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FOREWORD

The author presents a new approach to the subject of
parachute critical velocity. Aspects of the observed performance
of critical parachutes in the field are theoretically developed in
the analysis. In addition, the effects of the mass flow ratio on
parachute stability, drag coefficient and inflation dynamics are
offered.
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ABSTRACT

This report discusses how the critical velocity of parachutes
depends upon the rate of outflow through the canopy surface and
the rate of inflow through the canopy mouth. The analysis
indicates that the mass flow rate ratio, M', is demonstrated to be
the theoretical key to the critical velocity of parachutes. All
other observed effects modify the onset of critical velocity. The
effects of M' and altitude on inflation reference time, parachute

stability, drag coefficient, and inflation rate are also
discussed.
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INTRODUCTION

Parachutes have a property known as critical velocity where
the canopy fails to fully inflate at deployment. Critical
velocity is not really understood although some of the effects
that modify the onset of critical velocity have been observed.
Canopy rate of airflow, altitude, suspension line length, number
of gores in the canopy, canopy gore shape and cut, and parachute
diameter are all known factors that affect critical velocity.

The key to the solution of this problem came from observation
cf a critical parachute under test in a wind tunnel. Below the
critical velocity, the parachute was fully and satisfactorily
inflated. At the critical condition the canopy suddenly
collapsed. The inflated canopy actually lost volume due to an
increase in velocity. This signaled that the rate of outflow
through the canopy surface exceeded the rate of inflow through the
canopy mouth and was a function of velocity. The analysis
indicates that the mass flow rate ratio, M', is the key element of
critical velocity and is shown to theoretically illustrate the

described effects. All other observed effects modify the onset of
critical velocity.

1/2
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APPROACH

CRITICAL VELOCITY EFFECTS

One of the more exotic properties of parachutes is the
failure to fully inflate during deployment. The critical
deployment velocity is the lowest velocity at which the parachute
does not fully inflate. Deployment at higher than critical
velocity results in a partial inflation of the canopy.

Some of the known phenomena that affect parachute inflation
criticality are:

1. Critical velocity is affected by the length of the
suspension lines. Increasing the suspension line length raises
the critical velocity.

2. Critical velocity is also affected by the number of
canopy gores. Increasing the number of gores raises the critical
velocity.

3. The rate of airflow through the canopy surface area,
and the distribution of the rate of airflow. The rate of airflow
for solid cloth parachutes is also affected by whether the gores
are block cut or bias cut.

4. The shape of the canopy gore. Figure 1 is a comparison
between a triangula. gore design and a gore shaped to provide a
minimum stress condition and illustrates how gore surface area can
be modified.

5. The effect of increasing the deployment altitude is to
raise the critical velocity.

6. Imporous parachute canopies always inflate.
7. Critical velocity is a function of parachute diameter.

Theoretical explanations for the above effects have been
derived in the several sections of this report. Consider the
parachute to consist of two main components: the canopy which
producr.s the aerodynamic forces, and the suspension lines which
transmit the aerodynamic force to the payload. The suspension
lines are usually connected to the payload in an assembly which
result in a steady-state cone angle, §_, as in Figure 2. The
suspension lines are joined to the can8py at the skirt hem. The
balance of forces at this connection is a key t¢ critical velocity
analysis.
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FIGURE 1. COMPARISON OF CONVENTIONAL FLAT CIRCULAR PARACHUTE GORE LAYOUT AND
MINIMUM CLOTH STRESS GORE CONFIGURATION
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EFFECTIVE CONFLUENCE

RISERS SUSPENSION LINES

FIGURE 22 EFFECTIVE RIGGING LENGTH WITH
MULTIPLE RISER ATTACHMENTS
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LENGTH OF SUSPENSION LINES AND NUMBER OF GORES

The effects of suspension line length on the parachute drag
coefficient were developed in Reference 1 and are illustrated in
Figure 3. As the suspension lines of Figure 4 are lengthened, the
radial component of the suspension line force, F.,., is reduced,
and the canopy pressure differential, due to the &xcess cloth in
the skirt of a flat parachute, expands the inflated parachute
diameter which gives rise to the improved aerodynamic drag of the
parachute and increases the canopy steady-state mouth area, AH .
The lengthened suspension lines improve the mouth area throug 8ut
the inflation cycle and permit additional mass inflow which
results in a higher critical velocity. Shortening of the
suspension line length produces the reverse of the conditions
cited above. Flaring the canopy mouth improves the inflation
characteristics of marginal canopies.

The aerodynamic force generated by the canopy cloth area is
transmitted to the canopy main seams. Figure 5 illustrates the
relationship between the tangent force in the canopy cloth, F.,
and the canopy radial force, F,.. As the number of gores in ghe
canopy 1is increased tne angle Bﬁi approaches zero, see Figure 6.
This more effectively converts the aerodynamic cloth tangent force
at the main seam into an inflation assisting normal force.
Therefore, increasing the number of gores in a canopy improves the
critical inflation characteristics and the drag coefficient of the
parachute. Reducing the number of gores in a canopy has the
opposite effect.

