
AD-A244 564 NTATION PAGE
Form Approved

OMB NO 0704 0188

Of«<:« 0< M*n*g*">»"t «no Buägf. eioe'AO'« AeOwttiO* P'C,*ci (0'C«0 '88) Aji^n^io« DC JCSCJ

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1991

3. REPORT TYPE AND DATES COVERED
Final Report 1988-91

4. TITLE AND SUBTITLE
Inference and Decision Mechanisms in
Artificial Intelligence: Final Report Dfrfic-oZ -Xf-t-ooIZs

6. AUTHOR(S)
D. W. Loveland (Principal Investigator)
A. W. Biermann (Co-Principal Investigator;

BT1G

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES)

Computer Science Department
Duke University
Durham, NC 27706

ELECTE
JAM 10 19? 2

PERFORMING ORGANIZATION
>0RT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING ' MONITORING
AGENCY REPORT NUMBER

AtO StSl9S-H-M'AJL

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

to
IS)
I

00
•Ft
00

13. ABSTRACT (Maximum 200 words)

This is the final report for ARO Grant DAAL03-88-K-0082, with investigators D.W. Loveland,
A.W. Biermann and G. Nadathur. This grant impacted several projects undertaken by these
investigators within the Duke C.S. Department. The METEOR theorem proving project focussed
on a parallel implementation of the Model Elimination proof procedure, but discovered that the
sequential version is also very powerful. The Near-Horn Prolog project addresses disjunctive logic
programming, which extends Horn clause logic (Prolog) by allowing clauses with multiple positive
literals. The AProlog project investigates foundationaJ and implementation related aspects of a
Prolog extension that incorporates higher-order logic terms and new search primitives into the
Horn clause logic framework. The resulting language has been shown to be useful for prototyping
new inference-oriented software. The final project is really several projects in learning; foundational,
utilizing connectionism, and learning real-time programs.

14 ^SUBJECT TERMS . - , . . ,
Final report, inference, decision, logic
programming, learning, theorem proving

15. NUMBER OF PAGES

15
16. PRICE CODE

17 SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18 SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7S40-O1-280-SS00 Standard Form 298 (Rev 2 89)

P'»«r.O*0 0> ANS, Sio W't
?9? •;;

9

Inference and Decision Mechanisms in Artificial Intelligence

Final Report

D. W. Loveland
A. W. Biermann

September 30, 1991

U. S. Army Research Office

DAAL03-88-K-0082

Duke University

Accesion For

NTIS CRA&I
DTiC TAB
Unannounced
Justification

i
D
d

By
Dist'ibittio'i

Dist

t-\

n- i
Awii a 'f.y f

&l-ü.Ji i

-I

Approved for Public Release;
Distribution Unlimited

The view, opinions, ond/or findings contoined in this report ore those of the
outhor(s) and should not be construed as an official department of the Army
position, policy, or decision, unless so designated by other documentation.

Contents

1 Note on Appendices 2

2 Research Summary 3

2.1 Statement of Problems Studied 3

2.2 Summary of Results 4

2.2.1 The METEOR prover 4

2.2.2 Near-Horn Prolog 6

2.2.3 Lambda Prolog 8

2.2.4 Learning 10

3 List of Publications and Reports 12

4 List of Participants 13

References 14

Appendices 16

1 Note on Appendices

The appendices are the papers and reports prepared under this grant. These are all entries
listed in the section "List of Publications and Reports" except for the three Computer Science
Department theses listed.

The appendices are physically included in the master copy sent to the project monitor.
Other copies (except theses) of the papers are being sent directly to the ARO library.

Note: All papers except the Wilson and Loveland and the Biermann et al papers have
appeared or are scheduled to appear in journals, conferences with published proceedings or
chapters in books. Some of these formats do not provide reprints but are publicly available.
We send fifteen copies of each paper in technical report form if reprints are not available.
The Wilson and Loveland report (awaiting revision and submission) and the Biermann et al
paper (submitted) will have fifty copies deposited in the ARO library.

