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Goodness of Fit Tests for Spectral Distributions

T. W. Anderson

1. Introduction

A model used frequently for time series analysis is a stationary stochastic process.

If the process is Gaussian, it is completely determined by the mean of the process (a

location parameter), the variance of the process (a scale parameter), and the sequence

of autocorrelations (also known as lag correlations and as serial correlations). The

analysis of times series differs from many other statistical analyses because of the

possible dependence among observations; that dependence may be characterized by

the autocorrelation sequence. For any time series analysis it is essential to make

inferences about the autocorrelations.

The Fourier transform of the autocorrelation sequence provides an alternative

view of the pattern of dependence. For many purposes it may be more enlighten-

ing. In this paper we consider the standardized spectral distribution function as an

appropriate description.of the pattern of dependence and study problems of infer-

ence concerning it. "Standardized" means that the spectral distribution is defined in _.g
0

terms of correlations, rather than covariances. The same information is contained in

the autocorrelation sequence, the standardized spectral density, and the standardized

spectral distribution, but the three forms differ in presentation.

The first inference problem treated here is the testing of a null hypothesis that

completely specifies the pattern of dependence; for example, the null hypothesis might i'r

be that all of the autocorrelations are zero or equivalently that the spectral density is

constant. To test this hypothesis we compare the sample standardized spectral dis- t j

tribution with the process standardized spectral distribution by means of a goodness -- i

of fit criterion, such as the Cranr-von Mises criterion and the Kolmogorov-Smirnov

criterion. Asymptotic and other approximate distributions are obtained. The mathe-

matics is similar to that of goodness of fit tests of probability distributions, but differs



in an essential way. A goodness of fit test usually is consistent against all alternatives,

in this case against all correlation structures different from the null hypothesis.

The Kolmogorov-Smirnov criterion can be inverted to give a confidence region for

an unspecified standardized spectral distribution. Such a confidence region can be

used to infer the increase in the distribution over various intervals of frequency.

Grenander and Rosenblatt (1952),(1957) studied the asymptotic distribution of

the differences between the conventional sample spectral distribution function and

the conventional process spectral distribution function. They argued that as a pro-

cess it converges to Brownian motion with a transformed time parameter under the

condition that the eighth-order moments of the innovations in the stationary linear

process are finite. They proved that the Kolmogorov-Smirnov criterion for the con-

ventional spectral distribution converges in distribution to the supremuni of the limit

process. This unstandardized spectral distribution, however, is not suited to questions

of dependence (that is, patterns of correlation), and the limiting distributions depend

on fourth-order cumulants. MacNeil (1971),(1975) considered further goodness of fit

tests based on these unstandardized spectral distributions.

Bartlett (1954),(1966) proposed the sample standardized spectral distribution for

testing hypotheses about correlations and asserted that the asymptotic distribution

would not depend on fourth-order cumulants, but he did not find any of these distri-

butions. Bartlett treated in more detail an analogue, namely, the integral (or sum)

of the sample spectral density (periodogram) divided by the hypothetical process

spectral density. This definition leads to the Brownian bridge, and thc maximum of

the difference between this function of the frequency and the frequency (over [0, 7r])

has the asymptotic distribution of the Kolmogorov-Smirnov statistic for goodness

of fit of probability distributions. Priestley (1981), Section 6.2.6, summarizes these

developments. See also Dzhaparidze and Osidze (1980).

Dahlhaus (1985a) showed that the difference between the sample and process

standardized spectral distributions multiplied by the square root of the sample size

converges weakly to a Gaussian process under several alternative conditions, but

always assuming finite eighth-order moments. He obtained the covariance function,

but expressed it differently from the form used in this paper. He showed that the

2



supremum of the absolute value of the limiting process does not have the Kolmogorov-
Smirnov distribution in general and expressed the probability in terms of a boundary

crossing probability involving the Brownian motion process. Dahlhaus (1988) gave a
brief formal treatment of the problem with estimated parameters.

The thrust of this paper is to develop the treatment of tests of goodness ot fit
and confidence regions based on the knowledge of the limiting Gaussian distribution
to actual applications. This study includes methods of computing the goodness of fit
statistics, finding their limiting distributions, providing probability inequalities, and

developing asymptotic confidence regions. As noted above, in general the process
with transformed time parameter is different from the Brownian bridge. The limiting

distributions are valid under weak conditions, not requiring fourth-order moments or

stationarity.

2. The Empirical Process

Consider a stationary stochastic process {yt}, t -- -1,0,1,---, with Eyt =

0, autocovariance function

(2.1) £ytyt+h-,=o(h), h = ,-1,0,1,...,

and autocorrelation function

(2.2) Ph = a(h)/(0), h = .-- ,-1,0,1,.

We define the normalized spectral density as
100o(2.3 E Ph cos Ah, -v < A < 7r.

r h=-oo

Note that the coefficients of the trigonometric functions are the autocorrelations, not

the autocovariances. The Fourier transform of the standardized spectral density is

(2.4) P= f (A)cosAgdA, g- -1,0,

Knowledge of the standardized spectral density is equivalent to knowledge of the

autocorrelations. The pattern of correlation can be described equivalently in terms

of the autocorrelations or the standardized spectral density.
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Since f(A) = f(-A), we define the standardized spectral distribution as

(2.5) F(A) = 2 f(v) dv

(A 2- Psin Ah)

Note that F(r) = 1; the standardized spectral distribution has the properties (non-

negative increments) of a probability distribution on [0, 7r]. In this paper we shall be
concerned with inference about the standardized spectral density or distribution.

Inference is based on a sample Y1, YT. We define the sample autocovariance

sequence

1 T-h(2.6) ch, = c-h = - E yjyt+jj, h=O,1..

1 t=l

The sample autocovariance is a biased estimator of the process autocovariance (h >

0), but it is asymptotically unbiased. We define the sample autocorrelation sequence
Ch

(2.7) rh = r-h = -, h = 0,1,--,
Co

the standardized sample spectral density (popularly mislabelled as the periodogram)

T 2

(2.8) IT(A) E e= t

1 T-1
- -_ hcos Ah, -7r < A<,

vh-(T-1)

and the standardized sample spectral distribution function

(2.9) PT(A) = 21 IT(v) dv
_--'
7 h=(A+2 Eirh sinAh).

We shall study inference based on vT[T(A) - F(A)], 0 < A < the limiting

distribution will be obtained as T -- oo.

Because patterns of dependence can be described in terms of the autocorrelations,

the standardized spectral density and distribution are relevant to questions of depen-

dence, rather than the usual functions defined in terms of autocovariances; the scale
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parameter of the process is irrelevant. An additional advantage of the standardiza-

tion is that the asymptotic distributions are valid under much more general conditions
than without the standardization, but general conditions wil be stated later in the
paper. Another advantage is that F(A) and PT(A) have properties of theoretical and

empirical probability distribution functions, respectively.

