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On this grant we made major progress in three areas:

1. Adaptive Control of Nonlinear Systems
2. Approximate Linearization (by state feedback) of nonlinear systems
3. Software tools for CAD of nonlinear control

Adaptive Control of Nonlinear Systems: In this work, we extended our previous
work on direct adaptive control of Single Input Single Output nonlinear systems to
schemes for adaptive identification, indirect adaptive control and also adaptive model
matching of Multi Input Multi Output nonlinear systems. We also studied adaptive ver-
sions of the nonlinear regulator.

Approximate Linearization (by state feedback) of nonlinear systems: While
the full set of conditions for input-output linearization of a nonlinear system by state
feedback have been given in the literature, the question of how to proceed when the
conditions follow slightly short of being met have not been answered. For example,
input-output linearization hinges on a certain set of regularity conditions (existence of
relative degree in the SISO case) and minimum phase conditions being met by the
plant. If the plaat is not regular and is slight'y nonminimum phase the techniques of
input-output linearization need to be modified. We discussed these techniques in the
context of flight control and also other examples, for instance, the ball and beam sys-
tem. This in tumn led to a deeper understanding of the structure of the zero dynamics
of a nonlinear system and their structure under perturbation.

CAD tools for nonlinear controller design: We have developed a set of CAD
tools for linearization and approximate linearization of nonlinear systems using spline
software which operates in real time and is capable of accepting nonlinear system
description in numeric, tabular or functional form. A user interface is being written and
it is being tried out on several examples.



Final Report for ARO Grant
DAAL 88 - K - 0106

Prof. S. S. Sastry

In the vears of this grant, of the students supported on the grant [ have
had two Ph. D, dissertations {S. Behtash and J. Hauser), two M. S. Plan [l
reports (R. Kadiyala and A. Teel) completed and three Ph. D. dissertations
are nearing completion (R. Kadiyala, A. Pradeep and A. Teel, all expect to
graduate between January and June 1992). The grant has enabled the PI to
switch my focus from linear adaptive control, which was the work supported
by the previous ARO grant to me. ARO DAAG 85-K-0572, to several areas
of nonlinear and adaptive control and more recently to the development of
CAD tools for nonlinear control systems design, a project which continues
with the newest ARO grant DAAL 03-91-G-0171. We have made several
trips to the US Army Ordinance Research Center at Picatinny Arsennal, NJ
and have set up a good working relationship with the group of Dr. Norman
Coleman and a design project in fire control for Apache helicopters which is
supported at Integrated Systems Inc., Santa Clara, California.

The work done on this grant has had major impact on the field in two
areas: the adaptive linearization of nonlinear systems (publications [2] and [9]
of the list below) have begun a new field of research which has advanced the
theory of nonlinear control and has important implications for CAD tools
for nonlinear control systems design; and the approximate linearization of
nonlinear systems (publications [1], (3], [10] and [11]) has opened new lines of
investigation in developing a nonlinear control systems design methodology.
Finally, we have begun developing software tools for CAD of nonlinear control
systems (publications [12, 13}) below. A brief outline of the areas of research
fir dinys is now given:
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1 Brief Outline of Research Findings

1.1 Adaptive Control of Nonlinear Systems

There has been a great deal of recent progress in the development of basic
theory for the input output linearization of a large class of nonlinear systems
by state feedback. The chief drawback of these techniques has been that
they rely on the exact cancellation of nonlinear terms. When the nonlinear-
ities are not known ~xactly adaptive control may be used to asymptotically
make the cancellation exact. In past work supported by the grant we had
developed a direct adaptive control algorithm for this purpose. In work in
this time period we have proposed a variety of other schemes, referred to as
indirect and semi-indirect adaptive control. In the former scheme, we de-
veloped a number of different identification techniques for nonlinear systems
and coupled them with the input output linearizing control law using the
certainty equivalence principle. We gave conditions for the convergence of
the scheme and showed that it had several important advantages over the
direct scheme including no need for over-parameterization. The conditions
for convergence were, however, far more restrictive than those for the direct
scheme. Consequently, we also preposed a semi-indirect scheme which com-
bined several of the attractive features of the direct and indirect schemes and
gave a convergence proof. We have been comparing all of these schemes with
nonadaptive alternatives such as sliding 1node control on several examples
such as induction motors. (publicatioas (6], |12])

We also began the study of adaptive control of MIMO adaptive nonlinear
systems : in this research, we (joint work with M. Di Benedetto from the
Universita di Roma) studied two schemes for the adaptive tracking control
of MIMO systems with parametric uncertainty in their dynamics. The first
approach is an adaptive version of a static feedback law for tracking control
based on some results on asymptotic model matching recently propused by
Di Benedetto. This scheme is based on some some results on asymptotic
model matching recently proposed by Di Benedetto. This scheme is based
on some new techniques for extending the so-called zero dynamics algorithm
of Isidori and Byrnes to problems of stable model matching followed by their
specialization to tracking. The second scheme is an adaptive version of a
dynamic precompensation law of Descusse and Moog for linearization using
dynamic state feedback. (publication [9] below).



The schemes are in the spirit of our earlier work on adaptive linearization
of nonlinear systems. done on this grant with Isidori and Kokotovic, (publi-
cation [1] ) which were however confined to the SISO case. These schemes
represent the initiation of a full theory of Model Reference Adaptive Control
of MIMO nonlinear systems. Thus, in a collection of papers with Isidori,
Kokotovic. Kadiyala, Teel and Di Benedetto. we have laid out the rudiments
of a theory of parameter adaptive control for nonlinear tracking and regula-
tion. direct and indirect for systems with parameter uncertainty. This result
has also generated a large volume of activity in the research community and
has also helped us understand adaptive splining for our CAD design package.
In future work we will develop a complete theory of Nonlinear Mode!l Refer-
ence Adaptive Control. Another area that we will explore is the question of
how to identify nonlincar models which are presented in non-symbolic form
using techniques from approximation theory. This will also enable us to move
away from exclusively splined approximations for our CAD package.

1.2 Structure of Zero Dynamics of Nonlinear Systems

Stability properties of zero dynamics are among the crucial input-output
properties of both linear and nonlinear systems. Unstable, or “non-minimum
phase”. zero dynamics are a major obstacle to input-output linearization
and high gain designs. An analysis of the effects of regular perturbations
in system equations on zero dynamics shows that, whenever a perturbation
increases the system’s relative degree, it manifests itself as a singular pertur-
bation of zero dynamics. In this work, conditions are given under which the
zero dynamics evolve in two time scales characteristic of a standard singular
perturbation form that allows a separate analysis of slow and fast parts of
the zero dynamics. The slow part is shown to be identical to the zero dy-
namics of the unperturbed system, while the fast part, represented by the
so called doundary layer system, descnibes the effects of perturbations. It is
remarkable that, as the perturbation parameter € tends to zero, the bound-
ary layer system becomes a linear system. whose stability is easy to analyze.
When this system is unstable the perturbed systems is slightly non-minimum
phase and the exact nonlinearity cancellation or a high gain design should
be avoided. (see publications [1] and [10]).



1.3 Approximate Input-Output Linearization by State
Feedback

In a collection of papers with Hauser and Kokotovic we began a study of how
to enlarge the domain of applicability of nonlinear control laws to systems
which did not fit all the assumptions for the rigorous application of the
theoretical results. Our work was strongly influenced by two important and
practical design examples: the dynamical model of V/STOL aircraft and
that of a ball and beam (modeling slosh) in fuel tanks on aircraft wings.
This work was primarily for SISO systems and has been important in that it
has spawned a large effort on the part of the research community at large on
approximate linearization. In our own work it has been important in helping
us develop the design CAD package In future work we will extend this with
researchers from the University of Rome to MIMO systems. The subtleties of
the theory in these systems make this a very challenging enterprise. This will
be, to our knowledge, the first attempt also to confront MIMO robustness
issues for nonlinear systems head on. One report describing a robust version
of the Descusse Moog algorithm for dynamic decoupling is under preparation.
(publication [11] and one more in preparation).

1.4 CAD and Implementational Tools for Nonlinear
Systems

The chief drawback of the recent advances in nonlinear control has been that
they have been based on detailed analytical models of the systems to be von-
trolled. These analytical models are required, since the design methodology
involves in a fundamental way differentiation of the functions describing the
dynamics. The reason that this has been a drawback is that there are in
practice a large number of nonlinear systems whose parts are described by
tabular means or in some instances from empirical observations. These prob-
lems are especially acute in flight control, where the aerodynamic or wind
tunnel data is available only at discrete peints in the flight envelop or in
the instance of fire control for helicopters where a large number of the non-
linear parameters can only be measured empirically. In collaboration with
Integrated Systems Incorporated (ISI) and Picatinny Arsenal we have been
developing a computer aided design package for spline fitting graphical data
and then computing input-output linearizing control laws, approximate lin-
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earization control laws and also observers. The package is written in C and
involves adaptation on the order of the spline fit as well as the accuracy of the
approximate linearization. The CAD tools being developed are fast enough
to be real time and the coefficients of the spline fit are recomputed. The
primary developer of the software (R. Kadiyala) is also involved in validat-
ing the software on the gun control models being developed by ISI and the
fire control group of Dr. Coleman at Picatinny Arsenal. We are also actively
exchanging ideas and software with a group at University of California, Davis
under Prof. Arthur Krener for approximate linearization.

