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Goodness of Fit Tests for Spectral Distributions

T. W. Anderson

1. Introduction

A model used frequently for time series analysis is a stationary stochastic process.
If the process is Gaussian, it is completely determined by the mean of the process (a
location parameter), the variance of the process (a scale parameter), and the sequence
of autocorrelations (also known as lag correlations and as serial correlations). The
analysis of times series differs from many other statistical analyses because of the
possible dependence among observations; that dependence may be characterized by
the autocorrelation sequence. For any time series analysis it is essential to make
inferences about the autocorrelations. ,

The Fourier transform of the autocorrelation sequence provides an alternative
view of the pattern of dependence. For many purposes it may be more enlighten-
ing. In this paper we consider the standardized spectral distribution function as an
appropriate description.of the pattern of dependence and study problems of infer-
ence concerning it. “Standardized” means that the spectral distribution is defined in
terms of correlations, rather than covariances. The same information is contained in
the autocorrelation sequence, the standardized spectral density, and the standardized
spectral distribution, but the three forms differ in presentation.

The first inference problem treated here is the testing of a null hypothesis that
completely specifies the pattern of dependence; for example, the null hypothesis might
be that all of the autocorrelations are zero or equivalently that the spectral density is
constant. To test this hypothesis we compare the sample standardized spectral dis-
tribution with the process standardized spectral distribution by means of a goodness
of fit criterion, such as the Cramér-von Mises criterion and the Kolmogorov-Smirnov
criterion. Asymptotic and other approximate distributions are obtained. The mathe-

matics is similar to that of goodness of fit tests of probability distributions, but differs
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in an essential way. A goodness of fit test usually is consistent against all alternatives,
in this case against all correlation structures different from the null hypothesis.

The Kolmogorov-Smirnov criterion can be inverted to give a confidence region for
an unspecified standardized spectral distribution. Such a confidence region can be
used to infer the increase in the distribution over various intervals of frequency.

Grenander and Rosenblatt (1952),(1957) studied the asymptotic distribution of
the differences between the conventional sample spectral distribution function and
the conventional process spectral distribution function. They argued that as a pro-
cess it converges to Brownian motion with a transformed time parameter under the
condition that the eighth-order moments of the innovations in the stationary linear
process are finite. They proved that the Kolmogorov-Smirnov criterion for the con-
ventional spectral distribution converges in distribution to the supremum of the limit
process. This unstandardized spectral distribution, however, is not suited to questions
of dependence (that is, patterns of correlation), and the limiting distributions depend
on fourth-order cumulants. MacNeil (1971),(1975) considered further goodness of fit
tests based on these unstandardized spectral distributions.

Bartlett (1954),(1966) proposed the sample standardized spectral distribution for
testing hypotheses about correlations and asserted that the asymptotic distribution
would not depend on fourth-order cumulants, but he did not find any of these distri-
butions. Bartlett treated in more detail an analogue, namely, the integral (or sum)
of the sample spectral density (periodogram) divided by the hypothetical process
spectral density. This definition leads to the Brownian bridge, and the maximum of
the difference between this function of the frequency and the frequency (over [0, 7))
has the asymptotic distribution of the Kolmogorov-Smirnov statistic for goodness
of fit of probability distributions. Priestley (1981), Section 6.2.6, summarizes these
developments. See also Dzhaparidze and Osidze (1980).

Dahlhaus (1985a) showed that the difference between the sample and process
standardized spectral distributions multiplied by the square root of the sample size
converges weakly to a Gaussian process under several alternative conditions, but
always assuming finite eighth-order moments. He obtained the covariance function,

but expressed it differently from the form used in this paper. He showed that the




supremum of the absolute value of the limiting process does not have the Kolmogorov-
Smirnov distribution in general and expressed the probability in terms of a boundary
crossing probability involving the Brownian motion process. Dahlhaus (1988) gave a
brief formal treatment of the problem with estimated parameters.

The thrust of this paper is to develop the treatment of tests of goodness of fit
and confidence regions based on the knowledge of the limiting Gaussian distribution
to actual applications. This study includes methods of computing the goodness of fit
statistics, finding their limiting distributions, providing probability inequalities, and
developing asymptotic confidence regions. As noted above, in general the process
with transformed time parameter is different from the Brownian bridge. The limiting
distributions are valid under weak conditions, not requiring fourth-order moments or

stationarity.

2. The Empirical Process

Consider a stationary stochastic process {y;}, t=---,-1,0,1,---, with &y, =
0, autocovariance function

(2.1) 8y¢yt+h=a(h), h="',—1,0, 1,"',

and autocorrelation function

(2.2) pn = o(h)/e(0), h=.-.,-1,0,1,---

We define the normalized spectral density as

(2.3) ) = 2% Y phcosAh, —r<A<m
h=-00

Note that the coeflicients of the trigonometric functions are the autocorrelations, not

the autocovariances. The Fourier transform of the standardized spectral density is

(24) p9=/*f(A)COSA9dA1 g=--,-10,1,---.

Knowledge of the standardized spectral density is equivalent to knowledge of the
autocorrelations. The pattern of correlation can be described equivalently in terms

of the autocorrelations or the standardized spectral density.
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Since f(A) = f(—A), we define the standardized spectral distribution as

(2.5) F()) = 2 /A f(v) dv
_ (A 22Phsmkh)
h=1

Note that F(r) = 1; the standardized spectral distribution has the properties (non-

negative increments) of a probability distribution on [0, 7]. In this paper we shall be

concerned with inference about the standardized spectral density or distribution.
Inference is based on a sample y;,---,yr. We define the sample autocovariance

sequence
1T=h

(2.6) Ch=C_h = Z YtYeen,  h=0,1,---

TS
The sample autocovariance is a biased estimator of the process autocovariance (h >
0), but it is asymptotically unbiased. We define the sample autocorrelation sequence

(2.7) rh=ro=—2 h=0,1,-,
% .

the standardized sample spectral density (popularly mislabelled as the periodogram)

21“:0 Z yt

1 T-1
= — E ry cos Ak, -1t <A<,
27 h=lT-1)

2

(2.8) IT())

and the standardized sample spectral distribution function

N A
(2.9) Fr()) = 2 / Ir(v) dv
(A 2Tirhsmz\h)

We shall study inference based on \/T[FT(A) — F())], 0 £ X < =; the limiting

distribution will be obtained as T — oo.

Because patterns of dependence can be described in terms of the autocorrelations,
the standardized spectral density and distribution are relevant to questions of depen-

dence, rather than the usual functions defined in terms of autocovariances; the scale
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parameter of the process is irrelevant. An additional advantage of the standardiza-
tion is that the asymptotic distributicns are valid under much more general conditions
than without the standardization, but general conditions will be stated later in the
paper. Another advantage is that F(A) and FT(A) have properties of theoretical and
empirical probability distribution functions, respectively.
The asymptotic theory is developed for linear processes

0
(2.10) y:=Z%7.ut_., t=---,-1,0,1,---,

=

where Y272 <00, Eu;=0, €u?®=0?% and fuu, =0, t+#s. In particular, if

the u,’s are independently identically distributed,

(2.11) Y |l < oo,
=0
and -
(2.12) Y Vs < oo,
=0

then for any integer H
(2.13) [VT(ry — p1),---, VT (re — pr)] > N(O, W),

where the (g, k) element of W is

o0
(2.14) won = Z (PreaPrah + Pr—gPran — 208PrPrig — 20Pr Prih + 2/’9/’”’3)-

Note that
(2.15) o(h) = 0227,7,4,;., h=0,1,---,
=0
20 Yo Yo+h

2.16 = 'é————, h:O’l’-..’
(2.16) o= e
and

1 N
2.17 A= ———— e
(217) IO = =y |57

In a sense the 7’s are the Fourier coeflicients of the square root of f(A). [If y, is defined
by (2.10), {pa}, f(X), and F(X) are defined even if the process is not stationarv.]
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The limiting distribution (2.13) was given by Bartlett (1946) under the (implicit)
assumption that £uf < co. That the limiting distribution is valid under the assump-
tion of only £u? < oo was shown by Anderson (1959) for autoregressive processes
and by Anderson and Walker (1964) for y; = 352 _ Vsut—s and 122 _ |s]y? < oo.
Hannan and Heyde (1972) relaxed the condition on {v,} to Y22, /372 < co when the
sum was over 0,1,2, ... and the condition of iid u; to martingale differences. Anderson
(1991) has further relaxed the conditions on the martingle differences.

