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1    Note on Appendices 

The appendices are the papers and reports prepared under this grant. These are all entries 
listed in the section "List of Publications and Reports" except for the three Computer Science 
Department theses listed. 

The appendices are physically included in the master copy sent to the project monitor. 
Other copies (except theses) of the papers are being sent directly to the ARO library. 

Note: All papers except the Wilson and Loveland and the Biermann et al papers have 
appeared or are scheduled to appear in journals, conferences with published proceedings or 
chapters in books. Some of these formats do not provide reprints but are publicly available. 
We send fifteen copies of each paper in technical report form if reprints are not available. 
The Wilson and Loveland report (awaiting revision and submission) and the Biermann et al 
paper (submitted) will have fifty copies deposited in the ARO library. 



2    Research Summary 

2.1     Statement of Problems Studied 

This is the final report for ARO Grant DAAL03-88-K-0082. Several different projects were 
pursued within the context of studying inference and decision mechanisms of Artificial In- 
telligence (AI). We report on them separately below, although there is interaction on the 
projects, usually of an informal nature where ideas are discussed and critiqued. Names are 
associated with those who actively initiate, direct and execute the project in substantial form. 
In doing so the degree of usefulness of periodic critiquing is lost in the formal documentation 
of the projects. Other means of cooperation range from jointly being on the doctoral boards 
of students in each area, to joint papers such as the paper [LN91] by Nadathur and I oveland 
on logic programming. With this said we present the sections with the name of the principal 
investigator of that area. 

We note that the amount of funds actually provided by this grant is small but stress 
that the usefulness was disproportionate to the funds. Funds were used in each area to 
supplement funds from other grants. These funds provided critical student support, faculty 
support and even transportation of student or faculty to present these results at professional 
conferences, where useful feedback was obtained as well as broadcasting of the achievements. 

In the first section we summarize a revisit to an old technology using modern imple- 
mentation methods, in the domain of uniform first-order (logic) proof procedures. Uniform 
proof procedures are truly general nurpose in that no specialization to a domain has oc- 
curred. Such procedures are particularly valuable in general artificial intelligence projects 
as general-purpose inference engines. The procedure studied here, Model Elimination (ME), 
has been used in several language understanding projects, for example. The ME procedure 
is revisited because of its attractiveness for parallel computer implementation but we learn 
that the sequential version is surprisingly strong also. 

The second section covers the Near-Horn Prolog project, a study (begun before this grant 
period) to develop the best possible extension of Prolog that addresses the need to handle 
positive disjunctions. We have reason to believe that we have met our goal, although final 
evidence in the form of the completed compiler is yet to be gathered. We summarize the 
reasons for our belief in our success and note the activities done with partial support from 
this grant. Finally, we note the remaining tasks, which involve application and assessment 
of the technical success we believe we have realized. As for each of the areas we summarize, 
the details are in the reports and reprints associated with this final report. 

Next we present a summary of the work done on the AProlog extension to Prolog, an 
extension that incorporates constructs of higher-order logic in the framework of the Prolog 
setting (i.e., into an extended logic programming setting that preserves the search character- 
istics and the definite answer characteristics Prolog enjoys). This work also began before this 
grant was awarded. During this grant period work focussed on a) extending the language, 
b) implementation issues, and c) applications.  To-date we have completed the theoretical 



work underlying the promised extension, we have studied several "system" related issues and 
implementation techniques relevant to the resulting language and have started on an actual 
implementation based on these studies. We report in detail on the work already completed 
and indicate the ongoing and remaining work in the appropriate section. 

The final section addresses learning and summarizes three studies. The first concerns 
the foundations of learning; addressed is the question of the capacity to learn and the rate 
of learning. A tradeoff is established; the larger the space of events that can be learned the 
slower the learning rate. This is made precise by a "tradeoff" formula. The second study, 
in the area of connectionist learning theory, involves temporal learning and the question of 
flexibility for training but with retention capability. The third study examined terhniques 
for synthesizing real-time programs. The latter two studies were Ph.D. theses under Dr. 
Biermann's direction. Neither student was funded under this grant but both were funded 
under the previous ARO grant. Both students continued into this grant period using other 
funding but Dr. Biermann was partially funded by this grant during the period he continued 
to work with these students. 

