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Abstract

The applicability and domains of validity for the Born and the Rytov
methods in scattering theory are established, with mathematical rigor, by

comparing successive terms of the Born and the Rytov series calculated for
wave propagation in a homogeneous dielectric half-space and a homogeneous

dielectric slab, for which the permittivities are assumed to have a low contrast

over that of free-space. While the (first-order) Rytov approximation is superior

to the (first-order) Born approximation when it is applied to estimate the

scattered field in the homogeneous dielectric half-space, both approximations

are inapplicable to estimate the scattered fields when the dielectric slab is very

thick.
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1. Introduction

There is much interest in modelling the propagation and scattering of

waves in inhomogeneous media, to solve both direct and inverse scattering

problems. The physical properties of these media can be extracted or predicted

from the measurable quantities such as the scattered fields and intensities which

can be derived from the models. Usually, approximations are sought in order to
make the scattered fields (which can be expressed as the Fredholm integral

equations of the first kind) more tractable for numerical computation. Two
first-order approximations (i.e., the Born and the Rytov approximations) are

most commonly exploited in the Born and the Rytov methods. However, the

application of the Rytov method [1-68] has raised considerable debate over its
relative merit and applicability over the Born method and vice-versa [46]. For a

scatterer of compact support (with d as the size of its largest dimension), the

empirical remark is usually made that the Born approximation is valid only
when the scatterer is small on the scale of the incident wavelength ?. in free-

space and the strength of its scattering function V is weak, i.e., low contrast
with respect to free-space. This can be summarized by requiring that Vk0d «< 1
where ko = 27t/.. On the other hand, the criterion for the Rytov approximation

to be applicable requires that the fluctuations in V be slow on the scale of k but

the strength of V is not necessarily small or low contrast. In other words, this
physical interpretation of the validity of the Rytov approximation is based on
the requirement that the absolute value of the rate of change of the complex
phase of the field is very small compared with k0" -V.

In order to refine and clarify the domains of validity for both methods
and thus establish, more precisely, the situations for which method is preferable ............

over the other, we consider two deterministic scattering cases in this paper. The 7.7,
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first scattering geometry, described in section 2, consists of free space to one

side and a dielectric alf-space of permittvity co(l - V) on the other. We model

the propagation of the field across the interface between the free-space and the

dielectric half-space and, then, make the comparison on the results obtained

from the Born and the Rytov methods. In section 3, we present and compare the

results derived from both methods for the second scattering geometry which

consists of a dielectric slab of finite extent in the propagation direction. Based

on these comparisons, we are able to delineate the appropriate domains of

validity for both methods in section 4 and provide concrete conclusions, which

can be generalized to other scatterers, ir. particular, scatterers of compact

support.

2. One-dimensional Homogeneous Dielectric Half-space

Consider a time-harmonic plane wave ei(koz - ct) with radial frequency

co incident from free-space (region 0 for z < 0) into ti: one-dimensional (l-D)

homogeneous dielectric half-space (region 1 for z > 0) [see Figure 1]. The

wavenumber in free-space is k0 (= co '4L.tOCo ) where Jto and co are the

permeability and the permittivity for free-space, respectively. Assume that the

dielectric half-space has the permeability it and the permittivity CO(1 + V)

where the scattering function V is real and positive.

2.1. Exact Solutions derived from the Boundary Conditions

The close-form solutions for the total fields +o(z) and -'P(z) in free-space

(region 0) and in the dielectric half-space (region 1) can be easily derived from

the boundary conditions:



'Po(O) = T,(0) (1)
and

1 d+o(z) 1 dMj (z) (2)
g-o dz z=0-g I Iz=0.

