
DTIC
ELFFLCTEAD-A244 427 DEC 1 7 1991

I/IIIIIIIII/nHJ,I/ _______________________________

26 August 1991

TPS
TECHNOLOGY
INNOVATIONS

DTRI ION ST.f-,TMNt A Prepared for:Appr tfr pubric relecme: Naval Aviation Depotbuton Unmited Norfolk, VA 23511-5899

Prepared by:
Applied Research Laboratory ofApplied Research International

Virginia Beach, VA 23455

91-18107 91 1216 03O
I M I N I , 1 1 1I N 1I

form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

'i. AGENCY USE ONLY (Leave blank) 2. REPORT DATE .3. REPORT TYPE AND DATES COVERED26AUG 91 INEI
4. TITLE AND SUBTITLE .. S. FUNDING NUMBERS
TPS TECHNOLOGY INNOVATIONS C-NO0189-90-C-0437

TA-A006

6. AUTHOR(S)

DAVID GORDON

7. PERFORMING ORGANIZATION NAME(S)CAND AODRESS(ES, 8. PERFORMING ORGANIZATION

APPLIED RESEARCH LABORATORY, OF REPORT NUMBER

APPLIED RESEARCH INTERNATIONAL 0437-A006
1300 DIAMOND ._'RINGS ROAD
VIRGINIA BEACH, VA 23455

9. SPONSORING/MONITOWJNG AGENCY NAME(S) AND ADRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NAVAL AVIATION DEPOT
ODE 81300 N00189-90-C-0437
NAS BLDG., LF-18 CDRL A006
NORFOLK, VA 23511-5899

-11. SUPPLEMENTARY NOTES

Second of Three Reports.

12a. OMSTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBOT;ON CODE

Publicly available.

13. ABSTRACT (Mamum200wo'r:)

This report informs the reader about the important CAE software features required in
the application of CAE software for TPS development. The report identifies an
application methodology of CAE software to generate TPS information. Additionally,
the report lays the ground work for identifying a CAE software application metho-
dology for the DGAR's evaluation of the TPS design. The report discusses the appli-
cation of CAE software tools for the Test Program Set (TPS) development process,
CAE software selection criteria, and evaluation recommendations for CAE software
tools. All TPS development tasks, from schematic entry to ATLAS code generation,
are discussed and partially documented using a StaticInverter circuit for the study.
Also, optimum CAE environment capabilities and features are identified for maximum
TPS engineering productivity and efficiency.

The CAE study results reveal great potential in the application of CAE software to
TPS development. The raw capability exists in several CAE environments which can be
developed, with a few months effort into a CAE environment for TPS development.

14. SUBJECT TERMS 1.. NUW.t5s OF PAGES

Lcwputer Aided Eigineering (CAE) software, Test Program Set(TPS) 61

Developnent, Analog simulation, Testability Analysis ii. PRICE CooE

17. SECURITY CLASSIFICATION IS. SECURITY CLASS:FICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF RIPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

,.C' ' '- , " S-afard Fom 298 :tev 2-89

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704.0188

...."' l c C h i C ,I9eIo o * ' -5%,Mj" tC j l a' n ,Ic,r!Udirg e.th. #fO n *qnq rIstrucoro").

*~Ol~d~ 1 nfoC iat (-j. q MJdf g esgOt'o IC' ouarg th,. bur4,.-. !C W f3C' dr ' Set'"':ft. Caerate. for :r,#fwwat,On C)Dr,tioni% ond Rftris I, jef",On
0p* g? j , , 6 '~ VA 22024302. Ond t 9 t" Off, e Of ManagaeT l o .dget. D P-dtirton re1c1iO7O4-0'B8). W shn. DC '0503

1. AGENCY USE ONLY (Leave blank) REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

. AU IOR.S)

7. PERFORMING ORGANIZATION NAME($ AND AODRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING 1MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING /MONITORINGAGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12s. DISTRIBUTION/IAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

3. A'STRACT (Maximum 200 words)

The study developed an analog fault simulation approach for the TPS development pro-
cess. The study identifies a process to generate an analog fault dictionary which
is essential for the testing analysis phase of TPS development.

14. SUBJECT TERMS 15. NUMBER OF PAGES

6. P IcE CODE

11. SECURITY CLASSIFICATION 18. SECURITY CLASS:FICATION 19. SECURITY CLASSIFICATION 20. LIMITATION Or ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

'SN 7540-01 Sar'dard Form 298 .Rev. 2-B9,
Irk..

26 August 1991

TPS Technology Innovations

ARL Contract N00189-90-C-0437

Deliverable A006

TABLE OF CONTENTS

TABLE OF CONTENTS......................... 1

LIST OF FIGURES......................... 1

EXECUTIVE SUMMARY........................

1.0 SCOPE.............................. 1

2.0 INTRODUCTION......................... 1

3.0 APPLICATION OF CAE SOFTWARE FOR TPS DEVELOPMENT . . . 1

4.0 PRIMARY EVALUATION PROCESS..................4

5.0 CAE TPS DEVELOPMENT ENVIRONMENT..............4
5.1 OVERVIEW........................4
5.2 FEATURES...........................5
5.3 IDEAL CAPABILITIES....................6
5.4 ANALOG SIMULATOR CRITERIA...................11
5.5 CAE ENVIRONMENT/VENDOR ISSUES.............13

6.0 CIRCUIT SIMULATION...........................19
6.1 OVERVIEW.........................19
6.2 ANALOG COMPONENT MODELLING..............20
6.3 MODELLING REPRESENTATION...............21
6.4 SIMULATION DESIGN CYCLE TIME.............24
6.5 WRA MODELLING.......................29
6.6 CIRCUIT SIMULATION TASK........................29

7.0 FAULT SIMULATION..............................31
7.1 OVERVIEW.......................31
7.2 FAULT SIMULATION TASK.....................33
7.3 FAULT MODELLING............................33
7.4 FAULT DICTIONARY...................35
7.5 FAULT DICTIONARY ANALYSIS...................38
7.6 TESTABILITY PARAMETERS..................41

8.0 WSTA............................42

9.0 FUTURE CIRCUIT SIMULATION TASKS................43
9.1 TPS DEVELOPMENT SIMULATOR.................43
9.2 SVS DESIGN RULE CHECKING...............46
9.3 TPS DESIGN MANAGEMENT FUNCTIONS............46

10.0 CONCLUSIONS............................47

11.0 RECOMMENDATIONS..........................48

GLOSSARY OF TERMS........................49

LIST OF FIGURES

FIGURE TITLE PAGE

FIGURE 1. TASK AND INFORMATION INPUTS INTO THE
ATLAS PROGRAM 3

FIGURE 2. AMADEUS AND SABER INTEGRATION DIAGRAM 16

FIGURE 3. COMPUTERVISION AND SABER INTEGRATION DIAGRAM.. 17

FIGURE 4. SABER INPUTS AND OUTPUTS 18

FIGURE 5. ANALOG COMPONENT MODELLING 22

FIGURE 6. CIRCUIT SIMULATION TASK PROCESSES 28

FIGURE 7. CIRCUIT SIMULATION ESTIMATED TASK TIME 30

FIGURE 8. FAULT SIMULATION AND TESTABILITY ANALYSIS TASK
PROCESSES 34

FIGURE 9. VOLTAGE DETECTOR SCHEMATIC 36

FIGURE 10. GRAPHICAL FAULT DICTIONARY 37

FIGURE 11. FAULT DICTIONARY STRUCTURE 39

FIGURE 12. AMBIGUITY GROUPS FOR THE VOLTAGE DETECTOR
FUNCTION 40

Figure 13. TPS DEVELOPMENT SIMULATOR 44

ii

EXECUTIVE SUMMARY

This report informs the reader about the important CAE software
features required in the application of CAE software for TPS
development. -'The report also identifies an application
methodology of CAE software to generate TPS information.
Additionally, the report lays the ground work for identifying a
CAE software application methodology for the DGAR's evaluation of
the TPS design. The report discusses the application of Computer
Aided Engineering (CAE) tools for the TPS development process,
CAE software selection criteria, and evaluation recommendations
for CAE tools. All TPS development tasks, from schematic entry to
ATLAS code generation, are discussed and partially documented
using the SRA under study. Optimum CAE environment capabilities
and features are identified for maximum TPS engineering
productivity and efficiency.

Study results to date indicate that a total CAE approach for TPS
development demonstrates great potential in TPS development
productivity, efficiency, and quality. The analog simulator,
Saber, is recommended as the analog simulation software because
of the simulator's fault simulation and simulator modelling
language capabilities. These capabilities allow the TPS engineer
to generate an analog fault dictionary, which is an essential
element to TPS development. Further recommendations are to select
a CAE environment and the accompanying CAE software for TPS
development.

The DGAR's needs(ie. to verify the quality of the developer's TPS
design.) are different than that of the developer.
Unfortunately, the TPS developer is not constrained by any
particular TPS design tool or method and need only develop a TPS
that conforms to all contractual specifications. Although the
study covers CAE software that is applicable to TPS development,
the study represents the first steps towards evaluating a
methodology for use for the DGAR.

iii

1.0 SCOPE

Applied Research Laboratory (ARL) is tasked with the
evaluation of CAE tools and their application to the TPS
development process. This report discusses primary
evaluation results to date. Results discussed are the
desired CAE environment capabilities, desired software
tool's capabilities, and features and CAE software and
hardware selection factors and issues. The CAE study covers
a detailed application analysis of CAE software for the
circuit simulation, fault simulation, and testing analysis
tasks of TPS development. The results of the detailed
application analysis are a demonstration of the proof of
concept. The proof of concept is to propose the application
of CAE software for TPS development.

2.0 INTRODUCTION

Technology innovations over the past decade have been a
matter of evolution. Individual CAE and CAD software tools
began as totally separate software entities. Individual IC
(Integrated Circuit), system, circuit board, and TPS
developers and manufacturers began using different
combinations of CAE and CAD tools. Employing different
combinations of CAE and CAD tools results in a requirement
for the file format interface standards of EDIF (Electronic
Data Interchange Format) and IGES (Inter Graphics Exchange
Standard). Information was directly translated from one CAE
tool into another CAE tool's information format. Today the
individual CAE and CAD tools are merged into an environment
which is a collection of CAE software tools. The normally
separate design information from the CAE and CAD tools are
part of a common database or unified databases. Individual
CAE and CAD tools are assimilated or encapsulated into a
specific vendor's definition of a "framework", "software
backplane" or "environment". Selection of CAE and CAD
software tools is an exercise in matching the designers
needs with software tool capabilities, making capability or
feature tradeoffs between available software tools, and
selecting a CAE environment that contains the software
tools.

This report discusses the critical capability and
features required in the CAE software for TPS development.
An empirical evaluation study process explores, applies, and
investigates CAE software capabilities and features to the
critical testability analysis and test strategy development
phases of TPS development.

3.0 APPLICATION OF CAE SOFTWARE FOR TPS DEVELOPMENT

The purpose of CAE software application for TPS development
is to generate the required information necessary to develop

1

the end TPS products, which are an ATLAS program and ID
(Interface Device) hardware. Development of ID hardware(ie.
electrical and mechanical design) is an obvious application
for CAE tools, and as such is not discussed in this report.