2.2     Summary of Results 

2.2.1    The METEOR prover (D. Loveland) 

Historically, depth-first (linear) resolution procedures have not fared well in proving deeper 
theorems relative to breadth-first resolution provers of various types, primarily because of 
the search redundancy problem. However, we can now demonstrate that the Model Elimina- 
tiOL (ME) procedure, a linear input resolution-like procedure, may be a superior approach 
for certain types of problems (generally non-Horn problems). The ME theorem provers 
that provide this demonstration were implemented by Owen Astrachan at Duke, initially 
as a M.A. thesis project [Ast89] and partially funded by this grant. Development has con- 
tinued as it has become the basis of work for his Ph.D. dissertation. (The new work on 
incorporating lemmas and caching within ME, which is an important part of his Ph.D. dis- 
sertation, is not addressed here.) The provers, of which there are several variants, are named 
METEOR provers, METEOR denoting "Model Elimination Theorem Prover with Efficient 
OR-Parallelism*. The name, which now extends to a full family of theorem provers, is 
based on the first implementation by Owen. This was a parallel implementation on the 
shared-memory machine at Duke; the BBN Butterfly. The results presented in [AL91] cen- 
ter on the advanced implementations that establish that the ME proof procedure can yield 
state-of-the-art theorem provers. Studies now underway, including Owen Astrachan's Ph.D. 
dissertation work, seeks to establish that the ME mechanism can be used in theorem provers 
that strongly advance the state-of-the-art in first-order proof procedures. 

There is a conjunction of reasons why the METEOR provers presently appear so effective. 
The reasons are: the inherent speed advantage of linear input systems, the sophistication 
of the WAM architecture in exploiting this advantage, a program written in the language C 



using tight coding and effective data structures, the speed of the platforms on which they 
run, and the successful use of different search strategies. 

The METEOR system is really three systems, very highly related; a sequential (single- 
processor) system, a Butterfly implementation and a system for using a distributed network 
of (SUN) workstations. We studied the performance of each of these variations, both on 
problems run on other provers (primarily other ME-based theorem provers, sequential and 
parallel) and on a difficult graded set of theorems, including the Bledsoe challenge problems 
given in the Journal of Automated Reasoning in September 1990. No METEOR system 
can handle all of the challange problems, but to our knowledge only the STR+ve prover of 
Bledsoe-Hines can solve all of these and in their system special mechanisms handle inequali- 
ties. Special handling of designated predicates is not present in the (pure) ME procedure that 
we use. It is a display of the value of the mechanisms of STR+VE that all these challenge 
problems are handled by STR-f VE; however, we find value in these problems for assessment 
of the capabilities of METEOR and find it encouraging that no better performance results 
are known for these problems for resolution theorem provers, other ME provers and similar 
systems. 

One of the most interesting features of the results we obtained is the relative effectiveness 
of certain depth measures used in the iterative-deepening search. The fact that, for most of 
the problems we have tried, our best times are often considerably faster than other reported 
times is certainly partly due to the clock speed of the SUN workstations we have available, 
also due (we like to think) to the quality of the actual implementation and the effectiveness 
of the scheduler; but the effectiveness of the depth measure jsed is key. The proof search uses 
iterated deepening, the now standard method of realizing completeness in a depth-first search 
procedure. By iterative deepening we mean expanding the search tree fully to a specified 
depth, incrementing the depth bound and reexpanding the search tree, and continuing this 
until a proof is found or the search is terminated. We have investigated two different depth 
measures and a third which combines the first two may be the most appropiate in many 
cases. The first depth measure counts the number of inferences in an attempted proof, 
so every proof attempt gets equal (time) resources. This is a common type of measure in 
automated theorem provers. The second measure, perhaps unique to ME, counts the size of 
possible partial models that might invalidate the attempted theorem. If the possible partial 
models are shown to fail in light of the theorem statement, then that model is discarded, 
which is clear progress with this set of formulas (clauses) of the theorem and the system 
continues with this proof direction trying to refute more invalidating possible models. The 
size of the possible models is usually considerably less than the total number of inferences 
used ( the first depth measure) when progress is being made, but the size grows closer to 
the total inference count when progress is not made. This measure is often very effective, 
and was used for the Bledsoe challange problems, but can be ineffective if there are large 
numbers of possible models of each size. We continue to investigate the usefulness of each 
depth measure and realize that the results may change in the light of the lemma and caching 
ideas we are now pursuing. 