These boundary conditions can be applied for the acoustic case or the TE case in

the electromagnetic wave theory. For g, = go, the wavenumber in the dielectric

half-space becomes k, = ko41 +V . After matching the boundary conditions,

we obtain
Fo(z) eikoz -ikoz z < 0 (3)'()=e + R~k1)e z<0 (3

and

TI'(z) = T(kj) e ikz z >_ 0. (4)

where the reflection and the transmission coefficients R(kj) and T(k1) are given

below:

R(kj) -k +k (5)

and
2ko

T(kj)-ko + k. (6)

When V << 1, we can expand To(z) and b+'(z) into Taylor series in terms of V,

i.e.,

V<. I oz ( V V 2  5 V 3  ' ikoz(
TO(Z) -e + (_ -+ -- - + ... ze • (7)/

and
v v 2 5V 3

V<(I V 2  5v 3  " i(kI ..)koz
Ti (Z) -- 1 2+ "-- 1--6- +  .-' e

V<<\I 1V I V V 2  V V2 5 57\3

-+ --- + i -T z
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+- z z + ez; z>0. (8)

The above two power series are exactly equal to the Born (or the Neumann'

series which can also be derived in scattering theory under the Born method,

shown belo,.

2.2. The Born Method for the I-D Dielectric Half-space Case

In scattering theory, 'Po(z) and W'(z) satisfy the scalar wave equations

d r-)+ k8 o(z) = 0; z < 0 (9)
dz2

and
d' 1 (z) 

+k7fl(z)=0; z _0. (10)

Since k, is equal to koql _V, Eq. (10) can be rewritten as

d "T, (z)
+ k8 T (z) =- __V (z); z 0. (11)

where the term on the right-hand side of Eq. (11) is the so-called secondary

source due to the permittivity contrast-soV of the dielectric half-space relative

to that of free-space. Using the I-D unbounded scalar Green's function G(z, z')

which is governed by the equation

d2G(z. z')
dz2  k; G(z, z') =5(z- z'), (12)

we c:n express 'lO(z) and T'(z) as an inhomogeneous Fredholm integral

equations cf the first kind, namely,
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% z(z) - k j Idz'G(z, z')V,(z'), z < 0 (13)

and
00

(0) 2
T I,(z) = T,°)(Z) - k; j dz'G(z, z')VhU,(z'); z _! 0 (14)

(0) (0) ikoz

where the unperturbed fields %V° (z) and 'V, (z) are both equal to e . By

substituting W(z) of Eq. (4) into the integrals of Eqs. (13) and (14) and using

the 1-D unbounded scalar Green's function [69],

G(z, z) =- - ikoz - zI (15)

it can be shown that 'Po(z) and TI'(z) derived from integral representations of

Eqs. (13) and (14) are consistent with that of Eqs. (3) and (4) derived from

boundary conditions of Eqs. (1) and (2). Note that, in Eq. (14), the integral

with limits (0 to -w) is divided into two integrals with limits (0 to z) and (z to 0,)

corresponding to two regions (z' < z) and (z" > z) as indicated by the absolute

value of Iz - z'i in Eq. (15). The principle of limiting absorption is used for all

derivations to discard the oscillating terms of the form e ik oz when z -- c-

[25,41]. The Born series of Eqs. (7) and (8) in terms of the small parameter V

can be derived from the perturbation method [2,6]:

V<l (0) 2
To'V 0 (z) - k0 TJz~,zi (Z')

j 0 (z

4 (0)

(0) , IBA 2A(3B- ~ddz'G(z.z')V jfdz "G(z',z ')Vfdz ..G(z.z ..)VTVl (z"). +

- (0) IBA 2BA 3BA
TO0 (z)+ 'os (z)+ +'os (z) + os (z) +. z < 0 (16)
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and

q(Z) " (Z) -k dz'G(z,z')VT-' (z')

+,Q oJdz'G(zz')Vjdz"Oz'."V voz--

-. jd'~~'Vjd"~'z)jz..Gz, .V10 .+..
)(Z) IBA 2BA 3BA

-- 'I (z)+ (z) + IS (z) + s (z) +...; z > 0 (17)
nBA nBA

where To, (z) and I, (z) (n = 1, 2 ... ) are the n-th order Born approximated

scattered fields in regions 0 and 1, respectively. With straightforward but

tedious calculation up to the third-order Born approximation, we have

1BA V -ik 0z
s (z)=--T e z<0, (18a)

