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I 1.0 ABSTRACT/SUMMARY

I Acoustic-mode combustion instability has long plagued the solid-

propellant industry, and the increasingly frequent requirement for "reduced-

smoke" propellants, with concommitant removal of metals from the propellant

formulations (ana, thus, removal of metal oxide particulate products, which

have a major role in damping of acoustic oscillations) is expected to exacer-

bate this problem. One strategy for alleviating the problem involves identi-

fication and utilization of approaches to decreasing a major source of

acoustic energy, namely, the transient burning rate response of the solid

propellant to pressure and/or crossflow velocity oscillations. Previous

preliminary modelinn studies have indicated that it might be possible to

decrease the pressure-coupled response functions of composite propellants by

* suitable modification of the relative activation energies of the fuel and

oxidizer ablation processes.I
However, the modeling utilized in arrival at this preliminary con-

clusion was very ovesimplified; accordingly, the purpose of the current study

was to examine this concept further using a much more sophisticated composite
propellant combustion model (steady- and unsteady-state). During the course

of this work, such a model was developed and exercised parametrically to

define potential effects of varying either oxidizer or fuel ablation energy on

Sthe all-important real part of the pressure-coupled response function.

Results of this study indicate that additional factors not included in the

previous simplified modeling greatly diminish the hoped-for beneficial elfects

of increasing the activation energy of the fuel ablation process at a constant

value of oxidizer ablation activation energy. With respect to variation of

the activation energy of oxidizer ablation at a fixed value of the fuel abla-

tion activation energy, the previously-calculated beneficial effects of

reducing oxidizer ablation activation energy are strongly reversed; in addi-

tion, increasing the activation energy from the baseline value associated with

3unmodified ammonium perchlorate has only a miniscule beneficial effect.

Accordingly, the initial conclusion of this study is that the originally

postulated approach to decreasing pressure-coupled response functions of

composite propellants via suitable modification of the oxidizer and/or fuel

* ablation activation energies actually holds little promise.

I
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2.0 INTRODUCTION/BACKGROUND

I Over the years, the appearance of combustion instabilities in solid

rocket motors, in developmental stages, and even in operational systems (as

the propellants age, with changes in burning characteristics) has cost

hundreds of millions of dollars in developmental and refurbishment costs as

well as leading to performance compromises associates with "fixes" to these

instabilities. (Such acoustic instabilities, occurring over a wide range of

frequencies, are generally intolerable in that they can lead to unacceptable

interactions with control systems, structure, and/or payload and, in some

cases, to cdtastrophic motor failure.) Before approximately 1960, insta-

bilities occurred quite frequently in solid motors, particularly tactical

motors where natural resonant frequencies are typically in the 1 Khz and

higher regime. A fortuitous "fix" to many (though not all) of these insta-

bilities was found to be addition of large amounts of metal additives to the

propellant formulations, with the resulting condensed-phase products producing

large amounts of damping of oscillations due to velocity lags dissipating

large amounts of acoustic energy. (In fact, large amounts of metal were first

added to propellants just for this effect, before it was found that such metal

* addition also provided significant performance gains.)

However, increasingly stringent mission requirements (with increased

energy density) have led to increased incidence of instabilities in modern

rocket motors, even with large amounts of metal additive. In addition (and

probably most important),there is a major recent shift to a requirement for
"reduced smoke" propellants for tactical missiles to improve survivability (by

reducing detectability) of the missiles and their launch platforms, e.g.,

aircraft. This requirement precludes inclusion of more than very minor

amounts of metal particles in propellant formulations, leading to a

considerable increase in the occurrence of instability problems due to removal

of a major acoustic energy sink (damping term) associated with the condensed-

phase products. Accordingly, it is important that an alternative approach to

alleviating instability problems, namely reduction of driving (acoustic energy

source) terms be addressed. One major source term (generally the most impor-

tant source) is associated with interaction of an acoustic wave with the solid

propellant combustion processes. Both pressure and flow oscillations

2
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associated with an acoustic wave can cause solid propellant burning rate

(energy release rate) oscillations which, in turn, can feed energy into the

acoustic wave.

I The relationship between burning rate oscillations and pressure

oscillations is referred to as the pressure-coupled response function (a

complex variable) of the propellant, while that between burning rate oscilla-

tions and velocity oscillations is referred to as the velocity-coupled

* response function (although the latter is generally agreed not to be an

intrinsic propellant property, depending strongly on the structure of the

local mean flowfield). Attention here will be restricted, at least for the

time being, to the pressure-coupled response function; it is easily shown that

the real part of this complex response function is the important quantity as

regards driving of acoustic waves, with relationships between the growth

constant for oscillations and the pressure-coupled response function being

presented and discussed in numerous references, most notably CPIA

Publication 290, "Combustion Instability in Solid Rocket Motors.'() For

typical scenarios, it is found that the pressure-coupled response is a major

contributor (driver) in the acoustic energy balance.

I Accordingly, development of means of reducing the amplitudes of the

pressure-coupled response functions of a wide range of solid propellants,

leading to significant reduction of the driving terms in acoustic energy

balances for motors, should lead to major reduction or elimination of

instability problems in motors utilizing such propellants. Thus, it is

apparent that development of a systematic approach (principle) to reduction of

the magnitude of composite propellant pressure-coupled response functions

would be of tremendous potential importance to the solid rocket field.

I For many years, analysts have attempted to estimate pressure-coupled

response functions for composite propellants using theoretical approaches (in

I general, equivalent to the well-known ZN approach)( 2 ) which are strictly

applicable (at best) to homogeneous propellants. As shown by King( 3-5 ) in the

early 1980's (utilizing very simplified composite propellant combustion models

to demonstrate the point clearly), composite propellants provide an additional

* potential destabilizing mechanism beyond those treated by the ZN-type

3
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I approaches. This mechanism involves production of oscillations in the

oxidizer/fuel ratio of "packets" of propellant gases leaving the surface of

the propellant (and, thus, oscillations in the gas-phase heat release) accom-

panying oscillations in surface temperature due to different activation

energies for the fuel and oxidizer ablation processes. A brief outline of how

this comes about follows.I
The oxidizer/fuel ratio of each "packet" of gas leaving the com-

* posite propellant surface may be calculated as:

Alexp(-E ox/RTs) Sox
OFpacket : A2exp(-Efuel/RTs) Sf (1)

I
where Sox and Sf are the nondimensional surface areas associated with oxidizer

and fuel respectively. At steady-state, overall continuity forces these

surface areas to adjust such that OF is equal to the overall propellant

oxidizer/fuel ratio, independent of the mean surface temperature, Ts. Thus,

_Sox A2exp(-Efuel/RT )

-o = OF pro (2)
Sf prop A1 exp(-Eox /RTS)

Now if under oscillatory conditions the frequency is sufficiently high that

Sox and Sf cannot adjust significantly away from their steady-state values, it

may easily be shown through combining of Equations I and 2 (linearizing

around Ts) that:

OFpacket = OF propexp[(E ox- E fuel) (Ts- T s)/RTs2 1 (3)

(It is, of course, recognized that in actuality there will be oscillations in

* surface structure at least partially compensating for the differential

temperature sensitivities of fuel and oxidizer ablation, with the degree of

* compensation increasing with decreasing oscillation frequency until total

compensation occurs as the frequency approaches zero; this is treated in the

* current modeling activity as discussed in later sections of this report.) For

4
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a typical AP/HTPB composite propellant, the available chemical enthalpy is

related to the oxidizer/fuel ratio approximately (again linearizing) by:

H packet 800 + 180(OFpacket- 3.87) (4)

leading to:

Hpacket = 800 + 180(OF propeXp[(Eox- Efuel) (Ts-T s)/RT) - 3.87] (5)

U Based on the current literature, it appears that the ablation of

ammonium perchlorate has a somewhat higher activation energy than the ablation

of typical HTPB binders (by approximately 5 kcal/mole). Thus, upward pertur-

bations in surface temperature will be accompanied by similar perturbations in

3 oxidizer/fuel ratio of "packets" of gas leaving the propellant surface; since

AP/HTPB formulations are generally fuel-rich, this will in turn lead to

3 increases in gas-phase heat release (following from Equation 5) accompanying

increases in surface temperature, a destabilizing mechanism as discussed

3 further in the next paragraph.

In the work described in Reference 5, the above equation for Hpacket

as a function of instantaneous surface temperature, Ts, was combined with

simplified gas-phase combustion model, a "full-up" perturbation analysis of

3 the entire equation set describing surface and gas-phase processes, and a

Fourier analysis of the subsurface region for development of expressions

relating the real part of the pressure-coupled response function

[R(real) - (m;/m)/(P'/T)] to the dimensionless angular frequency of oscilla-PC

tions (standard presentation format) at several values of Eox-Efuel* As may

be seen from Figure 1, the differential dependence of oxidizer and fuel abla-

3 tion rates was predicted to have significant effects on the real part of the

pressure-coupled response function, the predicted R PC(r) peak increasing

3 dramatically with increasing values of that difference. Thus, a potential

destabilizing mechanism in AP-composite propellant combustion which is not

present with homogeneous propellants (and which is not properly handled by the

classical Zeldovich analysis) is suggested. Most important, this reasoning

* suggests a possible significant fundamental approach to development of a class

5
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of AP-composite propellants which will burn stably over a much wider range of

motor conditions than do current formulations; this approach is centered

around development of means of increasing the temperature sensitivity of fuel

ablation or decreasing that of oxidizer ablation resulting in decrease (or

perhaps even reversal) of the effect of the gas-phase heat release oscilla-

tions relative to the surface temperature oscillations.I
The current program was accordingly directed at further examination

* of this approach to reduction of pressure-coupled response functions of AP-

composite propellants, to be carried out in three steps:

I 1. Detailed modeling involving perturbation studies using a complex

composite propellant combustion model which has been verified

against data, to quantitate potential effects of alteration of

oxidizer or fuel ablation activation energies.

* 2. Development of means of tailoring (changing) these ablation

activation energies. At this time, it appears that the most

3 promising approaches to modifying the oxidizer ablation charac-

teristics would involve occlusion of possible catalysts in the

oxidizer crystals or co-crystallization of mixed oxidizers (such

as ammonium perchlorate or hydroxyl ammonium perchlorate, for

example). With respect to modifying the temperature sensitivity

3 of fuel ablation, various approaches including the use of

catalysts, substitution of various moieties on the basic polymer

3 chains, and variation of crosslinker type and level are

available. In this phase of the work, techniques for simul-

3 taneously measuring ablation rate and surface temperature of the

ingredients (ablating alone under the influence of an external

radiation flux) will be utilized, probably in collaboration with

Prof. Tom Brill of the University of Delaware.

3. T-burner and pulsed motor testing with formulations containing

* these modified ingredients to confirm the approach.

