
PL-TR--91-1051 AD-A244 509 PL-TR-
111111111191-1051

THE VAN LEER ADVECTION ALGORITHM IN THE)
MACH2 COMPUTER CODE

Carl R. Sovinec

DTIC
ELECTE

August 1991 3 DEC 3 119910
DD

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

PHILLIPS LABORATORY
Directorate of Advanced Weapons and Survivability
AIR FORCE SYSTEMS COMMAND

t KIRTLAND AIR FORCE BASE, NM 87117-6008

91-19332 OV

PL-TR-91-1051

This final report was prepared by the Phillips Laboratory, Kirtland
Air Force Base, New Mexico, under Job Order 57971199. The Laboratory
Project Officer-in-Charge was Capt Carl R. Sovinec (WSEP).

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated
or in any way supplied the said drawings, specifications, or other data,
is not to be regarded by implication, or otherwise in any manner construed,
as licensing the holder, or any other person or corporation; or as
conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

This report has been authored by an employee of the United States
Government. Accordingly, the United States Government retains a
nonexclusive royalty-free license to publish or reproduce the material
contained herein, or allow others to do so, for the United States
Government purposes.

This report has been reviewed by the Public Affairs Office and is
releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nationals.

If your address has changed, please notify PL/WSEP, Kirtland AFB, NM
87117-6008 to help us maintain a current mailing list.

This eport has been reviewed and is approved for publication.

BILLY W. MULLINS, Maj, USAF
Project Officer

FOR THE COMMANDER

WILLIAM L. BAKER
Chief, Electromagnetics Division

DO NOT RETURN COPIES OF THIS REPORT UNLESS CONTRACTUAL OBLIGATIONS OR
NOTICE ON A SPECIFIC DOCUMENT REQUIRES THAT IT BE RETURNED.

I Form Approved
REPORT DOCUMENTATION PAGE OMB o -0188

Public reporting burden for this collection of information is estimated to average I hour Per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information, Send comments regarding this burden estimate or any other aspect of this
collection of information. including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operdtions and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1991 Final, 1 Dec 89 - 31 May 91

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

THE VAN LEER ADVECTION ALGORITHM IN THE MACH2 COMPUTER PE: 62601F
CODE PR: 5797

TA: 11
6. AUTHOR(S) WU: 99
Carl R. Sovinec

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Phillips Laboratory
Kirtland Air Force Base, NM 87117-6008 PL-TR--91-1051

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
The van Leer advection algorithm has been added to the two-dimensional magnetohydro-
dynamics code, MACH2. The mathematical theory and the implementation for nonmag-
netic quantities are discussed. One-dimensional test problems are presented to
compare this algorithm with the Godunov advection algorithm, which was previously
used in MACH2. The new implementation induces less smoothing on advected dis-
continuities, while maintaining the monotonic property of cell-centered
distributions. A special treatment of the momentum advection is required to
maintain a monotonic velocity distribution. The net practical result is a sub-
stantial savings on computational time as the van Leer algorithm requires less
resolution to achieve the same level of convergence as the Godunov algorithm for
dynamic problems.

14. SUBJECT TERMS 15. NUMBER OF PAGES
46

Numerical Convection, van Leer, Magnetohydrodynamic Simulation
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 i/u Standard Form 298 (Rev 2-q9)
)-C, b AN%, t ZQ-'8

PREFACE

The code development and test simu ations described in this report were supported by funding

for the MARAUDER project in the High Energy Plasma Branch of the Phillips Laboratory. The
advancements have been used tu help simulate the physical phenomena in this and many other

projects.

The author wishes to thank Dr. Jeremiah Brackbill of Los Alamos National Laboratory, Los

Alamos, New Mexico, for suggesting this code development and for providing his implementation

of it. Many of the details discussed in Section 3.0 were adapted from Dr. Brackbill's

implementation. The author also wishes to thank Dr. David Dietz of the Phillips Laboratory for

his patient and enthusiastic guidance on the analytical mathematics behind the Transport

Theorem. Anthony Giancola of Mission Research Corporation, Albuquerque, New Mexico,

modified the original coding to make it more readable and flexible to other changes. Finally, but

certainly not least in significance, the author is grateful to the users of this code development,

and in particular Dr. Robert Peterkin of Mission Research Corporation, who have played a

crucial role of identifying problems with the early versions of the algorithm.

iii/iv

CONTENTS

Section Page

1.0 INTRODUCTION 1

2.0 MATHEMATICAL DESCRIPTION 3

2.1 ANALYTIC FORMULATION 3

2.2 NUMERICAL FORMULATION 4

3.0 IMPLEMENTATION 10

3.1 PRELIMINARIES 10

3.2 CELL-CENTERED QUANTITIES 11

3.3 MOMENTUM 13

4.0 RESULTS 15

5.0 DISCUSSION 20
Accesion For
NTIS CRA&I]2

REFERENCES DTIC RAB 21
U,,.aiioul;.ce1 L.i

Justi ficatfoll
APPENDIX 22

B22
Dist,'ibu tion I

Avaiiabity .-,.:s *

Dist AJ'S'pe

A-I

v/vi

1.0 INTRODUCTION

The MACH2 (Ref. 1) two-dimensional magnetohydrodynamics (MHD) computer code is an

important tool for the research conducted in the High Energy Plasma Branch of the Phillips

Laboratory.* Like all non-Lagrangian fluid simulation codes, its accuracy is dependent on the

treatment of the advection terms of the difference equations. These terms carry physical

properties such as density, internal energy and momentum with the fluid as it moves across the

computational grid. MACH2 may be run in a purely Lagrangian mode, where the grid vertices

move with the fluid, but this is rarely a good approach. Lagrangian computational grids usually

become entangled when the fluid has variations in more than one dimension, and this causes the

code to crash. MACH2 has an adaptive grid generator (Refs. 2 and 3) which can be used to

create an almost Lagrangian grid that remains smooth. However, any grid that is not purely

Lagrangian will depend on the advection algorithm. Further, using a purely Eulerian grid, whose

vertices remain at fixed positions, is often the easiest approach for the initial simulations in a

study, and it may be the only practical approach for a veiy complicated geometry. This report

discusses an in-house project to replace the first-order accurate Godunov advection algorithm

(Ref. 4) in MACH2 with a more accurate van Leer algorithm (Ref. 5).

Fluid simulation codes solve a set of coupled partial differential equations that are conservation

statements for mass, momentum and energy. The solution procedure for these equations in

MACH2 is an Arbitrary-Lagrangian-Eulerian (ALE) algorithm (Ref. 6). During each time step,

it solves for changes in the physical quantities on a Lagrangian grid, creates a new grid with the

adaptive grid generator, and then applies the advection terms separately to map the Lagrangian

results onto the new grid. Separating the advection terms is not a new idea--see, for example,

References 6 and 7, but the adaptive grid generator gives MACH2 much more flexibility than

most codes.

*This code was developed under contract for the Air Force Weapons Laboratory--currently

Phillips Laboratory--by Mission Research Corporation. It features a computational block
structure that allows a user to model complicated geometries with ease. It has been applied to a
large number of Air Force projects including plasma flow switches, cylindrical implosions,
plasma guns, and plasma toroid experiments, and it has been applied to many other Department
of Defense projects.