The non-traditional application of CAE tools is to
generate testing strategy information. A study of the
informational requirements, informational flow, and the
tasks to generate the testing strategy information for ATLAS
program development is illustrated in Figure 1. This figure
illustrates a total CAE software approach for TPS
development. The figure relates the overall relationships
between the separate testing strategy development tasks, the
information generated and the end desired result, which is
to generate the basic technical information (eg. testing
sequences, ambiguity groups, testing voltages and testing
tolerances) required to write an ATLAS program. An analysis
of the information contained in the diagnostic ATLAS
subsection reveals four essential pieces of information.
The four information inputs are diagnostic tests and testing
sequence, ambiguity groups, testing criteria at a test
point, and testing stimulus. The following diagnostic
tests, testing sequence, ambiguity groups, and testing
criteria are derivative informational products of the fault
dictionary that are discussed in the following sections of
this report:

1. Monte Carlo analysis (Section 5.4).

2. Circuit simulation (Section 6.1).

3. Circuit modelling issues (Sections 6.2 through 6.6).

4. Fault simulation (Section 7.0).

5. Fault modelling (Section 7.3).

6. Fault dictionary and the analyze fault results task
(Section 7.4).

7. Fault analysis, analyze fault dictionary, process fault
dictionary, and extract criteria tasks (Sections 7.5
anJ 7.6).

The results of applying CAE software to the testing
strategy, ID design, and documentation TPS tasks are the key
focus points for the study of CAE utility and applicability
for TPS development. CAE tools applied to ID design are not
studied because the CAE tools studied are limited to
electronic design. Application of CAE software tools to
develop testing strategy is the major area for study,
recommendation, and for development activities.

2

TASK AND INFORMATION INPUTS INTO THE ATLAS PROGRAM FIGURE,1.

I ,uL, I l' ' ,FUNCTIONALcICI

FUT COMPONENT SCHEMATIC SCHEMATIC COMPONENT COMPONENT I AN
MODELL ING MsAULT DOCUMENT ENTRY MODEL MODELL INGI ATyTEST ING

Eli rI I IANALYSISANDo I.°,
SCIRCUIT ADD TESTING TESTING

FAULT MODEL SIMU LATION VECTOR TO VECTORS
SCHEMATIC

FAULT
SIMULATIONMOT

CARLO
r ANALYSIS

FAULT ANALYZE

RESULTS FAULT
RESULTS

ENGINERIN EMPRACI

IDICTIONA~yFAULT ii NISG E ACAL U
|CIRCUIT ANALYSIS OF DOCUMENTATION

TESTING5)FALE

, ~CRITERIA -

FAULT PROCESS FAULT NORMAL
DICTIONARY FAULT TESTING OPERATING

DICTIONARY TOLERANCE TESTING
CRITERIA TOLERANCE

CRITERIA

DIAGNOSTIC TESTS I
AND TESTING

SEQUENCE FOR TESTING TEST SETUP
LOGIC 1CRITERIA v AND

TROUBLESHOOTING. POSSIBLE SIUU N
(DIAGNOSTIC GROUPS TEST POINTS OUTPUT
FLOW CHART) (RESPONSE) LOADINGS

ATLAS END-TO-END/DIAGNOSTIC SUB-PROGRkM

llINFORMATION CONTAINED WITHIN THIS TYPE LEGEND INFORMATION CONTAINED WITHIN THIS

OF BLOCK IS CONSIDERED A TASK. lTYPE OF BLOCK IS CONSIDERED

NOTE INFORMATION FLOW 1S FROM TOP TO BOTTOM. INFRM TION. L TAK

THIS DIAGRAM ILLUSTRATES TRADITIONAL AND FAULT SIMULATION APPROACHES FOR TPS DEVELOPMENT.
*TAIINLTSTS

EACH TASK -CREATES" OR "TRANSMUTES" OR "ADDS TO" THE TASK INPUT INFORMATION INTO THE TASKS OUTPUT INFORMATION.

4.0 PRIMARY EVALUATION PROCESS

An empirical approach was employed to investigate the
application of CAE tools for TPS development. After a
preliminary evaluation, Cadence's Amadeus CAE software and
Analogy's Saber software were selected for use. The Amadeus
CAE environment provides the core set of CAE software tools
for the basic schematic capture and digital simulation
tasks. The Saber software tool provides the analog
simulation capability. A task oriented circuit analysis and
fault simulation process was conceived, implemented and
evolved. Amadeus is the marketing product name for a
standard set of software features, CAE programs and
framework operating system environment produced by Cadence
Design Systems. Amadeus includes a schematic drawing,
design management, database library, and utility programs.
Simulation of digital circuits were performed with another
Cadence product named Verilog. Saber is an analog simulator
produced by Analogy, Inc. Saber simulates analog and mixed
mode circuits drawn in Amadeus.

Lessons learned during the application of the CAE
software tools to the circuit and fault simulation tasks are
discussed in Sections 6.0 and 7.0 of this report.

A secondary part of the primary evaluation process is the
definition of the required CAE software tool capabilities
and features specifically utilized for TPS development,
identification of CAE software candidates, and selection for
the implementation of the concept under study.

5.0 CAE TPS DEVELOPMENT ENVIRONMENT

5.1 OVERVIEW

CAE TPS development environment is a set of CAE software
programs designed to work together for the purpose of TPS
development. CAE TPS development environments do not exist.
All available CAE environments are for the design of
electrical circuits. The requirement is for a specific set
of CAE software tools which work together (integrated) to
provide TPS design specific information. The basic software
set must include a schematic capture function, analog
simulator with fault simulation capability, digital
simulator with digital fault capability, and mixed mode
simulator (a combination of the analog and digital
simulators). The basic software set combination is
necessary for the testing analysis and ID design phases.
Additionally, the ID design task includes, a requirement for
a CAD program (mechanical drawings), a possible requirement
for a PCB router program, and a circuit simulator. For the
documentation TPS task, all electrical and mechanical
drawings produced by testing analysis and ID design must be
transportable into a CALS compliant documentation program.

4

This report section discusses the CAE environment
criteria, issues and capabilities necessary for TPS
development. The study and "learn by doing" approach
identifies the key features to minimize the users task of
creating fault information required for testing analysis.
Creating fault information required for testing analysis is
the key goal for the application of CAE software for the TPS
development task. Basic key features common to all CAE
software were not specifically identified but are assumed
because of the commonality between CAE software.

Independent stand alone testability analysis software
does not exist, except for WSTA. Digital fault simulators
provide few testability analysis parameter results.
Integration of testability analysis software into the CAE
environment is desirable, hence, the interest in exporting
VHDL netlist representation of a circuit into WSTA. WSTA's
strengths and weaknesses are discussed in Section 8.0 of
this report.

The following subsections discuss CAE TPS development
environment features, desired TPS CAE environment
capabilities, analog simulator criteria, and CAE
environment/vendor issues.

5.2 FEATURES

The purpose of the ideal TPS CAE environment and software
tools are:

1. To generate the raw fault data and compute testability
parameters (e.g. ambiguity parameters).

2. To process the fault data as much as is reasonably
possible with a computer and provide the processed
information to the TPS engineer.

3. To manage the TPS design information.

The currently available CAE environment products
possesses the raw capability to accomplish all of the above
requirements, except for the computation of testability
parameters and the processing of fault data. CAE software
does not exist to accomplish the above mentioned purposes in
a ready to use (eg."out of the box") capability.
Development of built in CAE features and auxiliary CAE data
processing software is required to fully realize an ideal
CAE based TPS development system. A workable CAE TPS
development system can be created through development of the
built in CAE features. Development of the built in CAE
features enables the generation of raw fault data and
management of TPS design information. The available CAE
environments inherent deficiencies for the ideal CAE TPS
development system are the computation of testability

5

parameters and raw fault data post processing. Development
of testability parameter and fault data post processing
capabilities are necessary but are not immediately
realizable, because auxiliary CAE data processing software
needs to be developed. A realizable CAE TPS environment
would meet 40 percent of the ideal TPS CAE environment
requirements. User development of the existing native
capabilities is very practical and very cost effective when
considering the degree of effort that is required to use
CAE, if not developed.

5.3 IDEAL CAPABILITIES

A summary outline depicting the ideal TPS CAE environment
capabilities is contained in this section. The outlined
capabilities are the important capabilities distilled from
the application and analysis of CAE software for TPS
development. The intent of this outline is to identify
criteria upon which to judge the completeness of a set of
software tools contained in a TPS CAE environment. Each
outline item is followed by a detailed justification or
explanation. Items annotated with an asterisk (*) are not
found in CAE software, but are desired to improve efficiency
and productivity. Items annotated with a pound sign (#) are
required for development of the inherent CAE capability.
The rating or matching of these criteria to a specific CAE
product is a future part of the study.

IDEAL TPS CAE ENVIRONMENT CAPABILITIES

1). Schematic diagram entry.

a.# Add user defined component parameters to the
schematic database.

1) Modifiable databases allow the addition of
component parameters unique for fault and
test analysis tasks (un-detect field, MTBF
field, fault set number, ambiguity group
number, etc), user defined custom parts
(hierarchial, functional, subassembly, SRA),
simulation result parameters (pin or test
point voltages or currents), or component
parameters (resistances,etc).

b. Symbol creation.

1) Easily create symbols for functions,
subassembly, SRA, standard hierarchical
parts, connectors, and measurement functions.

6

c.# Simulator models in the schematic symbol library.

1) Need symbols and component parameters for all
available components and behavioral models.

d.# Modify netlister instructions.

1) Creation of a hierarchial component or
special component symbol requires a
translation from the schematic component
database field into the netlist syntax.

e.* Direct access to the behavioral analog and digital
modelling language.

1) Need access to the component's simulator
model from within the schematic environment
without exiting or performing multiple
actions to effect a model change. Need to
constantly revise and work with the component
model text during model development. Model
development involves writing or borrowing
existing models, then simulate, analyze
results, then edit the model until the model
is complete.

2). Simulate circuitry.

a. Digital simulation and digital fault simulation.

1) The digital simulator software must provide
the essential fault results (fault
dictionary) for TPS development.

b.# Analog simulation and analog fault simulation.

1) The analog simulator software must provide
the essential fault results (fault waveforms)
for TPS development.

c.# Mixed Signal and mixed fault simulation.

1) The mixed mode simulator must provide the
essential fault results (both analog and
digital fault information) for TPS
development.

d. Multi-task the simulation.

1) For efficiency, schematic capture work and
other computer tasks need to be performed,
while a simulation is being run. Also, need

7

to execute multiple simultaneous simulation
runs. These requirements help ensure maximum
utilization of available computer resources.

e. Simulate on a remote network computer.

1) Need to run simulations on other workstation
computers over the network. This ensures
maximum utilization of available computer
resources.

3). Integration between simulator and schematic capture.

a. Automatic display of user selected nodal
waveforms.

1) This feature allows viewing of a group of
waveforms during iterative schematic editing
and simulation run tasks which saves time.

b. Simulator results annotated on the schematic.

