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ABSTRACT

The controlled signalling system is a finite-state deterministic model of information
disclosure on a computer system. The model includes high-level and low-level coop-
erating proccsses. The processes cooperate to covertly send data from the high-level
process (transmitter) to the low-level process (receiver). The capacity of a controlled
signalling system is a measure of the amount of information the high-level process can
disclose to the low-level process. The serial product is a binary operation on the class
of controlled signalling systems. The capacity of the serial product of two controlled
signalling systems can be strictly greater than the capacities of the individual systems.
The r-controlled signalling systems are a subclass of controlled signalling systems; for
r-controlled signalling systems, the serial product capacity is the maximum of the indi-
vidual capacities.
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SECTION 1

INTRODUCTION

This paper is concerned with products of controlled signalling systems; a con-
trolled signalling system is a deterministic finite-automata model with two players, or
processes. This model was developed by Wittbold in [5]. The programs cooperate in
order to covertly send data from one process, the transmitter, to the other process,
the receiver. Controlled signalling systems illustrate the potential for application of
graph-theoretic and information-theoretic techniques to modelling problems in com-
puter security. Since the work in this paper is concerned with products of controlled
signalling systems, we will briefly review controlled signalling systems and some of the
main results of [5]. Further details are in given in Section 2.

The controlled signalling system is a finite-state deterministic model with a high-level
process acting as transmitter and a low-level process acting as receiver. The transmitter
and receiver alternate turns; a turn consists of an input into the finite-state automata
and an output delivered to the input source (transmitter or receiver.) The transmitter
is able to send information to the receiver, since its turns affect the state of the system,
and, hence, the receiver's output is affected by the transmitter's inputs. The receiver
is not allowed to directly view the transmitter's inputs and outputs. The goal of the
spies who have installed the programs is to maximize the rate of information flow from
the transmitter to the receiver. In a controlled signalling system, the receiver chooses
a sampling strategy (a policy); under a fixed strategy, the receiver's next input is a
function of the receiver's preceding inputs and outputs. Each fixed strategy gives rise
to a discrete noiseless channel, ([41); the capacity of the controlled signalling system is
defined as the supremum of the capacities of the induced discrete noiseless channels.
The problem of choosing the optimal policy is solved in [5].

The coding theorem of [5] (Theorem 2.1) shows that block-policy codes with rates
arbitrarily close to the capacity of the system exist; these codes are explicit algorithms
for communication between transmitter and receiver. It is also proved that no block-
policy codes with rates exceeding the capacity can exist. A key result (Theorem 2.2) of
[5] is the optimality equation:

Vn+l(s) = maxZu(r; s,t)Vn(t),
t

where Vn(s) is the maximum, over all strategies, of the number of length n output
words that can be produced under a fixed strategy starting with a signal of type s, and
pu(r, s, t) is the control array for the controlled signalling system. This equation allows
one to compute optimal strategies and associate a piecewise linear operator I. with the
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controlled signalling system. For positive control arrays, the capacity of the controlled
signalling system is the log of the largest eigenvalue of this associated operator.

In this paper, we study products of controlled signalling systems. The product of two
controlled signalling systems S1 and 82 is obtained by taking unions of the transmitter
and receiver alphabets and taking the Cartesian product of the sets of states. A state
transition resulting from an input in S, is accomplished by allowing the S, component
of the state to change as it would in S, while the S2 component of the state remains
unchanged. The output delivered to the inputting process is the same as would be
delivered in S, given the same input and S, component of the state. The analogous
statement holds for inputs in S2. An intuitively plausible formula is

cap(Si x S2) = max{cap(Si), cap(S2)} (1)

where cap(S) is the capacity of a controlled signalling system S. We give an example in
section 3 to show that (1) does not hold for controlled signalling systems. In section 4, we
investigate a subclass of controlled signalling systems, the class of r-controlled signalling
systems. For r-controlled signalling systems, the transmitter edges have a transitive
closure property. In this case, we derive a new control array and prove equation (1).

2



SECTION 2

CONTROLLED SIGNALLING SYSTEMS

This section is devoted to a careful review of the key results on controlled sig-
nalling systems from (5]. The controlled signalling system is a finite-state deterministic
model of information transfer from one process in a computer system, the transmitter,
to another process, the receiver. Each process has an input alphabet and an output
alphabet; the processes alternate turns. A turn consists of a process input, a change of
state determined by the input and current state, and an output similarly determined
and delivered to the inputting process. A process has no knowledge of the other pro-
cess's outputs. We interpret the evolution of the turns as a game in which both processes
cooperate to maximize information flow to the receiver. We now give a precise definition.

Definition 2.1 (Controlled Signalling System) A controlled signalling system is a
7-tuple (S, IT, IR, 0, next, out, ao) where

1. S is a finite nonempty set of states.

2. IR and IT are finite disjoint nonempty sets of input symbols for the receiver and
transmitter, respectively. I = IR U IT.

3. 0 is a finite nonempty set of output symbols.

4. next : S x I - S is a function determining the next state from the current state
and current input.

5. out : S x I - 0 determines the current output from the current state and current
input.

6. a0 E S is the initial state.

We will sometimes write si in place of next(s, i) where s E S and i E I.

In [5], the following question is tackled: if the receiver is going to submit inputs based
on a fixed strategy (a strategy is a function from the receiver's previous sequence of
inputs and outputs into the set of inputs), how can the receiver choose a strategy which
maximizes information flow from the transmitter to the receiver? Given the definition
of receiver strategies, a natural definition of the capacity of controlled signalling systems
was given in [5]. In order to make this paper self-contained, we now give these definitions.
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Definition 2.2 (Receiver Strategy) A receiver strategy, or policy, is a sequence of
functions

X- -= 'ir, 7r2, " -.. ,

such that for each n > 1,
r, :(IR x O)n - 1 -, IR.

Intuitively, we think of the receiver submitting inputs il,..., i,-_ on turns tl,... , t_ 1
and receiving outputs 01,... , on-,, where turn t1 is the initial turn of the system. The
receiver input for turn t, under strategy 7r is

7rn(i1 01, i202, • • • , in- IOn-I )

A controlled signalling system with fixed receiver strategy 7r maps naturally to a
discrete noiseless channel. In [51, the capacity of a controlled signalling system is defined
to be the supremum of the capacities of the associated discrete noiseless channels.

Definition 2.3 (Discrete Noiseless Channel) A discrete noiseless channel is a triple
C = (I, 0, F-), where

1. I is a finite set of input symbols.

2. 0 is a finite set of output symbols.