2 Research Summary

2.1 Statement of Problems Studied

This is the final report for ARO Grant DAAL03-88-K-0082. Several different projects were
pursued within the context of studying inference and decision mechanisms of Artificial In-
telligence (AI). We report on them separately below, although there is interaction on the
projects, usually of an informal nature where ideas are discussed and critiqued. Names are
associated with those who actively initiate, direct and execute the project in substantial form.
In doing so the degree of usefulness of periodic critiquing is lost in the formal documentation
of the projects. Other means of cooperation range from jointly being on the doctoral boards
of students in each area, to joint papers such as the paper [LN91] by Nadathur and I oveland
on logic programming. With this said we present the sections with the name of the principal
investigator of that area.

We note that the amount of funds actually provided by this grant is small but stress
that the usefulness was disproportionate to the funds. Funds were used in each area to
supplement funds from other grants. These funds provided critical student support, faculty
support and even transportation of student or faculty to present these results at professional
conferences, where useful feedback was obtained as well as broadcasting of the achievements.

In the first section we summarize a revisit to an old technology using modern imple-
mentation methods, in the domain of uniform first-order (logic) proof procedures. Uniform
proof procedures are truly general nurpose in that no specialization to a domain has oc-
curred. Such procedures are particularly valuable in general artificial intelligence projects
as general-purpose inference engines. The procedure studied here, Model Elimination (ME),
has been used in several language understanding projects, for example. The ME procedure
is revisited because of its attractiveness for parallel computer implementation but we learn
that the sequential version is surprisingly strong also.

The second section covers the Near-Horn Prolog project, a study (begun before this grant
period) to develop the best possible extension of Prolog that addresses the need to handle
positive disjunctions. We have reason to believe that we have met our goal, although final
evidence in the form of the completed compiler is yet to be gathered. We summarize the
reasons for our belief in our success and note the activities done with partial support from
this grant. Finally, we note the remaining tasks, which involve application and assessment
of the technical success we believe we have realized. As for each of the areas we summarize,
the details are in the reports and reprints associated with this final report.

Next we present a summary of the work done on the AProlog extension to Prolog, an
extension that incorporates constructs of higher-order logic in the framework of the Prolog
setting (i.e., into an extended logic programming setting that preserves the search character-
istics and the definite answer characteristics Prolog enjoys). This work also began before this
grant was awarded. During this grant period work focussed on a) extending the language,
b) implementation issues, and c) applications. To-date we have completed the theoretical

work underlying the promised extension, we have studied several "system" related issues and
implementation techniques relevant to the resulting language and have started on an actual
implementation based on these studies. We report in detail on the work already completed
and indicate the ongoing and remaining work in the appropriate section.

The final section addresses learning and summarizes three studies. The first concerns
the foundations of learning; addressed is the question of the capacity to learn and the rate
of learning. A tradeoff is established; the larger the space of events that can be learned the
slower the learning rate. This is made precise by a "tradeoff" formula. The second study,
in the area of connectionist learning theory, involves temporal learning and the question of
flexibility for training but with retention capability. The third study examined terhniques
for synthesizing real-time programs. The latter two studies were Ph.D. theses under Dr.
Biermann's direction. Neither student was funded under this grant but both were funded
under the previous ARO grant. Both students continued into this grant period using other
funding but Dr. Biermann was partially funded by this grant during the period he continued
to work with these students.

2.2 Summary of Results

2.2.1 The METEOR prover (D. Loveland)

Historically, depth-first (linear) resolution procedures have not fared well in proving deeper
theorems relative to breadth-first resolution provers of various types, primarily because of
the search redundancy problem. However, we can now demonstrate that the Model Elimina-
tiOL (ME) procedure, a linear input resolution-like procedure, may be a superior approach
for certain types of problems (generally non-Horn problems). The ME theorem provers
that provide this demonstration were implemented by Owen Astrachan at Duke, initially
as a M.A. thesis project [Ast89] and partially funded by this grant. Development has con-
tinued as it has become the basis of work for his Ph.D. dissertation. (The new work on
incorporating lemmas and caching within ME, which is an important part of his Ph.D. dis-
sertation, is not addressed here.) The provers, of which there are several variants, are named
METEOR provers, METEOR denoting "Model Elimination Theorem Prover with Efficient
OR-Parallelism*. The name, which now extends to a full family of theorem provers, is
based on the first implementation by Owen. This was a parallel implementation on the
shared-memory machine at Duke; the BBN Butterfly. The results presented in [AL91] cen-
ter on the advanced implementations that establish that the ME proof procedure can yield
state-of-the-art theorem provers. Studies now underway, including Owen Astrachan's Ph.D.
dissertation work, seeks to establish that the ME mechanism can be used in theorem provers
that strongly advance the state-of-the-art in first-order proof procedures.