Thus, one of the most important goals on this grant. also continuing
forward with the next grant is to develop at least at a conceptual level user
friendly ‘ools for .ionlinear control. which contain on the one hand recent
advances in the theory, but on thr other hand also take advantage of recent
advances in workstations to provide graphical and symbolic visualization of
simulations. Our software has incorporated graphical depiction of our control
laws on Sun workstations. This, we believe, is essential to allow for rapid
prototyping of new nonlinear and adaptive control laws. The systematic
development of the software in C with a good user interface are current topics
of research. What has begun as an off-line CAD tool design effort has, owing
to the development of computer hardware, become an attractive option for
real time control: consequently the real time aspects of the computations are
our future priorities. (publications 3] and {13])

1.5 Robust and Adaptive Nonlinear Output Regula-
tion

A new topic of excitement in the nonlinear control design literature has been
the development of techniques of output regulation for nonlinear systems. In
contrast to the work on input-output linearization by state feedback which is
the nonlinear analog of a zero cancelling control law. these methods do not
need the underlying system to be non-minimum phase. Our research on this
grant has been aimed at understanding the robustness of these control laws
to parametric uncertainty. In the instance that the parametric uncertainty
is too large, an adaptive scheme is proposed with slowly varying parameter
update to achieve asymptotic regulation.

Related research in this area concerns enlarging the domains of attraction

ot



for these control laws, since they are originally derived to be local control
laws. A key difficulty with the new scheme appears to be very small domains
of attraction. In research to date. we have proposed several augmented to

the extended scheme to enhance the domains of attraction. (publications {7]
and [8])

1.6 Sliding Mode Control of MIMO Nonlinear Sys-

tems

The problem of developing precise matching conditions for nonlinear systems
which are not linearizable by static state feedback has proved to be a surpris-
ingly hard nut to crack. In early work on the grant we encountered success
in developing matching conditions for MIMO systems linearizable by static
state feedback. The extension of these results to either dynamically decou-
plable MIMO systems or other more general systems is not yet complete.

However. our earlier experiments with sliding mode control laws have
enabled us to understand solutions to stabilization problems where it may be
shown that the underlying control system cannot be stabilized by continuous,
state feedback. (publication. {14])

2 Scientific Personnel and Degrees awarded

1. S. Behtash — Ph. D. awarded January 1989.
. J. Hauser — Ph. D. awarded August 1989.

3. R. Kadiyala — M.S. awarded December 1989. (Ph. D. expected Dec
1991)

4. A. Teel — M. S. awarded Decemnber 1989, (Ph. D. expected March
1992)

A. K. Pradeep — Ph. D. expected December 1991,

Prof. P. V. Kokotovic — Visiting Professor, Fall 1988.
Prof. M. D. Di Benedetto — Visiting Professor, Fall 1990.
Prof. S. S. Sastry
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Approximate Tracking for Nonlinear Systems
with Application to Flight Control

by
John Edmond Hauser
" Shankar Sastry
Chairman
ABSTRACT

In this dissertation, we embark on a project to make recent theoictical advances
in geometric aonlinear control into a practicable control design meMbgy.

The method of input-output linearization by state feedback provides a natural
framework to design controllers for systems, such as aircraft, where output tracking rather
than stabilization is the control objective. Central notions include relative degree and zero
dynamics. Roughly speaking, the relative degres of a system is the dimension of the part
of the system that can be input-output linearized and the zero dynamics are the remainizg
(unobservable) dynamics. Systems with exponentially stable zero dynamics are analogous
to minimum phase linear systems and can be controlled to track a rich class of output
trajectories with internal stability.

While investigating the use of these methods in the control of the V/STOL Harrier
aircraft, we noticed that the small forces produced when generaiing body moments caused
the aircraft to have an unstable zero dynamics, i.e., to be nonminimum phase. However,
if this coupling were zero, then the aircraft could be input-outpu’ linearized with no zero
dynamics. In other words, a small change in a parameter resulted in a significant change in
the system structure!

With this observation as the driving force, this dissertation studies the effects of
system perturbations on the structure of the system and develops methods for tracking
controller design based on approximate systems.

After reviewing the basics of geometric nonlinear control, we show that small reg-
ular perturbations in the system can result in singular perturbations in the zero dynamics.
We give asymptotic formulas for the resulting fast dynamics.
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Next, we develop techniques for tracking control design for systems that do not
have a well defined relative degree. Using an approximate system with a well defined
relative degree, we design tracking controllers that guarantee approximate tracking for the
true system. This approach is shown to be superior to the usual Jacobian linearization
method on a simple ball and beam system.

Returning to the aircraft control problem, we use a highly simplified planar VTOL
aircraft model to illustrate the (slight) nonminimum phase characteristic of these systems
and develop a controller to guarantee approximate tracking. We also develop a formal
theory for this class of systems.
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Toward Larger Domains of Attraction for Local Nonlinear Control
Schemes *

Andrew R. Teel
Department of Electrical Engineering
and Computer Sciences
University of California

Berkeley, CA 94720

Abstract

This paper is motivated by the observation that the
success of some recent nonlinear control approaches is
very sensitive to initial conditions. The discussion in
this paper centers around the recently developed non-
linear output regulation theory of [1). The focus of this
paper will be extending the region of attraction for this
approach by augmenting the existing scheme.

Keywords. Nonlinear Output Regulation, Center
Manifolds, Domains of Attraction.

1 Introduction

The tool box for achieving tracking in nonlinear sys-
tems is growing rapidly. One recent addition has been
the nonlinear regulator of {1]. This solution allows the
control designer the flexibility of using either output
feedback or state feedback, permits disturbances to the
plant and does not require a well-defined relative de-
gree. However, it has been found, through simulation
studies, that this control scheme can be rendered in-
effective by the choice of seemingly benign initial con-
ditions. In what follows, we propose a means of aug-
menting the scheme that is provably convergent (lo-
cally) and, in simulations, displays an increased region
of effectiveness.

2 Problem Statement

We begin by reviewing the problem statement and so-
lution found in [1]. Consider the nonlinear composite
system

i o= f(z)+9(z)u+plz)w
~w = s(w) (1)
e = h(z)+q(w)

where z € U/ C R" is the state of the plant, w e W C
R? is the state of an (autonomous) exceystem, u € R™
and ¢ € R*. As usual, / and the columns of g and p
are assumed to.be smooth vector fields and A(z) is a

‘Research supported in part by the Army under grant ARO
DAAL-88-K0572, and NASA under grant NAG2-243.

smooth mapping on U. Also, s is a smooth vector field
and ¢(w) is a smooth mapping defined on W. Further,
it is assumed that f(0) = 0, s(0) = 0, h(0) =0, ¢(0) =
0 so that, for u = 0, the composite system (1) has
an equilibrium state (z,w) = (0,0) which yields zero.
error.

We focus on the following state feedback regulator
problem: Given a nonlinear system of the form (1),
find, if possible, a feedback u = a(z, w) such that

1. the equilibrium z = 0 of
z = f(z) + 9(z)a(z,0) (2)
is asymptotically stable in the ﬁys_t approximation.

2. there exists a neighborhood V C U x W of (0,0)
such that, for each initial condition (z(0), w(0)) €
V, the solution of the closed loop system satisfies

Jim (Az(1) + o(w(t))) = 0

For the solution to this problem in [1], the following
two hypotheses were made: -

(H1) the linear approximation of the plant discon-
nected from the exosystem is stabilizable. ¢

(H2) the point w = 0 is a stable equilibrium of the
exosystem, and there is an open neighborhood of the
point w = 0 in which every point is Poisson stable. In
short, this assumption implies that the eigenvalues
the linear approximation of the exosystem lie on the
imaginary axis.

The following solution to this problem was then de
veloped:

Theorem 2.1 (Byrnes, Isidori) Under Aypothere?
(K1) and (HE), the state feedback regulator problem ‘:
solvadle if and only if there exist C*(k 2 2) "“""z
2 = x(w), with 7(0) = 0 end u = e(w), with l0) 2
both defined in @ neighborhood W* C W of 0, setor
the conditions

§La(w)

h(x(w)) + o(w)

+ )
Lero )+ pletolle
0
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1. The proof relies on center manifold theory and
constructs a state feedback

u=alz,w) =c(w)+ K[z -o(vw)] (4)

that is shown to be a solution of the state feed-
back regulator problem. K is a matrix of feed-
back gains such that the eigenvalues of the linear
approximation of the plant (disconnected from the
exosystem) have negative real part. The manifold
z = x(w) is seen to be an error-zeroing manifold
that is rendered invariant by the control u = ¢(w).
Solving the state feedback regulator problem re-
duces to solving for the the mappings z = »(w)
and u = c(w).

«

2. A very useful observation was made in (2] that
these mapping could be approximated up to ar-
bitrary order and still achieve approximate track-
ing. This result also followed from center manifold
theory, (The same observation was made in (4] re-
garding a similar solution to this same problem.)
This observation makes actual application of the
nonlinear regulator theory more {easible.

‘Y

}  Augmenting the Solution

this section, we propose to augment the solution to
+ state feedback regulator problem given in [1}. We
s1n by motivating this augmentation with an appli-
“wn example initially studied in [3) and later in [2),
" 1nd {8).
‘onsider the well-known ball and beam example.
""1s dvnamic system can be modeled by

) 2

£ty = 2,23 - Gsin(zs)

Iy = z4 (5)
!'4 = u

v = h(z)=2z,

where z, is ball position, £ is ball velocity, z3 is the
Wigle of the beam, and 2z is the beam’s angular veloc-
1y (For a derivation of these equations, see (3. For all
of the simulation results mentioned in this paper, the
Acceleration due to gravity was taken to be the nor-
Malized value 1. The magnitude of the signal to track
s then relative to this normalized value.)

