTEGER'last. An
enumeration representation clause may be combined with a length
clause. If a representation clause has been given for an
enumeration type, the representational values are considered when
the number of bits needed to hold any value of the type is
computed. Thus, the type:

type COLOR is (RED, WHITE, BLUE);
for COLOR use (1, 4, 7);

requires three bits when the representation clause is given, but
only two bits when it is omitted.

C-37

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-9

F.4.3 Record Representation Clauses.

When component clauses are applied to a record type, the
following restrictions are imposed.

- All values of the component type must be representable
within the specified number of bits in the component
clause.

- If the component type is a discrete type or a
fixed-point type, then the component is packed into the
specified number of bits. The component is allowed to
span a word boundary (although operations will be less
efficient), but a component larger than 16 bits is not
allowed to cross TWO word boundaries.

- If the component type is a PACKED array type with a
discrete or fixed-point element type, then the component
is packed into the specified number of bits. However,
the first component must begin at an element-size
boundary, to avoid the possibility of any component
crossing a word boundary.

Pragma PACK must be specified for an array type if a
record component of that type has a component clause
where the given size in bits requires a packed
representation.

- If the component type is not one of the types mentioned
above, it must begin at a word boundary, and the default
size for the type must be specified as the bit width.

Two components are not allowed to overlap (unless they are in
different variants in a discriminant record), and the compiler is
required to report an error if such a representation is given.

If the record type contains components which are not mentioned in
a component clause, they are allocated consecutively beginning at
the next storage unit following the component with the highest
specified bit offset. If pragma PACK is applied to the record
type, these components will be packed as described under Pragma
PACK in Appendix B, otherwise each will begin at a storage unit
boundary.

If there are gaps between components, due either to a
representation clause or pragma PACK, all objects of the record
type will be block-filled with zero by the compiler to allow
efficient record comparison.

C-38

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-1O

F.4.4 Alignment Clauses.

Only a clause specifying record alignment at a storage unit is
accepted (for REC TYPE use record at mod 1;), as no larger
alignment boundaries are meaningful in the AAMP architecture.

F.4.5 Implementation-Generated Names.

Implementation-generated names for implementation-dependent
components are not supported, as no "invisible" components of a
record type are ever generated by the compiler.

F.5 Address Clause Expressions.

Address clauses for objects are accepted. The type ADDRESS in
package SYSTEM is simply an integer type; therefore, the following
kinds of address clauses are allowed:

for X use at 16#12 3456#;
for Y use at X'address + 3;

The address of a data object is interpreted as the 24-bit address
of a storage unit (16-bit word).

Address clauses for subprograms, tasks, and packages are not
supported.

F.6 UNCHERCKED CONVERSION Restrictions.

UNCHECKED CONVERSION is only allowed between objects of the same
size.

F.7 I/O Package Implementation-Dependent Characteristics.

The target environment does not support a file system; therefore,
I/O procedure or function calls involving files (except
STANDARDOUTPUT, etc. as noted below) will raise an exception.

C-39

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-I1

F.7.1 Package SEQUENTIALIO.

All procedures and functions raise STATUS ERROR, except for
CREATE and OPEN which raise USEERROR, and ISOPEN which always
returns FALSE.

F.7.2 Package DIRECTIO.

All procedures and functions raise STATUS ERROR, except for
CREATE and OPEN which raise USEERROR, and IS-OPEN which always
returns FALSE.

F.7.3 Package TEXT_IO.

No disk file system is supported. Therefore, procedures CREATE
and OPEN always raise USEERROR.

The output routines with no file parameter, which operate on the
current default output file, are implemented and produce their
output via package LOW 10. Since no external files can be
opened, the output routines with a file parameter raise
STATUS ERROR unless the actual parameter is one of the functions
STANDARDOUTPUT or CURRENTOUTPUT.

Similarly, the input routines with a file parameter raise
STATUS ERROR unless the parameter is STANDARDINPUT or
CURRENT INPUT.

Function IS OPEN returns TRUE if the parameter is one of
STANDARD INPUT, STANDARD OUTPUT, CURRENT INPUT, or
CURRENT_OUTPUT; otherwise FALSE is returned.

F.7.4 Package LOWLEVELIO.

Package LOWLEVEL IO is not provided.

C-40

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-12

F.7.5 Package LOWI0.

Package LOW 10 is used by TEXT 10 for character-level IO
operations. The implementation provided with the compiler system
sends output messages to the Symbolic Debugger to be printed on
the screen and optionally sent to a .LOG file. The Debugger does
not implement input.

The body of LOW 10 can be replaced by the user, for example, to
communicate with a terminal via an RS-232 port.