There is a conjunction of reasons why the METEOR provers presently appear so effective.
The reasons are: the inherent speed advantage of linear input systems, the sophistication
of the WAM architecture in exploiting this advantage, a program written in the language C

using tight coding and effective data structures, the speed of the platforms on which they
run, and the successful use of different search strategies.

The METEOR system is really three systems, very highly related; a sequential (single-
processor) system, a Butterfly implementation and a system for using a distributed network
of (SUN) workstations. We studied the performance of each of these variations, both on
problems run on other provers (primarily other ME-based theorem provers, sequential and
parallel) and on a difficult graded set of theorems, including the Bledsoe challenge problems
given in the Journal of Automated Reasoning in September 1990. No METEOR system
can handle all of the challange problems, but to our knowledge only the STR+ve prover of
Bledsoe-Hines can solve all of these and in their system special mechanisms handle inequali-
ties. Special handling of designated predicates is not present in the (pure) ME procedure that
we use. It is a display of the value of the mechanisms of STR+VE that all these challenge
problems are handled by STR-f VE; however, we find value in these problems for assessment
of the capabilities of METEOR and find it encouraging that no better performance results
are known for these problems for resolution theorem provers, other ME provers and similar
systems.

One of the most interesting features of the results we obtained is the relative effectiveness
of certain depth measures used in the iterative-deepening search. The fact that, for most of
the problems we have tried, our best times are often considerably faster than other reported
times is certainly partly due to the clock speed of the SUN workstations we have available,
also due (we like to think) to the quality of the actual implementation and the effectiveness
of the scheduler; but the effectiveness of the depth measure jsed is key. The proof search uses
iterated deepening, the now standard method of realizing completeness in a depth-first search
procedure. By iterative deepening we mean expanding the search tree fully to a specified
depth, incrementing the depth bound and reexpanding the search tree, and continuing this
until a proof is found or the search is terminated. We have investigated two different depth
measures and a third which combines the first two may be the most appropiate in many
cases. The first depth measure counts the number of inferences in an attempted proof,
so every proof attempt gets equal (time) resources. This is a common type of measure in
automated theorem provers. The second measure, perhaps unique to ME, counts the size of
possible partial models that might invalidate the attempted theorem. If the possible partial
models are shown to fail in light of the theorem statement, then that model is discarded,
which is clear progress with this set of formulas (clauses) of the theorem and the system
continues with this proof direction trying to refute more invalidating possible models. The
size of the possible models is usually considerably less than the total number of inferences
used (the first depth measure) when progress is being made, but the size grows closer to
the total inference count when progress is not made. This measure is often very effective,
and was used for the Bledsoe challange problems, but can be ineffective if there are large
numbers of possible models of each size. We continue to investigate the usefulness of each
depth measure and realize that the results may change in the light of the lemma and caching
ideas we are now pursuing.

2.2.2 Near-Horn Prolog (D. Loveland)

The basic goal behind the Near-Horn Prolog project at Duke has been to extend Prolog to
disjunctive logic programs (and thus full first-order expressibility) while retaining as much
of the clarity and procedural simplicity of Prolog as possible. The approach taken to achieve
this goal has been to combine Prolog with case analysis reasoning. The research work
within the project can roughly be divided into three areas: procedure design, semantics,
and implementation. Three different variants of Near-Horn Prolog have been devised of
which the most recent variant, Inheritance near-Horn Prolog (InH-Prolog), is the variant
currently favored. The semantics for the near-Horn Prologs, specifically for InH-Prolog,
have been investigated, resulting in a case-analysis based fixpoint semantics which mimics
the procedural behavior of InH-Prolog. Also, both classical and default negation have been
incorporated into the near-Horn Prolog systems. Finally, an interpreter for the original near-
Horn Prolog variant was implemented, and a compiler for the InH-Prolog variant is currently
nearing completion.