This report concentrates on the advection terms for mass, internal energy and

momentum. Because MACH2 treats conducting fluids, it solves Faraday's law for the

evolution of the magnetic field, and the appropriate form of this law has an advection

term. However, this term requires special attention and will be addressed in a separate

report. Section 2.0 of this report gives the analytical and numerical formulations of the

advection terms. Section 3.0 explains how the numerical formulation is implemented in

MACH2. Section 4.0 discusses test problems that illustrate the advantages of the

algorithm. The final section concludes the report with a discussion of how the algorithm

has influenced simulations of real problems.

2

2.0 MATHEMATICAL DESCRIPTION

2.1 ANALYTIC FORMULATION

The Transport Theorem can be used to find the analytic relation between the time-derivative of

Lagrangian volume-integrals and the time-derivative of other volume-integrals. Marsden and

Tromba (Ref. 8) state the scalar and vector forms of the theorem. Their definitions may be

expanded in two ways without changing the results. They define a time-independent velocity

vector field which describes the motion of fluid elements and integration domains that are

composed of these elements. First, the velocity vector field may be time-deptndent because it is

not differentiated with respect to time in the proof. Second, the velocity vector field may

describe an imaginary fluid--one that is not moving with the physical fluid, because no physical

laws are applied. For a pertinent example of an imaginary fluid, consider the time-dependent

vertex positions generated by an adaptive mesh algorithm to be markers on an imaginary fluid.

With these definitions, the scalar and vector forms of the theorem are, respectively

d fd 3x = f + W.VfI + .V- _W d3x (1)dt f~ (C ,

d ff _3 [ff[

- f fGdx =f + V)(fdt ffIt___ f- 1±-t U

+fG(V W)I]d3x (2)

where f is a scalar function of position, x, and time, t, and W and G are vector functions of

position and time. The functions f and G are arbitrary, but W is the velocity vector field of the

real or imaginary fluid that carries the moving region 4. The second and third terms in the

integrand on the right side of Equations 1 and 2 may be combined into the divergence of a

vector, f W, for the former and the divergence of a tensor, W f G, for the latter. The

Divergence Theorem may be applied to each equation with the following results

3

d ffd3 J f d-x+.fWI dx (3)
dt t f Ct -

d-3 2
f j fbdx j -fGl dx+ fG(W.n)I dx (4)dt ff t-- f' &'

where n is the outward normal on the closed surface d(Z).

If W is the physical fluid velocity, V, then each of the above expressions relates the time
derivative of a moving Lagrangian volume to the time-derivative of a corresponding stationary

volume plus a surface flux term. Consider also the same two equations with U, an imaginary
fluid velocity, substituted for W. The resulting expressions are related to the same stationary

volume integrals as the Lagrangian equations, provided that the physical fluid region and the
imaginary fluid region correspond at t = T. Subtracting the scalar relation (Eq. 3) for the

Lagrangian volume from the same relation for the volume of imaginary fluid results in the

following

'dS 3 d ! 3 ,X,,+ 2
f d x d f d n d x (5)

dt f t ffI

where Q is the Lagrangian volume moving with the physical fluid, and IF is the volume moving
with the imaginary fluid. The vector relation obtained from Equation 4 is

d 3f d f _3X + (ff .. 2
-Jj f Gdx f d +x nf] G)[(U-V)n]I d x (6)dt ffIt=%T d ff __T.

2.2 NUMERICAL FORMULATION

The difference forms of Equations 5 and 6 are the equations solved in the advection step in

MACH2 using U as the velocity field of the grid as suggested in the example above. The

4

difference form of the time-derivative terms are simple. Each is the difference between a new

volume integral and an old volume integral, divided by the time increment, and a volume integral

is the average of a quantity in a cell, multiplied by the volume of the cell. Because the

Lagrangian cells and the mesh cells are equivalent prior to the Lagrangian step, these "old"
volume integrals may be eliminated from the difference equations. The Lagrangian step of the

momentum algorithm produces the "new" averages in the Lagrangian cells, so the new

Lagrangian volume integrals are known at the start of the advection step. After multiplying by
the time increment, At, the following difference form of Equation 5 results.

(f u) = (f v) + AtYs(a n.(U- V)f) (7)41 1 sa

where f is the new average value of f in the cell and vU is the new cell volume for either the
0

Lagrangian cell, where the index 0 = Q, or the grid cell, where 4) = TF. The summation on the

right side represents the flux of f over the cell surface for one advection step. The sides are

indexed by s, and each has a surface area, a. The difference form of Equation 6 is

(f G *) (f G 0+ At(a nU- V)f G) (8)

where G 0 is the new cell average of G. After solving for the left side of Equation 7 or 8, one

may divide by the new grid cell volume to obtain the desired new grid cell average. As van Leer

points out, these equations are exact (Ref. 5), and the accuracy of an algorithm depends on the
average flux terms inside the summation. Note that when the grid moves with the fluid, U = V,

and the Lagrangian values remain unchanged. The grid is stationary when U =0, and in this

case, the two equations form an Eulerian representation.

To understand the van Leer approach, it is easiest to start with the Godunov or 'donor cell'

method. For the latter, the average flux terms in Equations 7 and 8 are rather simple. Many

fluid codes have velocities centered between cells, so Newton's Second Law may be written in a

centered difference form with pressures being cell-centered (along with mass and internal

energy). Thus, the velocities and areas in the flux terms are located at the interfaces. To

construct the entire flux term, Godunov considers the cell-centered quantities to be constant
within each cell. In one-dimension the representation is a set of slabs, and one example is

illustrated in Figure 1. The flux at each interface becomes the interface velocity multiplied by
the magnitude of the slab from which the flow comes, hence the name 'donor cell.' The method

is explicit because the velocities and slab magnitudes used in the flux terms are those at the

5

analytic function

f 'discrete representation

xlx2 x3 x4 x5

Figure 1. Godunov representation of a :ell-centered quantity on a on-dimensional grid.

beginning of the advection step. It is also conservative because the flux that comes out of the

donor cell goes into the adjacent cell.

When describing the explicit nature of a method, one is tempted to refer to the beginning of the

time step, but this would be misleading. Simulation codes often treat physical processes
independently during each time step. This suggests a linearization in time, which is reasonable

as long as the time step is small. In MACH2 the changes from each phyisical process are added

sequentially. Furthermore, for any ALE code, the advection step is a mapping from the

Lagrangian grid, so the Lagrangian cell-centered values are the explicit values during the

advection step.

To obtain more accuracy than the Godunov method, the van Leer technique replaces the slab

approximation of the distribution with a better approximation (Ref. 5). It uses derivatives to

make the distribution a set of trapezoids instead of slabs (Fig. 2). This representation is

piecewise continuous, like the slab representation, and the correct cell averages are preserved.

analytic function

discrete representation

xl x2 3x4 x5

Figure 2. Van Leer representation of a cell-centered quantity on a one-dimensional grid.

6

Van Leer proposes several possible formulations for the derivatives. In the simplest scheme, the

upwind cell-centered quantity and its corresponding centered difference are used to construct the

flux terms. Any subsequent mention of the "centered-difference scheme" refers to this approach.