Atmosphere flowing into the canopy mouth is reduced in
velocity and is converted into an entrapped air mass at an
elevated pressure. The ability of the canopy to entrap sufficient
air to completely fill the parachute is the most important element
in critical velocity theory. The intensity of the internal
pressure depends upon the rate of airflow through the canopy clcth
or the ribbon grid and the canopy surface area. Canopies continue
to inflate as long as the mass inflow exceeds the mass outflow.
Canopy inflation stops at any time that the mass outflow is equal
to the mass inflow. Fully inflated parachutes subjected to
increasing velocity deflate and collapse after the critical
velocity has been reached.
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(A)

(B)

FIGURE 4. EFFECT OF SUSPENSION LINE LENGTH ON THE AERODYNAMIC FORCE BALANCE
AT THE SKIRT HEM OF A FLAT TYPE OF PARACHUTE
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-

Fac = INFLATING CANOPY AERODYNAMIC
FORCE AT THE CANOPY HEM

FrL = COLLAPSING SUSPENSION LINE
FORCE AT THE CANOPY HEM

>

FIGURE 5. CANOPY SKIRT HEM GEOMETRY AND FORCE DISTRIBUTION OF FLAT
PARACHUTES IN FULL STEADY-STATE INFLATION
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EFFECT OF PARACHUTE DIAMETER ON INFLATION INSTABILITY

Solid cloth parachutes usually use cloths of constant rates
of airflow per unit area, and geometrically porous parachutes
often use constant porosity over the entire canopy surface.
Because of this constancy we tend to envision the flow through the
canopy to be constant over the total area. Thus, we confuse total
flow rate with flow rate pgr unit area. The total CFM throygh the
gore is equal to P (CFM/FT”) times the area of the gore (FT“), but
the flow distribution varies. As the radius of a flat circular
parachute proceeds from the center the surface area varies as the
square of the radius.

Figure 7 illustrates the distribution of the canopy area
and rate of airflow along the radius of a 28 FT, D_, flat circular
canopy. The canopy is divided into concentric rings of one foot
width. Each ring's area was normalized by ratioing it to the area
of the first ring.

_Ar-Agy
a AR=1
2
_nR-n(R-1)
at 71’(1)2
Ra =2R-1

A canopy with a constant cloth flow rate per unit area or
geometric porosity has a varying flow rate along the radius due to
the increase in area. The canopy airflow in CFM is a minimum in
the canopy vent area and a maximum at the canopy skirt hem. As an
example, the area of the ring Eetween the R=13 FT and R=14 FT
radii is equal to the 84.82 FT“ area of an R=5.20 FT disc.
Critical parachutes partially inflate because the high flow rate
per unit of cloth area in the crown area of the canopy lacks
sufficient area to produce an outflow that exceeds the inflow.
Canopy inflation continues until the outflow is equal to the
inflow. At this point the canopy ceases to convert the velocity
head of the flow to a pressure head which can proceed to the
canopy skirt hem, and the component of the canopy aerodynamic
inflating force, F,., is in equilibrium with the collapsing
component of the sﬁgpension line force, FRL’ at the particular
intermediate suspension line angle, B .

11
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A solution to critical inflation is to use more than one canopy
cloth where the rates of flow per unit area decrease as the skirt
hem is approached. This approach may also be applied to the
porosity distribution of geometrically porous parachutes.

The inflation stability of a given parachute with a
constant rate of canopy airflow per unit area depends upon the
canopy diameter. As the diameter of the canopy (D_=2R_) increases
by dRo the surface area and canopy mouth area each incPease.

Aso =7R}

Awo = ﬂR%o

From Table 1 for a 30-gore flat circular parachute.

3§=o.668;N=o.az7;§=o.ez14;%—=o.7soe

D, E

With reference to Figure 8.

Ao _ Rmo \(1_ N/a-b/a ¥
2a a b’/a

ol

=J1_ 0.827-0.6214 2
0.7806

X

0 =0.965

a

- Do
=0.668 =

)

R, =0.965x0.668R,

Ry =0.664R,,

13
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The ratio of surface area to mouth area is:

Aso __ 7R3
Auwo  (0.644R, )’

ﬁ‘-’-:a.u
MO

and the ratio of mouth area to surface area is:

Amo
—==0.415
Aso
If the inflated shapes of parachutes of similar proportions
(D_/L_, number of gores, type) are taken to be essentially
cogstgnt with size, the rate of increase in the AS /AMO ratio must
be the same for an increase in canopy diameter of 8Ro‘

Rate of change of surface area:

dAso = Z“ROdRO

Rate of change of mouth area:

dAMO = 277Rmo dRmo
Rimo =0.644R,
dR,,, =0.644dR,

Rate of change of surface area to mouth area ratio

dAso _ 27R,dR,
dAyo  27(0.644R,)0.664dR,)

dAgso __ 1
dAyo 0.6642

dAgo _2.41
1

16
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The implication of this is,that as the parachute diameter
is made larger, there are 2.41 FT" of outflog area generated at
the flow sensitive canopy hem for each 1 FT™ of inflow area
generated. For a given rate of canopy airflow, there is a limit
to the diameter of the parachute to maintain inflation stability.
The ASO/AMO value may vary for different types of parachutes.

EFFECTIVE MOUTH AREA

Equation (1), Reference 2, expresses the inflation distance
for solid cloth parachutes in terms of altitude and the system
steady-state parameters imposed by the initial system design
requirements.

LAY, CpS,
C1aw | W | Ayo-Asok(Cpp/2)” (1)
pgCpS, € -1

vStO

The significance of the various terms is discussed in Reference 2.
The most important term relevant to critical velocity is the
concept of "effective mouth area,” (AME).