The asymptotic theory is developed for linear processes

00(2.10) lit = 1:7Ut-o, t =..--11,0,1.,

8=0

where E' 782 < 00, cut = 0, Eu2 = O 2 , and Eutu, = 0, t # s. In particular, if

the ut's are independently identically distributed,

00

(2.11) E 17.1 < 00,
8=0

and
(2.12) s 2 % < 00,

8=0

then for any integer H

(2.13) [V'r(r, - PI),.., VIT(rH - PH)] - N(0, W),

where the (g, h) element of W is
00

(2.14) wgh = (P,+gP,+h + Pr-gPr+h - 2PhPrPr+g - 2 pgPPr+h + 2pgPhP,).

Note that
00

(2.15) or(h) = a 2 E 77.+h, h=0,1,..,
S--

(2.16) Ph = 'a---I7t+h h=O, 1,.

and
1 00 iA82

(2.17) f(A) =2 e

In a sense the 7's are the Fourier coefficients of the square root of f(A). [If yt is defined
by (2.10), {p,}, f(A), and F(A) are defined even if the process is not stationary]
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The limiting distribution (2.13) was given by Bartlett (1946) under the (implicit)
assumption that Cut < o. That the limiting distribution is valid under the assump-

tion of only Cut < oo was shown by Anderson (1959) for autoregresive processes

and by Anderson and Walker (1964) for yt = _ 7yut-, and = Isiyv' < 0o.

Hannan and Heyde (1972) relaxed the condition on {t.} to E' vry,2 < oo when the
sum was over 0,1,2,... and the condition of iid ut to martingale differences. Anderson

(1991) has further relaxed the conditions on the martingle differences.

Consider

2T-sinAh 2 sinAh -
(2.18) V[PT(A) - F(A)] = vT(r - ph) - - x 1TPh.

We treat v[rPT(A) - F(A)] as a stochastic process on [0, 7r] As T --+ 00, this process

converges weakly to a Gaussian process with covariance function

(2.i9) 47r{G[min(A,v)l G()F(v) - F(A)G() + G()F(\)F(v)}

41G(r) G[min(A, v)] G(A) G(v)I (i G(w) G(r) G(ir)

+G(A) F(A)] F(v)>
G(7r) G(r) F )

where

(2.20) G(A) = 2 ]f (v) dv.

The proof of this statement is given in the appendix. The first term in (2.19) was

given by Grenander and Rosenblatt (1957). Durlauf (1989) derived the special case

of (2.19) when f(A) = 1/(27r). Dah haus (1985) gave the first form of the covariance

function.

We can simplify the covariance of function of the process by making the monotonic

transformation

(2.21) U = G(A) 0 < A <

to 0 < u < 1. The inverse transformation [defined properly if f(A) > 0, 0 < A < ir]

is

(2.22) A = G-[G(r)u], 0 < u < 1.
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Now let

(2.23) YT(u) = V (PT{G-[G(7r)u]} - F{G-[G(7r)u]}).

The covariance function of the limiting distribution of YT(u) is

(2.24) 4rG(7r){min(u, v) - uv + q(u)q(v)},

where

(2.25) q(u) = u - F{G-'[G(r)u]}.

Note that q(0) = q(1) = 0. It is of interest that

(2.26) q(u) - 0, 0 < u < 1

is equivalent to

(2.27) G(A) F(A)- 2  [r&- f(V) dv _, 0 <A < 1,

which in turn is equivalent to
f(v) 1

(2.28) f(v) (V) - 1 = 0 a. e.

In particular, q(u) - 0 for

(2.29) f(V) 1 or P= P2="= O.
27r

Durlauf (1989) has studied tests of lack of correlation.

Let B(u) be the Brownian bridge; that is, £B(u) = 0,

(2.30) £B(u)B(v) = min(u, v) - uv,

B(u) is Gaussian, and sample paths are continuous with probability 1. Then

(2.31) 1 r Yr(u)-B(u) + q(u)X,2V¢rG(7r)

where X has the standard normal distribution N(0, 1), and the covariance matrix of

B(u) + q(u)X is

(2.32) k(u, v) = min(u, v) - uv + q(u)q(v).
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This covariance function is larger than the covariance function of B(u), min(u, v)-uv,

in the Loewner sense; that is,

(2.33) jjk(u, v)l(u)l(v) du dv > I' j[min(u, v) - uv]l(u)1(v) du dv

for any 1(-) for which the integrals are defined. Thus

(2.34) Pr{B(u) + Yq(u) E C} _< Pr{B(u) E C}

for any convex symmetric C [Anderson (1955)].

3. Test of a Specific Hypothesis

3.1. Test Criteria

Consider testing the null hypothesis

(3.1) HU : f(A)= fO(\),

where fo(A) is completely specified. Among the criteria available to test this hypoth-

esis are the Cramr-von Mises criterion

(3.2) 41() 1' YT(u)du = T [P(A)- F(A)f2(A)dA,

the Kolmogorov-Smirnov criterion

1 V T
(7.3) Sup IYT(u)I=su IFT(A) -Fo(A)I,

2 irG(ir) O<U<1 O<i 2 iG(wr)

and the Anderson-Darling statistic

(3.4) 1 f Y 2(u)4O(u)du,

where Ob(u) = 1/[u(1 - u)]. If the null hypothesis is f0 (A) = 1/(2r) , that is, com-

plete lack of correlation, the asymptotic tests are exactly those of goodness of fit of

probability distributions. See, for example, Shorack and Wellner (1986) for - ,eview

of such tests.
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To carry out a test procedure, we would like to know the limiting distribution of

the criterion under the null hypothesis. This is the distribution of the functional when

the limiting distribution of YT(U) is Gaussian with covariance function (2.23). Under
the null hypothesis q(u) is specified. The justification is the continuous mapping

theorem [Theorem 5.1, Billingsley (1968), for example].

3.2. The Cram~r-von Mises Criterion

The Brownian bridge has the covariance function

(3.5) min(u, v) - uv E A(u)fj(v),

where

(3.6) fj(u) = vsinjiru

and Aj = (rj) 2. These eigenvalues and eigenfunctions satisfy the integral equation

(3.7) f(u) = A [min(uv) - uvf (v)dv

with boundary conditions f(0) = f(1) = 0. The eigenfunctions are normalized by

f0 f 2 (u)du = 1: they are orthogonal in tb, qense that fo f,(u)f,(u)du = 0, i # j. The

process has the representation.

(3.8) B(u) = 1
j=I1

where XI, X2 ,..- are independent N(0, 1) variables. The integral can be represented

as

(3.9) j B2(u)du -= 1 (u) Xf(u)du

= ~.~X2.
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The characteristic function of (3.9) is

(3.10) Cei X = 1 -, 2it

The function D(A) = rI. 1 (1 - A/A,) = sin VrX/v is known as the Fredholm deter-
minant of the integral equation (3.7).