The scalar flux term from Equation 7 with this scheme is

(a n.(U- V)f) = f (9)2 AX A 9

where f is the upwind cell-centered quantity, Af is its centered difference with respect to the

advection direction, Ax is the cell dimension in the advection direction, and

.=1 n(U- V)I

The sign of the Af term in Equation 9 is positive when the s-interface is the upper bound of the

upwind cell and negative when it is the lower bound. When the time step is limited by the

Courant-Friedrichs-Lewy (CFL) condition, I .(At/Ax) 1 1, the term in the parentheses on the

right side is bounded by zero and one, so this scheme limits to the donor cell method as

I (At/Ax) I approaches unity. The vector equation corresponding to Equation 9 has f G in

place of f. For multiple dimensions, there will be multiple centered differences for each quantity.

Van Leer derives the amplification factor for this scheme with uniform grid spacing and

velocities,

g=-- I a 4 g cosa (1-cosa)

3,-a 1 -oF
-iao - cosa sina (10)

where a = (At/Ax), and the index is omitted to indicate the uniformity (Ref. 5). The angle

a = 2MAx/l, and I is the length of a wave moving across the grid. The dissipation error per time

step is one minus the magnitude of the amplification factor, and it has a maximum at a = 1/2

(Ref. 5). Thus, for a = 1/2 and a = nc/2, the centered-difference scheme has a dissipation error of

0.12 per time step. The amplification factor for the Godunov method is

7

g1DC = I -a (I - COSt)- i asin (I I)

Its dissipation error for a = 1/2 and a = x/2 is 0.5 per time step, so even the simplest van Leer

scheme is a considerable improvement for intermediate length waves. The dispersion error is

measured by the ratio of the numerical advection speed to the "-ue advection speed,

wo = arg(g) / (--oa). Polar plots of I g I at a = 1/2 and (o in ihe limit of vanishing a for both the

centered-difference scheme and the Godunov method are shown in Figure 3. A sufficient

1.0

0.6\

-0.5 0.0 0.5 1.0

(a) Magnitude of amplification factors at a = 1/2.

1.2
1.0

/0.4

-0.5 0.0 0.5 1.0

(b) Ratio of numerical advection speed to true advection speed in the limit of vanishing a.

Figure 3. Performance of the advection methods. The solid line illustrates the centered
Jifference scheme, and the dashed line illustrates the Godunov method. The
angle from the positive horizontal axis is a = 2 rAx/1.

8

condition for stability is that I g 1 < 1, for if this were not satisfied, repeated applications of the

advection step would force wave amplitudes to grow geometrically. Both the Godunov and

centered-difference scheme meet this criterion when the CFL condition is satisfied. Although it

is not accurate to make generalizations about the stability of difference equations, the upwind

nature of an advection scheme tends to add stability, and both of these schemes have an upwind

nature.

Besides accuracy and stability, the monotonicity of a distribution should be respected by the

advection algorithm. To quote van Leer (Ref. 5), "The monotonicity condition says that, when a

monotonic initial value distribution is numerically convected, the resulting distribution must be

monotonic again." This is enforced by placing limits on the centered difference, Af , in

Equation 9. The limits prevent the linear distribution of a quantity within a cell from exceeding

the cell-centered average of that quantity in the adjacent cells. Also, if a cell-centered average is

not between those of the adjacent cells, the slab representation is used. This prevents the

development of new extrema. The representation in Figure 2 is properly limited.

The centered-difference scheme requires only a small amount of additional computation time

over the Godunov method, most of which is spent on finding the centered differences. These

differences are calculated during the advection algorithm and do not require permanent storage.

The other second-order schemes proposed by van Leer are based on derivatives that are

computed separately from the cell-centered quantities. These derivatives require separate

storage, and they must be updated during all of the other algorithms that change the

corresponding cell-centered quantities. The accuracy analysis in Reference 5 shows that some

of the more complicated schemes can track waves as short as two cell lengths with very little

dissipation and dispersion, whereas the scheme with the centered differences loses accuracy for

wavelengths less than four cell lengths. However, for enhancing an existing fluid code, it is far

easier to add the centered-difference scheme to the advection algorithm than it is to rewrite the

entire code to track derivatives. Therefore, the centered-difference scheme has been added to

MACH2.

9

3.0 IMPLEMENTATION

3.1 PRELIMINARIES

For a simple one-dimensional advection problem with uniform velocities and surface areas

between cells, the terms of Equation 9 have been sufficiently defined. For anything more

complicated, they are ambiguous. The resolution of the ambiguities is a code-dependent issue.

This section will address this issue for version v9101 of MACH2, and it will provide a guided

tour through the subroutines for those who use and modify the code.

The subroutine ARUN contains the main loop of MACH2 that calls separate routines for each of

the physical processes. The subroutine HYDRO, which is called from ARUN, calculates the

Lagrangian stage of the ALE algorithm. Following HYDRO, ARUN calls REMESH. The first

part of this subroutine calls the adaptive mesh generator, and the second part calls TRNSPT, the

advection algorithm, to complete the ALE algorithm.

When MACH2 is used for planar geometries, the x-y plane is the computational plane, and no

variations are allowed in the perpendicular direction. For axisymmetric geometries, the r-z plane

forms the computational domain. For either case, TRNSPT calculates the advection that results

from velocity components in the computational plane. Other advection terms that result from the

0-component of velocity are also nonzero in axisymmetric geometries. These terms are treated

at the end of HYDRO and are not considered in TRNSPT.

To simulate complicated geometries with MACH2, the spatial domain is decomposed into

four-sided blocks--the reader is encouraged to see Reference I for more information on allowed
domains. The blocks are divided into quadrilateral cells which form the computational grid.

Cells have a horizontal index, i, and a vertical index, j. Each physical algorithm solves or
iterates its process on one block at a time, and boundary conditions couple adjacent blocks. The

spatially-dependent physical quantities are stored in "pointered" memory location; i. e., the

POINTER extension of standard FORTRAN is used to set the two-dimensional arrays for the

physical quantities to the appropriate set of memory locations for each block. This conserves

memory because the dimension of pointered arrays can vary from block to block. However, the

pointers and dimensions must be set before the arrays can be correctly accessed. Therefore, all

of the physical algorithms will contain "do-loops" over the blocks, and the first call is always to

the subroutine SETBLK which sets the pointers and dimensions. These loops will be mentioned

10

frequently in the description of the advection algorithm below.

3.2 CELL-CENTERED QUANITIES

The advection of the cell-centered quantities is not complicated. The first block loop of
TRNSPT calls the subroutine TRNSJIT--see the Appendix for a listing of the nonmagnetic

advection subroutines. The first loop of TRNSINIT creates the Lagrangian-cell volume

integrals, each of which forms the first term on the right side of Equation 7 or 8 for the volume

of one cell. For example, when mass is advected, this integral is simply the total mass of the
Lagrangian cell. This is also the same as the mass of the cell prior to the Lagrangian phase,
which is the old mass density, stored in the "ro" array, multiplied by the old cell volume,

"oldvol." For the intemal energy, the integral is the total internal energy in the cell. This is the
Lagrangian cell mass just computed, "mp," multiplied by the specific internal energy after the
Lagrangian stage, "sel." This loop also initializes the Lagrangian densities where necessary. For
internal energy, this quantity is the internal energy per unit volume. It is found by multiplying
the Lagrangian mass density, "rol," by "sel," and is stored back in "sel" array.