Aue = Ao — Asok(C,p /2)"

As the rate of airflow per unit area determined by k, the air
density, the pressure coefficient and the exponent 1/2 is
increased the system has an effectively smaller inflow area.

Since this affects the inflation reference time and distance
exponentially, it is not necessary for the effective mouth area to
reach zero before the parachute will fail to fully inflate. The
exponential effect can extend the parachute inflation reference
time and distance to a point where the canopy does not fully
inflate during the system flight time. An observer on the ground
would see an incomplete inflation. Equation (2) has the effective
mouth area effect for a general value of "n".

2n

t)°

ch ty (-— C n \ 6 V

' pp © _t_ S
f"“’*mVsJTf—f"'"“so“(T) L) Y @
° Y to) ™\,

17
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DETERMINATION OF CRITICAL VELOCITY

The basic parachute inflation mass flow equation is:

mp =p%—¥=m inflow —m outflow
. dy
mP=P?R=PVAM—pPAS

If at any time during the inflation process, the inflow is equal
to the outflow the inflation process ceases.

mp =pVAM - pPAS = 0 (3)

where M' was shown in Reference 2 to be

n

k(Cppvz / 2)
\Y

(4)

When the ratio of the instantaneous mouth area, AM' to the
instantaneous inflated surface area, A., 1s equal to the mass flow
rate ratio a critical inflation condi%ion exists and V=Vcr.

Au_ k(CopVZ /2)°

v V07 @ 7 (5)
AS Vcr
n
%M: kggﬂ) vz
s
Wwhen n=0.5, M' is independent of velocity
A 1

Ver = (-—_‘_—M——F) 20t (6)

Ak(Cop/2)

18
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The critical velocity of imporous parachutes (k=0) is
infinite and the canopy always inflates. However, the exponent
"n" is a second cloth flow parameter that affects critical
velocity. Measured values of "n" range between 0.53 and 0.771.
For a value of 1/2 the exponent in Equation (6) becomes infinite.
So there are really two cloth airflow properties that affect the
critical velocity of parachutes. It should be noted that if a
value of "n" less than 0.5 exists, the exponent of Equation (6)
becomes negative. This has the effect of inverting Equation (6)
and producing effects which are contrary to observed effects such
as imporous parachutes never inflate.

Equation (4) illustrates how the exponent "n," the constant "k,"
the test velocity and the air density all contribute to the cloth
permeability and the mass flow rate per unit area ratio.

When the test velocity is multiplied by a factor of two, the rate
of canopy inflow is doubled. The rate of canopy outflow would be
raised to the fourth power if it were not regulated by "n." Table
2 illustrates the contribution to outflow regulation by the cloth
characteristic "n"as velocity is increased.

An examination of Table 2 discloses the following:

1. When n=0.5, the ratio of outflow to inflow per unit
area is not affected by velocity. The outflow to inflow ratio per
unit area is constant.

2. As n approaches unity, the rate of outflow per unit
area exceeds the rate of inflow per unit area.

3. As n approaches unity, the rate of canopy outflow per
unit area accelerates.

4. As velocity increases, the effects noted in 2 and 3 are
amplified.

For cloths having an n value exceeding 0.5 the rate of
canopy outflow per unit area accelerates as n approaches 1, and
also as the velocity increases. Because of this, each parachute
has some "CRITICAL VELOCITY" where the outflow is equal to the
inflow. The designer must guarantee that the critical velocity of
the design is safely above the range of operational velocities in
order to produce a reliable design.

The increase in flow rate per unit area with velocity for
values of n>0.5 explains why a fully inflated parachute will
collapse when the critical velocity is reached. As the test
velocity is raised, the following continuously varying events are
in progress.

19
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1. The ratio of the rate of outflow per unit area to the
rate of inflow per unit area, M', is rising.

2. The higher rate of outflow coupled with the concentrated
outflow area at the hem, as in Figure 7, increases the
canopy outflow volume per unit of time.

3. The higher outflow volume reduces the canopy internal
pressure which also reduces the pressure differential
across the canopy cloth.

4. The reduced canopy cloth pressure differential lowers
the canopy inflation force, FAC' at the canopy hem.

5. The parachute drag force has been rising which causes
the canopy collapsing component of the suspension line
force, FRL' at the hem to increase.

6. At the critical velocity the inflation force, F cr
becomes less than the collapsing force, F,,, ané the
canopy outflow volume also exceeds the ingkow volume.
Both of these conditions contribute to canopy collapse.

7. The canopy continues to collapse until the higher flow
rate per unit area passing through the reduced canopy
inflated area can produce a new canopy inflating
aerodynamic force, FA , Wwhich is in equilibrium with the
new collapsing force gomponent, FR , of the reduced
suspension line force at a pseudo Bem where the inflated
and uninflated canopy areas meet. The suspension line
force has been reduced do to the smaller canopy inflated
diameter and the canopy collapsing component is further
reduced by a smaller suspension line angle, § .

Fully inflated parachutes possess a zone ahead of the skirt
hem where the local static pressure is higher than free stream
static pressure. This static pressure zone decays as the distance
ahead of the canopy skirt hem increases. Figure 9 presents a
static pressure profile measured along the centerline of a Cross-
type parachute during a subsonic wind tunnel test. Figure 9A is a
photograph of the Cross parachute under test. Figure 10 presents
the effects of canopy cloths with different rates of airflow on
the drag coefficients of geometrically similar 41 percent scale
models of the U.S. Navy MK 38 MOD 0 Cross parachute. The 3-momme
silk cloth canopy partially inflated to the point where the
lowered canopy pressure differential, due to the rate of airflow,
acting on the canopy surface area balanced the radial component,
FRL' of the suspension line force.