I
!7
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3.0 STEADY-STATE MODEL UTILIZED

I A complex steady-state model for combustion of composite solid

propellants developed by King( 6-9) in the late 1970's and used quite success-

3 fully in predicting effects of various formulation parameters and pressure on

AP/HTPB composite propellant burning rates was selected as a starting point

for this analysis. This model, based on the same general principles as the

classic Beckstead-Derr-Price (BDP) model (I0 ), but containing several major

3 modifications, was first further modified to eliminate a discrepancy present

in most (if not all) of the BDP-type models. [In these models, the relative

surface areas of the oxidizer and fuel are calculated via geometrical consi-

derations, with the ratio of the surface area of the fuel to the planar

oxidizer surface area being assumed to be equal to the volumetric ratio of

3 fuel to oxidizer in the formulation; as a result, since the volumetric abla-

tion rates of the fuel and oxidizer are in general different, mass is not

3 conserved in most cases. That is, the mass ratio of oxidizer and fuel abla-

tion is not in general equal to the mass ratio of these ingredients in the

3 propellant.] This deficiency has been corrected in the modified steady-state

model used as a basis for this study in which an iterative approach regarding

calculation of the fuel surface area associated with a given oxidizer particle

planar surface area is utilized to ensure that the ratio of the products of

areas and mass fluxes of oxidizer and fuel is equal to the mass ratio of these

ingredients in the propellant.

3 The basic model is centered around an energy balance, the product of

burning mass flux and energy requirements to raise ingredients from ambient to

3 surface temperature (related to burning rate by an Arrhenius function) and to

vaporize that fraction not consumed in subsurface reactions being equated to

the sum of heat release rates from subsurface reactions and from two gas flame

zones (Figure 2). Thus, burning rate is controlled by three heat release

zones: (1) a thin subsurface zone immediately adjacent to the surface; (2) a

gas-phase AP decomposition product monopropellant flame; and (3) an extended

diffusion flame in which AP products and binder pyrolysis products are mixed

3 and burned. Subsurface heat release is calculated using an estimated subsur-

face temperature profile substituted into a rate expression representing

3 subsurface heat release data measured by Waesche and Wenograd(1 I). This

8
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Figure 2. Multiple Flame Structure Model Schematic for AP/J-TPB Composite Propellants.I 1091-AFSOR
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expression is integrated from the surface to a depth where the temperature

equals the AP melting point to obtain total subsurface heat release. (This

procedure differs somewhat from the BDP model, in which subsurface heat

release per unit mass of propellant is assumed to be constant, independent of

3 burning rate.)

For the gas-phase, a two-flame approach was chosen (in contrast to

the three-flame approach of BDP), the flames being an AP monopropellant flame

(infinitesimally thin flame sheet parallel to the propellant surface) and a

columnar diffusion (Burke-Schumann( 12)) flame. Three distances (FH90, LAP,
and LRX in Figure 2) are important in determining heat feedback from these

flames. FH90 is a distance associated with 90% mixing of the fuel and

oxidizer gases from the propellant surface, while LRX and LAP are reaction

3 distances (products of gas velocity away from the surface and reaction times)

associated with the diffusion and monopropellant flames respectively. AP

3 monopropellant heat release is assumed to occur at one plane, while the diffu-

sion flame releases heat in a distributed fashion (as defined by a Burke-

Schumann analysis described in some detail in Reference 6) between distances

LRX and LRX + FH90 from the propellant surface. (Details of the calculational

procedure for obtaining the heat flux from these flames back to the propellant

surface are also discussed in Reference 6.)

* Details of the equation development for this model appear in

References 6 and 7. Included in the model are three "free" constants (pre-

3 exponentials associated with the subsurface rate expression and the two rate

expressions used to calculate the gas-phase reaction times). Optimized values

for these constants are chosen using burning rate versus pressure data for

four unimodal oxidizer AP/HTPB formulations and subsequently used for all

other calculations for noncatalyzed AP/HTPB formulations. Extension of the

model to treat multimodal-oxidizer formulations and metalized AP/HTPB formula-

tions are discussed in References 7 through 9.I
A brief description of the steady-state burning rate calculation

3 procedure for unimodal oxidizer propellants follows. Again, the reader is

referred to References 6-9 for more details (including treatment of effects of

3 steady-state crossflow, which are not considered in this study).

10
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1. Guess surface temperature, Ts.

2. Calculate mass burning fluxes and linear burning rates of

oxidizer and fuel using:

3 m oxs AOxe-Eox /RTs (6)

I mfu = AFUe-Efu/RTs (7)

rox=-s =m (8)

Ix ox's m ox,s /ox

I rfu : mfu/Pfu (9)

3. Utilize geometrical arguments in combination with rox to calcu-

3 late the effective cured oxidizer surface area (see

Reference 7), ASOX, of a single oxidizer particle.

4. Calculate fuel surface area associated with a single oxidizer

particle. In the first loop of a trial-and-error procedure,

calculate this value by equating the ratio of fuel surface area

to oxidizer planar-projection surface area to the volumetric

ratio of these ingredients in the formulation. In subsequent

Iloops, calculate the ratio of [oxidizer mass flux times oxidizer

surface area divided by fuel mass flux times fuel area] to

overall oxidizer/fuel ratio - if this ratio is greater than

unity, raise the value of fuel area, if less than unity, lower

3s the value. Continue this procedure until the ratio causes unity

and then use a Newton-Raphson procedure to final convergence.

5. Calculate the final flame temperature, Tf, from the input

oxidizer/fuel ratio and a table of flame temperature versus O/F

ratio.

3 6. Calculate energy transport and release rates associated with

various processes in order to perform an energy balance at the

3 propellant surface:

a) Heat rate associated with heating binder from the propellant

conditioning temperature to the surface temperature at a

rate equal to its ablation flux.

1 11I
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ql= mfuAfuel[Cpfuel (Ts-To) + Qmelt,f ]  (10)

I b) Heat rate associated with ablating binder not consumed in

surface/subsurface reactions

q3 = mfuAfuelQfuel,vap (1-a) (11)

= : Fraction of fuel consumed in surface/subsurface

3 reactions (discussed below)

c) Heat rate associated with heating oxidizer from the propel-

lant conditioning temperature to the surface temperature at

a rate equal to its ablation flux1
q2 = moxAs,ox [C pox (Ts-T 0) 

+ Qmelt,ox ]  (12)

d) Heat rate associated with ablating oxidizer not consumed in

3 surface/subsurface reactions

q 4 : moxA1soxQsubl(1-o) (13)

a= Fraction of oxidizer consumed in surface/sub-

I surface reactions

3 e) Heat release rate associated with surface/subsurface

reactions

q5 mox As,oxQEXO (14)

I QEXO = Heat release per gram of AP consumed in sur-

face/subsurface reactionsI
The quantity a is calculated assuming that surface/subsur-

3 face reactions occur only in a region where temperature

exceeds the melting point of AP and that a reaction rate

3 expression:

12
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R = Bsub e-Esub/RT(15)

is superimposed on an unperturbed (unchanged by the heat

3release) subsurface temperature profile given by:

T = (Ts-To) exp (r ox'sPox + T (16)

3with a then being calculated as:

X : XAPmelt

a f aR dx/rox's (17)
X =0

(Details are given in References 6 and 7). The quantity

3 is then calculated from a assuming a stoichiometric

reaction.

7. Calculate the net heat release per unit mass of propellant

associated with all surface/subsurface processes as:

q-q q) (Wt Fraction Oxidizer)

(-q3-q4+q5) (t(18)
Qsurf : (Oxidizer Mass Flux) (Oxidizer Surface Area) (18

8. Calculate rate of heat transfer back to surface from the AP and

3O/F flames depicted in Figure 2 using an analysis detailed in

References 6 and 7.

qfdbk = f (LRX'LAP'FH90,mTf'TS) (19)

3In this analysis, the oxidizer/fuel heat release is assumed to

be a distributed release between LRX and LRX + FH90, while the

3AP flame heat release is a sheet flame (planar) heat release at

distance LAP from the surface. Three different calculational

procedures are used depending on whether LAP < LRX + FH90, LRX <

LAP < LRX + FH90, or LAP > LRX + FH90. In these calculations,

ILRX and LAP are calculated as the products of gas velocity off

13
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3 the propellant surface and reaction times:

KoFV gassurf( 22 Tf exp(EACT'OF/RTF) (20)
L LRX .. (n-1)(2

AP (n-)APgassurf (21)

while tables generated from calculations performed using Burke-

Schumann theory are usroJ for calculation of FH90 as a function

of such parameters as diffusivity, gas velocity off the surface,

flame stoichiometry parameters, and oxidizer and fuel

dimensions.

9. Compare the sum of q1-q4 with q5 plus qfdbk; if they are not

equal, guess a new value of surface temperature and return to

3 Step 1. Repeat to convergence.

10. After convergence, calculate propellant mass flux and burning

rate from:

m A1
I mox,s oxs 1_(22)mpropellant (wt Fraction Oxidizer) A oxp Afu (22)

I rpropellant = mpropellant /Ppropellant (23)

I
I
I
I
I
I
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4.0 COMPARISON OF STEADY-STATE MODEL PREDICTIONS WITH DATA

I As mentioned earlier, there are three "free" constants, Bsub in

Equation 15, and KOF and KAP in Equations 20 and 21, included in the model

3 described above; optimized values for these constants were chosen by calibra-

tion against burning rate versus pressure data for few unimodal-oxidizer-size

3 AP/HTPB formulations (three 73-weight-percent AP formulations with oxidizer

diameters of 5, 20, and 200 microns and one 77-weight-percent AP formulation

with 20 micron diameter particles). Burning rate data and predictions made

using the optimized ;'aiues of these constants over a pressure range of 10 to

150 atmospheres are presented in Figure 3. As may be seen, predictions and

I data agree quite well except for the 200-micron AP formulation, where

predicted values range from 5 percent high at 10 atmospheres to approximately

3 40 percent high at 150 atmospheres. Similar predicted and experimental

burning rates versus pressure for five 82-weight-percent AP multimodal

3 particle size formulations (four bimodals and one trimodal), with the same

values of the constants being used for the predictions, are presented in

Figure 4. Agreement between predictions and experimental data was seen to be

excellent for all formulations except the fifty-fifty 20/200-micron bimodal AP

formulation, where the predictions are apprcximately 10% high over the entire

I pressure range. Thus, it appears that this steady-state model, used as a

basis for the unsteady-state burning rate studies described in the remainder

3 of this report, is a good representation of AP/HTPB composite propellant

combustion.

iI

I

I

I

I
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15.0 UNSTEADY-STATE MODELING

In this section, a description of a perturbation analysis of the

steady-state model described in previous sections, consisting of a Fourier

3analysis of the solid propellant subsurface region plus a quasi-steady-state

analysis of the surface and gas-phase processes and including allowance for

3perturbations in gas-phase oxidizer (fuel ratio), is presented. As a critical

part of this analysis, the effects of partial adjustments of the relative

oxidizer and fuel surface areas to oscillations in ablation fluxes of these

ingredients were treated on a parametric basis. (For very rapid oscillations,

there is no time for any surface area adjustment, while for slow oscillations

approaching zero frequency in the limit, area adjustments, required for satis-

faction of mass balances on oxidizer and fuel, are total.) Estimates of the

*degree of response of relative surface areas (between these two limits) to

mass flux oscillations were made based on the ratio of the oscillation period

to the time required for burning of a propellant thickness equal to the

oxidizer diameter.