2BA V2  -ikoz
T*os (z) = r eo; z<0, (18b)

3BA 5V 3  -ikoz%,0 (z) = -64 e ;z < 0, (1 8c)

1B-',T"ko:("e i)oz
-IS ( T+ i 2 z>_0, (19a)

2BA 2 *V 2  v2 2 2 £ikoz.z0(9b
s (Z) = -i"Tkoz - -k z e z >_o0, (19b)

and

B5V3  5V 3  3V3  2 - V 3 3 Z ik0 z
'TS (z) = - "+ 1 -2 koz + -3-k o z - Z'-'k z e z >_0. (19c)

Eqs. (18a)-(19c) are exactly the same as the corresponding terms in Eqs. (7)
cnBAand (8). Under the constraint V << 1, the Born series "'kos (z) is, but not the
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00 nBA
Born series YT'S (z) when Vk0z > 1, uniformly valid for all z. For a fixed V

n=1
nBA

and ko, this nonuniformity problem occurred in the Born series XjM-s (z)
n=l

imposes a severe limitation on the propagation distance z for the Born method

to be useful.

2.3. The Rytov Method for the One-dimensional Dielectric Half-space Case

Let Wo(z) and TP(z) be defined as

'o(Z) (z) ei(z) z < 0 (20)

and

(0) i(p1(z) zO (1Tj(z) -, t'1 (z) e z _ 0 (21

where po(z) and (p(z) are the complex phase functions for regions 0 and 1,

respectively. For the case that k, = k1%41T +V , exact solutions of Eqs. (3) and

(4) yield exact expressions for (po(z) and wpl(z), namely,

pO(Z) -i Ln{ T i Ln[1 + R(kl)e - i2kz z < 0 (22)

and

(p,(z) =- i Ln I(z) - i Ln[T(kj)] + (k, - ko)z; z ? 0 (23)

where Ln[X] is the natural logarithm of X. If V << 1, we can expand (p(z) and

pl(z) into Taylor series in terms of V, i.e.,

5()V(~ -~+~~ i2koz ±I 3 4I \T
3  i4koz .V 3 i6koz(P o(Z) +  3 +i - 3.) e- + i Te +..

z<0 (24)
and



p1(z) i " '4"+ 5 + "+ TU koz+ ..: z>__0. (25)

Under the definitions of Eqs. (20) and (21), we rearrange the wave equations in

Eqs. (9) and (10) and obtain [35.64]

0 0  d () z < 0 (26)

dz'L )40(4z) + 2 T (0) = - L IdzJ T z);

and
d 2 (0 2 (0)dqp,(z) _ 2 ().

!- o, z)] + Qk +' T(z)(p,(z) =i () - "d "P 1(Z (z);

z_ 0. (27)

Therefore, with the application of the 1-D unbounded scalar Green's function

G(z, z'), we can express (p(z) and (p,(z) as

0

(P~Z -- dzG~~zLd(P 0(z)1 2 (0)o(0(Z) -(0) dz (z,z )1 d W)
'f(Z) -.

+ (0)J dzG(z.zD{4V -[dP,(Z]
2 r(z); z <0 (28)

TPo (z)

and
0

p1 (z = -~ J'zG~zzD1 (0)
(P() -(0) dz'Gzd') dz J O (z')T(Z) -100

00
i dz'G(z,z') , (

(Z )~ oL "J Oz ); z 0 . (29)
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It is easy to show that the exact solutions of 9po(z) and p I(z) in Eqs. (22) and

(23) can also be derived from Eqs. (28) and (29) by using Eq. (15) and the

exact phase changes:

d90 (z) - kRO .) e12koz z < 0 (30)

- 1 + R(k 1 ) e- 2 koz'

and
dgp,(z)

d1 z) k -- ko; z>_0. (31)