3. I-: P --+ 0* is a function mapping strings of input symbols to strings of output
symbols such that:

(a) F-: In - on.

(b) If
X.Xl,...,Zmn

and
Y "- X1....., m, Ym+l,.- --, Ym+k

are strings of input symbols where k > 1, we say that y is an extension string
of x; we denote this fact by x < y. If z < y, then I- (x) _< F- (y).

We now reproduce the definition of capacity for a discrete noiseless channel:
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Definition 2.4 If A is a finite set, we let IAI denote the cardinality of the set A. All
logarithms will be to the base 2. If C = (1,0, -) is a discrete noiseless channel, we
define

=. log(I F(I))
cap(C) = llm sup

n-oO n

We now give the map which associates a fixed receiver strategy for a controlled
signalling system S with a discrete noiseless channel.

Proposition 2.1 ([5]) Let S be a controlled signalling system and a E S a state of S.
Let

7r = 7rl, 7r2,...

be a receiver strategy. Then for each n > 1 and each hl,..., h, E I, there are unique
sequences o, ... -,,S E Sn+l and i1 o ... io, E (IR X O)n such that the following system
of equations is satisfied:

1. so a,

2. -- st-lhtit I < t <n

3. it ir(iol...it-lot-1) 1 < t < n, and

4. ot = out(st-I ht, it) 1 < t < n.

In tbe above proposition, we say that (i1o ... io,) satisfies the system equations
for 7r with initial condition a and transmitter input string hjh 2 ... hn. The following
proposition is an immediate consequence of Proposition 2.1.

Proposition 2.2 1. The map F'(,,a): I -* (IR x O)", defined by the condition

(wa) (h, ... hn) = (i101 ... ino,)

if and only if (i1o1 ... ino.) satisfies the systeum clations for 7r with initial condi-
tion a and transmitter input string hh 2 ... hn, is well-defined.

2. c(,,.) = (IT, IR x 0,-( ,)) is a discrete noiseless channel.

We can now define the capacity of a controlled signalling system.
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Definition 2.5 Let a0 be the initial state of the controlled signalling system S. We
define

Ch(S) = {c(, ) : r a receiver strategy}.

The capacity of S is
cap(S) = sup cap(c).

cECh(S)

Ch(S) is the space of covert channels associated with the controlled signalling sys-
tem S.

We will shortly define blo-k-policy codes which are a natural extension of block
ccdes. Given the definition of receiver strategy and block-policy codes, Wittbold ([5])
proves a coding theorem which shows that the definition of capacity is satisfactory. The
coding theorem states that there are no block-policy codes with rates greater than the
capacity but that there exist codes with rates as close to the capacity as desired. We
now define some additional notation.

De~nition 2.6 We denote the set of all receiver strategies by II. A receiver strategy,
or policy, of length n is a sequence of functions

7r -" 7rl, Ir2,..., 7r,

such that for each k, n > k > 1,

irk :(IR x 0 )c- l - IR.

We let [In denote the set of receiver strategies of length n.

Definition 2.7 If {X} is an infinite sequence, we define

log z,
rate{zn} = limsup 1 (2)

n-oo nl

If f is a function and the set X is contained in the domain of f, we define f(X) =

{f(z) : z X}. Let S be a controlled signalling system, a E S a state, and 7r a
strategy of length m, where m > n. Proposition 2.1 holds if we fix n and replace the
receiver strategy with a receiver strategy of length m, n, > n. In this situation, we
say that (i 1o1 ... inon) satisfies the system equations for 7r with initial condition a and
transmitter input string h1 h2 ... h,. Thus the map -(i,a): 17 -. (IR X O) ' , defined by

the condition

(r,,) (h I... hn) = (Oio... inon)6



if and only if (ijo, ... inon) satisfies the system equations for 7r with initial condition a
and transmitter input string hjh 2 ... h,, is well-defined. We now define

D"(S, r,a) = F-(,,.) (r).

We also define
d"(S, a) = max ID'(S, r, a),

d(S. a) = rate{ld(S, a)},

and

We will drop the S from these expressions when the controlled signalling system is
obvious from the context.

Proposition 2.1 shows that, given a receiver strategy 7r of length at least n and
state a, there is for each string of n transmitter input symbols, hjh 2 ... h,,, a unique
state sequence $o1 ... Sn. We define

endpt(ir, a; h1 h2 ... hn) =-

If thereexist hi,h 2,...,h, E IT and il,i2,. •.,in E IR such that b= aohjih 2i2 ... hm im,
we say that b is a reachable state.

We are now ready to give the definition of block-policy codes.

Definition 2.8 A block-policy code is a 5-tuple

B = (b, ko, no, X, r)

where no, ko are integers. Also,

1. b E S is a reachable state, the basepoint of the code.

2. 7r E Ino is a length no strategy.

3. X C I r is a collection of codewords satisfying

(a) IXI=2k0 ,

(b) t-(i.b) is 1:1 on X,

(c) If hjh2 ... h o E X, then endpt(r, b; hjh2...h,) b.
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The rate of the code is ko/no.

Condition (b) ensures the receiver will know what transmitter word was sent from
inspection of its own i-o word. Condition (c) ensures that the system will return to
state b every no combined transmitter receiver turns; thus repeated concatenation of
the finite strategy 7r with itself gives an infinite strategy that transfers data at the rate
of ko bits every no turns.

We can now state the coding theorem of [5].

Theorem 2.1 Let S be a controlled signalling system with cap(S) = c > 0. We then
have

1. There are no block-policy codes with rates greater than c.

2. For each c > 0, there is a block-policy code with rate greater than c - C.

3. c = d(ao).

The proof of this theorem is in [5](pp.98-100).

We now develop the necessary framewcrk to present the optimality equation
(Theorem 2.2). The optimality equation will yield a dynamic programming approach
to computing optimal receiver strategies; in combination with Theorem 2.3 (Bellman
[1]), it yields an iterative algorithm for computing the capacity of a controlled signalling
system. The optimality equation is an inductive formula for counting receiver input-
output strings under optimal receiver strategies; the key to this approach is the definition
of types. The types definition yields an equivalence relation on receiver input-output
strings; if two strings are equivalent, they have the same "growth properties." Also,
there are only a finite number of equivalence classes. We will now make these remarks
more precise.

Definition 2.9 For each n, we define

Sig (ao) U D' •(ao).
irenn,

Let / = iioi ... ino E (IR x 0)", and let hjh 2 ... h, E I7.. h1 h2 ... h, is consistent with
/3 if and only if there exists SoSI ... Sn E Sn such that

1. so = ao,

80



2. at = st-lhtit 1<t<n, and

3. ot = out(st-I ht, it) 1 < t < n.

