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On this grant we made major progress in three areas:

1. Adaptive Control of Nonlinear Systems
2. Approximate Linearization (by state feedback) of nonlinear systems
3. Software tools for CAD of nonlinear control

Adaptive Control of Nonlinear Systems: In this work, we extended our previous
work on direct adaptive control of Single Input Single Output nonlinear systems to
schemes for adaptive identification, indirect adaptive control and also adaptive model
matching of Multi Input Multi Output nonlinear systems. We also studied adaptive ver-
sions of the nonlinear regulator.

Approximate Linearization (by state feedback) of nonlinear systems: While
the full set of conditions for input-output linearization of a nonlinear system by state
feedback have been given in the literature, the question of how to proceed when the
conditions follow slightly short of being met have not been answered. For example,
input-output linearization hinges on a certain set of regularity conditions (existence of
relative degree in the SISO case) and minimum phase conditions being met by the
plant. If the plant is not regular and is slightly nonminimum phase the techniques of
input-output linearization need to be modified. We discussed these techniques in the
context of flight control and also other examples, for instance, the ball and beam sys-
tem. This in turn led to a deeper understanding of the structure of the zero dynamics
of a nonlinear system and their structure under perturbation.

CAD tools for nonlinear controller design: We have developed a set of CAD
tools for linearization and approximate linearization of nonlinear systems using spline
software which operates in real time and is capable of accepting nonlinear system
description in numeric, tabular or functional form. A usev interface is being written and
it is being tried out on several examples.



Final Report for ARO Grant
DAAL 88 -K - 0106

Prof. S. S. Sastry

In the years of this grant, of the students supported on the grant I have
had two Ph. D., dissertations (S. Behtash and J. Hauser), two M. S. Plan I1
reports (R. Kadiyala and A. Teel) completed and three Ph. D. dissertations
are nearing completion (R. Kadiyala, A. Pradeep and A. Teel, all expect to
graduate between January and June 1992). The grant has enabled the PI to
switch my focus from linear adaptive control, which was the work supported
by the previous ARO grant to me, ARO DAAG 85-K-0572, to several areas
of nonlinear and adaptive control and more recently to the development of
CAD tools for nonlinear control systems design, a project which continues
with the newest ARO grant DAAL 03-91-G-0171. We have made several
trips to the US Army Ordinance Research Center at Picatinny Arsennal, NJ
and have set up a good working relationship with the group of Dr. Norman
Coleman and a design project in fire control for Apache helicopters which is
supported at Integrated Systems Inc., Santa Clara, California.

The work done on this grant has had major impact on the field in two
areas: the adaptive linearization of nonlinear systems (publications [2] and [9]
of the list below) have begun a new field of research which has advanced the
theory of nonlinear control and has important implications for CAD tools
for nonlinear control systems design; and the approximate linearization of
nonlinear systems (publications [11, [3], [10] and [11]) has opened new lines of
investigation in developing a nonlinear control systems design methodology.
Finally, we have begun developing software tools for CAD of nonlinear control
systems (publications [12, 13J) below. A brief outline of the areas of research
firdints is now given:
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1 Brief Outline of Research Findings

1.1 Adaptive Control of Nonlinear Systems

There has been a great deal of recent progress in the development of basic
theory for the input output linearization of a large. class of nonlinear systems
by state feedback. The chief drawback of these techniques has been that
they rely on the exact cancellation of nonlinear terms. When the nonlinear-
ities are not known exactly adaptive control may be used to asymptotically
make the cancellation exact. In past work supported by the grant we had
developed a direct adaptive control algorithm for this purpose. In work in
this time period we have proposed a variety of other schemes, referred to as
indirect and semi-indirect adaptive control. In the former scheme, we de-
veloped a number of different identification techniques for nonlinear systems
and coupled them with the input output linearizing control law using the
certainty equivalence principle. We gave conditions for the convergence of
the scheme and showed that it had several important advantages over the
direct scheme including no need for over-parameterization. The conditions
for convergence were. however, far more restrictive than those for the direct
scheme. Consequently, we also proposed a semi-indirect scheme which com-
bined several of the attractive features of the direct and indirect schemes and
gave a convergence proof. We have been comparing all of these schemes with
nonadaptive alternatives such as sliding inode control on several examples
such as induction motors. (publications [61, 1121)

We also began the study of adaptive control of MIMO adaptive nonlinear
systems : in this research, we (joint work with M. Di Benedetto from the
Universit, di Roma) studied two schemes for the adaptive tracking control
of MIMO systems with parametric uncertainty in their dynamics. The first
approach is an adaptive version of a static feedback law for tracking control
based on some results on asymptotic model matching recently proposed by
Di Benedetto. This scheme is based on some some results on asymptotic
model matching recently proposed by Di Benedetto. This scheme is based
on some new techniques for extending the so-called zero dynamics algorithm
of Isidori and Byrnes to problems of stable model matching followed by their
specialization to tracking. The second scheme is an adaptive version of a
dynamic precompensation law of Descusse and Moog for linearization using
dynamic state feedback. (publication [9] below).
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The schemes are in the spirit of our earlier work on adaptive linearization
of nonlinear systems. done on this grant with Isidori and Kokotovic, (publi-
cation [1] ) which were however confined to the SISO case. These schemes
represent the initiation of a full theory of Model Reference Adaptive Control
of MIMO nonlinear systems. Thus, in a collection of papers with Isidori,
Kokotovic. Kadiyala. Teel and Di Benedetto. we have laid out the rudiments
of a theory of parameter adaptive control for nonlinear tracking and regula-
tion. direct and indirect for systems with parameter uncertainty. This result
has also generated a large volume of activity in the research community and
has also helped us understand adaptive splining for our CAD design package.
In future work we will develop a complete theory of Nonlinear Model Refer-
ence Adaptive Control. Another area that we will explore is the question of
how to identify nonlinear models which are presented in non-symbolic form
using techniques from approximation theory. This will also enable us to move
away from exclusively splined approximations for our CAD package.

1.2 Structure of Zero Dynamics of Nonlinear Systems
Stability properties of zero dynamics are among the crucial input-output
properties of both linear and nonlinear systems. Unstable, or "non-minimum
phase". zero dynamics are a major obstacle to input-output linearization
and high gain designs. An analysis of the effects of regular perturbations
in system equations on zero dynamics shows that, whenever a perturbation
increases the system's relative degree, it manifests itself as a singular pertur-
bation of zero dynamics. In this work, conditions are given under which the
zero dynamics evolve in two time scales characteristic of a standard singular
perturbation form that allows a separate analysis of slow and fast parts of
the zero dynamics. The slow part is shown to be identical to the zero dy-
namics of the unperturbed system, while the fast part, represented by the
so called boundary layer system, describes the effects of perturbations. It is
remarkable that, as the perturbation parameter f tends to zero, the bound-
ary layer system becomes a linear system. whose stability is easy to analyze.
When this system is unstable the perturbed systems is slightly non-minimum
phase and the exact nonlinearity cancellation or a high gain design should
be avoided. (see publications [1] and [101).

:3



1.3 Approximate Input-Output Linearization by State
Feedback

In a collection of papers with Hauser and Kokotovic we began a study of how
to enlarge the domain of applicability of nonlinear control laws to systems
which did not fit all the assumptions for the rigorous application of the
theoretical results. Our work was strongly influenced by two important and
practical design examples: the dynamical model of V/STOL aircraft and
that of a ball and beam (modeling slosh) in fuel tanks on aircraft wings.
This work was primarily for SISO systems and has been important in that it
has spawned a large effort on the part of the research community at large on
approximate linearization. In ,nur own work it has been important in helping
us develop the design CAD package In future work we will extend this with
researchers from the University of Rome to MIMO systems. The subtleties of
the theory in these systems make this a very challenging enterprise. This will
be, to our knowledge, the first attempt also to confront MIMO robustness
issues for nonlinear systems head on. One report describing a robust version
of the Descusse Moog algorithm for dynamic decoupling is under preparation.
(publication (111 and one more in preparation).

1.4 CAD and Implementational Tools for Nonlinear
Systems

The chief drawback of the recent advances in nonlinear control has been that
they have been based on detailed analytical models of the systems to be con-
trolled. These analytical models are required, since the design methodology
involves in a fundamental way differentiation of the functions describing the
dynamics. The reason that this has been a drawback is that there are in
practice a large number of nonlinear systems whose parts are described by
tabular means or in some instances from empirical observations. These prob-
lems are especially acute in flight control, where the aerodynamic or wind
tunnel data is available only at discrete points in the flight envelop or in
the instance of fire control for helicopters where a large number of the non-
linear parameters can only be measured empirically. In collaboration with
Integrated Systems Incorporated (ISI) and Picatinny Arsenal we have been
developing a computer aided design package for spline fitting graphical data
and then computing input-output linearizing control laws, approximate Un-
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earization control laws and also observers. The package is written in C and
involves adaptation on the order of the spline fit as well as the accuracy of the
approximate linearization. The CAD tools being developed are fast enough
to be real time and the coefficients of the spline fit are recomputed. The
primary developer of the software (R. Kadiyala) is also involved in validat-
ing the software on the gun control models being developed by ISI and the
fire control group of Dr. Coleman at Picatinny Arsenal. We are also actively
exchanging ideas and software with a group at University of California, Davis
under Prof. Arthur Krener for approximate linearization.