Let

(3.11) ,, = jq(u)f,(u)du

2/ V 2 [. W G()G(A) F(A)1f2(A)
G(7r) J0 i[ -- ][ LG(r) I

for q(u) square-integrable. Then
00

(3.12) q(u) = a jfj(u).
j=1

The process B(u) + Xq(u) has the representation

(3.13) B(u) + Xq(u) - 2 xI + aix) fmu),
j=1 l

and the Crar&-von Mises criterion has the representation

(3.14) S = [B(u) + Xq(u)]2 du = j1 [ ( + aX fa(u) du

2

j=1 l

00

1=
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where Y = X,/vj + ajX. The (infinite) covariance matrix of Yj is

1+ Ql
2  a1+ 2 2 I OC3 ...

a22a1  +"Q22 a2 a3  •.

(3.15) 1
Q3Q 1  013C 2  T + C93  ..

The statistic (3.14) can be approximated by a finite sum

N
(3.16) SN = 1Y

2.

j=1

The difference between (3.14) and (3.16) has expectation

00 0

(3.17) C E y.2 = E 1+ a2.
j=N+l i=N+I A]

The expectation can be made arbitrarily small by taking N sufficiently large. Hence,

as N -, oo, the distribution of SN converges to the distribution of S and the charac-
teristic function of SN approaches the characteristic function of S.

Let YN be the N-vector with Y as the j - th component. The covariance matrix

of YN is

(3.18) E YNYk = AN + aNaN,

where AN is the diagonal matrix with 1/Aj as the j - th diagonal element and aN as

the vector with aj as the j - th component. Then the characteristic function of SN

is

(3.19) C e i YI 'YN = tIN - 2it(AN + aNa'N) - 2

N

= I (1 - 2it41N)I,

j=1

where OjN is the j - th characteristic root of AN + aNaN, that is, the j - th zero of
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(3.20) IAN + aNaN - INI =0
--aN AN - IN + fNa

-CN AN - IN

- IAN - INI{1 + a'(AN - IN)-caN}

= JAN, - OINI 1 + N CJ
.__g-)

for # 1/Ai,j = 1,...-,N. We shall write

(3.21) D (v) = lk,- v(AN + aNa,)j

- = ./I

N V +N Cf2 V a

II T -L -I

i=1 j

The first term in DN(v) is

( 3 .2 2 ) ( j1 - V ) - 1

i-=1 i----1

as N - oo. The second term is

N 2 N c 2 cc
(3.23) 1 - v 2  - Va 2:Q 1VFv

.j=1 T=] v ==1j=1 v j=1

since

(3.24) aj2 = q2 (u)du.
j=1
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Hence, D (v) converges to

(3.25) D*(v) (I - ,2 -. ,21A -v

The characteristic function of S is 1/F .

Alternatively consider the covariance function

(3.26) k(u, v) = min(u, v) - uv + q(u)q(v).

If q(u) is continuous, k(u, v) is continuous and has the representation

(3.27) k(u,v) = fg 9j(u)gj(v),
j=i Yi

where Pj and gi(v) satisfy the integral equation

(3.28) g(U) = V/f k(u,v)g(v)dv.

Since k(O, 0) = k(1, 1) = 0, the functions gj(.) should satisfy the boundary conditions

(3.29) g(0) = g(1) = 0.

If (3.28) is differentiated twice with respect to u and q(u) is twice differentiable, we

obtain

(3.30) g"(u) + vg(u) = vCq"(u),

where

(3.31) C = q(u)g(u)du.

J. B. Keller has pointed out that the solution of (3.30) satisfying (3.29) and de-

pending on v is for v # 7r2j 2,j = 1,2,..-,

(3.32) g(U;v)= - sin Vv(u - 1)I sin vr'-tq(t)dt
sin~ VJo(10

+ sin V/i'u] I sin v/'i(t - 1)q(t)dt} + vCq(u).
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When we multiply (3.32) by q(u), integrate from 0 to 1, and use (3.31), we obtain

(3.33) C=C C 2 f jfj c(u, t; v)q(u)q(t)du dt + CvjI q 2 (u) du,

where

(3.34) c(u,t;v) =sinvusinv/v(t- 1), u < t,

s sin -v(u - 1) sin Vvt, u > t.

It follows from (3.33) that if C 6 0 v must satisfy

(3.35) 0 1-V 2  1 c(u,t; v)q(u)q(t)dvdt - v1 q2 (u)du.

If C = 0, then v = rj 2 for some j: The function c(u, t; v) is the resolvent or resolving

kernel of the kernel min(u, t) - ut; that is, it satisfies

(3.36) c(u, v; v) = min(u, v) - uv + v c(u, t; v)[min(t, v) - tv]dt.

See Goursat (1964), for example.

Integration shows that
(3.37) j c(.s,t; v)f,(s)fj(t)ds dt -

= 0, i j.

Hence, the resolvent has the representation

(3.38) c(s,t; v) = A; _V-

and

(3.39) c(s, t; v)q(s)q(t)ds dt = A - .10,10 j=1u

Thus the right-hand side of (3.25) is the right-hand side of (3.35). Hence the charac-

teristic function of S is 1//D*(2it), where D-(v) is given by (3.25) or by

(3.40) D-(v) = sin 1 - V21 1  1 c(ut; v)q(u)q(t)dudt - vj q2(u)du}
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Let the zeros of D*(v) be vj,j = 1,2,-..; ifaj # 0,j = 1,2,..., these zeros are

distinct. (They may be distinct even though this condition is not satisfied.) Then for

v = vj there is a solution gj(u) satisfying (3.28), the boundary conditions (3.29), and

f0 g2(u) = 1. The process has the representation

0 0 1
(3.41) B(u) + Xq(u) = E -Zjgj(U),

i--o VVj

where Z1 , Z2,--- are independent N(0, 1) variables, and the integral has the repre-

sentation

(3.42) [B(u) + Xq(u)] du = .
j=1

When the explicit form (3.40) of the Fredholm determinant is intractable or cannot

be inverted, it can be approximated by D,(v) given by (3.21). For this we turn to

the numerical evaluation of the characteristic roots of AN + aNC 'N, which we call

'kiN 2! 02N 2! ... _ 'NN. These approximate the reciprocals of the first N eigenvalues

of k(u, v). They are the zeros of (3.20). A value 1/Aj is such a zero if and only if

aj= 0. Let 1/ A > 1/ A; > ... > 1/Aj. be the values of 1/Aj that correspond to

aj 0. Then (3.20) is
(3.43) JAN - 0INIO(O),

where
N* *2

(3.44) 0(0)-1+ "
j=1

and ac is the ak corresponding to 1/A,. The first derivative of th(4)is

(3.45) >'(4,) = ( _ 1)2 >0.