Definition 2.10 (Types) Let /3 = i1o1 ... inon E Signh(ao). /3 is called a receiver out-
put string of length n. type(/3) = (a E S : there exists hjh2 ... h, E I such that

hh 2 ... hn is consistent with /3 and a0h1i, ... hni, = a}.

The equivalence relation on receiver output strings discussed in the remarks above
defines receiver output strings /31 and /32 to be equivalent if type(/3) = type(/32). The
next proposition ensures that we can count receiver output strings by type; receiver
output strings with the same type have the same extension strings, and these extension
strings have the same type.

Let A C S and i E IR. We define

O(A, i) = {o E 0 : there exists a E A, h E IT, such that out(ah, i) = o}.

Proposition 2.3 (Growth Properties) Let /31,/32 be receiver output strings of length
n where type(/31) = type(/32). For any i E [Ij and 0 E 0, we have

1. /31io E Sig' +(ao) if and only if o E O(type(/31 ), i).

2. If 0 E O(type(/31), i), then

type(/3uio) = {s E S : there exist v E type(/3I), h E IT,

such that vhi = a and out(vh, i) = o}.

3. If o E O(type(/,3), i), then type(/3io) = type(/32io).

We are now ready to define the control array of a controlled signalling system. We
will obtain a piecewise linear operator 0 : Rn -* R' such that the capacity of the
controlled signalling system is equal to log A where A is the largest positive eigenvalue
of 1.

Definition 2.11 (Control Array) Let S be a controlled signalling system, and let
ril,..., r be an enumeration of the types of S. Let ii,..., iR be an enumeration of the
receiver input alphabet. We define the following array of integers to be the control array
of 8:

pu(r,s,t) = I{o :/3io E Sig '+(ao), /3 has length n, type(3) = s, and type(/3io) = t}j.
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Proposition 2.3 shows that the control array is well-defined. We will now define the
Ext functions which will lead us to the optimality equation (Theorem 2.2).

Definition 2.12 Let Q _ Sig'(ao), and let r,+l : (IR x 0)' --* IR. We define

Ext'(Q;7rm+i) = {137r+i(j3)o : 3 E Q and o E 0(type(3),rm+())}.

Let 7rm+l,... .,r,, be functions such that rm.+k : (IR x 0)m+k-1 - IR, 1 < k < n.
For n > 2 we define

E .Tt ( Q ; 7r,, ... r,,+,,)=

Ext1 (Ext"-l(Q; 7r,,+1 ... 7rm+n_1); 7rm+n).

We now give a lemma that will be helpful in the proof of Theorem 2.2.

Lemma 2.1 Let Q, and Q2 be disjoint subsets of Sigm(ao). Let ir1 = .1 IM+ ... 7fr+ n72 = 2M+1... m and 7r = 7rm+l ... 7rm+n be sequences of functions such that

,n+11 (2 t b
,1,M+k, ,m+k * (IR x O ~--* tR I <, k < n.

Suppose rm+k(q) = r ,+k(q) if q E Qi x (IR X O) k- 1, 1 < k < n, i = 1, 2. We then have

Ext"(Ql U Q2; 0r) = Eztn(Q1; 7r) U Ext (Q; 2).

We now define the Vn functions.

Definition 2.13 We define

im,,n = {r :7r = 7M+1 ... 7rm+n where rm+k : (IR x O )m+k- 1 -- IR, 1 < k < n}.

For Q g Sigm (ao) and n > 1, we define

Vn(Q)= max IExtn(Q,ir)J.

We also define V"(Q) = 1. When we want to make the dependence of 1'" on the
controlled signalling system 8 explicit, we will write Vn(S, Q) in place of Vn(Q). If

Q = {3}, we write Vn(p) in place of Vn(Q). We define 7r E IIm,n to be n-optimal for Q
if and only if lExtn(Q; 7r)I = Vn(Q).

We are now ready to present the optimality equation.

10



Theorem 2.2 1. Let Q C_ Sigm'(ao), and let r E rim,n. r is n-optimal for Q if and
only if for each / E Q, 7r is n-optimal for /3. It follows that

V-(Q) =Z p)*

2. Let 3 E Sigm (ao). For all n > 0,

V'*+1(/) = max { Vn(pio).
I oeO(trPe(P),i)

3. Let S be a controlled signalling system, and let {rl,.. .r} be the set of types
for S. Let /31 and 02 be elements in Sigm (ao). If type(/31 ) = type(32), then

Vn(p3) = Vn(3 2).

Thus V ' is well-defined on the set of types for n > 0, and

Vn+l (s) = max IZ I (r;s,t)V"(t)
-I<SR 1<t<1l

where IR {ii ... RI.

This theorem is proved in [5].

By Theorem 2.1, an algorithm to compute the integers dn(ao) = maxn, IDn(r, ao)I
will yield the capacity of the controlled signalling system S. If we let r, = {ao} = type(c),
where c is the empty string and we use the fact that

Dn(-, ao) = Ext"(c, . 7r,),

we obtain d"(ao) = Vn(1).

We now define the piecewise linear operator I R1 -- RI by defining the sth coor-
dinate of 4: (

4X)=max X

1<r<R L.dp(r;s,t~x I1<< 1 <t<1

The optimality equation may be expressed as

Vn+1= 1(V').



V"(1) is the first coordinate of
dn = t"(dO), (3)

where do is the vector of all 1's. We define d(s) = rate{dn(s)} where s is the sth
coordinate in (3.) In [5], a partial order on coordinate indices is defined: so - sn if

p(rl; so, S1)p(r 2 ; sl, s2)... p(rn;sn-isn) > 0

for some choice of indices ri,s,..., rn,, n-1. The control array p is connected if the
equivalence relation obtained by defining indices s and t to be equivalent, if s -.-* t and
t - a, has only one component. In [5], Wittbold shows that d(s) = d(t) for all indices
. and t if the control array is connected. The equivalence class containing an index S is
denoted by [s]. We define the operator R' : R 1 - Rl by defining the sth coordinate of

4.(x) = max p(r; s,t)xZ

if 1 < a < 1. Let do be the vector with I components all equal to 1. We define d= -= (do).

We denote the sth coordinate of d" by dil(s). We also define

i(s) = rate0d~(s)};

we then have the following proposition from [5].