As stated above, the approach to the design of the near-Horn procedures was to combine
Prolog with case analysis reasoning. In [Lov87, Lov91], we developed the procedure now
known as Unit near-Horn Prolog (UnH-Prolog) (originally called "Progressive nH-
Prolog"), as well as the conceptually simpler but incomplete variant Naive near-Horn
Prolog (NnH-Prolog). Following these, we (Loveland and Reed [LR89]) developed the
Inheritance near-Horn Prolog (InH-Prolog) variant that is simpler and sometimes
permits shorter proofs, but may have a lower lips rate than the earlier nH-Prologs. (The /it
lips rate refers to logical inferences per second.) These near-Horn Prolog procedures have
several features which make them desirable when compared to existing procedures such as
Model Elimination [Lov78] and SLI-resolution [MZ82]. (Note: the SLI-resolution procedure
is based on the Model Elimination (ME) procedure that was developed two decades ago by us
(Loveland). These procedures are actively being studied by others as extensions of Prolog,
including for disjunctive logic programming. The near-Horn procedures were developed
by us to specifically address some of the shortcomings of ME when perceived as a logic
programming language. The ME procedure is a very useful procedure in different contexts
such as automated theorem proving or simply as an inference engine for artificial intelligence
devices.) $

We now address the major advantages of nH-Prolog systems over ME-style systems when
intended as logic programming languages (systems). First, the nH-Prolog family implements
a positive implication logic, as Prolog does, meaning that clauses are in implication form
and use only positive literals (atoms). This allows the same syntax for negation-as-fallure as
used by Prolog; the negative literal in the clause body. (Negation-as-failure is a means of im-
plementing negation that marks the negative statement as true when the positive statement
fails to be shown in a finite length search. It is used strongly by the database community on
the basis that all the true significant facts are listed, hence retreivable.) The positive impli-
cation nature of the nH-Prologs also limits the number of contrapositives of program clauses

which must be considered, and preserves the direction of information flow (goal-to-bod}') in
these contrapositives. Second, the procedures are full first-order proof procedures (as are the
above alternatives) providing the expressive power of the full logic, including classical nega-
tion. However, here the classical negation is encoded within the positive implication logic,
which allows the visual separation of classical negation from negation-as-failure. Third, the
lips rate is higher than for ME or SLI-resolution. For the latter procedures a basic operation
requires addressing the list of ancestor literals, which grows with proof depth. However, for
NnH-Prolog or UnH-Prolog only one added atom must be consulted at most, and for InH-
Prolog only as many atoms as the nested case-analysis needs locally. In practice this seems
rarely to exceed two atoms. This brings the fourth point, that the performance degrades
"gracefully" as the program becomes more non-Horn, rather than growing with proof depth
as soon as one non-Horn clause is used. Fifth, and finally, the nH-Prolog procedures possess
both a declarative and a (local) procedural semantics. The procedural reading that can be
given the program is not shared by ME procedures. The procedural reading for nH-Prolog
programs is very close to that of Prolog; the addition is that a non-Horn clause is read as
a multientry procedure, where the atoms in the head that are not chosen are ignored (for
the duration of the case under consideration). These characteristics of nH-Prolog procedures
convince us that we have found the correct formulation for a first-order proof procedure if
the goal is to preserve as many of the properties associated with Horn-clause logic program-
ming as possible. The price paid is relatively poor performance if many non-Horn clauses
exist in the program, an event we think will be rare in an application done within the logic
programming paradigm.

The most recent work on the nH-Prolog project has involved the fixpoint characterization
of InH-Prolog (and the UnH-Prolog implicitly; an understood modification yields similar
results for UnH-Prolog.) This work is reprted in [RLS91] and is developed in full detail in
[Ree91]. This gives a way of understanding how a negation-as-failure concept of negation fits
with the nH-Prolog procedures and provides some other insights into the procedures. Also,
an important task has been to build a "protocompiler" for InH-Prolog. The "proto-" denotes
that we are demonstrating certain design and performance characteristics and thus are not
developing the full-efficiency compiler. In particular the protocompiler is implemented in
Quint us Prolog, an expanded Prolog allowing access to C- programs, which are system-level-
coded programs used for critical parts of the protocompiler. The interpreter is documented
in [SL88]; the protocompiler is not yet completed nor yet documented in the literature. (It
is nearing completion.)

