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I
I Statement of the Problem

I In continuous random media, one invariably uses the parabolic approximation to the
wave equation. Thus, the development of moment equations that characterize the
random field proceeds from a model that excludes a priori wide-angle scattering and
backscatter. While attempts have been made to rectify both limitations, the formu-
lations used are intractable or inconsistent. It is desirable to use a formulation that

I accommodates backscatter and wideangle scatter at the outset.

In discrete random media, the formalism developed by Flody, Lax, and Twersky
is more often used. The problem development is setup so that a self-consistent com-
putation of the complete multiple scattering interactions amoung all the scatters is
accommodated. It is known that self-consistent interaction computations can be set up
as solutions to differential equations as well as implicit summations of all interactions
(diagram methods). Whereas the continuous media problem generally proceed from a
system of restricted differential equations, the discrete problem more often proceeds an

I exact diagram system. It is desirable to use a common formulation that preservs the
self-consistent interaction fields but can be transformed to diagram form.

We believe that our current work has achieved this goal and provides some new
insights into the structure of scattering problems.

II Summary of Principal Results
Completing work that was initiated under a previous ARO contract (DAALO3-87-C-

002), we have developed a consistent formalism akin to the multiple-phase-screen model
that is rigorously correct for both discrete and continuous random media. For example,
the mutual interaction form of the propagation equations for continuous random media
can be written as follows:

0i__ __; z d K 'a+(K;Z) - Zkg +(K; z) + i K)jj&(K - K';z) 0(K';z) (1)
az 21 (K) 22

0 ik dK'
0a3-(r~ z = i(K;z)Kz)+ Jf b(K-K';z) (K';z) (2)

The integral term involves the total wave field

4(K; z) = ¢+(K; z) + (K; z), (3)

and 6T(K; z) is the spatial Fourier transform of the relative permittivity variation.
Insofar as we know, these equations have not been used previously.

I 2I
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I
In [11, we describe the results of a detailed study of the conditions under which a

hirearchy of moment equations can be derived from (1) and (2). We show that two
distinct approximations approximations are involved. The first approximation requires
small local perturbations as a sufficient condition for evaluating the functional deriva-
tives that appear in the Novikov-Furutsu (NF) theorem. This assumption alone permits
the development of a closed hirearchy of differential equations for the signal moments.
The second approximation requires that over short distances the spectral componentsj propagate like plane waves in a homogeneous medium. Under the first and second ap-
proximations, the most general form of the integral equations for the second order-signal
moments that depend only on the spectral density function of the permittivity fluctu-
ations can be developed. Upon simplifying these equations by using the narrow-angle
scatter approximation, we reconfirmed an earlier finding, namely that backscatter en-
hancements are negligibly small in continuous random media under the usual conditions
of the Markov approximation.

In earlier work 12], we performed a comparative analysis of solutions to the one-
dimensional form of the wave equation. The method of invariant imbedding provides a
rigorous alternative solution at the level of the first approximation. Thus, the second
approximation can be tested. We found that for the first-order moments of the field,j the Markov solution shows little error; however, the total flux within the medium ad-
mits a systematically increasing error as the portion of the incident flux that has been
backscattered increases. The invariant imbedding method does not resolve the internal
flux into directed wave fields, but for a lossless slab of sufficient depth, all of the inci-
dent intensity will be backscattered. The breakdown of the second approximation is of
practical concern for sound and EM propagation in highly inhomogeneous media such
as soil or mud. Similar limitations most likely will apply in nonsparse discrete random
media.

Unfortunately, configurational averaging in discrete random media has not produced
rigorous solutions at the level of the invariant imbedding solution. Thus, in [3], we
assumed that the fields at the boundary planes of the nth slab are uncorrelated with

I the scatterers within the slab. With this assumption, it is possible to derive a closed
hierarchy moment equations for the vector fields. We showed that the characteristic
equation for the mean field propagating in a statistically homogeneous medium has
four eigenvalues corresponding to orthogonally polarized waves propagating in the ±z
directions. For the scalar wave equation, the paired eigenvalues are given as

I~~ &=(+~+ ++)(I + -) ~ +LA2), (4)

where

S= ( - (5)



and &i': represents the ensemble average of the corresponding scattering function for
single slab but normalized by the slab thickness. When &++ = &-- = df and &+- =I_-+ = 0 b, the result agrees with a well-known result derived by Twersky, which is
commonly used to estimate the extinction effects of backscatter.

The uncorrelated field hypothesis appears to be valid for sparse media, but its
limitations presently are uncertain. Thus, we have not yet extended the computations
to higher-order moments.

We have applied the MIM method to practical problems involving an object scat-
tering near a highly rough surface. Under a separate contract, we applied the method
to investigate the hypothesis that enhanced acoustic surface reverberation in the ocean
is caused by subsurface bubble clouds [4]. These computations provide a good example
of the comparative ease with which the results from numerical simulations and known

sscattering functions can be combined via MIM. A surface-scatter simulation was de-
veloped for dynamically evolving nonlinear ocean surface realizations as one input to
the MIM computation [5]. The bubble cloud was modeled as a cylindrical void withIknown scattering characteristics, although analytic continuation must be used to extend
the Bessel series to accommodate evanescent waves. The general problem of a particle
scattering near a rough surface is reviewed in [6].