1)* Waveform post processing results annotated on
the schematic.

a) This feature assists the engineer in
directly relating the essential
simulator results to the schematic.
Engineers think schematically.

b) Display the post processing waveform
parameters such as RMS, average, peak,
min, and frequency.

c. Post processing of simulation waveforms.

1) A majority of analysis time is spent
extracting waveform parameters. Automatic
extraction of waveform parameters would
reduce the analysis task by a single order of
magnitude.

a) Rise & Fall times for pulse shaped
waveforms.

b) Marginal timing analysis for digital
waveforms.

c) RMS, avg, peak, min for analog
waveforms.

8

d) Would like to see automatic calculation

of:

(1) Pulse parameters.

(2) Frequency parameters.

(3) General waveform parameters.

4). Test vector generation.

a.# Definable on schematic.

1) Create symbols and simulator models for
standard testing vectors. Write a general
simulator model which is modifiable for
special test cases. Creating a testing vector
symbol and writing a predefined testing
vector as a component simplifies the fault
simulation task.

b. Definable with test vector generation programming
language.

1) Complex signal inputs, signals best described
with a math function, and time repetitive
signals are constructed with the native
simulator modeling language. Writing a
simulation model for the testing vector is
necessary for a circuit simulation.

c.# Modelled test equipment components for simulation.

1) Models of frequency generators, arbitrary
waveform generators, or power supplies are
created. Test equipment characteristics and
controlling parameters are modelled to create
a soft instrument using the simulators
modelling language.

d. Graphical or icon construction of the input
vector.

i)* Implement on/off control of the testing
resources. Power supplies are represented
with a voltage or current source. Clocks
with a clock component. Complicated test
signals are created by connecting several
sources together on the schematic.

9

5). Hierarchial modelling for analog and digital
simulation.

1) Hierarchial modelling allows component,
function, subassembly, or SRA substitution
for different simulation comparison runs.

6). Documentation

a. Supports standard outputs of Postscript and HPGL.

1) Postscript and HPGL are universal formats for
documentation programs.

b. CALS compliant

1) DXF - Mechanical Drawings.

1) CGM - Document Representation of Drawings.

2) EDIF - Electrical Drawings.

c. Generate the Engineering Support Data.

1) Simulation waveform capture for import or
transfer into document program.

a) Allows documentation of fault results
for TPS development and documentation.
Need to create the graphical fault
dictionary.

2)* Bill of materials.

a) Provides a report to document the
components in a circuit.

3)* Customized report of user defined parameters.

a) Develop further undetectable/non-
detectable component, failure mode and
reliability reports. Customized report
of user defined parameters provides a
formatting tool to exchange component
and TPS information containec- in the
schematic component database with other
software programs. This subject is
discussed in more detail in Section 9.3.

10

7).# Testability Analysis/Tools.

a.# Ambiguity group parameters.

1)# Automatic ambiguity parameter calculation.
Testing strategy requires a testing sequence
(a combination of tests defining ambiguity
groups) that will meet the testability
specification(ie. 80 percent of the
components have to be in an ambiguity group
of two or less). During testing strategy
analysis, the TPS engineer adds and deletes
diagnostic tests to change the ambiguity
distribution to meet the specifications.
Automatic ambiguity parameter calculation
off-loads a tedious task from the TPS
engineer.

b.# Testing Sequence.

1)# Provides the testing logic that is the
structure for the diagnostic subtests of the
test program. TPS quality is determined by
testing sequence, testing tolerances, and
fault dependency.

c.# Testing penalty data.

1)# Calculates the mean time, cost, and user
value to isolate or repair.

5.4 ANALOG SIMULATOR CRITERIA

Described below are the predominate features required of an
analog simulator for TPS development. These criteria and
features are specific to the analog simulator software
whereas the TPS CAE environment desired features are
specific for the ideal CAE environment.

1). SIMULATION CONTROL

a. Analog simulator operation requires batch and
interactive operational modes. Batch mode
operation is needed to run unattended multiple
simulations, thus providing for maximum
utilization of machine and personnel. Lengthy
fault simulation runs need to be ran overnight or
over weekends. Interactive simulator operation is
a necessity for an iterative investigation of
circuit behavior and for operating the simulator.

11

2). MIXED MODE

a. Simulation of SRA digital and analog circuits can
be accomplished with an analog simulator or a
mixed mode simulator. Mixed mode simulations
performed with an analog simulator is called a
native mixed mode simulation. Native mixed mode
simulation has simulation speed advantages over a
mixed mode simulation whenever the number of
digital gates is less than 300 gates. Also,
simulation of digital and analog faults during the
same simulation requires the faulted digital and
analog components be simulated with the same
simulator.

3). LIBRARIES

a. Simulator libraries are of single importance to
lighten the modelling job. The more components
characterized and modelled in the library, the
less modelling is required, which eventually
decreases the circuit simulation time. Need
behavioral template for all component classes to
provide a component substitute. Libraries should
contain fault and behavioral components. Fault
components are critically needed for fault
simulation. Behavioral components or templates
are required for modelling substitutions.

4). MODELLING

a. The importance of behavioral and hierarchical
modelling cannot be overstressed. Modelling
capability is essential to solve the problem of a
non existent component model. Behavioral
modelling provides a way to simplify and speed up
simulation. Simplification of external driving
signals and basic functional parts of the UUT not
under immediate study is a great time saver
because analog simulation takes a very long time.
Analog behavioral languages provide a quick way to
model components and develop a model substitute
for the components that are not in the component
library. A few hierarchial and behavioral
advantages of hierarchical modelling are:

1) Different circuit configurations are easily
generated by a substitution of a schematic
symbol representing a substitute behavioral
functional or assembly.

12

2) The behavioral substitution radically
decreases simulation times (IX to 100X) over
component level simulation.

3) Hierarchial circuit modelling provides for
increased simulation efficiency which reduces
simulation times of large circuit sizes.

Behavioral modelling language is required to
correctly model failure effects during simulation.
A fault simulation approach to develop circuit
testing parameters requires behavioral modelling.

5). MONTE CARLO ANALYSIS

a. The Monte Carlo analysis task identifies the range
of circuit electrical behavior due to the effects
of varying component values. This technique
determines the variance in circuit voltages and
currents caused by variations in component values
due to manufacturing or thermal differences.
Manufacturing differences are due to all parts not
being created equal or behaving exactly alike.
Thermal differences between testing runs influence
thermally sensitive components, thus causing
different normal electrical outputs. Monte Carlo
simulation is accomplished by the simulator
statistically selecting different component values
for each of the multiple simulator runs. The
number of simulator runs has to be statistically
significant. For example 100 simulator runs is
statistically significant but 2 simulator runs is
not. The comparison of the individual simulator
results establishes the normal variance of the
voltage or current of interest. The comparison of
simulator results from the different Monte Carlo
simulations by the engineer is the analysis part
of the Monte Carlo analysis task. The Monte Carlo
part of the Monte Carlo analysis task refers to
the Monte Carlo simulation results.

5.5 CAE ENVIRONMENT/VENDOR ISSUES

1. FRAMEWORK

Framework is a marketing buzzword for CAE vendors to
describe their CAE environment capabilities for their
particular set of software tools. Framework refers to a
software tool set providing a common user interface, and
exchanging information between software tools in a CAE
environment. There is one framework for each CAE vendor and
one definition for each CAE vendor. The CAD Framework

13

Initiative (CFI) framework standard is several years away
from possible market usefulness as a framework standard.
This means a standard framework as a CAE selection factor is
not is not possible. Additionally, some vendors add
component database management, design management, and
framework programming facilities. The software set of tools
incorporated into a CAE framework and information exchanges
between software tools (ie. integration) are the predominate
criteria to judge CAE frameworks.

2. EDIF

The EDIF standard defines a file format to transfer design
information between different CAE vendor programs. The
information "stuffed" into the file is a netlist with
schematic drawing information such as symbol shape and
position included. The ability for an exchange of schematic
drawings using EDIF involves the following criteria. The
EDIF writer and EDIF reader parts of the two vendor programs
must be compatible.

Theoretically, this should not matter with a standard file
format, however implementations of the EDIF standard varies
between vendors. Transfer of a schematic between any two
specific CAE software programs is the only reliable method
to test for schematic information transfer between vendors.

3. INTEGRATION

Integration of the software tool set is the most important
factor in a CAE TPS environment, after an analog fault
simulation capability. Simply stated, software integration
is the degree to which information is exchanged between
software programs.

Some key points about software integration are:

1. Software integration is a misunderstood CAE feature.
CAE vendors exploit the obfuscation to define their own
definition of integration.

2. Software integration possesses the most marketing hype
of all CAE features because every vendor's definition
is different.

3. Software integration has a significant impact on user
productivity.

Integration between CAE software is the least understood
and most discussed feature of CAE software. There are
different degrees of integration between programs. The
degree of integration is a factor of the completeness and
mode of the information exchange. Information exchange
completeness is how much of the information needed by the

14

receiver program is transferred by the supplier program.
Information exchange mode is the transfer conditions under
which the information is exchanged, i.e. automatically,
conditionally or manually controlled by the user or a macro
programming language.

Individual CAE software tools from different vendors are
generally not well integrated with one another despite the
marketing talk about standards. If a software tool is not
part of the main set of software offerings, then the
integration will be of the basic netlist transfer variety.
Different levels of information exchanged between a
schematic capture program and a simulator is defined as
follows. Each increasing integration level possesses
additional information exchange over the lower integration
level. The more information exchanged and automatically
transferred without operator intervention, the more
efficient and productive the schematic and simulator program
combination.

Level 1. Netlist transfer for the simulator. This is by
far the majority of cases for SABER. Figure 2
shows this level of integration for the Amadeus to
Saber interface. Amadeus is employed to draw the
schematic and Saber performs the simulations.

Level 2. Netlist and simulator control commands are
transferred into Saber automatically without
operator manual intervention. (next version of the
Amadeus to Saber interface).

Level 3. Netlist and simulator control commands are
transferred into Saber. Simulation results are
translated and displayed in the CAE environments
waveform display software. Figure 3 shows this
level of integration for the ComputerVision and
Saber interface.

In addition to the above integration levels, direct editing
of simulator models and the post processing of simulation
results displayed on the schematic is a very valued
integration feature.

Integration of Saber into a CAE environment entails
providing for the information exchange between the CAE
environment and Saber. The more information that is
transferred between the schematic capture and the simulator,
the more efficient and productive the TPS engineer can be
during the schematic edit and simulation cycle. Figure 4
illustrates Saber's information inputs and outputs.
Typically, only the Saber netlist is created and transferred
into Saber. For
complete integration, all inputs and outputs are exchanged
between Saber and the CAE environment.

15

.IO
E)

o z

_ _ E c;4
00 CZw

zz

4U -

O - 0 cc

(0 __0 0:
0

00(>~0 z W 0

00

a. e- 4- "-
(U...0 Ql. .- a)

Z- E

C E T E 0

-0 000 t

0 °

0

16

E~C.

0 0 .C
0L0

o 0 !-.