Proposition 2.4 Let p be a control array, and let s be a coordinate index. We have

d(s) = max d(so).{Bo:,- ,o)

Thus the problem of computing the capacity of a controlled signalling system is reduced
to computing the capacity of a controlled signalling system with a connected control
array. The control array p is positive if all the elements p(r; s, t) are positive; clearly
any positive control array is connected. In this case, the common value is denoted by
d(p). It is also shown in [51 that any connected control array U can be approximated
by a positive control array; there exists a positive control array p, such that d(pp) is as
close to d(p) as desired. We now state this result:

Proposition 2.5 Let u be a connected control array. For c > 0, we define

Sp(r;s, t) if p(r; s, t) > 0Iif u(r; s, t) = 0.

There exists a constant K > 0 such that for all c > 0,

1(p) < d(p') < d(p) + log(1 + K).

12



We will now give a definition in order to present the theorem of Bellman [1].

Definition 2.14 We let

AT- - {(z1, X2,..., ZT): Zx. = 1,x. 0, 1 < 8 < T}.

We also define 4i: AT- i --j. AT - I by

on~p) I'n(P)

where f denotes the vector of all 1's, and • denotes the standard inner product.

We can now present the theorem which gives the capacity of a controlled signalling
system with positive control array p as the log of the largest positive eigenvalue of M.

Theorem 2.3 (Bellman [1]) Let p be a positive control array, and let 4$ and 4 be
the associated operators. Then

1. 0 has a unique eigenvector e E ATi. Let o(e) = Ae.

2. A > 0 and e is positive.

3. For any P E ATi we have lim, ...n (P) = e.

4. d(p) = log(A).

* 13



SECTION 3

SERIAL PRODUCTS AND AN EXAMPLE

We will now define the serial product of two controlled signalling systems.

Definition 3.1 (Serial Product) The serial product of two controlled signalling sys-
tems

S1 = (SI, IT,I1R, O1, next,, out,, al0 )

and

S2 = (S2, I2T, I2R, 02, next2, out2, a2o)

is the controlled signalling system

S 1 X 32 = (S 1 X S2,IT U 12T,11R U 12R,O1 U 0 2 , next 1 2 ,Out 1 2 ,(alo,a 20 ))

where:

1. Si x S2 is the Cartesian product of the sets S, and S2.

2. We assume I, ,, I2n2 = 0 and 'it n 12T = 0.

3. We define , = II UIT l12 = I2R U I2T, and
_ f (next, (sl, i), S2) if i E I1

(si, next 2 (s 2 , i)) if i E 12.

4. We define { out,(s1 ,i) if i EI 1outi2 ((s,s 2 ),i)I= out2 (s 2 , i) if i E 12.

Let r, be a strategy for the controlled signalling system S1. It is trivial to extend
7r to a strategy 7r for St x $2, such that 7r agrees with r, on elements of (IAR x O)n for
all n > 0. Thus a block-policy code B1 for S, can be extended to a block-policy code B
for S, x 32 by replacing state b with state (b, ao), extending r, as above to a strategy 7r

on S, and otherwise leaving B unchanged. The code B has the same rate as B1 . Hence
by Theorem 2.1, we must have

cap(Si x S2) > max{cap(S1), cap(S2)}.

14



A natural question at this point is whether the following formula holds:

cap(S x S2) = maxIcap(SI),cap(S 2)}. (4)

We say the controlled signalling system S has the transmitter (receiver) self-loop prop-
erty if there exists i E IT (i E IR) such that si = s for all states s E S. It is easy to
find examples of controlled signalling systems 81 and S2 without both transmitter and
receiver self-loop properties such that (4) does not hold.

The following example will show that (4) does not hold for controlled signalling
systems even in the case where both S, and 82 have transmitter and receiver self-loop
properties. The next section of the paper will be devoted to finding restrictions on
controlled signalling systems that will allow us to prove a formula similar to (4.)

We let
S = (S1, 'IT, 'iR, 01, next,, out1 , alo)

where S, = {0,1,2,3,4,5,6,7,8}, IT = {v,w,x,y,z}, IR = {a,b}, and 01 = {1,2}
(see figure 1). For i E IR,

(8 if s=6,i =b
7 ifs=5,i=b

next,(s,i)= 5 ifsE{1,2},i=b
6 ifs E {3,4},i= b
s otherwise.

For i E IT, the next function is described by the unlabeled edges in figure 1. An edge
directed from state a in the figure to state t defines next(s, i) = t for at least one i E IT.
Since there are at most 5 unlabeled edges leaving any state and IIT = 5, this definition
is satisfactory. For i E IR, we have J 2 if s=2,i=b

out (s i) 2 if s=4,i=b
out(s,i)= ifa = 6,i = b

1 otherwise.

For i E IT, and a E S, we define outI(s,i) = 1. Also, a,. = 0.

The transmitter outputs of a controlled signalling system play no role in the argu-
ments of this paper or in [5]. In figure 1, an edge with label i/o directed from state s to
state t gives that next, (s, i) = t and out,(s, i) = o. As mentioned above, unlabeled edges
correspond to transmitter inputs into the next function. We let Yj be an isomorphic
copy of S .

* 15
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We will now prove that

cap(S x 91-) > cap(S1 ), (5)

thus showing that (4) does not hold for controlled signalling systems.

Before giving this proof, we will give an intuitive explanation. We imagine S1 and
a copy of S side by side. Both systems are initially in state 0. The transmitter uses
an input in S that causes a transition into one of the states 1, 2, 3, or 4. The receiver
then uses the input b in SI. The state of S is now 5 or 6. The reader can see from
figure 1 that the transmitter is forced to waste a move in both states 5 and 6 when the
transmitter is on S1. Thus it pays for the transmitter to temporarily switch over to
the other copy of S when the first copy of S is in state 5 or 6. The transmitter now
repeats the same steps for the copy of S1 " as for SI. Similarly, the receiver must waste
a move in states 7 and 8 since the only possible output in response to its input is a 1;
thus the receiver should temporarily switch to the other copy of Si when the first copy
of S is in state 7 or 8.

We now give the proof for (5). By Theorem 2.2, we have

= I{ oEO(tMpe(),i) I

for all receiver output strings 3. We claim that i = b in the above equation. The
following proposition will prove an equivalent statement.

Proposition 3.1 Let S, be the controlled signalling system defined above. We then
have

Vk(pbo) - Vk(P3al) (6)

for all integers k > 0.

Proof: We use induction on k for the proof. The proof of the k = 0 case is immediate
since V°(a) = 1 for all receiver output strings a. Suppose the result holds for integers
less than k.