Consider

- 2 T sin Mk 2 X si
(218) VT(Er(3) = FO) = 2 % B /Ty — gy — 2 3 S0
x h=1 h L A=T h
We treat vT[Fr()) — F())] as a stochastic process on [0,7] As T — oo, this process
converges weakly to a Gaussian process with covariance function

(2.19) 47 {G[min(A,v)] - G\ F(v) = F(MG(v) + G(x)F(\)F(v)}
~ Glmin(A\,»)] G(\) G(v)
= 4’G‘”){ Gr) G G(r)

+ |53 - Fo| [82 - r]}.

where \
(2.20) G(\) =2 /o F(v) dv.
The proof of this statement is given in the appendix. The first term in (2.19) was
given by Grenander and Rosenblatt (1957). Durlauf (1989) derived tlc special case
of (2.19) when f(\) = 1/(2x). Dahlhaus (1985) gave the first form of the covariance
function.

We can simplify the covariance of function of the process by making the monotonic

transformation
(2.21)

GE:; 0<A<m,

to 0 < u < 1. The inverse transformation [defined properly if f(A) >0, 0 < A < 7]
is
(2.22) A=GYG(r)y), 0<u<l.




Now let

(2.23) Yr(u) = VT (Fr{G™[G(r)ul} - F{G'[G(r)u]}).
The covariance function of the limiting distribution of Y7(u) is
(2.24) 47 G(r){min(u, v) — uv + q(u)q(v)},

where

(2.25) q(u) = u — F{G7'[G(r)u]}.

Note that ¢(0) = g(1) = 0. It is of interest that
(2.26) q(u) =0, 0<u<l,

is equivalent to

(2.27) % —F(\) = 2/: [g((:)) - f(v)] dv=0, 0<X<1,

which in turn is equivalent to

(2.28) f(v) [é% - 1] =0 a.e
In particular, g(u) = 0 for
(2.29) flv) = 2% or pr=py=---=0.

Durlauf (1989) has studied tests of lack of correlation.
Let B(u) be the Brownian bridge; that is, £B(u) = 0,

(2.30) EB(u)B(v) = min(u,v) — uv,

B(u) is Gaussian, and sample paths are continuous with probability 1. Then

1
2,/7G(r)

where X has the standard normal distribution N(0,1), and the covariance matrix of
B(u) + q(u)X is
(2.32) k(u,v) = min(u,v) — uv + g(u)q(v).

(2.31) Yr(u)SB(u) + q(u) X,
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This covariance function is larger than the covariance function of B(u), min(u, v)—uv,

in the Loewner sense; that is,
1 11
(2.33) /0 /o k(u,v)l(u)l(v) du dv > /o /o [min(u, v) — uv}l(u)l(v) du dv
for any I(-) for which the integrals are defined. Thus
(2.34) Pr{B(u) + Xq(u) € C} < Pr{B(u) € C}

for any convex symmetric C [Anderson (1955)].

3. Test of a Specific Hypothesis

3.1. Test Criteria

Consider testing the null hypothesis

(3.1) H: f(A) = fol ),

where fo()) is completely specified. Among the criteria available to test this hypoth-

esis are the Cramér-von Mises criterion

1 1o _ T LI 2 .,
(42 gram b = s [T1F() — RO AN
the Kolmogorov-Smirnov criterion
1 vT .
”.3 ———— sup |Yr(u)| = sup ——=——=|Fr(}r) - Fo())|,
(".3) ST o, )l = s el () — R
and the Anderson-Darling statistic
1 1 .
(3.4) 4xG’(r),/o Yr(u)y(u)dy,

where 1(u) = 1/[u(1 — u)]. If the null hypothesis is fo(A) = 1/(27) , that is, com-
plete lack of correlation, the asymptotic tests are exactly those of goodness of fit of
probability distributions. See, for example, Shorack and Wellner (1986) for » review
of such tests.




To carry out a test procedure, we would like to kaow the limiting distribution of
the criterion under the null hypothesis. This is the distribution of the functional when
the limiting distribution of Yr(u) is Gaussian with covariance function (2.23). Under
the null hypothesis g(u) is specified. The justification is the continuous mapping
theorem [Theorem 5.1, Billingsley (1968), for example].

3.2. The Cramér-von Mises Criterion

The Brownian bridge has the covariance functior

— 1

(3.5) min(y,v) — uv = ; x;fj(u)f;(v)
where
(36) fi(u) = V2sin jxu

and \; = (7). These eigenvalues and eigenfunctions satisfy the integral equation

(3.7) Flu) = A /o ' (min(uv) — uv]f(v)dv

with boundary conditions f(0) = f(1) = 0. The eigenfunctions are normalized by
fo f3(u)du = 1; they are orthogonal in the sense that [y fi(u)f;(u)du = 0, # j. The
process has the representation.

4 = 1
(3.8) B(u) = P> ﬁXf,(u),

where X, X3, - are independent N(0,1) variables. The integral can be represented

as
(3.9) [)l B*(u)du = /01 i; VITX, +(u) \/lx_ X; fi(u)du
-




The characteristic function of (3.9) is

1

0 ; -7
(3.10) g Tm Bl < H(l—%)
j=1 5]

sin 2it) T
V2t )

The function D(A) = [I32,(1 — A/};) = sin v/A/V/X is known as the Fredholm deter-
minant of the integral equation (3.7).
Let

(3.11) o = /‘ a() f5(w)du

G [GO .
G(r)/ [ ][G(w -F “)]f (A)d

for g(u) square-integrable. Then

(3.12) alw) = - aifi(w)
The process B(u) + Xq(u) has the representation
. = [ x,
(3.13) B(u) + Xq(u) = z_: (VA_— + a,-X) fi(u),

and the Cramér-von Mises criterion has the representation

(3.14) S= /ol[B(u) + Xq(u)Pdu = /01 I;f: (% + a,-X) f,(u)} du

=]
o0

- ;(—%m,x)?

o

- v

=1
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where Y; = X;/V/\; + a; X. The (infinite) covariance matrix of Y; is
[ 1 2 ]
3 ta a1a; a3
1 2
o T B w0 203

3.15
(3.13) azm azay 3 + @’

b P

The statistic (3.14) can be approximated by a finite sum

N
(3.16) Sv=3Y Y2

i=1
The difference between (3.14) and (3.16) bas expectation

(3.17) £ i Y} = )of (}17+a?).

j=N+1 j=N+1

The expectation can be made arbitrarily small by taking N sufficiently large. Hence,
as N — oo, the distribution of Sy converges to the distribution of S and the charac-
teristic function of Sy approaches the characteristic function of S.