E E .0 E r:
C CO;0

>ve

CL

woo

CD

LoaEU) E co

*00

>0>

C (

o 0 C. .,

E.!

E E
0 0
o go

.0 t 017

cil-

UL

z 0 0

o E E -

0 -L

- - - -- - - - -

cEQ

- U

18S

All CAE vendors except ComputerVision and Racal Redac have
the basic netlist transfer level of integration. This level
of integration presents a major time consuming obstacle for
the circuit and fault simulation tasks. To date, the
marketing survey reveals the ComputerVision has the best
level of integration. ComputerVisions schematic drawing
software interfaces with Sabers netlist, the batch command,
and the simulation data results.

6.0 CIRCUIT SIMULATION

6.1 OVERVIEW

Circuit simulation task is a prerequisite for the fault
simulation task. The circuit simulation task creates a
circuit model that represents the circuit behavior during
simulation. Fault simulation requires the circuit model
developed during the circuit simulation task. Also, the
circuit simulation task establishes a component organized
information database and allows the TPS engineer to gain in-
depth circuit knowledge, to develop end-to-end testing
tolerances and diagnostic testing tolerances. Component
information entry during the schematic drawing process
organizes the component information to form a component
database which is needed in documentation development,
testability analysis, and TPS design management. The
component database information is a valuable commodity
because the same information is required for different TPS
design activities which are accomplished months apart by
different people. Thus, the component database serves as a
master database for TPS design information. In-depth
circuit functional knowledge and identification of critical
design components are learned through the process of
obtaining correct simulation results.

Variations in circuit electrical parameters under a range
of normal operating conditions and in component
manufacturing characteristics are not always specified in
the TPS documentation. The normal or faulted electrical
parameter variations require a Monte Carlo circuit
simulation to vary the component electrical characteristics
in a statistical manner. The range in test point voltages,
currents, or resistances establishes the correct or normal
testing tolerance for the test program.

A successful circuit simulation is an easily accomplished
task if all the components are in the simulator's modelling
library. For electronic designers, the components are in
the simulation library, so circuit simulation proceeds
smoothly. A TPS engineer does not possess the original
design simulation library because of a non-simulator design
approach (a breadboard prototype) or in some cases the older
component technology (RTL digital technolog'-), and the
unique special component characteristics (pulse transformers

19

or hybrid circuits) required of military hardware. A point
often overlooked is that a component in the schematic symbol
library is useless to a TPS engineer if the component does
not have a simulation model. Several real world facts that
complicate circuit simulation are:

1. Well characterized(ie. accurate) component models do
not exist for all active components.

2. Component substitution using idealized behavioral
component models may cause a loss in simulation
accuracy.

3. Analog simulation to the component level takes a very
long time.

The following sections, Analog Modelling, Modelling
Representation, and Simulation Design Cycle Time, correspond
respectively with the above mentioned real world facts and
address the real world complications for circuit simulation.

6.2 ANALOG COMPONENT MODELLING

Analog corponent modeling is the creation or selection of a
model for a component, function, or system to achieve the
desired simulation result. Simulation component models are
chosen from a model library that best represents the
specific aspect of the simulated component's behavior under
study. A component simulator model existing in the
component library obviously does not require component
modelling for a standard simulation. If a component is not
specifically characterized(ie not in the simulator model
library), the next step is to identify a replacement that
will give acceptable simulation results.

Acceptable simulation results depends on the engineer's
intent which is to duplicate either the components
functional behavior or exact electrical behavior under
normal simulation conditions. Other than normal simulation
conditions are Monte Carlo, age, temperature and fault
effects. Engineering judgement is involved and is based on
the application of the component (e.g. transistor for
switching). The component characteristics are only good
over specified or assumed ranges of operating conditions.

Similar component models may be modified with the
manufacturer's specifications. Manufacturer's data alone is
very often not sufficient to create a model. During ARL's
evaluation, it was found that actual manufacturers data from
IBM for 11 SRA components proved useful but the component
characteristics were not complete enough for modelling
purposes.

Alternatively, close behavioral modelling substitutes are
often acceptable for component model substitution. Certain

20

component types, such as diodes are easily substituted with
a behavioral model.

When the simulation results using component substitutes
are unsatisfactory, then a more intensive job of measuring
the essential component characteristics is needed to
accomplish the modelling job. If the components
characteristics are easily measured by test equipment (e.g.
measure transformers inductance), then a simulation model is
written using an analog modelling language (eg. MAST).
Complex and exact electrical component characteristics
require measurement on a specialized component tester.
Component characterization to obtain the detailed data for
modelling may be accomplished in-house or contracted out.
Both options are costly, in either time or money. In-house
characterization is the least costly but slows TPS
development.

Figure 5 illustrates a flow chart of the modelling
substitution decision points. The flow proceeds from a best
to worst case model substitution solution. The best and
worst case is judged by weighing the cost of component
modelling in terms of manpower and money spent. The
modelling diagram is a guideline to arrive at a modelling
solution when a component has not been specifically
characterized (i.e., not in the simulators component
library). Each alternative modelling method in the diagram
often involves an iterative simulation cycle to determine
suitability of the model.

6.3 MODELLING REPRESENTATION

The purpose of simulation is to develop a working model of
the circuit under development either during ID circuit
design or during testing strategy development. A model is
representative of a component, function or assembly behavior
over a range of conditions. The simulation model is
dependent upon the modelling effort required to ensure the
accuracy of simulation results and for the derived
information to have value. Selection of a model whose
behavior is acceptable over a range of conditions is the key
modelling task.

The basic law of modelling is that the greater the
abstraction level of either a component's, a function's or a
system's electrical behavior, the less information is
available. In other words, specific detailed results cannot
be distilled from general facts. Often, this modelling
tenet is not well understood or appreciated because accurate
voltages for testing tolerances are assumed to be derived
from simple analog models.

Another basic modelling tenet is that an inverse
relationship exists between model complexity and simulation
speed.

21

ANALOG COMPONENT MODELLING

Find direct component IF yes, THEN
replacement in Saber
Component library.

IF not, THEN4

Cross reference part to
other electrical substitutes.
Use Master Cross Reference
List (MCRL), Databooks, and IF yes, THEN simulat

part cross references. No Proble
Find part in Saber results
component libraries.

IF not, THENN

Research component parameters
then find a template replace-
ment for the part. Copy into

a specific unique model IF yes, THEN
template whose model para-
meters are modified to the
actual component parameters,

if available. Insert the measured component
Are theparameters into the sub-

basic stitute component model
component the template or a like component

IF not, THEN parameters in the Saber library.
easily WRITE a MAST templatemesrdto model the component using

If Spice model is available, ? the empircally measured
component electrical values.

then enter Spice component
IF yes, THEN

parameters into a Spice

Template example.

IF not, THEN4

then insert best guess component parameters

into a component template with the same IF yes, Simple Hire Analogy to characterize
electrical behavior. Circuit feedback or THENcomponent
varied component specs are accounted for or the component and develop a

during circuit design tend to minimize the complex
differences between your guess and the model MAST template.

correct value.?

IF not, THENI

NO
Select several similiar library
components or tweak component IF yes,

parameters of existing THEN Buy
components or templates, then HEWLETT PACKARD
iterate thru several simulations IC/Cap tester and software
until satisfactory results are to characterize components

achieved, in house.

FIGURE 5.
22

Thus, more complex models result in decreased simulation
speed and alternatively, less complex models result in a
greater simulation speed. Substituting a model while
maintaining good simulation is the significant endeavor in
the modelling process.

The critical consideration about any circuit modelling
(either component or behavioral modelling) is:

1. Are the simulation results (or information derived from
the results) accurate enough or complete enough for TPS
purposes?

TPS design requires establishing a dependency between a
failure and the failure's effects on probable testing
points, determining the failures effect on the circuit
function, and determining a testing tolerance. The criteria
for verification of simulation results are:

1. Are the fault results reasonable(ie. do the results
correspond to the engineers functional and operational
circuit knowledge)?

2. Are the fault results compatible with existing
documentation?

3. Do the fault results correspond test cases where fault
results are obtained from a real circuit?

Answers or explorative studies to these questions are
required for full understanding of the modelling job and are
addressed in the following paragraphs.

Modelling parameters considered in a model are: the
mathematical relationship between input and output for both
normal and failed conditions; manufacturing statistical
variances in the parameters; and environmental influences
such as temperature and age effects. Typically, only the
relationship between input and output signals are modelled.
Fully characterized commercial components have the
mathematical input/output relationship and manufacturing
statistical variances modelled. Environmental parameters
are seldom modelled. Failure modes and age parameters are
never built into the simulation model. The benefit of the
information gained by modelling temperature and age do not
justify the level of effort expended for TPS purposes. An
analog modelling language simplifies the modelling of
statistical and failure effects. If available, failure
effects and statistical effects are required and desired
modelling parameters for TPS development.

Behavioral modelling refers to modelling a component's
basic behavior. All components in a component category have
similar electrical characteristics. Behavioral models are a
first order approximation of the standard component type

23

behavior. Differences from the average behavior are not
modelled. The difference between a component model and a
behavioral model is, the component model incorporates more
modelling factors which more accurately reflects the
component's actual performance.

A SPICE based definition of behavioral modelling is the
ability to express an output quantity in the mathematical
terms of the input. If a mathematical function accurately
describes the components measured electrical behavior, then
a behavioral model is perfectly substitutable for a
component model. SPICE based simulators lack an analog
modelling programming language.

An analog modelling programming language is essential to
use for behavioral modelling in the TPS development effort.
The Saber analog simulator features a programming language
named MAST. All important component parameters for generic
components are modelled in a template. Measured or
manufacturing component parameters adjust the generic
component templates to provide a specific component model.
Saber is the only analog simulator to possess generic
component templates for all component types, transistors,
inductor, transformers, and gates.

Hierarchial simulation is a circuit simulation that
employs models in functional or assembly sections. A
hierarchical simulation approach allows the entire function,
subassembly, or SRA to be represented as a singular block
component in the schematic. Each functional or assembly
section is a composite of the individual component models.
Hierarchial simulation of the SRA or WRA functions and
assemblies provides a way to substitute less ideal
components(ie. behavioral model) for the functional circuit
sections not under study while obtaining detailed simulation
results. The behavioral modelling of substituted circuit
functions and assemblies drastically decrease simulation
times.

The hierarchial modelling approach allows for a mixed
modelling of the circuit. A hierarchial mixed model
approach is accomplished by substituting a detailed
component model for the function or subassembly of interest,
and then inserting behavioral models for all other circuit
functions and subassemblies. The mixed modelling approach
provides for detailed results while drastically reducing
simulation time. Mixed modelling requires the behavioral
modelling of the circuits functions, subassemblies, and SRAs
which requires extra modelling time.

6.4 SIMULATION DESIGN CYCLE TIME

Building a simulation model of the UUT provides the basis
for a fault simulation. Component, function, and
subassembly models are constructed for the UUT. The time

24

required to build a UUT simulator model and perform a
circuit simulation is dependent upon the following factors:

Direct factors affecting simulation times are:

1. Hardware.

a) The main hardware specifications reflecting
simulation speed is the computers rating in
MIPS (Million Instructions Per Second) and
MFLOPS (Million Floating Point Operations Per
Second). The higher the number the faster
the simulation.

