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1. FOREWORD

The project entitled " Large Deformation Analysis of Nonlinear Homogeneous
and Heterogeneous Media Using an Arbitrary Lagrangian-Eulerian Finite
Element Method " (Grant No. DAAL03-91-G-0069) has been transferred from the
University of Alabama to the Ohio State University effective_August 16, 1991. The principal
investigato. of the project, Dr. Somnath Ghosh has assumed a faculty position at the Ohio
State University and the project is continuing at OSU. Therefore, in this report only the first
part of the ongoing work is presented. Subsequent progresses will be reported from the
Ohio State University.

2. LIST OF APPENDICES

First draft of a manuscript entitled " ANALYSIS OF RANDOM COMPOSITES USING
VORONOI CELL FINITE ELEMENTS"

3. BODY OF THE PROBLEM STUDIED
A. STATEMENT OF THE PROBLEM

In this part of the study, a new finite element technique has been developed for macroscopic
analysis of composites with a stochastic dispersion of microscopic heterogeneities. In these
composites, particles or fibers of various shapes or sizes may be randomly scattered within
the matrix. The present work introduces a material based discretization system that
adequately accounts for the morphology of the heterogeneous domain and then formulates a
finite element scheme for accommodating multi-sided elements with second phase matzrials
present.
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B. SUMMARY OF MOST IMPORTANT RESULTS

The heterogeneous domain with random distribution of second phase has been discretized
by Dirichlet tessellation so that each element contains only one inclusion. The resulting
network of Voronoi cells are now assumed to be elements in a finite element formulation.

Indeed, the multi-noded Voronoi cells are rather unconventional elements and a
displacement based formulation with such elements is extremely difficult due to the varying
number of sides in each element. An assumed stress hybrid finite element formulation has
proven to be extremely successful in this process. Several different test cases have been
experimented with for linear elastic problems and good correlation between numerical
solutions and analytical results have been obtained.

The effect of the second phase has been incorporated by the introduction of a
transformation strain in the element level in a fashion similar to self-consistent schemes.

The results have been compared with conventional finite element predictions and are in
reasonable agreement. Work is now in progress for refining this model.

C. PUBLICATIONS

Two manuscripts are presently being written and will be forwarded to ARO as soon as they
are completed.

D. DEGREES AWARDED FROM THIS PROJECT

No degrees have been awarded so far from this project

4. REPORT OF INVENTICNS
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APPENDIX

ANALYSIS OF RANDOM COMPOSITES USING VORONOI CELL FINITE
ELEMENTS

SOMNATH GHOSH
Department of Engineering Mechanics
The Ohio State University

( preliminary draft of a manuscript being prepared for submission)
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1 Introduction

Research related to the study of composite behavior during the last two decades, has resulted
in a number of computational models for their analysis. Most of these models use the homog-
enization method for reflecting the influence of material microstructure on the macroscopic
behavior. These methods are based on asymptotic analyses, which predominantly make as-
sumptions of periodic repetition of microstructures. However, in practice, there exists a wide
variety of composite samples with a stochastic dispersion of microscopic heterogeneities. In
these composites, particles or fibers of various shapes and sizes may be randomly scattered
within the matrix and even be clustered in certain regions. The distribution of shapes, sizes
and the spatial coordinates of the second phase has a profound influence on the mechanical
behavior of the overall structure and therefore, must be taken into account in a rigorous

analysis.

A fundamental requirement in the developme.nt of finite element models for analysis of
the above class of random composites is the generation of a robust mesh, that will ad-
equately account for the morphology of the composite domain under consideration. The
Dirichlet tessellation seems to provide an excellent foundation for natural evolution of dis-
cretization process while accounting for the microstructure. This is a method of subdividing
an Euclidean space into n-dimensional bounded convex polytopes. It may be perceived as
production of a network of interfaces, formed by the impingement of expanding hyperspheres
about random nuclei that are growing at a uniform rate from zero. If the second phase parti-
cles are realized as points in space, the convex polytopes (polygons in two dimensions) known
as Voronoi polytopes resulting from this discretization, would encompass one inclusion each
at most. These Voronoi polygons,in two dimension, are used as elements in a finite element
analysis of random composites.