The task at hand is to cause the ball position z,

' (at least almost) track a sinusoid produced by the
"Xosystem

u'n = —AW:
v, = Au (6)
gw) = -w

As presented in (2], [4] and [5], approximating the
f“\mfold to either first or third order yielded nice ap-
' I"Yimate tracking results. However, as discovered in

" the region of attraction to this manifold could be

>

very small. Further, the region of attraction did not
seem to improve as the order of the approximation was
increased. The simulation results of section 4 spell this
out in more detail.

With this in mind, we propose augmenting the so-
lution to the state feedback regulator problem in the
following maanner. First consider the compasite system
in expanded form

z
W

Az 4+ Bu + Pu + ¢(2,w,v) 7
Sw + ¥(w) @

L ]

We retain hypothesis (H2) and modify hypothesis (H1)
in the following way:

(H1a) the pair (A4, B) is controllable.

Now augment the exosystem with the following dy-
namics

y Ay + BK,y+ BM(¢)y
é 0

fon

®

where y € Y CR*, ¢ € E C R™, and M(¢) is an
m x n matrix with smooth entries. We subject the
sugmented exosystem to the following hypotheses:

(H3) K, is such that all of the eigenvalues of (A +
BK,) have sero real part.

(H4) ¢(0) is chosen sufficiently small and such that
all of the eigenvalues of (A + BK, + BM(¢(0))) have
negative real part.

The initial conditions for y will be specified in the
foll[oining theorem which is analogous to the theorem
of {1}.

Theorem 3.1 Under hypotheses (H1s), (HE), (HS),
(H4), the state feedback regulator problem is solvadle if
there enst C*(k > 2) mappings z = Y(w,y,¢), with
¥(0,0,0) = 0 and u = d(w,y,¢), with d(0,0,0) = 0
both defined in a neighborhood W* x Y* x E* C W x
Y x E of 0 x 0 x 0, satisfying the conditions

$a(w) + §(Ay+ BK.y+ BM(qy) =
J(¥(w,y,¢)) + 9(¥(w,y, €))d(w, y, ¢) + p(¥(w,y, ))w

Av(w,y,€) + g(w) - A(y) =0
(9)

and Y(0) is such that |z(0) ~ ¥(w(0), y(0), €(0))} is snf-
ficiently small.

Proof The proof follows the proof of theorem 2.1.
Accordingly, assume the conditions (9) are satiafied
and consider as a possible solution the state feedback

a(z,w,y,¢) = dw,y,) + K[z - ¥(vw,4,9)

where all the eigenvalues of (A + BK) have negative
real part. The existence of a K such that this is true
follows from hypothesis (H1a). We now check that this
state feedback is a solution to the state feedback reg-
ulator problem. Requirement (i) is satisfied because
a(z,0,0,0) = Kz. From hypotheses (H2) and (H3),
the overall composite system can be transformed into




courdinates for which center manifold theory directly
applies. Since a(¥(w,y,€),w,y,¢) = d(w, y, ¢), by con-
struction z = Y(w,y, ¢) is such a manifold in the orig-
inal coordinates. Also, by (9), the error is given by

e(t) = h(z(t)) ~ h(¥(w,y,)) + h((t)

It follows from hypotheses (H2), (H4), the choice
of K and the triangular structure of the compos-
ite system that the point (z,w,y,¢) = (0,0,0,0) is
a stable equilibrium for the composite system. So,
for sufficiently small (2(0), w(0), (0), ¢(0)), the so-
lution (z(t), w(t), y(t),€(t)) remains in an arbitrar-
ily small neighborhood of (0,0,0,0) for all ¢ > 0.
(Notice =(0) and w(0) sufficiently small are provi-
sions from the problem statement, ¢(0) sufficiently
small follows from hypothesis (H3), and y(0) suffi-
ciently small follows from the choice of y(0) such that
j210) - v (w(0), y(0), €(0))| is sufficiently small together
with 2(0),w(0), and ¢(0) sufficiently small.) With this
stabity property, we can apply a property of center
marat s vielding there exist real numbers M > 0 and
g - such that

iw,y )0l < Mem*|2(0) - ¥(w, y, )OIl

! » v * 0 Finally, from the continuity of k, together

w +* *ypothesis (H4) and the fact that A(0) = 0, we

"y <o €(t) = 0. We conclude that this choice of

f+« t* v & solves the state feedback regulator problem.
Hemarks,

Yo

1 It manifold z = ¢(w, y,¢) is an error-zeroing
mamfold in the limit as y — 0. This manifold is
rendered invariant by the control u = d(w, y, ¢).

"o

Theoretically, in terms of regions of attraction, we
do not gain anything over the result in [1} be-
cause we are still dealing with fairly unspecified
local neighborhoods of the origin. However, the
tmproved simulation results in some instances are
quite striking.

3. The reason for the improved simulation perfor-
mance is that, with the additional y states we have
cteated an augmented error

ea(t) = h((1)) + g(w(1)) - M(u(1))

for which z = Y(w, y,¢) is an error-zeroing man-
ifold. By quickly regulating to the manifold z =
¥(w, y, ¢), the control steers the system slowly to
the original error-zeroing manifold z = x(w). Reg-
ulating tc the manifold z = Y(w,y,¢) is rela-
tively easy because the system trajectory neces-
sanly starts close to this manifold.

4 Examples and Simulations

In this section we begin by presenting an example that
clearly demonstrates the augmented solution proposed

NEE

Position (estanl snd Smired)
t

PYPy JUvwR "

i

' |

) d danad
EY a » A r) » B »
ume ()

Figure 1: Tracking Results - Standard Nonlinear Reg-
ulator for example 4.2. (The dotted line (lower) repre.
sents the desired output. The solid line represents the
actual output.)

here. Then we demonstrate the usefulness of this aug.
mented scheme on the ball and beam example. We pro-
vide simulation results that demonstrate this scheme’s
ability to handle a wider range of initial conditions in
the plant.

Example 4.1 Consider the system

fHy = i+n+zi+uw

fz = u

W = -uwg (10)

lbz = w

e = hz)+qw)=z-w
Augment the exosystem in the following manner:

o= n+wn

o= -~n-w-an-ah ()

¢ = 0

é2 = 0

with €1, €2 sufficiently small and ¢; > ¢3. We now solve
for the mapping r = Y(w,y,¢) and u = c(w,y () ¥
specified in theorem 3.1 and find:

Yi(w,y,0) = wmi+y ,
Vilw, ) = 2w -wp—-(wr+n)+n .
c(w, v ¢') = 2wp-w - 2(")] + yl)[yl +n -

-y - - an - a s

: o
Finally, we choose (y,(0),y2(0)) in a ne:ghbothw“
the point (y;,y3) given by

0) ~ wi(0)
2w+2wnmm+mw.

i =

V2

"
Example 4.2 Again consider the ball and beam * .

4
tem given in (5) and the exosystem (6). Aus™™

S

o,

RTXY




BV N
"'4%"".».;Lmnm-

Figure 2:. Tracking Results - Augmented Nonlinear
Regulator for exampie 4.2. (The dotted line (lower)

cepresents the original desired output. The solid line
represents the actual output.)

vosystem in the :llowing manner:

no= W

n = -Gps

h = W (13)
W =

ag + e2yn + aya + ey
& 0
- .th € sufficiently small and such that the equilib-
o point y = 0 is asymptotically stable. We cal-

lve a first order approximation to the mappings
< v(w,y,¢) and u = e(w, y, ¢)

' fl(v’y,[) = wi+y
i,y €) = -a\;u: +¥n
aeye) = &Auy 4+
roy€) = -é l’:vz fw
T = —FAw Oy + G + Gy + Gy

-ly, we choose y(0) in a neighborhood of the point
- diven by

v = 21(0) - wy(0)
v = 23(0) + Aung(0)
i = 23(0) - &2wy(0)
vi = 24(0) + 32 ws(0)

* " ~mulation purposes, in the original exosystem, we
YA = & w(0) = 15, and wy(0) = 0. Conse-
"3, the task is for the ball position, 2y, to track
“~t35t). (By way of reminder, we continue to use

, “Mnalized value G = |.)
,." oW compare the augmented scheme (using first
." Wproximations) to the original scheme (using
" for approximations). Observe that, with y = 0,
| 1 of theorem 3.1 reduce to ¥ and ¢ of theorem

"¢, we compare the control laws:

a(z,w) = eo(w) + K[z - x(w)) (14)

U

: 3 B 2 R & B &

b

P
>
D>

Figure 3: Tracking Error w.r.t. Augmented Trajectory
for example 4.2 )

snd
a(z,w,y,¢) =d(w,y,0)+ K[z - v(w,y,¢] (15)

where K rntabiiizen the pair (A, B). First consider the
control (14). Figure 1 shows the inability of this stan-
dard solution to regulate to the desired trajectory from
the initial conditions

2,(0)
22(0)
23(0)
24(0)

Now consider the control (15). Figure 2 shows the abil-
ity of the augmented solution to regulate to the desired
trajectory from the initial conditions

z,(0)
z3(0)
z3(0)
24(0)

Note that the initial error with respect to the original
desired output has been increased by a factor of 80.
Figure 3 shows the tracking error with respect to the
sugmented trajectory. Note that the small steady-state
tracking error is due to approximating the manifold to
first order.

5.5

(=~ I —

0

0 uuY

(=~ 3

5 Conclusion

In this paper, the nonlinear output regulation theory
of [1) was reviewed and applied to the ball and beam
example. It was found that for some desired tracking
signals, the region of attraction for the error-seroing
manifold was very small. An augmentation to the ex-
isting scheme was proposed to handle a larger range
of aitial conditions. The exosystem was augmented in




such a way that a new manifold could be calculated
which passed arbitrarily close to the initial conditions
of the plant and asymptotically decayed to the original
error-zeroing manifold. This augmented scheme was
demonstrated in simulations using the ball and beam
example.
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Robust and Adaptive Nonlinear Output Regulation *
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Abstract

The object of this paper is to prove the stability of
an adaptive control scheme designed to asymptotically
achieve output regulation for s class of nonlinear sys-
. tems. The solution proposed in {1} to the nonlinear
output regulation problem is reviewed and the robust.
ness of the solution to parametric uncertainty is ana-
lyzed. A standard adaptive scheme is then applied to
the problem and slowly-varying results are employed
to achieve asymptotic output regulation.