There is considerable activity in the area of disjunctive logic programming at present,
demonstrated by the workshop on disjunctive kogic programming meeting in October, 1991,
where 10 papers are being presented. However, there is a real question of the area of appli-
cation for this technology. It is clear that there should be such because we have in theory
extended logic programming to all of first-order logic, the classic representation language
within the artificial intelligence world, for example. We do have many examples for illustra-
tion, some of which have appeared in our papers. Also, we have given considerable thought

to the quesstion of large-scale examples and areas of primary application. We presently feel
that the (only) natural area of application is the planning area, because there the reliance on
a single canonical (minimal) model, which is the key to Horn-clause logic which Prolog im-
plements, is no longer valid. Planning involves multiple models with the "correct" model to
be determined by time or refinement of knowledge. To undertake planning within the contex
of logic programming will take time to develop but we have just learned of a real application
of such a technique to a planning study involving the Great Barrier Reef in Australia. Such
use will multiply in the future, we believe.

2.2.3 Lambda Prolog (G. Nadathur)

One component of the research originally proposed involved developing the higher-order
logic programming language called AProlog. Work had previously been conducted on this
language in collaboration with Dale Miller from the University of Pennsylvania, and the
status of this work prior to the grant period was the following: The theoretical underpin-
nings of what is now a subset of AProlog had been examined [Nad87] and an experimental
implementation for the resulting language had been undertaken. This implementation had
been used to demonstrate important applications for A Prolog as a programming language
for implementing derivation systems [MN87, Nad87]. Experiments with the implementation
had, however, indicated the necessity for including certain new primitives in the language in
order to realize its full potential in the role of a metalanguage. Motivated by this experience,
we had proposed (a) to undertake theoretical work to extend the language so as to include
the desired programming features, (b) to investigate issues pertaining to implementing the
resulting language efficiently and (c) to examine the applications of the language in a more
complete fashion. Progress has been made on the first two aspects under this grant and, while
we have not had the resources to devote to the last aspect ourselves, several of our colleagues
have explored the application realm with much success (e.g. see [FM88, HM90, Pfe88]). In
the paragraphs below, we explain in greater detail the specific work that has been supported
in part by the grant.

The original basis of AProlog was the logical theory of higher-order Horn clauses [NM90].
The language that resulted from using these formulas turned our to be very useful from
the perspective of implementing derivation systems for two reasons. First, the underlying
programming unit was a Horn clause and as such provided a very natural means for im-
plementing inference rules that characterized typical derivation systems. Second, the data
structures that were provided by virtue of the "higher-orderness" of the language were very
well suited for representing syntactically complex objects in a natural manner; thus deriva-
tion systems that manipulated extremely complicated entities could be easily implemented
within the framework. However, there was a lacuna in the language given its application
realm. In constructing subparts of a typical derivation, there is often a need to assume the
existence of new entities as well as the truth of new facts; such an ability is needed, for in-
stance, in constructing a proof of a universal or an implication statement in first-order logic.

The Horn clause fragment unfortunately does not provide primitives for readily realizing
these "assumption" capabilities.

The first task that we undertook, then, was to add primitives for assuming new objects
and new facts to the Horn clause framework while preserving properties that made the
fragment useful for logic programming. At the very outset, this required understanding
what the relationship between logic programming and Horn clauses is and describing ways
in which Horn clauses may be extended while preserving this relationship. Our work on this
aspect resulted in the notion of uniform proofs that is described in [MNPS]. This notion
was used to outline a criterion for determining whether or not a given logical language
was a suitable basis for logic programming. On the constructive side, this criterion was
exploited in providing a very rich extension within intuitionistic logic to Horn clauses: the
higher-order hereditary Harrop formulas described in [MNPS]. This extension to Horn clause
logic provides a means not only for realizing the assumption capabilities mentioned above,
but also for incorporating several abstraction mechanisms (such as modules) within logic
programming. Both the notion of uniform proofs and our specific extension to Horn clause
logic have turned out to be fairly significant results within logic programming: the first has
been used in describing other extensions and the second has stimulated attempts to realize
new programming language features using aspects of our extension.

