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1. FOREWORD 

The project entitled " Large Deformation Analysis of Nonlinear Homogeneous 

and Heterogeneous Media Using an Arbitrary Lagrangian-Eulerian Finite 

Element Method " (Grant No. DAAL03-91-G-0069) has been transferred from the 

University of Alabama to the Ohio State University effective August 16.1991. The principal 

investigator of the project, Dr. Somnath Ghosh has assumed a faculty position at the Ohio 
State University and the project is continuing at OSU. Therefore, in this report only the first 

part of the ongoing work is presented. Subsequent progresses will be reported from the 

Ohio State University. 

2. LIST OF APPENDICES 

First draft of a manuscript entitled" ANALYSIS OF RANDOM COMPOSITES USING 

VORONOI CELL FINITE ELEMENTS" 

3. BODY OF THE PROBLEM STUDIED 

A.    STATEMENT OF THE PROBLEM 

In this part of the study, a new finite element technique has been developed for macroscopic 

analysis of composites with a stochastic dispersion of microscopic heterogeneities. In these 

composites, particles or fibers of various shapes or sizes may be randomly scattered within 

the matrix. The present work introduces a material based discretization system that 

adequately accounts for the morphology of the heterogeneous domain and then formulates a 

finite element scheme for accommodating multi-sided elements with second phase materials 
present 



B. SUMMARY OF MOST IMPORTANT RESULTS 

The heterogeneous domain with random distribution of second phase has been discretized 

by Dirichlet tessellation so that each element contains only one inclusion. The resulting 

network of Voronoi cells are now assumed to be elements in a finite element formulation. 

Indeed, the muiti-noded Voronoi cells are rather unconventional elements and a 

displacement based formulation with such elements is extremely difficult due to the varying 

number of sides in each element An assumed stress hybrid finite element formulation has 

proven to be extremely successful in this process. Several different test cases have been 

experimented with for linear elastic problems and good correlation between numerical 

solutions and analytical results have been obtained. 

The effect of the second phase has been incorporated by the introduction of a 

transformation strain in the element level in a fashion similar to self-consistent schemes. 

The results have been compared with conventional finite element predictions and are in 

reasonable agreement Work is now in progress for refining this model. 

C.    PUBLICATIONS 

Two manuscripts are presently being written and will be forwarded to ARO as soon as they 

are completed. 

D. DEGREES AWARDED FROM THIS PROJECT 

No degrees have been awarded so far from this project 

4. REPORT OF INVENTIONS Vj^>7      § 

A New Finite element formulation for random composites using Voronoi Cell elements 

«^ 



APPENDIX 

ANALYSIS OF RANDOM COMPOSITES USING VORONOI CELL FINITE 
ELEMENTS 

SOMNATH GHOSH 
Department of Engineering Mechanics 

The Ohio State University 

( preliminary draft of a manuscript being prepared for submission) 
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1    Introduction 

Research related to the study of composite behavior during the last two decades, has resulted 
in a number of computational models for their analysis. Most of these models use the homog- 
tnization method for reflecting the influence of material microstructure on the macroscopic 
behavior. These methods are based on asymptotic analyses, which predominantly make as- 
sumptions of periodic repetition of micros true tures. However, in practice, there exists a wide 
variety of composite samples with a stochastic dispersion of microscopic heterogeneities. In 
thest composites, particles or fibers of various shapes and sizes may be randomly scattered 
within the matrix and even be clustered in certain regions. The distribution of shapes, sizes 
and the spatial coordinates of the second phase has a profound influence on the mechanical 
behavior of the overall structure and therefore, must be taken into account in a rigorous 
analysis. 

A fundamental requirement in the development of finite element models for analysis of 
the above class of random composites is the generation of a robust mesh, that will ad- 
equately account for the morphology of the composite domain under consideration. The 
Dirichlet tessellation seems to provide an excellent foundation for natural evolution of dis- 
cretization process while accounting for the microstructure. This is a method of subdividing 
an Euclidean space into n-dimensional bounded convex polytopes. It may be perceived as 
production of a network of interfaces, formed by the impingement of expanding hyperspheres 
about random nuclei that are growing at a uniform rate from zero. If the second phase parti- 
cles are realized as points in space, the convex polytopes (polygons in two dimensions) known 
as Voronoi polytopes resulting from this discretization, would encompass one inclusion each 
at most. These Voronoi polygons,in two dimension, are used as elements in a finite element 
analysis of random composites. 