The flow rate contribution of the air density of Equation
(4) is also regulated by the exponent "n". Table 3 illustrates
the reduction in cloth flow rate as "n" approaches one for
selected altitudes from sea level to 100,000 feet.

21




NAVSWC TR 91-178

1.0

O WITHOUT PARACHUTE

< WITH THE PARACHUTE OF FIGURE 9A.

@—Pnessuns TAP NO.

@

S @ o %
D°
-
of
2 o
N ®
8= @®° _—LOCATION OF THE PLANE OF THE
Wz o SUSPENSION LINE-CANOPY ASSEM-
§ - @ o BLY JOINTS
w 2+ 10) ©
g o
TOP OF CANOPY
.y o~ |
0.0 19 O O O—© Uﬁ % T
o END OF STADIA ROD
-2
-4 1 | i | l |
16 24 32 40 a8 56 64

DISTANCE ALONG STADIA ROD (INCHES)
TEST VELOCITY 200 MPH

FIGURE 9. MEASURED STATIC PRESSURE DISTRIBUTION ALONG THE STADIA ROD SHOWING
ELEVATED LOCAL STATIC PRESSURES AHEAD OF THE CANOPY SKIRT HEM.

22




NAVSWC TR 91-178

Tl Tpee—— -

-

RINGSLOT PARACHUTE WITH EQuALLY ELONGATED Suspension Do = 371 INCH DIA
LINES AT 200 MPH

24 GORE
16% POROSITY

L = 40 INCH DIA
W/L = 0.264

FIGURE 9a. PHOTOGRAPH OF THE CROSS PARACHUTE OF FIGURE 9 IN THE WIND TUNNEL
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EFFECT OF ALTITUDE ON PARACHUTE INFLATION TIME, STABILITY
AND DRAG COEFFICIENT

The mass flow rate ratio, M', provides explanations as to why
solid cloth parachutes inflate faster as the deployment altitude
is raised, otherwise stable parachutes are caused to oscillate and
' also the shape of the basic dynamic drag area inflation signature.

It is well known from field tests that solid cloth parachutes
inflate faster as the altitude rises and the air becomes less
dense. This apparent paradox can be explained by the examination
of the mass flow ratio. The explanation is simplified by using an
infinite mass deployment to eliminate transient velocity profiles
that vary with altitude during inflation.

If a given solid cloth parachute system were tested under
infinite mass conditions in a variable density wind tunnel, the
canopy inflates in a predictable time at sea level density. The
mass flow ratio is in accordance with Equation (4a) and

K{CoarpoV212)"(p1p,)"

M= Y

(4a)

P/po=1. When the wind tunnel density is reduced to p/p,=0.5
(approximately 22,000 feet) and the parachute retested at constant
velocity, the mouth inflow rate per unit area and the velocity
contribution to the canopy outflow rate per unit area is the same
as at sea level deployment. However, the cloth pressure
differential is reduced due to the lower air density which results
in a reduced rate of canopy outflow as illustrated in Figure (11).
Under a condition of constant canopy mouth inflow rate and reduced
canopy outflow rate the parachute must inflate more rapidly.

In a constant dynamic pressure scenario test condition the
cloth rate of airflow per unit area remains the same at all
altitudes, but to achieve constant dynamic pressure the test
velocity must be raised. So under constant dynamic pressure
conditions, the canopy rate of outflow per unit area is the same
at all altitudes and the rate of mouth inflow per unit area
increases, which once again results in a reduced inflation time.

Some analysts suggest that the canopy cloth is less porous as
the altitude is increased. 1t appears that the rate of airflow of
the canopy cloth is the same at all altitudes for a given AP and
the change in performance is due to the pressure differential
variations altering the cloth rate of airflow per unit area. A
reduction in pressure differential and cloth rate of airflow
(inflation time reduction, opening shock increased, larger canopy
oscillations) may give the parachute system the attributes of a
lower permeability cloth near sea level.

26




3000

2000 |—— MIL-C-7020, TYPE Il

NOMINAL POROSITY (CFM/FT2)

)i/ MiL-C-8021,
1000 R
//l =t ! T T
- MIL-C-8021, TYPE Il i .
800 - ; T —
600 » -\ _—
o
l / e -
400 / ~
[F A
" ?
/ ]
200 S
5 e EXPERIMENTAL DATA
| : H 1
O CALCULATED DATA
| | A
100 — S
80 P® = 87.6255(AP)0.63246 _
¥ —_— ]
60 P® = 50.6813(AP)057403 — — —]
|
40 P® = 26.4705(AP)0.60492 |
| : |
20
10
0 50 100 150 200 250 300
DIFFERENTIAL PRESSURE (LB/FT2)
NOMINAL POROSITY OF PARACHUTE MATERIAL VERSUS DIFFERENTIAL PRESSURE

FIGURE 11.