F.8 Other Implementation-Dependent Features.

F.8.1 Predefined Types.

This section describes the implementation-dependent predefined
types declared in the predefined package STANDARD, and the
relevant attributes of these types.

F.8.1.1 Integer Types.

Two predefined integer types are implemented: INTEGER and
LONGINTEGER. They have the following attributes:

INTEGER'FIRST = -32768
INTEGER'LAST = 32767
INTEGER'SIZE = 16

LONG INTEGER'FIRST = -2 147 483 648
LONG INTEGER'LAST = 2-147-483-647
LONG-INTEGER'SIZE = 35 - -

F.8.1.2 Floating Point Types.

Two predefined floating point types are implemented: FLOAT and
LONGFLOAT. They have the following attributes:

FLOAT'DIGITS = 6
FLOAT'EMAX = 84
FLOAT'EPSILON = 16#0.1000 000#E-04

= 9.53674E-07
FLOAT'FIRST = -16#0.7FFF FF8#E+32

= -1.70141E+78
FLOAT'LARGE = 16#0.FFFF F80#E+21

-= 1.93428E+75

C-41

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-13

FLOAT'LAST = 16#0.7FFF FF8#E+32
-= 1.70141E+"58

FLOAT'MACHINEEMAX = 127
FLOAT'MACHINE EMIN = -127
FLOAT'MACHINE-MANTISSA = 24
FLOAT'MACHINE-OVERFLOWS = TRUE
FLOAT'MACHINE-RADIX = 2
FLOAT'MACHINE-ROUNDS = TRUE
FLOAT'MANTISSA = 21
FLOAT'SAFE EMAX = 127
FLOAT'SAFE_LARGE = 16#0.7FFF FC#E+32

-= 1.70141E+'58
FLOAT'SAFE SMALL = 16#0.1000_OOO#E-31

-=2.93874E-59

FLOAT'SIZE =32

FLOAT'SMALL =16#0.8000 000#E-21
-=2.58494E-76

LONG FLOAT'DIGITS =9

LONG FLOAT'EMAX =124

LONG-FLOAT'EPSILON =16#0.4000 0000 000#E-7
=9.31322573E-10-

LONG FLOAT'FIRST =-16#O.7FFF FFFF -FFB*E+32
--- 1.7014118'SE+38

LONGFLOAT'LARGE =16#0.FFFF FFFE 000#E+31
-=2. 1267647§E+37f

LONGFLOAT'LAST =16#O.7FFF FFFF -FF8#E+32
-=1. 70141187E+38

LONG FLOAT'MACHINEEMAX = 127
LONG FLOAT'MACHINEEMIN = -127
LONG FLOAT'MACHINEMANTISSA = 40
LONG FLOAT'MACHINEOVERFLOWS - TRUE
LONG FLOAT'MACHINERADIX = 2
LONG FLOAT' MACHINE ROUNDS = TRUE
LONG FLOAT'MANTISSA 0 31
LONG FLOAT'SAFE EMAX = 127
LONG-FLOAT' SAfFLARGE = 16*0. 7FFF FFFF#E+32

-=1.7014118'5E+38

LONGFLOAT' SAFESMALL =16#0. 1000 0000 OO000E-31
2.9387358'gE-39

LONG FLOAT'SIZE =48

LONG-FLOAT'SMALL =16#0.8000 0000 000#E-31
2.3509887'GE-38-

C-42

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-14

F.8.1.3 Fixed Point Types.

To implement fixed point numbers, Ada/CAPS uses two sets of
anonymous, predefined, fixed point types, here named FIXED and
LONG FIXED. These names are not actually defined in package
STANDARD, but are used here only for reference.

These types are of the following form:

type FIXEDTYPE is delta SMALL range -M*SMALL .. (M-1)*SMALL;

where SMALL = 2**n for -128 <= n <= 127,
and M = 2**15 for FIXED, or M = 2**31 for LONGFIXED.

For each of FIXED and LONG FIXED, there exists a virtual
predefined type for each possible value of SMALL (see RM 3.5.9).
SMALL may be any power of 2 which is representable by a
LONG FLOAT value. FIXED types are represented by 16 bits, while
32 b~ts are used for LONG FIXED types.

A user-defined fixed point type is represented as that predefined
FIXED or LONG FIXED type which has the largest value of SMALL not
greater than the user-specified DELTA, and which has the smallest
range that includes the user-specified range.

As the value of SMALL increases, the range increases. In other
words, the greater the allowable error (the value of SMALL), the
larger the allowable range.