2.2.2   Near-Horn Prolog (D. Loveland) 

The basic goal behind the Near-Horn Prolog project at Duke has been to extend Prolog to 
disjunctive logic programs (and thus full first-order expressibility) while retaining as much 
of the clarity and procedural simplicity of Prolog as possible. The approach taken to achieve 
this goal has been to combine Prolog with case analysis reasoning. The research work 
within the project can roughly be divided into three areas: procedure design, semantics, 
and implementation. Three different variants of Near-Horn Prolog have been devised of 
which the most recent variant, Inheritance near-Horn Prolog (InH-Prolog), is the variant 
currently favored. The semantics for the near-Horn Prologs, specifically for InH-Prolog, 
have been investigated, resulting in a case-analysis based fixpoint semantics which mimics 
the procedural behavior of InH-Prolog. Also, both classical and default negation have been 
incorporated into the near-Horn Prolog systems. Finally, an interpreter for the original near- 
Horn Prolog variant was implemented, and a compiler for the InH-Prolog variant is currently 
nearing completion. 

As stated above, the approach to the design of the near-Horn procedures was to combine 
Prolog with case analysis reasoning. In [Lov87, Lov91], we developed the procedure now 
known as Unit near-Horn Prolog (UnH-Prolog) (originally called "Progressive nH- 
Prolog"), as well as the conceptually simpler but incomplete variant Naive near-Horn 
Prolog (NnH-Prolog). Following these, we (Loveland and Reed [LR89]) developed the 
Inheritance near-Horn Prolog (InH-Prolog) variant that is simpler and sometimes 
permits shorter proofs, but may have a lower lips rate than the earlier nH-Prologs. (The /it 
lips rate refers to logical inferences per second.) These near-Horn Prolog procedures have 
several features which make them desirable when compared to existing procedures such as 
Model Elimination [Lov78] and SLI-resolution [MZ82]. (Note: the SLI-resolution procedure 
is based on the Model Elimination (ME) procedure that was developed two decades ago by us 
(Loveland). These procedures are actively being studied by others as extensions of Prolog, 
including for disjunctive logic programming. The near-Horn procedures were developed 
by us to specifically address some of the shortcomings of ME when perceived as a logic 
programming language. The ME procedure is a very useful procedure in different contexts 
such as automated theorem proving or simply as an inference engine for artificial intelligence 
devices.) $ 

We now address the major advantages of nH-Prolog systems over ME-style systems when 
intended as logic programming languages (systems). First, the nH-Prolog family implements 
a positive implication logic, as Prolog does, meaning that clauses are in implication form 
and use only positive literals (atoms). This allows the same syntax for negation-as-fallure as 
used by Prolog; the negative literal in the clause body. (Negation-as-failure is a means of im- 
plementing negation that marks the negative statement as true when the positive statement 
fails to be shown in a finite length search. It is used strongly by the database community on 
the basis that all the true significant facts are listed, hence retreivable.) The positive impli- 
cation nature of the nH-Prologs also limits the number of contrapositives of program clauses 



which must be considered, and preserves the direction of information flow (goal-to-bod}') in 
these contrapositives. Second, the procedures are full first-order proof procedures (as are the 
above alternatives) providing the expressive power of the full logic, including classical nega- 
tion. However, here the classical negation is encoded within the positive implication logic, 
which allows the visual separation of classical negation from negation-as-failure. Third, the 
lips rate is higher than for ME or SLI-resolution. For the latter procedures a basic operation 
requires addressing the list of ancestor literals, which grows with proof depth. However, for 
NnH-Prolog or UnH-Prolog only one added atom must be consulted at most, and for InH- 
Prolog only as many atoms as the nested case-analysis needs locally. In practice this seems 
rarely to exceed two atoms. This brings the fourth point, that the performance degrades 
"gracefully" as the program becomes more non-Horn, rather than growing with proof depth 
as soon as one non-Horn clause is used. Fifth, and finally, the nH-Prolog procedures possess 
both a declarative and a (local) procedural semantics. The procedural reading that can be 
given the program is not shared by ME procedures. The procedural reading for nH-Prolog 
programs is very close to that of Prolog; the addition is that a non-Horn clause is read as 
a multientry procedure, where the atoms in the head that are not chosen are ignored (for 
the duration of the case under consideration). These characteristics of nH-Prolog procedures 
convince us that we have found the correct formulation for a first-order proof procedure if 
the goal is to preserve as many of the properties associated with Horn-clause logic program- 
ming as possible. The price paid is relatively poor performance if many non-Horn clauses 
exist in the program, an event we think will be rare in an application done within the logic 
programming paradigm. 