NAVSWC TR 91-178

\M

D,

® |
o S - ;__4__

TYPE Wﬁ @ |
N 1

27




NAVSWC TR 91-178

During 1low altitude finite mass deployments the inflating
parachute system has substantial velocity reduction while in the
inflation process. The inflation velocity profile at say 22,000
FT is greater than the sea level inflation velocity profile for
constant velocity or constant dynamic pressure deployment
scenarios do to the decrease in the air density. Equations (1),
(7), and (8) were developed in Reference 2. Equation (1) shows
that the inflation distance of a solid cloth parachute depends
upon the deployment altitude, cloth rate of airflow, system mass,
and the parachute steady-state geometry.

pg¥o CDSO (1 )
2W / 2)1/2
14w Avo - Asok(Cop
*° " pgCpS, L°

-1

The inflation distance and altitude determine the Ballistic
Mass Ratio scale parameter, M.

M= W 7
pgvstoCDSo

and the Ballistic Mass Ratio determines the velocity profile
during inflation.

\) 1
VST Iy @
S {4—|—
(i)

All of these effects result in faster opening of the parachute.
So the apparent paradox of the decrease in solid cloth parachute
inflation time as the air density is reduced is not a paradox at
all. It is as it should be! The reduction of cloth outflow
versus altitude is shown in Figures (12) and (13).

Parachutes with low values of canopy cloth permeability are
known to oscillate. As the canopy cloth permeability is raised,
the oscillations decrease. Cross parachutes with a W/L of 0.264
oscillat, violently in wind tunnels when the cloth permeability is
8 CFM/FT” at 1/2 inch of water pressure. The same canopy geometry
with MIL-C-7020 canopy cloth has minimal oscillations in the wind
tunnel. Cross parachutes with a W/L of 0.264, MIL-C-7020 canopy
cloth, and "L" diameters in the range 60 to 75 feet oscillate
noticeably when deployed above 200,000 feet.
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At these altitudes the low air density has degraded the flow
rate through the canopy cloth and just as the wind tunnel tests
demonstrated low cloth rate of airflow correlates with more
oscillation.

Figure 10 Cross parachute drag coefficient versus canopy
cloth rate of airflow shows a decrease in drag coefficient as
canopy permeability increases. The permeabilities noted are the
values measured at 1/2 inch of water pressure. Some of the
implications of the drag coefficient data are:

a. At a constant altitude there may be a decrease in drag
coefficient with increased test velocity. Depending on
the cloth, the effect may be negligible.

b. As the test altitude rises, in a constant velocity
scenario, the cloth permeability decreases do to reduced
density and drag coefficients tend to be increased.

EFFECT OF MASS FLOW RATIO ON THE PARACHUTE DYNAMIC DRAG AREA
SIGNATURE

The recorded infinite mass inflation signatures of solid
cloth parachutes show that the inflation process begins slowly
until the canopy reaches an inflation time ratio of approximately
t/t_=1/2. As inflation continues the rate of inflation increases
witl time. The mass flow rate ratio, M', is also part of the
mechanics of the inflation process. Equation (9) and Table 2 have
demonstrated how the ratio of the rate of outflow per unit area to
rate of inflow per unit area increases as the velocity is raised.
An inflating parachute is slowing down the payload with the
following continuously varying sequence of events:

1, In the initial phase of inflation the canopy inlet area
is small and the volume of air collected is small.

2. Due to the small parachute drag area the inflation
process, up to approximately t/t_=1/2 is essentially at
constant velocity and M' is esseﬂtially constant.

3. After t/t_=1/2, the canopy begins to develop a drag area
that is effective in reducing the trajectory velocity.

4. Just as increasing the wind tunnel test velocity raised
the cloth outflow per unit area to inflow per unit area
ratio, the reduction of trajectory velocity lowers the
ratio of outflow per unit area to inflow per unit area
and the canopy retains more of the inflow volume.
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As the canopy retains more of the inflow volume the rate
of inflation increases and the larger parachute further
retards the payload.

A continuous inflation cycle of slow down reduces the
rate of outflow per unit area, retains more of the
inflow through the increasing mouth area, and increases
the rate of inflation. Slow down has been generated
that seems to explain the deployment signature of solid
cloth parachutes. For finite mass and infinite mass
drag area-deployment time signatures to be the same,
this effect must be small compared to the inflation
process dynamics. In Table 1 of Reference 3 the
unfolding phase of inflation velocity profile is given
by Equation (8) for 7=0 and j=6.

Vs 1, 1 (1Y (8)
i (i)

Substitution of the velocity expression into the mass flow
rate ratio Equation (9)

<]

7 =K(Coanp/ 2)" vt ©)
2n-1

P_KCoap/ 2) Vszn (10)

7 -

)|
P_(P (10a)
Y

T

The particular mass flow rate ratio is the infinite mass
flow rate ratio divided by a reduction factor represented by the
denominator of Equation (10a) which depends upon the mode of

infinite mass, intermediate mass, or finite mass. The

percent reduction in the mass flow rate ratio is given by the
difference between the infinite mass operation and the particular
operational ballistic mass ratio.

(%)Reduction=<_\%)< _%) Hee .
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For infinite mass deployments, M=o , and the mass flow rate ratio
is constant throughout the inflation. A value of M=10, for solid
cloth parachutes, is a nearly constant velocity deployment. Table
4 summarizes the variation of the mass flow rate ratios for
several ballistic mass ratio applications.

Table 4 shows that the reduction in the mass flow rate ratio
is not significant except in the later stages of very finite mass
deployments. Therefore, this condition does not significantly
vary the drag area ratio-inflation time ratio signature.

EXAMPLE 1 A parachute is fully inflated in a wind tunnel. As the
wind tunnel velocity is increased, the parachute suddenly
collapses. Explain what has happened.