As , --+ 1/A! from above, 0(0s) -- -oo, and as 4' --+ 1/,\ from below, 0(0) -- oo.
Since tk(o) is continuous except at 4 = 1/A!, j = 1,.-, NO, there is a root in the

interval (1/A!,/A_1 ), 3 = 1,.,N,with

N °  N

(3.46) 1/A = j= y .
j=1 j=1
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The N zeros of (3.43) can now be numbered so that 1/Aj <5 Oi < 1/Aj-1 .

Bunch, Nielsen, and Sorenson (1978) have given a algorithm for solving the equa-

tion '(4) - 0. To find the root 4 in the interval (1/A!, 1/A!-) for j > 1 define

N" 1 1(3.47) O-(6 E _ 6 1" < 6 < 1;-

k=i x. A A-1

j-1 1 1
(3.48) k 1+(6)) = 1

Then 0-(0) < 0 and 0+(0) > 0. Let Oo (1/A; < Oo < I/A,_-) be an initial value of

4. For i = 1,2,--. define pi,q, ri,si to satisfy

(3.49) Pq = (O(j-)), ri + S=

q- -=+/- 0 )1 1/X -+

(3.50) Pi Si
(q, - 4O(,l))5 = - (a/A; - +),_i) =

Next define 6(j) as the solution to

(3.51) 1 +-ri+
q, - 1/ I/ -

that lies in the interval (1/A!, 1/A!_). If 6o c (1/A;, O,) then

(3.52) (,)< 0(i+1) <4, i = 1,2,.--,

and 6(0) converges quadratically to 4), the zero of 0(0) that lies in the interval
(l/A!, I/A!_ ).

The cumulants of S are given by

00 l1\
(3.53) = 2-'(j- 1)!", 1 .

They can also be calculated from the kernel (3.26). Let k(s,t) - k(s,t) and

k,+d(s,t) = fl kj(s,u)k(u,t)du. Then

(3.54) j = 2-'(j - 1)!' k,(s,s)ds.
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See Anderson d Darling (1952). The expression (3.53) is obtained from the expansion

of the logarithm of the characteristic function of S in powers of it; the coefficient of
(it)-/j! is the j - th cumulant. kappatly, it is the coefficient of vi/Ij! in the expansion

of - 1 log D'(v), given by (3.25) or (3.40). We have [from (3.25)]

(3.55) - log D * (v) = - 0 1 - - log l -t : 2 j \ v

The second term on the right-hand side of (3.55) is
.1 =-21°og [1- aj.

(3.56) - og [1 - 1 _ ] - 2[.=

The first two cumulants are

(3.57) Cs = '00 + 0 C, 2 +J q(U)d,
j=1 j=1 6

(3.58) X2 = VarS

00 2 00 CJ

= E 72+4_" -+2
3=1 j=2 1o ( U)2
i5 + 210 f0 [min(u, v) - uv]q(u)q(v)dudv + 2 q2(u)du)

3.3. Calculation of the Cram6r-von Mises criterion

If we omit (2vfT/r) E'hT ph sin Ah/h, the Cranr-von Mises criterion (3.2) can
be written as T/[21rG 2 (r)] times

(3.59) f-r [2 T-1 sin.h h 02e' d

1 ( - p )(r,- p,)

= w~ 2(r- ' - gh P p£ p. sin Ag sin ,h e -(T-)dA.

The integral on the right-hand side of (3.53) is

(3.60) As - ei)(eiAh -
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= ! [ei(g+h+r-) _ ei(gh ) _ ei,\(-g+h+r_) ± -(Dh+r,_)]4 _- -le -h  ' .  4- e' (dA.

Since f-_, ei-kdA = 0 unless k = 0, we find that (3.53) is

1jT (r9 - pg)(rh - P) j (PrPr+g-h-PrPr+g+h-PrPr-y-h +PrPr-g+h)
4 _ gh
g,h---- r=-oo

(3.61)
1 (r, - p,)(rh - ph) 00

= - gh E (Pr+" - PL-")(Pr+" - Pr-h)"
g,h=l g=-00

Thus the Cramrr-von Mises statistic can be written

(3.62) 
T 0 (, -_ pg)(P,+, _ P,_g) 

2

8r' (r .=,- 9

In the special case of fo(A) = 1/(2r) ( that is p, = P2 - 0) the Cram&r-von

Mises criterion (except in the part of the sum not depending in the sample) is

(3.63) 
T T-1

In this case any finite set of v/Trg has a limiting normal distribution in which the

variables are independent standard normal variables. On this basis the limiting distri-

bution of (3.63) is consistent with the limiting distribution of the Cramer-von Mises

statistic as indicated in Section 3.2. It may be of interest to compare (3.63) with the

Box-Pierce statistic T r in some fixed K <T.

3.4. The Kolmogorov-Smirnov Criterion

To test Ho: F(A) = fo(A) on a large-sample basis we want to find a constant c

such that

(3.64) Pr{ 1 sup IYT(u)I c -- a

for a specified a (0 < a < 1) as T -* oo. We want to evaluate

(3.65) Pr sup IB(u) + qo(u)XI :5 c}.
11<U<I
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First we derive some inequalities. Let

(3.66) d = sup Iqo(u)j.
O<U<1

Then

(3.67) sup IB(u) + qo(u)XI _< sup IB(u)I + 1Xid.
o_<l O<U<1

Thus

(3.68) Pr sup IB(u)l + IXId< c} < Pr I _sup IB(u) + Xqo(u) < c}{10<<1 I OS J
< Pro sup IB(u)<cl}

10O<U<1J

The right-hand inequality follows from (2.34).

The distribution of supo<u< IB(u) is

(3.69) Pr sup IB(u)l <_ c = 1 +2(-1)J - j .
10o<-<I j=1

Let V = supo<u< IB(u)I and Z = dIXl. The density of Z is [2/(dv 'r)]ez2 /(2d2) z >

0. For w >0

(3.70) Pr { IB(u)I + dlXI < w} - Pr {V + Z < w}
PrrV~w-Z 2 e~z2 /(2d2)d

J0  L Z d727r

2_ o e-. /(2)dz + 1 4__ - _ ).e_,j'(,_Z),_p/(2d2)d
ZW2=r 0d72w =

- 2i(d ) -1

+4 E (-1)Jj ' / I4a t _ .d(l4dj - / 4d j' "

j=1 +4 1 'kVTT~ j'J
Values of this distribution are given in Table 1. If d is small, (3.70) is an approximation

to (3.65).
If (3.65) is 1 - a and a is small, then a is approximately 2 times

(3.71) Pr [B(u) + Xqo(u)] _ c}.