The second task that we undertook was that of providing an efficient implementation for
the logic of higher-order hereditary Harrop formulas. The similarities between this logic and
that of Horn clauses, argued for the use of the technology of the "Warren Abstract Machine"
(WAM) in implementing this language as well. However, a means to deal with significant
new problems have to be devised before a satisfactory adaptation is obtained. In particular,
the following facets of the extended language have to be dea.lt with:

(1) the use of "higher-order" terms and the need to perform function evaluation on these
terms,

(2) the embedding of higher-order unification with its branching characteristic within the
normal Prolog computation regime,

(3) the use of a typing regi^ne that, within logic programming, leads to a new set of
computations to be performed at run-time, and

(4) the presence of two new "search" primitives that provide the assumption capabilities
discussed above.

We have made much progress under the grant in understanding the true nature of the
implementation problem posed by each of these features and in detailing methods for dealing
with these problems. In joint work with Bharat Jayaraman from SUNY Buffalo, we have
explored the necessary additions to the WAM in order to deal with higher-order unification
and the new search primitives [JN91, NJ89]. We have, in fact, proposed implementation

schemes for languages that incorporate each of these features and these schemes have several
pleasing properties: the resulting machinery appears to be conservative over the Prolog
subset of the language, the additions required are relatively well-controlled and the overall
framework supports a fair degree of compilation. We have understood clearly the true nature
of types in our language and also the implementation problems they raise [NP91] and, in
joint work with two graduate students, have developed a scheme for dealing with them.
The two main aspects of this scheme is that it permits much runtime type checking to be
eliminated by compile time analysis and it generates compiled code to deal with the rest.
In conjunction with the first aspect listed above, we are exploring representations of higher-
order terms that are suitable in our context with Debra Wilson. We have succeeded in
describing a representation that appears satisfactory for several purposes [NW90] and are
studying its properties in ongoing work that has been partially supported by this grant.
Finally, we have brought these various components of our work together in the design of an
abstract machine for the logical language underlying AProlog.

We had originally hoped to bring our implementation ideas to fruition in an actual com-
piler for AProlog within the grant period. This goal, in retrospect, was extremely ambitious
and has not been completely achieved. We are however in the the process of developing
such an implementation. We hope to have an early version of this implementation available
for release to a "friendly" user base in the summer of 1992 with the purpose of getting a
feedback on the techniques used and of determining improvements to be made.

2.2.4 Learning (A. Biermann)

Associated with each learning system is a class of learnable behaviors. If the target behavior
to be acquired is in the learnable class, it will be learned perfectly. If it is outside that class,
the machine will only be able to acquire a behavior that approximates the target and it will
always make errors. It is desirable for a learning machine to have a large learnable class
to maximize the chances of acquiring the unknown behavior and to minimize the expected
error when only an approximation is possible. However, it is also desirable to have a small
learnable class so that learning can be achieved rapidly. Thus the design of learning machines
involves selecting a position on the spectrum: minimum error and slow learning time versus
larger error and faster learning time.

We study the class learning machines that receive a binary input vector and compute a
single binary value output and where learning is done by generalizing on examples of target
input-output pairs. We derive a relationship that makes explicit the tradeoff described above.
Specifically, we show that

(log2(L,,))/2> >=1 - H(/J)

where p is the number of binary inputs, Lp is the number of learnable behaviors, log2(Lp) is
the minimum number of examples required to learn, and H(/3) is a function of the maximum
allowed error. If the machine is required to learn with great accuracy, then H(,#) will be very

10

small, meaning that the number of examples required to learn will be nearly 2P. That is, it
is necessary to observe almost every one of the possible input-output behaviors in order to
learn if the allowed error rate is small. If the allowed error rate is large, then l\(3) will be
larger, meaning that learning can be done with less information.

We define a class of learning machines to be "realization sparse*' if the left side of the
above relationship approaches zero as p becomes large. Such a class has the property that it
can learn quickly but, for large p, it learns a disappearingly small class of behaviors. We show
that common classes of learning machines such as the signature tables, the linear learning
machines, and the conjunctive normal form learning machines are realization sparse in this
sense.