Thus, one of the most important goals on this grant. also continuing
forward with the next grant is to develop at least at a conceptual level user
friendly tools for ,,onlinear control. which contain on the one hand recent
advances in the theory, but on the other hand also take advantage of recent
advances in workstations to provide graphical and symbolic visualization of
simulations. Our software has incorporated graphical depiction of our control
laws on Sun workstations. This, we believe, is essential to allow for rapid
prototyping of new nonlinear and adaptive control laws. The systematic
development of the software in C with a good user interface are current topics
of research. What has begun as an off-line CAD tool design effort has, owing
to the development of computer hardware, become an attractive option for
real time control: consequently the real time aspects of the computations are
our future priorities. (publications [5] and [13])

1.5 Robust and Adaptive Nonlinear Output Regula-
tion

A new topic of excitement in the nonlinear control design literature has been
the development of techniques of out prlI rwgulation for nonlinear systems. In
contrast to the work on input-outpul lil arization by state feedback which is
the nonlinear analog of a zero cancellirng tritrol law. these methods do not
need the underlying system to be non-illirlirnum phase. Our research on this
grant has been aimed at understanditig the robustness of these control laws
to parametric uncertainty. In the instance that the parametric uncertainty
is too large, an adaptive scheme is proposed with slowly varying parameter
update to achieve asymptotic regulation.

Related research in this area concerns enlarging the domains of attraction
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for these control laws, since they are originally derived to be local control
laws. A key difficulty with the new scheme appears to be very small domains
of attraction. In research to date. we have proposed several augmented to
the extended scheme to enhance the domains of attraction. (publications [7]
and [8])

1.6 Sliding Mode Control of MIMO Nonlinear Sys-
tems

The problem of developing precise matching conditions for nonlinear systems
which are not linearizable by static state feedback has proved to be a surpris-
ingly hard nut to crack. In early work on the grant ,,e encountered success
in developing matching conditions for MIMO ystems linearizable by static
state feedback. The extension of these results to either dynamically decou-
plable MIMO systems or other more general systems is not yet complete.

However, our earlier experiments with sliding mode control laws have
enabled us to understand solutions to stabilization problems where it may be
shown that the underlying control system cannot be stabilized by continuous,
state feedback. (publication [141)

2 Scientific Personnel and Degrees awarded
1. S. Behtash - Ph. D. awarded January 1989.

2. J., Hauser - Ph. D. awarded August 1989.

3. R. Kadiyala - M.S. awarded December 1989. (Ph. D. expected Dec
1991)

4. A. Teel - M. S. awarded Decein,,r 1989. (Ph. D. expected March
1992)

3. A. K. Pradeep - Ph. D. expect'd December 1991.,

6. Prof. P. V. Kokotovic - Visiting Professor, Fall 1988.

7. Prof. M. D. Di Benedetto - Visiting Professor, Fall 1990.

8. Prof. S., S., Sastry
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Approximate Tracking for Nonlinear Systems
with Application to Flight Control

by
John Edmond Hauser

Shankar Sastry
Chairman

ABSTRACT

In this dissertation, we embark on a project to make recent theoictical advances

in geometric nonlinear control into a predicabk control design methodolgy.

The method of input-output linearization by state feedback provides a natural

framework to design controllers for systems, such as aircraft, where output tracking rather

than stabilization Is the control objective. Central notions Include relative degree and zero

dynamics. Roughly speaking, the relative deree of a system Is the dimension of the pat

of the system that can be input-output linearized and the zero dynamics are the remaingnj

(unobservable) dynamics. Systems with exponentially stable zero dynamics are analogous

to minimum phase linear systems and can be controlled to track a rich class of output

trajectories with internal stability.
While investigating the use of these methods in the control of the V/STOL Ham,er

aircraft, we noticed that the small forces produced when generavng body moments caused

the aircraft to have an ustable zero dynamics, i.e., to be nonminimum phase. However,

if this coupling were ro, then the aircraft could be input-outpu linearized with no zero

dynamics. In other words, a small change in a parameter resulted in a signcant change in

the system structure!

With this observation as the driving force, this dissertation studies the effects of

system perturbations on the structure o the system and develops methods for tracking

controller design based on approximate systems.
After reviewing the basics of geometric nonlinear control, we show that small reg.

ular perturbations in the system can result in singular perturbations in the zero dynamics.

We give asymptotic formulas for the resulting fast dynamics.
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Next, we develop techniques for tracking control design for systems that do not

have a well defned relative dqgree. Using an approximate system with a well defined

relative degree, we design tracking controllers that guarantee approximate tracking for the

true system. This approach is shown to be supeior to the usual Jacobian linearization

method on a simple ball and beam system.

Returning to the aircraft control problem, we use a highly simplified planar VTOL

aircraft model to Illustrate the (slight) nonminimum phase characteristic of these systems

and develop a controller to guarantee approximate tracking. We also develop a formal

theory for this class of systems.



Toward Larger Domains of Attraction for Local Nonlinear Control

Schemes

Andrew R. Teel
Department of Electrical Engineering

and Computer Sciences
University of California

Berkeley, CA 94720

Abstract smooth mapping on U. Also, s is a smooth vector field
and q(w) is a smooth mapping defined on W. Further,

This paper is motivated by the observation that the it is assumed that f(0) = 0, s(0) = 0, h(O) = 0, q(0) -
success of some recent nonlinear control approaches is 0 so that, for u = 0, the composite system (1) has
very sensitive to initial conditions. The discussion in an equilibrium state (z, w) = (0, 0) which yields zero
this paper centers around the recently developed non- error.
linear output regulation theory of [1]. The focus of this We focus on the following state feedback regulator
paper will be extending the region of attraction for this problem: Given a nonlinear system of the form (1),
approach by augmenting the existing scheme. find, if possible, a feedback u = a(z, w) such that

Keywords. Nonlinear Output Regulation, Center
Manifolds, Domains of Attraction. 1. the equilibrium z = 0 of

.f (Z) + g(x)o(Z, 0) (2)

1 Introduction
is asymptotically stable in the first approximation.

The tool box for achieving tracking in nonlinear sys-
tems is-rowing rapidly. One recent addition has been 2. there exists a neighborhood V C U x W of (0,0)

the nonlinear regulator of (I). This solution allows the such that, for each initial condition (z(0), w(0)) E

control designer the flexibility of using either output V, the solution of the closed loop system satisfies

feedback or state feedback, permits disturbances to the
plant and does not require a well-defined relative de- li-m(h(z(t)) + q(w(t))) = 0
gree. However, it has been found, through simulation
studies, that this control scheme can be rendered in- For the solution to this problem in [1], the following
effective by the choice of seemingly benign initial con- two hypotheses were made:
ditions. In what follows, we propose a means of aug- (HI) the linear approximation of the plant discon-
menting the scheme that is provably convergent (Io- nected from the exosystem is stabilizable.
cally) and, in simulations, displays an increased region (H2) the point w = 0 is a stable equilibrium of the
of effectiveness. exosystem, and there is an open neighborhood of the

point w = 0 in which every point is Poisson stable. Is

2 Problem Statement short, this assumption implies that the eigenvalue o
the linear approximation of the exosystem lie on the

We begin by reviewing the problem statement and so- imaginary axis.
lution found in [1]. Consider the nonlinear composite The following solution to this problem was then de-

system veloped:

X = f(z) + g(z)u + p(z)w Theorem 2.1 (Byrnes, Isidori) Under o

w = SM) (1) (HI) and (HI), the state feedback resisdor prok' "

e = h(z) + q(w) solvable if ad only if there erist Ck(k > 2) m5PP'to
9 = r(w), with V(0) = 0 and u = (w), with emu) '

where z E U C R" is the state of the plant, w C- W C both defined in a neilhborhood W' C W of00 satult'1

R' is the state of an (autonomous) exosystem, u E R" the conditions
and e E Rk.As usual, f and the columns of g and p
are assumed to-be smooth vector fields and h(z) is a itswe) fi (r(u))+P(,r(W))C(u,) + Pr(W)) '

•Ree arch supported in part by the Arny under grant ARO
DAAL-88-KOSV2, and NASA under prant NA02.243, h(jr(w)) + q(w) 0

ECC 91 £uoptam Control Conference, Grenoble, Frlace, July 2.5 1991



...... A • ,. very small. Further, the region of attraction did not
seem to improve as the order of the approximation was

1. The proof relies on center manifold theory and increased. The simulation results of section 4 spell this
constructs a state feedback out in more detail.

u = *(z, wo) = 0w) + K[: - ir(w) (4) With this in mind, we propose augmenting the so-

lution to the state feedback regulator problem in the

that is shown to be a solution of the state feed. following manner. First consider the composite system

back regulator problem. K is a matrix of feed- in expanded form

back gains such that the eigenvalues of the linear Ar+Bu+Pw+O(zu)
approximation of the plant (disconnected from the
exosystem) have negative real part. The manifold tb = Sw + O(w)

z = r(w) is seen to be an error-zeroing manifold We retain hypothesis (H2) and modify hypothesis (Hi)
that is rendered invariant by the control u = c(w). in the following way:
Solving the state feedback regulator problem m- (HIla) the pair (A, B) is controllable.
duces to solving for the the mappings: = (w) Now augment the exosystem with the following dy-
and u = e(w). namics ,t:

2. A very useful observation was made in [21 that Am + BK.y + BM(e)y (8
these mapping could be approximated up to ar- i 0
bitrary order and still achieve approximate track-
ing. This result also followed from center manifold where y E Y C R", c E £ C R"'", and M(c) is an
theory.. (The same observation was made in 141 re- m x n matrix with smooth entries. We subject the
garding a similar solution to this same problem.) augmented exosystem to the following hypotheses:
This observation makes actual application of the (3) K. is such that all of the eigenvalues of (A +
nonlinear regulator theory more feasible. BK.) have zero real part.