Let Yy be the N-vector with Y; as the j — th component. The covariance matrix
of Yn is

(3.18) EYNY) = An + analy,

where Ay is the diagonal matrix with 1/); as the j — th diagonal element and ay as
the vector with a; as the j — th component. Then the characteristic function of Sy

is

(3.19) £ = |Iy = 2it(An + analy)| "}
N
= JIQ - 2ite;n) 7},
=1

where ¢;n is the j — th characteristic root of ANy + anyaly, that is, the j — th zero of

11




1 0

—an An — ¢In + analy

(3.20) |AN + aNasv - ¢Ini

/
1 ay

—an AN —¢In

= |An — ¢IN[{1 + ey (An — ¢IN)'an}

N o2
= [Av—dIn|{1+ > }
J=1 X; - ¢
for ¢ #£1/X;,7 =1,---, N. We shall write
(3.21) Dn(v) = |In —v(AN + anay)]
N v N a;?
i=1 ' J=1 A v
ﬁ(l ”) 1 u’i o’ i 2
= - = - -v)Y a;‘y.
=1 Ai j=1 ’\J -V i=1 !

The first term in Dy(v) is

(3.22) ﬁ (1 - i) —1I (l - )\L,)

=1

as N — oo. The second term is

(3.23) Do M P DRI S
3.23 1—-v —v)y a; —1-v —— —v) o
j=1 Aj—v j=1 ? i=1 Aj —v i=1 ’
since
—~ 2 1,
(3.24) Eaj =/0 g (u)du.

12




Hence, D} (v) converges to

(3.25) D) =1 (1-5) {1 _23 Ajaz' — v ia,ﬁ} .

i=1 ' j=1 i=1

The characteristic function of S is 1/1/D*(2it).

Alternatively consider the covariance function

(3.26) k(u,v) = min(u,v) — uv + g(u)q(v).
If g(u) is continuous, k(u,v) is continuous and has the representation

(3.27) (0) = 3 S-g5(u)gs o),

=172

where v; and g;(v) satisfy the integral equation

1
(3.28) g(v) =v /o k(u, v)g(v)dv.
Since k(0,0) = k(1,1) = 0, the functions g;(-) should satisfy the boundary conditions

(3.29) 9(0) =g(1) =0.

If (3.28) is differentiated twice with respect to u and q(u) is twice differentiable, we
obtain

(3.30) 9"(u) + vg(u) = vCq"(u),

where .

(3.31) C= /o q(u)g(u)du.

J. B. Keller has pointed out that the solution of (3.30) satisfying (3.29) and de-
pending on v is for v # %2, = 1,2,---,

CVS/Z

ey {sin Vv(u—1) /ou sin /viq(t)dt
+ sinvu /“1 sin /¥(t — l)q(t)dt} + vCq(u).

(3.32) g(u;v) = -

13




When we multiply (3.32) by g(u), integrate from 0 to 1, and use (3.31), we obtain

_ 2 1 p1 ) 1 2
(3.33) C=Cv /O /o o{u, t; v)q(u)q(t)du dt + Cv /0 *(u) du,
where

(3.34) c(u,t;v) = sinvvusinVo(t-1), u<t,

\/ﬂsm\/_

T Vvsinv
It follows from (3.33) that if C # 0 v must satisfy

———sinV¥(u - 1)sin/vt, u>t.

(3.35) 0=1-+" [ ' / " e(uyt; v)q(u)q(t)dvdt — v / ' P (u)du.

I C =0, then v = x%;2 for some j: The function ¢(u, t; v) is the resolvent or resolving
kernel of the kernel min(u,t) — ut; that is, it satisfies

(3.36) c(u,v;v) = min(u,v) — uv + VLI ¢(u, t; v)[min(t, v) — tv]dt.

See Goursat (1964), for example.
Integration shows that

(3.37) [ [ datnnanded = =, i<
=0, t#j.
Hence, the resolvent has the representation
(3.38) cla,64) = 3 5 FHOA0)
j=1
and
(3.39) / / o, t;v)q(s)q(t)ds dt = 2—1-
J—l

Thus the right-hand side of (3.25) is the right-hand side of (3.35). Hence the charac-
teristic function of S is 1/,/D*(2it), where D*(v) is given by (3.25) or by

(3.40) D*(v) = su\x/_\/_ {1 —-v / / c(u, t; v)q(u)q(t)dudt — u/l qz(u)du}.

14




Let the zeros of D*(v) be v;,5 =1,2,--+;if a; # 0,7 = 1,2,-- -, these zeros are
distinct. (They may be distinct even though this condition is not satisfied.) Then for
v = v; there is a solution g;(u) satisfying (3.28), the boundary conditions (3.29), and
J3 *(u) = 1. The process has the representation

(3.41) B(u) + Xq(u) = i% 03(u),

where Z,,Z,,--- are independent N(0,1) variables, and the integral has the repre-

sentation . o |
(3.42) /o (B(w) + Xq(w) du = 3 ~2}.
=172

When the explicit form (3.40) of the Fredholm determinant is intractable or cannot -
be inverted, it can be approximated by D} (v) given by (3.21). For this we turn to
the numerical evaluation of the characteristic roots of Ay + anajy, which we call
&N 2 2N 2 -+ 2 $nN. These approximate the reciprocals of the first N eigenvalues
of k(u,v). They are the zeros of (3.20). A value 1/}; is such a zero if and only if
aj = 0. Let 1/A] > 1/A; > .-+ > 1/Ay. be the values of 1/}; that correspond to
a; # 0. Then (3.20) is

(3.43) |An — ¢In|¥(4),
where |
N* a-_?
(3.44) P(e)=1+) _,_—’:;
i=1 A;

and aj is the a) corresponding to 1/);. The first derivative of y(4)is

N* 0-2

(3.45) V(@)=Y 42— >0.

j=1 (‘Xf = ¢)
As ¢ — 1/X] from above, ¥(¢) — —oo, and as ¢ — 1/A] from below, y(¢) — oo.
Since () is continuous except at ¢ = 1/}], j = 1,---, N*, there is a root in the
interval (1/X},1/X5_,), j = 1,---, N*,with

N* N
(3.46) =Y oi'=) a}.
)=1 J=1

15




The N zeros of (3.43) can now be numbered so that 1/); < ¢; < 1/X;-,.
Bunch, Nielsen, and Sorenson (1978) have given a algorithm for solving the equa-
tion ¢(4) = 0. To find the root ¢ in the interval (1/A3,1/A}_,) for j > 1 define

(3.47) Y_(¢) = 5~ o , —1: <¢< —/—,
el A A1
it P9 1 1

3.48 o , T <¢< .

( ) ¢+(¢) kgl ;' _ ¢ A ¢ AJ_I

Then _(¢) < 0 and ,(¢) > 0. Let ¢o (1/A] < do < 1/X}_;) be an initial value of
¢. For i =1,2,--- define p;, ¢;, 75, 3; to satisfy

P _ . T R .
GO Ty Tk e Velde-n)
(3.50) (—;m ¢-(¢(.—1)), (1/’\. ¢ 1 )2 ¢':;.(¢(-'-1)).
Next define ¢;) as the solution to
s B S
(3.51) P 14r+ 7% ¢

that lies in the interval (1/A],1/X]_;). If ¢o € (1/1], 4],) then
(3'52) ¢(i) < ¢(i+l) < ¢;7 1= L2,.--,

and ¢;) converges quadratically to ¢}, the zero of ¥(4) that lies in the interval
(/35 1/05y).
The cumulants of S are given by

(353) ; -l(]—l)'z(l)j.

