==
=
—
]

I

92-00844

ML

L I SR T

J (R LR R VX T

P EALIMBIEG 1S 4.0TBQE ° CSOU’ OF! "MDOF e AW GInG INE Lime ‘e MAT L2t] O W CUIONE MBHINING CeNAG QAT WM

1ng 4AQ rev @ Ag A (OllecriON o'.-"ow-n-n-o teng (Cmmeaty r
- (Rg IR Burgen 10 WIVRAQIOR “eadiveners Servaes Dvectarste for infgrmation Operstion and Repoms. 1719 Jeferon
B 1C the Qe ~F Manegement ang ¢t Paperwore Regunrion Project (0704-0 188). warhagton. DC 20303

2 Ging 1R Durden EILMBIL OF sy Othe! 3301 Of 1Ay

mm”mm“mmm"““ml“l TREPORT DATE 3. REPORT TYPE AND DATES COVERED —
] March, 1991

4. TITLE AND SUBTIILE
METEORs: High Performance Theorem
Provers Using Model Elimination

S. FUNDING NUMBERS

D AACoS -F§ ~k-0083

$. AUTHOR(S)
O. L. Astrachan, D. W. Loveland

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Computer Science Department
Duke University
Ducrham, NC 27706

8. PERFORMING ORGANIZATION
REPORT NUMSBER

CS-1991-8

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

10. SPCNSORING /MONITORING
AGENCY REPORT NUMBER

Al avt9s.9-MAAL

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documenta

12s. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13 ABSTRACY (Matimum 200 words)

Historically, depth-first (linear) resolution procedures have not fared well

in proving deeper theorems relative to breadth-first resolution provers of various
types, primarily because of the search redundancy problem. However, we can now
demonstrate that the Model Eliminator (ME) procedure, a linear-input resolution-1like
procedure, may be a superior approach for certain types of problems (generally
non-Horn problems). There is a conjunction of reasons why the METEOR provers
presently appear so effective. The reasons are: the inherent speed advantage

of linear input systems, the sophistication of the WAM architecture in exploiting
this advantage, a program written in the language C using tight coding and effective
data structures, the speed of the platforms on which they run, and the successful
use of different search stragegies. We explore single processor and parallel
processor implementations of ME using different versions of interactive depth-first
search- Among the theorems we prove are variants of a problem in calculus for

which this ME theorem prover is presently the only uniform first-order proof
procedure realization that has succeeded in proving these variants.

14. SUBJECT TERMS

proof procedures, parallel implementation, autorated
theorem proving

Linear input proof procedures, Model Elinination first-order

15. NUMBLER OF PAGES

V6. PRICE COOE =~

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION J19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
CFf REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01.280-5500

e)
9 a2 . . '
‘ i
—_— “

Standarg Form 298 (Rev 2-39)
Proncnioeg Dy ANSI Ste 2918
298 102

CS-1991-08
METEORs: High Performance Theorem Provers
Using Model Elimination

O. L. Astrachan
D. W. Loveland

Department of Computer Science
Duke University
Durham, North Carolina 27706

\coesios For

S R N |
NTIS CRAz| ofl|

AR TON Y] ol

U acaorzed o
Ju.)tif:CilI:C‘H

|

Dlgt b

| E—— U

R e S

A et iy e
SR Ty Coles

) AV G e B
Dist Special

A-)

METEORs: High Performance Theorem

Provers using Model Elimination

O. L. Astrachan and D. W. Loveland®
March 4, 1991

1 Introduction

It has been thought for some time that linear resolution procedures are not
the best resolution formats for doing very large unguided searches such as are
required for proving significant mathematical theorems. Although very effi-
cient with storage space, the depth-first implementations that take advantage
of the linearity seem to preclude use of subsumption and similar devices to
reduce redundant search. However, research in logic programming has led to
sophisticated architectures giving nigh-speed performance for Prolog, which
is based on a linear input resolution procedure. In particular, the WAM archi-
tecture, due to D.H.D. Warren (see [33]) has proven very successful. This has
led to renewed interest in Model Elimination (ME) ([18),[19], [20]) which is a
linear input proof procedure for full first-order logic, similar to but distinct
from resolution. Interest has revived because there are situations where the
significantly higher inference rate may offset the removal of some redundant
computations.

That this offset can be realized is shown here by applying our theorem
prover METEOR successfully to two of Woody Bledsoe’s challenge prob-
lems [5]. To our knowledge we are (at present) the only other prover besides
the STR+VE program of Hines-Bledsoe [6] to find automated proofs for both
problems. It is appropriate to note here that theorem provers developed by
Woody Bledsoe and colleagues set the standards others try to match; that
is partly why we honor him with this volume. Our limited success relative
to STR+VE is interesting only because we employ a prover presently devoid
of specialized mechanisms for designated predicates. Our failure to prove a
third challenge problem shows the limitation of our approach (indeed the lim-
its of pure general first-order proof procedures) but it will allow us to note
the potential of selective use of automatically generated lemmas.

*Both authors have received partial support from U.S. Army Research Grant DAALO3-
88-K-0082 and NSF Grant CCR-8900383 for the research and writing of this paper

METEORs 2

In this paper we report on METEOR, a parallel implementation of ME
(or-parallelism, to be precise) and compare it to the sequential version of the
same inference engine as well as comparing the implementations with oth-
ers reported in the iiterature. (METEOR is derived from Model Elimination
Theorem proving with Efficient QR-parallelism.) The significance of paral-
lel ME in future thec.em provers stems from the availability (and even low
cost) of parallel machines and the decomposability of theorem proving tasks,
including search itself. The rapid progress of chip technology assures us of
low-cost access to powerful parallel computers in the near future. The possi-
bility of many specialized (and competing) components in a theorem prover
suggests that parallel computers may be the preferred vehicles in the future.
(Clearly, distributed processing is also appropriate here.) The immediate fo-
cus is to demonstrate that the inference rate is appropriately enhanced by
parallelization and that added gain is possible by utilizing the flexibility of
computation that parallel computation suggests.

For many years interest in ME was kept alive by Mark Stickel, who has
demonstrated that the WAM architecture can be adopted to ME and yield
a very high inference rate in this setting as well. This relationship to Prolog
architecture is even recognized by the title in the recent theorem prover(s) de-
veloped by Stickel: the Prolog Technology Theorem Prover ([29], [30], [32].)
When we began our project, Stickel’s work was the sole guide for comparison.
However, as we write this summary of an implementation of parallel ME, sev-
eral years after initiation of the project, we see that we were not alone in seeing
new opportunity in exploiting Model Elimination. Two other projects (that
we know of) simultaneously have developed parallel ME implementations us-
ing the concepts employed in Prolog implementations, indeed using ideas from
implementations of parallel versions of Prolog. PARTHENON, developed at
CMU by Bose, Cl.arke, Long and Michaylov ([7] [8]) employs a modification
of the SRI architecture for or-parallel Prolog designed by D.H.D. Warren [34].
PARTHENON has been run on a Encore MULTIMAX computer, using up to
16 processors, and on the IBM RP3, using up to 60 processors. Both systems
are MIMD shared-memory systems. PARTHEO, developed at TUM (Mu-
nich) by Schumann and Letz [28), consists of a uniform network of sequential
processors for ME communicating by message passing. The individual ME
processors use an extension of the WAM architecture.