The most recent work on the nH-Prolog project has involved the fixpoint characterization 
of InH-Prolog (and the UnH-Prolog implicitly; an understood modification yields similar 
results for UnH-Prolog.) This work is reprted in [RLS91] and is developed in full detail in 
[Ree91]. This gives a way of understanding how a negation-as-failure concept of negation fits 
with the nH-Prolog procedures and provides some other insights into the procedures. Also, 
an important task has been to build a "protocompiler" for InH-Prolog. The "proto-" denotes 
that we are demonstrating certain design and performance characteristics and thus are not 
developing the full-efficiency compiler. In particular the protocompiler is implemented in 
Quint us Prolog, an expanded Prolog allowing access to C- programs, which are system-level- 
coded programs used for critical parts of the protocompiler. The interpreter is documented 
in [SL88]; the protocompiler is not yet completed nor yet documented in the literature. (It 
is nearing completion.) 

There is considerable activity in the area of disjunctive logic programming at present, 
demonstrated by the workshop on disjunctive kogic programming meeting in October, 1991, 
where 10 papers are being presented. However, there is a real question of the area of appli- 
cation for this technology. It is clear that there should be such because we have in theory 
extended logic programming to all of first-order logic, the classic representation language 
within the artificial intelligence world, for example. We do have many examples for illustra- 
tion, some of which have appeared in our papers. Also, we have given considerable thought 



to the quesstion of large-scale examples and areas of primary application. We presently feel 
that the (only) natural area of application is the planning area, because there the reliance on 
a single canonical (minimal) model, which is the key to Horn-clause logic which Prolog im- 
plements, is no longer valid. Planning involves multiple models with the "correct" model to 
be determined by time or refinement of knowledge. To undertake planning within the contex 
of logic programming will take time to develop but we have just learned of a real application 
of such a technique to a planning study involving the Great Barrier Reef in Australia. Such 
use will multiply in the future, we believe. 

2.2.3   Lambda Prolog (G. Nadathur) 

One component of the research originally proposed involved developing the higher-order 
logic programming language called AProlog. Work had previously been conducted on this 
language in collaboration with Dale Miller from the University of Pennsylvania, and the 
status of this work prior to the grant period was the following: The theoretical underpin- 
nings of what is now a subset of AProlog had been examined [Nad87] and an experimental 
implementation for the resulting language had been undertaken. This implementation had 
been used to demonstrate important applications for A Prolog as a programming language 
for implementing derivation systems [MN87, Nad87]. Experiments with the implementation 
had, however, indicated the necessity for including certain new primitives in the language in 
order to realize its full potential in the role of a metalanguage. Motivated by this experience, 
we had proposed (a) to undertake theoretical work to extend the language so as to include 
the desired programming features, (b) to investigate issues pertaining to implementing the 
resulting language efficiently and (c) to examine the applications of the language in a more 
complete fashion. Progress has been made on the first two aspects under this grant and, while 
we have not had the resources to devote to the last aspect ourselves, several of our colleagues 
have explored the application realm with much success (e.g. see [FM88, HM90, Pfe88]). In 
the paragraphs below, we explain in greater detail the specific work that has been supported 
in part by the grant. 

The original basis of AProlog was the logical theory of higher-order Horn clauses [NM90]. 
The language that resulted from using these formulas turned our to be very useful from 
the perspective of implementing derivation systems for two reasons. First, the underlying 
programming unit was a Horn clause and as such provided a very natural means for im- 
plementing inference rules that characterized typical derivation systems. Second, the data 
structures that were provided by virtue of the "higher-orderness" of the language were very 
well suited for representing syntactically complex objects in a natural manner; thus deriva- 
tion systems that manipulated extremely complicated entities could be easily implemented 
within the framework. However, there was a lacuna in the language given its application 
realm. In constructing subparts of a typical derivation, there is often a need to assume the 
existence of new entities as well as the truth of new facts; such an ability is needed, for in- 
stance, in constructing a proof of a universal or an implication statement in first-order logic. 



The Horn clause fragment unfortunately does not provide primitives for readily realizing 
these "assumption" capabilities. 