(H4) ((0) is chosen sufficiently small and such that
SAugmenting the Solution all of the eigenvalues of (A + BK. + BM((O))) have

negative real part.

t.h ix section, we propose to augment the solution to The initial conditions for y will be specified in the

%tate feedback regulator problem given in [11. We following theorem which is analogous to the theorem

.in by motivating this augmentation with an appli- of 1.
in example initially studied in [31 and later in [21, Theorem 3.1 Under hpothtses (His), (ES), (03),
nd [5]. (H4), thsate/eedback regulator problem is solvalek if

",nsider the well-known ball and beam example. ther ezus C6(k ?: 2) matiats z = (w,at), wit
dynamic system can be modeled by 0(0, 0,0) = 0 dad u = d(w, y, e), with d(0, 0,0) = 0

i = Z both defined in a neighborhood W1 x Y* x El C W x

i2 = zJZ2 - Gsin(z3) Y x E of0 x 0 x 0, satisfying the conditions

3 = (5) os(w) + I(Am + BK.y + BM(c)m)i4 =u

y = h(:) = f(wt, y,')) + 9(0(w, y, ))d(w, y, ) + p(O(w, y, i))w

'here xt is ball position, r2 is ball velocity, Z3 is the h((O(w, yo)) + q(w) - h(Y) = 0
'tille of the beam, and z4 is the beam's angular veloc. (9)
11y (For a derivation of these equations, see [3). For all end Y(O) is such that Jz(0) - O(w(0), Y(0), ((0))l is J' .
qT the simulation results mentioned in this paper, the ficiently small.
Icceleration due to gravity was taken to be the nor.
'Ma lized value 1. The magnitude of the signal to track Proof The proof follows the proof of theorem 2.1.
i then relative to this normalized value.) Accordingly, assume the conditions (9) are satisfied

The task at hand is to cause the ball position z, and consider as a possible solution the state feedback
(at least almost) track a sinusoid produced by the o(:,w,9,e) = d(w,,)+ K~z- V(w,ye)1

rxosystem

Ii = AW(6) where all the eigenvalues of (A + BK) have negative

q(w) = -wI real part. The existence of a K such that this is true
follows from hypothesis (lia). We now check that this

\ presented in [2), [4) and [5), approximating the state feedback is a solution to the state feedback reg-
Olnifold to either first or third order yielded nice ap. ulator problem. Requirement (i) is satisfied because
;.I'mate tracking results. However, as discovered in a(z,0,0,0) = K:. From hypotheses (H2) and (3),

the region of attraction to this manifold could be the overall composite system can be transformed into



coordinates for which center manifold theory directly
applies. Since a(t'(w, y, t, i, y) - d(w, y, c), by con- I
struction z = O(w, y, e) is such a manifold in the orig- ' - - - - -

inal coordinates. Also, by (9), the error is given by i i ! : ]

() h(zQ)) - h(I(t v yi) + h(YQ)I

It follows from hypotheses (H2), (H4), the choice 1)
of K and the triangular structure of the compos-
ite system that the point (z,w,y, ) = (0,0,0,0) is - - - -

a stable equilibrium for the composite system. So, j j
for sufficiently small (z(O),w(0),y(0),e(O)), the so""- - i
lution (z(t),w(t),y1(t),4( )) remains in an arbitrar- -

ily small neighborhood of (0,0,0,0) for all t > 0. I I I .
(Notice .!(0) and w(0) sufficiently small are provi- .........
sions from the problem statement, c(0) sufficiently ,aM)
small follows from hypothesis ([3), and V(O) suffi-
clrntl. imall follows from the choice of y(O) such that Figure 1: Tracking Results - Standard Nonlinear Reg.

JZ(O) - % (u'(0), y(O), ((0))I is sufficiently small together ulator for example 4.2. (The dotted line (lower) repre.

,Ih 1(0),Uw(0), and c(0) sufficiently small.) With this sents the desired output. The solid line represents the

*tat property, we can apply a property of center actual output.)
ii. v,t 4141 yielding there exist real numbers M > 0 and
U .,ch that here. Then we demonstrate the usefulness of this aug.

(w,Y, )()ll < Me"'"IX:(0)- -(w,i,,)(0)II mented scheme on the ball and beam example. Wepro-
vide simulation results that demonstrate this scheme's

* 0 Finally, from the continuity of h, together ability to handle a wider range of initial conditions in
. ..,hesis (H4) and the fact that h(0) = 0, we the plant.

.,. e(t) = 0. We conclude that this choice of
,-. 6 %lves the state feedback regulator problem. Example 4.1 Consider the system

l(,.uaarks, Zi = tz+ w

I It. manifold z = O(w,y,c) is an error-zeroing *2 = u
manifold in the limit as y -' 0. This manifold is Wt = -w2 (10)
rerdered invariant by the control u = d(w,y,e). w2 = U1

e = h(z)+q(w)=zj-wi
2 Thoretically, in terms of regions of attraction, we

do not gain anything over the result in [I) be Augment the exosystem in the following manner:
cause we are still dealing with fairly unspecified
local neighborhoods of the origin. However, the Yi = Y1 + Y2
improved simulation results in some instances are 12 = -Yi - Y2 - (iYz - O2 (1)
quite striking. it = 0

i = 0
3. The reason for the improved simulation perfor-

mance is that, with the additional y states we have with ti, t2 sufficiently small and el > (2. We now 04"
created an augmented error for the mapping z = O(w,y,c) and u = c(w, Y,) a

specified in theorem 3.1 and find:
e.(t) = h(z()) + q(w(()) - h(y(1))

(w,m,() = WiY
for which z = O(w, y, e) is an error-zeroing man- 02(w, y,) = -2w 1 - w2 - (wi + 311)2 + 12
ifold. By quickly regulating to the manifold z = c(w, y, t) = 2w2 - W1 - 2(wi + Y)[Yi + 31 -
O(w, y,c ), the control steers the system slowly to -Y -312- (JY1 - 2Y2
the original error-zeroing manifold z = r(w). Reg-
ulating to the manifold z = O(w,y,c) is rela- Finally, we choose (yl(0),Y2(0)) in a neighborhood "d
tively easy because the system trajectory neces- the point (y , y;) given by
sarily starts close to this manifold.. ;= zi(0)-wj(0)

4 Examples and Simulations =  0)(0)+2w(0) + w)(O) +z() .

In this section we begin by presenting an example that Example 4.2 Again consider the ball and bean "*'
clearly demonstrates the augmented solution proposed tem given in (5) and the exosystem (6). Augine"'
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Figure 2: Tracking Results - Augmented Nonlinear Figure 3: Traking Error w.r.t. Augmented Trajectory
Regulator for exampie 4.2. (The dotted line (lower) for example 4.2.
tepresents the original desired output. The solid line
rvnresents the actual output.) and

,osystem in the following manner: o(&, w,1/,c) = d(w, y,e) + K[z - t(w, y, e)) (15)

it = V2 where K rutabmas the pair (A, B). First consider the
= -Gy, control (14). Figure I shows the inability of this stan-

3 = V#4 (13) dard solution to regulate to the desired trajectory from
SI = fIVI + (2Y2 + '(33 + e414 the initial conditions

ji= 0 XJ(0) = 15.5
.h c, sufficiently small and such that the equilib, Z3(0) = 0

111 point y = 0 is asymptotically stable. We cal- 3(0) 0
l tie a first order approximation to the mappings Z4(0) . 0

-t *(, t, 0 and u = cOwye)
Now consider the control (15). Figure 2 shows the abil-

", y, ) = W1 + 1 ity of the augmented solution to regulate to the desired
, , ) = -Aw 2 + Y2 trajectory from the initial conditions

, AW, +jIn
",0 = W2+ 4 21(O) = 40

',y) = A4Wlt pt+.,l+/.3 .. 4V 4  22(0) =0+ +() = 0
illy, we choose (0) in a neighborhood of the point z4(0) 0
oen by

Note that the initial error with respect to the original
Y1 = za(O) - wa(O) desired output has been increased by a factor of O.
Y, = 82(o) + AW2(O) Figure 3 shows the tracking error with respect to the
AI = Z3(0) - ; Al~rs(0) augmented trajectory. Note that the small steady-state
Y4 = Z4(0) + t A3 W2(0) tracking error is due to approximating the manifold to

" "11ulation purposes, in the original exosystem, we f order.