2    Formulation of Voronoi Cell Finite Elements by 
Mallett's Method 

Mallett [1] proposed a least square finite element scheme and a finite difference element 
scheme for the formulation of voronoi polygon elements. In the first scheme, the displacement 
components in each element is represented as linear function of position and then they are 
determined by giving a least square fit to the nodal values of the displacement components. 
The latter scheme completely eliminates the need to assume any sort of approximation for the 
displacement field in the interior of the element. Instead, the element's average displacement 
gradient components are calculated to form the strain displacement matrix. 

2.1    The Least Square Finite Element Scheme: 

Displacement field in a n-sided polygonal element that represents the rigid body displace- 
ments and the constant strain field, can be expressed as follows 

v(x,y) = A+&* + &# 
where x and y are global Cartesian coordinates. 

(i) 

Evaluating the element displacement components at the i-th node and requiring that 
these values coincide with the nodal displacement components ut and vt leads to the following 
equations 

or 

f                  -y 

1  *i   yi ' 
• . tar 

► s . i at 
• . I   «3   J 

1   «n   J 

{1 

.  1     xn     Vn . 

l} = [A]{a] (2) 

As the number of nodes of an element will be, in most, cases more than three, equations 
(2) constitutes an overdetermined set of equations. Applying least square method to solve 
the overdetermined system, one obtains 

{a} = {[A)T[A]Y\A]T{M} (3) 



Substituting this expression for {a} and the similar expression for {ß} into eq. (1) gives 

«(*,?) = [1   *  ildiiM-WM-tfW 
t,(x,y) = [l    x    »]fr«rWWM »JV{v} 

The components of strain can be related to nodal displacement components by 
(4) 

7x» 

or 

a#   ajv 

W = PM 

{:} 
(5) 

where [£] is the strain displacement matrix and {d} is he element nodal displacement vector. 
It can be easily seen that |^ and ^ is constant*over the element and so is matrix [BJ. The 
element stiffness matrix, for unit thickness, thus can be expressed as 

[K}e=f[B}T[E]{B}dv = MB}T[E}{B] 
Jv 

(6) 

where A* is the area of the element and [E] is the elasticity matrix. 
The nodal forces implied by the above stiffness matrix are not statically equivalent to 

the edge tractions implied by the stresses within the element. To rectify this deficiency a 
[S] matrix of size 2nx3 is determined that transforms the stress components into statically 
equivalent nodal force components. 

{F}< = [S]{<r} = [S\[E\[B]{d) 

from which element stiffness matrix can be written as 

[K], = [S\[E}[B] 

(7) 

(8) 
which in general is not symmetric. 

2.2    The Finite Difference Element Scheme : 

In this scheme, the average of displacement gradients ||,|2 and f^f21 over an element i 
calculated and written as 

du 
dx~ 

aru 
Ae 

dv arv 
dx~ A, 

du     bTu 
dy      Ae 

dv _ bTv 
dy      Ae 



where 

with the undemanding that (s^Vo) and (xn+iiSfo+i) are,to be interpreted as (xn,yn) and 
(*i,yi) respectively 

Assuming a state of constant strain within the element, element's strain component 
averages are then given by 

\aT °rl 
0T bT 

bT aT {'} 
or 

W = [B\{d} (9) 

The matrix [B] is constant over the element, hence the stiffness matrix can be expressed 
as 

[KU = MB]T[E}[B] (10) 

2.3 Rank Deficiency of Stiffness Matrix 

The element stiffness matrix produced by either of the schemes has a rank of three, irrespec- 
tive of the number of nodes n in an element, and its rank deficiency is 2n-6. Assemblage 
of rank deficient stiffness matrices produces a rank deficient global stiffness matrix. Mallett 
proposed two different methods for control of hourglass or zero energy nodes produced by 
a rank deficient stiffness matrix. In the first method an artificial stiffness is added at the 
element stiffness matrix level, which will inhibit hourglass deformation without seriously 
affecting non-hourglass deformation. In the second method a constraint is imposed at the 
global stiffness level, by means of the Lagrange multiplier technique, to eliminate rather 
than suppress hourglass deformation. However elimination of hourglass modes at the ele- 
ment level leads to a global stiffness matrix that is excessively stiff. Elimination of hourglass 
deformation at the global level has been found to be the only viable alternative and the 
following numerical examples are based on the same principle. 

2.4 Numerical Examples 

The material properties assumed here are used in all subsequent examples unless otherwise 
specified. Further the problems are always solved under plain strain condition. Poisson's 
ratio is assumed as 0.3 and Young's modulus as 2 KN/sq.mm. The value of Young's modulus 



is unimportant as it merely serves as a scale factor for the displacement. 