Our implementation has much in common with both of the abovemen-
tioned implementations for reasons given earlier; all have utilized the WAM
architecture and the very close design relationship between Prolog (SLD-
zesolution) and ME. Qur implementation is closer to PARTHENON in that
it was originally based on Warren’s SRI model and also runs on an MIMD
shared-memory machine. (The current implementation iz closer to the or-
parallel system developed at SICS [1] than to the SRI model.) We use a BBN
Butterfly GP1000 with up to 30 processors. We have also adapted the prover
to run on a network of Sun SPARC stations each of which is a significantly

METEORs 3

more powerful inference engine than one node of the Butterfly.

Perhaps the most significant design difference with both other systems is
our task allocator or scheduler. Whereas the other systems use a local task
“stealing” mechanism, we use a top-level public sector/private sector task
dispensing system (as in [21]) we call a SASS-pool, for Simultaneous Access
of Selectively Shared objects pool, a type of concurrent pool. The notion
of concurrent pool has been extensively studied by Ellis and Kotz (see [15]).
This paper will focus on the differences between this system and the other
implementations.

The most significant discovery from our experimentation with the ME-
TEOR project is the effect of different depth measures on the proof search
size. The proof search uses iterative deepening, the now standard method
of realizing completeness in a depth-first search procedure [14]. By iterative
deepening we mean expanding the search tree fully to a specified depth, incre-
menting the depth bound and reexpanding the search tree, and continuing this
until a proof is found or the search is terminated. Within this basic search
strategy are significant variants determined by the measure of depth used.
Using the number of inferences in a deduction as a depth measure, as done
by PTTP [32) and PARTHENON [8], one is assured of a shortest proof if any
proof is found. However, we have discovered that the original depth measure
suggested for ME [18] very often finds a proof in a dramatically shorter time,
although not necessarily a shortest proof. The SETHEO/PARTHEO (28]
provers seem to use this measure uniformly, but with no reported data on
comparison of depth measures. We have also discovered two diflerent combi-
nation depth measures of interest, one that is a compromise of the two depth
measures but is uniformly better than using the number of inferences as a
depth measure, and one that is often strikingly good for reasons we do not
fully understand.

After a presentation of the architecture of METEOR, we present perfor-
mance figures on a collection of benchmark problems run on several other the-
orem provers, comparing previous performances with data from our sequential
prover and from the METEOR parallel prover. We also provide performance
figures on three of five Bledsoe challenge problems regarding the continuity
of the sum of two continuous functions [5]. We begin with a brief review of
the ME procedure the WAM architecture and the METEOR architecture, a
parallel version of the WAM architecture.

2 Background

We first outline the Model Elimination (ME) procedure. We assume the
reader is familiar with basic resolution terminology. For such terminology,
see Chang & Lee [10] or Loveland [20]. The latter book gives a thorough
introduction to ME.

METEORs | 4

The ME procedure utilizes many of the same mechanisms as resolution,
and can be roughly regarded as a linear input resolution procedure with the
addition of an ancestor rule we call (ME) reduction. (However, the resultant
resolution procedure corresponding to ME is not a linear input procedure.
Linear input resolution procedures are complete only for the renamable Horn
sets at the ground level.) The interest in the procedures is due to retention of
the linear input property while providing a complete proof procedure. By a
linear (resp., input) procedure we mean a procedure all of whose deductions
are linear (resp., input) deductions. A linear deduction is a deduction where
each line is derived from the preceding line (often using auxiliary information).
An input deduction is a deduction where each line uses as auxiliary information
only a given (i.e., input) formula. For example, an input resolution deduction
restricts the resolution inference rule to one derived clause (at most) and one
given clause as parents to the resolvent. It follows that input deductions are
linear, since two lines of deduction can never join, but we often use the phrase
linear input to emphasize the linearity (and because the phrase is in common
use).

ME has two basic inference rules, the extension rule and the reduction rule.
The rules manipulate formulas called chains, defined below. The extension
rule (also defined below) is very similar to the resolution rule, using as parent
formulas a derived chain and a given chain, and producing a chain. Reduction
takes one chain as input and produces a modified chain. Hence the system
has a (linear) input form.

ME is a refutation procedure, taking as pre-input a clause set prepared as
is done for resolution. The actual input is a set of chains of a certain type. A
chain is a sequence of literals; each literal is one of two types, A-literal (for
ancestor) or B-literal. The ordering that determines acceptable sequencing is
determined by the user subject to constraints given below. An input chain
is a sequence of B-literals composed of the literals from a clause of the given
clause set. The ordering of each input chain is determined entirely by the
user except that for each literal in a given clause there must be a chain with
that literal leftmost. Thus, for an n-literal given clause there are n input
chains. Chains are accessed only by the leftmost literal so this restriction
states that every literal of every given clause is accessible. (Whether or not
n copies of an n-literal clause actually exist is an implementation matter.)
(In {20}, and in the earlier papers introducing ME {18], [19], chains had the
rightmost literal as the accessible literal. That ordering is more convenient
for presenting deductions. However, Prolog conventions utilize left access,
and, as ME is now implemented using augmented Prolog architectures, we
accommodate these conventions.)

Definition 2.1 A chain is admissible if and only if (iff):
1. complementary B-literals are separated by an A-literal;

2. no B-literal is to the lefl of an identical A-literal;

METEORs 5

8. no A-literal is identical or complementary to another A-literal; and

4. the lefimost literal is a B-literal.

We need only deal with admissible chains. Any derived chain not admissi-
ble can terminate that search branch. These conditions, particularly condition
2, make useful pruning rules.

We give the two inference rules. Recall that two literals are complementary
iff one is the negation of the other. By mgu we mean the “most-general
unifier”.

Definition 2.2 Extension: Given admissible chain C, and input chain C;
such that the lefimost B-literal ly of Cy and the lefimost B-literal I3 of C2
can be made complementary by mgu o, the resullant chain is C\o, with o
promoted {o an A-literal augmenied on the left by Cao—{l30}, with C30—{lz0}
reordered as the user wishes. Any leftmost A-literals are removed.

Definition 2.3 Reduction: Given edmissible chain C with leftmost B-literal
ly and A-literal I3 (anywhere in C) such that |, and l3 can be made comple-
mentary by mgs o, then the resultant chain is Co — {0} with any A-literals
leftmost in Co — {lo} removed.

Example: If Cy = Pza[~Qy){Pf(z)}]Qz and C3 = —Paa, then the ex-
tension of C; using C; is Qa, with intermediate step [Paa][~Qy}[P f(a)b]Qa
before the A-literals (in brackets) are removed as being leftmost (i.e. to the
left of all B-literals).

Example: If C = Paz{-Qb][~Pyz] then reduction can apply, yielding the
empty chain, from intermediate step [~Qb][-~Paz] whereupon the A-literals
are removed as being leftmost in the intermediate chain.