Case a {7,8} n type(/3) =
We notice that {siji 2 : il, i2 E IT} = {si: i E IT},

for states s of SI, where s 0 7 and s $ 8. Also sa = s for all states of S1 ; in other
words, a is a receiver self-loop for all states s of S1 . We claim these two facts
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imply type(3bl) = type(Oalbl) if 1 E O(type(/3), b), and type(3b2) = type(/Ialb2)
if 2 E O(type(O), b). We will prove the first assertion; the proof of the second
assertion follows similarly. We have

type(/3al) = ( w : there exists x E type(3), hi E IT

such that xhla = w and out(xhl,a) = 1,}
= {w : there exists z E type(03), hi E IT

such that zh, = w}, (7)

where the first equality follows from Proposition 2.3. We also have

type(I3albl) {s : there exists w E type(C3al), h E IT

such that whb = s and out(wh, b) = 1)

= {s: there exists x E type(0), h, hi E IT,

such that zh hb = s and out(xhih, b) = 1} (8)

= s : there exists x E type(/3), h E IT,

such that zhb = s and out(zh, b) = 1}
= type(3bl),

where the first and last equalities follow from Proposition 2.3. The second equality
(8) follows from substituting (7) into the first line; and the third equality follows
from the two facts above. We now finish the proof of Case a. If we apply the
definitions of V' +  and Eztn+l and use the fact that IExt1 (Q)I > IQI for all
nonempty sets Q _ Sigm (ao), we obtain V"+I(Q) > Vn(Q) for n > 0. Thus

Vk(iObo) _ Z Vk-(3bo)
oEO( type(/O),b) oEO( tYPe(O),b )

- Vk-(albo)
oEO(type(Oal),b)

= Vk(Oal)

where the last equality follows by the inductive hypothesis, and the previous equal-
ity follows by the results above and Theorem 2.2. We have proved Proposition 3.1
where {7,8} n type(#) =

Case b 17,8} n type(O) # 0
We first show that

type(Oalbl) _ type(fPblbl). (9)
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By applying Pioposition 2.3 twice, we obtain

type(blb) = {s : there exists x E type(13), h, hi E IT

such that xhlbhb = s, out(xhl,b) = 1,

and out(xhibh, b)= 1}. (10)

The expression for type(fOalbl) is given in (8) above; let x E type(3). If x = 7,
then {0,5,6,7} C type(,3albl), and {,5,6,7} C type(blbl). The same holds
if z = 8 with {0,5,6,8} in place of {,5,6,7}. Thus x E type(oalbl) implies
z E type(Iblbl) if z E {7,8}. Since type(o) n {7,8} # 0, the preceding argument
shows that {U,5,6} g type(Bblbl). Also, {1,2,3,4} n type(Oalbl) = 0. We have
proved (9.)

We will now show that

type(Oab2) g type(3blb2) U type(Bb2bl). (11)

We apply Proposition 2.3 twice to obtain expressions for type(fialb2), type(Bblb2),
and type(Bb2bl) as in (10) above. The definition of S1 shows that type(ialb2) g
{5,6,8}. Since {7,8} n1 type(3) y 0, we have {5,6} g type(blb2). Suppose
8 E type(3alb2). Proposition 2.3 shows that 6 E type(O); thus 8 E type(bb2bl).
The proof of (11) is complete.

To complete the proof of Case b, we need the following fact. Let ak, .-. , be
receiver output strings such that type(a) g U!=1 type(Oi) where m > 1. We then
have

V, (c) < -5 V"(A,) (12)

for n > 0. We can prove (12) by induction. The inductive step is

Vk(a) = max 1 Vk-l(aio)
iElit oEO(tVtpe(),i)

E Vk-,(,ti'o)
oEO(tYPe(a),i,)

<- ]E E vk- I(0j ,' )

jml

E Vk(Obo) = E E Vk-'(Obobo' ) (13)

OIEO(tppe(O),b) oeo(tppe(A),b) o'eo(type(obo),b)



> Vk-'(Oalbo) (14)
oEO(type(/3o1 ),b)

= Vk(/3al) (15)

where (13) and (15) follow from the inductive hypothesis and (14) follows from
(9), (11), and (12) above.

The proof of Proposition 3.1 is complete. 0

We will now use Proposition 3.1 to show that cap(SI) < 1.

Proposition 3.2 If S1 is the controlled signalling system defined above, we nave

cap(S1 ) < 1.

Proof: Let S1 be the controlled signalling system obtained by removing a from I,. in
the controlled signalling system S1. The next and out functions for S' are obtained by
restricting the domain of next1 and out, for S 1 to I,,, = {b}. Let /3 = bol ... born, whtre
01,.. .,o,, E 01 and m > 0. Proposition 2.1 combined with Definitions 2.7, 2.9, and
2.10 shows that /3 is a receiver output string in S, if and only if 3 is a receiver output
string in S . If /3 is a receiver output string and n > 0, we claim that

Vn(S 1,'3) = Vn(S,,/3). (16)

(16) can be established by induction on n. For the inductive step, we apply Proposi-
tion 3.1 to obtain

v"(s,) V"-I(S,/bo). (17)
oEO(tw,(j3),b)

We write type(S,3) in place of type(/3) in S for a controlled signalling system S. It
is easy to check in Definitions 2.9 and 2.10 that h1 ... h, E IF is consistent with /3
and a0 h1i, ... hni, = a in S if and only if the same holds in S'. Thus type(S 1,/3) =
type(S,,3) and O(type(S1,/3),b) = O(type(S,/3)j,). We can now apply the inductive
hypothesis to (17) to prove (16).

If we apply (16) to the empty string, we get

vn(s,, C) = vn(s,, C)

for n > 0. Since cap(S) = 7ate{Vn(S, C)} for a controlled signalling system S, it suffices
to show cap(S') < 1. We will now compute the control array pl, of S'. The next
definition will be helpful in this regard.
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Definition 3.2 (Type tree) A type tree of a controlled signalling system 8 is any
rooted tree with labelled vertices having the following properties. The root has label
(e,ao) where a0 is the initial state of S. In general, a vertex v of the tree is labelled
with (io: s1,...,sk) where o E Q (0 is the set of output symbols for S), i E IR, and
s 1 ,.. .,Sk are states of S. The set {s,...,Sk} is called the second part of the label,
and io is called the first part of the label. Such a vertex v has (i ol :ti,..., tp) as the
label of a child only if for each ti, 1 < j :_ p, there exists h E IT and , 1 < l < k
such that slhil = ti and out(sih, ii) = ol. For any type tree T for S which has a vertex
with {S1,..., SO as the - cond part of its label, there exists exactly one vertex with
{Si,. . . , S} as the second part of its label that has children in T.

