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Abstract transfer function to a pipelined form. This technique, for
Lattice structures exhibit good finite word length the first time. made it feasible to implement high speed

properties. In some real-time applications, high speed is recursive digital filters using pipelining.
very crucial to the system performance along with finite One drawback of the scattered look-ahead technique is
word length effects. Although lattice filters can be the introduction of the canceling zeros. These zeros
pipelined by cut-set localization procedure, no sample increase the number of multiplication operations needed
rate increase can be achieved by that method. to implement the digital filter. Therefore, as suggested in

In this paper, a pipelining method in lattice digital [6], it is of interest to design pipelinable digital filter
filters is introduced. This pipelining method is based transfer functions directly from the filter spectrum, as
upon constrained I1R digital filter design method by opposed to designing a nonpipelined filter and applying
which pipelined direct-form filters are designed. These scattered look-ahead on this filter.
direct-form filters are transformed to pipelined lattice To this end, we address the design of pipelined direct-
digital filters. It is shown that the roundoff error and the form recursive digital filters from the filter spectrum. By
number of multiplyladd operations of the resulting constraining the location of poles at equal angular and
pipelined lattice filters are smaller than those of the radial spacing, we can design a transfer function whose
pipelined lattice filters obtained by applying look-ahead denominator is pipelinable. Fortunately, this is possible
on direct-form nonpipelined digitalfilters. by using a variation of the filter design procedure used for

decimation filter design [7-10]. The pipelinable filter
transfer function can be mapped to many lattice digital

1. Introduction filter structures. Pipelining the orthogonal structure in
[31 leads to no increase in speed. Therefore, the

Since lattice structures exhibit very good finite word orthogonal lattice filter structure is not suitable for
length properties, these structures are preferable for fixed- pipelining. The minimum-noise lattice structure in [4]
point finite word-length implementation. Different lattice requires more number of muiltiply-add operations than
digital filter structures have been proposed in [14. [1], but leads to less roundoff error. In this paper, we

Achieving high speed in direct-form and and lattice propose the use of pipelining for the basic, normalized,
digital filters is difficult because of the feedback loop. and the minimum-noise lattice structure.
Although these filters can be pipelined by cut-set This paper is organized as follows. The Schur
localization procedure proposed in [5], it should be noted algorithm [11] which forms the basis for design of latticethat no samplere increase can be achieved by that digital filters is reviewed in section 2. Section 3 describesmethod. Cutset transformation can increase the clock the theory of lattice filter pipelining. Section 4 presents . _
speed, but cannot increase the sample rate, since multiple the constrained filter design procedure for design of
clock cycles are needed to process one sample. pipelined direct-form recursive digital filters, which are

Implementation of high-speed, pipelined, stable, then reduced to lattice structures. Section 5 presents
recursive digital filters was considered impossible before. design examples for several lattice flters.
Only recently, scattered look-ahead techniques were
proposed to convert a nonpipelined filter to a pipelinable
form [6]. The scattered look-ahead technique adds poles at 2. Schur Algorithm
equal angular and radial spacing for each pole of the
nonpipelined filter, and these poles are canceled by zeros. One of the important properties of the Schur
This transformation converts the denominator of the algorithm is that all polynomials expanded from any __j

given polynomial by the Schur algorithm are orthogonal
This research was Apponed by the army ,esewc office by conltct to each other. Schur polynomial is a polynomial whichnumber DAAL03-90-G03063.



does ,not have zeros on or outside the unit circle, normalized and minimum-noise lattice filters.
There,.,e, the denominator of a stable IR filter is a
Schur polynomial. Let a polynomial with real
coefficients be defined by

N

D(z) Me I dzi.k
i=o is

Then, initialize Nth-order Schur polynomial 4N(z) as

I(z) = (z).

where >N(z) = M Mozul Module

From ON(z), form the polynomial ON1(z) as follows:

z-I [WON(Z) - Voz)] V9
0 N_1(Z) =

where 0 N(z) is the reverse polynomial of CDN(z) and is Fig.] The structure of Basic lauice Fater

defined by zN4N(z'1 ). The degree of ON.(z) is 1 less 3.1 Pipelining of Basic Lattice Filter

than 00(Z, Fig. I shows the structure of the basic lattice filter which

In order to implement the algorithm, each of the is characterized by N k-parameters and N+) tap gain
polynomials ON 1(z) is generated from 4DN-i+1 (W, for parameters. The multiply-add operations in the feed-

i=1,2, ... ,N, in the same manner as ON-1(z) is generated forward section can be pipelined at any desired level by

from ON(Z). It may be noted that the coefficients of placing latches at appropriate feed-forward cutset

increasing powers of z in 4>_ 1 (z) are the N determinants locations. As can be seen from Fig. 1, the feedback loop
in a module is removed if the k-parameter of the module

of 2 x 2 submatrices formed by the first column and each is zero. Therefore, by removing (M - 1)-consecutive k-succeeding column in the following matrix. parameters, the basic lattice filter can be pipelined by M-

stages, leading to M times increase in speed as compared
ION ON-i ON-2 ... '1 o with the original basic lattice filter.