An ME refutation of a given clause set is a sequence of steps using the
inference rules of extension and reduction from the set of associated input
chains and with the last entry the empty chain, denoted O.

We note that there is no equivalent to factoring, although that can be
added. SL-resolution (Kowalski & Kuehner [16]) is essentially ME with fac-
toring. Incidentally, the selected literal capability of SL-resolution is present
in the ME procedure under a different guise. In ME the user orders the input
clause (freely) in the extension derived chain according to the order of selec-
tion desired. Literals between A-literals can be reordered at any point, with
the justification that the resulting order could have been selected initially, if
desired.

Before giving a short ME refutation we mention the lemma capability
of ME which has never been extensively explored. (Lemmas were used in
[12) in an unconstrained manner, and found generally not helpful without
further control.) There is a device for creating derived clauses during the
search process that can be used to shorten proofs. Since these lemmas are

METEORs 6

not needed for completeness (unlike derived resolution resolvents) very strong
restrictions can be applied regarding retention. The lemmas may by used
to form new input chains. (We feel that most often only one-literal lemmas
would be retained.) The use of lemmas and related devices (“caching”™) have
the potential to greatly reduce the search needed to achieve refutations if the
right mechanisms for use can be found. We are exploring this now.

A unit lemma may be created any time an A-literal is removed from the
left of an intermediate chain during extension or reduction, provided that no
reduction previously has used an A-literal to the right of the discarded A-
literal. The unit lemma is simply the complement of the removed A-literal,
as currently instantiated. (This is a simplification of the full rule for lemmas,
given in [19) [20].)

In Figure 1 we present an ME refutation given in [20]. No ordering rule
is needed here since the longest chain has two literals. The input chains are
never explicitly listed, only the given clauses are listed; the input chains are
irrelevant except conceptually because it is only the ordering after extension
that really matters. -

This ME refutation illustrates lemmas, and also that a chain with com-
plementary B-literals separated by A-literals cannot be discarded. (Cf. the
definition of admissible chain given earlier.)

(The label 1b means the second literal of clause 1.)

1. Pz-Qy given clause
2. ~PzRy given clause
3. -Pa-Ry given clause
4. QzPa given clause
5. PylQz)Pa extension with 1b
6. Rz[Py)[Qz]Pa extension with 2a
7. =Pgq[R:z][Py)[Qz]Pa extension with 3b
8. Pa reduction

Unit lemmas formed:

-Pa

-Qz

{(Note: If lemma —Pa is used for extension then O is immediately derived)

9. -Ry[Pa) extension with 3a
10. -Pz[-~Ry](Pa] extension with 2b
11. O reduction

Figure 1: An ME refutation

METEORs 7

3 The Warren Abstract Machine

The success of Prolog as a logic programming language is due both to the
declarative/procedural nature of logic as a programming language and to
the efficiency of current implementations of Prolog. This efficiency is due
to the input nature of Prolog deductions and to current realizations of such
input procedures. This latter efficiency is due in large part to David H. D.
Warren’s design of an abstract machine for executing Prolog programs [33)].
Most commercial and research Prolog implementations are based to a large
degree on the WAM (Warren Abstract Machine) as are the Prolog technology
class of theorem provers ([32],(8],[2]).

The WAM consists of both an architecture and za instruction set. Many
Prolog implementations compile Prolog programs into WAM instructions (or
some variant thereof) which can be run on different machines (e.g., Sun,
VAX) by using different back ends for the Prolog compiler/interpreter. The
architecture of Warren’s virtual machine is designed to take advantage of
traditional von Neumann architectures while optimizing execution of Prolog.

The architecture of our prover is based on that of the WAM although we
do not compile a set of clauses into some variant of the WAM instruction set.
Instead, we use the concepts underlying the design of the instruction set to
compile the clauses into a data structure that is tuned to our implementation
of parallel Model Elimination.

3.1 The WAM architecture

We give a brief outline of the WAM architecture. For a more thorough expla-
nation see [33],(22]. The WAM is a stack based machine. In addition to the
code area (in which compiled Prolog procedures are stored) there are three
stacks: the term stack, the trail stack and the runtime stack.

The term stack is often referred to as the heap. Although the first Prolog
implementations employed structure sharing [9] for storing bindings of terms,
current implementations use copy on use. When a term such as £(X,g(a,Y))
is substituted for a variable during unification, a copy of the term is made on
the term stack. If subsequent deductions cause this binding to be incorrect
(and backtracking occurs), the space in the term stack will eventually be
reclaimed. Note that the skeleton of a term as it appears in an input clause
may be stored several times (with, perhaps, different instantiations of the
variables in the term) on the term stack.

The trail stack is used to trail bindings of variables that may need to be
undone when backtracking occurs. In a sequential setting, only the addresses
of variables that are bound are stored in the trail stack. If backtracking
occurs, these addresses are used to restore the state of the bound variable to
unbound. In the SRI or-paralle] extension to the WAM, both the address of
a variable and the value bound to the variable are trailed. This is necessary

METEORs 8

since different processors may bind different values to the the same variable.
Unlike the sequential WAM in which variables are associated with an address,
in the SRI extension to the WAM variables are associated with an index in a
binding array (and an address). The use of the binding array enables different
processors to bind values to the “same” variable by storing the value in the
processor’s binding array. In our original prover we also used such a binding
array. Our current prover, however, uses the model of the sequential WAM
in a parallel setting and no binding array is used.

The runtime stack stores both environments and choice points. An en-
vironment consists of the variables associated with a given clause and the
bindings of those variables. When clauses are compiled, a choice point stores
the values of the WAM registers that need to be restored when backtracking
occurs. In our setting, a choicepoint stores these values as well as storing the
information necessary to make the next “choice” i.e., which chain to try next.
We thus fold the code area into the runtime stack, specifically into the choice
points that comprise the METEOR runtime stack.

3.2 METEOR Architecture

The data structure diagrammed in Figure 2 shows how a clause set is compiled
into a structure used by METEOR. Each chain corresponding to a clause in
the clause set is represented in the section labeled Chain Table. Recall that
in ME each literal of a clause is a candidate for the extension operation.
Consequently, a given n-literal clause is represented n times in the chain
table: once with each literal as the head (left-most literal) of a chain which
corresponds to the clause. Each such instance of a clause is preptocessed to
distinguish the first occurrence of each variable (for efficient operation of the
occurs check) and indexed according to the first argument of the head literal.

Pointers representing each chain with a given literal as head reference an-
other pointer (the chain list pointer section) according to the index assigned
to the the head literal’s first argument. This level of indirection is essen-
tial as it avoids duplicate storage of a chain (each chain must “appear” in
the all section of the chain table to match a goal whose first argument is a
variable as well is in the hash bucket corresponding the chain’s first literal)
while permitting alternative chains with the same head literal to be accessed
sequentially.

The section labeled _kain list stores information about a chain that is used
during an extension operation. The number of variables in the chain is used
in allocating an environment for the chain. The number of “body literals”
(the term is derived from Prolog terminology) represents the number of new
subgoals that must be solved if a chain is used for extension. This can be
used to prune the search tree early using certain depth measures (see below).
The literals that comprise a chain are accessed sequentially by following the
head pointer as shown in the diagram.