Keywords. Nonlinear Outout Regulation, Adap-
tive Control, Canter Manifold, Slowly-varying.

1 Introduction

The task at hand is to snalyze and account for pa-
rameter uncertainty in the nonlinear output regulation
problem. Recent work by Isidori and Byrnes (1] has
produced necessary and sufficient conditions for the
solvability of both the state feedback and output feed-
back regulator problem for a class of nonlinear systems.
In their work, the signals to track are restricted to those
that can be considered as the output of a Poisson stable
exosystem. Their analysis is based on the local prop-
erties of center manifolds. Using the work in [1} as a
point of reference, this paper will proceed to examine
the same problem in the presence of parameter uncer-
tainty. In section 2, we review the nonlinear regulator
theory and the solution developed in [1]. In section 3
we introduce parametric uncertainty to the problem.
In section 4 we lay the ground work for our adaptive
scheme by reviewing slowly-varying theory for nonlin-
ear systems. Finally, our adaptive scheme is developed
in section 5.

2 Nonlinear Regulator Theory

The subsequent discussion follows closely that of [1].

The class of systems that will be examined is those of
the form

[(2,6°) + g(2,6°)u + p(z,6°)w

h(z) (1

*Research supported in part by the Army under grant ARO
DAAL-88K0572, and NASA under grant NAG2-243.

I =

y

where w is the state of an (autonoraous) exosystem

(2)

For this system, we will begin by considering 6* € R? as
a vector of known parameters in order to review non.
linear regulator theory in the absence of uncertainty.
The control objective is to have the output track a ref-
erence signal that is the output of the exosystem and
given by —q(w(t)). The plant (1) is assumed to have
m inputs and o outputs. The state z of the plant is
defined on a neighborhood U of the origin in R". The
state w of the exosystem is defined on a neighborhood
W of the origin in R’. Further, f and the columnsof ¢
and p are assumed to be smooth vector fields and A(z)
is a smooth mapping on U. Also, s is a smooth vector
field and g(w) is 8 smooth mapping defined on W. The
composite system is then

v = s(w,8)

t = [(2,0°)+9(z,8)u+p(z,6)w
b = s(w,0°) )
e = h(z)+q(w)

Finally, it is assumed that f(0,)) = 0, s(0,:) = 0,
h(0) = 0, ¢(0) = 0 so that, for y = 0, the compos-
ite system (3) has an equilibrium state (z,w) = (0,0)
which yields zero error, independent of the value of #°+
For the state feedback regulator problem, we seck 3
state {eedback of the form

u=a(z,u,6°)
such that the closed loop system
f(2,0°) + 9(2,0%)a(z, w,0°) + p(z,6° v

s(z,0%)
h(z) + q(w)

e
4
exhibits some stability property and limy—oo €() = 0.
Follewing [1], we state the nonlinear state feedback reg:
ulator problem formally.
State Feedback Regulator Problem. Given 3
nonlinear system of the form (3), find, if possible, 3
feedback u = a(z, w,8") such that

1. the equilibriim z = 0 of

= f(2,0°) + 9(z,6%)a(z,0,8°) (5)
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18 asymptotically stable in the first approximation.
ie.

o2 11(2,0°)+ 5(2,8)a(2,0,6)lomo) C €.

2. there exists 8 neighborhood V C U x W of (0,0)
such that, for each initial condition (z(0), w(0)) €
V, the solution of the closed loop system satisfies

Jim (h(=(1) +a(u())) = 0

Under the following two hypotheses, statements con-
cerning the existence of a solution to the state feedback
regulator problem can be {ormulated:

(H1) the linear approximation of (5) is stabilizable.

(H2) the point w = 0 is & stable equilibrium of the
exosystem, and there is an open neighborhood of the
point w = 0 in which every point is Poisson stable. In
short, this assumption implies that the eigenvalues of
the linear approximation of the exosystem lie on the
imaginary axis,

Byrnes and Isidori state necessary and sufficient con-
ditions for the solution of the state {sedback regulator
problem.

Theorem 2.1 (Byrnes and Isidori)

Under hypotheses (H1) end (HE), the state feeddack
regulaior problem is solvable if and only 1f there ezist
C'(k > 2) meppings z == x(w,0*), with x(0,6°) = 0
ond u = c(w,6°), with ¢(0,6°) = 0, both defined in o
neighborhood W* C W of 0, satisfying the conditions

£ow,6)) = J(r,6)+p(x,0')0
g(x,0%)e(w,6°) 6
h(x(w,0*) +g(w) = 0

Remark. The proof relies on center manifold theory
and constructs a state feedback

uz=a(z,v,0%) = c(w,0°) + K*[z - #(w,8%)] (7)

that is shown to be a solution of the state feedback
regulator problem. K°* is a matrix of feedback gains
such that the eigenvalues of the linear approximation
of (5) have negative real part.

3 Parametric Uncertainty

To proceed with the discussion, 8° is now considered as
A vector of unknown parameters. Define the matrices

] 50

The following structural assumptions are now made

A 1 The pair (A*, B*) 1s stabilizable for all 8° in o
neighborhood of 6° .

-:\ 2 For ail 6* in a ball around 6, w = 0 1s @ sla-
Me equilibrium of the ezosystem, and there 1s an open

nrighborhood of the point w = 0 1n which every point
s Poisson stgble.

-

Before attempting to handle the uncertainties of the
plant and exosystem with adaptation, the question of
robustness is addressed. In this setting, a control is
formulated based on a model of the composite system,
given by

J(2,0°) + 9(2,6%)u + p(2,0°)w
o(w,6%) (8)
h(z) + q(w)

where §° is 8 fized estimate of §°. Assume the following:

A 3 The estimate @° lies in ball around 0°. This ball
is atleast such that the gains chosen to asymptotically
stabilize the linear approrimation of the model (discon.
necled from the egosystem) also asymptotically stabilise
tAe linesr approzimation of the actwal plant (discon.
nected from the ezosystem.)

z
v
e

A 4 For (8), the conditions anslogous to (§) are sat.
isfied by the C* mappings 2 = »(v,0°%), u = c(w,6°),
Jor all 8 allowed by assumption AS.

A 5 A certainty equivalence feedback law of the form
u=a(z,v,0) =c(w,6)+ K[z~ x(w,6*)] (9)

is epplied to the actual composite system (3), where K*
19 & matriz of gains that stabilizes the pair (A*, B*)
defined by

A= [ﬁ]--o.o- B* = g(0,6°).

The stability of the composite system with (9) as input
is now examined.

Theorem 3.1 (Bounded error manifold)

Under the assumptions (A]-A5), the composiie system
(3) with (9) as input Aas & center manifold a1 (0,0,6°),
the graph of ¢ mapping

z=¥(w,0°0")

defined in & neighborhood W xY C W xR? of (0,6°),
selisfying the condition

Bo(w,0) = f(V.0°)+p(V,0%)w
9(¥,0°) [e(w,8°) + K*(V - 7))
(10)
As a consequence, the solution (9) to the state feedback
regulator problem based on (8) yields dbounded tracking
error when applied to (3).

Sketch of Proof. First defined ¢ = 6° ~ 8° and re-
place 6° by ¢ + 8°. Next augment the exosystem with
¢ = 0. From the triangular structure and the assump-
tions concerning the eigenvalues of the plant discon-
nected from the exosystem, it follows that the closed
loop composite system can be transformed into coordi-
nates in which center manifold theory directly applies.
In the original coordinates, and replacing ¢ by 6° - 0°,
this manifold is the graph of mapping z = ¥(w,0°,0°)
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satisfying the condition (10). (see (2] for details of cen-
ter manifold theory.)

Finally, by assumption the point (2,w) = (0,0) is a
stable equilibrium of the closed loop composite system.
Under this condition, for sufficiently small (2(0), w(0)),
bounded tracking follows from center manifold theory
aad the continuity of A. O

Remarks:

1. The manifold ¥(w,$*,8°) is conceptual and will
not need to be calculated.

2. The preceding argument extends naturally to the
outp]ut feedback regulator problem also described
in (1).

4 Slowly-Varying Parameters

The question of robustness is now addressed, under the

added assumption that the parameters are allowed to

vary slowly. Consider the state defined by 2z = 2 ~

¥(w,8*,6°) for fixed 8° belonging to a compact set T'.
The dynamics of the state z are then

2 - V¥(w,6,6%)
J(2,0°) + 9(2,6%)a(z, w,8%) + p(2,0°)w
~J(¥,8°) - 9(V,6%)a(¥,w,8°) — p(¥,6°)w
F(z4%,¥,6°,6°)

(11)

From Theorem 3.1, for every #* € T, the equilibrium
point ¢ = 0 of (11) is uniformly asymptotically stable,
uniformly in the parameter 8°. Due to this property
that is uniform in the parameters, and the differentia-
bility of ¥, the system meets the requirements of the
following useful lemma formulated by Hoppensteadt (3]
and recently restated by Khalil,Kokotovic [4].