Let S be a controlled signalling system with type tree T. Let IR = {il,.. .,iR}.

Proposition 2.3 shows that every type r of S must occur as the second part of the label
for some vertex v in T and that for every vertex v in T the second part of the label of
v is a type of S. Let v be the vertex in T that has children such that the second part
of the label of v is s. The control array definition shows that p(r, s, t) is the number of
children w that v has in T where the second part of the label of w is t and the first part
of the label of w is ito. If we apply these facts to Si, we obtain the control array of S':

0 1 1 0 0 0 0 0 0 0 0 0
0001 10000000
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 010 0 0
/Jl,(b; 1t)=00000 00 0001

001000000001

001 100000000
001000000010
000010000001
000010000001

By applying the definition of the -- equivalence relation, we see that p1,(b; .s, t) has 3
connected components, {1}, {2}, and {3,4, 5, 6,7,8,9, 10, 11, 12}. The first two compo-
nents are 1 x 1 zero entries; thus Proposition 2.4 gives that cap(S.q) = d(ji) where ji
is the matrix obtained from p1,(b; a, t) by eliminating the first two rows and columns.
Let £ > 0. By Theorem 2.3, d(pc€) is the log of the largest positive eigenvalue of the
matrix jS which is obtained by adding £ to the zero elements of ft. Since the eigenvalues
of a matrix depend continuously on the matrix entries (e.g. [21), the largest positive
eigenvalue of ji€ approaches the largest positive eigenvalue a of ft as goes to zero. By
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Proposition 2.5, d(At) approaches d(js) as c goes to zero. The combination of these facts
implies that d(jA) = log(a). Since TI is a connected component of the control array /, p
is an irreducible matrix. Thus nonnegative matrix theory (Chapter 2 of [3]) gives that
a is less than 2 since the largest positive eigenvalue of an irreducible matrix is less than
or equal to the largest row sum of the matrix with equality if and only if all row sums
are equal. We have proved that cap(S) < 1. 0

To complete the proof of (5), we will show that

cap(51 x 1) _> 1 (18)

where Yj is an isomirphic copy of S, (we obtain T, by adding overlines to the input,
output, and state sets of Sj). By Theorem 2.1, it suffices to exhibit a block-policy code
for S x 31 with a rate arbitrarily close to 1. We construct block-policy codes B. with
rates 4n/(4n + 1) where n > 1:

Definition 3.3 We define

B, = (ao, 4n, 4n + 1,X,,ir,n)

where

1. ao = (0,0) is the initial state of Sx .

2. 7r4n+l E 114n+1 is defined by

{ b ifkmod4E {2,3}

Ir4n+l(io1 ... ikoIk) - or k = 4n
b otherwise.

3. Let the transmitter input h in S, where next(7, h) = 0 be denoted by w. We
say that w causes the transmitter input transition 7 - 0. We may also assume
that w causes transmitter input transitions 8 - 0, 0 - 1, 5 -* 5, and 6 - 6.
Let z cause transmitter input transition 0 -- 2; we let y cause transmitter input
transition 0 --+ 3. Let z cause transmitter input transition 0 -- 4. We make the
same definitions in Yj by adding overlines to the above definitions. We define
hi ... h4n+l E Xn if and only if for 1 < i < 4n + 1,

(ifimod4 = land i 61,
or i = 4n

h W if i mod 4 = 3
w,z,y, orz ifimod4=0andi#4n,

o=or= 1
u, ,,, or T2 if i mod 4 = 2.
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It is easy to check that 8, is a block-policy code with rate 4n/(4n + 1) for n > 1. We
have established (18); thus (5) follows from Proposition 3.2.
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SECTION 4

R-CONTROLLED SIGNALLING SYSTEMS

In this section, we define a restricted-controlled signalling system, or r-controlled
signalling system (r-css), establish the structure of the P-control array, and state and
prove a product theorem. The r-controlled signalling systems are a subclass of the
class of controlled signalling systems for which (4) holds. We will see that in the serial
product of r-controlled signalling systems, the P-types play the same role as the types
do in the analysis in Section 2. The P-types turn out to be Cartesian products of types
of the individual systems in the product; we are therefore able to decompose the serial
product of r-controlled signalling systems.

Definition 4.1 (r-css) An r-controlled signalling system is a controlled signalling sys-
tem with the following additional two properties:

1. If there exists hl,h 2 E IT and states s,t,u E S such that next(s, hi) = t and
nezt(t, h2 ) = u, then there exists h E IT such that nezt(s, h) = u.

2. For each a E S, there exists i, E IT such that nezt(s, i,) = s.

All the results from Section 2 must therefore hold for r-controlled signalling sys-
tems. We note that the product of r-controlled signalling systems is in general not a
r-controlled signalling system.

Definition 4.2 (P-types) Let S1 and S2 be r-controlled signalling systems. Let / =

i 01 ... inon be a receiver output string for the controlled signalling system S X 82.

P-type(O) = {a E S : there exists hjh 2 ... hn E IT

such that hih 2 ... hn is consistent with

/, aohli, ... hin = a, and hi E 'IT

if and only if ij E IR, 1 < j < n}.

It is easy to construct examples such that P-type(o) 0 type(O) where / is a receiver
output string for the controlled signalling system SI x S2.
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Lemma 4.1 Let S = S1 x 32 be the product of the r-controlled signalling systems S1
and S2, and let

0 = ilol...ino.

be a receiver output string for S. Let

a = rlO' ... |?.mOt-m

be the string obtained by deleting the symbols of 12. and 12R from /3. Let

7 = :81 0&1 .. .1081

be the string obtained by deleting the symbols of IT and I,, from /3. Then a E
Sig"m (ajo) and 7 E Sigt(a2o). Also

P-type(#) = type(a) x type(7).

Conversely, if a E Sig'(aj.) and 7 E Sigl(a2,), then

B= 07

is a receiver output string for S such that

P-type(O) = type(a) x type(7).

Proof: We first show that the string a obtained by deleting the symbols of 12T and 12R

from f satisfies a E Sigm(alo). There exists a strategy r for S and hi ... h, E (IITUI2T)n

such that

-(ir,(aio,a2o)) (h, ... hn) = (iio 1 ... inon).