=1 Vi

They can also be calculated from the kernel (3.26). Let ky(s,t) = k(s,t) and
kis1(s,t) = fo k;(s,u)k(u,t)du. Then

X 1
(3.54) Ky =215 — 1)1 /0 k;(s, s)ds

16




See Anderson d Darling (1952). The expression (3.53) is obtained from the expansion
of the logarithm of the characteristic function of S in powers of it; the coefficient of
(it)’/5! is the j — th cumulant. kappatly, it is the coefficient of +7 /! in the expansion
of —1log D*(v), given by (3.25) or (3.40). We have [from (3.25)]

(3.55) - %log D*(v) = H (l - —) - —log (1 - ui pyp )

1—1 I=1

The second term on the right-hand side of (3.55) is

(3.56) —-log [1-./531“2 ‘:—llog ll—uiafi( )]

5=1 2; j=1  i=0

The first two cumulants are

00 o0

(3.57) kK=ES= ZAI + Zaf == +/ ¢*(u)du,

j=1 72 i=1
(3.58) Ky = VarS

= E;HZ,\ +2(2a)

=17 Jj=1 Jj=1

= % + 2/0 /o [min(u, v) — uv]q(u)q(v)dudv + 2 (/01 qz(u)du)2 )

3.3. Calculation of the Cramér-von Mises criterion

If we omit (2vT/7) =2+ pa sin Ah/h, the Cramér-von Mises criterion (3.2) can
be written as T/[2xG?(x)] times

s [[[2E 2 ph)] = = p,e**']gau

h=1 =00

1 T-1 (rg - Py)(rh - Ph) o N
== Y A(r-s)
x4 o gh i, PrPs / sin Ag sin \h e dX.

The integral on the right-hand side of (3.53) is
1 iAg _ =idgy( ik _ _—idhy iA(r—s)
(3.60) " /:(e e ") (e e '"")e d\

17




= __i_./’r [eik(g+h+r—a) _ eiA(g-h+r—a) _ eiA(—g+h+r—n) + eiA(—g—lH—r—a)] d.
-

Since f*, e**d\ = 0 unless k = 0, we find that (3.53) is

1 T-1 r — ro— 0

___5 2 ( g pg)( h ph) Z (prPr+g-h"’PrPr+g+h—p,-p,-_y_,-, +prpr-g+h)

47 el gh =
gh=

(3.61)

1 T-1 _ — oo

= o Z (rq PQ)E‘ h = Ph) Z (Prtg = Prg)(Preh — Pr—t).
T g,h=1 9 r=-—00

Thus the Cramér-von Mises statistic can be written

2
T & |52 (rg = p5)(preg — pr-g)
3.62 —— £ -3 g et
(3.62) o ., | X g
In the special case of fo(\) = 1/(2x) ( that is py = po = --- = 0) the Cramér-von
Mises criterion (except in the part of the sum not depending in the sample) is
T-1 .2

(3.63) 1o

L =1 g

In this case any finite set of v/T'r, has a limiting normal distribution in which the
variables are independent standard normal variables. On this basis the limiting distri-
bution of (3.63) is consistent with the limiting distribution of the Cramér-von Mises
statistic as indicated in Section 3.2. It may be of interest to compare (3.63) with the
Box-Pierce statistic T Tjc, r? in some fixed K < T.

3.4. The Kolmogorov-Smirnov Criterion

To test Hy : F(A) = fo()) on a large-sample basis we want to find a constant c
such that

(3.64) sup |Yr(u)] < c} —l-a

r ——————————
{2 7 G(7) oSust
for a specified @ (0 < a < 1) as T — oo. We want to evaluate

(3.65) Pr {liugl | B(u) + go(u)X] < c} .
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First we derive some inequalities. Let

(3.66) d= sup |go(u)|-
0<u<l1
Then
(3.67) sup |B(u) + go(u)X| < sup |B(u)| + |X|d.
0<s<1 0<u<1
Thus

(3.68) Pr{ sup |B(u)|+|X|d < c} < Pr{ sup |B(u) + Xgo(u)| < c}
0<u<l 0<x<!
< Pr{ sup |B(u)] < c} .
0<u<t
The right-hand inequality follows from (2.34).
The distribution of supg¢,¢; |B(u)] is

(3.69) Pr{ sup |B(u)| < C} =1 +2§(—1)’e'2j2°2.

0<u<1 =

Let V = supy¢,<, |B(u)| and Z = d|X|. The density of Z is [2/(dv/2x)]e==/4) - >
0. Forw>0

(3.70) Pr{ sup |B(u)|+d|X| < w} =Pr{V+Z<w}
0<ug1

= [Prvsw-zz=3 d;ﬂe—x’/m’)dz
2

_ Y 2 /ad) v 4
d\/21r-/o ¢ d”/o N

w
= 20(3)-1
e—2j’w’/(l+4d’ 32)

e : w —4dj*w
1Y (1Y e | —s | - O [ ———= | | .
ML g (d\/—I T ad5t ) (\/_1 T )}
Values of this distribution are given in Table 1. If d is small, (3.70) is an approximation
to (3.65).

If (3.65) is 1 — @ and a is small, then a is approximately 2 times

f:(_l)je-zj’(w-z)’—z’/(zar*)dz
i=1

(3.71) Pr{ sup [B(u) + Xqo(u)] > c} .
0<u<1
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Suppose 0 < go(u) < d. Then for X <0

(3.72) sup B(u) < sup [B(u) + Xgo(u)] £ sup B(u)+ Xd,
0<ug1 0<u<1 0<u<1

and for X <0

(3.73) sup B(u) + Xd < sup [B(u) + X¢(u)] < sup B(u).
0<u<1 0<u<l ' 0<u<1

Then 1 ]

(3.74) —Pr{ sup B(u) > c} + -Pr{ sup B(u) - |X|d > c}

2 |ogu 2 logui

< Pr {o;gglw(u) + Xao(w) 2 }

< lPr{ sup B(u) + |X|d > c} + lPr{ sup B(u) 2 c;p.
2 |ogu<1 2

0<u<l
Let Y = supg¢ <y B(u) and Z = d|X]. Since Pr{Y <y} =1- e y >0, the
density of Y is 4ye™2". Thus for w > 0
(3.75) Pr{ sup B(u)+d|X| < w}
0<ull
= Pr{Y +Z < w}

_ _8 YUE a2 /(ad)
= iV /ow /o ye dy dz

_ 2 /"’ [l _ e-z(w—z)’] e 10 g,
0

dv2r
= 20 (2) -1- ___2___8-2«?/(4.{41) ) ( w ) - & ( —4dw )] .
d Vid +1 dvad® +1 Vad +1
Similarly
(3.76) Pr{ sup B(u)-d|X| < w}
0<u<1

20 (%) - 42 +1 e /U g (274%??) ’ w<0,

2 —2u? J{4d? 41 ~4dw
1—77,—4 —e /€ ) Q(yr +1)’ w > 0.

Values of (3.75) and (3.76) are given in Tables 2 and 3, respectively.
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The extremes of go(u) can be found by setting to 0 the derivative

(3.77) ;:‘Io(“) = g—i% - o(/\)]
= 20y | 2855-1],

that is, at fo(A) =0 or -

(3.78) foX) = Gol) = 5= Py

‘We now consider the supremum of |go(u)| over 0 < u <1 and all fo(-); this is the
supremum of |[G()A)/G(x)] — F())|. Since G(A)/G(x) and F()) are monotonically
nondecreasing in [0, 7] with G(0)/G(x) = F(0) = 0 and G(7)/G(x) = F(x) =1,

(3.79) sup |g(u)| < L.
0<ug1, £()

We shall now find an f(-) such that the upper bound of 1 is approached. Consider

c A<y
3.80 N={" =
(380 ey { : e
for some ¢,d, and v(0 < » < 7). Thep

. " f(0)dx =1
(3.81) 2 [" 5
implies
1-~2vc
(3.82) d= =)’
Then as v — 7,
G(v) 2rc+ 2rc — 1 —4n’c

(3.83) G(1r) —F)— =2 1 —4dxc+4n2c2

= 2rc.
Hence as ¢ — 1/(27),

A)
(3.84) sup [G( F(/\)] -1
0<A<T
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The probability (3.65) is a boundary value problem for the process B(u)+ Xq(u).
It is
(3.85) Pr{—c < B(u)+ Xq(u) <¢, Yu, 0 <u<1}.