H

Lemma 4.1 (Hoppensteadt) There ezists ¢ Lys-
punov function W(z,8°,8°) such that

xy(lz)) S W(2,6°,6°) < xall2])
Wi(2,0°,0°)F(s+ 9. ¥,6°.0°) < ~xs(lzl)
Wae(2,0%,8°)] < e
We(2,008°)] €

(12)
forallz € B, = {: € R" : |z| < r} and (8°,0°) €
T x T, where £,(.), x2(.), xa(.) are strictly increasing
Junctions and ¢; and c; are nonnegalive conslants.

With this Lyapunov function in hand, the slowly-
varying analysis proceeds in the following way. Allow
6° to vary. The dynamucs of the state z are now

H z'-%%s(w,a‘)-g;’-.-ﬂ" .
Flz+¥,¥,6°0%) - -g;!.-O'

it u

(13)

Consider now the Lyapunov function of Lemma4 1 and
take its derivative along the trajectories of the system

(13).
W = Wit Wpb*
.= WiF+9, 9,000 4 (W,, _ 1y, o
W < =xalzl) +di}6°|
< —=x(W)+d;je|

where x = x3ox;' and d) = ¢, + casupp( MY '
show that 2 is stable for small |2(t,)} ang suilh .
small |6°] observe that theset D = {W < (q;; ..

invariant set under the condition

[6°] < x(x1(g))/dy

If |s(to)l < 53 (%1(q)) for any ¢ < r, then, frau, 1.
W(to) € D. Since D is invariant, (12) implies (., .
|2(t)] € ¢, V¢ 2 to. In addition, if @*,~ 0 as { - |
then |2(t)] ~ 0 as t — oo since W(z(t),8°(2), ) -.
as ¢ — co. Note that we can incorporate plant |,
rameter variations about 8* into variations of ¢+ .
example of such a variation might be a slowly-vary).,
exosystem.

Corollary 4.1 Under the assumptions (A1-A3: ) .
sufficiently small amitial conditions (2(0), w(0)).
stebility of the composite system (3) under the snpus .
is robust to plant and ezosystem parameter weriai, -
ihat are sufficiently slow snd stay sn & nerghborhoo. .
the nominal parameter valye 8°.

Proofl. Follows immediately from the previous lotui .
and discussion. O

The previous discussion is now applied to a gener:
indirect adaptive control scheme. Consider the con.
posite adaptive system,
Nz, 8°)+ g(2,6%)a(z,w,8) + p(2,6")w
#(w,0%)
Gz, w,8%1)
h(z) + ¢(w)

o e N

(15)

Corollary 4.2 Under the assumptions (A1-AS), for
sufficiently small 1nitial conditions (z(0), w(0)), the
stahilily of the composite system (3) under the input
(9) is robust to parameter varialions in the control law
that ere sufficiently slow and stay in a neighborhood
of the nominal plent parameter value 8*. Namely, the
stabslity of (15) is achieved if supi>,,IG(z, w. 6%, 1)} 1s
sufficiently small.

Remark. Because the parameter update law is a
function of z and 6°, some additional analysis will
be required to guarantee a sufficiently small bound on
sup>1,1G(z, w, 8%, 1))

Corollary 4.3 Under assumptions (A1-AS5), for (15),
Jor sufficiently small tatial conditions (2(0), w(0)) and
$upPe»1,|G(z, w,0°,t)| sufficiently small, 1f 8* converges
to some 0 then z converges to W(w,8,8°) and the steady
state error, e(t), of system (15) is bounded and given
by

h(¥(w.6,6%)) = h(x(u,6°))

- o— -
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of Thisisthecueofﬂ" —~ 0ast — oo and
M that (1) — 0 a8 £ — co. By definition of z,
to ¥(w,§,0°). Then by the continuity of
4 the stability of the com?ocite system, the o&eady
::; etror is bounded and given by A(¥(w,6,6°)) ~

[ g(u'."))~ o

lary 4.4 Under assymptions (A1.A5), for (15},
f:‘::ﬂi::ntly small initial conditions (2(0), w(0)) and

. MrelG(E ) 6*,t)| sufficiently small, if 8* converyes

1o #° then

L)
p:Owl

g oS erges

liMyeoe(t) =0

Proof. Here z converges to V(w,8°,6°). Observe that
#(x, 0, 0°) satisfies the same partial differential equa-
won as 7(w, §°) since ¥(w, 6°,6°) is the manifold made
savariant by the input (9) with 8* = 0°. Thus, from
the properties of center manifolds, z converges to the
s(w,0*) of Theorem 2.1. Then Theorem 2.1 implies
that lim~coe(t) = 0. O

Romark. Typically, it is not possible to guarantee
correct parameter convergence a priori without addi-
tional assumptions.

5 Adaptive Nonlinear Output
Regulation

The last result of the previous section suggested that
if an identifier could be constructed that guaranteed
# converges to §° then asymptotic tracking would be
guaranteed as well. However, as is known in the adap-
tive literature, guaranteeing parameter convergence a
priori requires additional assumptions. Rather than
take that approach here, a specific identifier will be
suggested that will result in asymptotic tracking. This
identifier is formulated in the mind-set of indirect adap-
tive control. Namely, an identifier is constructed to
estimate plant parameters and then these parameters
are used in a certainty equivalence control law. The
identifier used here is analogous to the observer-based
identifier found in [5).

Consider again the composite system (3) where 8°
is considered a constant but unknown parameter vec-
tor. The following standard assumption for adaptive
systems is made.

A 6 The vector fields f(z,0°) and s(w,8°) and the
columns of g(z,6") and p(z,0") have the following lin-
car parameter dependence;

](2.0‘) = Z.le 9:!,(2)
9,(2,0%) = 2:::0.‘9-.1(1’)
p(2.8%) = YOI ,6:p,(2)
s(w,0°) = 37,6 s(w)
where 67, i = 1,...,p are unknown paramelers, which

sppear linearly, and the smooth vector fields f,(z),
9:4(2), pv,(2), s,(w) are known.

Regressors are formed as

xr(z,w,u) = [fi(2) +915(2)u; + pra(2)uy,. ..,
Jo(2) + 9p.i(2)u; + ppa(z)wn]
xi(w) = [n(w),...,5(w)

where summation over j, k is implied. Consequently,
X7 (z,w,u) € R**? and xT(w) € R**” contain all of
the nonlinearities of the system. Now the composite
system can be written as

xI(z, w,u)®

2
xh(w)e.

In what foliows, the conventional notation for estimates
of unknown parameters, & will replace the previously
used 8°. To estimate the unknown parameters, the
following identifier system is used.

2 = O(2-2)+xT(z,w,u)f
v o= Q- w)+ xI(w)d
§ = —pxs(z,w,u)Ps(t = 2) = pxu (W) Pl - w)

(16)
Here 2, € R**", (), € R**? are Hurwitz matrices and
Py € R"*™ P, € R'** are positive definite symmetric
solutions to the Lyapunov equations

QTP. + P.ﬂ. = "'Inxu
QWP“+P'nw = -1.,.-

Finally, p is a small positive constant. Now, define
ts=2-2,¢6,=W—w and ¢ = 6=0°. Then t'
identifier error system becomes

b = e +x1(z,w,u)d
by = Duey +xl(w)é ("
¢ = —px,(z.w,u)P.c. - pXD(w)PUCI'-

Theorem 5.1 Under the assumptions (Al-A6), ' .+
sufficiently small initial conditions (z(0), w(0)), /.~
the composite system (3) under (adaptive) input (9
3p > 0 of the 1dentifier (16) such that

1. ¢ € Lo,

2 6,60 €L Ny,

S (2,w)€ L,

{ €:.6u € Lo,

5 liMico €2(1) = liMiee oo Eu(t) = 0,

6. limoe(t) = h(z(1)) + q(uw(t)) = 0.
Proof. Consider the Lyapunov function

Vi(es,cu.8) = pe] Pree + pePutu + 976 (18)

Taking the derivative of V along the trajectories of (17)
yields
V= -PCIC; - pezEw S 0
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Hence 0 < V(t) < V(0) for all t 2 0, so that

V,4,€s:6w € Loo- Since V is 3 positive, monotonically
decreasing function, the limit V(co) is well-defined and

o o
-/ Vdr=p/ (Tes + €5y )dr < 00
0 0

0 ‘h.‘ €e\lw € L’.

It is now shown that p can be chosen so that the
snalysis of section 4 holds. This will imply that z re-
mains bounded. Consider the parameter update law

b= = =pxa(2,0,4)Psts = Pxu(W)Pube

Since xs,Xw are smooth, w is bounded and ¢,, ¢, €
Lea, it follows that 3m > 0 and a atrictly incrensing
function x4(.) such that

181 < (e + wo(l21))

forallz€ B, = {: € R" : |5) < 7). Then for the Lya-
punov function of section (4), equation (14) becomes

W S —xs(lz) +dilh]
< =xs(lz]) + dip(m + xa(l2])
S =x(W)+ pdixs(W) + pdym

where & = x3 ox," and x5 = x4 on"‘. Now pick p,
sufficiently small such that (x = p,dyxg)(.) is & strictly
increasing function of W. Define k¢ = (x — pody«s).
Then .

W < =~xe(W) +pdym

for all p < py. Now observe that the set D = (W <
x1(q)} for any ¢ < r is an invariant set if

p < ne(x1(g))/(dim) = py

Hence, if p is chosen such that p < min{p,,p;} then
D is an invariant set. Finally, if |s(to)l € x5 (x1(¢)),
then from (12) W(to) € D. Since D is invariant (12)
implies that }z(2)] < ¢ for all t > to.

Because z is bounded and w is bounded by as
sumption, z is bounded. Since 2z, w are bounded,
Xs{2,w, u), xo(w) are bounded. This implies é;, &,
are bounded. Since ¢;,é,,6u.80 € Lo and &,;,¢, €
La, iMoo €5 = limjcow = 0.