METEORs 9

3.3 METEOR Choice Points

At any time during a run of METEOR, the runtime stack stores information
that allows the current deduction to be reconstructed. The stack is comprised
of choice points, one choice point for each node of the current search tree. If
the active branch of the search tree fails for some reason (e.g., depth bound
is reached or no matching clauses are found), METEOR backtracks and tries
an alternative extension or reduction. When run in parallel, the stack of
each processor is divided into a public and private section in the same man-
ner as [21]. This division is realized by putting one choice point from each
processor’s runtime stack into & publically accessible data structure we call a
SASS-pool (Simultaneous Access of Selectively Shared objects.)

Access to this pool is supp-rted by CREW (concurrent read exclusive
write) locks (3] which permit simultaneous access to choice points while en-
suring atomic conversion of a cnoice point from private to public status. When
a “reading” or “stealing” process gains access to a public choice point, work
is transferred to the reading process without interrupting the process from
which the work is taken. By utilizing the atomic operators available on the
Butterfly we have been able to implement these locks so that, on the aver-
age, less than one one-thousandth of the total running time is spent acquiring
locks for problems with sufficient parallelism. For full details on the locking
mechanisms see [2].

3.4 Transferring Work

How work is transferred, from what part of the search tree the work is trans-
ferred, and the granularity of the work transferred are important details in
an or-parallel system. In METEOR, we transfer work from nodes near the
root of the search tree. In the original version of METEOR based on the
SRI model, transferral of work included copying part of the global stack from
the processor from which work is taken. In addition, a processor’s logical
stack physically resided on several processors. Although this model supports
parallelism to some degree (it is used in PARTHENON and some models of
or-parallel Prolog), we feel that current trends in parallel architectures will
emphasize NUMA (non-uniform memory access) architectures and that such
architectures preclude this approach.

The Butterfly GP1000 machine (on which METEOR has been developed)
is a NUMA machine on which local memory accesses are roughly ten to fif-
teen times faster than remote accesses. Current trends towards cache based
machines will make this penalty even more severe on other architectures.
Developments in distributed computing also preclude an approach based on
physically shared stacks. With these trends in mind, we have abandoned the
SRI model and implemented an architecture in which stacks are not physi-
cally shared. Instead, when processor P steals work from processor Q, the
stack of processor Q is reconstructed locally on processor P. In METEOR,

METEORs 10

the stack is not copied, but is recreated by copying the sequence of extensions
and reductions that led to the state from which work was taken from proces-
sor Q. We have adopted this approach, rather than an approach of physically
copying stack information, because recreating a stack is an extremely fast
operation given our architecture. In addition, this approach has enabled us
to implement a distributed version of METEOR on a network of Sun SPARC
stations. The distributed version runs in two modes: a shared memory ap-
proach using the common file system as a shared pool, and a message passing
approach using UNIX sockets. The MUSE or-parallel Prolog system [1] also
uses a non-shared stack approach, but physically copies the stack and at-
tempts to optimize transferral of work so that stack copying is minimized.
PARTHEO (28] uses a system like ours in which stacks are recreated locally.
Kumar [17] discusses the parameters of a system that affect whether copying
should be preferred to re-creation.

METEORs

. — p|all hlo
id = P{3l_ #[ll

arity | h[1] h(2] f-[3l

arnity
=2

Chain Table

(~ occur at fixed offset)

ichain list ptrs

id=-P

arity
=2

Clauses:
P(X,{(c)),Q(a,b)
P(a,b),R(X,Y)

#vare =1
#body lits = 1 | &
head
#vars = 2
#body lits =1 | +—
head I
chain list
Global Stack
func = {
~ const = €
1 ~[pea-r
var = X
R ref = =—
literal ptrs ¥ .PM
const= a
const= b
pred = P
const= a
const=b
pred = R
var = X
var = Y

/\

Figure 2: Principal data structures in METEOR

11

METEORs 12

4 Discovering a Proof

In proof procedures based on Model Elimination, the search tree can be viewed
as an AND-OR tree [24]. Each extension operation with an n-literal input
chain yields an AND node in which there are n—1 branches (one for each literal
l other than the head literal.) Each of these branches links to an OR node
from which there is a branch for each input chain whose head literal matches
[(that may lead to an extension operation) and a branch for each matching
ancestor literal (that may lead to a reduction operation.) Thus alternating
levels of the search tree consist solely of either AND or OR nodes with the OR
nodes cortesponding (loosely) to a WAM choice point. METEOR and other
or-parallel provers attempt to explore the OR nodes of this tree in parallel. A
successful search results in a proof tree which consists of AND nodes, several
such trees are diagrammed below (3,4,5.)

To ensure completeness, most theorem provers using depth-first search use
iterative deepening as a scarch control strategy. METEOR (as well as PTTP
and PARTHENON) employs an iterative form of the A* algorithm called
IDA*.

In each iteration of the A* algorithm, nodes of lowest cost are chosen for
expansion. Expansion of a node results in the children of the expanded node
becoming candidates for expansion in the next iteration of the algorithm and
requires the calculation of the cost of each child. The cost of a node, f(n),
is determined by f(n) = g(n) + h(n) where g represents the cost of reaching
node n and h represents the estimated cost of reaching a goal node from n
(the empty chain in an ME deduction.) Like other best-first searches, A*
requires exponential storage in practice [25] which makes it prohibitive. IDA*
combines the linear storage of depth-first search with the optimality of A*.
At each iteration of IDA*, nodes are expanded according to the cost function
f(n) as in A*, but the nodes are expanded in a depth first manner (with
backtracking) until a threshold is exceeded. If no goal nodes are expanded
(the search is not successful), the threshold is incremented (to the minimum
of all costs that exceeded the previous threshold) and the search continues.

(Strictly speaking an IDA* algorithm is not used since node selection is
controlled by the order in which clauses appear in the input file.)

In the class of theorem provers examined here, both g and A are computed
from the same measure: the depth of a deduction. Different depth measures,
however, can yield drastically different search times for a given problem.

4.1 Depth Measures

The depth measure employed in PTTP and PARTHENON is based on the
number of inferences (extensions and reductions) used to reach a node of the
search tree. For any node n we have

g(n) = total number of extensions and reductions to reach n

METEORs 13

h(n) = number of B literals in the chain at node n

To see that h(n) is an admissible measure (i.e., never overestimates the cost
to a goal node) note that the conversion of each body literal introduced by
an extension operation to an A-literal requires at least one inference (either a
reduction or extension with a unit chain.) This measure will ensure that if a
proof is found, the number of inference steps in the proof is minimal. We call
this depth measure cumulative inference depth, or cumulative depth. Note
that both g and h (indirectly) are defined in terms of the total number of
inferences in a proof.