2. The number of programs simultaneously running.

a) Running any CPU intensive program at the same
time as a simulation, steals CPU time from
the simulation and prolongs the simulation
time.

3. Modelling representation of the circuits
components.

a) The greater number of behavioral models used
in the simulation, the less the simulation
time.

4. Circuit Size.

a) Simulation times for the Saber simulator is a
linear function of circuit size. SPICE
simulator times follow a quadratic function
of the circuit size.

5. Component type.

a) Non-linear components(ie. a non-linear
transformer) require small time solution
steps resulting in longer simulations.

6. Hierarchial circuit modelling.

a) Hierarchial modelling allows for function or
subassembly replacement in the simulation
netlist. Substitution of behavioral models
where appropriate, dramatically reduce
simulation times. Hierarchial modelling
reduces the simulation times (about 10-20
percent) for the Saber simulator.

25

7. Simulation control methods.

a) An analog simulator solves large ordinary
differential equation matrices incrementally
in small time steps from the beginning to end
of simulation time. The analog simulator
employs an algorithm (or method of solution)
to solve the circuit equations. With some
circuits, the analog simulator is unable to
solve the equations to the required accuracy
using the default algorithm. This is called
non-convergence. Adjustment of the simulators
solution method and parameters allows the
simulation algorithm to arrive at an
acceptable answer (converge) which allows the
simulation to proceed to completion.
Adjustment of the simulators solution method
reduces the accuracy and reduces simulation
times. Another simulation control method is
to restart a simulation at a stabilized or
normal(eg. not during power up when
transients are occurring) circuit operating
state. Restarting a simulation at a
normalized operating point eliminates start
up transients which effects the time to do a
simulation. This eliminates most of the
simulation time for a complex power supply
circuit.

8. Circuit type.

a) If there are rapidly changing parameters
(e.g. voltages), the simulators time step
controller takes small time steps to achieve
a solution. Taking small time steps increases
the simulation time. A switching power
supply simulation would take much longer than
a full wave rectifier simulation.

Indirect factors affecting simulation time.

1. Integration of simulator and schematic editor.

a. The more information exchanged between the
schematic drawing and simulator, the less
manual intervention by the user. If a
schematic drawing program contains component
symbols for all simulator models, then a hour
and a half effort for symbol creation,
component database parameter entry, and
modification of netlister instructions is
eliminated.

26

2. Behavioral modelling.

a. Modelling provides the most significant
improvement in simulation time over hardware
factors. Improvement of simulation times,
due to behavioral modelling can be up to a
maximum of 100 times and an average of 10
times the normal component modelling
simulation time. Detailed behavioral model
application and substitution for a component
model is desired to obtain the detailed
information and simulation speed required.

3. Post processing of simulation results to extract
the desired signal characteristics such as
voltage, current, resistance.

a. Post processing simulation results alleviates
the engineer spending time interfacing with
the waveform graphing program to extract the
desired electrical parameters. Extraction of
electrical parameters are the essential data
required for test strategy development.

4. Machine/work schedule.

a. Maximizing the utilization of resources can
provide substantial improvements in
productivity. For example: run unattended
simulations overnight and on weekends, run
simulations on unused machines over the
network, or run a simulation while performing
data entry functions such as schematic entry
or word processing. The idea is to
multi-task your work schedule and the
computers work schedule.

5. Network resources.

a. A fast workstation (e.g. the new HP 700
Series) on a network could be dedicated for
simulation duty. Multiple simulation runs
for Monte Carlo analysis could be ran on
several workstations simultaneously, one
simulation on each workstation.

Through a process of UUT modelling and simulation, basic
tasks were identified. Figure 6 illustrates the basic
simulation tasks and events.

27

CIRCUIT SIMULATION T1

NOTES R

" CYCLIC TASKS
INVOKE
SABER

PROGRAM

I I I
COMPILE COMPONENT DC TR S

BEINTHE
SABER NETLIST. A

BEGIN
M

CIRCUIT
SIMULATION

TASKS J ---------- ------------- ------------- -------------- I----------- I-------------...I **I **I **I **I. I **I I,
ANNOTATE COMPONENT CREATE MODIFY MODIFY SCHEMATIC MODIFY RLI!
SCHEMATICS SUBSTITUTION SYMBOLS SCHEMATIC NETLISTER ENTRY SCHEMATIC SI

OR MODELLING DATABASE INSTRUCTIONS

NO

HIERARCHIAL MODELLING CYCLES YES SYMBOL OR
_SIMULATION

COMPONENT MODELLING CYCLES MD

BEHAVORIAL MODELLING CYCLES

1k

.ATION TASK PROCESSES

RUN SIMULATION

VARIABLE SIMULATION TIME DEPENDENT UPON END
1. HARDWARE. COMPUTER MIPS. N SABER1.MDLIGLVLO ERSNAIN 2. HOW MANY OTHER PROGRAMS ARE RUNNING.[SIMULATION

LEVEL OF REPRESENTATIO
4. CIRCUIT SIZE (275 COMPONENTS).
5. HIERARCHIAL CIRCUIT MODELLING.

--------------- ----------------------- ---- -----

II..
j~ SIMULATION TIME DIFF. I
IIOF 100 1 I

TR SIMPLE SMALL COMPONENT DISPLAY
IS Analysis FUNCTION OR ASSY LEVEL SIMULATION

ALL BEHAVORIAL MODELLING RESULTS
MODELLING

END OF
CIRCUIT

SIMULATION
PHASE

---TASKS

NO PARAMETERS

NO

mBOL OR SIMULATE/ANALYZE CYCLES
ULATION

NODEL\40E FIGURE 6

7

Four cyclical major tasks are:

1. Basic simulate/analyze cycle.

2. Hierarchial modelling cycle.

3. Component modelling cycle.

4. Behavioral Modelling cycle.

The circuit simulation task terminates when the circuit
simulation results are compared with the waveforms of the
actual circuit. A less optimum verification is to compare
simulation results with the electrical waveform parameters
recorded in the TPS documentation such as input and output
specifications or VITAL listings. An alternative
verification is to use the engineers functional,
operational, and electrical knowledge gained from studying
the schematic and from the simulation task to verify
simulation results.

6.5 WRA MODELLING

WRA modelling may be done at the component level or behavior
level depending on circuit size and the time versus accuracy
tradeoffs associated with the component or behavioral
modelling. Whether the simulation results or information
derived from the results are accurate or complete enough for
TPS purposes is the critical consideration about any circuit
modelling (either component or behavioral modelling). In
the real world, long analog simulation times for "large"
circuit sizes dictates a behavioral model approach for WRA
modelling. The definition of a "too long" simulation time
is dependent upon the comparison of simulation time to the
available time and manpower. Accepting 8 hours as the time
limit for one simulation run, an analog and digital
component count of greater than 300 to 500 analog components
is the limit before any behavioral modelling is mandated or
considered. The rough correlation, 500 analog components =
8 hours simulation time, is based upon an actual simulation
time and is dependent upon the factors cited in the previous
discussion of Simulation Design Cycle Time. Maximum digital
simulation times have not been studied.

6.6 CIRCUIT SIMULATION TASK

Circuit simulation tasks and times to accomplish those tasks
were recorded during the application study. Task times are
annotated on Figure 7, Circuit Simulation Task Times.

29

CIRCUIT SIMULATION ESTE

NOTES R1

BASED ON SIMULATION TIMES WITH

THE FOLLOWING CONDITIONS: INVOKE vAt
1) SPARC 1+ SABER 1.
2) NO OTHER PROGRAMS RUNNING PROGRAM
3) COMPONENT TOO SMALL FUNCTIONAL MODEL 3.
4) 275 TOTAL COMPONENTS

232 ANALOG
43 DIGITAL

5) 11 HIERARCHIAL COMPONENTS 1 .

**CYCLIC TASKS

COMPILE COMPONENT DC TR S
AND TEMPLATES IN ANALYSIS Analysis F
THE SABER NETLIST. AMt

BEGIN 3 MINUTES T
CIRCUIT
SIMULATION

2 HRS. -HIERARCHIAL
15 MINS.-BEHAVORIAL

I DAY 1/2 DAY 15 MINUTES 15 MINUTES I HOUR 5 MINS.-COMPONENT 5 MINUTES

TAKS 10 I I0 1 1 1 1;
TAK- ----- ------- 1------- ------- ------------ 1--------------- 1-------------I
ANNOTATE COMPONENT CREATE MODIFY MODIFY SCHEMATIC MODIFY RU
SCHEMATICS SUBSTITUTION SYMBOLS SCHEMATIC NETLISTER ENTRY SCHEMATIC SI

OR MODELLING DATABASE INSTRUCTIONS

NO

15 CYCLES FOR HIERARCHIAL MODELLING
CUSTOM

* 4 1/4 HOURS/CYCLE YES SYMBOL OR
SIMULATION

21 CYCLES FOR COMPONENT MODELLING (4 HRS./CYCLE)

12 CYCLES FOR BEHAVORIAL MODELLING (8 1/2 HRS./CYCLE)

(2 |

ON ESTIMATED TASK TIME

RUN SIMULATION

VARIABLE SIMULATION TIME DEPENDENT UPON END
1. HARDWARE. COMPUTER MIPS. I SABER
2. HOW MANY OTHER PROGRAMS ARE RUNNING. ISIMULATION

4 3. MODELLING LEVEL OF REPRESENTATION.
14. CIRCUIT SIZE (275 COMPONENTS). I
15. HIERARCHIAL CIRCUIT MODELLING.

3 K A, 300

MINUTESI IMINUTES
I FACTOR OF 100 1

TR SIMPLE SMALL COMPONENT DISPLAY
Analysis FUNCTION OR ASSY LEVEL SIMULATION

ALL BEHAVORIAL MODELLING RESULTS
MODELLINGSIUAON

MINUTES TO 5 HOURS END OF
/

CIRCUIT
SIMULATION

PHASE

AINUTES 10 MINUTES 15 MINUTES 8 HOURS 5 DAYS

#

------------------ ASKS

FYRUN YZE SIMULA- SAVE FINAL VERIFY
-MATIC SIMULATION SIMULATION TION SIMULATION RECORD SIMULATION

RESULTS RESULTS YES RESULTS OF RESULTS

< OK?
DESIREDI

~WAVEFORMREUT

NO PARAMETERS

NO

)L OR 100 SIMULATE/ANALYZE CYCLES

)EL

FIGURE 7

Conclusions derived from the circuit simulation task

analysis are.

1. An estimated total circuit simulation time is 42 days.

2. Entry of circuit design information takes a third of
the total time.

3. Modelling and model verification takes a third of the
total time.

4. Analog simulation takes a third of the total time.

5. Circuit simulation is highly iterative.

7.0 FAULT SIMULATION

7.1 OVERVIEW

Fault simulation generates the raw data for development of a
fault dictionary. The raw data establishes the precise
dependency between a fault and the fault symptom, a key task
which previously was highly dependent upon the TPS
engineer's experience, a variable quantity. Fault
simulation leads to the development of the fault dictionary.
The fault dictionary is the essential TPS design database
for TPS development.