Stretching Problem: 
A square material body of size 40 mm x 40 mm is discretized into 24 voronoi polygons 

(Fig. 1) and is subjected to a uniform tensile force of 100 KN. Analysis of this problem by 
Mallett's method yields end deflection of 4.55 mm in X direction and <rr of 2.5 kN/sq.mm 
in individual elements which are the exact theoretical vaiues. Also the displacement of the 
nodes in X direction versus their position from the fixed end has been found to be linearly 
proportional (Fig. 2). 

-»x 

Fig. 1. Body subjected to tensile load. 

QJ 1 1J 2 2J 

Nodü nwBMiMi in X direction 

3J 

Fig. 2. Nodal displacement in X direction vs. nodal position. 



Bending Problem: 

A material body of size 40 mm x 160 mm is used as a cantilever beam with one end 
fixed and other end subjected to pure moment of 40 KN-mm. The beam is discretized into 
28 voronoi polygon elements (Fig. 3). Longitudinal stress <TX along a transverse section is 
calculated by the above method and is plotted as shown in Fig. 4. The stresses are found 
to be constant within an element and differ widely from theoretical value. 

-»x 
Fig. 3. Beam subjected to pure end moment. 

LEGEND 

i     i     i 

4.00O0C*40 

Distinct aJong Y direction 

Fig. 4. Sigma X along a transverse section. 



The calculated tip deflection is 1.546 mm, which is only 35% of the theoretical value of 
4.368 mm Fig. 5 shows a plot of the vertical displacement of the nodes at the top surface 
against the theoretical values. 

1*44*91        J 
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./ 
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Fig. 5. Deflection of top surface. 



3    Proposed Formulation by Assumed Stress Hybrid 
Method 

Large amount of error in predicting the deflection and stress of a cantilever beam under pure 
end moment by Mallett's method was the motivation to look for an alternative formulation. 
In the earlier section it was shown that a least square fit of the displacement field from 
the nodal values produce a rank deficient stiffness matrix for elements having more than 
three nodes. Even if the rank defiiciency is taken care of by global hourglass control, the 
elements exhibit constant stress which are widely different from theoretical values. Pian [2] 
suggested an alternative derivation of the element stiffness matrices by assumed stress hybrid 
method. In the proposed method, instead of a required continuous displacement function 
over the element, it is necessary only to write down the boundary displacements that will 
guarantee a complete displacement compatibility. The assumed-stress hybrid method is a 
way of formulating a stiffness matrix by use of independent assumptions of (a) an equilibrium 
stress field within the element, and (b) interelement-compatible displacement nodes on the 
element boundary. As this method necessitates the interpolation of displacement field not in 
the interior of the element but only along the element boundary, it becomes easy to handle 
polygonal elements having any number of nodes. 

3.1    Element Formulation 

The derivation is based on the principle of minimum complementary energy, for which the 
functional to be varied is 

*c = / r5ijju<Tij(7W(fr - /   TjOids (11) 
Jv L Jdv 

where 5tJw is the elastic compliance, tT,- are the prescribed displacements along the boundary 
dv and T, are the boundary tractions that are related to <7;y. 

The stresses satisfy the equilibrium condition 

and is compatible with the prescribed boundary tractions. In applying the finite element 
method, the assumed stress field need not be continuous across the interelement boundaries, 
but equilibrium must be maintained for the surface tractions X,-, defined by 

Ti = <rxjn, (13) 

where rtj are the components of the unit vector normal to the boundary. 
In the application of this variational principle, one begins with a stress field that satisfies 

the differential equations of equilibrium. The stress distribution can be expressed as 

{*} = W) (14) 

8 



where {ß} is the column of m undetermined stress coefficients ßXj ß? • • • ßm and terms of the 
matrix [P] are functions of coordinates x,-,y». 

The surface tractions T,- have been expressed in terms of the stress ay,- by equation (13) 
and hence can be related to the undetermined stress coefficients {ß} as 

{T} = [R){ß] (15) 

Also, the prescribed boundary displacements Hi can be interpolated from generalized 
displacement {q} at the nodes, in the form 

{«} = [L]{q] (16) 

where the terms in the matrix [L] contain coordinates on the surface. 
The equation (11) can be rewritten as 

*' = / jM^M L j9W
T{«)d* (17) 

Substituting the expressions for cr,T and u one obtains 

*. = \{ß}T[H]{ß) - {ß}T[G\{q} (18) 

where [H] = f[P)T[S][P]dv (19) 

and [G] = / [R}T[L]ds (20) 

Making 7rc stationary with respect to stress parameters 

dir 
^ = 0   for   i = l,2,.-m (21) 

gives 

\B\ifl) = [G\{q] or {£} = [fll-HGK«} (22) 