In many contexts we are concerned with finding proofs of minimal length.
At times, however, we may be concerned with minimizing the time to find
a proof and may be willing to sacrifice minimization of proof length for a
“quicker” proof search. This leads us to also consider a different depth mea-
sure, one originally proposed in [18], which attempts to minimize the depth
of the search tree. In this case for any node n we have

g(n) = number of A-literals in the chain at n
h(n) = 0

Note that the number of A-literals in the chain at n is the length of the path
from goal to n in the (potential) AND proof tree. We assign h the value 0
since it is possible for each literal introduced at node n to be “solved” by the
reduction operation which does not introduce a new A-literal. This depth
measure ensures that the maximum number of A-literals in any chain of the
deduction is minimized which corresponds to minimizing the depth of the
AND-OR search tree. We call this depth measure ME-depth since it is the
measure outlined in the original presentation of Model Elimination [18].

To see how these different measures can affect the search for a proof,
consider the proof trees of two different group theory problems (wos10 and
wosl) shown in Figures 3 and 4. The clause sets for these problems are given
in section 6 (in the search tree each number refers to the clause number in
the input file.} The ME-depth proof tree for wos10 indicates a proof is found
at ME-depth four that consists of 16 inferences. There is, however, a ten
inference proof found as shown in the cumulative inference depth proof tree.
Comparison of the times taken to find these respective proofs (see Table 9)
shows that the ME-depth proof takes 12 times as long to find.

In contrast, the ME-depth proof tree for wosl indicates a proof is found
at ME-depth three that consists of 10 inferences. The cumulative inference
depth proof tree also consists of a 10 inference proof, but this proof takes
roughly 8.5 times as long to find as the ME-proof.

In terms of time taken to find a proof, these problems are relatively simple
(there is a large class of problems whose proofs are found in under 1 or 2
seconds by all provers of the PTTP class, we do not consider these here.)

METEORs 14

Even so, we gain or lose almost a factor of 10 depending on our choice of depth
measure for these problems. For “harder” problems (problems for which it
takes more time to find a proof) this difference can be even more pronounced
— 80 much so that the choice of depth measure can determine whether a proof
is found.

Given the differences in time to find a proof using the different depth mea-
sures, the question naturally arises as to whether a choice of depth measure
can be made a priori. As we shall see, there are a priori reasons for choosing
one depth measure in lieu of another based on a static evaluation of the input
clause set. We have also developed a heuristic depth measure that combines
both ME-depth and cumulative inference depth. We consider the combined
measure first.

The obvious methods of combining the two methods in an iterative deep-
ening search involve searching to a given level of the search tree (ME-depth)
while constraining the number of inferences permitted in the potential proof
tree. As a heuristic, we have chosen to constrain the number of A-literals to
be half the number of inferences allowed in exploring the search tree. We call
this depth measure heuristic depth. As seen in Tables 9 and 12, this heuristic
depth yields uniformly faster search times than cumulative inference depth
on the examples run. For several problems, however, using ME-depth yields
drastically shorter search times. We are currently investigating using a dy-
namic combination in which the number of A-literals is a function of both the
branching factor in the search tree and the number of inferences.

goal goal

! '

9 9
‘/‘\ ‘/‘\~
3 4 9 6 10 1

Figure 3: Proof trees for wos10 (ME-depth on left, cumulative depth on right).
The box labeled T represents three unit chain extensions.

METEORs 15

T
5/‘2\‘1

Figure 4: Proof trees for wosl (ME-depth on left, cumulative depth on right).
The box labeled T represents the same extensions with three unit chains.

4.2 An a priori choice of depth bound

There is a8 class of problems for which a static evaluation of the input clause
set can suggest that ME-depth is the appropriate depth measure. Consider a
clause set which contains an n-literal clause for some “large” n (e.g., n > 4)
or several such clauses. If such clauses are used several times in the proof tree,
the tree will tend to be “bushy” i.e., several nodes will have a large branching
factor. This is often an indication that the use of ME-depth will yield faster
search times. Consider, for example, Schubert’s Steamroller problem as for-
mulated in [31). The version of the problem suggested as the standard has a
five literal goal and an eight literal clause among the input clauses. Although
several forward chaining provers succeed quickly with this problem, the PTTP
class of provers does not succeed when using cumulative search depth. Using
ME-depth, however, (or rollback reduction — see below) METEOR finds a
proof very quickly as indicated in Table 13. Examination of the proof tree
shown in Figure 5 indicates that a proof tree of depth four exists, but that this
tree consists of 69 inferences (all extensions). (Each O in the figure represents
an input chain that matches with either 1 or 2 unit clauses as indicated.)

As another class of problems for which ME-depth is well suited we consider
the pigeonhole family of problems P,, where P, is a clausal form of the
statement that n 4 1 pigeons cannot fit in n holes. This class of propositional
problems is “hard” in the sense that the number of clauses in P, is O(n3),
but the shortest resolution refutation of P, consists of §2(c¢") clauses for some
constant ¢ ([13]) i.e., the size of the proof tree is exponential in n. The proofs
of these theorems depend heavily on the reduction operation. For Ps we note
that the proof tree has depth 13 and that there are 4,178 inferences of which
1,568 are reductions (the proof is found in 25.67 seconds, see Table 13.)

In comparing METEOR runtimes on the pigeonhole problems with results
given for other provers (see Table 8) we have found a discrepancy in the use
of the parameter n in the pigeonhole problem P,. Some references ([23], [27])

METEORs 16

Figure 5: Proof tree for Shubert’s Steamroller

use P4 to refer to the same problem referred to by others as P3([4].) We have
adopted the meaning given in [13] and [4] which is the meaning given in the
original presentation of the pigeonhole problem ([11]).

4.3 Rollback Reduction

As part of our examination of different depth measures we have discovered
{somewhat serendipitously) a new depth measure which applies only to non-
horn clause sets. In a sense this measure combines cumulative inference depth
and ME-depth. With this measure, a depth is associated with each literal in
a chain as well as with the chain itself. The depth of the initial chain (and
the literals that comprise this chain) is zero. The depth of a successor chain
depends on whether the chain is formed by extension or reduction. If the
depth of a chain C is d, and the successor chain C’ is formed by extension,
then the depth of C’ is d + 1 and the depth of each literal (if any) introduced
by the extension is also d 4+ 1. Thus for extensions, depth is calculated as it
is using curnulative depth. If €’ is formed from C by reduction, bowever, the
depth of C’ is the depth of the accessible (left most) literal of C’.

Since the depth of a successor chain can decrease after a reduction operator
(and never increases) we call this depth measure rollback reduction.

We have tried this measure on several non-horn problems and it is uni-
formly better than using cumulative inference depth on these problems. Using
rollback reduction does not slways result in a shortest proof. However, it ap-
pears that by allowing more reductions than would be allowed using cumula-

METEORs 17

tive inference depth that deeper proofs are found more quickly. For example,
wos4 (another group theory problem) has a minimal length proof of 13 steps
found in 1,083 seconds using cumulative depth (see Table 13) and an 18 step
proof found in 0.78 seconds using rollback reduction.

The results for several non-horn problems are given in Table 13. For those
problems for which no cumulative depth statistics are given, METEOR failed
to find a proof using cumulative depth.