10o<<1 9
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Suppose 0 < qo(u) <_ d. Then for X < 0

(3.72) sup B(u) < sup [B(u) + Xqo(u)] 5 sup B(u) + Xd,
o<,<I O<u<l o_<_<

and for X < 0

(3.73) sup B(u) + Xd < sup [B(u) + Xq(u)] <_ sup B(u).
O<u<1 O<u< O<u<1

Then 1 _ supi
(3.74) -Pr <sup B(u) > c + -Pr sup B(u) - IXId >2 o<u <i t o<-<1

< Pr sup [B(u) + Xqo(u)] >_ c}

< Pr s B(u) + XId P r  sup B(u) >}.
2 o<u<1 (o<'<1

Let Y = supo<u<_ B(u) and Z = dIXI. Since Pr{Y < y = I - e-20,y > 0, the

density of Y is 4ye - 2y . Thus for w > 0

(3.75) Pr {sup B(u) + dIXI < w}

- Pr{Y+Z <w}

=d.A Jo W - Ye-2v-z 2/(2d 2)dy dz

d 2 [l --' (w- )2e- z2(2d2 )dz

2- (~ 2 -. 2,/(4d+1) [ (w -4dw)]

Similarly

(3.76) Pr {sup B(u) - dIXI w}

2,0 (E) 2 -2+w"2/(4d 2+1) w ( ) 0,

-1 C+ -2 J/(4d 4 ( ), w > 0.
7477__ -dt )' w>O

Values of (3.75) and (3.76) are given in Tables 2 and 3, respectively.
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The extremes of qo(u) can be found by setting to 0 the derivative

dd [G(A)
(3.77) dq(u) = T o(A)]u fo(\ I

= 2fo(A) f-(-() 1,

that is, at f0 (A) = 0 or
1 00

(3.78) fo(A) = Go(Tr) - E p=.
2=-r

We now consider the supremum of jqo(u)l over 0 u < 1 and all fo('); this is the

supremum of I[G(A)/G(7r)] - F(A)I. Since G(A)/G(7r) and F(A) are monotonically

nondecreasing in [0,7r] with G(O)/G(ir) F(O) = 0 and G(7r)/G(ir) = F(7r) = 1,

(3.79) sup jq(u)l < 1.

We shall now find an f(.) such that the upper bound of 1 is approached. Consider

(3.80) A()A
d, V < A < r,

for some c, d, and v(O < v < 7r). Then

(3.81) 2 f(A)dA = 1

implies

(3.82) d 2-2(7" - )

Then as v -r,

G(v) F(v) --+ = 22 rc + 21rc - 1 - 4v2c
(3.83) ~yG(r) 1 - 4rc + 4r 2c 2

- 2irc.

Hence as c -1/(2r),

(3.84) sup F(A) 1.

21



The probability (3.65) is a boundary value problem for the process B(u) + Xq(u).

It is

(3.85) Pr{-c < B(u) + Xq(u) 5 c, Vu, 0 < u < 1}.

Note that the sample paths are continuous with probability 1. Let

(3.86) W(t) = (1 +t)B(1+t

Then W(t) is the Wiener-Brownian motion process with £W(t) = 0 and £W(t)W(s) =

min(t, s); sample paths are continuous with probability 1. The probability (3.85) is

(3.87) Pr t-c(l + t) < W(t) + X(l + t)q t :) <c(l + t),Vt, O<t< oo

Dahlhaus (1985) has also given this result.

Durbin (1985) has studied the first passage density of a continuous Gaussian

process to a general boundary. The probability (3.71) is then the integral of this

density from 0 to 1. An approximation to this probability is

(8c 11 1 - t +q'(ttd)(3.88) _7 1 k(t, t) e- /~("]

Where k(t, t) = t - t2 + q2(t). In practice (3.88) could be evaluated by numerical

integration. Durbin also gives an exact expression as well as two other approximations

to the first passage density. As an example he applies his formulas to Pr{B(u) > c}

for several values of c. For c yielding an exact probability of .1 this approximation

has an error of only .0021; for larger values of c (smaller values of a) the error is

proportionally smaller.

4. Confidence Region for the Spectral Distribu-

tion Function

An asymptotic confidence region with confidence coefficient 1 -a for an unknown

spectral distribution consists of all monotonic functions F(.) [F(0) = 0, F(1) = 1]

such that

(4.1) VT/TIP(\) - F(A)I < c VA E [0, 7r],
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where c is chosen so that (3.59) is 1 - a and qo(u) refers to the unknown distribution.

Since c depends on qo(u), we need a consistent estimator of qo(u).

From the fact that VT[PT(A) - F(A)] has a limiting normal distribution it follows

that

(4.2) PT(A) p F(A).

Let !(A) be a consistent estimator of f(A) in the sense that

(4.3) sup IIT(A\) - fo())l PO.

For such an estimator the class of admissible f(A) must be limited. Define

(4.4) OT(A) = 2 jf (v) dv,

(4.5) 4'(u) = U - PT{TO [OT(W)U]}.

Then qT(u) is a consistent estimator of qo(u). If cT is the value of c for which (3.59)

holds with qo(u) replaced by qT(u), then cT 4 c.

The inequality (4.1) can be written
¢ C

(4.6) PT(A) - c- < F(A) < T(A) + c VA E [0,,r].

Another problem of interest is testing that the spectral densities of two indepen-

dent processes are the same; the mull hypothesis is F (A) = F2(A). Suppose FT, (A)

and T2(A) are the correspending two empirical processes. Under the null hypothesis.

(4.7) -+ T- 2 [T (A -FT2 (A)]

converges weakly to the Gaussian process with covariance function (2.19), where F(A)

and G(A) refer to the common spectral distribution and the integral of tlie common

spectral density squared, respectively.

The Kolmogorov-Smirinov criterion

(4.8) sup IPT,(A)- FT2A)
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can be uses to test the null hypothesis. If IT,(A) and fT2 (A) are consistent estimators

of the common spectral density [in the sense of (4.3)], then

(4.9) ____ f, (A) + T2(A)

T + T2 T+T

can be used to estimate G(A) and q(u).

5. Examples

5.1. Moving Average of Order 1

Let

(5.1) Y,= u + au,-1,

where u, are iid N(O, a). Then
a 1 1

(5.2) P = P =----P <

(5.3) f(A) = (1 + 2p cos A),

(5.4) F(A) = - (1 + 2p cos v) dv
71
1-(A + 2p sin A),

(5.5) G(A) = j (1 + 4p cos v + 4p2 cos 2 v)dv

1 2 A + 4p sin A + 2p2 (A + sin 2A)

2 [(l + 2P2)A+ 4p sin A) + p2 sin2A] ,

(56) G(x,) = 1 + 2p2

27r

(5.7) G(A) _ (1 + 2p2 )A +4p sinA + p2 sin2A
G(-) (l + 2p2 )
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The difference is
G(A) 2psin A(1 - 2p2 + pcos A)

(5.8) - F(A)= =rl2 2

G(r) 7'(1 + 2p2)

This is nonnegative for 0 < p < 1 and 0 :< A < 7r and nonpositive for -1 < p:5 0.