This TRNSINIT loop also defines the Lagrangian cell volumes, the "lagvol" array, and the
volumes exchanged between these cells during the mapping to the new grid. The exchange
volumes are determined with the cross product of two vectors, the grid velocity relative to the

fluid and the displacement vector from one vertex of the new-grid cell to its next vertex. The
relative velocities define the U - V vector in Equation 9 and are the vertex-centered

("url","vrl") array pair. Figure 4 illustrates these vectors for the bottom exchange volume,
"dxbott." The dimensions on the cross products are area per unit time. They are multiplied by
the time increment "dt" and an appropriate perpendicular dimension to form a volume. For
planar geometries, the radius array, "r," is set to unity, so the volume is per unit depth
perpendicular to the computational plane. For axisymmetric geometries, the radius is factored

into the relative velocities to create a volume per unit angle--see the TRNSINIT listing in the
Appendix for the formulation. These exchange volumes take the place of the a , factor on the
right side of Equation 9.

The "200" loop of TRNSINIT separates the "con2" fraction of marker material to advect its mass
separately from the rest of the mass. The "300" and "400" loops compare the size of the
exchange volumes to the Lagrangian and new-grid volumes and saves the largest ratio for the

time step control.

I1

Displacement vector

Relative velocities multiplied by time increment

Figure 4. Illustration of the "dxbott" exchange volume between a Lagrangian cell and
a new grid cell.

Once the TRNSINIT loop of TRNSPT is complete, the cell-centered quantities are separately

passed into the subroutine TRNSLP. The first block loop in TRNSLP calls TRNSGR which

finds the centered differences of the quantity passed into the routine. Note that these differences

are differences of the Lagrangian densities. The "200" loop of TRNSGR finds the centered

difference in the j-index direction, and the "300" loop finds the difference in the i-index

direction. Each are limited to twice the corresponding backward and forward differences for

monotonicity, and if the signs of those differences do not agree, the centered difference is

reduced to zero. This implementation is the monotonicity algorithm of Equation 66 in

Reference 5. The more conservative algorithm of Equation 67 in Reference 5 is in the current

version of MACH2, v9l01.

The second block loop of TRNSLP calls TRNSDQBC, which communicates the differences

along the boundaries of adjacent blocks, and subsequently calls TRNSADV, which performs the

advection. The "100" loop of TRNSADV advects the quantity in the j-index direction, and the

"200" loop advects it in the i-index direction. They create the flux of the quantity on the bottom

side and left side of each cell, respectively. This is the application of Equation 9 for scalar

quantities. For vector quantities, each component is separately passed into TRNSLP. The ratio

of the volume flux to the donor-cell Lagrangian volume in TRNSADV replaces the t.(At/Ax) in

12

Equation 9. Both ratios represent the fraction of the cell advected, but the volume ratio

automatically accounts for arbitrary cell shapes. After finding the flux, these loops remove it

from the donor-cell's Lagrangian volume integral and add it to the adjacent cell's integral. When

the TRNSADV loop is complete, the integral array holds the new-grid integrals, each of which is

the left side of Equation 7 or 8 for the new-grid cell.

3.3 MOMENTUM

The advection of momentum is more difficult than the advection of cell-centered quantities. The

velocities are centered at the grid vertices and not the cell centers, and to use the cell-centered

scheme, one must first create cell-centered momenta. Margolin and Beason have suggested

creating cell-centered quantities that are the average and derivatives of the surrounding vertex

quantities (Ref. 9). The current implementation in MACH2 is similar to this approach. For each
velocity component, it creates four cell-centered momentum densities which are the products of

each of the four vertex velocities and the cell-centered mass density. Following the advection,

the four resulting cell integrals are distributed into vertex momenta. To create the new vertex

velocity, each vertex momentum is divided by the vertex mass, which is the average of the four

cell masses surrounding the vertex. This is similar to the scheme in Reference 9, for if one used

the average and three possible differences instead of the average and three possible derivatives,

the advection is algebraically equivalent to the MACH2 scheme.

Unlike the cell-centered quantities, TRNSLP is not called directly from TRNSPT. Instead,

TRNSPT calls the subroutine TRNSMM. This subroutine first calls TRNSMMIN to create the

four momentum densities and Lagrangian momentum integrals for each component. TRNSMM

then calls TRNSLP for each of the four. Before returning to TRNSPT, the subroutine

TRNSMMF is called to distribute the new-grid momentum integrals among the vertices. The

new velocities are calculated after TRNSPT during the REMESH call to RMSHVEL.

The monotonicity of the momentum advection also needs special attention. Although the

monotonicity algorithm in TRNSGR will not create new extrema in the resulting momentum

distribution, it does not guarantee the same for the resulting velocity distribution. Consider a

situation where the mass density distribution is monotonic, and the gradient is in the direction of

a uniform flow in the computational plane. In addition, there is momentum density

perpendicular to the computational plane, and its distribution is not monotonic. The centered

difference will be used for the advection of the mass and the fraction of mass removed from the

13

donor cell will be larger than the fraction of volume removed. However, the fraction of

perpendicular momentum removed from the donor cell will be equivalent to the volume fraction,

and the resulting velocity distribution will show a new maxima. The results of a simulation with

these conditions is presented in Section 4.0. It has been found that when new maxima develop in

the velocity components that are in the computational plane, a numerical instability may result.

One prescription to avoid the instability is to discard the difference of the momentum density and

use the difference of the mass density, multiplied by the vertex velocity, instead. With this

prescription, the amount of momentum advected is proportional to the amount of mass advected.

Mathematically, this uses the product rule on the derivative of the momentum,

) (pv) a v a p
= p- + v - (12)

where p is the mass density and v is a velocity component, and throws away the first term on the

right before converting to a difference form. This product is formed during the call to

TRNSMMGR in the second block loop of TRNSLP.

Another possible prescription to avoid the creation of new velocity extrema is to difference both

terms on the right of Equation 12 and apply the monotonicity algorithm to each term separately.

This scheme has also been attempted with MACH2, and although it advects velocity gradients

with less diffusion, it seems to be noisy. One-dimensional advection problems develop enough

noise to have noticeable two-dimensional variations.

14

4.0 RESULTS

There are two one-dimensional test problems that are often used to evaluate the performance of

an advection algorithm. The first is the uniform advection of a square pulse of some quantity,
and the second is the shock tube. The Fourier Transform of a square pulse is an oscillating,

continuous function, and the magnitude of the oscillations is inversely proportional to the wave

number and does not diminish abruptly. For the test problem, the initial pulse is formed with an

integral number of cells. Thus, when the initial pulse has relatively few cells, the problem will
exercise an algorithm's ability to advect high frequency waves in a manner that is relevant to

simulations of actual experiments and physical phenomena.

The pulse test problem described here is initiated in the following manner. The domain is a long
rectangular chamber, 0.4 m in width and 12.8 m in length, which is divided into 512 square cells.