Eqs. (24) and (25) can also be derived from the Rytov-approximated solutions

of Eqs. (28) and (29), i.e.,

_ _ V (0)
p(0(Z) -(0) I dz'G(z,z )VP 1 (z)

0

( dz )G(zz' dz" % ""')

i dzG(z.z )L + dz" + dz" +..j' 1 z')

% (°Z)oL dz

IRA 2RA2 3RA2

- o  (z)+p (z)+p0  (z)+...," z<0 ()

and

Q cc (0)

(P,(z) (,O Jdz'G(z,z')V' (z')
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0

Id d G z d + , 2' + z3R z "
, ( z'G(z z'" d (POdz) dC. dz ) dz(

[. (Z )

d pI IZ d q (p 2R ) d l _p3 Z, 1

( dz'G(z~z' ) + dz" dz'..
zt' z) (

IRA 2RA 3RA9= Z) p (z) + (1P (Z)+ .; z>0 (33

nRA nRA
where p(0  (z) and (p I (z) are the n-th order Rytov approximated complex

phase functions in regions 0 and 1, respectively. After lengthy but simple

calculations, we obtain

2
IRAk (0)

%) (Z) = 0 dz G(z.z ')V'-P (W)

i V -i2kozI " e ; z < 0, (34a)

IRA i 0  C(0)
q) (Z) (0) dz G(z.z ')V+ (z)

V V

i T+ 7lkz; z 0, (35a)

0
2RA i r dcp Rz")iz'

% (z) -- jdz G(zz) 0 j 0)

dr IR i
z 0

(0) dz'G (z.z') d " )
To' (Z) 0 dz'
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V -~k~ \2 -4kz .V - 2 o z < 0 , (34b)

00

IRA ,
2RAd~p (z d R ( (0)

(p (Z) (0 dz' .z)IL l dz' TO ('") ('

(0) ( 6 ~p

* 3 2~ V zjk~ >3 0ikz , (34cb)

0 IRA iF 2RA

3RA 12 d(p (W ) dp0  (W ) (0)

(P( (Z) (0 ~~) fd'2 zz L z dz- T j o (Z')

r~ F IRA iF)-d~ 2RA( 0
i2 dz'G(z.z') II I. i T ( Z )

(0) fJz
%P (Z) 0 L dzdz T

5 V' \73z V3 ikz v3 -~o

e ~ ~ ~ + 0. (34c),7- eT-17

and2



The factor of two in Eqs. (34c) and (35c) is essential for the derivation. With

increasingly cumbersome formulations, one can follow the same iteration

scheme to derive higher-order terms of the Rytov series for (p,(z) and (p1(z).

Since the perturbation expansions for 9,m(Z) in Eqs. (32) and (33) are based on

the criteria that Z, < (n-I)RA (z)I (m = 0, 1 and n = 1, 2, ...) which. in

turn, leads to the constraint V << 1, it imposes no restriction on the propagation

distance z for the Rytov method.

From Eqs. (34a)-(35c), we have shown that the conventional way of

omitting [dhp0 (z)/dz] 2 and [dhpl(z)/dz] 2 in Eqs. (24) and (25) under the Rytov

approximation [1,2,6] is equivalent to neglect the multiple scattering processes

[11] which correspond to higher-order terms (n > 1) in Eqs. (32) and (33).

Also, we have shown that the omission of [dqp0 (z)/dz] 2 and [dp1 (z)/dz] 2 in the

Rytov approximation has nothing to do with the magnitudes of the complex

phase functions as long as the contributions from [dq,0(z)/dz] 2 and [d(pl(z)/dz]2

are negligible compared with k;V [Ref. 17, Appendix A]. Therefore, the

argument [7.29,32] that the Rytov approximation is not valid when Icp0(z)l - 1

and khpl(z)l - 1 is incorrect.