Note that the sample paths are continuous with probability 1. Let
t
= —— <t < .
(3.86) w(t) (1+t)B(1+t),0_t_oo

Then W(t) is the Wiener-Brownian motion process with EW () = 0 and EW (t)W(s) =
min(t, s); sample paths are continuous with probability 1. The probability (3.85) is
t

(3.87) Pr {—c(l +t) < W)+ X1+ t)g (i‘ﬁ) <l+8),V, 0<t< oo}.
Dahlhaus (1985) has also given this result.

Durbin (1985) has studied the first passage density of a continuous Gaussian
process to a general boundary. The probability (3.71) is then the integral of this
density from 0 to 1. An approximation to this probability is

11 —t+4'(t)g(t) =S /3k(t.0)] gy

7 h
V2r Jo k(t,t)
Where k(t,t) = t — t* + ¢?(t). In practice (3.88) could be evaluated by numerical

integration. Durbin also gives an exact expression as well as two other approximations

(3.88)

to the first passage density. As an example he applies his formulas to Pr{B(u) > c}
for several values of ¢. For ¢ yielding an exact probability of .1 this approximation
has an error of only .0021; for larger values of ¢ (smaller values of a) the error is

proportionally smaller.

4. Confidence Region for the Spectral Distribu-

tion Function

An asymptotic confidence region with confidence coefficient 1 —a for an unknown
spectral distribution consists of all monotonic functions F(-) [F(0) = 0, F(1) = 1]
such that
(4.1) VT|Br(0) - F())| <c  VAe[o,n],
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where c is chosen so that (3.59) is 1 — a and go(u) refers to the unknown distribution.
Since ¢ depends on go(u), we need a consistent estimator of go(u).

From the fact that vT[Fr()) — F())] has a limiting normal distribution it follows
that

(4.2) Fr(A) & F().

Let f()) be a consistent estimator of f()) in the sense that
(4.3) sup |fr(}) - (0| 50.
0<A<r

For such an estimator the class of admissible f(A) must be limited. Define

(4.4) Gry =2 " () dv,
(4.5) gr(u) = u - Fr{G7'(Gr(x)u]}.

Then gr(u) is a consistent estimator of go(u). If cr is the value of ¢ for which (3.59)
holds with go(u) replaced by §r(u), then cr 5 c.
The inequality (4.1) can be written

(4.6) Fr(\) - —= < FN) < Fr0) +—= VA e[o,7).

vT vT

Another problem of interest is testing that the spectral densities of two indepen-
dent processes are the same; the mull hypothesis is F3(A) = F3()). Suppose f'T,(A)

and I:"T,(z\) are the correspending two empirical processes. Under the null hypothesis.

/T,
'+ T,

(47 [Fr() = Fr()]
converges weakly to the Gaussian process with covariance function (2.19), where ['(})
and G()) refer to the common spectral distribution and the integral of e common
spectral density squared, respectively.

The Kolmogorov-Smirinov criterion

(4.8) sup |Fr,(A) — Fr,))]

<AL
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can be uses to test the null hypothesis. If fr,()) and fr;()) are consistent estimators

of the common spectral density [in the sense of (4.3)], then

(4.9 e ) + T )

can be used to estimate G()) and q(u).

5. Examples

5.1. Moving Average of Order 1
Let

(5.1) Yt = Uy + QU
where u, are iid N(0,0). Then

a 1 1
. — == g < < -
(5.2) m=P=1ro T3SPS3
1
(5.3) F(A) = —(142p cos)),
2x
(5.4) F\) = l‘/A(1+2 cosv) d
' Tzl g g
= l(A~+-2p sin A),
x
(5.5) G\ = / (1+4p cosv +4p? cos? v)dv

i

2—[ +4p sin A +2p°(\ + 3 sm2/\)]

= 2—[1+2p JA+4p sinA) 4 p? sm2A],

1+ 2p%
2r

(5.6) G(r) =

G(A) _ (14+2p")A +4p sin X + p? sin 2A
G(x) ~ x(1+2p%)

(5.7)
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The difference is

G

2psin A(1 — 2p? + pcos )
G(r) '

(5.8) e

~F()) =

This is nonnegative for 0 < p < % and 0 € A < 7 and nonpositive for —-15 <p<0.
The maximum of |g(u)| occurs at f(A) = G(x) (by setting the derivative of
[G(N)/G(7)} — F()) equal to 0), that is,

(5.9) 1+2p cosA=1+2p%

that is, cos A\g = p or Mg = cos™! p. Then

G(Xo) 1 (4p sindg +p? sin2) )
(5.10) Gr) ~ F(N) = - ( 142,72 —2p sin )
_ 2 cos Xo sin® g
T w(142 cos? o)’
The maximum of |g(u)| is at a zero of
d _sin 3 Xo(1 =6 cos® A\g — 4 cos* Ao)
A1 -
G0 [ °)] (1 +2 cos? \)?

The zeros of (5.11) are Ao = 0, 7, and

-3 13
(5.12) cos? \g = ——:ii,
or
(5.13) p2 = cos® Ao = .15138.
The extremum of (5.10) is
Vv 1514(.8486)%
(5.14) 2V.I514( 8486)% _ ) oq

x(1+2-.1514)
The value of .1483 is considerably less than 1.
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5.2. Autoregression of Order 1

Consider the process

(5.15) Ye = pYt-1 + Uy,

where the u,’s are uncorrelated with mean u, = 0 and variance £u? = g% The

conventional (unnormalized) spectral density is

a? o

5.16 — = .
(5-16) 21 |1 — per?  27(1 + p? — 2p cos \)

The variance of y, is \

2_ O
(5.17) gyg = 1— pz.
The normalized spectral density and its square are
1-p?
. A) =
(5-18) f) 27(1 + p? — 2p cos )
and
2 _ (1-— P2)2
(5.19) = 47%(1 + p? — 2p cos \)?
_ (=9
4x?|(1 - pe)?|?
(1-p?)?

4n? |1 - 2pe + pzeiz,\|2'
This is (1 — p?)?/(27) times the spectral density of z, satisfying
(5.20) Ty — 2pToy + PPTi_2 = vy,

where £v; = 0, £v? = 1,and Evv, =0, t # s. The variance of z, is (1+p%)/(1-p?)>.
Thus

(5.21) G(r) = 2 /o " £2(A) d

1 14p°
2r 1-p*
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The equation G(7) = f(X) is

1+0* 1-p?
(5:22) 1—p2 14p*—2pcosA
or
a-,%’
(523) 1 + p2 - 2p cos A= W
or 0
_ 4P
(5.24) cos Ag = T+
For example, cos \g = v/2/2 = .707 for p = v2—1 = .414, that is, \o = 7 [4;c08 Mg =0
for p = 0, that is, = Z;c08 X = 1 for p = 1, that is, A\ = 0. The normalized
spectral distribution of {y:} is
_ Q=) dA
(5'.25) FO) = 3 [) 14 p*—2p cosA
6W-7) . o Y+ 2y - 20, X
,,.‘/(1 + p?)? — (2p)? 1+p°—2p "2
= gt -1 [1+pta.n ]
The integral of the square of the density is
_a- d)
(526) GO = 21r2 (1 + p* —2p cos \)?
_(1=p%? sin A
- 272 (I—p’)2 14p2—2p cos A
1+ p? 2 l1+p, A ]
— 1t
MR Ty (1_,, 2
_ P sin 14 p? afl+p, A
T w2 14 p2—2p cos) 1r2(1—p’)ta'n l—ptan2
2p sin A 1+ p°
= A) + ———F(}).
=) V- Y
Then
G()) 2x(1 - p?) [ p sin )
. -F(A
(5:27) G(r) O = 1+p* 171+ p%—2p cos))
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2 1 A
TP tan"( +ptan—)]

(1 — p?) 1—p 073
x 1-p
20(1 — p?) sin A

x(1 + p?) "1+ p?—2p cos A
= li‘” sin Af()).