Substituting {ß} in the expression for complementary strain energy for an element of 
volume v, one obtains 

U = l\{*}T[S}{<r}dv 

= \{ß)T[B\{ß) 



= \{q}T[G\Tim'l[G\U] 

where [K] = [G]T[H]'l[G] is the stiffness matrix. 
The stiffness matrix [K] will be rank deficient if it's rank is less than n-Z where n is the 

number of degrees of freedom and / is the number of rigid body nodes. A necessary condition 
for the resulting stiffness matrix to have sufficient rank is m>n-l, where m is the number 
of independent ^-stress parameters. Because the derivation of the element stiffness matrix 
involves inversion of [H] matrix which is of the order mxm, it is advantageous to use as 
minimum a number of ß~ parameters as possible. There are also indications that overuse of 
^-parameters will yield over-rigid elements. An ideal situation is to choose the stress terms 
such that m is equal to n-/. However, it is not always possible to adhere to this as the 
number of ^-terms is also governed by the fact that the assumed stress polynomial should 
have as many terms as required to satisfy the equilibrium equation (12). Hence for some 
elements, number of ß-terms may be more than n-/. The resulting element properties by this 
approach will in general not be invariant. However, if an optimal local reference coordinate 
system is used in the element formulation, invariance may be achieved. 

To illustrate the assumed stress hybrid method, components of the element stiffness 
matrix are derived as follows. 

The stress functions, involving 5 ß-terms, that satisfy the equation of equilibrium may 
be assumed as follows 

\ 

'TV    ) 

1   y   0   0   0' JA1 
0   0   1x0 • 
0   0   0   0   1 , I &. 

-I'K*} 

This is suitable for elements having up to 4 nodes. However for elements with higher 
number of nodes, as in the case of voronoi elements, it is necessary to increase the number 
of ß-terms to get rank sufficiency of the stiffness matrix. The stress polynomial [P] for 10 ß 
terms is given as 

1 .V   0   0   0 X 0   y2 0 X2 

0 0   1   i   0 0 y  o X2 y2 

0 0   0   0   1 -y -x    0 0 -2xy 

10 



and for 17 ß terms as 

1   y   0   0   0 X 0   y2   0 X2 xy 0 x3   y3 3x2y xy2 0 
0   0   1x0 0 y   0   x2 

y2 0 xy 3xy2    0 y3 X3 x2y 
0   0   0   0   1 -y -x   0    0 -2xy -y2/2 -x2/2 -3x2y    0 -3xy2 

-y3/3 -x3/3 

The stress polynomial involving 17 ß-tenns is thus suitable for elements having up to 10 
nodes (number of degrees of freedom 2x10, minus number of rigid body nodes 3, dictates a 
minimum of 17 £-terms).Hence for elements having up to 4 nodes, 5 ß-tenns are used; for 
elements having more than 4 but less than or equal to 6 nodes, 10 ß-terms are used; for 
elements having more than 6 but less than or equal to 10 nodes, 17 ß terms are used. 

For the tth side of an element 

{«}   =   [L]{q}   = 
1-a/U        0        a/U     0 

0        1-a//,     0     a/U 

where /,- is the length of side i and a is the distance measured from node: to node i+1. The 
assumed boundary displacement variation is linear. Therefore, the interelement compatibil- 
ity is assured if the nodal displacements of adjacent elements are matched. 

Traction on the side i is given as (for the sake of simplicity only 5 ^-terms are considered) 

{T}i = [ Thrift + <TvTli2 
tin   ynn    0       0     ni2 

0       0     n,2   X7if2   fin 

A 

A 
= [RUß] 

from which 

mm - 
im(l-«/tt 
ynn(l-a/li) 

0 
0 

0 
0 

ni2(l - a/U) 
xni2(l - a/U) 

nna/U 
ynna/U 

0 
0 

L ni2(l - a/U)     n,i(l - a/U)     ni2a/U 

and [G]i = Idvi[R]J[L]ds for the side i. 

The contribution to components G/,j for the side i is given by 

0 
0 

ni2a/U 
XTii2a/U 
nna/U J 

J/l 2» - 1                            2» 2i + 1                         2« + 2 
1 n«/,/2                          0 n„/,/2                            0 
2 n,i/i(j,/3 + y,+i/6)                 0 nrt/,(y,/6 + yi+i/3)                 0 
3 0                            nafc/2 0                          nah/2 
4 0                  n,-2/,-(x,-/3 + x,-+1/6) 0                 n,a/j(x,/6 + x,+1/3) 
5 riijli/2                       n.i/i/2 nl2/i/2                        nn/,/2 

11 



It is interesting to note that for a four node element if only three ß-teims are used, the 
element stiffness matrix obtained by assumed stress hybrid method becomes exactly same as 
that obtained by Mallett's finite difference element scheme. Usage of three ß-terms means 
assumption of constant <rx, <ry and r^ within the element which is also the case in finite 
difference element scheme. 