2.4. Relationship between the Born and the Rytov Methods

We have recovered, from Eqs. (18a)-(19c) and (34a)-(35c), the well-

known relations between the Born-approximated scattered fields and the Rytov-

approximated complex phase functions [25-27], namely,

IBA (0) IRA
(z) (z) m (z),36



r. IRA 1
2BA (0) UJl'Pm WY 2R(3b

uMS (z) = TM (z) 2 , + ( , (36b)

3BA (0) [I( Z)] IRAZ)2RAZ\ +i3RAZ
TMs (z) = 4 (z) 3 - )9kz z + ) (z) 6c)

and so on for higher-order terms in region m (0 and 1). In order to compare

domains of validity for both Born and Rytov methods, we examine the

relationship between the Born and the Rytov solutions shown below in Eqs.

(37a)-(38c) where, up to the third-order power of V, the scattered fields

derived by the Rytov method can be reduced to that of derived by the Born

method, i.e.,

iR_ IRA (z)
IRA (0) [INA I

%OS (z)= q0 (Z) - I

V< -V ikz 2e -i3koz)

I BA Veioz

IBAos (z)+O 2 v2i 3  z<0, (37a)

l ,A r 1A 2R(

"t'oS (z(V

- ' os (z) + Wo (z) + O~ v~e yk  z < 0, (37b)

(1+2+3)RA (0) [ lRAZ + )RA 1

%S (Z) 1% (Z) e 0 ( + 0  (z+ 0  z) -

vol ' V . 2 e-ikoz of1e- koz5

(_ + e-+

,[- -R(+ + + (

(1 2 3 R (0 (PnO 0mannm m mmnmn nmumm nn uni~llllNnll mn



IBA .BA 3BA , 4-i3koz(
=Tos (z) + Tos (z) + Tos (z)+O z<0, (37c

IRA (0) " IRA (
T',s (z)=+T, (z) e '

I BA e \ (22=-Za + i -koz e+ O(VI) + O(vIOZ2)

=IB (z) + O(VI) + O(V z2 ); z 0, (38a)
I~ ( I + ) RA { [(PRA(z) + ()2RA(Z }

s (z) = {e1 z]

V((1 V V1 2  V V2  V2 2 \i 1  /.\~~

" Z +  -2 koz + "T-i -T-koz - "- kz0  +Oz)

IBA 2BA O o(v z;
T= S (z) + TlS (z) + 2(3 + 'Z); z > 0, (38b)

and

(I+2+3)RA (0) {Z) + PI (z)]

Vol / Vv 2  kv2  2 5V 5Vi3 3

T +8 4 .. Tz + -32- -k i +k kZ Z2 - + 1 -- 33 2  2

V 3 k z3) eikoz z)

4Qz+ OV) + o(v Z-)z . 3c

= 'iS (z) + 'T'I (z) + '1S (z) + (4) + O(V Z2); z >_ 0. (38c)

In the Rytov method, the scattered fields corresponding to the Rytov series
,' jRA ,:(1+2+...+n)RA (0) r n  jRA
Zm (Z) is denoted by -. s (z) = Tm (z) {I exp [. W (z)]- (m =

0. 1). From Eqs. (37a)-(38c), it is shown that the multiple scattering up to the
n-th rderis iclud d - he _ (1 2-9-... n)RA

n-ti order is included in the Taylor expansions of T S  (z). which can be
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n JBA
represented by the sum of v M,(z) plus an infinite number of redundant

j=l

higher-order terms. As implied by Eqs. (37a) and (38a), it is incorrect to

address the Taylor expansion of exp[p 1(r)] [Eq. (12) of Ref. 13] as "a multiple-

scattering interpretation of the Rytov solution" because, for example, the

quantity p7(r)= [2k; Jdv-G(r,r')N(r')Ao(r')/A0 (r)]2 , which is the square of
V

pl(r) representing the single scattering process, does not correspond to the

double scattering process whereas the quantity
4; fdv'G(r.r')N(r') dv"G(r',r")N(r")Ao(r")/Ao(r) does. Also, from Eqs.