I The analysis of the response of the subsurface regions to oscilla-

tions in heat feedback flux is a fairly standard one, used previously by this

author (and many others) and described in detail in Reference 3. This

analysis results in the following relationship between the perturbation values

3of the temperature gradient just below the surface, the surface temperature,

and the burning rate:
l, [(Ts-T) r

OT' pp F p [ITS + T (24)

U where A is a complex function of the oscillation frequency, given by:

I A2 _ p-A - 0 (25)

Wp S2 W (26)

I
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W = Dimensionless angular frequency of oscillations
K = Solid propellant thermal conductivity

pp = Solid propellant density

C = Solid propellant specific heat

r = Steady-state (mean) burning rate

m = Steady-state (mean) burning mass flux

W : Angular frequency of oscillations (211f)

X : Axial distance (from surface) into propellant

T' Perturbation value of temperature

r' Perturbation value of burning rateI
Solution of EQuation 25, with proper application of boundary conditions yields

3the following expressions for the real and imaginary parts of A as functions

of frequency:

A 1  11 +7 [(1 + 2 1/2 112 (27a)
rea 7/ 1/2 P

imaginary 21-- [(1 + w2 12 - 1/2 (27b)

Application of a surface energy balance at any instant of time

3 yields a relationship between the instantaneous rate of heat transfer into the

solid and the instantaneous rate of heat feedback from the gas phase above the

propellant surface (S represents a plane just above the surface, while S-

represents a plane just below it):

K OT I  K -M Qsurf (28)Kg a + - s ax -m

Is s

where Qsurf is the sum of all heats of melting, vaporization, and surface/

3 subsurface reactions (sign convention chosen to be positive for net exothermic

process) per unit mass of propellant. (It should be noted here that an impor-

tant approximation has been made in assignment of all these heat release/

absorption processes to an infinitesimally thin region at the surface rather

than treatment of processes occurring over a finite thickness of the

19
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I subsurface region.) Expansion of Equation 28 into mean and perturbation

I quantities yields:

K T I += K T - m' - - Q' (29)
gdX S s- s surf surf

where the perturbation value of surface heat release per unit mass of propel-

* lant is expressed as:

dQsurf

Qsurf sdTs  (30)

under an assumption that this heat release is a function of instantaneous

surface temperature alone.

3 Since, as discussed earlier, a critical part of the current study

involves allowance for differential perturbations in oxidizer and fuel abla-

3 tion rates with oscillating surface temperature (due to different activation

energies for the fuel and oxidizer ablation processes), considerable care must

be taken in the calculation of m' and Qs as functions of T'. Two limiting
s surfs

cases were analyzed in this study. In one it is assumed that surface area

adjustments accompanying mass flux oscillations are negligible (high-oscilla-

tion-frequency limit); while in the other, it is assumed that there is time

for adjustments in fuel and oxidizer surface areas to totally compensate for

* the differential variations in oxidizer and fuel mass flux oscillations such

that the O/F ratio of material leaving the surface is constant at the overall

3 propellant O/F ratio (low-oscillation-frequency limit). (As will be discussed

later, parametric studies as regards frequencies between these two limiting

cases were carried out as part of this study via linear combinations of the

limiting case expressions.) The first limiting case (no surface-area adjust-

ment) will be referred to as Scenario A in the remainder of the model descrip-

tion, while the second limiting case will be referred to as Scenario B. In

the model developed in this study, m' - T' and Q' - T' relationships are
S s surf s

calculated numerically via calculation (using the steady-state model equations
presented earlier) of m and Qsurf at the mean surface temperature value and at

3 slightly higher values, both with forbidden (A) and allowed (B) surface area

adjustments. With this procedure, values of f1A, f1B (where f, is defined

as (m'/m)/T' and dQ /dT under Scenarios A and B are calculated.s surf s 2
20!
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Combination of Equations 28-30 with ms/lm s fiTs , with consideration
subsequent mathematical manipulation yields an expression relating perturba-

tion values of heat feedback flux (from the gas phase) and surface

temperature:

1AB- 1 dQ (31)6k Pis C dTs

A 1  ( T s - T ) M 1 l s u r f

where: - s
Qsurf

cps (Ts - T)

IFurther manipulation, utilizing a steady-state (mean) energy balance at the

surface and ms/n - fiTs finally yields a desired relationship between pertur-

*bation mass burning flux and perturbation gas-phase heat feedback flux:

mslm s A (1 + a)
qAdbk /qfdbk A + A + Aa 1 dQsurf (32)

PS
I p

Next, the gas-phase processes must be analyzed for development of an

additional equation relating qfd0 ms' and P': this equation is then

1combined with Equation 32 for elimination of qfdbk' yielding an expression for
the ratio of (ms/M s) to (P'/F), defined as the pressure-coupled response

*function.

With the gas-phase analysis employed in this model (described in the
steady-state modeling section), there are basically only three independent

parameters influencing the instantaneous heat feedback flux to the propellant

surface; these are the instantaneous surface temperature (Ts), the

instantaneous flame temperature (Tf), and the instantaneous pressure (P). [Of

3course, Ts affects many other parameters which in turn influence the heat

feedback flux (e.g., fuel surface area, oxidizer surface area, fuel mass flux,

I 21
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3 oxidizer mass flux, fractions of oxidizer and fuel consumed in surface/

subsurface reactions.)] As indicated earlier, the gas phase processes are

assumed to be quasi-steady-state. Accordingly, the basic procedure employed

in this analysis involves calculation of partial derivatives relating

perturbations in heat feedback flux to perturbations in surface temperature,

flame temperature, and pressure.

3 First, the surface temperature is set equal to the mean surface

temperature value (calculated from the steady-state analysis described

3 earlier) and the quasi-steady-state gas phase analysis (same as described

earlier) is used to calculate the gas-phase heat feedback flux at the mean
3 (steady-state) pressure and flame temperature values. Next, the surface

temperature is perturbed slightly (approximately 1 degree Kelvin) upward, with
pressure and flame temperature being held at their mean values, and new values

i of heat feedback flux are calculated under two scenarios. (In Scenario A, the

fuel and oxidizer surface areas are held at their steady-state values, while
3• under Scenario B, they are adjusted to cause the ratio of oxidizer to fuel

gases entering the gas combustion zones to be equal to the overall

oxidizer/fuel ratio of the propellant.) From these three calculated heat

feedback fluxes, the partial derivative of heat feedback flux with respect to

surface temperature at constant pressure and flame temperature is calculated

for each scenario from:

q fdbk, Ts + ATs, Tf, - qfdbk, Ts  TP 7_L u OT s  ITf .AT s  - (33)

~Tf p

3. Next, surface temperature and flame temperature are held at their
mean (steady-state) values, and pressure is perturbed slightly upward for

calculation of a fourth heat feedback flux value; the partial derivative of
heat feedback flux with respect to pressure at constant surface temperature

-- and flame temperature is then calculated as:

N- qb qfdbk, Tst Tf' + AP - q fdbk, Ts, Tf, l (34)OP Ts T f 2 AP

*- 22
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3 Finally, surface temperature and pressure are held at their mean (steady-

state) values, and flame temperature is perturbed slightly upward for calcu-

Elation of a fifth value of heat feedback flux; the partial derivative of heat

feedback flux with respect to flame temperature at constant pressure and

*surface temperature is then calculated as:

M qfdbk I qfdbk, Ts, Tf + ATf, - qfdbk, %s , Tf P

M OTf " ATf (35)Ts,P

Using linear superposition principles (this is a linearized

3analysis), perturbations in heat feedback flux are then related to pertur-

bations in surface temperature, flame temperature, and pressure by:

qfdbk - LT= + MT' + Np' (36)

3 At this point, we have four equations (Equations 30, 32, 36, and

ms/ms" f1Ts) in six perturbation quantities (T;, Tj, P', m, Q'surf'

and qidbk ) .  One more equation is required to permit the desired calculation

of m' as a function of P' (the true independent parameter in this study).
This final closure equation is derived from perturbation analysis of the gas-

3phase energy balance, which may be written as:
msogas - msCpg (Tf - Ts) + qfdbk (37)

AH surf ~ iismox+s ASOX  1 (38)

gas AHTOT surf m ASOX + mAFU surf

Qgas = Gas-phase heat release (cal/gm)

3Qsurf " Heat release in surface processes (cal/gm)

AHTOT = Total available energy associated with a "slug" of

oxidizer and fuel leaving the surface at a given

instant of time (cal/gm)

1 23
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AHTOT is, of course, dependent on the relative mass flow rates (mass flux-

surface area products) of oxidizer and fuel leaving the surface at any time.

3 (ASOX is the instantaneous surface area of oxidizer, while AFU is the corre-

sponding instantaneous surface area of fuel.) A series of calculations of

this available energy as a function of oxidizer/fuel ratio over a range of

interest covering practical AP-composite propellant compositions results in:

AH 2050 + 3600 mox'sASOX 1(39)
TOT - -[ moxsASOX + mfuAFU I

The quantity inside the brackets, in turn, is a function of the surface

temperature; the functionality obviously differs under the Scenario A (no

surface area adjustment during oscillations) and Scenario B (adjustment of

surface areas to maintain constant O/F ratio gas "slugs" leaving the propel-

lant surface) assumptions. Again with use of linearized analysis and defini-

* tion of the constant relating perturbations in the bracketed term to

perturbations in surface temperature as:

f 3 a [ ]' /T' (40)

it is easily shown that under Scenario B, f3 - 0, while under Scenario A,

I
AoxeXp [-E ox/R (Ts + T)] ASOX

fox ox s s (41)

where WFO is the weight fraction of oxidizer in the propellant. Perturbation
of Equation 39, with substitution of Equation 40 then yields:

I AHi.OT - 3600 f3Ts (42)

I
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3 with subsequent perturbation of Equation 38 then yielding:

I dQs urf T

gas"3600 f3T- surf T' f4Ts (43)

3 where f4 - 3600 f3 - dQsurf /dTs.