Finally, the convergence of the tracking error is
proved. Return to the Lyapunov function of (18).
The nontrivial trajectories corresponding to V = 0 are
given by the set

S= {(‘n‘w‘¢):

€ = 0,6 = 0,x7(2,w,u)¢ = 0, xI(w)é = 0)
From the definition of ¢, trajectories in this set are
such that
X1 (2, w,u)8°
xI(w)e

xT(z,w,u)f

xD(w)d (19)

From Theorem 3.1, W(w, §,9°) satisfies the condition

v .
-a-;xz(w)ﬁ' = xT(W(w,6,6%), w,u)0*  (20)

Further, by assumption (A5), #(w, §) satisfie, .
dition ox ’
FoXe (0 = X7 (x(w.6),w,u)

From (19), x(w, §) also satisfies

-g-;:;xZ(w)o‘ =x;(r(wd) v |

Now, liMyeese €5 = liMyesco € = 0 implies lim, . .
0. So from Corollary 4.3, z converges to ¥(y . .-
Now since ¥(w, §) satisfies the same manifold cqu ..
. O(w,‘."). the properties of center manifolds ;.
that z converges to *(w,d). From assumption ( ",
¢(w) = =h(x(w,#)). Then, from the continuity of .,

liMiese e(t) = limyeo A(2(2)) + g(uw(t))
= JiMyeco A(2(t)) = A(7(w,6)) = |
(9]

6 Conclusion

This paper has analyzed the dynamics of a systen v,
parameter uncertainties in the setting of nonlinear .,
ulation. For small initial conditions, the nonlinear 1. .
ulator solutions were shown to be robust to pari.
eter uncertainties and to slowly-varying paramet.:.
The adaptive nonlinear reguiator solution was cast 1.
this slowly-vurying framework. It was shown then t..:
there exists an identifier with sufficiently small gau.
that, in conjurction with a certainty equivalence con.
trol law, yielded zero error tracking in the limit.
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Abstract

Jhis paper discusses two schemes for the tracking con-
ot MIMO systems with parametric uncertainty in

. ynamics. The first approach is en adaptive ver-
‘¢ statsc feedback law for tracking control based

e results on asymptoi.. model matching recently

«od 1 ([DB90b), [DB90a]). The second approach
+Japlive version of a dynamic precompensation

DM87)).

1 Introduction

© +nt years, there has been a great deal of research
t n the adaptive control of nonlinear systems.
I+« research has been primanly focused on SISO sys.
trtu~ and some notable contributions are ([KKM89],
IN\KB9), [S189), [PP8Y)).
lu thus paper, we consider a general MIMO nonlinear
system P of the form

=

y:

[(z) +9(2)u
Mz) (1)
where z(t) € X, an open connected subset of R™, u(t) €
R™, y(t) € R?. Further we will assume that f and the
columns of ¢, namely g;, are analytic vector fields on
g" and the functions h, are real analytic functions on
n

Our results on nonadaptive tracking using static feed-
back for general MIMO nonlinear systems is a by prod-
uct of the results of ([DB90b], [CDB90]) but have not
appeared 1n the literature, to our knowledge. The re-
sults on adaptive asymptotic tracking by dynamic pre-
compensation may be viewed as being in the spirit of
([S189]). We also discuss schemes for adaptive tracking
using static state feedback and the general problem of
adaptive model reference control for MIMO nonlinear
systems. No proofs are given in this paper; they are
however available in ([DBS91}).

*Research supported in part by a McKay lecturersiup held at
Berheley in September 1990

'Re_search supported in part by ARO under grant DAAL-
5500572 and NASA under grant NAG 2.243

2 SISO Adaptive Linearization

We recall some resuits from ([SI89]) to allow for a bet.
ter understanding of the differences with respect to the
MIMO situation illustrated in Section 3.
Consider the system (1) with one input and one out.
put. Let zo be an equilibrium point of the undriven
system, that is f(zg) = 0 and that the output is
zero at 2o, i.e. h(zo) = 0. We will assume that the
system (1) has strict relative degree v at 2 ([1i89)).
One can then choose a new set of coordinates given
by & = h(z).& = Lyh(z),....& = L} 'h(z) and
n € R™=7 such that dn; ¢ % 0. In these coordinates,
the system (1) takes a ‘normal form’ which reveals the
zero dynamics to be of the following form
n=q(0,n) 3]

with n € R*~7. The zero dynamics is said to be ezpo-
nenttally attractive to a large ball in X if the following
equation holds:

n" 4(0,n) < —alni® for |n| 2R @)
The zero dynamics satisfies a conac continuity condifion
in £ uniformly in 9 if

lg(€,n) - o(0, n)| < K¢

It may be verified using a converse Lyapunov argument
(as in ([SI89])) that asymptotic tracking with bounded
states can be obtained if the system is ezponentially
attractive with conic conlinuity.

The preceding result has been critically examined in
the literature but it has not been appreciated that the
condition of (4) is not a global Lipschitz condition o8
the function q.

Now, for adaptive tracking, assume that the vectof
fields f,¢ in (1) and the function h in (1) are u*
known but may be parameterized linearly by parame:
ters 6° € R' in the form

fz,6°)= T, 0:4(2)
9(z.6°) = Y., 6 0(z)
h(z.6°)= Y., 0 hiz)

(4)

(%)
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auuwn lunctions ot z. In the equation (5) above, it
follows that, if some of the 6, are known, they are re-
placed by their values The linearizing control laws
of the previous section are replaced by their estimates
depending on the current estimate §(t) of 6° in accor-
dance with a heuristic known as the certainty equiva-
lence principle. Thus if the "true” system is known lo
have relative degree v then the control law is given by

um e (-LjWD)+3)  (6)
L,L} " h(z)

Here L,L}™'h(z), L]h(z) stand for the estimates of
L,L}"‘h(z),L}h(z) derived by first expressing these
function in terms of the known vector fields /,, g, and
known functions A; and multilinear products of the
form 6, ...0m and then replacing the multilinear prod-
st by an estimate of the form 6; . ..6y. We define the
multifinear product as a new parameter and estimate
i ¢ stands for the estimate of the tracking control law
Jven by

v= gy +ar(Ult = L) R) 4 ag(yar = B)

“wite that all the L} h{=) are multilinear functions of 8.
“imsequently, if one defines © € RY to be the vector
ol multilinear products of the 6, up to terms of

‘tee 7, 1t follows that the control law of (6) is affine
) Defining the parameter ercor in © to be & =
)* and the output error to be ¢ = y ~ yas, an easy

. 'tlation yields that
Trae’ o tage=dTW(2,0) )

“wme appropriately defined W(z,0) € RE. Define
uodei) transfer function

)

M(s) =
ST+as7 4o +ay

(8)
L an augmented err:: ¢, to be

e+ (OT ()M ()W (2,0) - M(s)OT ()W (2,8))

(9)
" rombining (7) with (9) yields

ey = OTM(s)W(z,0) (10)

‘onvenient to denote the filtered regressor
Yy (—)) by

Wi(z,0) := M(s)W(z,©)

“ tem 2.1 Adaptive Tracking
“1 the system of (1) with the vector fields f,g
function h parameterszed as w (5). Assume
irtem can be globally converted wnto normal
rlinates on X. Further assume that the zero
[ the system are exponentially attractine

+ eewe vy gy wss dutia]Y HiE COMIC CORLInuily condi-
tions of ({). Also, assume that the regressor W(z,0)
has bounded dersvatives in both tts arguments.

Then given a bounded trajectory ypy with first y - 1
derivatsves all bounded it follows that the control law
of (6) uith the parameter update law

Wyey

e=¢=_l+WliW1

(1)
yields bounded tracking, i.c. y(t) — ya(t) with all the
states = bounded, provided that the stale trajectory is
confined to X.

Remarks:

1. The parameter update law is specified for O. This
neglects the muitilinear dependence of terms in-
side the vector. However, this is necessitated by
the lack of a systematic theory of nonlinear pa.
rameter estimation or identification.

2. Given the form of the linear error equation, there
is & large choice available to us for parameter up-
date laws. We choose the normalized gradient type
algorithm of (11) here for reasons of brevity but we
hasten to add that several other normalized algo-
rithms (such as the normalized least squares) will
do as well {see ([SB89)).

3 MIMO Systems
3.1 Tracking by Static State Feedback

Consider the plant P to be a square, nonlinear plant
of the form (1). It is uscful to derive the tracking re-
‘sults as & special case of inodel matching results, con-
sequently we consider a mcdel M of the same form
as the plant with state 2 € Xy open C R™ and
with f,9,h replaced by [far,gar,har. We will need
to assume that the [,g, far.gm are analylic vector
fields and that A, Ay are analytic functions. Define
G(z) := span{g1(2), . ... gm(2)} (over the ring of ana-
lytic functions) and assume that the dimension of the
distribution G is m for all z € X. The notation yas(t)
is used to mean the output of the model starting from
state zg at 0 if there is no need to highlight the depen-
dence on the initial state.