The first task that we undertook, then, was to add primitives for assuming new objects 
and new facts to the Horn clause framework while preserving properties that made the 
fragment useful for logic programming. At the very outset, this required understanding 
what the relationship between logic programming and Horn clauses is and describing ways 
in which Horn clauses may be extended while preserving this relationship. Our work on this 
aspect resulted in the notion of uniform proofs that is described in [MNPS]. This notion 
was used to outline a criterion for determining whether or not a given logical language 
was a suitable basis for logic programming. On the constructive side, this criterion was 
exploited in providing a very rich extension within intuitionistic logic to Horn clauses: the 
higher-order hereditary Harrop formulas described in [MNPS]. This extension to Horn clause 
logic provides a means not only for realizing the assumption capabilities mentioned above, 
but also for incorporating several abstraction mechanisms (such as modules) within logic 
programming. Both the notion of uniform proofs and our specific extension to Horn clause 
logic have turned out to be fairly significant results within logic programming: the first has 
been used in describing other extensions and the second has stimulated attempts to realize 
new programming language features using aspects of our extension. 

The second task that we undertook was that of providing an efficient implementation for 
the logic of higher-order hereditary Harrop formulas. The similarities between this logic and 
that of Horn clauses, argued for the use of the technology of the "Warren Abstract Machine" 
(WAM) in implementing this language as well. However, a means to deal with significant 
new problems have to be devised before a satisfactory adaptation is obtained. In particular, 
the following facets of the extended language have to be dea.lt with: 

(1) the use of "higher-order" terms and the need to perform function evaluation on these 
terms, 

(2) the embedding of higher-order unification with its branching characteristic within the 
normal Prolog computation regime, 

(3) the use of a typing regi^ne that, within logic programming, leads to a new set of 
computations to be performed at run-time, and 

(4) the presence of two new "search" primitives that provide the assumption capabilities 
discussed above. 

We have made much progress under the grant in understanding the true nature of the 
implementation problem posed by each of these features and in detailing methods for dealing 
with these problems. In joint work with Bharat Jayaraman from SUNY Buffalo, we have 
explored the necessary additions to the WAM in order to deal with higher-order unification 
and the new search primitives [JN91, NJ89].  We have, in fact, proposed implementation 



schemes for languages that incorporate each of these features and these schemes have several 
pleasing properties: the resulting machinery appears to be conservative over the Prolog 
subset of the language, the additions required are relatively well-controlled and the overall 
framework supports a fair degree of compilation. We have understood clearly the true nature 
of types in our language and also the implementation problems they raise [NP91] and, in 
joint work with two graduate students, have developed a scheme for dealing with them. 
The two main aspects of this scheme is that it permits much runtime type checking to be 
eliminated by compile time analysis and it generates compiled code to deal with the rest. 
In conjunction with the first aspect listed above, we are exploring representations of higher- 
order terms that are suitable in our context with Debra Wilson. We have succeeded in 
describing a representation that appears satisfactory for several purposes [NW90] and are 
studying its properties in ongoing work that has been partially supported by this grant. 
Finally, we have brought these various components of our work together in the design of an 
abstract machine for the logical language underlying AProlog. 

We had originally hoped to bring our implementation ideas to fruition in an actual com- 
piler for AProlog within the grant period. This goal, in retrospect, was extremely ambitious 
and has not been completely achieved. We are however in the the process of developing 
such an implementation. We hope to have an early version of this implementation available 
for release to a "friendly" user base in the summer of 1992 with the purpose of getting a 
feedback on the techniques used and of determining improvements to be made. 

2.2.4    Learning (A. Biermann) 

Associated with each learning system is a class of learnable behaviors. If the target behavior 
to be acquired is in the learnable class, it will be learned perfectly. If it is outside that class, 
the machine will only be able to acquire a behavior that approximates the target and it will 
always make errors. It is desirable for a learning machine to have a large learnable class 
to maximize the chances of acquiring the unknown behavior and to minimize the expected 
error when only an approximation is possible. However, it is also desirable to have a small 
learnable class so that learning can be achieved rapidly. Thus the design of learning machines 
involves selecting a position on the spectrum: minimum error and slow learning time versus 
larger error and faster learning time. 