"\ = , w(0) = 15, and w3(0) = 0. Conse.
' the task is for the ball position, zt, to track

i). (By way of reminder, we continue to use 5 Conclusion
rinalized value G = 1)
"'w compare the augmented scheme (using first In this paper, the nonlinear output regulation theory

SI'PProximations) to the original scheme (using of [1) was reviewed and applied to the ball and beam
lot approximations). Observe that, with V = 0, example. It was found that for some desired tracking
I of theorem 3.1 reduce to v and c of theorem signals, the region of attraction for the eiror-seroing

we compare the control laws: manifold was very small. An augmentation to the ex-
isting scheme was proposed to handle a larger range

1(:, w) = c(w) + K[z - Y(w)] (14) of ,iitial conditions. The exoystem was augmented in



such a way that a new manifold could be calculated
which passed arbitrarily close to the initial conditions
of the plant and asymptotically decayed to the original
error-zeroing manifold. This augmented scheme was
demonstrated in simulations using the ball and beam
example.
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Abstract where w is the state of an (autonomous) exosystem

The object of this paper is to prove the stability of tb = e(w, 0) (2)
an adaptive control scheme designed to asymptotically
achieve output regulation for a clans of nonlinear sys. For this system, we will begin by considering " E RP a
tems. The solution propoied in ill to the nonlinear a vector of known parameters in order to review non.
output regulation problem is reviewed and the robust- linear regulator theory in the absence of uncertainty.
ness of the solution to parametric uncertainty is ana. The control objective is to have the output track a ref.
lyzed. A standard adaptive scheme is then applied to erence signal that is the output of the exosystem and
the problem and slowly-varying results are employed given by -q(w(f)). The plant (1) is assumed to have
to achieve asymptotic output regulation. m inputs and o outputs. The state x of the plant is

Keywords. Nonlinear Outut Regulation, Adap- defined on a neighborhood U of the origin in R. The
tive Control, Center Manifold, Slowly-varying. state w of the exosystem is defined on a neighborhood

W of the origin in R'. Further, f and the columns of p
and p are assumed to be smooth vector fields and h(:)1 Introduction is a smooth mapping on U. Als, s is a smooth vector
field and q(w) is a smooth mapping defined on W. TheThe tas~k at hand is to analyze and account for pa. composite system is then

rameter uncertainty in the nonlinear output regulation

problem., Recent work by Isidori and Byrnes [1) has z = f(z,9')+g(z,9)u+p(:,9)w
produced necessary and sufficient conditions for the tb = 8(w, ') (3)
solvability of both the state feedback and output feed- e = h(z) + q(w)
back regulator problem for a class of nonlinear systems.
In their work, the signals to track are restricted to those Finally, it is assumed that 1(0,.) = 0, s(0,.) = 0,
that can be considered as the output of a Poisson stable h(0) = 0, q(0) = 0 so that, for u = 0, the compos-
exosystem., Their analysis is based on the local prop- ite system (3) has an equilibrium state (z, w) = (0,0)
erties of center manifolds. Using the work in I1 as a which yields zero error, independent of the value of 0',
point of reference, this paper will proceed to examine For the state feedback regulator problem, we seek a
the same problem in the presence of parameter uncer- state feedback of the form
tainty. In section 2, we review the nonlinear regulator
theory and the solution developed in (1). In section 3 U = 0(0, w, 0")
we introduce parametric uncertainty to the problem.,
In section 4 we lay the ground work for our adaptive such that the closed loop system
scheme by reviewing slowly-varying theory for nonlin-
ear systems. Finally, our adaptive scheme is developed = f(z,9)
in section5. t = 94)

e = h(z) + q(w) (4)
2 Nonlinear Regulator Theory exhibits some stability property and lirnh-oo () = 0.

Folkwing (I), we state the nonlinear state feedback reg-
The subsequent discussion follows closely that of [1]. ulator problem formally.
rhe clas of systems that will be examined is those of State Feedback Regulator Problem. Given a
the form nonlinear system of the form (3), find, if possible, a

i = f(z,")+g(zO*)u+p(z,*")w feedback u = o(z,w, 0) such that3/ h((1)=0o
___ =______ 1. the equilibri im z = 0 of

"Research supported in part by the Army under grant ARO
DAAL-8&10572, and NASA under grant NAG2.243. Z = f(z,O') + g(z, 0)O(,O, 0 ) )
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is asymptotically stable in the first approximation. Before attempting to handle the uncertainties of the
i.e. plant and exoeystem with adaptation, the question of

d robustness is addressed. In this setting, a control is
o(T[(z, o') + g(z, 0")O(z, 0, 8")I.fio) C C. formulated based on a model of the composite system,

given by
2. there exists a neighborhood V C U x W of (0,0)

such that, for each initial condition (z(0), w(0)) E = f(z,9')+g(x,9')u+p(z,9')u
V, the solution of the closed loop system satisfies Wi = (w,#') (8)

e = h(z)+q(w)im(z))+ q~~))= 0
where 9' is afixedestimate of '. Assume the following:

Under the following two hypotheses, statements con- A 3 The estimate 9' lies in ball around 9".. This ball
cerning the existence of a solution to the state feedback is otleut such tha the gains chosen to easymptotically
regulator problem can be formulated: stebui:e Ie inter approximetion of the model (discon.

(HI) the linear approximation of (S) is stabilizable. Reefed from Ike ecosem) also asymptoticelly stabili:e
(H2) the point iv = 0 is a stable equilibrium of the the linar epprouimation of the actual plant (dieon.

exosystem, and there is an open neighborhood of the nected rom the exossterm.)
point tw = 0 in which every point is Poisson stable. In
short, this assumption implies that the eigenvalues of A 4 For (8), the conditions anelogous to (6) are set.
the linear approximation of the exoeystem lie on the isfied by tke C6 mappings X = (w, '), u = c(w,0'),
imaginary auis. for all " allevmd bi asumption AS.

Byrnes and Isidori state necessary and sufficient con.
ditions for the solution of the state feedback regulator A 5 A certainty equivalence feedback low of the form
problem. u e(,w,9) = c(w,9') + K'z - (w,')) (9)

Theorem 2.1 (Byrmn and Isidori)
Under hypotheses (NJ) end (HI), the state feedback is applied to the actual composite asytem (3), where K'
regulator problem is solvable if and only of there ezist is e matrit of gains that stabili:es the pair (A*, ')
C*(k > 2) mappins r x r(w, '), with w(0, ') = 0 defined by
and u = c(wu,0'), with c(0,0') = 0, both defined in a
neighborhood WO C W of 0, setisfying the conditions A' ' = g(O,').

ALS(w, r) M = ' ~,#)
g(r," -)c(wG ') 6) The stability of the composite system with (9) as input

h(r(w, 00)) + q(w) = 0 is now examined.

Remark. The proof relies on center manifold theory Theorem 3.1 (Bounded error manifold)
and constructs a state feedback Under the assumptions (AI.AS), the composite system

(3) with (9) as input has a center manifold at (0,0,9'),
u=a(z,w,9') = c(w,')+ K'[z- r(w, 6')] (7) the graph of a mapping

that is shown to be a solution of the state feedback z = t(w, 00, ')
regulator problem. K' is a matrix of feedback gains
such that the eigenvalues of the linear approximation defined in e neighborhood W' x Y C W x RP of (0,0'),
of (5) have negative real part. satisfying the condition

.s(w,#) = l(*.,r)+p(*')W3 Parametric Uncertainty f*')+ .( v)=

(10)
To proceed with the discussion, 0' is now considered as As a consequence, the solution (9) to tihe state feedback
i vector of unknown parameters. Define the matrices regulator problem based on (8) yields bounded tracking

' [, B = g(o,) error when applied to (3).

Sketch of Proof. First defined 0 = 8' - 9' and re-
The following structural assumptions are now made place 9' by 0 + 0. Next augment the exosystem with

A I The pair (A', B') is stabliable for all 00 in a 0 = 0. From the triangular structure and the assump-

'flrAborhood of o'. tions concerning the eigenvalues of the plant discon-
nected from the exosystem, it follows that the closed

A 2 For all 09 in a ball around 8', w = 0 is a sta- loop composite system can be transformed into coordi-
hJf equilibrum of the ezosystem, and there is an open nates in which center manifold theory directly applies.
'""ighborhood of the point w = 0 in which every point In the original coordinates, and replacing 0 by 0' - 0",

" oIsson Stable. this manifold is the graph of mapping z = *(w, 0', 0 )
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satisfying the condition (10). (see [2) for details of cen- (13).
ter manifold theory.)

Finally, by assumption the point (z, w) = (0,0) is a
stable equilibrium of the closed loop composite system. W, F(z + . , g,90) + [W. -

Under this condition, for sufficiently smail (z(0), w(0)), :r -<304) + d 1 0 1'

bounded tracking follows from center manifold theory < -,,(W) + di10"

aad the continuity of h. 0
Remarks: where a = o3 0 Mi and di = ci + C3su 1).( "V

show that z is stable for small I:(t0)I and sulh,,
1. The manifold *(w,#*,8) is conceptual and will small 1i"I observe that the set D = (W < (q ,

not need to be calculated. invariant set under the condition

2. The preceding argument extends naturally to the I : < (oS(q))/d,

output feedback regulator problem also described If 8(1o)1 < aV(K(q)) for any q 5 r, then, frai,
in (]. W(lo) e D. Since D is invariant, (12) implie,

Iz(t) 5 t, ' > to. In addition, ift i,. 0 an * -

then Iz(l) - 0 s I - oo since W(z(),"o (t), -.