In a second study, we examine the classic "stability-plasticity" dilemma of connectionist
learning theory. The problem here is that a system must be plastic enough to adapt to new
incoming sequences and stable enough to hold them once they are learned even though many
other patterns need to be learned. We have developed a neural network to solve this problem.
The network is composed of two fields F1 and F2 where F1 converts temporal sequences
to special patterns. F2 is an on-center ofF-surround network that obeys winner-take-all
dynamics and is similar to a Grossberg-Carpenter architecture . At F2, new classifications
can form without degrading previous classifications. The technique used is to make F2 a
nonhomogeneous field. Nodes learn different output characteristics so that different nodes
can respond preferentially to different size patterns. Nonuniform inhibitory connections aie
learned at F2 to allow nodes to compete only with other nodes coding similar patterns.
Extensive simulations demonstrate the viability of the approach. (This project was done by
Albert Nigrin as a Ph.D. dissertation.)

In a third study, we examine techniques for synthesizing real time programs from ex-
amples of their behaviors. A real time program is defined here to be a program that reads
a finite sequence of symbols and performs one computational step after each such symbol.
The methodology requires a finite subset of target behaviors and creates the smallest finite
graph B that can account for the behaviors. Then the graph is factored into two graphs, C
and D, which represent respectively, the control and data structures for the target program.
We show that by the construction, B=C.D where . is a graph product defined in a straight-
forward way. The decomposition methodology uses the technique of Hartmanis-Stearns and
has been demonstrated to be capable of creating a variety of interesting real time programs.
(This was done by Amr Fahmy as a Ph.D dissertation.)

11

3 Publications, Technical Reports and Ph.D. Theses
Partially Funded by this Grant

[1] O.L. Astrachan. METEOR: Model Elimination theorem proving for efficient 0R-
parallelism. M.S. Thesis, C.S. Dept., Duke Univ., Apr. 1989.

[2] O.L. Astrachan and D.W. Loveland. METEORs; high performance theorem provers
for Model Elimination. In R.S. Boyer, editor, Automated Reasoning: Essays in Honor
of Woody Bledsoe. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.

[3] Biermann, A.W., K.C. Gilbert, A. Fahmy, B. Koster. On the errors that learning
machines will make. Submitted to Artificial Intelligence. 57 pp.

[4] Fahmy, A.F. Synthesis of real-time programs. Ph.D. dissertation. Department of Com-
puter Science. Duke University. 19SS. v + 118 pp.

[5] Jayaraman, B. and G. Nadathur. Implementation techniques for scoping constructs
in logic programming. Proceedings of the Eighth International Conference on Logic
Programming, MIT Press, 1991, 871 - 889.

[6] Loveland, D.W. Near-Horn Prolog and beyond. Journal of Automated Reasoning, 7,
1991,1-26.

[7] Loveland, D.W. and D.W. Reed. A Near-Horn Prolog for compilation. To appear in
Computational Logic: Essays in Honor of Alan Robinson, MIT Press.

[8] Miller, D., G. Nadathur, F. Pfenning, A. Scedrov. Uniform Proofs as a foundation for
logic programming. Annals of Pure and Appl. Logic. 51 (1991) 125 - 157.

[9] Nadathur, G. and B. Jayaraman. Towards a WAM Model for AProlog. Proceedings of
the North American Conference on Logic Programming, MIT Press. 1989, 1180 - 1198.

[10] Nigrin, A. The stable learning of temporal patterns with an adaptive resonance circuit.
Ph.D. dissertation, Department of Computer Science, Duke University, 1990, vii -f- 338
pp.

[11] Reed D.W. and D.W. Loveland. A comparison of three Prolog extensions. To appear
in Journal of Logic Programming.

[12] Reed, D.W., D.W. Loveland and B.T. Smith. An alternative characterization of dis-
junctive logic programs. Proceedings of the 1991 International Symposium on Logic
Programming, San Diego, Oct. 1991.

[13] Wilson, D.S. and D.W. Loveland. Incorporating relevance testing in SATCHMO. Com-
puter Science Technical Report CS-1989-24, Duke University, Nov. 19S9, 15 pp.

12

4 Participating Scientific Personnel

Student Degree Earned

Owen L. Astrachan
David W. Reed
Debra Sue Wilson

M.A. (Ph.D. in progress)
(Ph.D. nearly completed)
(Ph.D. in progress)

Senior Investigators

Alan W. Biermann
Donald W. Loveland
Gopalan Nadathur

13

References

[AstS9] O.L. Astrachan. METEOR: Model Elimination theorem proving for efficient OR-
parallelism. M.S. Thesis, C.S. Dept., Duke Univ., Apr. 1989.