4.4 Weighted depth

The depth measures we have mentioned may be set by runtime parameters
when METEOR is invoked. We have also implemented a depth measure that
may be used in conjunction with either cumulative depth or ME-depth, but
which requires that input clauses be annotated with a weight. This weight
should reflect the user’s concept of how often a chain corresponding to the
clause is used on any AND branch of the search tree (“heavy” clauses will
be used less often.) For example, in a group theory problem (e.g., wosl and
wos10, see pages 25 and 26) the axioms of associativity have many literals,
none with ground terms. Unconstrained use of such clauses can result in
chains that are not part of any proof i.e., in searching dead ends in the search
tree. One would thus weight these clauses more heavily than ground unit
clauses.

When clauses are weighted and the appropriate runtime parameters are
set to invoke weighting, the weight of a node N is the sum of the weights of
the clauses used in the proof on the path from the root of the search tree to
N. Typically, a weight bound is set by the user and this bound is used in
conjunction with clause weighting to prune branches of the search tree that
exceed this bound. If no proof is found with a given weight bound, the bound
is incremented {automatically) and the search continued. We call this depth
measure weighled ME-depth or weighted depth.

We use weighted depth in conjunction with either cumulative depth or
ME-depth, not as a substitute for either. We have assigned weights to the
clauses for many of the problems for which statistics are given in the tables
below. For a given class of problems (e.g., wos problems, bledsoe problems),
the weights assigned to common clauses are the same across problems in the
same class. Statistics for the use of weighted depth with several problems
are given in Table 9. The choice of weight bound and weight increment (the
amount by which the bound is incremented on each search iteration) can
have a profound effect on the search time. We choose the bound based on the
weights of the heaviest clauses and an increment that permits progressively
more instances of these heavy clauses to be used every three or four search
iterations.

METEORs 18

4.5 Other pruning techniques

There are several pruning techniques particular to Model Elimination that we
incorporate in METEOR and which are used in other ME based provers ([28],
(32}, [8].) The most useful of these prunes (with failure) a branch of the search
tree if the goal (literal eligible for extension and reduction) is identical to an
ancestor literal. The other techniques prune (with success) a branch of the
search tree if either reduction or extension with a unit chain does not specialize
any variables in the goal. (These pruning rules are derived from Definition 2.1,
the definition of an admissible chain.) The first of these techniques has a
dramatic effect on the time needed to find a proof for many of the problems.
In METEOR, the literals of a chain with the same sign and predicate are linked
together so that this pruning method is relatively inexpensive to implement.
The other techniques are also implemented efficiently due to the use of the
trail stack. If a reduction or unit extension does not specialize any variables,
no bindings will be trailed and a simple check of whether the top of the trail
stack has changed is sufficient to determine whether pruning is permissible.

These pruning measures are active by default in METEOR although they
can be deactivated at runtime. Note that in a parallel setting it is possible
for the pruning techniques based on variable instantiation to be voided if a
processor steals work prior to pruning.

Another pruning technique involves limiting the number of times a clause
can participate in a deduction. This technique proved quite useful in the
earliest implementation of Model Elimination [12] and appears to have been
investigated by the PARTHEO group [28]. In METEOR, it is possible to limit
the number of times a clause is used in a deduction by either annotating each
clause in the input file (and specifying the appropriate runtime parameters) or
by uniformly limiting clause use at runtime. The limit is incremented during
each iteration of the search as are the other depth measures.

We also have implemented a mechanism that can control the complexity
of the terms generated during a deduction. This is often useful in problems
involving complex terms (e.g., the Bledsoe problems below) even though our
mechanism is inefficient and reduces the inference rate by a significant factor.
Our implementation is much cruder, for example, than that employed by
Otter (23). We do not employ this pruning method nor the clause limiting
method in the results reported here.

5 Results

In this section we provide the results of running METEOR on several problems
from the literature using several different depth measures. We also compare
these figures to those given for several other comparable theorem provers.

In these tables sMETEOQOR tefers to our sequential implementation of ME-
TEOR. Statistics for this implementation are calculated from an average of

METEORs 19

at least five runs on a Sun SPARC Station 14. Statistics for the parallel
implementation of METEOR are also averaged over five runs on a Butterfly
GP1000 using up to 30 nodes. (Each node consists of a Motorola 68020 pro-
cessor, four megabytes of memory, and some custom hardware. There is no
user level intranode multiprogramming.) We note that many of the problems
can yield substantially different run times over several runs using the same
number of processors due to the non-deterministic nature of parallel compu-
tation. Our distributed prover, dMETEOR, runs on a network of Sun SPARC
and Sun 3 workstations. Since each “processor” in this network has a poten-
tially different workload (unlike the Butterfly), and since our prover runs in
a low priority background mode, the number of CPU seconds per processor
varies greatly (across processors) during a distributed run.

Unless otherwise indicated, the problems we have used in testing our prover
come from ([32] (which pulled together problems from many other works,
principally from Wilson and Minker [35]) and have been used as reported
benchmarks in several other provers (8} [27].

It is difficult to compare the results reported for different automated rea-
soning systems because of differences in hardware. Ideally we would run the
provers referenced in the tables below on the same machine and compare the
runtimes, but we do not have access to all the provers nor are we expert at
the use of many of the different provers. Nevertheless, we feel it is useful to
report the comparisons we have made.

5.1 Bledsoe challenge problems

We have begun an investigation of the proofs of the problems Woody Bledsoe
recently re-introduced [5]. The proofs of successive problems in this series
are progressively deeper and harder. We have been able to prove the first
two problems relatively easily with the appropriate depth measures, but have
had trouble with the third problem in the series. The proof tree for the first
problem is given in Figure 6.

The boxed regions of Figure 6 enclose the same proof tree. This proof tree
can be developed only once and retained as a lemma. (The numbers of the
nodes refer to clause numbers used in [5].) Similar multiple occurrences of
subtrees, hence opportunity for lemma use, occur in proofs of the second and
third problem. The proof search for the first and second Bledsoe challenge
problems did not utilize lemmas. The third challenge problems has proven
inaccessible to straight runs under any of the discussed depth measures, but
has been solved when a lemma was used as an axiom. Likewise, we have been
able to prove the lemma when stated as a goal (see Table 14.) This is in
no manner a demonstration that we can “solve” the third problem because
lemma generation under several filters we have tried still returns too many
lemmas to automate the passage from lemma generation to lemma use. (For
the first two challenge problems, lemma generation is not so bountiful, but we

METEORs 20

have not yet explored coupling lemma generation and use systematically in
any setting.) The third challenge problem illustrates the potential for added
power if lemma selection can be done successfully for some deeper problems.
However, this third problem also demonstrates the limitation of purely high
inference rates as this problem is combinatorially beyond the reach of linear
input procedures without some augmentation similar to the use of lemmas.

goal

—* 3
&
C
/N
WL
IR

Figure 6: Proof tree for first Bledsoe challenge problem

11

N
[X]
comm—
—
[
: A

on . s

5 5

In Figures 11 and 12 we provide figures for several problems run on the
Butterfly GP1000. The “superlinear” speedup (speedup of more than non n
processors) arises from the search at the last iteration of iterative deepening. If
one of n processors chooses an alternative near the root of the search tree that
leads directly to a proof, the time of this last iteration will be significantly less
than the time of the last iteration using one processor. If completely searching
all levels of the search tree prior to the last iteration is done efficiently, then