I, Let the Nth-order denominator of a digital filter transfer

00 01 02 ... ON-i ON function be denoted by

where C = .Dm(Z) =
qN O i=0

For each 2 x 2 submatrix, if a column is composed of all where m = N, and the leading coefficient, dm0, is
zero elements, the determinant of the corresponding assumed to be one. Then, k-parameters are recursively
submatrix is zero. Using this property of determinant, we obtained by starting from DN(z) using:
can observe an useful fact for pipelining: 1) ki., = d.,,
If ON(Z) is a Schur polynomial of order N, and has j- , -
consecutive zero coefficients between each two nonzero D(z) -

m Dm(Z)

coefficients of nearest degree, then ON-i(z) of order N-i 2) Dm.i(z) = 2

also has j-consecutive zero coefficients between each two

nonzero coefficients of nearest degree for i = 1 to N-j-l form = N, N-1.... I.
and has only one nonzero coefficient for i = N-j to N. As can be seen from above steps, Dm(Z)'s for m = N,

N-I, ... 0 are Schur polynomials with a different

3. Pipelining of Recursive Digital normalization constant. Therefore, if DN(z) has (M - 1)-
consecutive zero coefficients between each two nonzero

Lattice Filters coefficients of nearest degree, then Dm(z)'S for m = N, N-

basic, 1 ..., M, also have (M - 1)-consecutive zero coefficientsIn this section, we study pipelinability of s between each two nonzero coefficients of nearest degree



and D,(z)'s for m = M-1, M-2 .... 1. have only one from the denominator. If km of the module m is zero,
nonzero coefficients. Then, since k-parameters are the then the feedback loop of the module is removed since
coefficients of z-m of each Di(z) for m=N, N-). 1, . F -k2 bomes one. For km to be zero, 0 rn(O), or
we can obtain (M - 1)-consecutive zero k-parameters, the constant term of 4 ),(z), should be zero. As was
which leads to M-stage pipelining. In general, an M- discussed in section 2, if the denominator has (M - ])-
stage pipelined filter contains M-delays in every loop. consecutive zero coefficients between each two nonzero
Since the number of multiply-add operations in every coefficients of nearest degree, then the minimum-noise
loop remains constant, the M-stage pipelined filter can be filter can be pipelined.
clocked at M-times faster rate, as compared with the
nonpipelined filter.

OL7

3.2 Pipelining of Normalized Lattice Filter N Module Module o_

NN N-1e oul od
The structure of normalized lattice filter is shown in N NI

Fig. 2, where the feedback section is again described by
k-parameters only. The k-parameters are calculated by the
same procedure as in section 3.1.

As can be seen from Fig. 2, there are four multipliers

within a module m: km, -km., and two / -kin2 's. If km

is zero, then Nrl"- k.2 becomes one. Therefore, module
m needs no multipliers and the feedback loop of the kw., T -k,
module is removed, which means the normalized lattice
filter can be pipelined.

OLr Fig. 3 The structure of Minimum-noise lattice flter

V.1 V..2  &v V 4. Design of Pipelined 11R Lattice Filter
SUsing Constrained Filter Design

Mod1ule Module Module

N-1 N-2 0It is apparent from previous sections that the basic,
normalized, and minimum-noise lattice filters can be
pipelined by M-stages if the denominator of a transfer
function has (M-1)-consecutive zero coefficients between

___ __each two nonzero coefficients of nearest degree. The
pipelinable transfer functions can be obtained by
applying the scattered look-ahead method to the

,, 1 4-1, nonpipelined filter transfer functions. However, by using
constrained filter design method, we can design inherently
pipelinable transfer functions directly from the filter
spectrum specifications.

Our procedure is a variation of the procedures in [7] and
Fig, 2 The structure of Normalized lattice filter [9]. The design method in [7] first expresses the

magnitude and group delay responses of the filter as
3.3 Pipelining of Minimum-Noise Lattice functions of the radii and angles of the poles and zeros.
Filter Then we obtain formulae for the partial derivatives of

the magnitude and group delay with respect to the radius
The structure of the minimum-noise lattice filter [4] is and the angle of a pole and a zero. These derivatives are

shown in Fig. 3. Feedback section is described by k- used in the Fletcher-Powell algorithm to minimize the
parameters only and the k-parameters are calculated using approximation error [8]. In this algorithm, the minimum
Schur polynomials as follows: value is obtained by only using the first derivative

0_(0) information. To obtain an inherently M-stage pipelinable
km a *(' filter, we recompute the partial derivatives for a

0m(O) denominator in powers of zM rather than z [9] and

where 0re(z) is mth-order Schur polynomial obtained substitute these equations into the program in [10].