4 Slowly-Varying Parameters as I - on. Note that we can incorporate pla~ t
rameter variations about 0" into variations of 0 .

The question of robustness is now addressed, under the example of such a variation might be a slowly-v;r% ,,
added assumption that the parameters are allowed to exosystem.
vary slowly. Consider the state defined by z = z - Corollary 4.1 Under the assumptions (A i.A. •

9(w,r ,0") for fixed g' belonging to a compact set r. sufficsently smell initial conditions (z(0),w(0).,
The dynamics of the state : are then stability of the composite system (3) under the unp-i,

4 -(wgo, is robust to plant and exosystem parameter war1a,

that are sufficiently slow and stay itn a neighbrho,,,
= f(:, #') + g(:, 9')o(z, U, D) + p(, 9')W the nominal parameter value '

F( + 0*, P') Proof. Follows immediately from the previous lViwi

(11) and discussion, 0
From Theorem 3.1, for every 9' E r, the equilibrium The previous discussion is now applied to a gecie.
point s = 0 of (11) is uniformly asymptotically stable, indirect adaptive control scheme. Consider the con,
uniformly in the parameter 9'. Due to this property Polite adaptive system,
that is uniform in the parameters, and the differentia. & = ) + g(z.U)a(xw,9') + p(a,")w
bility of *, the system meets the requirements of the ti = sjwu,60)
following useful lemma formulated by Hoppensteadt (31 0 = G(z, w, go, t)
and recently restated by Khalil,Kokotovic (4). e = h(z) + q(w)

Lemma 4.1 (Hoppensteadt) There esists a .l
punov function W(z,', ') suchthat Corollary 4.2 Under the assumptions ()1h4t), for

sufficiently small initial conditions (Z(O), v(0)), the

c1:1) 5 W(Z,9',9) < KI(Ma) stability of the composite system (3) under the input
W, (z,9,r)F(: + t, 9, go,) 5 -Kc(Il) (9) is robust to parameter variations in the control law

IWO.(z,0,")l : cl that are sufficiently slow and stay in a neighborhood

IWS(Z.6.')l :. C2 of the nominal plant parameter value 9'. Namely, the
(12) stability of 05) is achieved ifsup1,.oG(z,w.#',t) is

for all z E B, = (z E R" : Iz1 _5 r) and (r',9) E sufficiently small.
r x r, where a,(,), K2(.), 03(.) are strictly increasing Remark. Because the parameter update law is a
functions and c, and cz are nonnegative constants. function of z and g', some additional analysis will

be required to guarantee a sufficiently small bound on
With this Lyapunov function in hand, the slowly- sup,>iIG(z, w,so,t)1.

varying analysis proceeds in the following way.. Allow
g' to vary. The dynamics of the state z are now Corollary 4.3 Under assumptions (Al.AS), for (15),

for sufficentlfy small nS1tal conditions (z(O), s(0)) and

i = a- s(w, sup>,>,G(z, w, 0', 1)1 sufficiently small, if9g convergesaa. (131) - -

- F(z+ W, eo, 0") - . (13) toiome 0 thenz converges to *(w, 9, 9) and the steady) at* state error, e(t), of system (15) is bounded and given

Consider now the Lyapunov function of Lemma 4 1 and by

take its derivative along the trajectories of the system h((u. 0,.0")) - h(x(A, 0'))
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rif This is the Case of as t -. oo and Regressors are formed as

o so that z(t) -. 0 as I -* co. By definition of z,
S.eefges to t(wig). Then by the continuity of x (z,w,u) = [fs(z) +glJ(z)uj +paa(z)u',...,
& A.j the stability of the composite system, the steady Th(z) + gPJ(z)uj + ppa(z)uWk]

.ate error is bounded and given by h(,(w, 9, )) - X:(W) = [ez(w), ... , ,(w)j

& 1000.)). 0 where summation over j,k is implied. Consequently,

Corollary 4.4 Under assumptions (Al.A), for (15), xT(z, w,u) E R" 11 and XT(w) 6 Rx contain all of
,P ,, flcently small infitil condiions (z(0), t(0)) sad the nonlinearities of the system. Now the composite

to, ,,IG( , w, #.,t) suffcintly small, if r converges system can be written as

,,r then z : XT(=,WU)f"

im,~..e0t) =0 =: xL( )r.

proof. Here z converges to 1#(w, to, "). Observe that In what follows, the conventional notation for estimates
so. 0"0) satisfies the same partial differential equa, of unknown parameters, 9 will replace the previously

n (w, r) since 9P(w, 9*, G*) is the manifold made used .. To estimate the unknown parameters, the
invlriant by the input (9) with 6" = 9. Thus, from following identifier system is used.
the properties of center manifolds, z converges to the
s(wfD) of Theorem 2.1. Then Theorem 2.1 implies * = fl,(1:)+X (z,wu)f
that lums-€(t) 0. a i = n.(o - w) + xt.(W)i

Remark. Typitally, it is not possible to guarantee _ -p (z , w, u)P.(* - X) - px.(w)P.(b - w)
orrect parameter convergence a priori without addi. (16)
tional aumptions. Here E, E R"I", fl. E RI"' are Hurwits matrices and

P, e R""", P, E 141'' are positive definite symmetric

5 Adaptive Nonlinear Output solutions to the Lyapunov equations

Regulation aT, + P.n. = -I...l.PW + P,,. : -I,=,.

The last result of the previous section suggested that
if an identifier could be constructed that guaranteed Finally, p is a small positive constant. Now, defin
r converges to 0" then asymptotic tracking would be c, - :, e = t-z- w, and 0 = 9. Then t ,,

guaranteed as well. However, as is known in the adap. identifier error system becomes
tive literature, guaranteeing parameter convergence a 7 = f + x (z, w,
priori requires additional assumptions. Rather than =flu + X,(w)"
take that approach here, a specific identifier will be
suggested that will result in asymptotic tracking. This
identifier is formulated in the mind-set of indirect adap- Theorem 5.1 Under the assumptions (Al.A 6). ',,
tive control. Namely, an identifier is constructed to sufficiently small initial conditions (z(0), w(0)). /.
estimate plant parameters and then these parameters the compoete system (3) under (adaptive) input (9l
are used in a certainty equivalence control law. The 3o > 0 of the identifier (16) such that
identifier used here is analogous to the observer-based
identifier found in [5). 1. 4 E Lo,

Consider again the composite system (3) where r
is considered a constant but unknown parameter vec- 2. Cg, Cs , E Lo n L2,
tor. The following standard assumption for adaptive
systems is made. . (z, w) E L..,

A 6 The vector fields f(z,9') and s(w,9) and the 4. i,.,, Lo,
columns of g(z,9') and p(z, ') have the following ha. 5. limg,. c.(t) = lima-o u.(t) = 0,
ear parameter dependence.,

6. lim,_.o e(t) = h(z(t)) + q(w(t)) = 0.
f(Z,) = I oA,(z)
g(,9') = eg,,,(z) Proof. Consider the Lyapunov functionP (z, 00) = E=1,0 P,,(Z)
(,8') = r 1 ": .o ,(,) V(r,w, ) e .P.+p ,pu.C.+0T0 (18)

_1=,0 =re,4 ~
where 9;, i = 1.. , p are unknown parameters, which Takingthe derivativeof V along the trajectories of (17)
appear linearly, and the smooth vector fields f,(z), yields
gj(z),, p,.(z), s,(W) are known. V= -PP - T 0
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Hence 0 :5 V9) :5 V(O) for all 9 2: 0, to that Further, by assumption (A5), wr(w, 9) satisf.,i.
V, ., 8 e. e I.. Since V is a positive, monotonically dlition
decreasing function, the limit V(0o) i, well-defined and ~ .w ,(~,~,w )

j firi j(c + Z , di' < oo From (19), W(to, i) also satisfies

so that ce,ew e L:.)0 -= (u49w 0-t, p
It is now shown that p can be chosen so that the -* WG,~)

analysis of section 4 holds. This will imply that a re- Now, lim%,. Cir = limg..- Cw = 0 implies lim,_..
mains bounded. Consider the parameter update law 0. So from Corollary 4.3, x converges to *'(U.,

= =-PXAF(Z, IW, Wee~, - PX'(W)P.' Now since Ws'(, 4) satisfies the same Manifold eq,, ,
as *(w, J, ), the properties of center manifolds,,

Since xv,x. are smooth, ut is bounded and c., c,, e that x converge to v(t,). From assumption
L., it follows that 3m > 0 and a strictly incre-sing 9(w) =-h(w(w, #)). Then, from the continuity or
function 94(.) Such that C1

ASA" + xekID == lime.... A(XaQ)) - A(lw(w,9)

for allzxe B,= ( e R" : 1115r). Then for the Lya-0
punov function of section (4), equation (14) becomes

0/: -93(IZI) + dl11  6 Conclusion
:5 -093(1:1) + dip(m + 94(IZI)) This paper has analyzed the dynamics of a systeni,,
:5 -x(W) +pdlas(W) +pd, m paaee uncertainties in the setting of nonlinear

where x = 9 30 j I and 14 = 94 a sT . Now pick p. ulation. For small initial conditions, the nonlineatr r-,
sufficiently small such that (ac - podl xs)(.) is a strictly ulator solutions were shown to be robust to parw.
increasing function of W,. Define ics = (x -tp. d1 as). eter uncertainties and to slowly-varying paramct: -

Then The adaptive nonlinear regulator solution was cast mti
<V -cs(W) + pdl m this slowly-varying framework. It was shown then dw~

there exists an identifier with sufficiently small gaii.
for all~ jo: p.. Now observe that the set D {m W < that, in conjurction with a certainty equivalence conl.
X1(q)) for any 9:5 r is an invariant set if trol law, yielded zero error tracking in the limit.
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Abstract 2 SISO Adaptive-Linearization
Apaper discusses two schemes for the tracking con. We recall some results from ((5189]) to allow for a bet.