2 Formulation of Voronoi Cell Finite Elements by
Mallett’s Method

Mallett [1] proposed a least square finite element scheme and a finite difference element
scheme for the formulation of voronoi polygon elements. In the first scheme, the displacement
components in each element is represented as linear function of position and then they are
determined by giving a least square fit to the nodal values of the displacement components.
The latter scheme completely eliminates the need to assume any sort of approximation for the
displacement field in the interior of the element. Instead, the element’s average displacement
gradient components are calculated to form the strain displacement matrix.

2.1 The Least Square Finite Element Scheme:

Displacement field in a n-sided polygonal element that represents the rigid body displace-
ments and the constant strain field, can be expressed as follows

u(z,y) = a1 + o2z + aay

v(z,y) = B + P2z + Bay (1)

where z and y are global Cartesian coordinates.

Evaluating the element displacement components at the i-th node and requiring that
these values coincide with the nodal displacement components u; and v; leads to the following

equations

Uy 1l = T
(23]
s
. . . [0 &1
Up 1 Zn yn |
or
{u} = [A{a} (2)

As the number of nodes of an element will be, in most, cases more than three, equations
(2) constitutes an overdetermined set of equations. Applying least square method to solve
the overdetermined system, one obtains

{a} = ([AT[A) M [A]{u} (3)

2




Substituting this expression for {«} and the similar expression for {A} into eq. (1) gives

wzy)=[1 = yl((A]TA) (A {u} = N{u}
o(z,y)=01 =z y(AFTA)AJT{v} = N{v} (4)

The components of strain can be related to nodal displacement components by

N 0
€z 3z
- 0 2N u
€y = By
aN 3K v
Tzy 2y oz

or

{e} = [Bl{d} : (5)
where [B] is the strain displacement matrix and {d} is “he element nodal displacement vector.
It can be easily seen that 4¥ and 4¥ is constant*over the element and so is matrix [B]. The
element stiffness matrix, for unit thickness, thus can be expressed as

(K. = [(BIT(E][BYv = A[BIT(E]B] Q

where A, is the area of the element and [E] is the elasticity matrix.

The nodal forces implied by the above stiffness matrix are not statically equivalent to
the edge tractions implied by the stresses within the element. To rectify this deficiency a
(S] matrix of size 2nx3 is determined that transforms the stress components into statically
equivalent nodal force components.

{F}e = [SHo} = [SIE][BH{d} (7)
from which element stiffness matrix can be written as
(K] = [S][E][B) (8)

which in general is not symmetric.

2.2 The Finite Difference Element Scheme :

In this scheme, the average of displacement gradients g%,g—:- and %,g—; over an element is

calculated and written as

di _aTu ou _ bTu
oz - A, ay - A,
ov _ aTv ov _ v
3:: - Ae 3![ B Ae




e

(y i+l — Yi-1 )

WhCIC a = .
5 = 2(Tic1 —Ziqq) t=1:-'n

W ey,

with the unde~‘a.ding that (z,,¥o) a0d (Zn+1,Yn+1) are to be interpreted as (z,,y.) and

(z1,y1) respectively.
Assum’ng a state of constant strain within the element, element’s strain component

averages are then given by
€z a? of "
= 1 T 3T
W OT b:r {"}
Tzy b" a

or

{e} = [Bl{d} (9)
The matrix [B)] is constant over the element, hence the stiffness matrix can be expressed
as

[K]. = A[BJ"[E][B] (10)

2.3 Rank Deficiency of Stiffness Matrix

The element stiffness matrix produced by either of the schemes has a rank of three, irrespec-
tive of the number of nodes n in an element, and its rank deficiency is 2n-6. Assemblage
of rank deficient stiffness matrices produces a rank deficient global stiffness matrix. Mailett
proposed two different methods for control of hourglass or zero energy nodes produced by
a rank deficient stiffness matrix. In the first method an artificial stiffness is added at the
element stiffness matrix level, which will inhibit hourglass deformation without seriously
affecting non-hourglass deformation. In the second method a constraint is imposed at the
global stiffness level, by means of the Lagrange multiplier technique, to eliminate rather
than suppress hourglass deformation. However elimination of hourglass modes at the ele-
ment level leads to a global stiffness matrix that is excessively stiff. Elimination of hourglass
deformation at the global level has been found to be the only viable alternative and the
following numerical examples are based on the same principle.

2.4 Numerical Examples

The material properties assumed here are used in all subsequent examples unless otherwise
specified. Further the problems are always solved under plain strain condition. Poisson’s
ratio is assumed as 0.3 and Young’s modulus as 2 KN/sq.mm. The value of Young's modulus
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is unimportant as it merely serves as a scale factor for the displacement.