Expansion of Equation 22 into steady-state and perturbation

quantities next yields (after considerable algebraic manipulation):

I m' _fdbk
qidbk s + ms Qgas - ms Cpg (T - T;) (44)

I which, in conjunction with Equation 43, provides the final equation needed for

closure of this analysis. At this point, we have six equations (Equations 30,

32, 36, 43, 44, and ms/m s -fiTs) in seven unknown perturbation quantities

(qid ' T;, T , "I ms, Qsurf' Qas); these can be worked into the desired

Iexpression for RpC - (m'/-Ms)/(P'/P) with sufficient effort. In the interestexresin orRp (s/s)P

of space, the required manipulation will not be presented here; the final
* expression for the pressure-coupled response function is:

I ms/R S

1pc dsurf

( + A +A + CAps---- dTs  qfdbk
I C p P 9A ( I + ) P -

I (45)

m m4fdbk +( L+13-----pgs Cpg f + 1M TJ 

I where procedures for calculation of A, B, L, M, N, dQsurf/dTs, fl, and f4

under either limiting scenario as regards surface topology adjustment during

I 25
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U oscillations have been previously discussed, and lfdbk and ins are available

from the steady-state model. Given values for all of these parameters, the

real part of the pressure-coupled response is calculated for various

frequencies using the following procedure.

First, the frequency is substituted into Equation 26 for calculation

3 of the dimensionless angular frequency. Equations 27a and 27b are then used

to calculate the real and imaginary parts of A. These are then substituted

into Equation 45 for calculation of the real and imaginary parts of Rpc. From

calculations of various frequencies, a map of the real part of the pressure-

coupled response versus frequency is generated for each case examined.

As indicated earlier, two limiting case scenarios as regards surface

*. topology adjustments during pressure oscillations were treated in the equation

development for f, (appearing in the constant, A), f4, dQsurf/dTs, and L; in

3 the parameter studies described in the remainder of this report, allowance was

made for partial surface area adjustments (intermediate between the two

limiting cases of zero adjustment at very high oscillation frequency to full

adjustment, for maintenance of constant O/F ratio of gas "slugs" leaving the

propellant surface, at very low oscillation frequency). A quantity, ZFRACT,

defining the fractional location of actual operation between the two limiting

cases (ZFRACT - 0 for Scenario A, ZFRACT - 1.0 for Scenario B) was utilized in

3 these calculations, with the values of each of the quantities which are

scenario-dependent being calculated as:

SX - (1-ZFRACT) Xj,scenario A + ZFRACT Xj,scenario B (46)

i In the first phase of the numerical studies, ZFRACT was treated simply as a

model input, with effects on calculated response function versus frequency

curves being examined parametrically. In the second phase of the study, an

expression relating the value of ZFRACT to the ratio of the characteristic

i oscillation time (inversely proportional to the oscillation frequency) and the

time required to burn through a thickness of propellant equal to one oxidizer

i diameter was utilized. This time ratio, TIMRAT, was calculated as:

I 26
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TIMRAT -f m (47)
prop ox

m - Propellant burning mass flux (mean)

f - Oscillation frequency

Pprop - Propellant density
Dox - Average oxidizer particle diameter

Included in the user inputs to the computer code in this study phase were a

value of TIMRAT above which ZFRACT - 1.0 (TRATMX) and a value of TIMRAT below

which ZFRACT - 0.0 (TRATMN); between these limits, it was assumed that ZFRACT

could be related to TIMRAT by an expression of the form:

- ZFRACT - KI + K2 In (TIMRAT) (48)

where K1 and K2 were calculated using ZFRACT - 1.0 at TIMRAT - TRATMX and

ZFRACT - 0.0 at TIMRAT - TRATMN, leading to:

1.0 (49)
K2 "n (TRATMX) - in (TRATMN)

K1  -K2 In (TRATMN) (50)

II
I
I

I
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6.0 RESULTS OF PARAMETRIC STUDIES

As indicated earlier, there were two major phases in the numerical

studies performed utilizing a computer code based on the analyses, described

in the previous section, for calculation of '-he real part of the pressure-

coupled response functions of AP-composite propellants versus oscillation

frequency. In the first part of the study, ZFRACT, a parameter characterizing

the fractional distance from zero-surface-topology-adjustment toward full

adjustment for maintenance of constant oxidizer/fuel ratio in the gas phase

was treated parametrically, with results being calculated for various user-

input values of this parameter (held constant over the frequency range

studied); in this case, closed-form expressions for the real part of the

pressure-coupled response function in the form:

R (real) _ TERM4 (51)
pc A + A/A + TERM5

Iwhere TERM4, TERM5, and A are constant over the entire frequency range for a

given propellant and mean pressure, could be obtained. In the second phase of

the study, where ZFRACT is calculated as a function of the ratio of oscilla-

tion time to time required for burning of one oxidizer diameter thickness of

propellant, ZFRACT is obviously a function of the oscillation frequency; in

this case, such a closed-form expression cannot be obtained.

6.1 Variant I - Input Values of ZFRACT

Calculations in this phase of the study were first made with base-

line values of the oxidizer and fuel ablation activation energies for defini-

tion of the effects of the ZFRACT parameter on pressure-coupled response

functions of propellant in which these activation energies have not been

modified by chemical alterations of the ingredients. Subsequently, the

effects of different values of these activation energies on predicted response

of burning rate oscillations to i!:'posed pressure oscillations were examined.
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6.1.1 Calculations Using Baseline Ablation Activation Energies

Typical plots of predicted values of the real part of the pressure-

coupled response versus frequency are presented in Figures 5-8; ZFRACT values

of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 were used in these calculations. As may be

seen, the predicted magnitudes of the real parts of the response function

decrease significantly with increasing values of ZFRACT; that is, allowance

for surface area variations partially or totally compensating for the dif-

ferential sensitivity of oxidizer and fuel ablation fluxes to surface tempera-

ture variations results in considerable stabilization of the burning

processes. Another way of viewing the result is that it demonstrates the

strong destabilizing contribution of variations in the oxidizer/fuel ratio of
"slugs" of propellant leaving the surface (accompanying surface temeprature

oscillations) in the absence of such surface area variation compensating

effects.

Values of TERM4, TERM5, and A (Equation 51), along with maximum

values of the real part of the pressure-coupled response function are tabu-

lated in Table I for 82/18 AP/HTPB formulations for various values of ZFRACT,

pressure, and ammonium perchlorate particle size. (Similar tables were

generated for 77/23 AP/HTPB and 73/27 AP/HTPB formulations, but are not

presented here since they add little additional information.) Again, it is

seen that the maximum value of the real part of the pressure-coupled response

function decreases significantly as more and more surface area adjustment is

allowed (increased values of ZFRACT). Careful examination of the results

reveals that the maximum value of the real part of the pressure-coupled

response function, normalized by the steady-state burning rate exponent, n,

correlates quite well with TERM5 values, this normalized maximum value

decreasing as TERM5 increases. (See Figure 9.) This behavior is also

exhihited for the 77/23 and 73/27 AP/HTPB cases. It is of interest to examine

the components of TERM5 further to see what factors lead to increased values

and thus to decreased real part of the pressure-coupled response function.

Comparison of Equations 45 and 51 permits derivation of an expres-

sion for TERM5 as a function of various parameters:
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Figure 5. Predicted Rpc (real) vs. Frequency Curves for Various Values of ZFRACT.
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Table I. TERM4, TERM5, A, and Maximum Value of R(real) for

Various Values of AP Size, Pressure, and ZFRACT.

I 82/18 AP/HTPB Eox - 22000 Efu - 16900 Ksolid - 0.0008 cal/cm-sec*K

AP Diameter Pressure

(11) (atm) ZFRACT TERM4* A* TERM5* Max R(real)

1.0 10 1.0 11.131 8.3933 +3.6953 1.22
1.0 10 0.8 10.933 8.2435 +3.0251 1.32
1.0 10 0.6 10.734 8.0937 +2.3550 1.43
1.0 10 0.4 10.535 7.9439 +1.6848 1.62
1.0 10 0.2 10.337 7.7941 +1.0146 1.84
1.0 10 0 10.138 7.6443 +0.3445 2.13

1.0 40 1.0 8.6270 7.0454 +2.4818 1.28
1.0 40 0.8 8.6679 7.0789 +1.9318 1.37
1.0 40 0.6 8.7089 7.1124 +1.3816 1.53
1.0 40 0.4 8.7499 7.1458 +0.8316 1.71
1.0 40 0.2 8.7908 7.1793 +0.2815 1.90
1.0 40 0 8.8318 7.2127 -0.2686 2.18

1.0 100 1.0 7.5366 6.7556 +1.6248 1.30
1.0 100 0.8 7.5641 6.7803 +1.1354 1.43
1.0 100 0.6 7.5916 6.8050 +0.6461 1.58
1 0 100 0.4 7.6192 6.8297 +0.1567 1.71
1.0 100 0.2 7.6467 6.8544 -0.3326 1.95
1.0 100 0 7.6743 6.8791 -0.8220 2.25

7.0 10 1.0 10.747 8.3677 +3.8099 1.20
7.0 10 0.8 10.563 8.2243 +3.1498 1.27
7.0 10 0.6 10.379 8.0810 +2.4897 1.37
7.0 10 0.4 10.195 7.9376 +1.8296 1.54
7.0 10 0.2 10.011 7.7943 +1.1696 1.72
7.0 10 0 9.8265 7.6510 +0.5095 1.99

7.0 40 1.0 6.8037 7.1141 +3.5080 0.83
7.0 40 0.8 6.8360 7.1479 +3.0135 0.88
7.0 40 0.6 6.8684 7.1817 +2.5191 0.98
7.0 40 0.4 6.9007 7.2155 +2.0246 1.08
7.0 40 0.2 6.9330 7.2493 +1.5301 1.19
7.0 40 0 6.9654 7.2831 +1.0356 1.30

7.0 100 1.0 4.0828 6.9305 +3.4805 0.53
7.0 100 0.8 4.1027 6.9642 +3.0798 0.55
7.0 100 0.6 4.1226 6.9980 +2.6792 0.57
7.0 100 0.4 4.1424 7.0317 +2.2786 0.59
7.0 100 0.2 4.1623 7.0654 +1.8780 0.64
7.0 100 0 4.1821 7.0991 +1.4774 0.73

*R (real) - TERM4/(A + A/A + TERM5)I 
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Table I. TERM4, TERM5, A, and Maximum Value of R(real) for

Various Values of AP Size, Pressure, and ZFRACT (Cont'd).

l 82/18 AP/HTPB Eox - 22000 Efu - 16900 Ksolid - 0.0008 cal/cm-sec°K

AP Diameter Pressure

(11) (atm) ZFRACT TERM4* A* TERM5* Max R(real)

20.0 10 1.0 9.0925 8.3116 +4.3698 0.97
20.0 10 0.8 8.9549 8.1858 +3.7508 1.01
20.0 10 0.6 8.8174 8.0601 +3.1319 1.08
20.0 10 0.4 8.6798 7.9344 +2.5129 1.17
20.0 10 0.2 8.5423 7.8086 +1.8940 1.30
20.0 10 0 8.4047 7.6829 +1.2750 1.47