.%IIMO0 systems with parametric uncertainty in ter understanding of the differences with respect to the
!ynamics, The first approach is an adaptive ver. MIMO situation illustrated in Section 3.

SstaIC feedbalck law for tracking control based Consider the system (1) with one input and one out.
.'results on asymptot... model matching recently put. Let z0 be an equilibrium point of the undriven

-i III ((DB9ObJ, fDBYOaJ). The second approach system, that is f(co) =0 and that the output is
4"diptive version of a dynamic precompensation zero at zo, i.e. h(co) =0. We will assume that the

DM87]). system (1) has strict relative degree 7y at zo ([10i9)),
One can then choose a new set of coordinate given

1 ltro uctonby (I = hi(t), f: = Ll h(z),.- . -,(,v = L" 1 h(c) andI hitro uction E R 7 such that diq. g a 0. In these /coordinates,
the system (1) takes a 'normal form' which reveals the

tit years, there has been a great deal of research zero dynamics to be of the following form
II* h adaptive control of nonlinear systems.

1r.%arcli has been primarily focused on 5150 sys.I) =Wq(2
t-ina.nd some notable contributions are ([KKM89),q(,)(2
I k %I K89], [S189), [PP89)). with 1) 6 R"-, The zero dynamics is said to be expo.

In~ tis paper, we consider a general MIMO nonlinear nentially attractive to a large ball in X if the following
s),tvn P of the form equation holds:

i = f (z) + g(z)u (1) ,Tq(0, qi) 5 -crIni" for IqI R (3)
Y = h(z)()

The zero dynamics satisfies a conic continuity condition
%vhere x(t) C- X, an open connected subset of R", u(t) e- in ( uniformly in 9 if
Rrn, 3,(t) E RP. Further we will assume that f and the
columns of g, namely gi, are analytic vector fields on jq(f, q~) - 9(0, 'i)I 5 kIf 1 (4)
R' and the functions h, are real analytic functions on

Rn It may be verified using a converse Lyapunov argument
Our results on nonadaptive tracking using static feed- (as in ([5189))) that asymptotic tracking with bounded
back for general MIMO nonlinear systems is a by prod- states can be obtained if the system is erponetallY
uct of the results of ([DB9Ob), (CDB9OJ) but have not attractive with conic continuity.
appeared III the literature, to our knowledge. The re- The preceding result has been critically examined in
sults on adaptive asymptotic tracking by dynamic pre- the literature but it has not been appreciated that the
compensation may be viewed as being in the spirit of condition of (4) is not a global Lipschitz condition On
([5189)). We also discuss schemes for adaptive tracking the function q.
using Static state feedback and the general problem of Now, for adaptive tracking, assume that the vector
adaptive model reference control for MIMO nonlinear fields f,g in (1) and the function h in (1) are un*
systems. No proofs are given in this paper; they are known but may be parameterized linearly by parame*
however available in ([DBS9l)). ters e' E RI in the form

*flesearch supported in part b) a McKay lecturersip held at f(z,06) = i f()Berkeley in September1i990gg,)
IResearch supported in part by ARO under grant DAAL, Or-'

bwhO572 and NASA under grant NAG 2.243 0= h, eh(z)
FCC 91 EuropeaI Cont,01 Confereotet Grenoble, France, July 2-5 1991



... P,. VJy 44C conic Continuity cond:.
:uuwn iuictions ot z. In the equation (5) above, it isons of(4). Also, assume that the regressor W(x,O)
follows that, if some of the 6, are known, they are re- has bounded denvatives in both its arjguments.
placed by their values The linearizing control laws Then given a bounded trajectory ym with first -f - I
of the previous section are replaced by their estimates derivatives all bounded it follows that the control law
depending on the current estimate i(t) of 0" in accor- of (6) with the parameter update law
dance with a heuristic known as the certainty equiva. Wie,
lence principle. Thus if the "true" system is known to 6 = = - 1 + W (1)
have relative degree - then the control law is given by

I. yields bounded tricking, i.e. y(t) -. yM(t) with all the
U = -.. (-Lh(z) + i) (6) states z bounded, provided that the state trajectory is

LL;'h(z) " confined to X.

Here LgL 'h(.), Lh(z) stand for the estimates of Remarks:
LL-' 1h(x), Lfh(z) derived by first expressing these .. The pazmeter update law is specified for . This

function in terms of the known vector fields f,, g, and neglects the multilinear dependence of terms in.
known functions hk and multilinear products of the side the vector. However, this is necessitated by
form 0, . 0, and then replacing the multilinear prod- the lack of a systematic theory of nonlinear pa.
act by an estimate of the form O, ... ",. We define the rameter estimation or identification.
waultilinear product as a new parameter and estimate
it stands for the estimate of the tracking control law 2. Given the form of the linear error equation, there

, en by is a large choice available to us for parameter up.
date laws. We choose the normalzed gradient type

, -y~g + ai(y7 "' - Lr h) +"" + a,(g -}) algonthmof (11) here for reasons of brevity but we
hasten to add that several other normalized algo.
rithms (such as the normalized least squares) will,,,Ile that all the L~h(.-) are multilinear functions of 0. dowel(e(S8])

n~euenIy Ih) do as well (see ([SB89)).
,equently, if one defines 19 C R' to be the vector

ill multilinear products of the 0, up to terms of
•re -Y, at follows that the control law of (6) is affine 3 MIMO Systems
I-) Defining the parameter error in 9 to be 4 :=

-) and the output error to be e = y - yAI, an easy 3.1 Tracking by Static State FeedbackIlato n yields that

tio yield t a , =) (7)Consider the plant P to be a square, nonlinear plant
0 + orje ' . ... +oe = .Ty(z, ) (7) of the form (1). It is useful to derive the tracking re-

*suits as a special case of inodel matching results, con.
*ine appropriately defined W(z,6) E R*. Define sequently we consider a model M of the same form
a:odei) transfer function as the plant with state z E XM open C Rnk' and

with f,g,h replaced by fM,gMg,hj. We will need

M(s) (8) to assume that the f,g,fm,gM are analytic vector
s + .+a, fields and that h, hM are analytic functions. Define

to augmented err. el to be G(z) := span{ga(z),... g(z)} (over the ring of ana-
lytic functions) and assume that the dimension of the

+(ET(t)A,,(s)W(Z ) M O jdistribution G is m for all r E X. The notation yAt(t)
+M(s)eT(t)v( 9)) is used to mean the output of the model starting from

7)9with (9) yields state zo at 0 if there is no need to highlight the depen-
hnmng (7) wh(dence on the initial state.

e = OTM(s)W(z,0) (i0) An extended system E6 is associated with the plant
and model as follows:

-,weonient to denote the filtered regresor = IE(:E) + (zE)u + (z£) (

y8 = hac(z'v)

WM(z,G) M(s)W(zO ) with state (zE)T := (zT,zT) E X x Xh, inputs u, v

.... '" 2.1 Adaptive Tracking and
te sy~stem of (1) with the vector fields f,g 9Ei 1() 1 ) = (

faliction h parameterized as t (5). Assume Jr£(ze) = f W 0
',tcm can be globally converted into normal
I "I'alates on X. Further assume that the -ero AXE) = 0 1 E(x) = hvz)

f tle system are exponentially altracuiae in g t (z)
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Further define Remarks:

Hig ( 2E [E) ) (2E)J 1, In view of the propositions of Qs$;

Also, define the dynamical system with state xE, input pendix B.2) the fulfillment of (a) above gii.,
the tees that, given c > 0, there exist 6, 1.,

u and output yEdescribed by tetriple (fs, j,hE) thtito()xO) <6adI() ~,
be t. Now, consider a point 4o = (to, :0) which is an xt)Xt)l<cfralt>0
equilibrium point of fE and also produces zero output Irtx)I<cfral 0

for the system t, i.e. 2. The proof of the preceding theorem in tkc %I

fEx)=0 hE(zE) =0 mentioned references is constructive and the1
0E( 0 pensator may be shown to be of the form