V V
(I+2+...+n)RA

(37a)-(37c), we have shown that for finite n, "To, (z) is inadequate to

approximate the scattered field T+0,(z) (or the reflected field in free-space)

because it does not provide the correct propagation factor e - ikoz whereas the
n iBA

Born series y_ s (z) does [as stated in Ref. 41 for n = 1]. Hence, although both
j=1

methods have the same domain of validity (defined by the constraint V << 1)

when each is applied to estimate 'io,(z), the Born method is superior to the

Rytov method. On the other hand, to estimate the scattered field T,'1 (z) in the

dielectric half-space, the Rytov method is superior to the Born method because
0*nBAthe Born series y_ls (z) suffers the nonuniformity in convergence if Vkoz > 1.

n~I

which is not the case with the Rytov method.

(1+24...+n)RA
Note that the redundant terms in the Taylor expansions of '{,s (z)

(m = 0. 1) cancel out one another exactly if n -- oc. Thus, we have

(12+..+n)RA (0) F jRA IIIV 1 -MA
urnTM Wf' (z= 'MW ()exp i~r( r- - q ' (z). (9

LJ
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3. One-dimensional Homogeneous Dielectric Slab

In this case, the same plane wave as that described in section 2 is incident

from free-space (region 0, z < 0) into the homogeneous dielectric slab (region

1, 0 <_ z _< d) with permeability go and permittivity o(1 + V) [see Figure 21.

The boundary conditions at z = 0 and z = d are

TOM = 'i(O), (40a)

T(d) = 'U2(d), (40b)

dTO(z) - d(z) (4 a)
z=o = --d z z=o,

and
d-,(z d-z) (41t

dz z=d z=d I

where +'(z) is the total field in region 2 (free-space for z > d). By matching the

boundary conditions, the total fields in three regions are given as

W e ik Oz +R(k)(1 - e i2 kld) -ikoz
~o~z)=e~koz + D(k1 ) e z<0, (42)

T(kj) iklz R(k1)T(kj)e i2k d  -iklz(TD~k 1)

1) e D(k1 ) 0 5 z < d (43

and

T(k,)[I - R(k)]e i( k  - kO)d
T2(Z) D(kj) - ; z>d, (44)

2id
where D(k,) 1 - [R(k,)] e 2kd To reduce the total fields in Eqs. (42) and

(43) for the dielectric-slab case to that in Eqs. (3) and (4) for the dielectric half-

space case in which '+'(z) does not exist. one can invoke the princinle of limiting

absorption [41] to assume that k1 contains a small and positive imaginary part

IT



such that lim d = 0. If V << I and Vk 0d << 1, Eqs. (42)-(44) can be expandedd-.--€o

into the Taylor series:

Vk.d<<l eikoz V V2  5V3  V 3I i2kod i2kod
-oz)= + -4-- - -p - *g- e (l- e )

3 3 e iko
2 -3V') k d V3 k d i2k~d 1-ikoz

+ -o ~o d2e- +.. e- z < 0, (45)

Vo 1
Vk (z I V 2  5V3  2  3 i2kod V3  z i2kod

-- - + 7- --- )e + i T-l%(d + )

v 2  5V3  v 2 3V 3 
2  34 3 ] ikoz

"- + 2-- o +

and

V4(Vd 1 r(V 2 V ; Qi2kod 4v 2  V.
'f'2(z) - [1 + -+T'g1-e) +i " -T+ kod

V3,2 v3 iko

[V3V 9Vei2kod V2  + V3 L' +

v3~~~ ~ ~ ~ ; d > ]e2o -io : d, (46)

One can also derive Eqs. (42)-(44) by using the inhomnogeneous Fredhoim

equations of the first kind for the total fields in region 0, 1, and 2, namely,
d

'f'm(z) = V (z)- k dz'G(z, z')VP1 (z'); (m = 0, 1. 2) (48)
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where G(z, z') and 'I(z) are given in Eqs. (15) and (43), respectively, and
( 0 o) (o ikoz

TO (z) = 'TF1 (z) = (Z) = e With tedious but straightforward calculations,

it can be verified that successive terms in the Born series, derived iteratively by
(0)replacing hu,(z) with T (z) in Eq. (48), are exactly equal to the corresponding

terms in the Taylor-series expansions for Eqs. (42)-(44) in terms of V.