The fluid is given a uniform velocity component of 1 m/s in the long dimension. The pulse is

positioned from 0.4 m to 0.8 m from the left side of the chamber, so it is initially four cells long.

It is composed of mass that is 10 kg/m3 in density, which is a factor of 10 larger than the density
in the rest of the chamber. It is given a temperature of 10' 5 eV, also a factor of 10 above that

outside the pulse. The extreme temperatures are chosen to make the sound speed very small

compared with the advection velocity. Finally, the time step is limited so that c < 1/2.

Figures 5 and 6 show the mass density and temperature distributions, respectively, for the

centered-difference scheme with monotonicity and the Godunov method, after the pulses travel
across 100 cells. Although both algorithms diffuse the small pulse, the peak mass with the

centered-difference scheme is twice that obtained with the Godunov method, and the pulse width

is much less. The temperature pulses have a different shape from the density pulses and
maintain relatively larger peaks. This occurs because the temperature is the quotient of two

advected quantities, intemal energy and mass. In this case, the initial internal energy pulse is

two orders of magnitude larger than the background. Note that the algorithm will not create new
extrema in the temperature distribution because the monotonicity algorithm prevents the creation

of new extrema in both the internal energy and mass distributions.

A variation of the pulse problem can illustrate the difficulty with momentum. Consider, again, a

rectangular chamber, with a mass density of I kg/m3 in half of the chamber and 10 kg/n? in the

other half. The velocity in the computational plane is a uniform I m/s towards the side with the
greater density, and the less dense side has a perpendicular velocity component of I m/s. Thus,

15

C! T I I I1

00
O4

No N

C, Cc,o 0;/~

0

I I I I I L I I I I I

0. 2. 4. 6. 8. 10. 0. 2. 4. 6. 8. 10.
¥C M) YC M)

(a) Godunov method. (b) Centered-difference scheme.

Figure 5. Mass density distributions for the square pulse advection.

I I I f

'a Qo ~O

N _N

I I I I " i I I | I

0 2. 4. 6 10. 0. 2. 4. 6. 8. 10.
YC (M) YC (M)

(a) Godunov method. (b) Centered-difference scheme.

Figure 6. Temperature distributions for the square pulse advection.

16

the density and perpendicular velocity distributions are both step functions, but the change of one

is opposite the other. This is the problem described in Subsection 3.3. Figure 7 shows two

distributions of perpendicular velocity--the distribution on the left results when the momentum

difference is created from the product of the cell-centered mass and vertex-centered velocity, and

the distribution on the right results when one uses the density difference multiplied by the

velocity. The new maximum in the former is obvious. Note that the distribution of

vertex-centered perpendicular momentum, defined by the product of the vertex-centered velocity

component and an average mass of the adjacent cells, has a maximum at the beginning of this

problem. Therefore, one may consider this velocity maximum to be rather construed. However,

for simulations of physical phenomena, the development of new velocity maxima may be

misleading or even catastrophic.

The shock tube is also a simple problem, but it exhibits some important fluid phenomena. The

domain is also a long straight tube, or chamber, which is divided by a diaphragm. The initial

mass density on one side of the diaphragm is larger than what is on the other side, but both sides

have the same initial temperature. For an ideal gas equation of state, the initial pressure is

directly proportional to the initial density. When the diaphragm is released, the gas with the

0-

0 I

0

C)C

0 0

0,0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

x (M) X WM

(a) Monotonic momentum difference. (b) Altered momentum difference.

Figure 7. Advection of the step function of perpendicular velocity.

17

greater density will expand into the lower density gas, launching a shock wave ahead of the

diaphragm and creating a rarefaction wave behind it. In so doing, the pressure equilibrates

across the diaphragm. An analytic solution may be found for this problem using the method of

characteristics for the rarefaction wave and the Rankine-Hugoniot relations for the shock

(Ref. 10).

Figure 8 shows the analytic solution and three solutions calculated with MACH2 at 30 ps for a

shock tube with a Y = 5/3 gas and an initial density ratio of four across the diaphragm. The

diaphragm is initially located at the 0.8-m position, and the initial sound speed is 12.4 km/s.

Note that the results with the van Leer algorithm improve the performance for the advection of

the contact surface, which is the discontinuity at the released diaphragm, compared with the

results from the Godunov method. The third MACH2 curve is a Lagrangian version of the same

shock tube. It maintains a perfect contact surface, but performs only slightly better than the

Eulerian simulations for the shock and rarefaction waves. Thus, the error in modeling the two

lx10 - 5 .

- Analytic Solution

Van Leer Simulation

8 x10- 6 Godunov Simulation

- -Lagrangian Simulation

E
S6x1

- 6

t---6I

4x10- 6

2x10 6 ,
0.0 0.5 1.0 1.5 2.0

Position (m)

Figure 8. Shock tube results.

18

waves may be attributed to the Lagrangian phase and not the advection phase. All three
simulations were run with fully-advanced time centering for the implicit Lagrangian algorithm.
When the Lagrangian simulation is repeated with half-advanced time centering, the waves are
sharper, but the solution is also oscillatory.

19

5.0 DISCUSSION

The van Leer advection algorithm currently in MACH2 has been used and upgraded over the

past 2 1/2 years. It has been used for many complicated simulations of hydrodynamic and MHD
phenomena. The algorithm seems to be rather robust and does not require special attention in
most cases. In a practical sense it provides efficiency. When simulating complicated

phenomena, one typically uses only enough grid resolution to provide reasonable convergence

towards a solution--hopefully the correct solution, to save on computation and personal time.
For a rough estimate, one needs about half as many cells in each dimension with the van Leer

algorithm, in comparison with what is needed with the Godunov method, to achieve the same
level of convergence for dynamic simulations. When one considers that an increased cell size

also increases the allowed time increment, the savings in computation time can be close to an

order of magnitude.

The algorithm presented here should not be considered a final state. If the user has ideas for

improvements or has special needs for a particular problem, the author encourages him to pursue
them. Writing code for MACH2 is fairly easy after one leams the block structure and the tool

routines for setting boundary conditions.

20

REFERENCES

1. Peteijdn, R. E., Jr., Giancola, A. J., Frese, M. H., and Buff, J., "MACH2: A Reference
Manual--Fourth Edition," MRC/ABQ-R-1207, Mission Research Corporation,

Albuquerque, NM, November 1989.

2. Frese, M. H., "A Two-Dimensional Complex Mesh Generator," AMRC-R-687, Mission
Research Corporation, Albuquerque, NM, November 1989.

3. Brackbill, J. U., "Coordinate System Control: Adaptive Meshes," Numerical Grid
Generation, J. F. Thompson, ed., Elsevier Science, 1982.

4. Godunov, S. K., Mat. Sb. 4, p271, 1959.

5. Van Leer, B., "Towards the Ultimate Conservative Difference Scheme. IV. A New
Approach to Numerical Convection," Journal of Computational Physics, Vol. 23, p. 276,
1977.

6. Hirt, C. W., Amsden, A. A., and Cook, J. L., "An Arbitrary Lagrangian-Eulerian Computing
Method for All Flow Speeds," Journal of Computational Physics, Vol. 14, p. 227, 1974.