[AL91] O.L. Astrachan and D.W. Loveland. METEORs; high performance theorem provers
for Model Elimination. In R.S. Boyer, editor, Automated Reasoning: Essays in
Honor of Woody Bledsoe. Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1991.

[FM88] A. Felty and D. Miller. Specifying Theorem Provers in a Higher-Order Logic Pro-
gramming Language. Proceedings of CADE-9, pages 61 - 80, Springer-Verlag. 1988.

[HM90] J. Hannan and D. Miller. From Operational Semantics to Abstract Machines: Pre-
liminary Results. Proceedings of the 1990 ACM Conference on Lisp and Functional
Programming, pages 323 - 333, ACM Press, 1990.

[JN91] B. Jayaraman and G. Nadathur. Implementation Techniques for Scoping Constructs
in Logic Programming. Proceedings of the Eighth International Conference on Logic
Programming, MIT Press, 1991.

[Lov78] D.W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland,
Amsterdam, 1978.

[Lov87] D.W. Loveland. Near-Horn Prolog. In J. Lassez, editor, Logic Programming: Proc.
of the Fourth Int'l Conf, pages 456-469. MIT Press, 1987.

[Lov91] D.W. Loveland. Near-Horn Prolog and beyond. J. Automated Reasoning, 7:1-26,
1991.

[LN91] D.W. Loveland and G. Nadathur. Proof Procedures for Logic Programming. To ap-
pear in Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford
University Press.

[LR89] D.W. Loveland and D.W. Reed. A near-Horn Prolog for compilation. Technical
Report CS-1989-14, Duke University, 1989. To appear in Computational Logic-
Essays in Honor of Alan Robinson.

[MN87] D. Miller and G. Nadathur. A Logic Programming Approach to Manipulating
Formulas and Programs. Proceedings of the IEEE Fourth Symposium on Logic
Programming, pages 379 - 388, IEEE Press, 1987.

[MNPS] D. Miller, G. Nadathur, F. Pfenning and A. Scedrov. Uniform Proofs as a Foun-
dation for Logic Programming. Annals of Pure and Appl. Logic, 51 (1991) 125 -
157.

14

[MZS2] J. Minker and G. Zanon. An extension to linear resolution with selection function.
Information Processing Letters, 14(3): 191-194, 1982.

[Nad87] G. Nadathur. A Higher-Order Logic as the Basis for Logic Programming. PhD
thesis, University of Pennsylvania, May 1987.

[NJ89] G. Nadathur and B. Jayaraman. Towards a WAN! Model for AProlog. Proceedings
of the North American Conference on Logic Programming, pages 1180 - 1198, MIT
Press, 1989.

[NM90J G. Nadathur and D. Miller. Higher-Order Horn Clauses. J. ACM, Vol 37, No 4.
pages 777 - 814, 1990.

[NP91] G. Nadathur and F. Pfenning. The Type System of a Higher-Order Logic Program-
ming Language. To appear in Types in Logic Programming. MIT Press. 1991.

[NW90] G. Nadathur and D. S. Wilson. A Pepresentation of Lambda Terms Suitable for
Pperations on their Intensions. Proceedings of the 1990 ACM Conference on Lisp
and Functional Programming, pages 341 - 348, ACM Press, 1990.

[Pfe88] F. Pfenning. Partial Polymorphic Type Inference and Higher-Order Unification.
Proceedings of the ACM Lisp and Functional Programming Conference, pages 153
- 164, ACM Press, 1988.

[Ree91] D.W. Reed. A Case-analysis Approach to Disjunctive Logic Programming. PhD
thesis, Duke University, December 1991.

[RLS91] D.W. Reed, D.W. Loveland, and B.T. Smith. An alternative characterization of
disjunctive logic programs. Technical Report CS-1991-27, Duke University, 1991.
To appear in Proc. 1991 Int'l Logic Programming Symp.

[SL88] B.T. Smith and D.W. Loveland. A simple near-Horn Prolog interpreter. In Kowalski
and Bowen, editors, Logic Programming: Proc. of the Fifth Int'l Conf and Symp.,
pages 794-809. MIT Press. 19S8.

15