20.0 40 1.0 4.1385 7.2869 +4.0268 0.50
20.0 40 0.8 4.1573 7.3201 +3.6296 0.52
20.0 40 0.6 4.1762 7.3532 +3.2323 0.56
20.0 40 0.4 4.1950 7.3864 +2.8350 0.60
20.0 40 0.2 4.2137 7.4195 +2.4378 0.63
20.0 40 0 4.2326 7.4527 +2.0405 0.66

20.0 100 1.0 2.8102 7.1923 +2.8546 0.40
20.0 100 0.8 2.8221 7.2228 +2.5211 0.42
20.0 100 0.6 2.8340 7.2532 +2.1875 0.44
20.0 100 0.4 2.8459 7.2837 +1.8539 0.46
20.0 100 0.2 2.8578 7.3142 +1.5203 0.49
20.0 100 0 2.8697 7.3446 +1.1867 0.52

1 90.0 10 1.0 4.2907 7.8660 +3.4874 0.54
90.0 10 0.8 4.2889 7.8627 +3.0963 0.56
90.0 10 0.6 4.2871 7.8594 +2.7051 0.59
90.0 10 0.4 4.2854 7.8561 +2.3140 0.63
90.0 10 0.2 4.2835 7.8529 +1.9229 0.67
90.0 10 0 4.2818 7.8496 +1.5317 0.71

90.0 40 1.0 3.5945 8.2683 +1.4943 0.59

90.0 40 0-8 3.5448 8.1539 +1.1589 0.61
90.0 40 0.6 3.4951 8.0396 +0.8240 0.65
90.0 40 0.4 3.4453 7.9252 +0.4879 0.69
90.0 40 0.2 3.3956 7.8108 +0.1524 0.74
90.0 40 0 3.3459 7.6964 -0.1830 0.79

90.0 100 1.0 2.9627 8.5188 -0.9098 0.80
90.0 100 0.8 2.8980 8.3329 -1.2234 0.89
90.0 100 0.6 2.8334 8.1470 -1.5370 0.98
90.0 100 0.4 2.7687 7.9612 -1.8506 1.09
90.0 100 0.2 2.7041 7.7753 -2.1641 1.20
90.0 100 0 2.6394 7.5894 -2.4777 1.36

*R (real) - TERM4/(A + A/ + TERM5)
PC
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Table I. TERM4, TERM5, A, and Maximum Value of R(real) for

Various Values of AP Size, Pressure, and ZFRACT (Cont'd).

I 82/18 AP/HTPB Eox - 22000 Efu - 16900 Ksolid - 0.0008 cal/cm-sec0 K

AP Diameter Pressure

() (atm) ZFRACT TERM4* A* TERM5* Max R(real)

200.0 10 1.0 3.6739 7.5769 +1.7430 0.60
200.0 10 0.8 3.7118 7.6549 +1.4477 0.62
200.0 10 0.6 3.7497 7.7330 +1.1523 0.65
200.0 10 0.4 3.7875 7.8111 +0.8569 0.69
200.0 10 0.2 3.8254 7.8892 +0.5615 0.74
200.0 10 0 3.8633 7.9673 +0.2662 0.81

200.0 40 1.0 3.5252 8.0509 -0.8644 0.96
200.0 40 0.8 3.5013 7.9965 -1.1385 1.02
200.0 40 0.6 3.4775 7.9420 -1.4125 1.10
200.0 40 0.4 3.4536 7.8875 -1.6866 1.21
200.0 40 0.2 3.4298 7.8331 -1.9607 1.36
200.0 40 0 3.4059 7.7786 -2.2347 1.53

200.0 100 1.0 2.9379 8.4323 -2.5698 1.40
200.0 100 0.8 2.8828 8.2741 -2.8299 1.56
200.0 100 0.6 2.8277 8.1158 -3.0899 1.89
200.0 100 0.4 2.7725 7.9576 -3.3501 2.32
200.0 100 0.2 2.7174 7.7993 -3.6102 3.09
200.0 100 0 2.6622 7.6410 -3.8703 4.76

I ,R(real) . TERM4/(A + A/A + TERM5)

I
I
I

I
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Figure 9. Variation of Maximum Value of Real Part of Pressure-Coupled Response

Function (Normalized by Burning Rate Exponent) with TERM5 (Eqn 51).
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As may be seen from this equation, decreases in dQsurf /dTs (more negative

values), f 4 (less positive values), and L (less positive or more negative
values) all lead to increases in TERM5 and thus to decreases in the maximum

value of R (real)/n; examination of detailed intermediate ouputs of the com-odu e pc
puter code indicate that such decreases in these these parameters accompany
increases in ZFRACT (representing greater degree of surface area adjustment

during pressure oscillations). Changes in L and dQsurf/dT s with ZFRACT are

I roughly equal in their contribution to increases in TERM5, while changes in f4

are dominant for small AP particle size cases but considerably less important
for large AP cases. Noting that f4  dQ gas/dTs and L - Oqfdbk/OTs (at

constant flame temperature and pressure), we can see that increases in ZFRACT

I lead to decreases in maximum R(real)/n values (accompanying increases inleadto ecrasesin axium pc

TERM5) by causing decreases in the partial derivative of heat feedback flux

with respect to surface temperature (at constant Tflame and pressure) and
decreases in the derivative of gas-phase plus surface heat release with

respect to surface temperature (which, in turn, leads to decreases in the
derivative of flame temperature with respect to surface temperature, also

leading to lower increases in heat feedback flux accorpanying a given increase

in surface temperature.
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6.1.2 Effects of Changes in Activation Energies of Fuel and Oxidizer

Ablation Processes

In this phase of the study, Rpc expressions were calculated and

(real) versus frequency curves developed for ZFRACT - 0 (no surface area

adjustment) and ZFRACT - 1 (total surface area adjustment needed for constancy

of O/F ratio of gas "slugs" leaving the propellant surface) cases; results for

82/18 AP/HTPB formulations with 1, 7, 20, 90, and 200 micron diameter AP at

various pressures are presented and discussed here. In one set of calcula-

tions (for each pressure - AP size combination), the activation energy of the

oxidizer ablation process was held at its baseline value of

22000 calories/mole with the activation energy of the fuel being varied; in a

second set of calculations, the fuel ablation activation energy was held at

its baseline value of 16900 calories/mole, while the oxidizer ablation activa-

tion energy was varied. In all cases, for either ingredient, the pre-exponen-

tial in the ablation rate expression was varied along with the activation

energy so as to keep the steady-state burning rate at the prescribed pressure

constant as the activation energy varied. (Obviously, other scenarios, such

as holding the pre-exponential constant, could have been examined, but these

would have made analysis of the results considerably more difficult/

confusing. Further studies with different treatments of the pre-exponential

factors are, of course, possible.) Results, in the form of Rpc expressions

and maximum R(real) values versus binder ablation activation energy at Eox

22000 and versus oxidizer activation energy at Efuel - 16900 are presented in

Appendix A for various AP sizes and pressures for ZFRACT - 0 and ZFRACT = 1.

Plots of the maximum value of the real part of the pressure-coupled

response are plotted against the activation energy of the binder ablation

process at a fixed value of oxidizer ablation activation energy (baseline

value of 22000 calories/mole) for various pressure-particle size combinations

for ZFRACT - 0 and ZFRACT - 1 (the two limiting cases as regards surface area

adjustments during oscillations) in Figures 10-16. Similar plots of maximum

R(real) values versus oxidizer ablation activation energy for the baseline
pc

fuel ablation activation energy of 16900 calories/mole are presented as

Figures 17-23. [As mentioned earlier, the previous simplified analysis of

References 3-5 indicated that the real part of the pressure-coupled response
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decreased monotonically with decreases in EOXIDIZER - EBINDER (also designated

as AE); this corresponds to monotonic decreases of maximum R (real) withpc
increasing EBINDER at fixed EOXIDIZER and with decreasing EOXIDIZER at fixed

EBINDER.] As may be seen from Figures 10-16, for ZFRACT - 0 (no surface area

adjustment, as in the earlier simplified analysis), the maximum R(real) values

decrease monotonically with increasing EBINDER (decreasing EOXIDIZER-EBINDER)

as in that earlier study. However, even for the no-surface-topology-adjust-

ment cases, the predicted effects of varying EOXIDIZER at constant EBINDER

(Figures 17-23) are not as simple; for 1-micron and 7-micron AP cases, the

maximum R(real) values decrease with decreasing EOXIDIZER (decreasingpc
EOXIDIZER - EBINDER) as in the earlier study, but for 20-micron AP, these

values are essentially invariant with changes in EOXIDIZER, while for

90-micron and 200-micron AP, the maximum R(real values increase strongly with

decreasing EOXIDIZER (decreasing EOXIDIZER - EBINDER) in direct contradiction

to the previous results. With complete surface area adjustment during oscil-

lations (ZFRACT - 1), giving constant O/F ratio for gases leaving the propel-

lant surface, the maximum value of the real part of the pressure-coupled

response either increases or remains constant (depending on oxidizer size and

pressure) with increasing binder ablation activation energy (decreasing

EOXIDIZER - EBINDER) for fixed oxidizer ablation activation energy, while it

decreases with increasing oxidizer ablation activation energy (increasing

EOXIDIZER - EBINDER) at constant fuel ablation activation energy (opposite of

predictions from the old study). For most cases, there seems to be little

improvement (decrease) in pressure-coupled response relative to baseline

values (marked on the figures) available from modification of either binder or

oxidizer ablation activation energies.

The maximum values of the real part of the pressure-coupled response

(maximum in the R(real) versus frequency curves) were found to correlate quitepc
well with TERM5 in the response function equation (Equation 51) over the

entire range of activation energies and ZFRACT values examined for each pres-

sure-particle size combination (Figures 24-30), with these maximum values

decreasing with increasing values of TERM5. Normalization of these maximum

values by the burning rate exponents yields similarly good correlation with

TERM5; a summary of these results is presented in Figure 31.
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Identification of factors leading to changes in TERM5 (and thus in

maximum value of the real part of the pressure-coupled response) with changes

in EOXIDIZER (at a fixed value of EBINDER) and changes in EBINDER (at a fixed

value of EOXIDIZER) is of interest. Examination of computer printout details

for various cases in combination with Equation 52 (with recognition that

f, - (m'/m)/T s, L- qfdbk/ Ts (for constant TfP) and f 4 dQ gas/dTs

results in such deiinition for various pressure-particle size combinations,

both for ZFRACT - 0 and ZFRACT - 1, as presented in the remaining pages of

this section. As may be seen, several factors contribute to changes in TERM5

with changes in EOXIDIZER and EBINDER (all other parameters being held

constant); the relative importance of these factors is seen to vary from case

to case, negating the possibility of encompassing generalizations.