7. Trulio, J. G., "Theory and Structure of AFTON Codes," AFWL-TR-66-19, Air Force
Weapons Laboratory, Kirtland AFB, NM, June 1966.

8. Marsden, J. E. and Tromba, A. J., Vector Calculus, 2nd ed., W. H. Freeman and Co., New
York, NY, p. 450, 1981.

9. Margolin, L. G. and Beason, C. W., "Remapping on the Staggered Mesh," UCRL-99682,
Lawrence Livermore National Laboratory. Livermore, CA, September 1988.

10. Harlow, F. W. and Amsden, A. A., "Fluid Dynamics," LA-4700, Los Alamos Scientific
Laboratory, Los Alamos, NM, June 1971.

21

APPENDIX

*dk trnspt
subroutine tr, _?t(dlognrix)

c--invoke the van Leer transport loop for mass, energy,
c--magnetic field and momenta.

cdir$ nolist
include 'commion.h'
include 'inputcom.h'
include 'pointer.h'
include 'mgcom.h'

cdir$ list

pointer(kp006, grxrol(0: ip2, 0:jp2))
pointer(kp0 10, gryrol(0: ip2, 0:jp2))

c--initialize the volume integrated quantities.
do 100 lblk = 1,nblk

call setblk
call trnsinit(dlognx)

100 continue

c----firs transport mass:

lblk = 1
call setblk
call tmslp('other',rol,mp)

c--save the mass gradients for momentum
do 1 10 lblk=1,nblk

call setbik
call bkpntrs(1blk,lblk,all,-. U,all,cel1)
call bkcpyvf(dquanx,dquany,grxrol,gryrol)

110 continue

c--mass of material 2:

if (con2on) then
lblk = I
call setblk
call trnslp('other' ,con2,mp2)

c------if con2on these gradients are needed
do 120 lblk=lnblk

call setblk
call bkpntrs(lblk,lblk,allcell,all,cell)
call bkaddar(dquanx,grxrol,grxrol)

22

call bkaddar(dquany,gryrol,gryrol)
120 continue

endif

c ----- energy:

lblk=1I
call setbik
call trnslp(other',selep)

c--ion energy

if (tsplit .ne. 0) then
ibik = 1
call setbik
call trnslp('other',sieion,eip)

endif

if (strength) then
ibik = 1
call setbik
call tmslp('other',sigdxxl,sigdxx)
ibik = 1
call setbik
call trnslp('other',sigdxyl,sigdxy)
11,1k = 1
call setbik
call tmslp('other',sigdxzlsigdxz)
ibik = 1
call setbik
call trnslp('other',sigdyylsigdyy)
lbik = 1
call setbik
call trnslp('other',sigdyzl,sigdyz)

endif

c----vertex centered momenta get special attention for
c----boundary conditions and fluxing.
c--three momentum components:

* lblk=1I
call setbik
call tmsmmn(ul, up)

* lblk=1I
call setbik
call trnsmm(Ai, vp)

23

iblk I
call setbik
call trnsmm(wi, wp)

c---magnetic fields
if (magon) then

c---find the gradients of (bxlbylbzl)
call trnsbgr(brbzon)

if (brbzon) then
do 160 lblk=1,nblk

call setbik
c -------- find the poloidal fields for fluxing

call trnsinib
160 continue

endif

do 170 ibik =lnblk
call setbik
if (brbzon) then

c---------find E dot dl for poloidal fluxes
call tnisedl(dt)

c - ----transport the poloidal flux
call tmsflux

c -------- compute new poloidal field
call tmsbxby

endif
c ------- transport out-of-plane magnetic flux

call tmsbz
170 continue

endif

c----divide returned quantities by new cell mass and update density.
do 200 iblk = 1,nblk
call setblk
call trnsfin

200 continue

return
end

24

*dk trninit
subroutine trnsinit(dlogrnmx)

c----initializ the cell integrals for advection

cdir$ nolist
include 'conimon.h'
include 'inputcom.h'
include 'pointerh'

cdir$ list

dimension dlogm(mxij)
dimension con2t(O:mixij , O:nixij)

common /flxpnt/ istart(nixblks),iend(rnxblks),
% jstart(mxblks)jend(nixblks)

ifstart =istart(lblk)

ifend = iend(lblk)
jfstart =jstart(lblk)

jfend = jend(lblk)

t3= 1./3.
do 100 j=0, jplI

do 100 i-Oipl
mnp(ij) =ro(ij) * oldvol(ij)
mp2(ij) =zero

con2t(ij) =con2(ij)

ep(ij) = mnp(ij) *' sel(ij)
eip(ij) = mp(ij) * sieion(ij)
sigdxx(ij) = mp(ij) * sigdxxl(ij)
sigdxy(ij) = mp(ij) * sigdxyl(ij)
sigdxz(ij) = mnp(ij) * sigdxzl(ij)
sigdyy(ij) = mp(ij) * sigdyyl(ij)
sigdyz(ij) = mip(ij) * sigdyzl(ij)
sel(ij) = rol(ij) * sel(ij)
sieion(ij) =rol(ij) * sieion(ij)
sigdxxl(ij) = rol(ij) * sigdxxl(ij)
sigdxyl(ij) = rol(ij) * sigdxyl(ij)
sigdxzl(ii) =rol(ij) *sigdxzl(ij)

sigdyyl(ij) =rol(ij) *sigdyyl(ij)

sigdyzl(ij) =rol(ij) *sigdyzl(ij)

up(ij) = 0.
vp(ij) = 0.
wp(ij) = 0.

c ------- define a lagrangian volume

25

lagvol(ij) = mp(ij) /(rol(ij) + tiny)
c ------ volume flux out of the bottom of this cell.

rub =(2.*r(ij) + r(i+I j)) * url(ij) +
(r(ij) + 2.*r(i+lIj)) *url(i+1Ij)

rvb =(2.*r(ij) + r(i+lj))* vrl(ij) +
% (r(ij) + 2.*r(i+1Ij)) *vrl(i+1,j)

dxbott(ij) = -0.5 * dt * t3*
%(rub*(y(i+1,j) - y(ij)) - rvb*(x(i+lj) - x(ij)))

c ------ volume flux out of the left of this cell.
nil = (2.*r(ij) + r(ij+l))*url(ij) +
%(r(ij) + 2.*r(ij+l 1) *url(ij+l1)

rvl = (2.*r(ij) + r(ij+l))*vrl(ij) +
(r(ij) + 2.*r(ij+l 1) *vrl(ij+l1)

dxleft(ij) = -0.5 * dt * t3*
%(rul*(y(ij) - y(ij+1)) - rvl*(x(ij) - x(ij+l)))

100 continue

c--separate con2 from conl for fluxing to keep con2 < 1.
if (con2on) then
do 200 i=-O,ipl

do 200 j=0,jplI
mp2(ij) =con2t(ij) * mp(ij)
mnp(ij) (1. - con2t(ij)) * mp(ij)
con2(ij) =con2t(ij) * rol(ij)
rol(i,j) = (1. - con2t(ij))*rol(ij)

200 continue
endif

c--time step control based on volume flux to cell volume ratio--compare
c--with both new volumes and lagrangian volumes.