The maximum of Jq(u)I occurs at f(A) = G(ir) (by setting the derivative of
[G(X)/G(r)] - F(A) equal to 0), that is,

(5.9) 1 + 2p cos A =1 + 2p2;

that is, cos Ao = p or Ao = cos - I p. Then
G(Ao) -F(Au) (4p sin Ao+p2 sin 2Ao sin AO)

(5.10) G(7r) - 1 + 2p2  - 2 p

2 cos Ao sin3 Ao

7r(1 + 2 cos0 2 o)

The maximum of Iq(u)l is at a zero of

(5.11) [ [G(Ao) ] 2 sin 2 Ao(1 -6 cos 2 Ao -4 cos4'Ao)
dAo G(7r) V (1 +2 cos 2 Ao) 2

The zeros of (5.11) are Ao = 0, 7r, and

2 -3 ± V-3
(5.12) cos 2 Ao 4

or

(5.13) p 2 = cos2 Ao = .A5138.

The extremum of (5.10) is

2,/.-1-51(.8486)I
(5.14) - .1483.

r(1 +2..1514)

The value of .1483 is considerably less than 1.
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5.2. Autoregression of Order 1

Consider the process

(5.15) Yt = _Pt- + Ut,

where the ut's are uncorrelated with mean (ut = 0 and variance Eu 2  a2 The

conventional (unnormalized) spectral density is

or 2  or 2(5.16)

27r l1 _ pe AI - 2-r(1 + p2 - 2p cos A)*

The variance of Yt is

(5.17) (y, 2 =
1 -p 2

The normalized spectral density and its square are

(5.1) fe) =1 -p 2

(5.18) f(A) = 2r(l + p2 - 2p cosA)

and

(5.19) f 2 ((- p2 )2

4r2(i + p2 - 2p cosA)2
(1 - p2 )2

47r2 I(1 - peil)2l2

(1 - p2 )2

4T7 2I - 2pe"A + p2ei2A 12

This is (1 - p2)2/(27r) times the spectral density of x, satisfying

(5.20) xt - 2px,- + p2Xt_2 = Vt,

where (vt 0, ¢v, = 1, and Lvtv. = 0, t #6 s. The variance of xt is (l+p 2)/(1-p 2 )3 .

Thus

(5.21) G(r) = 2jf (A) dA
-1 1 +p2

27 1 - p2 '

26



The equation G(ir) - f(A) is

(5.22) 1+p 2 _ 1- p2

(-p 2  1 + p 2 - 2p cos A

(5.23) + p 2 - 2p cos A =

or

(5.24) 
cos Ao

1 + p2

For example, cos Ao = V2/2 = .707 for p - v2-I = .414, that is, Ao -7r/4; cos Ao - 0

for p = 0, that is, A0 = 1;cosAo = 1 for p = 1, that is, Ao = 0. The normalized

spectral distribution of {t} is

(1 -p2) ,A dA
(5.25) F(A) =A

S Jo 1 +p 2 -2p cos A

2(1 -p 2 ) tan- [ (1 + p) 2 - (2p)2  A]

+ (1+ p2)2 _ (2p)2 L 1 + p 2p

2 tan -' tan -A
V L1-p 2]

The integral of the square of the density is

(5.26) G(A) (1-p 2)2  , dA

2r 2  (1 + p2 - 2p osA)2

(1 - p2 )2 [ 2p sinA

2 Ir2  [(1p2)2 1 +p 2 -2p cosA

+ +p 2  2 tan-' 1I + p tan
(- p2)2 -p2 (1 - p 2)--]

p sin A +P 2  tan- 1 tan
W2 1 + p 2 - 2p cosA +2(1-_ p2) p 2
2p sin Af + )p .

7ri- p2 ) f()+2ir(i _-2

Then

(5.27) G(A) F(A) - 2r( -p 2 )[ p sinA

G(7r) 1 + p 2  172(l + p2 - 2p cosA)
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+ P t a -- t an A)

-2(tan_- (1+ tanA)-l-

2p(l - p2) sin A

•(I + p2) 1 + p2 - 2p cos A
= 

2 sinAf(A).
+ p

Note that q(u) > 0 for p > 0 and q(u) < 0 for p < 0. For cos Ao = 12 (sin Ao =-);

(5.28) G(Ao) - 2p(1 - p2 ) 1 - p2  1 + p2

G(-) F(Ao) = r(l+p 2 ) (1+p 2) (1-p 2 )2

2p

7r(l + p2)
__ 1 cso

The difference (5.28) approaches 1/w = .3184 as Ao -+ 0 (that is, as p --+1) and

approaches -1/w as Ao --- w (that is, as p -+ -1). This is the maximum of jq(u)j.

Note that .3184 is less than the maximum of 1 over processes but greater than the

maximum of .1486 for moving average processes of order 1.

5.3. Another Example

Suppose f(A) = (a + 1)1AI /(2,*+), a > 0. Then

(5.29) F(A) =- ,+, 0 < A <

(a + 1)2 A2a+ 1  0 < A < ,

(5.30) G(A) = 2(2a + 1), 2a+2

(a + 1)2

(5.31) G()- 2(2a+ 1)'

G(A) A2&+1
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(5.33) A = ru1/(2t+l), 0 < u < ,

(5.34) q(u) = u- u( + 1)1(
2a+ l

)

= u(a+1)/(2ax+l) (Ua/(2a+1) -)

d a + 1 /(2+)

(5.35) duq(U)= 1 -2a+ 1

The maximum of Iq(u)j in [0,1] is at

(5.36) u a/(2, +) _ a
2a +1'

and the maximum is the absolute value of

(5.37) 2a -1(2a-) °  =
=_ -z a

= z-=1 )

where x = 2 + ( 2). The derivative of (5.37) with respect to z is

(5.38) - '-(1 - x)logz + 2 -z],

which is positive for z > 2. Thus (5.37) is an increasing function of x and a decreasing

function of a. As a -+ oo, the limit of (5.37) is -.25.

6. Conditions for Weak Convergence

Grenander and Rosenblatt (1953) showed that if -ti = O(j - 0) for some 0 >

3/2 and if the ut's are independently identically distributed with Cut = 0, Cut =

02, Cut = 4 + 30, and Cut < oo, then

(6.1) VT max IHT(A) - H(A)I -+ max IU(A)I,
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where H(A) = a(O)F(A), /T(A) = COFT(A), and U(A) is a Gaussian process with

CU(A) = 0 and covariance function

(6.2) £U(A)U(v) = 47rG[min(A, v)] + LH(A)H(v).

A numuber of authors have shown that

(6.3) VT[ftT(A) - H(A)] I U(A)

under various alternative sets of conditions. Ibragimov and Tovstik (1964) demon-

strated the limiting covariance function (6.2) under the conditions E o -t < 00, G(Tr) <

00, ut independently identically distributed, and .U4 < 00. Shaman (1971) also

proved this result. See Dahlhaus (1985) for a review of the literature.