3.2    Invariance of Stiffness Matrix 

The stiffness matrix of an element calculated on the basis of global coordinates is not invari- 
ant as not all the assumed stresses are complete polynomials of the same degree. However, 
invariance may be achieved, as suggested by Cook [3], without changing the stress polynomial 
by calculating the element stiffness in a local coordinate system having a fixed orientation 
with respect to the element, regardless of how tBe element may be oriented in global coordi- 
nates. Thus if a given structure and its loads are rotated some amount in global coordinates, 
nodal loads associated with each element maintain their original direction with respect to 
the local element coordinates. Thus the element response becomes invariant as it is not 
affected by the rotation. 

Once a local coordinate system is defined the calculation proceeds in the following man- 
ner. 

1. Nodal coordinates of an element is transferred to the local system and the stiffness 
matrix is calculated in the local system. 

2. Element stiffness matrix in the local system is then transformed to the global coordinate 
system and assembled in the global stifhess matrix. The transformation is accomplished 
by the operation 

[*Uw = [AT][fc]/ocfl/[A] (23) 

where [A] is the coordinate tranfonnation matrix. 

3. After assembly, element nodal displacements are calculated in the global xy directions. 

4. To compute stresses, stress parameters ß calculated in the local system are used. 
{&}iocai — [P]iocai{ß)local gives stesses in the local system which are then transformed 
to the global system. 

Choice of finding the angle, the local system makes with global system, is not unique and 
alternative definitions of this angle are possible. However, finding a local coordinate system 
for a polygonal element is a problem as a polygon does not exhibit any preferred direction. 
In the present formulation, the local coordinate of an element is defined by two different 
methods. 

12 



In the first method, one of the axes of the local coordinate system is aligned with the 
longest edge of the element. In other words, the angle the longest edge makes with one of the 
global axes, is the angle by which the global axes are rotated to obtain the local coordinate 
axes for the particular element. 

In the second method, an element is first mapped to a master 4, 8 or 12 node plane 
isoparametric element in s-t space. If the element has less than or equal to 4 nodes, it is 
mapped to a 4 node master element, if it has nodes between 5 and 8 it is mapped to an 8 
node master element and so on. Wherever necessary, extra nodes are created in the element 
mid sides so that there is a one to one correspondence between the nodes of the actual and 
master element. Jacobian matrix for this transformation is then calculated and decomposed 
into 

[J] = [R)[U] (24) 

where [R] represents a pure rotational transformation matrix and 

[17] = l (C + VdrtCI) 
UraceC + 2VdetC 

where [C] = {J^J] 
From the above relationship [R] is obtained as 

[R] = [AW1 (25) 
This rotational transformation matrix then is used for rotating the global axie to obtain 

the local coordinate axes. Rest of the calculation proceeds as outlined earlier. 

3.3    Numerical Examples 

Stretching Problem: 

A square material body of size 40 mm x 40 mm is discretized into 24 voronoi polygons, 
as shown earlier in Fig. 1, and is subjected to a uniform tensile force of 100 KN. Analysis 
of this problem by the Assumed Stress Hybrid Method yields exact end deflection of 4.55 
mm in X direction and <rx of 2.5 kN/sq.mm in all elements. Also the displacement of the 
nodes in X direction versus their position from the fixed end has been found to be linearly 
proportional (Fig. 2). Thus both Mallett's method and assumed stress hybrid method yield 
exact results of a stretching problem. 

The material body is now aligned at 45° to the global axes and is subjected to the same 
stretching load (Fig. 6). The results of deflection and stress in the direction the load are 
again found to be 4.55 mm and 2.5 KN/sq.mm which are exact figures. 
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Fig. 6. Body oriented at 45° and subjected to tensile load. 

Simple Shear Problem: 

The same 40 mm x 40 mm material body discretised with the same 24 voronoi polygons 
is subjected to suitable displacement boundary condition so as to simulate simple shear (Fig. 
7). Assumed stress hybrid method yielded exact value of r^ = 0.0385 KN/sq.mm and crx = 
<7y = 0 in every element. 

4 tnrn 

y 
A 

Fig. 7. Body subjected to simple shear. 
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Fig. 8. Shear stress across section AA 

Bending Problems: 

Example 1. 