Then, the resulted denominator is in terms of z-M, implementation of the 4-stage pipelined normalized
The modified filter design procedure is summarized as lattice f ilter obtained from the above transfer function.

follows:
I) For the given filter specifications (pass-band, stop-
band, pass-band & stop-band ripples, and M-stage 0
pipelining), we start with 1 -complex pole pair. Then, the
order of the denominator is 2M and the number of zeros - ----------
are restricted so that the order of the numerator is less 100
than or equal to 2M. We usually start with M unit-circle
zero pairs. -----
2) If the filter specifications are not satisfied by I-
complex pole pair, we increase the number of poles and
zeros and/or adjust initial positions of poles and zeros and -t----

weighting factors for the pass-band and stop-band. The
filter is redesigned. This procedure is repeated until the 1-
filter specifications are satisfied.
3) The pipelined direct-form filter transfer function is
then used to obtain the pipelined lattice filters by using 0'3 1 i 2 2.5 3 3.3
the sybthesis procedures of section 3. ft MW-m&d -pe of4-"W Mieimod fl- by C---W deup

5. Design Example of Pipelined LatticeOU
Filters

Consider the lowpass filter with l)pass-band: 0 , 0.2 0120202 .40 1 1
ic, ripple: 1 dB, and 2)stop-band: 0.3 7c - ic, ripple: 15
dB. In [ 12], this example was designed by using the 4th _I
order Chebyshev filter. IN Z4 Z-1 Z-1 Z-1 Z-1 Z1 Z-1 Z-1
N(z) = 0.0018 + 0.0073z-1 + 0.0011z-2 + 0.0073z-3 + 400.21-5A
0.001 8z-4W0 2 -3

D(z) = I - 3.0544z-1 + 3.829z-2 - 2.2925Z-3 + 0.05z-4 .
where N(z) and D(z) denote numerator and denominator of 0.853

the transfer function, respectively. Fg -tg ieie omlzdfle yCntanddsgUsing the constrained filter design procedure, we Fg -tg ieie omlzdfle yCntanddsg
obtained the transfer functions for different number of The feedback loop multiply-add operations can bepipelining stages. These filters are listed below. pipelined by redistributing the delays. Roundoff errors of
1) Nonpipelmned teepplndnraie atc itr n hsN(z) = 0.0307 + 0.0054z-1 + 0.0203Z-2 + 0.0054Z-3  ths+ieie omlzd atc itr n hs
0.0307z-4 obtained by using look-ahead method to the nonpipelined

D~z)= I- 25754-1 2.68z- - .535Z-3+ 0333-4. Chebyshev filter transfer function are calculated using the
2~) =tg I - 2.5754(M + 2)8 2

-1535
3 +033~ method introduced in [4), and are compared in Table 1.

2) 2stag pieine CM 2)Roundoff noise gain factors of the direct-form cascade
N(z) = 0.0532 + 0.1 12z-1 + 0. 1 159z-2 + 0.094 1z3 + filters are also given. As can be seen from the table,
0. 1 159z-4 + 0.1 12z-5 + 0.0532z-6  better roundoff error characteristics are obtained by using
D(z) = I -l.02z- 2 + 1.065z-4 - 0.509z-6 + 0.1280-. constrained filter design. Roundoff noise gain factors of
3) 4-stage pipelined (M = 4) basic and minimum-noise lattice filters are given in
N(z) = 0.0754 + 0.132z-1 + 0.2018z-2 + 0.241 z-3 + Table 2. Note that the roundoff errors of minimum-noise
0.28 15z- 4 + 0.2411z-5 + 0.2018z-6 + 0.132z-7 + lattice filters decrease as the pipelining stage increases.
0.107540.
D(z) = I + 0.5626z4 + 0.07910 1. Table I Roundoff noise gains or Normalized lattice and
4) 8-stage pipelined (M = 8) Direct-forr cascade filters______

N~) 0094 0092z___0084z2__0037z_ Normalized lattice Cascade

N.0z 4 0.07 -+ 0.029z + 0.0 6 Z- + 0.06z-8+ Constrained Look-alhead Look-ahead
+0.00 - 0.0434z-1 -.2 4 0.0 z 0.05v2 nonpipe. 5.5246 5.8544 19874.1
+0.034z-3 0.082z-1  

-0.08z1 + 0.08z-16 2-stage 8.9003 8.1268 20211.9
0.034v3  0.082-1 e 0008v' + .098z 16 4-stage 8.3172 j 16.0518 20227.5

D(z) - 1 - 0.20130 8 + 0.l10 1z- 16. 8-stagel 16.0489 j 32.0286 20340.6__
Fig. 4 and Fig.5 show the magnitude response and the
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properties. Design of pipelined wave digital filters needs
Table 2 Roundoff noise gains of Normalized to be addressed in future. In [13] - [14], most significant
and Minimum-noise lattice filters bit first redundant arithmetic has been used to pipeline

Basic lattice Minimum-noise recursive and wave digital filters. Our pipelined filters can
Constrained Constrained be used in combination with the approaches presented in

nonpipe. 4.5225 2.1524 [13] - [14] also.
2-stage 9.0016 2.0216
4-stage 8.5022 1.1348 References
8-stage 16.1041 0.2815
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