Now, assume that
Assumption Al : (Regularity of EZ) f M(X) + gU(x)
4O- is a regular point for the zero dynamics algorithm U = U(*, X, V) 0I;

applied to E (regular in the sense of ([10i9], page 304). initialized at Xo = to, i.e. Xo = F(xo, zo) = z0 u
Actually, the assumption Al is a sufficient condition a consequence, we have that x(i) z(t) and oil
in order to apply the zero dynamics algorithm to the mydfnthcorllainemsf Ealj

system t around 4-. Let A~ denote the submanifold rahein the conro law intrmasX

defined at step k of the algorithm and M' denote the
zero dynamics manifold obtained at th conclusion of u(zB'V) := (xZE V) + ACI(Z E)KHfj(ZE) (
the algorithm; there further exists a unique smooth
control uo - R "' R so as to make ft* invariant, where M(ZE) E Rmxm : dH(x)&(E) al:~d

i.e. fl,(xE) + J(xE)uo is tangent to if - . The vector u(ZE, v) ;=UO(2 5) + u1 (z)v is the unique solu.

field f E(xE) + #(z-)uo restricted to AC is referred to tion u of the equation
as the zero dynamics of E. It can also be shown that dft*.E)(f E(zE) + 0(xE-)u + pS(xE)v) = 0
AfC can be expressed in a neighborhood of 4 a

AC' ={t6vE X xC Xt :H(tE) =0) so that

for some function Hl* The following theorem uses Uo(ZE6) = M-1(xE)dft*(xE)fE(xE)

the procedure of the zero dynamics algorithm to soive and
the model matching problem as follows ((DB9OaI,
[CDB9O]): Ul(XE) = M1-(zE)df1(zE)3(xE)

Theorem 3.1 Stable Model Matching Further 1; E A'"' is chosen to stabilize part of
Consider Ethe sy~stem of (12) and assume that there ex. the system dynamics as specified below.
ists an x~ such that

1,. Al h olds, Let 20 (respectively 4) be an equilibrium point of
P (respectively t) such that h(xo) = 0 (respectively

2. t is minimum phase at 4E, and h(4E) = 0). Then, the following assumptions aie

3. span f&1z)) C T.-aMk+ span {4(2E)) in a equivalent.

neighborhood of 4E in kk, for all k > 0. Assumption Al' : (Strong Regularity of t)
E is right-invertible and (z4, 0= ) is a strongly

Then, there exist neighborhoods U Of Z0 and UM of z0 regular pair for E (strongly regular in the sense of
and an integer v such that the compensator Q defined [DBG90]).
by Assumption A2 : (Strong Regularity of P)

x = o(X, z) + b(X, xzW (13) P is right-invertible and (to, y =_0) is a strongly regulai
u = C(X z) +d(x, x)v pair for P.

for appropriately defined analytic a, b, c, d and X E R" Weaker assumptions than A2, e g the regularity hy-
and a function F :U x UM - R' and L E R+ such pothesis of [1si89]), p. 302 are also sufficient for our
that purposes. The implications of these assumptions are
a) I,' v(t) =_0 then the point (20, Xo F(zo, zo)) is, discussed in ([DBS9lJ). It is shown in ([DB9Ob]) that
an asymptotically Stable equilibrium point of the closed if the hypothesis Al of Theorem 3.1 is replaced by

loop P o Q, I.e. of the system the assumption A2 above, then one can construct a
local change of coordinates ((,i ,z') = P(z, z) with

i = AX) + g(*4c z x) = Z - ZO *~(xo, zo) = 0 and ( = if*(x, z) such that
x = a(x, x) the plant with the controller of equation (14) has the

b) .flIv(t)i < L for all t > 0 then form

= fpj(-' +ZO) + gh(z' +zo)t (1G)
for all (x,) E U xUm 1= 7 ' (,1:)
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The dependence of the matrices W2, W3 on the data, with ak,/3 analytic functions of x suh,,
and for that matter on W above, is involved. The coupling matrix of E, with the control 1,1t
equations (24) are affine in o as a consequence of the the form
linear parameterization of the control law by the un- 1 , o0z
known parameter 0. Ai( = M() 0
We are not as yet able to give a stability proof for a Step 3 There exist q& columns of A I (,,).
parameter update law derived on the basis of a com- of generality the first q) with two or moreposite Lyapunov function involving the system of equa- ements Put an integrator in series with q, crt.,
tion (24) and an equation for 4. However, there is one ing input channels, i.e. define the dynanc,
important special case for which an adaptive scheme of Ek composed with (25) as
can be derived and this is the case when the function
qj 0. It can be shown from Theorem 4.2 on page 272 =v
of (Isi89 that this assumption is satisfied if the plant
P can be linearized by static state feedback. This con- for I = 1, .. , q., Let E*+t be the new system ,1,;dition is slightly weaker than the condition that P has by composing Ek with (25) and (26) and returna
vector relative degree (in which case it can be both I with k - k + I and z' - {') U {Ct)linearized and decoupled by static state feedback) If the original system is right-invertible, then thu ,

dure converges in a finite number at steps to ,Theorem 3.3 Static State Feedback Adaptive denoted ', having vector relative degree (re, ,
Tracking Let (P.g',h') be the triple characterizing S'.
Consider the system of (1 ) and the model of (19) (r,() its state, u' its input and ' its output
with the assumption that 9q(f,q,z') E 0 Assume struct a local change of coordinates fxl') = ( , ,,
that At above holds and that P is ezponentially 4 = col(,) by setting
attractive on X. Also assume that the vector
fields , ,'),.( ,,z'),Ws( ,,1 ,v, ) are Lips. t, col (h(x),Lpi(x'),.r.,'l:..,
chit: continuous in their variables on X x XA1 x Rx : col ((',' .... l)
R&. Further, assume that W? has bounded derivatives
with respect to their arguments, and using some complementary coordinates 17 '1 h,
Then, under reparameternzaton with the control law of V takes the standard form ([Ilsi89), pg. 240):
(233), assume that the system can be expressed as in
equation (24). 9( q.) + W, Ou
Then there exists a choice of parameter update ti
law for 4' such that the control law of (23)
yields asymptotic tracking, with bounded states when (27)
sup,>o(jlyk(t),.. .,j yl (t) ) < 61 and roj1, 10(0)1 < - =

63 and the trajectory of zE 6 X x Xu. The proof of =. = b + u"
the Mheorem constructs the parameter update law. Y1 -

3.3 Adaptive Tracking by Dynamic fori I... m and a,(t, q)=L 5 .LS'h(-, ))
State Feedback for i < i,j !S m and bl,) =L.ho( )) oa

I << m At this point, asymptotic tracking may beWe now turn our attention to tracking by dynamic obtained by applying the following control law:
state feedback. Several algorithms have been proposed
in the literature for this problem and we now recall the u' = (At)-l(-b,+
one of ([DM87]). We change notation slightly to refer Y1 + ai1(yM ,' . +' " + a,,(yYjj -)
to the process P as E0. Set k = 0 and z' = .
Step I Let r, be the relative degree of the i th output ".
of Ei. Define the decoupling matrix A(z) to have its LM" +Qml(YMM G . +am.yM.,i) th entry where the polynomials s' + .+. + ,,. are

all Hurwitz
and denote its normal or generic rank by sk. lfsi = m, Prior Information for Adaptive Control
stop. One assumes that the true system is right invertible
Step 2 If sk < m, assume that the first s, rows of Now, the variables A',6',t are all functions of the
A(z) are linearly independent at each point of an open, unknown para:"- ar 0'. The functions ak, #k are func-
dense subset of X (this can always be achieved by a tions of . To estimate these one needs knowledge
permutation of the components of the output). Apply of the relative degrees of the system Ek at every step
the static state feedback in the procedure above and in particular, the vector

relative degree of the system V namely (r',.. r')U = ak(z) +o(z)v (25) Also, the imiegers sk,9k representinz ths, ra4nk r , ''
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where tile matrix A is rendered Hurwitz by appropriate 1. If yM(t) S 0 the closed loop system PoQ is asyml.

choice of 1K in (15). The states t contain in particu- toically stable with equdibrnum point Zo.