We study the class learning machines that receive a binary input vector and compute a 
single binary value output and where learning is done by generalizing on examples of target 
input-output pairs. We derive a relationship that makes explicit the tradeoff described above. 
Specifically, we show that 

(log2(L,,))/2> >=1 - H(/J) 

where p is the number of binary inputs, Lp is the number of learnable behaviors, log2(Lp) is 
the minimum number of examples required to learn, and H(/3) is a function of the maximum 
allowed error. If the machine is required to learn with great accuracy, then H(,#) will be very 
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small, meaning that the number of examples required to learn will be nearly 2P. That is, it 
is necessary to observe almost every one of the possible input-output behaviors in order to 
learn if the allowed error rate is small. If the allowed error rate is large, then l\(3) will be 
larger, meaning that learning can be done with less information. 

We define a class of learning machines to be "realization sparse*' if the left side of the 
above relationship approaches zero as p becomes large. Such a class has the property that it 
can learn quickly but, for large p, it learns a disappearingly small class of behaviors. We show 
that common classes of learning machines such as the signature tables, the linear learning 
machines, and the conjunctive normal form learning machines are realization sparse in this 
sense. 

In a second study, we examine the classic "stability-plasticity" dilemma of connectionist 
learning theory. The problem here is that a system must be plastic enough to adapt to new 
incoming sequences and stable enough to hold them once they are learned even though many 
other patterns need to be learned. We have developed a neural network to solve this problem. 
The network is composed of two fields F1 and F2 where F1 converts temporal sequences 
to special patterns. F2 is an on-center ofF-surround network that obeys winner-take-all 
dynamics and is similar to a Grossberg-Carpenter architecture . At F2, new classifications 
can form without degrading previous classifications. The technique used is to make F2 a 
nonhomogeneous field. Nodes learn different output characteristics so that different nodes 
can respond preferentially to different size patterns. Nonuniform inhibitory connections aie 
learned at F2 to allow nodes to compete only with other nodes coding similar patterns. 
Extensive simulations demonstrate the viability of the approach. (This project was done by 
Albert Nigrin as a Ph.D. dissertation.) 

In a third study, we examine techniques for synthesizing real time programs from ex- 
amples of their behaviors. A real time program is defined here to be a program that reads 
a finite sequence of symbols and performs one computational step after each such symbol. 
The methodology requires a finite subset of target behaviors and creates the smallest finite 
graph B that can account for the behaviors. Then the graph is factored into two graphs, C 
and D, which represent respectively, the control and data structures for the target program. 
We show that by the construction, B=C.D where . is a graph product defined in a straight- 
forward way. The decomposition methodology uses the technique of Hartmanis-Stearns and 
has been demonstrated to be capable of creating a variety of interesting real time programs. 
(This was done by Amr Fahmy as a Ph.D dissertation.) 
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[4] Fahmy, A.F. Synthesis of real-time programs. Ph.D. dissertation. Department of Com- 
puter Science. Duke University. 19SS. v + 118 pp. 

[5] Jayaraman, B. and G. Nadathur. Implementation techniques for scoping constructs 
in logic programming. Proceedings of the Eighth International Conference on Logic 
Programming, MIT Press, 1991, 871 - 889. 

[6] Loveland, D.W. Near-Horn Prolog and beyond. Journal of Automated Reasoning, 7, 
1991,1-26. 

[7] Loveland, D.W. and D.W. Reed. A Near-Horn Prolog for compilation. To appear in 
Computational Logic: Essays in Honor of Alan Robinson, MIT Press. 

[8] Miller, D., G. Nadathur, F. Pfenning, A. Scedrov. Uniform Proofs as a foundation for 
logic programming. Annals of Pure and Appl. Logic. 51 (1991) 125 - 157. 

[9] Nadathur, G. and B. Jayaraman. Towards a WAM Model for AProlog. Proceedings of 
the North American Conference on Logic Programming, MIT Press. 1989, 1180 - 1198. 

[10] Nigrin, A. The stable learning of temporal patterns with an adaptive resonance circuit. 
Ph.D. dissertation, Department of Computer Science, Duke University, 1990, vii -f- 338 
pp. 

[11] Reed D.W. and D.W. Loveland. A comparison of three Prolog extensions. To appear 
in Journal of Logic Programming. 

[12] Reed, D.W., D.W. Loveland and B.T. Smith. An alternative characterization of dis- 
junctive logic programs. Proceedings of the 1991 International Symposium on Logic 
Programming, San Diego, Oct. 1991. 

[13] Wilson, D.S. and D.W. Loveland. Incorporating relevance testing in SATCHMO. Com- 
puter Science Technical Report CS-1989-24, Duke University, Nov. 19S9, 15 pp. 
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