METEORs 21
a superlinear speedup results.
Time (seconds) for several provers
problem prover
PARTHEOt | PTTP | PARTHENONt | sMETEOR | METEOR*
apabhp na 873 2886/292 146.4 1,986/22
1s36 1666/352 548 2273/151 137.9 1,820/41
wosl 4.6/1.1 57.6 151/12 26.9 318/10.3
wos4 404/1.3 | 4,152 14,000/501 0.78 10.3/1.1
wos10 263/136 | 29.4 159/20 17.2 227/6.6
wos21 na 966 3315/373 503.8 | 6,373/274

tME-depth, no iterative deepening, 1/16 processors
$1/15 processors

* 1/30 processors

Figure 7: Comparison of different provers

Comparison with non-linear provers
(runtime in seconds)
problem | Ottert | Lee [27]t | METEORS§
apabhp 24 748 36
1s36 <1 56.5 138
wos10 <.5 35.9 13.5
wos15 3 3,549 14,546
wos21 16 2,005 504
wos4 <1 204 <1
wos22 | 73 381
pigeon 5 | 7.28 25.67
ex 5 q 97.9 15.62

ton Sun SPARC
fon Sun 3

Soptimal non-weighted depth measure

Ymemory limit exceeded

Figure 8: Comparison with non-linear provers

METEORs 22
sMETEOR Timings (seconds)
problem Depth Measure Used
cumulative { ME-depth Heuristic Weighted
inferences | (# A-literals) | (A-lits = inf/2)
apabhp 1464 36 16.6 1.1
1s36 137.9 31,023 109.4 11.1
wos] 26.9 31 39 0.7
wos4 0.78¢ 0.18 0.87¢ 0.87
wos10 17.2 206 13.48 9.2
wos21 503.8 > 190,600 344 249
bledsoel 2,333 2.1
bledsoe2 7,984 194.09
steamroller 398¢ 341 4001 1.63

tnon-homn, roliback reduction used

Figure 9: sSMETEOR Timings (seconds) with different depth measures

Successful Inferences/second

problem prover

PTTP | PARTHENON t | sMETEOR | wMETEOR | METEOR}
apabhp 1,957 605/7,478 3,634 5,118 | 549/16,813
1s36 2,555 644/8,197 5,028 4,235 | 465/14,000
wosl 2,413 914/9,465 5,170 4,409 | 449/12,516
wos4 2,182 705/9,532 4,735 4,648 | 404/2,996
wos10 2,675 619/8,419 4,575 3,603 | 392/12,318
wos21 2,481 778/10,023 4,760 4,305 | 407/12,050
bledsoel 1,224 1,682 440
bledsoe2 1,550 2,691 326
steamroller 10,943 12,403 960

$1/15 processors
$1/30 processors

Figure 10: Successful inferences per second

METEORs 23
Time in seconds (speedup)
Cumulative Inference Depth Measure
problem Number of processors
1 2 10 20 30
apabhp 1,986 | 341 (5.82) | 61 (32.55) | 32 (62.06) | 22 (90.27)
136 1,820 | 888 (2.04) | 99 (18.38) | 55 (33.09) | 41 (44.39)
wosl 318 | 153 (2.07) | 29 (10.96) 15 (21.2) | 10.5 (30.28)
wosd 103 6(1.71) | 2.28 (a51) | 133 (7.74) | 1.1 (9.36)
wos10 227 | 112(2.02) 21 (10.8) | 13 (17.46) | 6.6 (34.39)
wos21 6,373 | 3290 (1.93) | 848 (7.51) | 335 (19.02) | 274 (23.25)
Figure 11: Butterfly Execution Results (cumulative depth measure)
| Time in seconds (speedup)
Heuristic Depth Measure
problem Number of processors
1 2 10 20 30
apabhp | 234.8 | 40.17 (5.84) | 8.1 (28.98) | 5.75 (40.83) | 4.32 (54.35)
1836 1,483 | 724.7 (2.04) | 78.7 (18.84) | 45.6 (32.52) | 35.2 (42.13)
wosl 53.3 1 21.85(2.43) | 4.36 (12.22) 3.6(14.8) | 3.0(17.76)
wosl0 188 | 92.6 (2.03) | 20.8(9.03) | 6.8 (27.64) | 6.06 (31.02)
woe21 4,678 | 2,396 (1.95) { 680.5 (6.87) | 248 (18.86) { 204 (22.93)

Figure 12: Butterfly Execution Runtime (heuristic depth measure)

METEORs

Some harder problems

problem | time (secs) | depth measure | prover
wo622 381.14 ME-depth sMeteor
11,703 heuristic sMeteor
17,797 inference sMeteor
26,766 inference | Butterflyt
wos15 14,546 inference sMeteor
10,604 heuristic sMeteor
5,629 heuristic | Butterfly t

non-horn problems

ex5 16,889 heuristic sMeteor
1,662 ME-depth sMeteor
15.62 | (no reductions) sMeteor
wos4 1,083 inference sMeteor
0.78 rollback sMeteor
steamroller 3.41 ME-depth sMeteor
398 rollback sMeteor
38.85/2.97 ME-depth | Butterfly §
pigeon 3 0.04 ME-depth sMeteor
223.9 inference sMeteor
pigeon 4 0.51 ME-depth sMeteor
1.21 rollback sMeteor
pigeon 5 25.67 ME-depth sMeteor
nonobvious 1.51 ME-depth sMeteor
(see [26)) 7.41 rollback sMeteor

$20 processors
$1/20 processors

Figure 13: Some harder problems

Bledsoe Third Challenge Problem
(using lemma as axiom)
time (secs) prover depth measure
31,649 sMETEOR ME-depth
2 70 | IMETEOR (10 procs) ME-depth
165 | METEOR (20 procs) ME-depth

Figure 14: Bledsoe third challenge problem

METEORs 25

6 Clause Sets

6.1 wosl

This is an example from group theory. Given left identity and inverses, there
is a right identity. In the clauses below, e represents the left identity, g is the
left inverse function, h is the right inverse function, and f represents the result
of operating on two group elements. The predicates used are p for the result
of operating on two objects (“product”) and r for equality of two objects.
Taken from [35).