82/18 AP/HTPB 1p AP P - 100 atm

1. Efuel up from 14500 to 2700 at EOX - 22000 (AE gas from +7500 to -5000)

Effects on

Z = 0 TERM5

Stabilizing changes in aQsurf (more negative) +0.9
OTs

Stabilizing changes in 0Qas (positive + negative) +3.8aT s

Stabilizing changes in aT s  (more negative) +2.2OT s

Net Effect: Stabilizing
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Z - 1
Oq fdb k

Slightly stabilizing changes in aT (more negative) +1.0

Slightly destabilizing changes in _me_ (more positive) -1.1

m S

Net Effect: Negligible

2. EOX down from 24000 to 10000 at Efuel = 16900 (AE goes from +7100 to

-6900)
Z - 0

dosurf

Very destabilizing changes in 0T s (negative + positive) -9.1

Stabilizing changes in - (less positive) +2.7
mi T;

Very stabilizing change in dQ gas (positive + negative) +10.8OT 
s

Net Effect: Stabilizing

Z 1

Very destabilizing change in do -rf (negative + positive) -10. 1

Stabilizing change in m (less positive) +2.3
m T'

Oas

Stabilizing change in, 9 (positive + negative) +6.5d T s

Destabilizing change in (fdbk
OT (less negative) -2.0

Net Effect: Destabilizing
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82/18 AP/HTPB 7p AP P - 10 atm

1. Efuel up from 14500 to 2700 at EOX - 22000 (AE gas from +7500 to -5000)

Effects on

Z - 0 TERM5

Stabilizing changes in OQsurf (more negative) +1.6

Stabilizing changes in 00gas (positive + negative) +4.0OT s

qfdb k

Stabilizing changes in Oq (more negative) +2.9

Net Effect: Stabilizing

Z - 1

No meaningful changes

Net Effect: Negligible

2. Eox down from 24000 to 10000 at Efuel = 16900 (AE goes from +7100 to

-5900)

Z -0

00surf

Very destabilizing changes in OQ surf (negative - positive) -13.8
OTs

Stabilizing changes in T' (less positive) +1.6
T'

s

Very stabilizing change in OQ gas (positive + negative) +12.6

OT s

Net Effect: Slightly Stabilizing
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Z -1
in 0 surf

Very destabilizing change in dTs  (negative - positive) -15.5

Stabilizing change in m' (less positive) +2.3
m T's

OQ
Stabilizing change in gas (positive * negative) +8.1aT s

Oq fdbk
Destabilizing change in T s (less negative) -4.2

Net Effect: Destabilizing

82/18 AP/HTPB 20p AP P - 10 atm

1. Efuel up from 14500 to 27000 at EOX - 22000 (AE gas from +7500 to -5000)

Effects on

Z - 0 TERM5
OQ surf

Stabilizing changes in s (more negative) +1.6

Stabilizing changes in - (positive + negative) +4.0
s

qfdbk

Stabilizing changes in - (more negative) +2.3

Net Effect: Stabilizing

Z 1

No meaningful changes

Net Effect: Negligible
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2. EOx down from 24000 to 10000 at Efuel - 16900 (AE goes from +7100 to

-5900)

Z-O

Stabilizing Change in A (lower absolute value) +0.8
in 0 surf

Destabilizing changes in dTs  (negative + positive) -14.1

Stabilizing changes in - (less positive) +1.5
m T'

Very stabilizing change in p (positive - negative) +12.0
s

qfdbk

Destabilizing change in O (less negative) -1.7
s

Net Effect: Destabilizing

Z-1

Stabilizing change in A (lower absolute value) +1.1
Detbiiin hag i Qsurf (negative + positive) -15.7Destabilizing change in 0 sr

Stabilizing change in m' (less positive) +1.9
m T'

OQs
Stabilizing change in -as (positive + negative) +7.8OT s

Destabilizing change in q (less negative) -4.8
aTs

Net Effect: Destabilizing
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82/18 AP/HTPB 90p AP P - 100 atm

1. Efuel up from 14500 to 27000 at EOX - 22000 (AE gas from +7500 to -5000)

Effects on

Z - 0 TERM5

OQsurf
Stabilizing changes in - (more negative) +1.5

Stabilizing changes in 0 as (positive + negative) +0.8

qfdbk
Small destabilizing change in -j7- (more negative) -0.2

Net Effect: Stabilizing

Z - 1

dq fdbk

Destabilizing changes in aT s  (negative + positive) -2.3

Net Effect: Destabilizing

2. EOX down from 24000 to 18750 at Efuel - 16900 (AE goes from +7100 to

+1850)

Z-0

Stabilizing change in A (lower absolute value) +0.2

i surf
Destabilizing changes in -FT (negative - positive) -5.3
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Stabilizing changes in Qgas (positive * negative) +1.0OT 
s

dclfdbk

Stabilizing change in Oqr---- (less positive) +1.5

Net Effect: Destabilizing

Z =1

Stabilizing change in A (lower absolute value) +0.4

Destabilizing change in surf (negative + positive) -5.9

Stabilizing change in 0gas (positive , negative) +0.6OT s

aqfdbk
Stabilizing change in OT s (positive + negative) +0.5

Net Effect: Destabilizing

82/18 AP/HTPB 200p AP P = 100 atm

1. Efuel up from 14500 to 27000 at EOX = 22000 (AE gas from +7500 to -5000)

Effects on

Z - 0 TERM5
dQsurf

Stabilizing changes in - (more negative) +1.5

OQ
Stabilizing changes in (positive - negative) +0.3aTs

Destabilizing changes in dT (more positive) -0.2

Net Effect: Stabilizing
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Z-1

Destabilizing changes in -yr---- (more positive) -2.05

Net Effect: Destabilizing

2. Efuel goes from 28000 to 21500 at Efuel - 16900 (AE goes from +11100 to
+4600)

.Z-

Stabilizing changes in A (lower absolute value) +0.3

Very destabilizing changes in Qurf (less negative) -6.8
s

Stabilizing changes in - 9 (less positive) +0.5
O T d b

Stabilizing changes in d (less positive) +2.8

Net Effect: Destabilizing

Z -1

Stabilizing changes in A (lower absolute value) +0.5

Very destabilizing effects in 0Qsurf (less negative) -7.5

Stabilizing changes in -p (less positive) +0.3a s

qfdbk

Stabilizing changes in dT (less positive) +1.7

Net Effect: Destabilizin
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6.2 Variant I - Calculations with ZFRACT Being a Function of a Charac-

teristic Oscillation Time - Burn Time Ratio

As with the studies involving input values of ZFRACT (presented in

the last section), discussions of studies using an expression relating ZFRACT

to the ratio of characteristic oscillation time to characteristic time for

passage of the combustion front through a thickness of propellant equal to one

oxidizer particle diameter are broken into two parts, calculations with base-

line values of the oxidizer and fuel ablation activation energies, and

examination of the effects of various values of these activation energies on

pressure-coupled response functions. In both cases, the following relation-

ship between ZFRACT (degree of surface area adjustment during oscillations)

and the time ratio (TIMRAT) was utilized:

ZFRACT - 0.0 for TIMRAT < 0.1

ZFRAT =In (TIMRATTL- l, £0.1)
ZFRACT - n (1'0) - " 1-) for 0.1 < TIMRAT < 10 (53)

ZFRACT - 1.0 for TJMRAT > 10.0

(Other expressions could obviously be used in further studies, but t Id not

offset the conclusions drawn in any major way.) As indicated earlie-, use of

an oscillation-frequency-dependent expression for ZFRACT of course precludes

development of closed-form expressions for the pressure-coupled response

functions for any given pressure-propellant combination.

6.2.1 Calculations Using Baseline Ablation Activation Energies

Plots of predicted values of the real part of the pressure-coupled

response versus dimensionless frequency, wp, (Equation 26) are presented in

Figures 32-42 (for pressures of 10, 40, and 100 atm) for various AP/HTPB

ratios and AP particle sizes. Included on each figure (one figure rr AP/HTPB

ratio - AP size combination) are expressions relating the oscillation

frequency to the dimensionless value used as the abscissa for each pressure.

Since ZFRACT decreases (less sirface area adjustment) with increasing

frequency, these curves in most cases have somewhat different shapes than the
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curves of Figures 5-8, where ZFRACT was held constant for each curve. At the

lowest frequencies, the response values correspond to ZFRACT - 1.0 values on

the previous graphs; while at the highest frequencies, they are closer to the

ZFRACT - 0 values. That is, these curves tend to track across the curves

shown earlier, moving from the top curve to the bottom curve as frequency

increases (left to right). (Detailed computer printouts include ZFRACT values

at each frequency, permitting quantitative demonstration of this behavior.)

As may be seen from Figures 32-34, the pressure-coupled responses for the 1-,

7-, and 20-micron AP, 82/18 AP/HTPB cases are fairly low, without any sharp

peaks. As the AP size is increased to 90 and 200 microns for the 82/18 cases,

the pressure-coupled response versus dimensionless frequency curves begin to

exhibit significant peaks (Figures 35 and 36), particularly at high pres-

sure. With 77/23 AP/HTPB formulations, increased sensitivity to pressure

oscillations is seen (Figure 37-39); this is particularly strong for the

200 micron AP case. In fact, for the 200 micron AP case at P = 100 atm, the

formulation is actually intrinsically unstable (the dive in the response to

very low negative values is indicative of such intrinsic instability).

Finally, with 73/27 AP/HTPB formulations, the responses are still higher;

again, intrinsic instability is predicted for the 200-micron-AP, P = 100 atm

case.

6.2.2 Effects of Changes in Activation Energies of Fuel and Oxidizer

Ablation Processes

Plots of the calculated real part of the pressure-coupled response

versus oscillation frequency are presented in Figures 43-60 for various values

of oxidizer ablation activation energy (at constant fuel ablation activation

energy) and various values of fuel ablation activation energy (at constant

oxidizer ablation activation energy) for several AP/HTPB ratio-pressure-

oxidizer particle size combinations. The maximum values of this real part of

the pressure-coupled response, extracted from these plots, are next plotted

against oxidizer ablation activation energy for various AP/HTPB ratio-

pressure-AP size combinations in Figures 61-70, and against fuel ablation

activation energy in Figures 71-80. The following discussion will be concen-

trated on the results depicted in Figures 61-80.
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As may be seen from Figures 61-70, the maximum value of the real

part of the pressure-coupled response decreases with increasing value of the

oxidizer ablation activation energy (at fixed fuel ablation activation energy)

for virtually every case examined, the only exceptions being the 73/27 AP/HTPB

cases, which are not really of practical interest anyway. This result is

opposite of predictions made with the preliminary model (References 3-5)

developed in the 1980 time period and discussed earlier; in that preliminary

model it should be recalled that the pressure-coupled response real parts were

predicted to increase with increasing oxidizer ablation activation energy at

fixed binder ablation activation energy. Careful examination of the computer

printouts indicate that this change comes about as a result of treatment of

the condensed-phase heat release depending on various parameters (not treated

in the preliminary model) in the current modeling effort; these factors appear

to more than compensate for the effects of the relative ablation activation

energies on the degree of oscillation of oxidizer/fuel ratio of gas pockets

leaving the propellant surface, which by themselves tend to lead to lower

response of the propellant burning rate to pressure oscillations with

decreased values of EOXIDIZER - EBINDER. It is also important to note that

for most cases (with the exception of 200-micron-AP cases) little benefit (in

terms of reduced real part of the pressure-coupled response) is available via

variation of the oxidizer ablation activation energy at the fixed baseline

values of the fuel ablation activation energy. For the 200-micron-AP cases,

considerable reduction of the maximum real part of the response function can

be obtained by increasing EOXIDIZER (opposite of what was predicted with the

preliminary model!)