2

2

Note that g(u) > 0 for p > 0 and g(u) < 0for p < 0. For cos Ao = 325 (sin do = 55

G(Xo) _ 2(1=p%) 1-p" 147
(5.28) E;(Tr)--F(/\O) = 7‘.(12_*_,,2) (1402 (1-p?)?
= =
— w1+
= 1 cos Aq.
g

The difference (5.28) approaches 1/x = .3184 as A\ — 0 (that is, as p — 1) and
approaches —1/7 as A\g — = (that is, as p — —1). This is the maximum of |¢(u)|.
Note that .3184 is less than the maximum of 1 over processes but greater than the

maximum of .1486 for moving average processes of order 1.

5.3. Another Example

Suppose f(A) = (a +1)|A|*/(27**?), a > 0. Then

JoH
(5.29) F)=g, 0<A<m,

(5.30) GO = (2(2":1;1;” Mt o<,
(5.31) G(r) = %(2%%);—7‘_,

(5.32) u= %} = ::::1, 0<Xi<m,

)




(5.33) A=qut/@e+) g <u<,

(5.34) qu) = u-— ulo+1)/(2a+1)
= u(a+l)/(2a+l) (ua/(2a+1) _ 1) ’

d _ a+l —a/(2a41)
(5.35) duq(u) =1- a1 .
The maximum of |¢{u)] in [0,1] is at
af(2a+1) _ _ @
(5.36) u arl’

and the maximum is the absolute value of
(5:37) ( a )’—".ﬂ ( a )9-? 3 1\ 1 \'te
' 2a+1 2a +1 o\2+1L 2+1

= z7%(1 -=z),

where z = 2 + 1 (> 2). The derivative of (5.37) with respect to z is
(5.38) —z7%[(1 - z)logz +2—z],

which is positive for £ > 2. Thus (5.37) is an increasing function of z and a decreasing
function of a. As a — oo, the limit of (5.37) is -.25.

6. Conditions for Weak Convergence

Grenander and Rosenblatt (1953) showed that if v; = O(j=?) for some § >
3/2 and if the u,’s are independently identically distributed with £u, = 0, u? =

o2, Eul = x4y + 30*, and Eud < oo, then

(6.1) VT max fir(3) = HO)| > max U,
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where H()) = o(0)F()), Hr(\) = coFr(}), and U()) is a Gaussian process with
EU(X) = 0 and covariance function

(6.2) EU(N)U(v) = 4nG[min(A, v)] + %H(A)H(u).
A numuber of authors have shown that
(6.3) VT[Hr()) — HQ)] S U

under various alternative sets of conditions. Ibragimov and Tovstik (1964) demon-
strated the limiting covariance function (6.2) under the conditions "%

oo, u; independently identically distributed, and uf < oco. Shaman (1971) also
proved this result. See Dahlhaus (1985) for a review of the literature.

We can write

Hr()) H()

(6.4) Fr(\) = F()\) = o 2(0)
_ Hr()) = HO) = [co — o (0)]H(N)/o(0)
Co
_ H) - HQ) - [Hr(n) - HmIF()
Co

Ifco & o(0) as T — oo, then VT[Fr(A) — F())] converges weakly to Z(\) =
U(X) — U(x)f()), which is Gaussian with expected value 0 and covariance function

(6.5) £2(M)2(v) = E[UN) = U(m)F(A[U(X) = U(m)F(v)]
= 4n{Glmin(},v) - f(A)G(v) - G(A)F(v) + G(r)F(A)F(v)},
which is exactly (2.19).
Note that there is no term in (6.5) involving k4. This fact suggests that the

condition £u! < 0o may be unnecessary. Anderson (1991b) has shown that +/T[Fr —
F(N)] = Z()) if {y:} satisfies (2.10) with (2.12) holding,

(6.6) i Vil < oo,

and the {u,} being independently identically distributed with £u; = 0 and £u? = o2.
This result is generalized to the following theorem:
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Theorem. Suppose {y:} is defined by (2.10), where {7,} satisfies (2.12)

(6.7) 3 Vil < oo.

=0

Let F; be the o-algebra generated by - - -, us_1,us, and let I(A) = 1 if A occurs and

I(A) = 0 otherwise. Suppose {u,} satisfies

(6.8) E(ue|Fi-1) =0 aee,

(6.9) EWd|F) =0} ae,
1 .5

(6.10) TZU, =0’

t=1

where o is a constant,

(6.11) t=slu£>mf:[ufl(u;“ > a)|lFia] >0
as @ — 0o,
1T
(6.12) T Ea?ug_,ug_, B &0% rs=1,2---

t=1

where §,, =1 and 4, = 0,r # s,

’

(6.13) Eu} <K, t=---,-1,0,1,---,
(6.14) Sl < K, t#s,

and

(6.15) Eulue,uy_, =0, r#s, rs=12---.
Then

(6.16) VT[Fr(A) = F(\)] 3 Z()).

Acknowledgemets. The author is indebted to Gene Golub, Joseph Keller, and

David Siegmund for helpful assistance. E. S. Venkatraman carried out the computa-

tion for the tables.

31




eferences

Anderson, T. W. (1955). The integral of a symmetric unimodal function over a sym-
metric convex set and some probability inequalities, Proceedings of the American
Mathematical Society, 6 , 170-176.

Anderson, T. W. (1959). On asymptotic distributions of estimates of parameters of
stochastic difference equations, Annals of Mathematical Statistics, 30, 676-687.

Anderson, T. W. (1991a). The asympotic distribution of autocorrelation coefficients,
Technical Report No. 26, ARO Contract No. DAAL03-89-K-0033, Department
of Statistics, Stanford University, April 1991, Statistical Science: A Tribute to
G.S. Watson, in press.

Anderson, T. W. (1991b). The asymptotic distribution of the standardized spectral
distribution function, in preparation.

Anderson, T. W., and D. A. Darling (1952). Asymptotic theory of certain ‘goodness
of fit’ criteria based on stochastic processes, Annals of Mathematical Statistics,
23, 193-212. .

Anderson, T. W., and A. M. Walker (1964). On the asymptotic distribution of the
autocorrelations of a sample from a linear stochastic process, Annals of Mathe-
matical Statistics, 35, 1296-1303.

Bartlett, M. S. (1946). On the theoretical specification and sampling properties of
autocorrelated time series. Supplement, Journal of the Royal Statistical Society,
8, 27-41.

Bartlett, M. S. (1954). Problémes de ’analyse spectral des séries temporelles station-
naires, Publ. Inst. Statist. Univ. Paris, 111-3, 119-134.

Bartlett, M. S. (1966). An Introduction to Stochastic Processes with Special Reference
to Methods and Applications. Second Edition, University Press, Cambridge.
Billingsley, Patrick (1968). Convergence of Probability Measures, John Wiley & Sons,

Inc., New York.

Bunch, James R., Christopher P. Nielson, and Danny C. Soreison (1978). Rank-one
modification of symmetric eigenproblem. Numerische Mathematik, 31, 31-48.

Dahlhaus, Rainer (1985a). On the asymptotic distribution of Bartlett’s Up-statistic,
Journal of Time Series Analysis, 6, 213-227.