Since only the constraint V << 1 is used in the Born method for estimating
nBA%m(z) (m = 0, 1, 2 ), all of three Born series XFTm (z) diverge if Vkod > 1.

n=1
oonBA

The Born series yTIs (z) is subject to two special situations:
n=l

*nBA ,nBA(1) if z = 0, yTls (z) behaves like X'-os (z) and
n=1 n=1

C nBA 00 nBA
(2) if z = d, V7T 1 s (z) behaves like 4J2s (z).

n=1 n=1

Therefore, to obtain good estimates for M'(z) by using the Born approximation

requires that V < 1 and VkOd << 1. These two constraints impose a severe

limitation on the domain of validity for the Born method.

Alternatively, 'o(z), Pt1(z), and '+,(z) can be defined as:

(0) ip(P (Z)
TM(z) (z) ei m (49)

(0)where %, (z) and (pm(z) (m = 0. 1, 2) are the unperturbed fields and the

complex phase functions for regions 0 (z < 0), 1 (0 <_ z < d), and 2 (z > d).

respectively. By the exact solutions of Eqs (42)-(44), we have

n R(k)( I-e I -i2kozi

cp(z)POW La + e •z <0, (50)
L_ D(k ) J"
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2k-

IT(k,) R(k,)T(k)ei 1-klz
(,(Z)=- i L - e + (kI - ko)z; 0 < z _d. (51)

LD(k ) D(k )

and p,(z)= iLnJT(k1
)41 R 

-
) ]

= - ii n D(k1 ) }+ (kI - ko)d; z > d. (52)

When V 0 1 and Vkod << 1, Eqs. (50)-(52) can be expanded into the Taylor

series in terms of V, namely,

V I
Vk( d [ v 2 5V 3  V 3  2kod)iMod

(W i - "- + "g- + ;T e (1 - e

+ -3 oded i-de ei 2koz

+ i - v) (1- eiMkod) + v 3- - kod ei~kd] (1 - ei 2 kod) ei4koz

2L) ~oi( I e i 6 ](

+ i (3 e Mod) 3 e- 6koz + z<0, (53)

Vo 1
Vkoddl 1 3V 2  5V3 V 2 "  V 3  V 3  Modi2kd

(P1(Z) i - _32 4 i ) e

+ V 2  V 3'f -  Vu V-\2 3 V 3. .

'z)koz + [i + 7v v( 5v3z)
1" 64 "V " ) +  + 1,; od Z

V"(d - Z)2] e e"" + k 0 (d - z)] ei 4 k od ei 4 z

V3 i6kod -i6koz + + Z)3 +

S e + O(V4)+ O(V4"d2)+O[V4(d

Ozd, (54)

and

Vo1
(VV 3  4~(v 4Vk~d o 1 2 \"7 5V d + i - -2(P,(z) - 7, " g + T6-' 12 6 + 512)
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,T6 + T6-" - ' 2 i d'] e d

\ - :kod-i ze I +.. z>d. (55)

As usual. Eqs. (50)-(52) can also be derived from the following integral

representations, i.e.,

0

d(Po Z12  ()

(Pm(z)-- '(z) Jz'G(z, z d) z J 'uO (z

d

+ TM(°)(z) odz'G(z, z QV Ldz ] i (z)

00

-z z) " 2 (z) (m = 0, 1, 2) (56)
- (0)~ d z DL~ zo Jz 2P0 z m=0

By the same token as that for Eqs. (34a)-(35c), Eqs. (53)-(55) can be derived

from Eq. (56) by iteration. Hence, as in Eqs. (36a)-(36c), the same well-known

relations between the Born and the Rytov series can also be established in all
nRA

three regions. From Eqs. (53)-(55), it is shown that the Rytov series Iqin (z)
r,=l

is also subject to two special situations:
1 fnRA nRA

(1) if z (0, = (z) behaves like -cp0  (z) and
n=1 i

-nRA _nRA(2) if z d, Zgp1  (z) behaves like I () (z).
Sn1 rr1

If the Rytov approximation is able to provide fair estimates for p..(z). both

constraints that V << 1 and Vkod << I should be invoked. Hence. the domain of

21



validity for the Rytov method is the same as that for the Born method in this

dielectric-slab case.