Figures 71-80 show that the predicted maxima in the real parts of

the pressure-coupled responses decrease with increasing values of the binder

ablation activation energy (at fixed oxidizer ablation activation energy) for

all cases examined, in qualitative agreement with the preliminary studies of

References 3-5. However, the magnitude of these decreases, particularly for

the more practical 82/18 AP/HTPB cases, are considerably less than predicted

in the preliminary studies, indicating that little benefit is likely to be

achieved through tailoring of the binder ablation activation energies.
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7.0 CONCLUSIONS

Based on the parametric studies with the current model to date, it

appears that, for most cases, little benefit in terms of reduced sensitivity

of burning rate to pressure oscillations is likely to be obtained via

variation of fuel or oxidizer ablation activation energies. However, it must

be acknowledged that the parametric studies to date are fairly limited in

scope; further studies with simultaneous variation of oxidizer and fuel

ablation activation energies might reveal favorable combinations for reduction

of pressure-coupled response as might different assumptions regarding changes

in pre-exponential factors accompanying changes in actuation energies.

(Recall that it was assumed in the parametric studies to date that the

pre-exponentials would vary with the activation energies in such a manner as

to give constant steady-state burning rate at the pressure of interest; other

scenarios can obviously be examined with this model, though interpretation of

the results will be obviously more complex in terms of what is being held

constant in the comparisons.) Thus, it may be concluded that although preli-

minary exercise of the unsteady-state burning-rate model developed in this

study indicates that the proposed approach of reducing pressure-coupled

response functions via modification of the kinetics of the oxidizer and fuel

ablation processes has rather limited promise, further numerical studies with

this model might well prove beneficial. Experimental studies should be

conducted to verify the preliminary conclusions.
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I APPENDIX A

I Tabulations of Rpc expressions and maximum values of the

real part of the pressure-coupled response as a function

I of binder ablation activation energy (at constant

oxidizer ablation activation energy) and as a function

l of oxidizer ablation activation energy (at constant fuel

ablation activation energy)

I
l

1

I A-1



82/18 AP/HTPB lp AP P - 100 atm ZFRACT - 0.0

EOX - 22000

EBINDER Rpc Expression Max Rpc(real)

14500 R 7.51682 3.53
PC A + 6.73817 -2.06327

A

7.67438 2.2616900 Rpc + 6.87912 -0.82536

A A

7.84455 1.64
10 R+ 7.03181 +0.52148

A+ A

22000 R - 8.00872 1.31
p + A +1.81977

8.17270 1.1024500 Rpc .. 73248..1
A + A +3.12085

27000 R 8.33655 0.95
Pc A + 7.47233 +4.42385

A

A-2



82/18 AP/HTPB 1pi AP P - 100 atm ZFRACT -1.0

EOX - 22000

EBINDER Rpc Expression Max Rpc (real)

14500Rpc =7. 2212114500Rpc 91.27
A + +1.58292

16900 R 7. 53665 1316900 Rp A + 6.75565 +1.62544 13
A A

19500 Rp + 7.87856 1.33
A + A +.74

22000 Rp 8.21082 1.36
PC A + A.58 +1.71207

24500 Rp 8.54129S~ 1.38
A + A +1.75447

27000 R 8.87230 1.41

PC A + 7.55 +1.79739

A- 3



82/18 AP/HTPB 1p AP P - 100 atm ZFRACT - 0.0

EOX - 16900

EBINDER Rpc Expression Max Rpc(real)

200R8.27121 2.68
24000 Rpc -£7.414 -. 280762

22000 R 7.67438 2.26
PC A + -0.82536

19500 R 6.92786 1.83
Pc A + -0.24807

16900 R 6.14555 1.47
PC A + +0.34919

5.78849 1.3315700 Rpc - 97113
A + 5.19371 +0.6263t

1450 R 5.43114 1.2014500 Rpc = 4.87261 1.2020
PC A + 4A76 +0.90209

5. 04408
13200 R 54 1.07

0 Rp A + 4.52475 +1.20543

12000 R 4.68673 0.96
+ A +1.49120

4.09097 0.79
10000 RPC -3.66850 07

A + A +1.97779

A-4



82/18 AP/HTPB 1y AP P - 100 atm ZFRACT - 1.0

EOX - 16900

EBINDER Rpc Expression Max pc(real)

24000 R 8.02618
PC - -.. 9462 1.25

PC A + A +2.14615

7.53665 1.30
22000 Rpc + 6.75566 +1.62544

A

19500 R 6.92779 1.39
PC A + A +0.96837

6.29709 1.5216900 R~ - 564515

p A + A +0.28119

15700 R 5.87809PC --- 5.8-7-809 1.55

pc A + A +0.002294

14500 R 5.59734
p A + 5 2 -0.29833

13200 R 5.29343 1.79
13200. 4 _ +-0.64765

A+ A

12000 R 5.01364 1.97
PC A+ .49686 -0.97180

A

10000 R 4.55189 2.44
+ 4 -1.51770

A-5



82/18 AP/HTPB 7p AP P - 10 atm ZFRACT - 0.0

EOX - 22000

EBINDER Rpc Expression Max Rpc(real)

14500 R - 9.62518 2.89
A+ - -1.06186

16900 R 9.82654 1.9916900 PC"" 7.65096

A + A +0.50946

19500 Rpc - 10.04453 1.50
A + 7 +2.21404

22000 R 10.25358 1.23
PC + 13 +3.84654

24500 R - 10.46331 1.04
20 R A + 8.1474 +5.49289

27000 R 10.67303 0.91

20 R A + 8.31074 +7.14231

A-6



82/18 AP/HTPB 7p AP P - 10 atm ZFRACT - 1.0

EOX - 22000

EBINDER Rpc Expression Max RPC(real)

10,.8926214500 8, 410826 1.28
RpC A + 8.48100 +3.85834

tA

10.7470316900 Rpc + 8.36765 3.80996128

A A

19500 R 10.61340 1.27PC A + +3.76402

22000 R 10.50816 1.27
A + - +3.72875

24500 R - 10.42724 1.27
A + A +3.69603

27000 R 10.37006 1.27
PC A + 8 +3.66935

A-7



82/18 AP/HTPB 711 AP P - 10 atm ZFRACT - 0.0

EOx - 16900

EBINDER Rpc Expression Max Rpc(real)

24000 R 10.59092 2.11
A + +0.45475

22000 R 9.82654 1.99
0 R A + 7.6509 +0.50946

8.87220 1.85
P0 R A + 6.90696 +0.57543

16900 R 7.8779 1.68
PC A + .3323 +0.66817

7.41896 1.6015700 Rpc 1 5.762 .6
PC -5.77612

A + A +0.71451

14500 R 6.96012 1.52pc A + A +0.76338

6.46306 1.4313200 Rpc 531514
A + A +0.81907

6.00415 1.3512000 Rpc = 465213
A + 4 +0.87207

11000 R 5.62131 1.28
R + A'- +0.91831

A-8



82/18 AP/HTPB 7p AP P - 10 atm ZFRACT - 1.0

EBINDER Rpc Expression Max Rpc(real)

24000 R 11.85748 1.20
0 R A + 9.23228 +5.05341

22000 R 10.74703 1.28

Rpc + 8.36765 +3.80996
A+ A

9.41003 1.43
19C A + A- .2566 +2.24120

8. 02986
16900 - 6 2515 1.73PC A + 6.25152 +0.59830

15700 R 7404999 1.97
PC A + 5.765 -0.16435

14500 R = 6.78779 2.39PC A + 5..8484 - 0.92930

13200 R w 6.12771 3.30
Pc A + 4.77104 -1.76064

12000 R 5.52511 5.90
A +. A0 2.52811

11000 R 5.03852 -30-32
0 Rp A + 3.9235 -3.17608

A-9



82/18 AP/HTPB 20pj AP P - 10 atm ZFRACT -0.0

EOX - 22000

EBINDER RPC Expression Max RPC (real)

14500 Rp 82249 1.94
PC A + -.558_0.15744

16900 R 8.40476 141690 Ap + 7.68291 +1.27501
A A

19500 Rp .534 1.18
PC A + 7.54 +2.83319

22000 R 8. 77074 0922000 RPC 8.01745 09
A + A +4.33767

24500 Rp - 814508 0.86
PC A + A.84 +5.86113

27000 R 98134545 0.76
PC A + A.44 +7.37783

A- 10



82/18 AP/HTPB 20p AP P - 10 atm ZFRACT = 1.0

EOX - 22000

EBINDER Rpc Expression Max RPC(real)

1450 RP9.15933 1.01

A + A +4.45799

1690 R w - 9.09248 1.0116900 Rpc + 8.31156 +4.36980
A

19500 R 9.04151 1.02
10 R A + 8.2649 +4.28309

2200 R 9.01372 1.0322000 Rpc + 8.23957 +4.20857

24500 R 9.0075624500C Rpc = -.-Z325 10
A + A +4.13900

27000 R 9.02165 1.04
200Rpc " 824614

A + +4.08193

A-11



82/18 AP/HTPB 20p AP P - 10 atm ZFRACT 0.0

EOX - 16900

EBINDER Rpc Expression Max RpC(real)

9.05858 1.48RPC A + 8.28057 +1.52498

22000 R 8.40476 1.47PC A + 7.68 +1.27501

19500 7.58766 1.46

Rpc + 6.93582 +0.96903

16900 Rpc A 6.15889 +0165713

14500 R 5.95291 1.41

10 R A + 5.44170 +0.39053

5.52827 1.4013200 Rpc -" 52114
C A + A +0.23632

120 RP 5.13584 1.39

12000 Rpc A+-4.69463 +0.09731
A+ A

11000 R 4.80997 1.38
A + .98-0.00182

070R 4.71206
10700 RPC = [ 1.39

PA 1 0.06620

A-12



82/18 AP/HTPB 20p AP P - 10 atm ZFRACT - 1.0

EOX - 16900

EBINDER Rpc Expression Max Rpc(real)