If the wind tunnel is maintained at the critical velocity,
and the air density is reduced, what effects are expected?

When the parachute is fully inflated at a wind tunnel
velocity below the critical velocity, explain the effects that are
expected as the Do diameter is allowed to increase?

Discussion: The events which occur during the collapse of a
critical parachute are controlled by the generation and
distribution of the parachute aerodynamic forces and canopy rate
of airflow. Currently, four forces have been identified as
contributing to the total critical condition. Three of these
forces regulate the upper critical velocity of the canopy
collapse. After collapse, an additional fourth force is generated
which delays reinflation until the lower critical velccily is
achieved. The four forces are:

1. Parachute drag force, Fp.
2. Radial component of the suspension line force, F,..
This force, perpendicular to the parachute centeg&ine at
the canopy skirt hem-suspension line junction, is a
result of the suspension line cone angle and tends to
collapse the canopy.

3. Radial component of the canopy aerodynamic inflation
force, FA . This force develops from the canopy
pressure Sifferential acting on the canopy cloth and
tends to inflate the canopy. The pressure differential
is dependent on the quantity of air permitted to pass
through the canopy surface. For a given constant canopy
cloth k and n, this varies with velocity and altitude.

32




NAVSWC TR 91-178

£061°0 = "W ‘NOILVHIAO SSVIN 31INIJ HO4 HING ONILIWI.

€15 | t8vo [ 060z | 1620 | 9ve | s960 | ce0 | 9660 | 000 | 01 0t
90¢ | v690 | 899 | ec60 | 8L | zes0 | 800 | ess0 | 000 | 01 80
058 | 5160 | 0oL | o660 | 110 | 6660 | Lo0 | ee60 | 000 | o1 90
o1'9 | ve60 | 900 | es60 | 000 | oL | oo |ooot | 000 | o1 o
000 | 000t | 000 | 000t | 000 | ot | 000 |ooor | 000 | o1 z0
000 | 000t | 000 000t | 000 [ o1 | oo0 |ooor | ooo | o1 0
% % % % % n
oLy
Al A ALl A ALl A AL A AL A |uw
d d | d d | 4 d | 4 d | d d |MOMSSVW
10°0 = o 1'0= W L=W oL=W =W OlLVH SSYW
JILSITIVE
2690= u

‘ALNHIVHVd HL107D GINOS LVT3 V 40 NOILVYTINI 40 3SVYHd ONIGTI0INN 3HL
ONIYNG OI1VH 31VH MOTd SSVYIA 3HL 40 NOLLONA3Y 3HL NO OLLVH SSYIN JILSITTVE 40 S103443 '+ 318V

33




NAVSWC TR 91-178

4. Parachute squid force, Fao. After a critical canopy has

collapsed, the collapsed shape deflects the airflow
symmetrically around the canopy in a manner different
from the fully inflated state. This additional
symmetrical inward force tends to hold the canopy in the
collapsed state and stabilizes the configuration.

a) Collapse at the critical velocity:

(1) When the critical parachute is
already inflated below the critical velocity, the
volume of flow into the canopy through the mouth is
equal to the volume of outflow through the canopy
surface. The canopy cloth pressure differential, at
this velocity, provides an inflation force, F cr at the
canopy hem that balances the collapsing radiaé
component, FRL' of the parachute suspension line force,
Figure 4.

(2) As the wind tunnel velocity is
increased the ratio of the rate of outflow through the
cloth per unit area to the rate of inflow through the
mouth per unit area, M', continuously increases (see
Table 2) and the outflow through the canopy skirt area
increases due to the distribution of the cloth area in
the gore, Figure 7.

(3) The increased rate of canopy
airflow causes a reduction in the canopy cloth pressure
differential. This produces an effect similar to the
geometrically porous canopies of Figure 14 where
increasing canopy porosity for constant suspension line
length results in a smaller inflated canopy diameter,
caused by a lower internal pressure. If the canopy
surface area is used in the data reduction the lower
parachute aerodynamic drag force, due to the smaller
inflated diameter, manifests itself as a reduction in
the drag coefficient.
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Figure 15 illustrates the effect of canopy cloth rate of
airflow on the pressure distribution measured adjacent to the
centerline of the Cross parachute MK 38 MOD 0. All parachute
models were of common geometry with varied canopy cloth
permeabilities.

(4) As the critical velocity is approached, the ratio of
the rate of canopy outflow per unit area to canopy inflow per unit
area continuously increases. Also, the aerodynamic drag force and
the radial component of the suspension line force increases. At
the critical value, the inflating canopy pressure differential at
the hem has been lowered to a point where the canopy aerodynamic
force at the hem, F,,., is insufficient to resist the suspension
line collapsing forég, For, and the canopy collapses to a
condition where the inflga through the smaller canopy mouth is
equal to the outflow of the higher flow rate per unit area through
the reduced inflated canopy area.