Example 1:

For a 16-bit FIXED type, to get the smallest amount of error
possible requires SMALL - 2**(-128), but the range is constrained
to:

-(2**15) * 2**(-128) .. (2**15 - 1) * 2**(-128), which is

-(2**(-113)) .. 2**(-113) - 2**(-128).

Example 2:

For a FIXED type, to get the largest range possible requires
SMALL = 2**127, i.e., the error may be as large as 2**127. The
range is then:

-(2**15) * (2**127) .. (2**15 - 1) * (2**127), which is

-(2**142) .. (2**142) - (2**127).

C-43

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-15

Example 3:

Two particularly useful fixed-point types range from -1.0 to
1.0 - delta. The compiler is able to take advantage of special
AAMP instructions to generate more efficient code for
multiplication and division than for fixed-point types in
general.

type FRACT is delta 2.0**(-15) range -1.0 .. 1.0 - 2.0,*(-15);

type LONGFRACT is delta 2.0**(-31) range -1.0 .. 1.0 - 2.0,*(-31);

The package FRACTIONAL ARITHMETIC, available in the directory
ADACS:[APPLICATION LIBRARY1, defines these types along with
useful constants and operations. NOTE 06 in ADACS:[DOCUMENTS]
describes how to use the package.

For any FIXED or LONGFIXED type T:
T'MACHINE OVERFLOWS = TRUE
T'MACHINE-ROUNDS = FALSE

F.8.1.4 The Type DURATION.

The predefined fixed point type DURATION has the following
attributes:

DURATION'AFT = 4
DURATION'DELTA = 0.0001
DURATION'FIRST . -131 072.0000
DURATION'FORE = 7 -
DURATION'LARGE = 131 071.999938965

= 2#1:O#E+17 - 2#1.OE-14
DURATION'LAST = DURATION'LARGE
DURATION'IMANTISSA = 31
DURATION'SAFE LARGE = DURATION'LARGE
DURATION'SAFE-SMALL = DURATION'SMALL
DURATION'SIZE = 32
DURATION'SMALL = 6.103515625E-5

= 2#1.0#E-14

F.8.2 Uninitialized Variables.

There is no check on the use of uninitialized variables. The
effect of a program that uses the value of such a variable is
undefined.

C-44

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-16

F.8.3 Package MACHINE CODE.

Machine code insertions (see RM 13.8) are supported by the
Ada/CAPS compiler via the use of the predefined package
MACHINECODE.

package MACHINECODE is

type CODE is record
INSTR: STRING (1 .. 71);

end record;

end MACHINECODE;

Machine code insertions may be used only in a procedure body. No
local declarations are allowed, except for USE clauses. The body
must contain nothing but code statements, as in the following
example:

with MACHINECODE; -- Must apply to the compilation unit
-- containing DOUBLE.

procedure DOUBLE (VALUE: in INTEGER; DOUBLED VALUE: out INTEGER) is
use MACHINECODE;

begin

CODE' (INSTR => " REFSL 1 ;"); -- Get VALUE.
CODE' (INSTR => " DUP ;"); -- Make a copy of VALUE.
CODE' (INSTR => " ADD ;"); -- Add copies together.
CODE' (INSTR -> " ASNSL 0 ;"); -- Store result in

-- DOUBLED VALUE.
end DOUBLE;

The string literal assigned to INSTR may be any CAPS assembly
language instruction or macro. The string is written directly to
the assembly output file.

The file AAMPx.MAC (where x is 1 or 2), located in the TOOLS
subdirectory of the compiler system, defines the instructions and
macros which are available for use. The macros may change with
different compiler system releases and should be used cautiously,
as there is no guarantee that they will perform the same in
future releases. The CAPS Macro Assembler User's Guide contains
information on how to call macros and write assembly
instructions.

Several application notes are available in ADACS:[DOCUMENTS]
which explain in greater detail how to use machine-code
insertions, including clever ways to implement efficient built-in
functions.

C-45

APPENDIX F OF THE Ada STANDARD

IMPLEMENTATION-DEPENDENT CHARACTERISTICS Page F-17

F.8.4 Compiler Limitations.

The following limitations apply to Ada programs in the DDC-Based
Ada/CAPS Compiler System:

o A compilation unit may not contain more than 64K bytes
(32K words) of code.

o A compilation unit may not contain more than 32K words
of volatile data.

o A compilation unit may not contain more than 32K words
of constant data.

o The local environment of a subprogram is limited to 32K
words.

o It follows that any single object may be no larger than

32K words.

o Arrays are limited to 32K elements, even if packed.

o No more than 500 subprograms may be defined in a single
compilation unit, including any implicitly created by
the compiler.

o The maximum nesting level for blocks is 100.

C-46