For 1 <j < m, we let

ind,., {v : rj- 1 < v < ri and h,, E IT,}

where we define ro = 0. Let hi 1,..., hi, be an enumeration of the set ind, , where
j, < ... < j.. Let

(ej, fj) = endpt(7r, (al,, a20 ); hi ... h ),

1 < j :_ m, and let e0 = aa. Since S, is an r-controlled signalling system, there exists
gj E IIT such that

ej-lgj = ejlhj, ... h.,,

1 < j < m. If ind,, is empty, we let gi = ie,,i where e-lie-_,- = e- 1, 1 < j < m. Thus

l(,(l1o) .. .g.) = i" o - .. o
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where r, is a strategy for 81 such that

1o ... "i, ,) = 0,

1 :< t < m. We have proved that a is a receiver output string for 81. The same argument
shows that -y is a receiver output string for $2.

We now prove that
P-type(fl) = type(cr) x type( ,).

Let (4, t 2 ) E type(a) x type(7). Thus the types definition gives that there exists
h,1 h,2 ... hh, E II. such that h 1 h72 ... hrn is consistent with a and

al0 h,1 i 1 il... hrmir, = ti.

Also, there exists h,1 ho12 ... h, E I2T such that h, h. 2 ... h., is consistent with -y and

a20 h. 1 i,1 ... h.,i, = t2.

It is easy to check that (t 1 , 2 ) E P-type(/) since h, ... hn is consistent with 3,

aohlii...hnin = (44, 2),

and hi E IIT if and only if ii E IAt, 1 <j < n.

Let (,t2) E P-type(3). Thus there exists t ... h, consistent with 03 such that
aoh ii ... hnin = (ti,t2) and hi E 'iT if and only if ii E IIR, 1 < j < n. It is easy to
check (Definition 2.9) that h,, ... h,, is consistent with a and a0h, , , .. , hr,.imr = tl.

Hence ti E type(a). The same argument shows that t2 E type(dy).

We now prove the converse; let a and 7 be receiver output strings for S 1 and S2,
respectively. Thus there exist finite strategies r1 and 1r2 for S1 and 8 2, respectively, and
h, ... hm E IT and hm+i ... hm+i E I2T such that

'(iai0) (h ... hm) = a

and
'(w2, 2o) (hm+i ... h, +) = 7-.

Let
Tj = r.1" m

and
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where iri : (/1, x O)j - 1 ,.1 and 7r2 :V(2R X O)* - 1 - I2R, 1 < j _< m, 1 < k <1. We

then have
1 In1-2 -

where we define

for z E (IR x O)l and Y E (I2R x O)1 - 1. It then follows that

-(' 1 ,7 2, (610 ,420 )) (h, ... hm+i) = aT.

Thus /3 = a-y is a receiver output string for S, x S2. The first part of the lemma now
shows that P-tiype(fl) = type(a) x type(7). 0

Proposition 4.1 Let S1 and S2 be r-controlled signalling systems and let S = S, x S 2.
Let h, ... h, be consistent with

/ = i1ol ... i.o.

such that
faohli ... hni = (S,82).

If in E I2R, (Ij), there exists h,... hn and h E hiT (12T) such that h, ... hn is consistent
with /3 and

aohil ... hinh = (01, 2)

where hi E iT if and only if ii E '1R, 1 < j < n. Thus

O(type(3), i) = O(P-type(fl), i).

Proof: To prove the first statement, we use induction on the length of /3. We will prove
the case where in E 1 2R; the proof of the other case is analogous.

Let n = 1. If hi E 12T, then we let h - h, where z = endpt(aohlij) and zh = z.
We call h, the self-loop at state z. Suppose hi E 'r We let h = h, and h, =h'
where z = a2.. (We recall that the initial state is (a,.,a2 ).) It then follows that h1 is
consistent with /3 = iio and a0hlilh = (81,82).

We assume the result holds for integers less than n. Let

01 = ilol ... i.-n. -.

It follows that h, ... hn- 1 is consistent with #I; let

( 1 , t2 ) = aoh il ... hn-lin-.
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If in- 1 E I2R (I,.), the induction hypothesis gives that there exists h, .....h- 1 and
9 E hiT (V2T) such that hl ... hn-1 is consistent with 1 and

aohl i... hn-1in-ig = (tl, t2 )

where hi E IIT if and only if ii E IAR, 1 < j < n - 1. Let

(zI, z 2) = endpt(aoh ii ... hn-1 in-).

Case a hn E I2T and in-1 i E 12R. Thus g E !T" We let hn = h, and h = g. It is easy

to check that out(z2hn, in) = on and z2hni,n = 82. Since hn E I2r, in E I2R, and
h E IT, it follows that s, = tj. Thus the proof follows in this case.

Case b hn E I2T, in- 1 E IAR. Thus g E I2T. We have s, = tj = z, and we let h be the
transmitter self-loop for 91. Since 52 is a r-controlled signalling system, we may
choose h, such that z2ghn = z2hn. We have out(z2 h,, in) = on and z2hnin = s 2.
The proof of case b now follows.

Case c hn E IT, i,- 1 E 12,. Thus g E 11T. We choose hn to be the transmitter self-
loop for state z2 . We have z2in = .2. Also, out(z 2hn, in) = on. We define h such
that z1gh, = z1h. Thus z1h = .i and the proof of case c follows.

Case d h, E IT, in- 1 E I1. Thus g E I2T. Let hn = g. We let h = hn. We have
Z2hn = t2 . Thus out(z2 hn, in) = on. Also, zh = sl. The proof of case d follows.

We now prove the second part of the proposition. We have

O( P-type(O), 0) _ O( type(,3), 0)

since P-type(3) C type(#). For the other direction, let o E O(type(3), i). Without loss of
generality, we may assume i E I,. There exists (81,82) E type(#) and h E IT such that
out((ai,32)h, i) = o. By the first part of the proposition, there exists (tl, t2 ) E P-type(3)
and h E IT such that (t1 ,t2 )h = (Si, SO.

Suppose h E hT . We then have tjh = sl and out(tuhh, i) = o. There exists h, such
that out(t hl,i) = o. Thus o E O(P-type(P), i).

Suppose h E I2T. We then have t2 h = 52, and tj = sl. Thus o E O(P-type(B), i). 0

Proposition 4.2 (P-type growth properties) Let , and 82 be r-controlled sig-
nalling systems. Let I and 12 be receiver output strings for S, x 2 such that
P-type(PI) = P-type(B3). Let i E IR.
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1. We have

O(type(31 ), i) = O(type(0 2), i).

2. Let i E I1, and o E O(type(131),i). If

P-type( 1 ) = type(a) x type(7)

then o E O(type(a), i) and

P-type(Plio) = type(aio) x type(-y).