Ja the output errors as some of their entries. Also £ Whe
the functions q1 and P, satisfy some extra conditions, R WhMs>olYU(9)l ., lfM'(01) < 61 and

namelY 
IoI < 62 hen

0 0  
lira POQ( ) = YUM(t)

q (0, 1,Z) a0 '0 ,0) = 0 -

3.2 Adaptive Static State Feedback

pi(0, 7, z') = Tracking

dynamical system In this section we consider models of the form of equa.
tion (1) with the added feature that the dynamics

it= f(Z' + ZO (17)of the plant depend on certain unknown parametersi) = OR q,+Z') (17) so E R, i.e.

represents the zero dynamics of t and the system i =  f(Z, 0*) + g(Z, 0")u (21)y = h(z,8")

R= '(1, 0) (18) The assumption A2 of the previous section is assumed
represents the zero dynamics of P. The zero dynamics to hold for the true value of the plant parameter. Car-
manifold of t is now given by rying forward the dependence on 9 through the deriva.

tion of the tracking control law will yield the manifold

" = , Z') = 0) /H (Z , 0") and the control law of (15), namely

The form (17) of the zero dynamics of the system t u(z,v,9) :u*(z£,v, )+M-'(zP, )KAO (.-E8)

shows that it is minimum phase if the zero dynamics of (22)

P and the undriven model dynamics are asymptotically The prior information needed for adaptive control is

stable. In fact, the decomposition (16) can be used as follows: one assumes that at each step of the zero-

to extend the proof of Theorem 3.1 to cover the case dynamics algorithm modified as described above for
where, instead of assuming the asymptotic stability of stable model matehing, the manifold Mk d ,cribed as

the zero dynamics of t, one assumes that the variables the zero set of the functions Hh(ZE, 9) satisfies the con-

:' are bounded by a sufficiently small constant and that dition that
the zero dynamics of P is asymptotically stable. This d/h(ZE, G) (zE, 9)
can then be usefully applied to solve trajectory track. has a left null space of constant dimension as a function
ing as a special case of the model matching problem of 0. This is a sort of regularity hypothesis on the plant
in which the desired trajectory yM is generated by a as a function of 0. Note that the model is assumed to be
model consisting of chains of integrators driven by the known and independent of 0. Since, the parameter 0'
appropriate derivatives of the yu,. More precisely, de- is assumed unknown, we will replace it by its estimate
fine p, to be the essential order of the i th output of the at time t, denoted i(t). Further, we will assume that
plant yi as defined in ((GM89]). Then define the model the control law can be Iinearly-parameterized as
to be matched to have state z = col(z,i = 1,. m) E E B

with dynamics u( , v, *)=12(Z v)+Wi(z , v, 8")®"
ill =Z,
22 = z&2 for an appropriately defined matrix W(zE, v) E R"' x

(19) and parameter vector E0 E R*. Actually both ft and
=, Wl are affine in v. As a consequence the adaptive model

YM, = mt Matching control law is given by

The model satisfies the third hypothesis of Theorem 3.1 u(zE, v, 0(t)) := f(zE, v) + Wl (zE, v, 6)6(t) (23)
(0,)by the definition of the p, and corresponds to M., =

vi. Define p = map,. Denoting the parameter error 0 = O(t) - 6' E Rh we
may use the control law of (23) in the system of (21)

Theorem 3.2 MIMO Asymptotic Tracking to yield the following modification of (16) (note the
Assume that A2 above holds and that P is minimum non-existence of p, in particular, caused by the special
phase at zo. Then, there ezist constants 61,62 and a choice of model).
compensator Q of the form = A + ql(E, r, z') + W2(, 9, z', v, 0)$

u=c(,!IAI, ,..., , zyM, . , (-O)v z'= f((z' + zo) + gs(z' + zo)V

(20) )= . ,7..." + (, , , z')v + W3( , ,,', i,
such that (24)
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.A ~,agmatrices and the number of integrators to (DB9OaJ M. D. Di Benedetto. Nonlinear strong
it each step in the algorithm described above and asymptotic model matching with sta-

,,mdknown and are independent of P. Also, the bility. Preprint, Universith di Roma, 'La
2,111 Of the integrators at each step are assumed Sapienza', 1990.

o. r iS iformation it is possible to compute ak O (DB90b] M.D. Di Benedetto. Nonlinear strong
aafunictioll of e. As in the SISO case, we will assume model matching. IEEE Transactions on

t!, .' As) 1 V (A)- , fj oq OkAutomatic Control, 35:1351-1355, 1990.

i (DBG90] M,. D. Di Benedetto and J. W. Grizzle. In.

,ndl linearly on a new parameterization e of the trinsic notions of regularity for local inver-
.,nowii parameters. sion, output nulling and dynamic exten-

-Th, adaptive control law follows by replacing e by sion of nonsquare systems. Control The-
t, w0 thlat by using the certainty equivalence control oryj and Advanced'Technology, 6:357-381,
A% a cons~equence, the normal form equation (27) are 1990.
m1odifed to have regressor vectors ui'(z, 0) possiblyventry ~ ~ J corsodn(otemsac ewe DBS91] M. D. Di Benedetto and S. S Sastry
at every etycrepnigtth sm;hbwenAdaptive tracking for MIMO nonlinear
bs and (O* Thus the error equations for the tracking sses npeaain 91
errors c, = yj - ymi are given by sses npeaain 91

M~(au4(~, )4'+ . + DM87] J3. Vescusse and C. H, Moog. Dynamic de-
+ M~(a~4 (z'~)$coupling for right invertible nonlinear sys.

r?~'JrI ~ + tems, Systems and Control Letters, 8:345-
Where 349, 1987.

M = ~ ~~+. ~(GM89] A. Glumineau and C. H. Moog. Lssen-
(28)1'. tial orders and the nonlinear decoupling

(28) problem. International Journal of Control,
M = :+.,. :50:1825-1834, 1989.

'(1si89] A. Isidori., Nonlinear Control Systemis.
N'ote that all the transfer functions Ml are proper, sta Springer-Verlag, Berlin, 1989.
ble transfer functions. We define the augmented error [KKM89] L. Kanellakopoulos, P. Kokotovic, and

to beR. Marino. Robustness of adaptive non-
el= el + (~s~WD)O(t - Mf(s)(Wi'o(1)) linear control under an extended matching

*(M.:(s)wi:)O(t) - M".(a(4.( condition. In Proceedings IFAC, NOLCOS,

It is easy to see that the augmented error is of the form Cpi ae 9 17 99

(P P89] J3. Pomet and L, Praly. Adaptive nonlinear
el= W(Z.,6)O (29) regulation: Equation error from the Lya-

where punov equation. In Proceedings 28th IEEE

1 (z, e) = M1,I (Z(, 6) + . + M. (s)W~i(z W ) CDC, Tampa, pages 1008 - 1013, 1989.
is a filtered regressor. Note the reeblance~ of this [SB89] S. Sastry and M. Bodson, Adaptive Sys-
error equation to that in the SISO case. tems: Stability, Convergence and Robust-
Under the same hypothasis as in Theorem 2.1 the same ness. Prentice Hall, Englewood Cliffs, New
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Abstract

This paper discusses two schemes for the adaptive control of classes of MIMO
nonlinear systems with parametric uncertainty in their dynamics. First, the problem
of tracking a reference trajectory is considered and an adaptive version of the input.
output decoupling algorithm of [DM87] for general right invertible MIMO systems
is proposed. Then on the basis of some results of [DB90a], [DB90b] on asymptotic
model matching, a scheme is presented for Model Reference Adaptive Control and I
solution is given for input-output linearizable systems. Moreover, the non-adaptive
model matching results are extended to yield a solution to the problem of tracking by
static state feedback.

1 Introduction

In recent years there has been a great deal of research effort in the adaptive control of

nonlinear systems. This research has been primarily focused on SISO systems for which

there exist, broadly speaking, three types of approaches: those relying on the existence of

certain matching or structural conditions for the location of the unknown parameters (see

for example [KKM89], [TKMK89] and [KKM91]), the second relying on certain assumptions

on the type of the nonlinearities in the plant (see for example, [S189], [NA88], [KTKS91])
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Abstract

Stability properties of zero dynamics are among the crucial input-output proper-
ties of both linear and nonlinear systems. Unstable, or "non-minimum phase", zero
dynamics are a major obstacle to input.output linearization and high gain designs. An
analysis of the effects of regular perturbations in system equations on zero dynamics
shows that, whenever a perturbation decreases the system's relative degree, it man-
ifests itself as a singular perturbation of zero dynamics. Conditions are given under
which the zero dynamics evolve in two timescales characteristic of a standard singular
perturbarion form that allows a separate analysis of slow and fast parts of the zero
dynamics. The slow part is shown to be identical to the zero dynamics of the unper.
turbed system, while the fast part, represented by the so called boundary layer system,
describes the effects of perturbations.
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Abstract
An indirect adaptive control law based on certainty eqWvalence

is designed for a model of the induction motor with the as.umption
that the magnetic subsystem is linear. This nonlinear 'c:=..rol law ren-
ders the induction motor system input-output linear and also achieves
input-output decoupling. In addition, we find for the specific case of
the induction motor we are able to prove parameter convergence and
asymptotic tracking of a reference trajectory using the indirect adap.
tive controller. This result differs from the generic case where we can
only show asymptotic tracking. The indirect adaptive control method-
ology also does not suffer from the drawback of overparameterization
as in the direct adaptive control technique. Simulations are also given
comparing nonadaptive, direct adaptive, and indirect adaptive non-
linear controllers.
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Abstract

A toolbox for nonlinear control system design is presented. This
package contains modules to approximate systems to polynomials sys-
tems of arbitrary order and then render them input-output linear or
input-state linear with arbitrary order error terms. We also discus
possibilities for real-time control.
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In this paper we present matching conditions for output regulation for four
major classes of perturbed nonlinear systems controlled via the method of
exact linearization utilizing the sliding mode control methodology. The sys-
tems considered are single input single output (SISO) systems with perturbed
zero dynamics, multiple input multiple output (MIMO) systems with well de-
fined vector relative degree, left invertible MIMO systems decoupled using
the zero dynamics algorithm, right invertible MIMO systems decoupled using
the dynamic extension method.
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