The scattering problem is simplified considerably when the integration implied by
the @ operator can be replaced by a simple product. In [7], we describe a class of scat-
tering objects for which the scattering operator can be evaluated algebraically. This
is important, because the general scattering interaction of a wave field with a particle
requires the equivalent of an integral operation whether formulated in the spatial or
Fourier domains. The T-matrix method effectively converts the integral to an infinite
series of spherical-harmonic modes. A finite subset of the coefficients are manipulated
with the T-matrix approach. For objects that do not deviate strongly from spheros-
ity, this method is efficient; however, for a broader class of scattering objects, direct
computation of the scattering function as described in [8] may be more efficient.

Finally, although it was not formally part of our current ARO contract, we used our
surface-scatter code to study the statistics of backscatter enhancements. Our results
confirmed earlier findings that speckle statistics remain gaussian distributed through
the region of the backscatter enhancement [9]. We have also simulated backscatter
enhancements for highly nongaussian surfaces at near-grazing incidence. Results from
our simulation codes have been made available to other ARO researchers.

Some unpublished work as yet unpublished is described in more detail in the next
section. Accession For
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III The Relation of MIM to Order N Algorithms

I11.1 Background

Wayne Chew [10] has described a recursive algorithm that evidently can achieve N2
computational efficiency for a system of N mutually interacting scatterers. Tile scheme
has been compared to O(N 3 ) method-of-moments solvers to verify that it is indeed
solving comparable problems with substantially improved efficiency [11]. More recently,
an even faster implementation of the algorithm has been described [12]. The latter
scheme is structurally similar to the mutual interaction method [3], which we believe
to be capable of similar efficiencies. The relation is difficult to see, however, because
Chew's method uses the T-matrix formalism; however, Chew's method can be developed
more generally.

Consider a system of N isotropic scatterers. The structure of the solution will show
how the computational efficiency is achieved and how to reformulate the method in
terms of other scattering operators [7]. For an incident wave 0(r) scattering from a
system of N scatterers, the total field at any exterior point r can be written as

NI pN(r) = (r) -rE Obk(r), (6)
j=1

where V represents the field scattered by the jth scatterer in the presence of all other
scatterers. This field can be related linearly to the total wave field incident upon the
scatterer, Oj , as follows:

;(r) = Jf]j Sj(r,r') NS (r') dr', (7)

where Sj(r, r') depends only on the attributes of the jth scatterer and the integration
is carried out over its volume V. The total field incident upon the jth scatterer admits
the representation

qn(r) = (r)+ JJJn Sn (r, r') N(r') dr'. (8)I ~ ~1= I

I -'he system of N equations implied by (8) can, in principle, be solved for the un-
known fields PN(r), which need be determined only within the confines of each scatterer

i where Sj(r,r') is finite. The formal solution to (8) can be written as

OJN = T #  (9)

I 5 aiI



I

where TN is the jth row of the N x N matrix operator IN and Tf is a column vector
whose nth element consists of the incident field evaluated in the volume of the nth
scatterer. In terms of IN, (6) can be written asIN

ObN(r) = O'(r) + JJS,(r, r') TjPf dr'. (10)

I As a practical matter, the problem is selved when the fields ON~ are determined. As
with any linear system of equations more computation is required to determine IN

itself; moreover, the scattered field must be evaluated in the region of interest. This
formalism is attributed to Foldy, Lax, and Twersky (FLT).

I 111.2 Isotropic Scatterers

An object located at rj is called a point-like isotropic scatterer if its scattering function
Sj has the following property:

jfJJJ Si(r, r')gJN(r') dr' = hj 0' (ri) G(r, rj), (11)

In (11), the right hand side is the scattered wave observed at r, 0 is an arbitraryIincident wave, hi is a constant characterizing the object's scattering strength, and G is
the outgoing Green's function defined by

I exp{iklr - r'l} (12)
47rr- r'l

I Consider a rightward traveling incident wave O(r) multiply scattered by N point-like
isotropic scatterers. The FLT equations simplify to

OsN(r) = Ob(r) + Z hj1 JG(r, rj) (13)
andj=

N

N= b(ri) + E h.,on G, (14)

n j

I 6



where Gj - G(rj, r). The latter equation can be written in matrix form as

I -h 2G12 -h 3G13  -hNGIN OIN 0

-hG21 I -- hNG2N N  02

-hG 3 1 -h 2G3 2  1 -hNG3N t N  b3

* = (15)

-hjGN1 -h 2 GN2  1 N 1PN

I If we let TN represent the inverse of the matrix in (15), the formal solution is

N = TN=!'. (16)

I We could equally well work in terms of the scattered fields O4 = h qjN. Either way,

i the direct solution to this system oi equations would require O(N 3 ) operations

111.3 A Fast Algorithm for Isotropic Scatterers

Now consider a system of N isotropic scatterers with individual strength h, as described
in Section III. We will formulate the solution in terms of Obi, which represents the total
scattered field at the location of the jth particle, ri . In terms of V, the total scattered
field can be written as

N
O/N(r) = O(r) + G(r, rj)O. (17)

3='

Recall that
I 0 = hjN, (18)

where ON is the total field incident upon the jth particle. Moreover, b(r) is a freely
propagating wave field. Thus, if the field is known on a plane, say at z = zo, it can
be transformed to any other plane, say at z = zj, by using the propagation operator
denoted as Pjo.