24000 R 9.99420 0.94
A + g +5.83711

9.09248 1.0122000 Rpc " -8.31155 +4.36980

19500 R 7.99147 1.17
PC + +2.52256

6.86146 1.47
16900 Rpc A + 6.27310 +0.59310

A

14500 R 5.86258 2.27PC A+ 5.35913 -I.20804
A

120R =5. 33201 36
13200 pc + 4.8732 2.18768

12000 R 4.84988 11.5PC A+4.43324 -3.09135
A

11000 Rp o 4 .446551100 Ap + 4.06373 -3.84532
A

10700 R 4.31590
PC A + 3.94418 4.05345

A

A- 13



82/18 AP/HTPB 90p AP P - 100 atm ZFRACT - 0.0

EOX - 22000

EBINDER Rpc Expression Max RPC(real)

5 2.5871414500 Rpc 7.43368 1.67
+ A 2.83644

16900 R 2.64197 1.37+ -A -2.48027

19500 R 2.70033 1.14
A + A- -2.09208

22000 R 2.75623 0.99
PC A + 7.91987 -1.71572

A

24500 R 2.81130 0.88
Apc A + -A -1.33698

27000 Rpc 2.869 0.79A + A -0.95540

A-14



I

I 82/18 AP/HTPB 90p AP P - 100 atm ZFRACT - 1.0

I EOX 22000

EBINDER Rpc Expression Max Rpc (real)

14500 R 3.03954 0.72
0PC + 8.7 -0.48777

S2.9689408.52854 80.904090

19500 R 2.89115 0.89
50PC + .TW60A -1.34409

* 2.82471 1.01
PC 2R A + 8.11665 -1.76287

24500 R = --2.76329 1.19
2450 Ap + 7.94381 _-2.17554

27000 Rpc 2.71645 1.44
P A + 7.8037 -2.58686

I
I
I
I
i

IA-15



82/18 AP/HTPB 90p AP P - 100 atm ZFRACT = 0.0

EOX - 16900

EBINDER Rpc Expression Max RPC(real)

2.8462324000 Rpc + 8.17966 91.544744
A A

22000 Rpc 2.64197- 1.36PC A + 7.58 -2.48027

2.5126127050 Rpc - 7.22034 2.00
A A -3.07004

2.4355720000 Rpc = A 6.99895 2.89
A+ -A -3.42534

2.38446 -4.1519500 Rpc = 6 85136.
A + 3 -3.66279

19000 R 2.33304 -7.7
A + A -3.90127

18750 Rpc 2.30834
A + A -4.02083

A-16



82/18 AP/HTPB 92p AP P - 100 atm ZFRACT = 1.0

EBINDER - 16900

EBINDER Rpc Expression Max Rpc(real)

24000 R 3.29006 0.60
PC A + 9.45517 +0.68064

22000 R 2.96894 0.80
PC A + 8 -0.90409IA

20750 R 2.76138 1.06PC A + 7.-A-2 -1.89159

20000 R 2.64213 1.37
PC A + 7.59252 -2.48854

19500 R 2.56038 1.73
PC + 735681-288493

19000 R 2.48672 2.44
PC A + 7.14534 -328639

18750 R 2.45054 3.09
PC + 03834 3.48661

A

A-l7



82/18 AP/HTPB 200p AP P = 10 atm ZFRACT - 0.0

EOX - 22000

EBINDER Rpc Expression Max Rpc(real)

14500 Rpc 3 .78394 0.94
A + -0.43012

16900 Rpc 3.86325 0.81
PC A + A +0.26616

19500 Rpc 3.94853 0.71

A + 8 +1.02351

4.03174 0.63
0 R A + 8.31423 +1.75970

24500 R 4.11418 0.58
A + A +2.50210

27000 R 4.19665 0.53PC0A + A +3.25130

A-18



82/18 AP/HTPB 200p AP P - 10 atm ZFRACT - 1.0

EOX - 22000

EBINDER Rpc Expression Max RPC(real)

3.45944 0.57
14500 Rpc 7.13478 0.57

A + x +1.80716

16900 R 3.67393 0.60
A + +1.74305

19500 R 3.91405 0.63
10 R A + 8.07303 +1.67644

4.15538
22000 Rpc A + 8.5691 +1.61828

4.40485 0.7024500 Rpc - TU9?.0"37 0.7
A + 9 +1.56219

4.66315 0.73
P0 R A + 9.61638 +1.51073

A-19



82/18 AP/HTPB 200p AP P - 10 atm ZFRACT - 0.0

EOX - 16900

EBINDER Rpc Expression Max RpC(real)

4.76502 0.48
28000 RPC +98.826664.50

4.31405

25000 Rpc - 8.8969 0.59
A + 8 +2.61423

2200 R 3.86325 0.8122000 Rpc + 796730 +0.26616

20000 R 3.56274 1.17
0 Rp A + 7.34751 -1.31178

3.26221 2.5218000 Rpc - + . 2 7225
A 6.72772 -2.89940

3.11168 -7.517000 Rpc + 6.41783 73.69656

3.08163 -1216800 Rpc A A + 6.35585 -3.85623

A-20



82/18 AP/HTPB 200p AP P - 10 atm ZFRACT - 1.0

EOX - 16900

EBINDER Rpc Expression Max Rpc(real)

28000. 4.32354 0.33
28000 Rpc A + 8.91623 +8.20561

A

25000 3.99156 0.42
200Rpc " 8.23189

A + 8 +4.99056

2200 R 3.67393 0.60
PC A + 7.57685 +1.74304

20000 R 3.46872 0.90
PC A + 7.15361 -0.43942

18000 R 3.27044 2.09
PC0A + 7 1 -2.63742

17000 R 3.17319 -7.9
A + 6.54470 -3.74268

16800 R 3.15397 -18

PC + 6.05 -3.96397

A-21



82/18 AP/HTPB 200p AP P - 40 atm ZFRACT - 0.0

EOX - 22000

I EBINDER Rpc Expression Max Rpc(real)

14500 R 3.33682 1.87
PC 7.61910 -2.63880I

16900 R 3.40705 1.53
PC + 7.77856 -2.23498

I 19500 R 3.48308 1.2819500~~- Rp "5 -1.79373

22000 3.55560 1.12
20 R A + 8.11729 -1.36637IA

240 3.62851 0.99

24500 Rpc A + 8.28332 -0.93601

270003.70110 0.90PC"A_ 8.44932 -0.50280

A2

I
I
I
I
I
I A-22

I



82/18 AP/HTPB 200L AP P - 40 atm ZFRACT = 1.0

Eax - 22000

EBINDER Rpc Expression Max Rpc(real)

14500 R 3.48070 0.89
PC + .94763 -0.58492

16900 R 3.52641 0.96
A + 8 5-0.86174

3.5927419500 RpC + 8.20157 1 1.6362
A+ A

3.6579022000 Rpc + 8.35083 -1.44836

A A

24500 Rpc 3.73296 1.28
A +1.73133

27000 R 3.81534 1.42
7APC + 8.71012 -2.01144

A-23



82/18 AP/HTPB 200p AP P - 40 atm ZFRACT - 0.0

EOX - 16900

EBINDER Rpc Expression Max RPC(real)

28000 Rpc A + 4.20167 0.69
C R A + 9.5933 +1.23747

3. 93710
26000 Rpc 3 8.98874 0.81PC A+ 8974+0.08942

A

24000 R 3.67207 1.04
240 R " + 8.38365 -1.06803

22000 R 3.40705 1.53
A + 7.77856 -2.23498

A

21000 R 3.27439 2.09PC A +- 758 -2.82181

3.14244 3.4620000 Rpc " j +7.J7340-3410.6

19500 R 3.07668 5.4019500 R~PC +7 20

A +-3.70688

19200 R 3.03669 -8.2190 Pc " 3 -3.88448
PC A + 69133-_.84

19000 RPC 3.01082 -12.5
S -87078 4.00325

A-24



82/18 AP/HTPB 200p AP P - 40 atm ZFRACT - 1.0

Eox - 16900

EBINDER Rpc Expression Max RpC(real)

I R 4.46237 0.48

28000 Rpc A + 10. 18908 +4.27808

26000 R 4.14407 0.56

PC0A + A- +2.57545

24000 R 3.83277 0.69

S-8.75055 +0.86161

22000 R 3.52641 0.96
PC _ + 8.05105 -0.86174

21000 R 3.38130 1.24
PC A + 7.72009 -1.72949

20000_R 3.23571 1.83
20000 Rpc -+ 7.38630 2.59934A

I19500 R 3.16475 2.45
PC + 7.223 9 3.03 551

3.11649 3.10
0 Rp A + 7.11349 -3.29451

19000 R 3.09142 3.80
PC A + 7.05472 -3.47124

I

I
I



82/18 AP/HTPB 20011 AP P - 100 atm ZFRACT -0.0

EaX w 22000

EBINDER Rpc Expression Max RPC (real)

14500 R w 2. 60821 -.
PC A + 7.48421 -4.15148

16900 R w 2.66400 44
16900 Ap + 7.64102 -3.87076

19500 R 2.72251 29
19500 Ap + 7.81076 -3.56533 29

A A

22000 R -2. 78106 -2.23
PC A + 7.97386 -3.26929

24500 Rp 2.8861 1.79
PC A + 8.3692 -2.97186

27000 Rp8 2.91 1.50
PC A + 8.29983 -2.67332

A-26



82/18 AP/HTPB 20011 AP P - 100 atm ZFRACT - 1.0

EOX - 22000

EBINDER Rpc Expression Max Rpc(real)

1450 R 2.98627 1.2114500 Rpc + 8.56905 -2.19964
A

16900 R 2.93577 1.4216900 Rpc + 8.42055 42.56058

2.8920219500 R -. 90 1.75
1PC90 + 8.29707 -2.94572

A + - .47

2. 85521____
22000 R - .8551 2.29

A + A -3.31964

2.8190124500 A + 8.08692 3686603.27

A

2.79310 -5.8
2P0 A + 8.01270 -4.04768

A-27



82/18 AP/HTPB 20011 AP P - 100 atm ZFRACT - 0.0

EOX - 16900

EBINDER Rpc Expression Max RPC(real)

28000 Rp 3.28368 0.88
PC A + 9.42418 -1.10756

26500 R 3.12836 1.06
PC A + 8.97841 -1.79077

2.97257 1.37
20 R A + 8.53260 -2.47838

A

23500 R PC 2.81853 2.05
A 4 A -3.17266

2. 66399

22000 Rpc .6102 4.47
A + -64102 -3.87077

2 2.61229 -8.2
20 R A + 7.49239 -4.10533

A-28



I

82/18 AP/HTPB 20011 AP P = 100 atm ZFRACT - 1.0

EOX - 16900

EBINDER Rpc Expression Max RPC(real)

* R 3.86873 0.54

28000 RpC A 11.10327 +1.89025

3.63023 0.62
2650 + 10.41876 +0.78685

A A

25000 3.39111 0.7425000 Rpc U + 9.-T_99 074258
PC 9 A -0.32583

23500 RpC 3.16733 0.95
AP + 9.08757 -1.43827

nA

2.93577 1.4222000 + 8.42055 -2.56058

21500 R 2.86271 1.74

AC + 8.21662 
12.93323

A-29

I