The testing strategy process creates a fault dictionary,
formulates a testing strategy, organizes a diagnostic
testing sequence, calculates testability parameters, and
ensures conformance of the testability parameters with the
testability specifications. The fault dictionary provides
the raw material for the establishment of a voltage,
current, or resistance testing criteria for a diagnostic
decision point.

Analysis of the fault dictionary establishes the
dependency and relationship of a faulted component to a
corresponding measurable fault symptom. Establishing the
dependency anJ relationship of a fault with an observable
fault symptom is a key task of the TPS engineer. In the
past, the TPS engineer's knowledge of circuit behavior
through physical fault insertion, established the
relationship between a faulted component and fault symptom.
Establishment of rudimentary circuit analysis of cause and
effect relationships and an approximation of fault voltages,
current, and resistance values were the best the TPS
engineer could do. Voltage, current, and resistance
measurements of an inserted fault on the UUT provides
precise testing criteria for that particular SRA but not for
other UUTs due to slight variations in component k-arameters.
The precise testing criteria ensures the test program will
correctly test different UUTs of the same type. However,a

31

traditional TPS development approach is limited to
non-destructive singular faults that will not overstress
other components, physically damage a board, and time
limitations due to fault insertion quantity.
Fault simulation provides many advantages over traditional

circuit fault analysis methods. Typical fault simulation
advantages are:

1. Precise cause and effect dependency and relationships
between the fault and the fault symptom.

2. Provides data to establish precise fault testing

criteria.

3. Capable of establishing fault data for all components.

4. Capable of simulating the insertion of destructive
faults (without damaging the actual equipment) to
obtain fault data.

5. Simulate "real world" faults versus the idealized
open/short faults.

Simulating faults that are commonly experienced ensures
testing program quality through the ultimate benchmark -
"Can the test program find 'real world" faults?" For the
most part, the idealized faults are representative of real
world faults. Often, MOSFET and CMOS component failures do
not exhibit the idealized short or open characterization.
For example, metal oxide semiconductors exhibit kilo-ohm
resistances as a failure mode instead of an open. Modelling
a component failure during overvoltage or overcurrent
conditions further provides a mechanism to predict secondary
fault effects which are typically overlooked. The
overstressing of an associated component leads to failure of
the second component during actual fleet use and often is
the recurring cause of the same component failing
repeatedly. Discrete diode replacement procedures in a full
wave rectifier configuration is an example of the phenomena
just described. Another example is the case where a
feedback resistor is defective and causes an OPAMP to fail.
The failed resistor is not discovered and the OPAMP is
replaced. The resistor is the primary cause of the OPAMP
failure, not the OPAMP itself. The secondary effect of the
Out of Tolerance (OOT) resistor fault is to cause the
failure of the OPAMP yet he OPAMP appears to be the single
point of failure.

32

7.2 FAULT SIMULATION TASK

The fault simulation task involves configuring a circuit's
test condition, fault modelling, and simulating faults.
Fault simulation results are analyzed and converted into a
fault dictionary. Test condition configuration is
determined by the engineer from documented testing
requirements or operational knowledge about the circuit.
Fault modelling is accomplished by using available fault
models (e.g. resistors, capacitors, diodes), adding fault
parameters to the existing model (e.g. transistors), or
adding extra components (e.g. a short or open component) to
the schematic. A group of failures are simulated at
different times in the simulation but never at the same time
during the simulation. This procedure saves simulation time
and simulates fault component groups in a function or
subassembly for fault analysis purposes. If the fault
simulation is satisfactory, then all waveforms are saved
into a different directory. Figure 8 illustrates the fault
simulation task sequence. The fault simulation task is part
of an iterative task to simulate the fault behavior of all
components. Low MTBF components are faulted and simulated
individually or in a group if possible. Then all active
components are simulated individually or in a group, if
possible. Finally, passive components in each functional
group are fault simulated.

7.3 FAULT MODELLING

Fault modelling entails changing the normal components
electrical behavior to a faulted component electrical
behavior. The behavior change is made internally to the
components simulator model or externally by placing an
external component (a short or open component) in the
circuit adjacent to the faulted component. Generic standard
components, such as resistors, are fault modeled by simple
model substitution, either by editing the schematic or
directly editing the netlist. Complex components,
functions, or subassemblies require a dedicated modelling
effort.

A modelling approach is to characterize a batch of failed
components through measurement of their electrical behavior.
Next, the faulted electrical data is either fitted to a
function or directly modelled by Saber's modelling language.
Partially failed components could likewise be modelled.
Most failures are approximations to the idealized fault
modes delineated in MIL-STD-217 or in the CASS contract.
Logistical data identifies commonly failed components but
lack the specific details on the component fault behavior.
Manufacturing quality assurance data is a possible source of
fault characterization, however the data needs to be from
the actual operational environment.

33

FAULT SIMULATION AND TESTABI

BEGIN END OF BEGIN
FAULT FAULT TESTABILITY
SIMULATION SIMULATION ANALYSIS

TSS1-----I-------I-------I--------I-----+ ------ ----- I-- -------I
EDIT FAULT MOIFY SIJLATE SAVE A
SCHEMATIC MODELLING SCHEMATIC FAULT FAULT TEST ADD
TO SET UP I)USE WITH FAULTED SIMULATION POINTS GRAPt
A TEST AVAILABLE COMPONENTS SIMULATOR RESULTS FAUL
CONDITION FAULT MODES I)SET UP RESULTS YES DICT

2)ADD FAULT FAILURE AND OK?
PARAMETERS RESTORE
TO THE TIMES # NO
EXISTING
MODEL

3)ADD
ADDITIONAL
FAULT
COMPONENTS ADD
TO THE TEST POINTS
SCHEMATIC

CREATE
NEW TEST

OR
ADD TESTABLE

POINTS

CREATE NEW TEST CONDITIONS
4

'ESTABILITY ANALYSIS TASK PROCESSES

END
TESTABILITY
ANALYSIS...

3ILITY BEGIN
3IS TESTPROGRAM

--------------- TASKS

I I I I I
ADD CREATE OR ANALYZE CREATE ANALYZE DEVELOP
TEST ADD TO GRAPHICAL FAULT FAULT TEST SEQUENCE
'OINTS GRAPHICAL TESTING YES FAULT DICTIONARY DICTIONAPY TESTING

FAULT COMPLETE DICTIONARY TOLERANCE AND
DICTIONARY ?TEST PROGRAM

DOCUMENTATION
1) ARE THERE

NO ENOUGH FAULT
SYMPTOMS?

2) CHANGE INPUTTO FULLY
EXERCISE THE

ADD CIRCUIT.

TEST POINTS

TEST NO AMBIGUITY
)R GROUPING

ESTABLE STATISTICS
INTS

FIGURE 8

A collective survey and consensus from experienced field
engineers is a valuable source of fault information.

Devices possessing two terminals (ie. two port devices)
are easily modelled by shorting the input to output or by
opening the input to output circuit path. An alternative
method is to change the components main characteristic
parameter which has simulation speed advantages. For
example a resistor from 0 ohms to 1 teraohm or a capacitor
from 1 megafarad (short) to 1 femtofarad (open).

An area for study is the effect of a fault on other
components. Component models are often modelled
specifically to operate under normal conditions. A voltage
or current from another faulted component may place the
component simulation in a poorly characterized region.
Simulation in a poorly characterized region results in poor
component behavior and presents a simulation accuracy
problem.

Saber fault simulation is accomplished by changing the
component electrical characteristics at a specific
simulation time or when a specified voltage, current, or
power dissipation event has occurred during the simulation.
Typically, many components are set up to fail then recover
from failure during a simulation run. The "time fail and
heal" method generates the largest amount of fault symptoms
corresponding to the faults over single failure/simulate
methods.

7.4 FAULT DICTIONARY

The fault dictionary is a compendium of fault analyses that
relate fault conditions to corresponding fault symptoms.
Relating a fault to a precise fault symptom and establishing
the precise dependency is the "golden egg" required for
diagnostic accuracy of the TPS.

Derivation of the information in the fault dictionary is
from the fault simulation results. The simulation results
are organized in a graphical format. The graphical format
is called a graphical fault dictionary. Components of the
Voltage Detector circuit in Figure 9 was faulted and the
resulting graphical fault dictionary is portrayed in Figure
10. The Voltage Detector circuit resistors and capacitors
were failed as shorts, one at a time sequentially during a
Voltage Detector simulation. The electrical parameter of
interest (eg. current or voltage) was recorded for each
testable or probable circuit node. The recorded results are
illustrated in horizontal Sections 2 through 9 of the
Graphical Fault Dictionary. Each 10 milliseconds is a fault
time bin representing a different fault condition of the
Voltage Detector at all testable points. For every 10
milliseconds, from 0 to 130 milliseconds, a different
component was failed.

35

u.).

Lo

ciJ (nl %4 >

l

6 ID

- OOL

rL5

.4 -

" 00

av:)

c.

36

GRAPHICAL
FAULT

DICTIONARY

FIGURE 10

37

- - - -

- -- -- -- - - - - - - --L- - - -

lipJ

-- -IL .- ----

v-i '..

go'F '-u_

- - - - - -- - - - - - - - - - - - - - - - -- - - - - - - - - -- - - -

.......................s F

,J_/Tho-r :_ __

zi_

E 1 l

-
.

. . . . V

H _

U - -_

-

Cj9)T' *3 *

_ _ _ _ _ _ _ _ _ _ _ _ E

o " ° " ""o c-

- - -' ' ' ' 'a

° °°° ° ° ° ° ° ° ° ° ° L, ii iCi "ii ci)
," Z C

....

i . CA

0 - 0 , * *

'.0* '. * * * e

* a a* . a a .

-- -- -- - -- - - - - -- - --- --- - -- - - - - - - - - - - - - - -- - - - ------- -- - - - E

....

a . a .8

('4* l e

........... -- - -- - - -- -- -- -- E ------- -- - - - - - - --- --- --- -- --------..

... - - - - - - - - - - - - - - - - E --------------- -------.......-- E

S - - - --- -----

W. In,

00

00 *4 * *a

S S, "- S 4 , =

o * 0 aCaO

00 a 0 a a 0

E E

-- -- - - - - - - - - -- - - - - - - - - - - E -- - - - - - - - - - - - - - - - - -- - - - - E

-- -- -- -- -- -- - - -- - - - ------ - - - - - - -- - - - - - - -- -- -- --- -------- -

•a - * o *

0 II 0
oE

. E- -- a-- ---- - - - - -a-a a

a a a a 0 l a a

. - - j 0-- -a * 0
* o_ ai a_

- -" 1. - I-

-- - - - - - - J ----------------------- ---------------------- .-----------------.----- ----------- E

----- - -- - - -- - - -- - - -

ai04

a a a I
|7a

Sa a aa
. . . . a, a a

"a "°

-- - E___ __ - _

N Q'(J

-_ -- z

-- a 4

5 S

0'0

- - - -----

- - --.- - - -------------- - - - ----- *-- - - -

,,---------- - - - --- - :3

- - ----. -- - -E - - -- - - - -- - - -- - -.