b) Density reduction: The air density affects the rate
of canopy outflow per unit area in the mass flow rate ratio, M',
the canopy drag force and F,,. Density reduction results in a
corresponding reduction of é&nopy outflow rate per unit area and
tends to support canopy inflation, see Table 3. When the wind
tunnel density is sufficiently reduced the ratio of canopy outflow
rate to mouth inflow rate is less than one, and the canopy
reinflates since FRL has also been reduced.
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RUN PARACHUTE NO. PERMEABILITY
NO. NO. LINES CANOPY CLOTH (CFM/FT2)
X 5 2 16 MIL-C-7020, TYPE | 90
o 1 8 16 MIL-C-17208, TYPE I, CLASS B 325
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FIGURE 15. EFFECT OF CLOTH PERMEABILITY ON THE MEASURED STATIC PRESSURE
DISTRIBUTION ALONG THE STADIA ROD SHOWING ELEVATED LOCAL
STATIC PRESSURES AHEAD OF THE CANOPY SKIRT HEM.
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c) The reinflation velocity of a critical parachute, at
constant density, is less than the critical velocity at collapse.
In the collapsed squid like shape the redirected flow has modified
the canopy force distribution as shown in Figure 16. In uniform
fiow, the newly introduced "squid" force which rings the canopy
like a wide belt and acts inward toward the canopy centerline,
contributes to the stability of the squidded canopy. This also
applies to inflating noncritical canopies. Upon reduction of the
wind tunnel velocity, the ratio of canopy outflow to inflow begins
to decrease, the canopy drag force and the opposing collapsing
component, Fers of the suspension line force are also getting
smaller. At Ehe upper critical velocity the canopy rates of
airflow are marginal for reinflation. The canopy is kept from
fully inflating by the collapsing squid force, F.,. Further
velocity reduction lowers the mass flow rate rat§8, M', increases
the canopy internal pressure and reduces the collapsing force,
F,,. At the lower critical velocity conditions have modified to
tﬁ& point where the internal pressure front can override the
reduced collapsing force, FSQ' and the canopy reinflates.

d) Increase of D_ diameter: In the case of the
variation of the D diametgr, it has been shown that the canopy
outflow surface ar8a increases by 2.41 square feet for each square
foot of increase of mouth inflow area derived from an increase in
D_.. The increased canopy surface area is added at the skirt hem
wBere the outflow is a maximum. An increasing D_ eventually
results in a critical velocity condition. °

Wind tunnel tests are planned to investigate the effects of
the ratio of steady-state mouth area to surface area (A¥ /ASO) and
cloth rate of airflow on parachute critical velocity. gst
results are to be published in Reference 1.

The various standard cloths available for parachutes are
based on use properties such as strength, weight per square yarg,
elongation and air permeability. Cloth, ordered from and
conforming to a specification, has nominal limits on the
requirements. The rate of airflow, due to the nature of cloth
manufacture has the permeability usually specified in a range from
a lower limit to an upper limit. The upper limit may exceed the
lower limit by 50 to 80 percent. In addition, the rate of airflow
may vary randomly between limits within a roll of cloth or between
different rolls of cloth of the same lot. In addition, different
weavers may use different constructions to obtain the requirements
of the specification. This may vary the airflow performance.
Identical parachutes constructed at the same time, may have some
what different opening characteristics because of variations in
the manufactured cloth air permeability.
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CONCLUSIONS

1. Parachute inflation characteristics of solid flat types of
canopies are determined by the balance between the radial canopy
inflating aerodynamic force and the opposing deflating inward
radial suspension line force component at the canopy skirt hem.

2. The parachute aerodynamic force may be increased by:

a. Reducing the canopy rate of airflow. This raises the
canopy internal pressure which increases the canopy inflated
diameter.

b. Using longer suspension lines, which permit greater
inflation by reducing the collapsing radial force component of the
suspension line force, FRL'

c. Increasing the number of suspension lines in the
parachute. As the number of lines is raised the tangent force in
the canopy cloth at the main seam is used more efficiently and
improves the inflation characteristics of the canopy.

3. For impermeable cloths (k=0), the critical velocity is
infinite and the parachute always inflates.

4. For a value of n=0.5, the critical velocity is infinite.

5. As n approaches unity the ratio of the rate of cloth outflow
per unit area to canopy mouth inflow rate per unit area is raised.

6. Test velocity affects the ratio of cloth rate of outflow per
unit area to canopy mouth inflow rate per unit area. This is the
key to critical velocity. All other observations are effects
which modify the onset of critical velocity. The mass flow rate
ratio, M', theoretically describes these effects. Increasing the
test velocity raises the ratio of canopy outflow rate to inflow
rate.

7. Triangular solid cloth parachute gores increase in local area
from vent to canopy skirt hem. 2Even though the canopy cloth has a
uniform rate of airflow (CFM/FT”) the local canopy rate of airflow
(CFM) is minimum through the cloth in the vent area and a maximum
through the cloth in the skirt hem area. The total rate of
airflow is PxSo (CFM).

8. An increase 12 a solid cloth flat parachute's diameter
generateszz.41 FT™ of additional outflow area at the skirt hem for
each 1 FT™ of generated mouth inflow area. The additional area
occurs at the canopy skirt hem where the flow rate is a maximum
and most sensitive.

9. The effective canopy mouth area is reduced as the rate of
airflow increases through the cloth or grid.
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10. The canopy internal static pressure is reduced as the canopy
rate of outflow is raised. The zone of higher than ambient static
pressures extends ahead of the canopy skirt hem and diminishes as
the distance ahead of the skirt hem increases.

11. As velocity increases, the parachute aerodynamic drag force
increases. The collapsing component of the drag force, F,,, in
the suspension line is also increasing while the opposing
inflationary force, F c’ is decreasing due to the increase in the
canopy rate of outfloﬁ to rate of inflow ratio. At the critical
velocity, the rate of outflow exceeds the rate of inflow and the
force, F,,, causes the canopy to collapse until the inflow to
outflow g%lance is re-established by the reduction of available
outflow cloth area.