We can write

(6.4) PT(A) - F(A) = (A) H(A)

CO a(0)

HT(A) - H(A) - [co - a(0)IH(A)/o(0)

Co
_HT(A) - H(A) - [/T(7r) - H(7r)]F(A)

Co

If o P a(O) as T --- oo, then VT[FT(A) - F(A)] converges weakly to Z(A) =

U(A) - U(r)f(A), which is Gaussian with expected value 0 and covariance function

(6.5) EZ(A)Z(v) = E[U(A) - U(ir)F(A)][U(A) - U(ir)F(v)]

= 4r{G[min(A, v) - f(A)G(v) - G(A)F(v) + G(r)F(A)F(v)},

which is exactly (2.19).

Note that there is no term in (6.5) involving 1 4. This fact suggests that the

condition £u4 < oo may be unnecessary. Anderson (1991b) has shown tihat v/T[PT -

F(A)] -+ Z(A) if {yt} satisfies (2.10) with (2.12) holding,

00

(6.6) E v.,I <00,
8=0

and the {ut} being independently identically distributed with £ut = 0 and Eu' = a' .

This result is generalized to the following theorem:
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Theorem. Suppose {yt} is defined by (2.10), where {7y} satisfies (2.12)
00

(6.7) E VrlIol < 00.
8=0

Let t be the a-algebra generated by .. ,ut-,ut, and let I(A) = 1 if A occurs and
I(A) = 0 otherwise. Suppose {ut} satisfies

(6.8) E(UtI '-I) = 0 a.e.,

(6.9) u t_j) = a, a.e.,

(6.10) 1 240,

t=1

where a2 is a constant,

(6.11) sup E[UI(Ut > a)Y.-1 P 0
t=l,2,..

as a -+ oo,

(6.12) 1 T- * ~ , s 1 2 * *
1T

(612 t l Ut-rut-8 -.4 rs 1-1.

where ,, = 1 and 6,. = 0, r $ s,

(6.13) Eu2 <K, t=-.,-1,0,1,...,

(6.14) gut2 K, t 6 s,

and

(6.15) £ututj.ut _ = O, r 5 , rs =1,2,.

Then

(6.16) vT[FT(A) - F(A) I+ Z(A).

Acknowledgemets. The author is indebted to Gene Golub, Joseph Keller, and
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Table 1

Pr sup IB(ui + d JXI < w
10<U<1

w \ d 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0

0.4 0.0028 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.0361 0.0113 0.0059 0.0037 0.0025 0.0019 0.0015 0.0012 0.0010 0.0008
0.6 0.1357 0.0625 0.0359 0.0245 0.0184 0.0146 0.0121 0.0104 0.0090 0.0072
0.7 0.2888 0.1730 0.1088 0.0768 0.0588 0.0474 0.0396 0.0340 0.0298 0.0238
0.8 0.4559 0.3251 0.2249 0.1647 0.1281 0.1042 0.0876 0.0755 0.0663 0.0532
0.9 0.6073 0.4856 0.3662 0.2800 0.2224 0.1828 0.1547 0.1339 0.1178 0.0950
1.0 0.7300 0.6294 0.5113 0.4083 0.3319 0.2770 0.2361 0.2053 0.1813 0.1467
1.1 0.8223 0.7455 0.6428 0.5358 0.4474 0.3783 0.3262 0.2851 0.2529 0.2056
1.2 0.8878 0.8325 0.7504 0.6514 0.5588 0.4806 0.4188 0.3691 0.3287 0.2689
1.3 0.9319 0.8943 0.8321 0.7487 0.6597 0.5776 0.5094 0.4526 0.4057 0.3340
1.4 0.9603 0.9359 0.8923 0.8264 0.7460 0.6654 0.5944 0.5328 0.4802 0.3994
1.5 0.9778 0.9626 0.9334 0.8839 0.8157 0.7423 0.6713 0.6075 0.5514 0.4627
1.6 0.9880 0.9790 0.9603 0.9245 0.8706 0.8053 0.7388 0.6754 0.6182 0.5233
1.7 0.9938 0.9887 0.9772 0.9530 0.9127 0.8567 0.7955 0.7347 0.6777 0.5804
1.8 0.9969 0.9941 0.9873 0.9717 0.9421 0.8970 0.8433 0.7875 0.7323 0.6329
1.9 0.9985 0.9971 0.9932 0.9835 0.9621 0.9275 0.8830 0.8319 0.7797 0.6824
2.0 0.9993 0.9986 0.9965 0.9906 0.9764 0.9512 0.9129 0.8680 0.8208 0.7260
2.1 0.9997 1.0000 0.9983 0.9948 0.9856 0.9672 0.9366 0.8983 0.8551 0.7667
2.2 0.9999 1.0000 1.0000 0.9973 0.9915 0.9777 0.9556 0.9237 0.8846 0.8015
2.3 0.9999 1.0000 1.0000 0.9986 0.9951 0.9858 0.9683 0.9431 0.9092 0.8338
2.4 1.0000 1.0000 1.0000 1.0000 0.9972 0.9911 0.9788 0.9572 0.9302 0.8614
2.5 1.0000 1.0000 1.0000 1.0000 0.9985 0.9945 0.9848 0.9697 0.9456 0.8853
3.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984 0.9947 0.9883 0.9606
3.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9978 0.9882
4.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9971

Values of w for which Pr sup IB(u) + d X w}
O~t~S1

w \ d 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0

0.001 0.3742 0.4171 0.4416 0.4616 0.4742 0.4829 0.4894 0.4946 0.4991 0.5067
0.01 0.4410 0.4947 0.5238 0.5452 0.5620 0.5758 0.5874 0.5977 0.6069 0.6232
0.05 0.5196 0.5834 0.6253 0.6572 0.6833 0.7058 0.7259 0.7439 0.7606 0.7908
0.10 0.5712 0.6402 0.6906 0.7305 0.7642 0.7939 0.8206 0.8452 0.8682 0.9106
0.25 0.6765 0.7527 0.8188 0.8756 0.9262 0.9727 1.0159 1.0569 1.0961 1.1706
0.50 0.8276 0.9094 0.9921 1.0712 1.1465 1.2190 1.2894 1.3589 1.4265 1.5616
0.75 1.0192 1.1045 1.1995 1.3015 1.4050 1.5122 1.6183 1.7265 1.8358 2.0583
0.90 1.2238 1.3114 1.4158 1.5349 1.6657 1.8086 1.9552 2.1039 2.2603 2.5746
0.95 1.3581 1.4470 1.5562 1.6871 1.8340 1.9936 2.1651 2.3488 2.5247 2.8967
0.99 1.6276 1.7192 1.8385 1.9890 2.1696 2.3757 2.6007 2.8387 3.0469 3.5591
0.999 1.9495 2.0443 2.1762 2.3516 2.5687 2.8192 3.0942 3.3866 3.6906 4.3193
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Table 2