An extended system EF is associated with the plant
and model as follows:

28 = fE(2F) 4 §(zE)u + p(zE)v

vE = hE(zF)

with state (28)7 := (27,:7) € X x Xp, inputs u,v
and

(12)

ren={ JO) L= 5]

0

I.J(IE) - [ anl(2) } 'he(ze) = h{z) - har(2)




)
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Further define

9% (z5) = [§(=®) #(=®)]
Also, define the dynamical system with state =€ input
u and output y€ described by the triple (fE,3,hE) to
be £. Now, consider a point z5 = (2o, z0) which is an
equilibrium point of fE and also produces zero output
for the system L, i.e.

fE(=5) =0 hE(zg) =0

Now, assume that )

Assumption Al : (Regularity of L)

z§ is a regular point for the zero dynamics algorithm
applied to £ (regular in the sense of ((si89], page 304).
Actually, the assumption Al is a sufficient condition
in order to apply the zero dynamics algorithm to the
system £ around z§. Let M, denote the submanifold
defined at step k of the algorithm and M* denote the
zero dynamics manifold obtained at the conclusion of
the algorithm; there further exists a unique smooth
control ug * M* — R™ so0 as to make M* invariant,
ie. FF(zE) + §(zF)uo is tangent to M". The vector
field FE(zE) + §(z€)uo restricted to M* is referred to
as the zero dynamics of £. It can also be shown that
M* can be expressed in a neighborhood of z§ as

M* = {:E €EXx Xp: H'(:E) = 0}
for some function H*. The following theorem uses
the procedure of the zero dynamics algorithm to soive

the model matching problem as follows ((DB90a],
(CDB90)):

Theorem 3.1 Stable Model Matching
Consider the sysiem of (12) and assume that there ez-
ists an 2§ such that

1. Al holds,
2. £ 1s minimum phase at z§, and

3. span {p(zF)} C T.eMe+ span {§(zF)} n o
nesghborhood of € 1n My, for all k > 0.

Then, there ezist neighborhoods U of zo and Upy of 20
and an integer v such that the compensator Q defined
by
x= a(x,z)+b(x.2)v (13)
u= c(x,z)+d(x, )
for appropriately defined analytic a,b,c.d and x € R”
and a function F : U x Uy — RY and L € Ry such
that
) If v(t) = O then the point (2o, X0 := F(Z0,20)) 18
an asympiotically stable equihbrium point of the closed
loop Po Q, 1.e. of the system

t= f(z)+g(z)e(z.x)
x= a(x,7)

b) Iffe()i < L jor allt > 0 then
hm y"o%(z, Fz.2).t) - ym(:.) = 0

forall(z.2)e U x Un

Remarks:

1. In view of the propositions of ([Isi8y;,
pendix B.2) the fulfiliment of (a) above .., .
tees that, given ¢ > 0, there exist 6/ .,
that if {(z(0), x(O))| < & and [v()| < A,
I(=z(t), x(t))} < ¢ for all t > 0.

2. The proof of the preceding theorem in tlic ;.
mentioned references is constructive and the ...,
pensator may be shown to be of the form

x= fu(x)+9m(x)v
uz= u(x,z,v) (1

initialized at xo = 20, i.e. Xo = F(zo0,20) = 2y A.
a consequence, we have that x(t) = z(t) and oy
may define the control law in terms of z€ aly,.
rather than z,x,z as

u(zf,v) = v (2F, v) + MV (2B) R A (2F) (13,

where M(zE) € R™*™ := dH*(zF)§(zF) and
u*(2E, v) := ug(z%) + v (z€)v is the unique solu-
tion u of the equation

dH* (zB)(fE(2F) + 3(2F)u + p(zF)v) = 0
so that
vo(z®) = M~ (2E)dH* (cF) FE(2F)
and
uy(28) = M~V (2B)dH* (25)p(=F)

Further ' € R™*™ is chosen to stabilize part of
the system dynamics as specified below.

Let zo (respectively z§) be an equilibrium point of
P (respectively £) such that h(zg) = 0 (respectively
h(zf) = 0). Then, the following assumptions aie
equivalent, .
Assumption A1’ : (Strong Regularity of )

¥ 15 right-invertible and (z5.y% = 0) 1s a strongly
regular pair for L (strongly regular in the sense of
(DBG90}).

Assumption A2 : (Strong Regularity of P)

P is right-invertible and (2o, y = 0) 15 a strongly regulai
pair for P.

Weaker assumptions than A2, e g the regulanty hy-
pothesis of (Isi189]), p. 302 are also sufficient for our
purposes. The implications of these assumptions are
discussed in ([DBS91}). It is shown in ((DB90b]) that
if the hypothesis Al of Theorem 3.1 is replaced by
the assumption A2 above, then one can construct a
local change of coordinates (£,n,2') = ¥(z,2) with
2=z -20,¥%z0,20)=0and §{ = H*(z,z) such that
the plant with the controller of equation (14) has the
form

AE+q(€ 0. ') +pi(€,n 2

(' + 20) + gm(2' + 20)v (16)
w(E.n )+ (€. n

e .

P

© @ TINEE IH tL eg -
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The dependence of the matrices Wy, W3 on the data,
and for that matter on W, above, is involved. The
equations (24) are affine in § as & consequence of the
linear parameterization of the control law by the un-
known parameter ©.

We are not as yet able to give a stability proof for a
parameter update law derived on the basis of a com-
posite Lyapunov function involving ti.e system of equa-
tion (24) and an equation for . However, there 1s one
important special case for which an adaptive scheme
can be derived and this is the case when the function
¢1 £0. It can be shown from Theorem 4.2 on page 272
of (Isi89] that this assumption is satisfied if the plant
P can be linearized by static state feedback. This con-
dition is slightly weaker than the condition that P has
vector relative degree (in which case it can be both
linearized and decoupled by static state feedback)

Theorem 3.3 Static State Feedback Adaptive
Tracking

Consider the system of (21) and the model of (19)
with the assumption that ¢y(€,n,2') = 0 Assume
that A£ above holds and that P is egponentially
attracttve on X.  Also assume that the veclor
fields ¥(€,n,7'),¢(&.n,2'), Wa(€,n,®,v,8) are Lips.
chitz continuous sn therr variables on X x Xy x R™ x
K. Further, assume that Wy has bounded derivatives
with respect to their arguments.

Then, under reparameterization with the control law of
(23), assume that the system can be ezpressed as in
equation (24).

Then there exsts a choice of parameter updaie
law for @ such that the control law of (23)
yields asymptotic tracking, with dounded siates when
supiso(lua (.. Ivhr (D)) < & and |zl [8(0)f <
6 and the trajectory of 25 € X x Xpe. The proof of
the iheorem construcis the parameter update low.

3.3 Adaptive Tracking by Dynamic
State Feedhaclk

We now turn our attention to tracking by dynamic
state feedback. Several algorithms have been proposed
in the literature for this problem and we now recall the
one of ([DM87]). We change notation slightly to refer
to the process Pas £y. Set k=0 and 2* = .

Step 1 Let r, be the relative degree of the i th output
of Zs. Define the decoupling matrix A(z) to have its
ij th entry

ay(2) = L, L;“‘h.(:)

and denote its normal or generic rank by s¢. llsy = m,
stop.

Step 2 If sy < m, assume that the first 5, rows of
A(z) are hnearly independent at each point of an open,
dense subset of X (this can always be achieved by a
permutation of the components of the output). Apply
the static state feedback

u=aelz) + B(z)v (25)

with oy, B¢ analytic functions of z such 1,
coupling matrix of £, with the contro Jaw . ¢

the form
Il. N3,
mm=[Mng]

Step 3 There exist ¢; columns of A;(z) (.
of gencrality the first g ) with two or more T
ements Put an integrator in series with i cory.
ing input channels, i.e. define the dynanc . ;.
of £y composed with (25) as

('.zv.v

fort=1, .. qu. Let Tayy be the new system o1,
by composing &4 with (25) and (26) and retur, 1
Iwithk —k+1and 2* — {2*} U{(¢)

I the oniginal system is right-invertible, then th P
dure converges in a finite number of steps 1o « Ny
densted L¢, having vector relative degree (rs,

Let (f°.g*,h*) be the triple characterizing ©*
(2,€) its state, u* its input and y* its output «
struct a local change of coordinates ¢{z¢) = &y v
£ = col(§,) by setting

&= col (hi(2*),Lyohi(z*),.., LA he(ar .
= col (fi'fi- v »ﬂ:)

and using some complementary coordinates n ‘Il
Z* takes the standard form ([Isi89), pg. 240):

n= ql€,n) +p(€,n)u’
§i= &

o1 = e
re= H(n)+ Z;":x ay, (€, n)u;

= §
fori=1,....mand af,(£,n) = Lys L} he(¢~1(£,m))
for i S 1,7 < mand b5(€,n) = LEAS(S71(E ) ton
1 <4< m At this point, asymptotic tracking may be

obtained by applying the following control law:

u‘=(A‘)"’l(-b‘+ ) i
¥ +°ll(y)'\;x.lfr’;-1)+"'+011r;(!lm -

i
- -} my
y;lm"'aml(y;(m ~€a-l)+"'+°mr;(yﬂlnl"Sl’) 2

where the polynomials s + a,15"' =1 4 .. 4 a,,¢ are
all Hurwitz '
Prior Information for Adaptive Control

One assumes that the true system is right wvertible
Now, the variables A®, 4%, € are all functions of the
unknown paramewer §*. The functions ay, B; are func-
tions of 8*. To estimate these one needs knowledge
of the relative degrees of the system £, at every step
in the procedure above and in particular, the vectos
telative degree of the system £¢ namely (r$,.. ,r%)
Also, the mtegers 5;,q: representing the ranh of rl
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where the matrix A is rendered Hurwitz by appropriate
chouce of K in (15). The states § contain in particu-
jar the output errors as some of their entries. Also
the functions i and p; satisfy some extra conditions,

aamely ’
' 9
QI(O,".Z ) = 0 —0—61(0'0'0) = 0
and

7(0,n,2)=0

Further, the dynamical system

Im(2 + 20)
¥(0,n, z')

2!