---------------- I

C-,,

V * aa

- o i * a
a a I a

. u:.

A 0

_ _ _ _ _ _ _ _ _ _ _ _ _ _---

, 2

----- - - ----- -- - -- --

- ------------ ---- --------
-]

_] cVOl.

_o o/Voc.~

....,........... ,......] v r,

S'C ..

0.

.... U] \Jt c.- - - --------------------- _

-> ,.v,6o VDO2

I*0 FF5'S

---- --- ---- --- --- --- -- ---- --- --

A)O EFFE T

%">"i -.-

'V" 0 0 0 T z:-

,~ 's

v'zo A 7 1CL - - - -

- - - - -~ - - - - ----

Q/- QO.5 0 ' - . 0 :

(N__ _d (-> ' ooooooooooooo. (5)

'Vi'

Z-----------------------

IK
. -- --- --..........

cic
U0 El El

ae - -- - -- - C

E E

.. .E- -

... E................................. "-E *E..

*

* 44

... a - - a.

.. .. E E 0J. . .

4 44

4 4 4 4 4

4 4 44 4

* 4 4 44 4
4 4 4 4 4

-- 4 4 4 o 4l 4l 4I 4

4

i---------------------------------

a ,0

-|- ------------

a a a
* aa"' ' ', - - -- a-..a=. . .. 0. a .o .0* * ' a.. °° ° . . . o .-a . .a a - a a

a a oD

* a a a-
a a

a a -
.. .. ":. ; "

a , *
a •a . . . a_

aa a aa a

a a a. . -4 -- "-

a a-- --- - * . .. - aa- . a a. a. . a - . . , . o . a ,. , . = .

* a aIa
a a aa.. . -,. .. . "a.. " a- .. . a-,. a- . .° -. . . .

a a a a a

- . . . a . aI .. .- - - - - -- - a - - - a - - - - - - - - - - - - - - - - - - -
, a aa a a

" " . .. Ja J a4" a. L , - aa
a a a r l

. a a a ,a[
-€-aaa

a a ---- I~~. - - - ' a- - i

a a a aI alla

E -

E -- -- -- o.

- ---- - - - - -

E E

E E
. i 6

* ** 06 6

C) 6 6 ,

4 " * " " 6 E

6 1 , ,

. .6...6.6 6

* 6 * 6
* 6 6 * 6

*

e 6

, 6"6 6 6 6- *-6

3v

* S I S93.
'"7SS

20 --
.--- --------------- - --- ...

V) 10 *

0QL
.- - - - - - - - -

0 20 40 60 80 om10 4S"10

* S S S S/ 1

I Fal Ditonr fo OpnRssoSadC pctr fteV laeD tco

0

* S a S a

01
0

The faulted component and component failure mode is
annotated on the top horizontal section for each fault time
bin. A fault state is identified when the same voltage
level exists for different component fault modes. The fault
state identifies the failure modes which present the same
fault symptoms. A group of components presenting the same
fault symptoms is called a fault set. An ambiguity group is
derived from fault sets. Fault sets corresponding for each
fault state are annotated on the right side of the Graphical
Fault Dictionary. A complete fault component set is derived
from a collective and comparative analysis between a fault
symptom and all possible faults. Not all possible fault
modes are displayed in the illustrated Graphical Fault
Dictionary. Individual tests of the testing sequence
identifies the fault state electrical parameters. Fault
state electric-il parameterics are defined as the range of
measurable parameters (voltages, frequencies, etc.) that
describe the fault symptom (i.e. fault state). The tests
are written to the right of the fault sets on the diagram.

The testing information generated by analysis of the
Graphical Fault Dictionary is recorded as an entry in a
fault dictionary. An entry in a fault dictionary relates a
set of possible faults for a given fault symptom under given
testing conditions. The fault dictionary is a text table
relating faults to fault symptoms. Each line entry of the
fault dictionary is a fault state. A fault state is a range
of electrical parameters (e.g. voltages) that describe the
faulted condition or symptom. The fault dictionary
structure is illustrated in Figure 11.

7.5 FAULT DICTIONARY ANALYSIS

Fault dictionary analysis is the processing and extraction
of the fault dictionary information to develop ambiguity
groupings, diagnostic testing tolerances, and diagnostic
test sequences.

Ambiguity groups are calculated from the union set formed
with multiple fault sets or are the individual fault sets in
the fault dictionary. Figure 12 illustrates this concept
and ambiguity calculation for the studied Voltage Detector.

Diagnostic testing tolerances are determined by Monte
Carlo fault simulation for the fault or set of faults being
simulated. Monte Carlo analysis as a test point establishes
the average, minimum and maximum electrical values. If the
differences between fault states or symptoms are distinct
and because Monte Carlo simulation is resource intensive, an
alternative approach is to set testing tolerance guard bands
at plus or minus 20 per cent of the difference between fault
symptoms. For example, if fault symptoms are 0 volts and 10
volts at a test point, then the testing tolerance for the 10
volt fault grouping would be set at 8 volts for the lower
test limit.

38

w0
I-

c,

0 7O so0 >0

a tx L- o- E

'0 *®+- C) o owe E L , 0L

a o-QCne.- A- 0,.C. ;

Q-0 >-

r
LL 0 E Mp,0, w V j3

C "' c" w
0 Cl) u.. 0

0"- "

- 0 0 0 -- - - -- ----- --- ---

a. _
-- 13,..

-J9

z~~~ 0 O

0 E~

00

CL

0 .44

LL 0 CL- 0

S

39

m 0

111 -0Cl 0OD

CC

L..

0

>0 l

4-6 a~J ED

0~ r 0~E E

4-0 00 -c

0.. x E~O L
0 .- - -C-Cl

0 0
CD ,

ccm-'c

-cc

0

Diagnostic testing sequence is a derivative product form
of the ambiguity group analysis. After the ambiguity group
statistics are approved, the diagnostic testing sequence is
derived from the individual fault set tests relating to the
ambiguity group. For example, the number 1,2, and 3 fault
sets each have a test associated with them and are required
to isolate the fault to the R25 and C4, R9 ambiguity group.
These individual tests are placed in the Voltage Detector
functional subsection of the diagnostic
program. The test ordering is in a sequence to reduce the
faults in the union set formed with the remaining fault
sets. This mathematical procedure defines a logical fault
isolation testing sequence to identify an ambiguity group.
The end goal is to generate a diagnostic procedural flow
chart. The diagnostic procedural flow chart plus
diagnostic testing tolerances and input testing vectors form
the diagnostic flow chart which provides a diagnostic
skeleton for the ATLAS program.

Testing strategy involves what and how to test a function
during STTO, end-to-end, diagnostic, and alignment tests.
Testing strategy is determined from the available TPS
documentation, the engineers experience, and his functional
and operational circuit knowledge.

Diagnostic testing strategy covers many different
techniques, one of which based on the fault dictionary
approach. The main task is to select a combinational series
of input testing vectors which completely tests all
functional and operational circuit modes. Also, part of the
strategy task is to decide what parameters are important to
test: voltage, current, resistance, frequency response for
end-to-end testing and diagnostic testing.

7.6 TESTABILITY PARAMETERS

Important testability parameters are ambiguity group size
and distribution. Testability analysis is an iterative
process to decide the optimum ambiguity size and
distribution when the specified fault isolation level cannot
be achieved because of real world constraints. Real world
constraints require tradeoffs between number of un-
detects/non-detects and number of test steps and number of
probable test points. Limited TPS resources is another
constraint. Theoretically, there are no non-detects because
all components contribute to the functionality of the SRA.
Probable test points, physical constraints, temperature, or
overcurrent limitations in application of test are examples
of physical limitations.

Calculation of ambiguity group statistics is a
mathematical exercise utilizing the fault sets in the fault
dictionary. The fault sets are converted into ambiguity
group sets. The number of faults in each ambiguity group
and the number of ambiguity groups are counted. These two

41

preliminary calculations provide the raw numbers for the
relative and cumulative distribution calculation. The
comparison of calculated relative and cumulative statistics
with the SRA and ID ambiguity group size specifications
determines if the testability task is complete.

8.0 WSTA

The Weapon System Testability Analyzer (WSTA) program
analyzes and determines testability of a new weapon system
design. WSTA's advantages are the number of testability
analysis parameters generated and a testing sequence
optimized for TPS runtime, repair cost or isolation cost
tradeoff factors. WSTA's disadvantages are the difficulty
in assimilating, acquiring, and the level of effort required
to generate the desired testability information. The
disadvantages are described individually in the following
paragraphs.

Assimilating the required WSTA input information into one
place is a problem. WSTA's input information of fault
dependency data, logistical data, and schematic data has to
be available in electronic form due to the large volume and
costs of entering the data. Acquiring the data through a
VHDL (Very large scale integration Hardware Description
Language) and LSA (Logistical Support Analysis) computer
file is a technical problem, yet to be worked out.

Acquiring a VHDL circuit description is a significant
problem. The circuit under study first must be drawn with a
CAE schematic program, then a circuit representation is
output as a VHDL netlist. Using VHDL for WSTAs input
requires remodelling of the circuit. Three port components
(eg. transistors) need to be remodelled as a combination of
two port components. The VHDL circuit information is
translated into WSTA's internal database by a CAE
preprocessor. 7STA's CAE preprccessor describes all
component fault failures as an open circuit and not as a
component short failure or any other fault mode. For an
average SRA of 300 components, manual entry and dependency
analysis of an average 600 failure modes are required, thus
manual entry of the other fault failures(besides an open) is
a significant effort. A program to directly insert the fault
aspects into the WSTA's database is technically possible,
but program development costs time and money.

The level of effort to generate the fault dependency
data, model the circuit and enter the fault aspects is at
odds with the value of information gained for testing
strategy purposes. The fault dependency data, in a readily
compatible form is not available in traditional TPS
development. Generation of fault dependency data is
possible through the process described in Section 7.0 or
through traditional technical analysis means.

42

WSTA is a useful tool for testability analysis after
fault dependencies are created and input into WSTA. If the
information is in a form readily transferable into WSTA,
then the testing sequence and ambiguity results for TPS
development warrant the level of effort expended. However,
the required WSTA inputs either do not exist, or the inputs
are in a form which are not immediately importable.

9.0 FUTURE CIRCUIT SIMULATION TASKS

Good database structure and database access facilities are
required to improve the efficiency and productivity of CAE
software for TPS development. User and programming
development of the native capability is needed to fully
realize the CAE environments full potential for TPS
development. A TPS development simulator, SVS (Software
Verification Simulator) design rule checking, and TPS design
management functions are proposed capabilities to be added
to the CAE environment.