Pr sup IB(u)l + Idl IX fw

w \ d 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0198 0.0050 0.0026 0.0018 0.0013 0.0011 0.0009 0.0008 0.0007 0.0005
0.2 0.0769 0.0350 0.0198 0.0135 0.0103 0.0082 0.0069 0.0059 0.0052 0.0041
0.3 0.1647 0.0980 0.0613 0.0432 0.0331 0.0267 0.0224 0.0193 0.0169 0.0136
0.4 0.2739 0.1893 0.1299 0.0948 0.0737 0.0600 0.0505 0.0436 0.0383 0.0308
0.5 0.3935 0.2994 0.2217 0.1682 0.1331 0.1094 0.0926 0.0801 0.0705 0.0568
0.6 0.5132 0.4180 0.3291 0.2592 0.2094 0.1741 0.1483 0.1288 0.1137 0.0920
0.7 0.6247 0.5352 0.4428 0.3616 0.2985 0.2513 0.2157 0.1883 0.1669 0.1355
0.8 0.7220 0.6431 0.5541 0.4679 0.3949 0.3370 0.2919 0.2564 0.2280 0.1861
0.9 0.8021 0.7365 0.6563 0.5712 0.4928 0.4268 0.3732 0.3300 0.2949 0.2420
1.0 0.8647 0.8130 0.7446 0.6657 0.5868 0.5161 0.4561 0.4062 0.3649 0.3015
1.1 0.9111 0.8723 0.8172 0.7479 0.6729 0.6010 0.5371 0.4822 0.4356 0.3626
1.2 0.9439 0.9162 0.8738 0.8160 0.7482 0.6786 0.6134 0.5554 0.5049 0.4238
1.3 0.9660 0.9472 0.9161 0.8701 0.8115 0.7469 0.6831 0.6240 0.5711 0.4836
1.4 0.9802 0.9679 0.9462 0.9111 0.8627 0.8052 0.7450 0.6867 0.6329 0.5411
1.5 0.9889 0.9813 0.9667 0.9411 0.9026 0.8533 0.7983 0.7426 0.6894 0.5954
1.6 0.9940 0.9895 0.9802 0.9622 0.9327 0.8919 0.8433 0.7915 0.7401 0.6460
1.7 0.9969 0.9943 0.9886 0.9765 0.9548 0.9220 0.8803 0.8334 0.7850 0.6926
1.8 0.9985 0.9971 0.9937 0.9858 0.9703 0.9449 0.9101 0.8687 0.8240 0.7351
1.9 0.9993 0.9985 0.9966 0.9917 0.9810 0.9619 0.9336 0.8979 0.8576 0.7733
2.0 0.9997 0.9993 0.9983 0.9953 0.9882 0.9742 0.9517 0.9216 0.8860 0.8075
2.1 0.9999 0.9997 0.9991 0.9974 0.9928 0.9828 0.9655 0.9407 0.9097 0.8377
2.2 0.9999 0.9999 0.9996 0.9986 0.9957 0.9888 0.9758 0.9557 0.9292 0.8641
2.3 1.0000 0.9999 0.9998 0.9993 0.9975 0.9929 0.9832 0.9673 0.9451 0.8871
2.4 1.0000 1.0000 0.9999 0.9996 0.9986 0.9955 0.9886 0.9762 0.9579 0.9069
2.5 1.0000 1.0000 1.0000 0.9998 0.9992 0.9973 0.9924 0.9829 0.9681 0.9238
3.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9973 0.9932 0.9751
3.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9933
4.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9985
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Table 3

Pr{ sUP IB(u)I - IdIi X{ w}

w \ d 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0
-4.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-3.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005
-2.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0020 0.0120
-1.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0013 0.0051 0.0128 0.0423
-1.25 0.0000 0.0000 0.0000 0.0000 0.0001 0.0010 0.0048 0.0136 0.0284 0.0734
-1.0 0.0000 0.0000 0.0000 0.0000 0.0007 0.0046 0.0149 0.0330 0.0579 0.1210

-0.9 0.0000 0.0000 0.0000 0.0001 0.0015 0.0080 0.0226 0.0456 0.0753 0.1458
-0.8 0.0000 0.0000 0.0000 0.0002 0.0032 0.0134 0.0334 0.0620 0.0968 0.1743
-0.7 0.0000 0.0000 0.0000 0.0007 0.0063 0.0219 0.0484 0.0831 0.1229 0.2067
-0.6 0.0000 0.0000 0.0000 0.0019 0.0121 0.0347 0.0685 0.1096 0.1541 0.2432
-0.5 0.0000 0.0000 0.0002 0.0048 0.0219 0.0533 0.0950 0.1422 0.1910 0.2840
-0.4 0.0000 0.0000 0.0009 0.0110 0.0379 0.0793 0.1290 0.1818 0.2339 0.3292
-0.3 0.0000 0.0000 0.0035 0.0235 0.0627 0.1146 0.1717 0.2289 0.2832 0.3788
-0.2 0.0000 0.0002 0.0113 0.0461 0.0993 0.1611 0.2240 0.2840 0.1390 0.4327
-0.1 0.0000 0.0030 0.0307 0.0840 0.1506 0.2201 0.2866 0.3473 0.4013 0.4908
0 0.0000 0.0194 0.0715 0.1425 0.2191 0.2929 0.3598 0.4188 0.4700 0.5528
0.1 0.0198 0.0682 0.1414 0.2243 0.3053 0.3787 0.4426 0.4973 0.5439 0.6178
0.2 0.0769 0.1488 0.2357 0.3233 0.4031 0.4719 0.5300 0.5786 0.6194 0.6829
0.3 0.1647 0.2525 0.3452 0.4309 0.5048 0.5661 0.6165 0.6580 0.6922 0.7448
0.4 0.2739 0.3690 0.4600 0.5387 0.6035 0.6556 0.6974 0.7313 0.7590 0.8010
0.5 0.3935 0.4880 0.5714 0.6397 0.6936 0.7359 0.7693 0.7959 0.8174 0.8498
0.6 0.5132 0.6006 0.6727 0.7288 0.7717 0.8046 0.8300 0.8501 0.8663 0.8904
0.7 0.6247 0.7005 0.7594 0.8034 0.8360 0.8604 0.8791 0.8937 0.9054 0.9226
0.8 0.7220 0.7841 0.8299 0.8627 0.8864 0.9038 0.9170 0.9272 0.9353 0.9472
0.9 0.8021 0.8505 0.8842 0.9077 0.9242 0.9361 0.9451 0.9519 0.9573 0.9653
1.0 0.8647 0.9004 0.9242 0.9402 0.9512 0.9591 0.9649 0.9693 0.9728 0.9779
1.25 0.9561 0.9697 0.9778 0.9829 0.9863 0.9886 0.903 0.9915 C.9925 0.9939
1.5 0.9889 0.9928 0.9949 0.9962 0.9969 0.9975 0.9979 0.9981 0.9984 0.9987
2.0 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000
2.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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