32




Dahlhaus, Rainer (1985b). Asymptotic normality of spectral estimates, Journal of
Multivariate Statistical Analysis, 16, 412-431.

Dahlhaus, Rainer (1988). Empirical spectral processes and their applications to time
series analysis, Stochastic Processes and their Applications, 30, 69-83.

Durbin, J. (1985). The first-passage density of a continuous Gaussian process to a
general boundary, Journal of Applied Probability,22, 99-122.

Durlanf, Steven N. (1990). Spectral based testing of the martingale hypothesis. Na-
tional Bureau of Economic Research, Stanford University.

Dzhaparidze, K. O., Gene H. Golub, and Charles F. Van Loan (1989) Matriz Com-
putations, second edition, The Johns Hopkins University Press, Baltimore.

Goursat, Edouard (1964). A Course in Mathematical Analysis, Volume III, Part Two,
Dover Publications, Inc., New York.

Grenander, Ulf, and Murray Rosenblatt (1952). On spectral analysis of stationary
time-series, Proceedings of the National Academy of Sciences, 38, 519-521.

Grenander, Ulf, and Murray Rosenblatt (1957). Statistical Analysis of Stationary
Time Series, Almqvist and Wiksell, Stockholm.

Hannan, E. J., and C. C. Heyde (1972). On limit theorems for quadratic functions
of discrete time series. Annals of Mathematical Statistics,43, 2058-2066

Ibragimov, 1. A., and T. H. Tovstik (1964). On estimation of the spectral function
of a certain class of stationary random sequences, Vestnik Leningrad University.
19, 42-57 (in Russian).

MacNeill, Ian B. (1971). Limit processes for co-spectral and quadrature spectral
distribution functions, Annals of Mathematical Statistics, 42, 81-96.

MacNeill, Ian B. (1975). Modified Cramér von Mises goodness-of-fit tests for spectral
distribution functions, Stochastics, 1, 353-360.

Priestley, M. B. (1981). Spectral Analysis and Time Series, Academic Press, New
York.

Shaman, Pa il (1971). Solutions to T. W. Anderson’s The Statistical Analysis of Time
Sertes, John Wiley & Sons, Inc., New York.

Shorack, Galen R., and Jon A. Wellner ( 1986). Empirical Processes with Applications
to Statistics, John Wiley and Sons. Inc., New York.

33




Smirnov, N. V. (1948). Table for estimating the goodness of fit of esmpirical distri-
butions, Annals of Mathematical Statistics, 19, 279-281. '

34




wi\d 0 0
0.4 0.0028 0
0.5 0.0361 0
0.6 0.1357 0
0.7 0.2888 0
0.8 0.4559 0
0.9 0.6073 0
1.0 0.7300 0
1.1 0.8223 0
1.2 0.8878 0
1.3 0.9319 0
1.4 0.9603 0
1.5 0.9778 0
1.6 0.9880 0
1.7 0.9938 0
1.8 0.9969 0
1.9 0.9985 0
2.0 0.9993 0
2.1 0.9997 1
2.2 0.9999 1
2.3 0.9999 1
2.4 1.0000 1
2.5 1.0000 1
3.0 1.0000 1
3.5 1.0000 1
4.0 1.0000 1
wi\d 0 0
0.001 0.3742 0
0.01 0.4410 0
0.05 0.5196 0
0.10 0.5712 0
0.25 0.6765 0
0.50 0.8276 0
0.75 1.0192 1
0.90 1.2238 1
0.95 1.3581 1
0.99 1.6276 1
0.999 1.9495 2

Table 1

Pr{ sup |B(u)] + d|X| £ w}

0<u<l

.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0

.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.0113 0.0059 0.0037 0.0025 0.0019 0.0015 0.0012 0.0010 0.0008
.0625 0.0359 0.0245 0.0184 0.0146 0.0121 0.0104 0.0090 0.0072
.1730 0.1088 0.0768 0.0588 0.0474 0.0396 0.0340 0.0298 0.0238
.3251 0.2249 0.1647 0.1281 0.1042 0.0876 0.0755 0.0663 0.0532
.4856 0.3662 0.2800 0.2224 0.1828 0.1547 0.133%9 0.1178 0.0950
.6294 0.5113 0.4083 0.3319 0.2770 0.2361 0.2053 0.1813 0.1467
.7455 0.6428 0.5358 0.4474 0.3783 0.3262 0.2851 0.2529 0.2056
.8325 0.7504 0.6514 0.5588 0.4806 0.4188 0.3691 0.3287 0.2689
.8943 0.8321 0.7487 0.6597 0.5776 0.5094 0.4526 0.4057 0.3340
.9359 0.8923 0.8264 0.7460 0.6654 0.5944 0.5328 0.4802 0.3994
.9626 0.9334 0.8839 0.8157 0.7423 0.6713 0.6075 0.5514 0.4627
.9790 0.9603 0.9245 0.8706 0.8053 0.7388 0.6754 0.6182 0.5233
.9887 0.9772 0.9530 0.9127 0.8567 0.7955 0.7347 0.6777 0.5804
.9941 0.9873 0.9717 0.9421 0.8970 0.8433 0.7875 0.7323 0.6329
.9971 0.9932 0.9835 0.9621 0.9275 0.8830 0.8319 0.7797 0.6824
.9986 0.9965 0.9906 0.9764 0.9512 0.9129 0.8680 0.8208 0.7260
.0000 0.9983 0.9948 0.9856 0.9672 0.9366 0.8983 0.8551 0.7667
.0000 1.0000 0.9973 0.9915 0.9777 0.9556 0.9237 0.8846 0.8015
.0000 1.0000 0.9986 0.9951 0.9858 0.9683 0.9431 0.9092 0.8338
.0000 1.0000 1.0000 0.9972 0.9911 0.9788 0.9572 0.9302 0.8614
.0000 1.0000 1.0000 0.9985 0.9945 0.9848 0.9697 0.9456 0.8853
.0000 1.0000 1.0000 1.0000 1.0000 0.9984 0.9947 0.9883 0.9606
.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9978 0.9882
.0000 1.0000 1.,0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9971

Values of w for which Pr{ sup |B(u)| + dIX| < w}
0<u<l

.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0

4171 0.4416 0.4616 0.4742 0.4829 0.4894 0.4946 0.4991 0.5067
4947 0.5238 0.5452 0.5620 0.5758 0.5874 0.5977 0.6069 0.6232
5834 0.6253 0.6572 0.6833 0.7058 0.7259 0.7439 0.7606 0.7908
6402 0.6906 0.7305 0.7642 0.7939 0.8206 0.8452 0.8682 0.9106
7527 0.8188 0.8756 0.9262 0.9727 1.0159 1.0569 1.0961 1.1706
9094 0.9921 1.0712 1.1465 1.2190 1.2894 1.3589 1.4265 1.5616
1045 1.1995 1.3015 1.4050 1.5122 1.6183 1.7265 1.8358 2.0583
3114 1.4158 1.5349 1.6657 1.8086 1.9552 2.1039 2.2603 2.5746
4470 1.5562 1.6871 1.8340 1.9936 2.1651 2.3488 2.5247 2.8967
7192 1.8385 1.9890 2.1696 2.3757 2.6007 2.8387 3.0469 3.5591
0443 2.1762 2.3516 2.5687 2.8192 3.0942 3.3866 3.6906 4.3193
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Tabie 2