3 (17)

tepresents the zero dynamics of £ and the system
7 = ¥(0,n,0)

represents the zero dynamics of P. The zero dynamics
manifold of £ is now given by

M*={(&n)]E=0)

The form (17) of the zero dynamics of the system £
shows that it is minimum phase if the zero dynamics of
P and the undriven model dynamics are asymptotically
stable. In fact, the decomposition (16) can be used
to extend the proof of Theorem 3.1 to cover the case
where, instead of assuming the asymptotic stability of
the zero dynamics of £, one assumes that the variables
z' are bounded by a sufficiently small constant and that
the zero dynamics of P is asymptotically stable. This
can then be usefully applied to solve trajectory track-
ing as a special case of the model matching problem
in which the desired trajectory yu is generated by a
model consisting of chains of integrators driven by the
appropriate derivatives of the yas;. More precisely, de-
fine y, to be the essential order of the i th output of the
plant y; as defined in ((GM89]). Then define the model
to be matched to have state z = col(z,,i = 1,. ,m)
with dynamics

(18)

3 =2
Hn= 43
(19)
Zy, =y
YMe = 2
The model satisfies the third hypothesis of Theorem 3.1

by the definition of the u, and cotresponds to y(“;:) =

vi. Define 4 = maxy,.

Theorem 3.2 MIMO Asymptotic Tracking
Assume that A2 above holds and that P ts minimum
phase at zo. Then, there ezist constants 6,,6; and a
compensator Q of the form

-1 -]
LY Rt

(20)

u=c(T,yar ym, - y+d(z. ym, 9n. -

such that

1319

1. Ifym(t) = O the closed loop system PoQ 1s asymp.
totically stable with equilibrium point z.

2. When wp»o(!w(i)l.---.Ivﬁ‘,"(t)l) < &; and
|zol < 82 then

Jim yP*9(0) = ym (1)

3.2 Adaptive Static State Feedback
Tracking

In this section we consider models of the form of equa-
tion (1) with the added feature that the dynamics
of the plant depend on certain unknown parameters
0°€Rie

t= fl2,0°)+ g9(2,0")u

y= h(z.8%) (21)

The assumption A2 of the previous section is assumed
to hold for the true value of the plant parameter. Car-
rying forward the dependence on 8 through the deriva-
tion of the tracking control law will yield the manifold
H*(2%,8°) and the control law of (15), namely

u(zf,v,0°) := u'(zf,v,0°)+ M~ (2 0°) KA (2E,6°)
(22)
The prior information needed for adaptive control is
as follows: one assumes that at each step of the zero-
dynamics algorithm modified as described above for
stable model matching, the manifold M d wcribed as
the zero set of the functions H(z%, ) satisfies the con-
dition that
dﬂk(:svo)g(zsuo)

bas a left null space of constant dimension as a function
of 8. This is a sort of regularity hypothesis on the plant
as a function of §. Note that the model is assumed to be
known and independent of #. Since, the parameter 6*
is assumed unknown, we will replace it by its estimate
at time ¢, denoted 6(t). Further, we will assume that
the control law can be linearlyparameterized as

u(zf,v,0°) = a(zf,v) + Wy (z5,v,6°)0°

for an appropriately defined matrix W,(z€,v) € R™**

and parameter vector ©* € Rf. Actually both @ and
W, are affinein v. As a consequence the adaptive model
matching control law is given by

u(zE, v, 8(t)) := u(zf, v) + Wy (zF,0,6)0(1) (23)

Denoting the parameter error ¢ = O(t) - ©° € R* we
may use the control law of (23) in the system of (21)
to yield the following modification of (16) (note the
non-existence of p; in particular, caused by the special
choice of model).

_f‘ = Af+qnd)+ W& n, zllv-é)¢

= fu(2 + 20) + gar(2' + 20)v .

1= Y n)+ o0 )v+ Wil n 2 v.0)¢
(24)
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The adaptive control law follows by replacing © by
v so that by using the certainty equivalence control
A« a consequence, the normal form equation (27) are
modifed to have regressor vectors wj(z*,0) possibly
at every entry corresponding to the mismatch between
© and ©°  Thus the error equations for the tracking
ertors & = Yi — YMi are siven by

oz Mj(sui(z. 0 +...+
Mr':-t(l)wi:-l(:', o) + Mo (s)ups (2, o)

uis information it is possible to compute oy, fi
As in the SISO case, we will assume

[EX Y

where

T e T2 boypey
M{ = 24 LY} *
Vrdane s ¢ 4o,
: (28)
M. = v vk
" sTidage T e +ay.

Note that all the transfer functions M,‘ are proper, sta-
ble transfer functions. We define the augmented error
to be

ew= e+ (Mils)uh)O) - Mila)(wib()
o (M (a)uha )O(E) = Mis(a)(us O(1)

[t 15 easy to see that the augmented ertor is of the form
en = Wi(z*,0)¢ (29)

where

Wi(z*,0) = Mj(s)w}(2*,0) + - + Mi.(s)u'.(2*,8)
is a filtered regressor. Note the resemblance of this
error equation to that in the SISO case.

Under the same hypothesis as in Theorem 2.1 the same
conclusions hold. There is however one difference in the
proof from the SISO case, namely that the zero dynam-
ics are indeed driven by the input u* in the MIMO case.
As a consequence, as in the case of the proof of Theo-
rem 3.3 we need to insist that the initial conditions of
the states z¢, the initial parameter error ®(0) and the
tracking output yp and their appropriate derivatives
are small enough.
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Adaptive Linearization and Model Reference
Control of a Class of MIMO Nonlinear Systems
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Abstract

This paper discusses two schemes for the adaptive control of classes of MIMO
nonlinear systems with parametric uncertainty in their dynamics. First, the problem
of tracking a reference trajectory is considered and an adaptive version of the input-
output decoupling algorithm of [DM87] for general right invertible MIMO systems
is proposed. Then on the basis of some results of [DB90a), [DB90b] on asymptotic
model matching, a scheme is presented for Model Reference Adaptive Control and a
solution is given for input-output linearizable systems. Moreover, the non-adaptive
model matching results are extended to yield a solution to the problem of tracking by
static state feedback.

1 Introduction

In recent years there has been a great deal of research effort in the adaptive control of
nonlinear systems. This research has been primarily focused on SISO systems for which
there exist, broadly speaking, three types of approaches: those relying on the existence of
certain matching or structural conditions for the location of the unknown parameters (see
for example [KKM89], [TKMK89] and [KKM91}), the second relying on certain assumptions
on the type of the nonlinearities in the plant (see for example, [SI89], (NA8S], [KTKS91))

*Research supported in part by a McKay lecturership held at Berkeley in September 1990.
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SINGULARLY PERTURBED ZERO DYNAMICS
OF NONLINEAR SYSTEMS

A. Isidori* S. S. Sastry!
Universitad di Roma, Rome, Italy University of California
and Washington University, St. Louis Berkeley, California
P. V. Kokotovi¢ * C. L. Byrnes!
University of Illinois Washington University
Urbana-Champaign, Illinois St. Louis, Missouri
Abstract

Stability properties of zero dynamics are among the crucial input.output proper-
ties of both linear and nonlinear systems. Unstable, or “non-minimum phase”, zero
dynamics are a major obstacle to input-output linearization and high gain designs. An
analysis of the effects of regular perturbations in system equations on zero dynamics
shows that, whenever a perturbation decreases the system's relative degree, it man-
ifests itself as a singular perturbation of zero dynamics. Conditions are given under
which the zero dynamics evolve in two timescales characteristic of a standard singular
perturbarion form that allows a separate analysis of slow and fast parts of the zero
dynamics. The slow part is shown to be identical to the zero dynamics of the unper-
turbed system, while the fast part, represented by the so called boundary layer system,
describes the effects of perturbations.
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Indirect Adaptive Nonlinear Control of
Induction Motors *

Raja R. Kadiyala

Department of Electrical Engineering
and Computer Science
207-59 Cory Hall
University of California
Berkeley, CA 94720

NOLCOSS 1992

Abstract

An indirect adaptive control law based on certainty equivalence
is designed for a model of the induction motor with the as.amption
that the magnetic subsystem is linear. This nonlinear rzzicol law ren-
ders the induction motor system input-output linear and also achieves
input-output decoupling. In addition, we find for the specific case of
the induction motor we are able to prove parameter convergence and
asymptotic tracking of a reference traiectory using the indirect adap-
tive controller. This result differs from the generic case where we can
only show asymptotic tracking. The indirect adaptive coatrol method-
ology also does not suffer from the drawback of overparameterization
as in the direct adaptive control technique. Simulations are also given
comparing nonadaptive, direct adaptive, and indirect adaptive non-
linear controllers.
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AP_ LIN: A Tool Box for Approximate
‘ Linearization of Nonlinear Systems *

Raja R. Kadiyala

Department of Electrical Engineering
and Computer Science
207-59 Cory Hall
University of California
Berkeley, CA 94720

CACSD 1992

Abstract

A toolbox for nonlinear control system design is presented. This
package contains modules to approximate systems to polynomials sys-
tems of arbitrary order and then render them input-output linear or
input-state linear with arbitrary order error terms. We also discuse
possibilities for real-time control.
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Generalized Matching Conditions For

Sliding Mode Control Of Perturbed
Nonlinear Systems
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In this paper we present matching conditions for output regulation for four
major classes of perturbed nonlinear systems controlled via the method of
exact linearization utilizing the sliding mode control methodology. The sys-
tems considered are single input single output (SISO) systems with perturbed
zero dynamics, multiple input multiple output (MIMO) systems with well de-
fined vector relative degree, left invertible MIMO systems decoupled using
the zero dynamics algorithm, right invertible MIMO systems decoupled using
the dynamic extensica inethod.
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