do 300 j=jfstartjfend
do 350 i=l,icels
volmin = min(lagvol(ij), lagvol(ij-l),
% one / rvol(ij), 1. / rvol(ij- 1))

dlogm(i) = dxbott(ij) / volmin
350 continue

ifj .ne. jpl1) then
idlogm = isamax(icelsdlogm(l),lI)
if (abs(dlogm(idilogm)) .gt. dlogmmnx)then

idtc = idlogm
jdtc = -j
Idtc = Ibik
dlogmmx = abs(dlogm(idlogm))

endif
endif

26

300 continue

do 400 i--ifstartifend
do 450 j=1Ijcels

volmin = min(lagvol(ij), lagvol(i-1I j),
% ~one / rvol(ij), one / rvol(i- 1,j))

dlogmoj) = cdleft(ij) / volnin
450 continue

if (i mne. ipi1) then
jdlogmn = isamaxojcels,dlogm(1),1)
if (abs(dlogmojdlogm)) .gt. dlognnx then
jdtc = jdlogm
idtc: = -i
ldtc = Ibik
dlognmm = abs(dlogmojdlogm))

endif
endif

400 continue

return
end

27

*dk trnslp
subroutine tmnslp(quantype,trnsfrom,trnsto)

c---transport the quantity trnsfrom
c--- using the van Leer transport scheme where the flux
c--across boundary i+1- for a positive velocity, v, is
c----v(q(i) + .5(1 - v dt/dx) X dq(i)),and
c ----- dq(i) =(q(i+1) -q(i-l)) /2.
c--this first loops over the blocks to find the dq's,
c----then loops over the blocks to transport q.

cdir$ nolist
include 'paramcom.h'
include 'inputcom.h'
include 'pointerh'

cdir$ list

character*(*) quantype
dimension tmnsfrom(0:ip2,0:jp2), trnso(0:ip2,0:jp2)
pointer (kpptl, qul(0: ip2, 0:jp2))
pointer (kpptn, qun(0:ip2, Ojp2))

c--get pointer numbers for input arrays
ikpp l Index (trnsfrom)
ikpptn = index (tinsto)

c--gradient loop

if (quantype .ne. 'momentum') then

do 100 lblk=1nblk
call setbik
kpptl = lpoint(ikpptl, lbik)
call tmnsgr(quantype,qul)

100 continue

c-----transport loop

do 200 lblk=1 nblk
call setblk
kpptl lpoint(&ikpt, lblk)
kpptn lpoint(ikpptn, lblk)
call tmsdqbc
call tmsadv(qul,qun)

200 continue

28

else

do 300 lblk=1,nblk
call setbik
kpptl = point(ikpptI, ibik)
kpptn = point(ikpptn, Ibik)
call tmsmmngr(qul)
call tmsadv(qul,qun)

300 continue
endif

retur
end

29

*dlk trnsgr
subroutine trnsgr(quantype,quan)

c--find the limited, centered differences for use in the
c----van Leer transport scheme.

cdir$ nolist
include 'common.h'
include 'inputcom.h'
include 'pointer.h'

cdir$ list

character*l(*) quantype
common /flxpnt/ istart(mxblks),iend(mxblks),

% ~jstart(mxblks)jend(rnxblks)

dimension quan(0:ip2,0:jp2)

do 100 j=0,jp2
do 100 i=0O,ip2
dquanx(ij) = 0.
dquany(ij) = 0.

100 continue

c--set gradient ranges; limit it along walls to
c--prevent confusion (taken care of in nnshbcs),
c--forcing donor cell there except poloidal B.

if (.not. donor(lblk)) then
if (quantype eq. 'polbfld') then

igrxst = 1
igrxend = icels
jgrxst= 0
jgrxend =jp I
igryst= 0
igryend =iplI

jgryst =1
jgryend =jcels

else
igrxst = istart(lblk)
igrxend =iend(lblk) - I
jgrxst =
jgrxend =jcels

igryst = 1
igryend = icels
jgryst = jstart(lblk)

30

jgryend = jend(lblk) - 1
endif

do 200 j=jgrystjgryend
do 200 i--igrystigryend

diffb =quan(ij) - quan(ij-1)
difth quan(ij+1) - quan(ij)
diffc = quan(ij+1) - quan(ij-1))I2.dO
sIMfbsign(one, diffb)
sdifft =sign(one, difft)
sdiffc =sign(one, diffc)
cilimb diffb * 2.dO
dlnn = difft * 2.dO
sdqy =max(zero, sdifb sdifft)/sdiffc
dquany(ij) = sday * min(abs(dlimb),abs(dlinn),abs(diffc))
snnrvl = sign(one , (ro(ij) - rofvl)
grmlt = max(zero , srmrvl)
dquany(ij) = grmlt * dquany(ij)

200 continue

do 300 i--igrxst,igrxend
do 300 j=jgrxstjgrxend

diffi = quan(ij) - quan(i-1Ij)
diffr = quan(i+ Ij) - quan(ij)
diffc =(quan(i+ Ij) - quan(i-l1j))/2.dO
sdiffl =sign(one, diffi)
sdiffr =sign(one, diffir
sdiffc = sign(one, diffc)
dlinil = diffi 2.dO
dlinir = diffr 2.dO
sdqx = miax(zero, sdiffl *sdiffr sdiffc
dquanx(ij) = sdqx * min(abs(dliml),abs(ilinr),abs(diffc))
srnirvl = sign(one , (ro(ij) - rofvl)
grit = max(zero, srmrvl)
dquanx(ij) =grnilt * dquanx(ij)

300 continue
endif

retur
end

31

*dk trnsdqbc
subroutine trnsdqbc

c ----- communicates the van Leer gradient across
c--block boundaries.

cdir$ nolist
include 'conimon.h'
include 'pointer.h'
include 'bccommon.h'
include 'inputcom.h'

cdir$ list

do 100 i=-1,4
ibdry = iproseq(ijlk)
lnbr = knbr(ibdryjlblk)
if (lnbr DC. 0) then

call setnbrb(lnbr)
C from to range

call bcpntrs(ibdry,nebr,edge,thisghst,edge,cel)
call bccpyvf(dqxnbr,dqynbrdqulxdquly)

endif
100 continue

return
end

32

*(Ik trnsadv
subroutine trnsadv(quanfquant)

c--transport a quantity with flux based on what is in
c-----quanf into what is in quant with a van Leer scheme.
c--be aware that what come into this routine is something
c--per unit volume (something X density) and it returns a
c----volume integrated quantity (to be divided by new cell mass).

cdir$ nolist
include 'conimon.h'
include 'inputcom.h'
include 'pointer.h'

cdir$ list

dimension quanf(0:ip2, 0:.jp2), quant(0:ip2, 0:jp2)

common /flxpnt/ istart(mxblks),iend(mxblks),
% ~jstart(mxblks)jend(mxblks)

ikpptt = lindex(quant)
ifstart = istart(lblk)
ifend = iend(lblk)
jfstart = jstart(Iblk)
jfend = jend(lblk)

c--flux in j-direction

do 100 j=jfstartjfend

c---compute the fluxes between this row and the row below.