A material body of size 40 mm x 160 mm is used as a cantilever beam with one end 
fixed and other end subjected to pure moment of 40 KN-mm. The beam is discretized 
into 28 voronoi polygon elements (Fig. 9). Longitudinal stress crx along a transverse section 
calculated by assumed stress hybrid method conformed more closely to the theoretical values 
than that obtained by Mallett's method (Fig. 10). The vertical displacements of the nodes 
at the top surface agree very well with the theoretical values (Fig. 11). The calcui ted tip 
deflection of 4.175 mm has an error of 4.4% with respect to the theoretical deflection of 4.368 
mm. 
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Fig. 9. Beam subjected to pure end moment (28 elements). 
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Fig. 10. Sigma X along a transverse section. 
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Fig. 11. Deflection of top surface. 

Examples 2 and 3. 

The same 40 mm x 160 mm beam is now discretized into 53 and 152 voronoi polygon 
elements respectively (Fig. 12 k 13) and subjected to pure end moment of 40 KN-mm. 
<TS along a transverse section is plotted (Fig. 14) for all three cases, i.e. beam discretized 
by 28 elements, 53 elements and 152 elements. The calculated tip deflection for the beam 
with 53 elements is 4.346 mm, an error of 0.5% compared to the theoretifiatdeflection. The 
corresponding figures for the beam with 152 elements are 4.452 mm and 1.9& respectively. 

Fig. 12. Beam subjected to pure end moment (53 elements). 
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Fig. 13. Beam subjected to pure end moment (152 elements). 
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Fig. 14. Sigma X along a transverse section. 

Fig. 14 indicates that as more and more elements are used to discretize the beam, the 
stress distribution converges towards the theoretical value. Fig. 15 shows the distribution 
of crx throughout the beam discretized by 152 elements. Except near the area of application 
of moment load, where the Saint Venant effect is predominant, the as stress distribution 
conforms well with the theoretical stress distribution. 
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Fig. 15, Distribution of Sigma X in beam having 152 elements. 

The beam, discretized into 53 elements, is now aligned at 45° with the global axis (Fig. 
16). Stresses in some elements deteriorate if the calculations are based on global coordi- 
nate. However, use of a local coordinate system for every element improves the results and 
makes the elements invariant with respect to the orientation of the beam with the global 
axis (Fig. 17). Local coordinate for an element is usually obtained by rotating the global 
system until one of the axes aligned with the largest edge of the element, and is identified as 
Cook's method. In this example the matrix used to transform the global system to the local 
coordinate system is also obtained by decomposing the Jacobian matrix, as detailed earlier, 
and is identified as Jacobian method. Results based on local coordinate system, obtained by 
either method, compare well with each other« 
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Fig. 16. Beam oriented at 45° and subjected to end moment(53 elements). 
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Fig. 17. Longitudinal stress along a transverse section using Local & Global coord. 
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The above exercise is carried out on the beam with 152 elements, aligned at 45° with the 
global axis. Results based on local coordinate system are found to improve (Fig. 18). 

Distinct along trtnmrae direction 

Fig. 18. Longitudinal stress along a transverse section using Local & Global coordinate. 
(152 elements) 

Example 4. 

Having shown that the results improve as the number of elements increase, the same 40 
mm x 160 mm beam is discretized into 86 elements (Fig. 19), most of which are of regular 
hexagonal shape, and the same exercise is carried out. Fig. 20 indicates that longitudinal 
stresses in the elements across a transverse section agree very well with the theoretical values. 
Fig.21 shows the distribution of cx in the entire beam. Except near the area of application 
of moment load, where the Saint Venant effect is predominant, the ax stress distribution 
conforms very well with the theoretical stress distribution. 

Results of this example indicate that as the elements become more regular in shape, the 
results improve. 
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Fig. 19. Beam subjected to pure end moment (86 elements). 
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Fig. 20. Sigma X along a transverse section (S6 elements). 
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Fig. 21. Distribution of Sigma X in beam having 86 elements 

The beam is now oreinted at 45° with the global axis (Fig. 22). Fig. 23 indicates that 
a local coordinate system for every element produces better results than that obtained by a 

global coordinate system. 

Fig. 22. Beam oriented at 45° and subjected to end moment. 
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Fig. 23, Longitudinal stress along a transverse section using Local k Global coord. 

Example 5. 

The material body of size 40 mm x 160 mm, with regular 86 elements, is used as a 
cantilever beam subjected to a downward acting load of 0,5 KN at the end (Fig. 24). The 
load is distributed over the edge in a parabolic distribution such that the total area under 
the parabola is equal to the load 0.5 KN. Shear stress across a transverse section is plotted 
in Fis. 25 and found to a^ree well with the theoretical distribution. 