1. ple,X,X)
. plg(X),1,e)
3. p(X,Y,1(X,Y))

4. r(X,Xx)

6. -p(x,Y,u), -p(Y,Z2,V), -p(u,z,¥), p(X,V,¥)
8. _P(xlylu)b 'P(Y-z»v), °P(xnvov). P(U.zo")

T. -x‘(X,Y), r(Y:x)
8. -r(x,Y), -r(v,z), r(X,Z)

9. -p(1,Y,U0), -p(x,Y,V), r(U,V)

10. -r(u,v), -p(x,Y, 0}, p(X,Y,V)
11, -r(y,v), -p(x,u,Y), p(X,V,Y)
12. -r(u,v), -p(u,Xx,Y), p(Vv,I,Y)

13. -r(u,V), r(£(X,U),2(X,V))
14. -r(U,V), x(2(U,Y),2(V,Y))
16. -r(U,V), r(g(v),g(V))
18. -r(U,V), r(h(U),h(V))

goal
17. -p(h(X),X,h(X))

METEORs 26

6.2 wosl0

Another group theory problem. The constants, functors, and predicates are
as in wosl. This is a proof of: if every group element is idempotent (e.g., X*X
= e¢), then the group is commutative.

p(e,X,X)
p(g(X),X,e)
p(X,Y,2(X,Y))
p(X,e,X)
p(X,g(X),e)
p(X,X,e)
p(a,b,¢)

~N BN e WN -

8. r(X,Xx)

9. -p(X.Y,U), ‘P(Y.Z.V). ‘P(U.Z.H). p(x:vo“)
10. -p(x,Y,U), -P(Y.z,v)' -P(x‘vpu)' p(upzp')

11. -r(X,Y), r(Y,X)
12. -r(x,Y), -r(Y,2), r(x,2)

13. -p(X,Y,U), -p(X,Y,V), r(U,V)

14. -r(u,v), -p(x,Y,U0), p(X,Y,V)
16. -r(u,v), -p(X,U,Y), p(X,V,Y)
16. -r(u,v), -p(u,x,Y), p(V,X,Y)

17. -r(U,V), r(£(x,U),2(X,V))
18. -r(U,Vv), r(£(U,Y),1(V,Y))
19. -r(U,v), r(g(u),g(v))

goal
20- -P(b,a.C)

References

[1} Khayri A. M. Ali and Roland Karlsson. The Muse Or-Parallel Prolog
Model and its Performance. In North American Conference on Logic
Programming, pages 757-776, 1990.

[2] Owen Astrachan. METEOR: Model Elimination Theorem-proving for
Efficient OR-parallelism. Master’s thesis, Duke University, 1989.

[3] R. Bayer and M. Schkolnick. Concurrency of operations in b-trees. Acta
Informatica, 9:1-21, 1977.

METEORs 27

{4] W. Bibel. Short Proofs of the Pigeonhole Formulas Based on the Con-
nection Method. Journal of Automated Reasoning, 6:287-297, 1990.

[5] W. W. Bledsoe. Challenge Problems in Elementary Calculus. Journal of
Automated Reasoning, 6(3):341-359, 1990.

(6] W.W. Bledsoe and L. Hines. Variable Elimination and Chaining in a
Resolution-Based Prover for Inequalities. In Fifth Conference on Auto-
mated Deduction, pages 281-292. Springer-Verlag, 1980.

[7) Soumitra Bose, Edmund Clarke, David E. Long, and Spiro Michaylov.
Parthenon: A parallel theorem prover for non-Horn clauses. In Sympo-
sium on Logic in Compulter Science, 1989.

[8) Soumitra Bose, Edmund Clarke, David E. Long, and Spiro Michaylov.
Parthenon: A parallel theorem prover for non-Horn clauses. Journal of
Auvtomated Reasoning, 1990. (to appear).

[9) R.S. Boyer and J. Moore. The sharing of structure in theorem proving
programs. In B. Meltzer and D. Michie, editors, Machine Intelligence 2,
pages 101-116. Edinburgh University Press, 1972.

{10] C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

[11] S.A. Cook and R.A. Reckhow. On the lengths of proofs in the proposi-
tional calculus. Journal of Symbolic Logic, 44(1):15-22, 1979.

(12] S. Fleisig, D. Loveland, A. Smiley, and D. Yarmash. An implementation
of the model eliminiation proof procedure. JACM, 21:124-139, January
1974.

[13] A.Haken. The intractability of resolution. Theoretical Computer Science,
39:297-308, 1985.

[14) Richard E. Korf. Depth-first iterative deepening: An optimal admissible
tree search. Articial Intelligence, 27:97-109, 1985.

(15] David Kotz and Carla Ellis. Evaluation of concurrent pools. In Ninth
Internation Conference on Distributed Compuling Sysiems, pages 378-
385, 1989.

[16) R.A. Kowalski and D. Kuehner. Linear Resolution with Selection Func-
tion. Artificial Intelligence, 2:227-260, 1971.

[17] Vipin Kumar and V. Nageshwara Rao. Scalable Parallel Formulations of
Depth-first Search. In Vipin Kumar, P.S. Gopalakrishnan, and Laveen N.
Kanal, editors, Parallel Algorithms for Machine Intelligence and Vision,
pages 1-41. Springer-Verlag, 1990.

METEORs 28

(18] Donald W. Loveland. Mechanical theorem proving by model elimination.
JACM, 15(2):236-251, April 1968.

(19] Donald W. Loveland. A simplified format for the model elimination
procedure. JACM, 16(3):349-363, July 1969.

[20) Donald W. Loveland. Automated Theorem Proving: A Logical Basis.
North-Bolland, 1978.

(21] Ewing Lusk, David H. D. Warren, and Seif Haridi et al. The Aurora Or-
parallel Prolog System. New Generation Computing, 7:243-271, 1990.

[22) David Maier and David S. Warren. Computing with Logic. Ben-
Jamin/Cummings, 1988.

(23) William W. McCune. OTTER 2.0 Users Guide. Argonne National Lab-
oratory, March 1990.

(24] Nils Nilsson. Principles of Artificial Intelligence. Tioga Press, 1980.

[25] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving. Addison-Wesley, 1984.

[26) F.J. Pelletier and P. Rudnicki. Non-obviousness. AAR Newsletter, (6):4-
5, 1986.

[27) David Plaisted and Shie-Jue Lee. Inference by clause linking. Technical
Report TR90-022, University of North Carolina, Department of Com-
puter Science. Chapel Hill, NC, 1990.

(28] J. Schumann and R. Letz. PARTHEO: A High Performance Parallel
Theorem Prover. In Tenth International Conference on Automated De-
duction, pages 40-56, 1990.

[29] Mark E. Stickel. A prolog technology theorem prover. New Generation
Computing, 2(4):371-383, 1984.

[30] Mark E. Stickel. A Prolog Technology Theorem Prover: Implementation
by an Extended Prolog Ccompiler. In Eight International Conference on
Automated Deduction, pages 573~587. Springer-Verlag, 1986.

[31] Mark E. Stickel. Schubert’s Steamroller Problem: Formulations and
Solutions. Journal of Automated Reasoning, 2:89-100, 1986.

[32) Mark E. Stickel. A Prolog Technology Theorem Prover: Implementation
by an Extended Prolog Ccompiler. Journal of Automated Reasoning,
4:343-380, 1988.

[33] David H.D. Warren. An abstract prolog instruction set. Technical Report
309, SRI International, Menlo Park, California, October 1983.

METEORs 29

{34] David H.D. Warren. The SRI model for OR-Parallel execution of Prolog
— abstract design and implementation issues. In IEEE Symposium on
Logic Programming, pages 92-102, 1987.

[35] Gerald A. Wilson and Jack Minker. Resolution, Refinements, and Search
Strategies: A Comparative Study. JEEE Transactions on Computers, C-
25(8):782-801, August 1976.