Pr{ sup |B(u)l + 1d] X sw}

0<u<1

0.6

0.0769 0.0350 0.0198 0.0135 0.0103 0.0082
0.1647 0.0980 0.0613 0.0432 0.0331 0.0267
0.2739 0.1893 0.1299 0.0948 0.0737 0.0600
0.3935 0.2994 0.2217 0.1682 0.1331 0.1094
0.5132 0.4180 0.3291 0.2592 0.2094 0.1741
0.6247 0.5352 0.4428 0.3616 0.2985 0.2513
0.7220 0.6431 0.5541 0.4679 0.3949 0.3370
0.8021 0.7365 0.6563 0.5712 0.4928 0.4268
0.8647 0.8130 0.7446 0.6657 0.5868 0.5161
0.9111 0.8723 0.8172 0.7479 0.6729 0.6010
0.9439 0.9162 0.8738 0.8160 0.7482 0.6786
0.9660 0.9472 0.9161 0.8701 0.8115 0.7469
0.9802 0.9679 0.9462 0.9111 0.8627 0.8052
. . 0.9026 0.8533
0.9940 0.9895 0.9802 0.9622 0.9327 0.8919
0.9969 0.9943 0.9886 0.9765 0.9548 0.9220
0.9985 0.9971 0.9937 0.9858 0.9703 0.9449
0.9993 0.9985 0.9966 0.9917 0.9810 0.9619
0.9997 0.9993 0.9983 0.9953 0.9882 0.9742
0.9999 0.9997 0.9991 0.9974 0.9928 0.9828
0.9999 0.9999 0.9996 0.9986 0.9957 0.9888
1.0000 0.9999 0.9998 0.9993 0.9975 0.9929
1.0000 1.0000 0.9999 0.9996 0.9986 0.9955
1.0000 1.0000 1.0000 0.9998 0.9992 0.9973
1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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0.0000
0.0009
0.0069
0.0224
0.0505
0.0926
0.1483
0.2157
0.2919
0.3732
0.4561
0.5371
0.6134
0.6831
0.7450
0.7983
0.8433
0.8803
0.9101
0.9336
0.9517
0.9655
0.9758
0.9832
0.9886
0.9924
0.9992
0.9999
1.0000

o
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.6926
.7351
.7733
.8075
.83717
.8641
.8871
.9069
.9238
.9751
.9933
.9985




w\d O
-4.0 0.0000
-3.0 0.0000
-2.0 0.0000
-1.5 0.0000
-1.25 0.0000
-1.0 0.0000
-0.9 0.0000
-0.8 0.0000
-0.7 0.0000
-0.6 0.0000
-0.5 0.0000
-0.4 0.0000
-0.3 0.0000
-0.2 0.0000
-0.1 0.0000
0 0.0000
0.1 0.0198
0.2 0.0769
0.3 0.1647
0.4 0.2739
0.5 0.3935
0.6 0.5132
0.7 0.6247
0.8 0.7220
0.9 0.8021
1.0 0.8647
1.25 0.9561
1.5 0.9889
2.0 0.9997
2.5 1.0000

[=]
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Table 3

Pr{ sup |B(u)] — ] IX] Sw}
0<u<l

0.3

0.4

0.5

0.6

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0002
0.0007
0.0019
0.0048
0.0110
0.0235
0.0461
0.0840
0.1425
0.2243
0.3233
0.4309
0.5387
0.6397
0.7288
0.8034
0.8627
0.9077
0.9402
0.9829
0.9962
0.9999
1.0000

0.0000
0.0000
0.0000
0.0000
0.0001
0.0007
0.0015
0.0032
0.0063
0.0121
0.0219
0.0379
0.0627
0.0993
0.1506
0.2191
0.3053
0.4031
0.5048
0.6035
0.6936
0.7717
0.8360
0.8864
0.9242
0.9512
0.9863
0.9969
0.9999
1.0000

37

0.0000
0.0000
0.0000
0.0002
0.0010
0.0046
0.0080
0.0134
0.0219
0.0347
0.0533
0.0793
0.1146
0.1611
0.2201
0.2929
0.3787
0.4719
0.5661
0.6556
0.7359
0.8046
0.8604
0.9038
0.9361
0.9591
0.988¢
0.9975
0.9999
1.0000

0.0000
0.0000
0.0001
0.0013
0.0048
0.0149
0.0226
0.0334
0.0484
0.0685
0.0950
0.1290
0.1717
0.2240
0.2866
0.3598
0.4426
0.5300
0.6165
0.6974
0.7693
0.8300
0.8791
0.8170
0.9451
0.9649
0.0903
0.9979
0.9999
1.0000

o

HEHOOOO0OOOOOO0OOO0OO0OOOOOOO0O0OOO0O0OO0OO0O0OO0OO




MASTER COPY

KEER THIS COPY FOR REPRODUCTIN
REPORT DOCUMENTATION PAGE

PURPOSFES
form Approved \
OMB No. 0704-0188 !

1INenng 4ng mantaining the dats
“AIECUON OF INTITMetION, IACILaING

. #nd CCi .
TIONY 107 1POWKING tNy Durgen

o »no

2 DIC F@OO7 4G DUrQEN 107 TR} CCHECTION OF “ATOFMATION 14 ELTMATED 1O $.€/3QE * ~Ouf OB’ *SIDOFIE 'AC'LQING LNE LIS *OF rev-EwIng sASI7UCTIONS. MOFCAING E331ING GALS WOur(es ¢
G INe CONBCTION OF 1A1NIMINION  Send COMMENty
ugge 10 NVAVIAGION ™EBGAUETIE’S Servicey DiectIrate 10f INtOrmation Qoeretions ang AeDOMNs, 1213 i terson .
Qderi gPway Suile 1204 dringlon. /4 112024302 4na 10 the OMice A* Mansgement and Jud3e! PrDerwore Aeduction #roiect (07C4-0188). Washngton OC 20503

BrQING (R4 DUTSEN SITIMATE OF aNY OTREY MDECT OF *niy

1. AGENCY USE ONLY (Leave dionk)

2. REPORT DATE
October 1991

3. REPORT TYPE AND DATES COVERED
Technical Renort !

4. TITLE AND SUBTITLE

Goorness of Fit Tests for Spectral Distributioans

5. FUNDING NUMBERS y

DAALO3-89-K-0033

6. AUTHOR(S)

T. W, Anderson

Sequoia Hall

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Denartment of Statistics

Stanford Universityv
Stanford, CA 94305

8. PERFORMING ORGANIZATION
REPORT NUMBER

27

P. 0. Box 12211

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U. S. Army Research Office

Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

ARO &b 394.6-mA

11. SUPPLEMENTARY NOTES

osition, polic

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army

or decision, unless so designated by other docume
122. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 woras)
The spectral distribution function of a stationary stochastic process standardized

by dividing by the variance of the process is a linear f.inction of the autocorrelations.
The integral of the sample standardized spectral density (periodogram) is a similar
linear function of the autocorrelations. As the sample size increases, the difference
of these two functions multiplied by the square root of the sample size converges is
weakly to a Gaussian stochastic process with a continuous time parameter. A mono-
tonic transformation of this parameter yields a Brownian bridge plus an independent
random term. The distributions of functionals of this process are the limiting dis-
tributions of goodness of fit criteria that are used for testing hypothese about the
process autocorrelations. An application is to tests of independence (flat spectrum).
The characteristic function of the Cramér-von Miese statistic is obtained; inequalities
for the Kolmogorov-Smirnov criterion are given. Confidence regions for unspecified
process distributions are found.

S ——————
14. SURIECT TERMS

Goodness of fit tests, spectral distributions, Cramér-von Mises test,
Kolmogorov- Smirov test.

15. NUMBER OF PAGES

16. PRICE COOE

| B e T Y s
17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

UNCLASSIFIED

19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

OF ABSTRACT
UNCLASSIFIED UL

NSN 7540-01-280-5500

Stangarg Form 298 (Rev 2-39)
SrocrrOPS Dy ANSI St@ 139-18
298-102