Y 

Fig. 24. Beam under end load 
=»x 
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Fig. 25. Shear stress distribution along a transverse section. 
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4    Modelling of Second Phase Material Present in Voronoi 
Cell 

Having established a finite element formulation for polygonal elements with isotropic material 
properties, next step is to account for the second phase participate present in even* element. 
The problem of modelling the presence of a second phase material within a finite element was 
addressed by Accorsi [4] by introducing a transformation strain in those regions. The finite 
element method reflects the shape, size and location of the second phase material within the 
element. 

4.1      Problem Formulation 
The formulation is based on dividing the total problem into two separate subproblems. 
First, called homogeneous problem, corresponds to the finite element analysis of the body 
without material discontinuity and the second, called the deviation problem is defined by the 
difference between the actual and homogeneous field quantities. The solution of the actual 
problem can be found by adding the corresponding solutions of homogenous and deviation 
problems. 

Let superscripts t, o and / indicate the actual or nonhomogenous problem, the homoge- 
nous problem and the deviation problem respectively. 

The constitutive relation for the actual material is thus given as o1 

9X = CixY (26) 

where C(x) is the elasticity matrix. 
The transformation strain mentioned earlier is defined by the following equation. 

(7< = C[t)J = CV - O (27) 

where C° is the elasticity matrix of homogenous material and e* is the strain in the discon- 
tinuity. From the above relationship one obtains 

e< = [C° - CixJJ-'CV = tf(x)CV (28) 

where H{x) = [Cc - C(x)]'1 

Now as per earner definition 

r = c° + t' (29) 

or 
e°-e' = #(:r)CV (30) 

The constitutive relation for the deviation problem is given as 

(T' = d}-(70=:CV-0 (31) 
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Discretization of the homogenous problem is straight forward. Using the principle of 
minimum potential energy, the element equations are obtained. The assembled equations 
for the homogenous problem are written as 

K°6° m F° (32) 

where K°,6°,F° are the global stiffness matrix, global displacement vector and global 
load vector respectively. For the purpose of solving the above equation, they can be rewritten 
as 

So m {Kom)-iFm (33) 

where K^,Fm indicate K°,F° modified for displacement boundary conditions. 
Similarly, the element equation for the discretized deviation problem is written as 

K'A = K (34) 
where 

F; = / BTC'ee-dv (35) 

B is the strain displacement matrix such that 

< = BS't (36) 

and Kl is the elemental stiffness matrix. 
For an element of matrix material C\ containing me microstructural discontinuities with 

material property Cr,r = l,2..me and occupying regions Hr, the transformation strain is 
non zero only within the region Hr. The equation (35) becomes 

me    - 

F: = ZLBTCydv (37) 
rsrl Ja* 

As the transformation strain c" is constant within a discontinuity the above equation (37) 
is further reduced to 

me 

F; = Z(KfC;e" (38) 
r=l 

where 

1% a  /   Bdv 
JQr 

Assembly of the equation (34) gives 

K°6' = F' (39) 
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where 

e 

4>t is a transformation matrix which when operated on global displacement vector 8 
returns the element displacement vector 6e. 

Equation (39), when modified for displacement boundary condition, takes the form 

K°m8'=vF' (40) 

Since the displacement boundary conditions for the homogenous and deviation problems 
correspond to the same nodes, the modification to the stiffness matrix is same for both the 
problems. For the deviation problem, wherever the displacement boundary conditions are 
zero, zeros are placed in the corresponding positions in F*. To carry out this modification 
of F* a matrix V> is used. i/> is an identity matrix with zeros in the diagonal in the positions 
corresponding to the displacement boundary conditions. 

From equation (40) 

Therefore 

6'= (K°J-W (41) 

K = 6*6' 

= UK'J-HF 

= oe(K'mr^oJ(R'c)
TC;e" (42) 

sszl 

where M is the total number of discontinuities in the system. 
Writing equation (30) in terms of nodal displacements for an element, one obtains 

B6: + B6'e = H(x)Cy (43) 

Integrating equation (43) over ftr, the domain of rth discontinuity in the element, one 
obtains 

ITJt + Kfi = vrH;c°ee
mr 
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where Vr is volume of rth discontinuity and HT
e = [C£ - CT]"1. 