12. Once a parachute has squidded, a new force is introduced into
the system. This squidding force is developed from the new
deflected airflow pattern about the canopy which tends to
stabilize the squidded parachute.

13. In order to overcome the squidding force, the velocity must
be reduced below the squidding velocity.

14. The known phenomena that affect parachute criticality have
been theoretically separately demonstrated.

15. A unified system that would calculate the critical velocity
of a particular system from its design characteristics of
suspension line length, number of suspension lines and the canopy
type and rate of airflow has not been completed.
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NOMENCLATURE

2a - Maximum steady-state inflated parachute diameter of
gore mainseam, FT

AM - Instantaneous canopy mouth area, FT2

AME - Effective mouth area, FTZ

AMO - Steady-state inflated mouth area, FT2

As - Instantaneous presiurized canopy surface area during
inflation, AS=S FT

A - Canopy surface area, FT2

so

See So

- e _ 2
Ago= So= TD, /4

b - Minor axis of the steady-state inflated shape ellipse
bounded by the major axis (2a) and the vent of the
canopy, FT

b’ - Minor axis of the steady-state inflated shape ellipse

which includes the skirt hem of the canopy, FT

C - width of the unbillowed gore at the point of analysis

c' - Theoretical billowed gore circumference for minimum
cloth stress

CD - Parachute coefficient of drag

CDSO - Parachute steady-state drag area, FT2

Cpav - Parachute average pressure coefficient. The ratio of

the instantaneous or steady-state drag force to the
dynamic pressure times the parachute projected area.

dmo - Steady-state mouth diameter of the inflated canopy,
measured at the junction of the gore mainseam and the
suspension lines at the canopy skirt hem, FT

D - Nominal diameter of the aerodynamic decelerator =

,480/7 , FT

43




2f

NAVSWC TR 91-178
NOMENCLATURE (Cont.)

Inflated parachute chord line between two adjacent
load lines at the point Xy, Y, BN

Aerodynamic force generated by the parachute canopy at
the parachute skirt hem which tends to inflate the
canopy, LBS.

Suspension line radial force component at the parachute
skirt hem which tends to collapse the canopy, LBS.

Steady-state drag force that would be produced by a
fully open parachute at velocity Vs' LBS.

Side force which surrounds a squidded parachute and is
directed toward the canopy centerline. The force, which
is generated by redirection of the flow around the
canopy, stabilizes the squidded parachute and delays
canopy reinflation, LBS.

Parachute suspension-line force, LBS

Gravitational acceleration, FT/SEC2

Permeability constant of canopy cloth

Effective suspension line length. = Ls when the
lines are connected at a single p01n%

Length of a riser used to extend parachute suspension
lines

Suspension line length

In the development of the derived inflation time
equation mp refers to the mass of air flowing

Ballistic Mass Ratio - ratio of the mass of the retarded
hardware (including parachute) to a mass of atmosphere
contained in a right circular cylinder of length (V t ),
face area (C ), and density (P)
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NOMENCLATURE (Cont.)

Mass flow rate ratio - ratio of the rate of atmosphere
flowing through a unit of pressurized cloth area to the
atmosphere flowing through a unit inlet area at
arbitrary pressure. In some reports M' was termed the
mass flow ratio.

Permeability constant of canopy cloth

Canopy depth is the distance from the skirt hem of the
canopy to the vent of the canopy along the parachute
center line

Cloth permeability - rate of airflow throggh a cloth at
an arbitrary differential pressure CFM/FT

Military specifications specify a flow rate measured
under a pressure differential of 1/2 inch of water

Pressure differential acting on the inflated canopy
projected area, PSF

Dynamic pressure, LB/FT2

Steady-state dynamic pressure, LB/FT2

Billowed gore radius of curvature
Billowed gore radius of curvature for minimum stress
Canopy radius along the gore centerline

Ratio of the surface area of a ring of canopy cloth to
the surface area of the first ring

Mouth radius of the steady-state canopy=dmo/2
no/z

Instantaneous pressurized canopy surface area S=AS
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NOMENCLATURE (Cont.)

Instantaneous time, SEC

Reference time when the parachute has reached the design
drag area for the first time, SEC

Instantaneous system velocity, FT/SEC
Parachute critical velocity, FT/SEC

Volume of air which mgst be collected during the
inflation process, FT

Trajectory velocity at parachute line stretch, FT/SEC
System weight, LB

Number of gores in the parachute
GREEK SYMBOLS

Semi-vetex angle between the suspension lines and the
parachute center line and tangent to the transient
pressurized canopy area during canopy inflation or the
pseudo hem of a critically collapsed parachute ,
DEGREES.

Semi-vertex angle between the suspension lines and the
parachute center line and tangent to the mainseam canopy
hem, DEGREES

Central angle subtended by the billowed gore, DEGREES

Central angle subtended by the billowed gore for minimum
stress, DEGREES

Air density, SLUGS/FT3
Sea level air density, SLUGS/FT>

Angle between the load line normal force and the force
tangent to the canopy cloth at the load line, DEGREES
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GREEK SYMBOLS (Cont.)

Angle subtended byoa parachute gore in the plane of the
canopy mouth = 180~ /Z; also the unbillowed gore vertex
angle, DEGREES

Angle subtended by a parachute gore in the plane
perpendicular to the load line at the point Xyr Y

g n- DEGREES N’
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