It is worth pointing out that if we let the thickness d of the dielectric slab

approach to infinity but keep V and k, fixed, we are unable to establish the same

statement as that in the dielectric half-space case on issues of applicability and

domains of validity for the Born and the Rytov methods. This is attributed to

the fact that we have invoked the principle of limiting absorption to neglect the
highly oscillating terms of the form lim eikoz which should exist after the

integrations are carried out for the dielectric-slab case, even when d is very

large (but finite).

4. Conclusion and Remarks

We have shown that, to approximate the scattered field (or the reflected

field) in free-space of the dielectric half-space case, the Born method is more

suitable than the Rytov method although both have the same domain of validity.

But, to compute the scattered field in the dielectric half-space, the Rytov method
f nBA

is superior to the Born method because the Born series 1'i's (z) suffers the
n=1

nonuniformity in convergence when Vkoz > 1. In the dielectric-slab case, both

Born and Rytov methods have the same (and very narrow) domain of validity.

However, when Vkod > 1, these two methods are inapplicable because the Born

and the Rvtov series diverge. Despite of the fact that the principle of limiting

absorption provides a self-consistent way of deriving the exact total fields for

both I-D deterministic cases, it is unable to eliminate the secular terms

occurring in the Rytov series for the dielectric-slab case when d becomes vert
large such that rk0d > 1. In summary, the domains of validity for the Born and

• m • *mm mmmmmmm m m lm Nm mlm n mm mm m mm Imm m mmm2



the Rytov approximations are described in tables 1 and 2 for the dielectric half-

space and the dielectric-slab cases, respectively.

The above statements concerning the Born and the Rvtov methods are

also valid for the situation when the dielectric half-space or the dielectric slab

has a permittivity of the form g1(1 + V) where e- > E.. In this case, to derive

the Born and the Rytov series from inhomogeneous Fredholm equations of the

first kind requires a set of appropriate Green's functions which satisfy the

boundary conditions at the planar interfaces. We have shown that with assistance

of these sets of Green's functions for 1-D deterministic cases, we are able to

develop the correct integral representations, which are beneficial to both direct

and inverse scattering theory, for the exact total fields in different regions [70].

Note that, in conjunction with the application of the statistical theory, the above

theoretical treatments for 1-D deterministic cases can be extended to that for I-

D stochastic cases. In addition, understanding the physical interpretations

inferred from analytical expressions for these 1 -D cases will shed some light on

the scattering theory for 3-D cases where no closed-form expressions exist.
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Figure Captions

Figure 1. Scattering geometry for l-D dielectric half-space case.

Figure 2. Scattering geometry for 1-D dielectric-slab case.
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Table 1

Domains of validity of the Born and the Rytov approximations
in the dielectric half-space case for finite ko and V (V << 1)

Range z< 0 z > 0 z > 0 z > 0

Approximation for all z z) (Vko) 1 z - (Vko)I z > (Vk o)

Born Y Y A N

Rytov N Y Y Y

A: Ambiguous to estimate the scattered field or the complex phase function
N: Invalid to estimate the scattered field or the complex phase function
Y: Valid to estimate the scattered field or the complex phase function

Table 2

Domains of validity of the Born and the Rytov approximations
in the dielectric-slab case for finite ko and V (V << I)

Range for all z for all z for all z

x aion d «< (Vko)" d - (Vk)1 d > lko)1

Born Y A N

Rytov Y A N
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