do 150 i=1,icels

c------- advection (don't forget dxbott > 0 implies downward flow)
sdv = sign(one , dxbott(ij))
sigma = 0.5d0 * ((one + sdv) * dxbott(ij)/lagvol(ij)
% + (one - sdv) * dxbott(ij)/lagvol(ij-1))
qubsp, = (quanf(ij) - 0.5d0 * (one - sigma) * dquany(ij))
qubsm = (quanf(ij-1) + 0.5d0 * (one+sigma) * dquany(ij-l))
dqbs =0.5d0 * dxbott(ij) *

((one +sdv) * qubsp, + (one - sdv) * qubsm)
quant(ij) = quant(ij) - dqbs
quar't(ij-1) = quant(ij-1) + dqbs

150 continue

33

100 continue

c ----flux in i-direction

do 200 i=ifstartffend

c---compute the fluxes between tis column and the column to the left.

do 250 j= Ijcels

c-- -advection (don't forget dxleft > 0 implies flow to zhe left)
sdv = sign(one , dxleft(ij))
sigma =0.5d0 * ((one + sdv) * dxleft(ijp/lagvol(ij)
% + (one - sdv) * dxleft(ij)/lagvol(i-lj))
qulsp = quanf(ij) - 0.5d0 * (one - sigma) * dquanx(ij))
qulsm =(quanf(i-l j) + 0.5d0 * (one+sigma) * dquanx(i- j))
dqls =0.5d0 * dxleft~ij) *

% (one + sdv) * qulsp + (one -sdv) * quism)
quant(ij) = quant(ij) - dqls
quant(i- Ij) = quant(i- I j) + dqls

250 continue

200 continue

return
end

34

*dk trnsnm
subroutine trnm(trnsfrom,tmsto)

c--Use the mach2 momentum components [ceil-ro * vert-vi
c--and use only v * grad(ro)
c--to avoid advecting a lot of mass and little momentum.

cdir$ nolist
include 'paramcom.h'
include 'pointer.h'

cdir$ list

dimension tmsfrom(0:ip2,0:.jp2), trnsto(0:ip2,0:jp2)
pointer(kpptf, qul(0:ip2, 0:jp2))
pointer(kpptt, qun(0:ip2, 0:jp2))

c--get pointer numbers
ikpptf = lindex(trnsfrom)
ikpptt = lindex(trnsto)

do 100 lbIk = InbIk
call setblk
kpptf = lpoint(ikpptf, lbik)
call tmsmniin(qul)

100 continue

c--advect the four 'moments':

lbik = I
call setbik
call tmslp('momentum' ,rovvl1,rovv It)
lblk = I
call setbik
call tmslp('momentum' ,rovv2,rovv2t)
lblk = 1
call setbik
call trnslp('momentum' ,rovv3 ,rovv3t)
ibik = 1
call setbik
call tmslp('momentum',rovv4,rovv4t)

c--recreate vertex momenta.

do 200 lblk = Inblk
call setblk
kpptt = lpomnt(ikpptt, lbIk)

35

call amsmmf(qunflkptt)
200 continue

return
end

36

*dk trnsmmin
subroutine trnsmmin(vel)

c--initialize the four 'moments' of momentum for one component.

cdir$ nolist
include 'common.h'
include 'inputcom.h'
include 'pointer.h'

cdir$ list

dimension vel(0:ip2, 0:jp2)

do 100 j=0,jpl1
do 100 i=-O,ipl
vml = vel(i-elj)
vm2 = vel(i+lIj+1)
vm3 = vel(ij+l)
vm4 = vel(ij)
tmass = ro(ij) * oldvol(ij)
rovvl(i,j) = vml
rovv2(i,j) = vm2
rovv3(ij) = vm3
rovv4(ij) = vm4
rovvlt(ij) = tmass * vml
rovv2t(ij) = tmass * vnr2
rovv3t(ij) = tms * vin3
rovv4t(ij) = tmass * vm4

100 continue

return
end

37

*dk trnsnumf
subroutine trnsmmf(velpjikpptt)

cdir$ nolist
include 'common.h'
include 'inputcom.h'
include 'pointerh'

cdir$ list

dimension velp(0:ip2, 0:jp2)
pointer(npptt, velpnbr(0:inp2, 0:jnp2))

c--acquire the part of the vertex momentum along boundaries
c----that was created in previous blocks.

do 100 ibdry=1,4
Inbr = knbr(ibdryjlk)
if (Ibik .gt. Inbr .and. lnbr .gt. 0) then

call setnbrb(Inbr)
npptt = lpoint(ikpptt, Inbr)

c from to range
call bcpntrs(ibdrynebredgethisedgeedgevert)
call bccpysc(velpnbr,velp)

elseif (lblk .eq. lnbr .and. ibdry .gt. nbrbdy(ibdryjlk)) then
call setnbrb(Inbr)
npptt = lpoint(ikpptt, Inbr)

c from to range
call bcpntrs(ibdrynebr,edgethis,edgeedgevert)
call bccpysc(velpnbr,velp)

endif
100 continue

do 200 icr-=1A
ldnbr = ldignbr(icrrblk)
if (Ilk .gt. ldnbr .and. ldnbr .gt. 0) then

call sethbrb(ldnbr)
npptt = lpoint(ikpptt, Idnbr)

c from to
call ccpntrs(icrnebr,edge,0,thisedge,0,vert)
call cccpysc(velpnbr,velp)

endif
200 continue

c----recombine the vertex momentum in this block.

do 375 j=lIjcels

38

do 300 i=1l,icels
velp(i+lIj) = velp(i-i1lj) + 0.25 * rowvIlt(ij)

300 continue
do 325 i--l,icels;

velp(i+lIj+l1) = velp(ie-1 j+l1) + 0.25 * rovv2t(ij)
325 continue

do 350 i--l,icels
velp(ij+l) = velp(ij+1) + 0.25 * rovv3t(ij)

350 continue
do 375 i=1 ,icels
velp(ij) = velp(ij) + 0.25 * rovv4t(ij)

375 continue

c--put the contribution of this block into the boundaries
c----of previous blocks.

do 400 ibdry--l,4
Inbr = knbr(ibdryjlk)
if (Ibik .gt. Inbr .and. Inbr .gt. 0) then

call setnbrb(Inbr)
npptt = lpoint(ikpptt, lnbr)

c from to range
call bcpntrs(ibdry,thisedgenebr,edgeedgevert)
call bccpysc(velpvelpnbr)

elseif (ibik .eq. Inbr .and. ibdry .gt. nbrbdy(ibdryjlbk)) then
call setnbrb(Inbr)
npptt = lpoint(ikpptt, Jnbr)

c from to range
call bcpntrs(ibdrythisedgenebr,edgeedgevert)
call bccpysc(velp,velpnbr)

endif
400 continue

do 500 icrr1,4
Idnbr = Idignbr(icrrblk)
if (Ilk .gt. ldnbr .and. ldnbr .gt. 0) then

call setnbrb(ldnbr)
npptt = lpoint(ikpptt, ldnbr)

c from to
call ccpntrs(icmrthis,edge,0,nebredge,0,vert)
call cccpysc(velpvelpnbr)

endif
500 continue

return
end

39/40