An analogous statement holds if i E I2R.

3. Let 0 E O(type(l3i), i). We have

P-type(Olio) = P-type(,32io).

Proof: The proof of the first statement follows immediately from the last statement
of Proposition 4.1 and the fact that P-type(PI) = P-type(082). The proof of the second
statement follows immediately from Lemma 4.1. The proof of the last statement follows
immediately from the second statement. 0

Definition 4.3 (P-control array) Let S, and S2 be r-controlled signalling systems
and let S = S, xS 2 . Let wl,...,wt be an enumeration of the P-types of S. Let il,. .. ,R
be an enumeration of the receiver input alphabet. We define the following array of
integers to be the P-control array of 3 :

p(r; wi, wi) = I{o : 0io E Sig'n+l(ao), 0i has length m,

P-type(/3) = wi, and P-type(iro) = w,}I

for 1 <i,j<land 1 <r<R.

Proposition 4.2 shows that the P-control array is well-defined.

Lemma 4.2 Let S, and S2 be r-controlled signalling systems and let S = S, x S2. Let
,31 and f2 be receiver output strings for S. We also let w, ... wi be an enumeration of
the set of P-types of S. We have:

1. For n > 0, V' (, 1) = V'(# 2) if P-type(l) = P-type(32). Thus the V's are

well-defined on the set of P-types.
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2. Let w be a P-type. For n > 1,

V'(w) = max j(r; w,w)V"1 (w1 ).r

j=1

Proof: Theorem 2.2 gives that

Vn(f3) = max Vn-1 (3io) (19)
oEO(tYpe(fl),ir)

for receiver output strings 3 and n > 1. We may now prove the first statement of the
lemma by induction on n. The induction step follows by applying the first and last
statements of Proposition 4.2 to (19). For the second statement of the lemma, we fix
an output string 3 of P-type w. Since the number of terms on the right-hand side of
(19) of a fixed P-type wj is p(r; w, wj), the proof of the second statement follows from
(19). 0

Let IR = {il,...,iRI for a controlled signalling system S1. We define C(r) =

[p(r, a, t)], 1 < r < R. We say that S has control array C(1),. .. ,C(l).

Theorem 4.1 Let S1 and S2 be r-controlled signalling systems with control arrays
A(1),..., A(I) and B(1),..., B(m), respectively. Let the types of S1 and 32 be si,., sp
and tl,..., tq, respectively. We choose

Si X t,...,Sp X tl,...,Si X tq,...,Sp X tq

as our ordering for the P-types of S = S1 x S2. Then S, x 82 has P-control array

'U(1', ,) ,./'(I + M , S,t)

where
A(r) 0 ... 0

0 A(r) ... 0
p(r, s, t) = 1_r< ,

0 0 ... A(r)

B(u)iiIv B(u) 12 l ... B(u)iqIp

t) B(U) 2 1, B(U) 22I ... B(U)2qIp

B(u)ql Ip B(L)q2Ip ... B(tU)qqlp

u =r-l l+ 1 < r <1+ m,

and I p is the p x p identity matrix.
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Proof: The proof follows from our ordering of the P-types combined with the second
statement of Proposition 4.2. 0

We are now in a position to prove formula (4) for r-controlled signalling systems.

Theorem 4.2

cap(Si x S2) = maz{cap(Sl), cap(S2)}

where S and S2 are r-controlled signalling systems.

Proof: Let S = S, x 2. We use induction on n to prove the following formula:

Vn (S; 3 X t) <5 E_ Vk(S,; $)Vn-k (S2; t) (20)
k=O

where a and t are types for S, and $2, respectively. The n = 1 case is straightforward
and is left to the reader. Suppose (20) is true for n - 1.

Vn(S,s x t) - max E(r,s x t, w)Vn- I (S, w) (21)

- Py,.9 x t,W)v -I(S'W) (22)
U,

- _ (i, s x t, W X t)V - (S, w, x t) (23)

n-1

< Pi(i, 8, , ) E Vk(S,; w,)Vn-l-k(S 2 ; t) (24)
W1 k--O
n-1

- _ v (-1-s2 ; t) 1:( , w1)Vk(Sl; wI)
k--O W1
n-1

= Vn--k(S 2; t)Vk+I(Si, a) (25)
k--O

< _: V"-k (S2; t)Vk(SI, s).
k=O

Equation (21) is the second statement of Lemma 4.2. In (22), i is the maximum r value
from (21); we have assumed that is E I,,. The argument is the same in the case where
i4 E 12R. Equation (23) follows from the structure of the P-control array. Inequality (24)
is the inductive hypothesis combined with the fact that p(#, a x t, w, x t) = 'i( , s, wl)
where p, is the control array for St. Equation (25) follows from applying Theorem 2.2
(the optimality equation). Thus we have completed the induction proof for (20).
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Theorem 2.1 gives that

cap(S,) = ir sup log d"(S, ao) (26)
n- oo n

where S, is a controlled signalling system. Let cl = cap(Sl) and c2 = cap(S 2 ). We
choose c > max{c1,c 2}. By (26), we can choose L > 1 such that V(Sj,ajo) < 2'c and
V'(S 2 , a20) < 2 c for 1 > L. We recall from section 2

rate{xn} = lir sup -09 Xn (27)
n1-oo n

for any infinite sequence {xn}. We choose M > 1 such that

maX{VL(SI ; a 0 ), VL( 2; a2,)} < M.

We now have
11

V"(S;a,. x a2o) < E Vk(SI;a 1 o)V"-k(S 2; a2o)
k=0
L n

= Zvk(sI;ao)Vn-k(S 2;a2 o) + a V((S5;a 1 ;)V"-k(5;a20 ) +
k=O k=n-L
SVk(Sl; alo)Vm-k(S 2 ; a2o)

k=L+l

5 M(L + 1)Vn(S 2; a2o) + M(L + 1)V'(S;al0) +
n-L-1

F,2kc2(n-k)c

k=L+1

< M(L + 1)V 1(SI;alo) + M(L + 1)V(S 2 ;a, 0) + (n -2L- 1)2 nc.

If {X,} and {y,,} are infinite sequences, it easy to show that

rate{xn + Yn} = max{rate{xn}, rate{yn}}. (28)

Equation (28) applied to the last member of the previous chain of inequalities gives

rate{V"(S;al0 xa 2o)} < max{c1,C2 ,C} (29)

= C.

Equations (26) and (27) applied to the left side of (29) give that

cap(S) < c.

The proof now follows. 3

The definitions and results of this section can be extended to products of n r- con-
trolled signalling systems.
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