9.1 TPS DEVELOPMENT SIMULATOR

The TPS development simulator simulates all operational
parts to a TPS which entails the ATLAS software, CASS
resources, ID and the UUT. The ATLAS software and CASS test
instruments are simulated behaviorally in a functional
sense. The ID and UUT are simulated at the component level.
The purpose of the simulator is to reduce integration time
through simulation of the CASS tester. Two specific
purposes are to do design verification testing (to ensure
the software, CASS, and ID "play" together), and to test the
software detection of a fault. The justification for a TPS
development simulator is to make the test program and ID
design a dynamic and highly iterative process which ensures
an efficient, productive and quality TPS product. The
simulation provides the answers for the CRITICAL TPS
integration questions:

1. Does the test program find the fault?

2. Does the ATE via the test program and ID provide the
correct stimulus to the UUT?

3. Does the ID and ATE test program measure the correct
response from the UUT?

The ATLAS simulation model is created by the TPS engineer
writing an ATLAS simulation model during TPS development or
by use of an ATLAS interpreter and modelling program. When
the TPS engineer is satisfied with the correct ATLAS
software simulation, an ATLAS compiler generates the ATLAS
testing code for the diagnostic and end-to-end program

43

Er ICO

a-j
a'J

DJ _ _ _ _ _a

I--

I w

DIL
zC a

z 0 U

wL z
-LU -z. D

0iini H
0 CL) ca LL

-i A 44

subtest sections. The ATLAS interpreter and modelling
program creates an ATLAS simulation model from existing
ATLAS code. Figure 13 is a block diagram illustrating the
different models and the models relationship in the
simulation. First the ATLAS code is modelled by a person or
a syntax interpreter and ATLAS modeler program. The CASS
instrument models, ID, and UUT models previously exist from
the TPS development effort. The TPS model is simulated and
the results are analyzed for correctness.

Several technical approaches for a TPS development
simulator are possible. Each approach consists of different
levels of refinement and levels of effort to achieve the
objective. Refinement levels refer to the modelling detail
of the CASS tester. The electrical characteristics of the
switching paths need not be modelled with the exception of
non-RF or high current situations. Basic functional
operation of the CASS instruments are modelled. For
example, a DC power supply is a DC source with a series
resistor. Setup and control of the DC source or any CASS
instrument is easily accomplished with Saber's analog
modelling programming language. The analog modelling
programming language (MAST) and the analog simulator (Saber
capabilities are the CAE specific capabilities) enable the
TPS development simulator concept to come to fruition.

The TPS development simulator combines the normally
separate TPS design tasks into a common effort. The TPS
software and hardware are simulated together. Simultaneous
software and hardware simulation completely changes the TPS
development methods from a static to a dynamic process. The
ATLAS and ID design is accomplished simultaneously during an
iterative design process. Integration errors are discovered
and corrected by the simultaneous simulation. Discovery of
ID and ATLAS design errors in a design phase reduces the
cost of fixing the design errors which are normally
discovered during integration (after an ID prototype is
built and the ATLAS code is written). Typically, an ID
prototype is rebuilt and the ATLAS code is completely
rewritten from the initial design effort. The cost of
correcting design errors at integration time is ten times
the cost of correcting the design error during the previous
design phase. This is why computer simulation during design
is so valuable to the electronic design industry.

A working model and proof-of-concept for the TPS
development simulator is proposed. A section of ATLAS code
would be translated by an engineer into an equivalent MAST
simulation model. Also, rudimentary models of the basic
CASS instruments would be created. The ID and UUT would be
modelled at the component level. Simulation of the
software, CASS, ID and UUT models is required to prove the
technical feasibility. The effort would take two months to
accomplish and require a workstation, and a schematic
capture program with the SABER analog simulator.

45

9.2 SVS DESIGN RULE CHECKING

The System Verification Simulator (SVS) verifies or checks
for pinout errors, wiring errors and UUT I/O functional and
electrical requirements. There are general electrical rule
checks (eg. for ground shorts or open circuits), design rule
checks (eg. for signal type (digital, analog, input,
output), compatibility checks, and specification checks
(over/under voltage or current). Electrical and design rule
checks exist as part of an enhanced schematic capture
program. Not all schematic capture rule checkers are
configureable, nor do they inform the engineer of a
misconnect error. A misconnect error is found when the
design violates an electrical, design, or specification
check. However, a misconnect error may pass all the
aforementioned checks but will be discovered during
simulation. In a simulation, the misconnect is discovered
because the circuit does not display the expected functional
behavior because it is connected to the wrong ID or UUT
input or output pin.

A specification checker does not exist as a schematic
feature. A specification checker compares an electrical
parameter specification against an actual electrical
parameter at a specified input or output pin. This feature
is possible, if you know:

1. What the electrical specifications are for an ID or UUT
pin.

2. What are the actual electrical parameters applied to
the ID or UUT pin.

For the SVS, the actual electrical parameters are derived
from the ATLAS program directly, assuming no active ID
circuitry. If active signal conditioning circuitry exists
in the ID, then analysis of simulation results provides the
actual electrical parameters.

Addition of design and specification rule checking
capabilities are proposed as part of the TPS development
simulator to assist the TPS engineer during TPS development.

9.3 TPS DESIGN MANAGEMENT FUNCTIONS

Much of the TPS design information is organized or related
to the repairable component. Ambiguity groups, non-
detectable/un-detectable components, pin voltages or current
specifications, pin simulation results, and MTBF results are
TPS design parameters related to a component. The component
database generated as a result of schematic entry provides a
data structure to organize TPS design parameters. Extra
data fields added to a component's parameter database allows
for inclusion of component related parameters into the UUT

46

circuit design database. TPS design parameters are
generated during the testing analysis task and are used in
many different TPS design calculations. The TPS design
calculations are involved in the fault modelling, fault
dictionary, fault dictionary analysis, and testability
parameters. Fault modes (e.g. opens and shorts) are added
to a component's database field during fault modelling. A
components fault mode database field then configures the
fault simulation for the fault mode under simulation. Fault
dictionary parameters, such as fault sets and input or
output electrical parameters are stored in the components
probable test point and electrical device components
database. Fault analysis calculations on the fault
dictionary generates the ambiguity groupings. Testability
parameters are a relative and cumulative statistical
calculation of the ambiguity groupings.

The development of the TPS design managemen: functions
requires the addition of the TPS design parameters into a
component's database, and the creation of processing
routines to extract and process the component data to
perform ambiguity group, testing criteria, and fault
dictionary calculations.

10.0 CONCLUSIONS

Results of the CAE study, to date, reveal great potential in
the application of CAE software for TPS development. The
current raw capability exists in several CAE environments.
However, a few months effort is required to configure the
CAE environment for TPS development.

The recommended analog simulator for TPS development is
SABER. SABER is the only analog simulator to perform analog
fault simulation. Also, SABER possesses a sophisticated
modelling language which allows electrical devices,
mechanical devices, faulted components and software to be
simulated as a system.

The report identifies CAE selection requirements.
Selection of CAE software tools in a CAE environment is the
next logical and natural step in the evaluation. Software
integration of CAE programs and significant configuration
and development efforts of the CAE environment are critical
factors in the selection process. The CAE software tool
selection is a three decision factor process. The decision
processes are:

1. To identify the software tools to generate analog and
digital fault data required for TPS development. Only
one analog fault simulator has been identified, which
is Saber. This fact sets the condition and constraints
with selection of a CAE environment and software tools.

47

2. To select a CAE environment to accomplish the desired
TPS CAE environment capabilities which further defines
and restricts the selections.

3. If there is a choice betwpen software tools, select the
most mature and best integrated software.

The report studies an analog fault simulation approach to
the TPS development process. The analog fault simulation
approach provides great efficiency, productivity and quality
improvements over traditional TPS development processes.
The analog fault dictionary provides the essential data for
the testing analysis phase of TPS development. Ambiguity
groups and ambiguity group testing parameters calculations
from the fault dictionary is possible. A complete fault
simulation and fault analysis of the SRA is necessary to
fully document the fault simulation approach for TPS
development.

11.0 RECOMMENDATIONS

Recommendations are:

1. Develop a fault dictionary for the SRA under study.
Translate the fault dictionary information into fault
testing criteria, ambiguity callouts and diagnostic
tests.

2. Narrow the CAE environment to TWO vendors. Rate the
CAE environments on matching the desired CAE
environment capabilities and the development effort
(time and cost) to achieve the capabilities. Evaluate
each CAE environment separately for a period of 30
days. Select a CAE environment. Setup and develop the
CAE environments raw capability for TPS development.

3. Implement a demonstration of the TPS development
simulator.

48

GLOSSARY OF TERMS

AMADEUS - Amadeus is the marketing product name for a standard
set of software features, CAE programs and framework operating
system environment produced by Cadence Design Systems. Amadeus
includes a schematic drawing, design management, database
library, and utility programs.

BEHAVIORAL MODELLING - Behavioral modelling is modelling of a
components electrical behavior in simple or complex mathematical
equations.

CADAT - CADAT is the name of a digital circuit and digital fault
simulator. CADAT is used extensively for IC circuit design.

CALS - CALS is an acronym for the Computer Aided Logistical
Support government program directives.

CGM - CGM (Computer Graphics Metafile) is a vector based drawing
file format output from a graphics drawing program and input into
desktop publishing programs.

COMPONENT MODELLING - Component modelling is the modelling of a
component for a simulator. Also, component modelling is used to
describe the very accurate modelling supplied by a company (ie.
the native simulator model library).

DXF - DXF (Drawing eXchange Format) is a vector based drawing
file format used to exchange drawings between software programs.

EDIF - EDIF (Electronic Data Interchange Format) is a file format
for exchanging electrical circuit information (eg. netlist and
symbol shapes) between CAE oriented software(eg. schematic
drawing, simulator, and printed circuit board design programs).

HIERARCHIAL MODELLING - Hierarchial modelling models a function
or assembly as a single substitutable part of a netlist rather
than a collection of lower level components or assemblies.

HIERARCHIAL SIMULATION - Hierarchial simulation is a simulation
of a hierarchial modelled SRA or WRA.

HPGL - HPGL (Hewlett Packard Graphics Language) is a drawing file
format standard for Hewlett Packard plotters.

IGES - IGES (Inter Graphics Exchange Standard) is a vector based
drawing file format standard for transferring drawings between
software programs.

LSA - LSA (Logistical Support Analysis) is a government
specification for recording logistical data.

49

MAST - MAST is the name of the Saber simulators' programming
language.

MONTE CARLO - Monte Carlo is the random statistical component
value selection process of Monte-Carlo simulation.

MONTE CARLO SIMULATION - Monte Carlo simulation is the multiple
circuit simulation runs with different component electrical
values.

PCB - PCB is an acronym for Printed Circuit Board.

SABER - Saber is an analog simulator produced by Analogy, Inc.
Saber simulates analog and mixed mode circuits drawn in Amadeus.

SPICE - SPICE is the name of an analog simulator algorithm (ie.
method of solving circuit equations). SPICE is an generic term
describing analog simulators that employ the SPICE algorithm.

TEST VECTOR - A test vector is the input circuit stimulus
required to test a circuit for a test response.

VERILOG - VERILOG is a digital simulator product of Cadence
Design Systems.

VHDL - VHDL (Very large scale integration Hardware Description
Language) is an acronym referring to the technology employed to
manufacture an IC component.

50