I This property can be used to develop an efficient recursive algorithm for computing
'. For a single isolated particle, 4 = hJ~q. If two particles are present, it follows

I that

= h2 [02 + (20)

-7



The terms in square brackets represent the direct and scattered wave impinging upon

the the particular scatterer. For the propagating wave field,

Oj = Pjo0o. (21)

The direct parallel to Chew's [10] development can be seen by the following equivalences:

fj 2 ¢(22)

Tj() hj (23)
aj -Gij (24)

J /%o Pj0  (25)
a = o (26)

I We now substitute (19) into (20) and use the relation P10 oo=P 2 P20 oo to obtain

V h [I + P 2G21h] P2 oi 0  (27)

1 - h h2G12G21

If we define

T22 = h2[1 + P12G21h1 ] (8
1 - hlh 2G 12G21  (28)

we see that the scattered field at the second scatterer is given in terms of a constant
multiplying the incident field at the location of the scatterer, P2o0o. Substituting (28)
into (19) and manipulating the incident field yields the complementary relation for the
first scatterer, namely

f r t s a t r r n a e yT i m2  = h 1 [1 + G 1 2 T 2 (2 ) P 2 1]. ( 2 9 )
Because Tw ) = hi, we see that the 2-particle T elements are given in terms of the single
particle T elements.

For an n-particle system,

I = Tj(,)Oi = Tj(n)Pjo00. (30)

I From (17), it follows that

nOn+ = +hn+i1+EO

= n+=b +],+1. (31)

The form of (31) together with (30) implies that

n+ = T(n) [P.oO + j,+ l  , (32)

1 8
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which is the general form of (19). Also, for an n + 1-particle system,

. =+l hn+1 P.+1,o0o Gn+, ,,+, (33)
I ~j=1

Iwhich is the generalized form of (20). Proceeding exactly as with the two-particle
system, we substitute (32) into (33) and manipulate the result to obtain

pn1l -+ -3=1 Gn+l,jTj(n)Pj,n+lIh = hZll ~ - hn, E= Gn+,jTj(n)Gj,n+l '' (34)

from which it follows that
1= Tn+1() 1 - =1  nJTj(n)Pj,n+ (35)

T.+,(.+,) ~ ~ -.,, h,,+, E =1 Gn+I,jTj(n)Gj,n+l"

Substituting (35) into (20) and manipulating the incident field completes the recursion:

I Tj(n) = TIP')+ .+lTn+l(n+l)Pf+l4 (36)

Equations (35) and (36) are functionally identical to Chew's [101 equations (17) and
(18). Although Pj0 is an operator that would generally require an FFT to evaluate,
the total number of operations required to evaluate (35) and (36) is O(N 2 ). From this

Idiscussion it is clear that the computational efficiency arises by virture of the fact that
the incident wavefield is freely propagating and therefore can be mapped from position
to position. Tie scattered fields have tile same property outside the scatterers. TheI T-matrix addition theorem propagates the incident fields (via flj) and the scattered
fields (via aij) from the location of one particle to another.

We have used plane and spherical-wave propagators, but the procedure is general
More important, there are other ways to exploit and improve on these efficiencies within
the conlcxt of the general operator formalism described in [8]. As Chew has noted,
the summation terms in (35) and (36) can be put into a common form, which is the
aggregate scattering function for the collection of particles. In terms of the aggregate
scattering function, tile solution is effectively a succession of two-element scattering
systems. We have noted that the Mutial-Interaction-Equations could be solved in this
fashion, with improved efficiency. Chew's results show that this conjecture is correct.

111.4 An Example

For the simple case of an incident plane wave (a delta-function in the spatial Fourier

domain), the propagation operator is multiplicative, whereby all operations are purely

I 9
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algebraic. In the T-matrix formalism, this is an M = 1 system. We have programmed
the recursive algorithm and compared the results to the exact solution for both accuracy
and efficiency. With the caveat that the system is not close to being singular, in which
case the denominator in (35) and (36) is zero, the errors are negligible. The CPU
time for a SUN SPARC 2 computer is shown in the figure. The upper curve is the
LU decomposition; the lower curve is the recursive algorithm. The variations from the
expected N' and N 2 curves is most likely due to the dynamic operating environment.
The main point is that for the large system, the computation time is reduce from more
than one hour to a few minutes.

4 N - Element Isotropic

102

E

iE 101

C.)

I &

0
1-1

10 1-

Log Number of Elements

Figure 1: CPU time comparison of direct and recursive solutions.
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