Rearranging the above equation 

VrHlClt" - RX = R'Jt = RW (44) 

Substituting the value of S't from equation (42) into equation (44) we have 

£ [V.UJ«" - ä;^(/C)-V^Tä:T] <?.•<** = ä;O;5° (45) 
5=1 

where 6r* is the Kronecker delta. The above equation is now assembled by evaluating the 
terms for each discontinuity in the system r.s = 1,2...., M. The assembled equation takes 
the form 

S{C°t) = R8° (46) 

It may be observed from equation (45 ) that e*r is function of RT
e and H*. RT

e{= /ßr Bdv) 
in turn is dependent upon the shape and size of the discontinuity, as the integration is over 
Hr, and also on the location of the discontinuity within the element due to the presence of 
B matrix in the expression. If the element to start with is not constant strain type, B is a 
function of the coordinates within the element. H^ matrix contains the material property of 
the discontinuity. Thus emr depends upon the shape, size and location of the discontinuity 
within the element. 

The subroutine for calculation of 6' follows the following steps 
-From equation (46) calculate C\emr 

-Calculate F; = T^i{K)Tc°ee'T by substituting the value of C°e'r 

-Find global Fm = £e <6e
Ti? 

-Substitute Fm in equation (41), to get 8' = (K^)"lt/;Fm 

A standard 2-D finite element program FEM-2 [5] is used to calculate 8° and 8', i.e. 
the solution of the homogenous and deviation problem respectively. Solution of the actual 
problem is thus 6* = 8° + 8*. 
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4.2      Numerical Examples 

Stretching Problem: 

The homogenization formulation allows the discontinuity to be treated as a void by set- 
ting its material properties to zero. A square material body with a central hole is subjected 
to tensile load. Resulting stress distribution along a transverse section passing through the 
hole is calculated by conventional FEM and FEM coupled with homogenization method. For 
the first case (Fig. 26) material around the hole is discretized by four node elements and for 
the second case (Fig. 27), the material is discretized in such a way that the entire hole is 
contained within an element. 
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Fig. 26. Analysed by FEM2 
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pig. 27. Analysed by FEM2 with Homogenization. 
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Stress distribution (Fig. 28) by either method compare well up to a distance ~ from the 
edge of the hole, D being the hole diameter. After that, the sharp rise in stress as the edge is 
approached is not reflected properly by homogenization method. This however, is expected 
as the homogenization method models the presence of the entire hole in an element in an 
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Fig. 28. Sigma X across a section through the hole. 

Bending Problem: 

A cantilever beam, having three second phase materials and subjected to a pure mo- 
ment at the end is analyzed by conventional FEM and FEM coupled with homogenization 
method. For the v jnventlonal FEM the beam is discretized as shown in Fig. 29 and for the 
homogenization method the discretization is shown in Fig. 30. The Young's modulus of the 
second phase material is assumed as 4 KN/sq.mm which is double that of matrix material. 
Poisson's ratio is assumed as 0.3. 
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Fig. 29. Analysed by FEM2 
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Fig. 30. Analysed by FEM2 with Homogenization. 

The stress distribution, along a transverse section passing through the second phase 
materials, obtained by either method is plotted in Fig. 31. The stress predicted by homoge- 
nization technique is found to compare somewhat well in the matrix material, however wi thin 
the second phase material, the stress is well above than that predicted by conventional FEM. 
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Fig. 31. Sigma X across a section through the second phase material. 

* 
All the numerical results of conventional FEM and homogenization methods, discussed so 

far, axe based on a program for analysis of linearly elastic structures in a plane using 4-node 
isoparametric elements, called FEM2. However, for the analysis of composites with randomly 
dispersed second phase materials, the elements that will be encountered, as explained earlier 
in the report, will have more than four nodes. For the analysis of these polygonal elements, 
assumed stress hybrid method is introduced. The present problem of a beam dispersed with 
three second phase materials and subjected to a pure end moment is then analysed by the 
homogeneation technique coupled with assumed stress hybrid method. The results, as shown 
in Fig. 30 compare very well with that obtained by homogenization method coupled with 
7EM2. 

The same beam bending problem is solved by discretizing the beam into irregular polygo- 
nai elements (Fig. 32) and using homogenization coupled with assumed stress hybrid method. 
Longitudinal stresses along the same transverse section using irregular and regular mesh are 
plotted in Fig. 33. The results are found to compare welL 
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Fig* 32. Beam discretized by polygonal elements. 
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Fig. 33. Sigma X across a section through the second phase material. 

Finally the beam of size 40 mmx 160 mm which was used in several earlier examples, 
is analysed by homogenization coupled with assumed stress hybrid method.   The beam, 
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however, is now dispersed with 64 second phase particulates and is subjected to a pure end 
moment of 40 KN-mm(Fis. 34). Longitudinal stresses along a transverse section which 
passes through several second phase particulates are plotted in Fig. 35. 
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Fig. 34. Composite beam subjected to pure end moment (64 elements) 
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Fig. 35. Sigma X across a section 
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