Stretching Problem:
A square material body of size 40 mm x 40 mm is discretized into 24 voronoi polygons

(Fig. 1) and is subjected to a uniform tensile force of 100 KN. Analysis of this problem by
Mallett’s method yields end deflection of 4.53 mm in X direction and o of 2.5 kN/sq.mm
in individual elements which are the exact theoretical vaiues. Also the displacement of the
nodes in X direction versus their position from the fixed end has been found to be linearly

proportional (Fig. 2).

»>X

Fig. 1. Body subjected to tensile load.

e

Displacement in X direction
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Nodhi position in X direction
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&

Fig. 2. Nodal displacement in X direction vs. nodal position.
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Bending Problem:

A material body of size 40 mm x 160 mm is used as a cantilever beam with one end
fixed and other end subjected to pure moment of 40 KN-mm. The beam is discretized into
28 voronoi polygon elements (Fig. 3). Longitudinal stress o along a transverse section is
calculated by the above method and is plotted as shown in Fig. 4. The stresses are found
to be constant within an element and differ widely from theoretical value.

T
VAUNNNNNN NN

—X

Fig. 3. Beam subjected to pure end moment. .
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Fig. 4. Sigma X along a transverse section.




The calculated tip deflection is 1.546 mm, which is only 35% of the theoretical value of
4.368 mm. Fig. 5 shows a plot of the vertical displacement of the nodes at the top surface

against the theoretical values.

L0 »
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E

Deftection ia Y direction

Distance along X direction
Fig. 5. Deflection of top surface.




3 Proposed Formulation by Assumed Stress Hybrid
Method |

Large amount of error in predicting the deflection and stress of a cantilever beam under pure
end moment by Mallett’s method was the motivation to look for an alternative formulation.
In the earlier section it was shown that a least square fit of the displacement field from
the nodal values produce a rank deficient stiffness matrix for elements having more than
three nodes. Even if the rank defficiency is taken care of by global hourglass control, the
elements exhibit constant stress which are widely different from theoretical values. Pian [2]
suggested an alternative derivation of the element stiffness matrices by assumed stress hybrid
method. In the proposed method, instead of a required continuous displacement function
over the element, it is necessary only to write down the boundary displacements that will
guarantee a complete displacement compatibility. The assumed-stress hybrid method is a
way of formulating a stiffness matrix by use of independent assumptions of (a) an equilibrium
stress field within the element, and (b) interelement-compatible displacement nodes on the
element boundary. As this method necessitates the interpolation of displacement field not in
the interior of the element but only along the element boundary, it becomes easy to handle
polygonal elements having any number of nodes.

3.1 Element Formulation

The derivation is based on the principle of minimum complementary energy, for which the
functional to be varied is

1
X = _/':Esijkla'ija'kldv —/avT,-'tI,-ds (11)

where S;;ju is the elastic compliance, T; are the prescribed displacements along the boundary
Ov and T; are the boundary tractions that are related to o;;.
The stresses satisfy the equilibrium condition

60,-,- . _
5, * F.=0 (12)

and is compatible with the prescribed boundary tractions. In applying the finite element

method, the assumed stress field need not be continuous across the interelement boundaries,
but equilibrium must be maintained for the surface tractions T}, defined by

T.' =040y (13)

where n; are the components of the unit vector normal to the boundary.
In the application of this variational principle, one begins with a stress field that satisfies
the differential equations of equilibrium. The stress distribution can be expressed as

{o} = [PH3} (14)

8




where {3} is the column of m undetermined stress coefficients £y, 8; - - - Bm and terms of the
matrix [P] are functions of coordinates z;,y:.

The surface tractions T; have been expressed in terms of the stress o;; by equation (13)
and hence can be related to the undetermined stress coefficients {3} as

{T} = [R){8} (15)
Also, the prescribed boundary displacements #; can be interpolated from generalized
displacement {¢q} at the nodes, in the form

{u} = [Ll{q} (16)
where the terms in the matrix [L] contain coordinates on the surface.
The equation (11) can be rewritten as

7= [ {o}ISHo} = [ [T {u}ds (1)

Substituting the expressions for ¢,T" and u one obtains
r. = o{BVIENAY - BYIGHa} (18)
where [H] = [ [PI7[S){P)dv (19)
and [G] = /8 [RIT(L)ds (20)

Making 7. stationary with respect to stress parameters

or. .
-a—ﬂ-:=0 for 1=1,2,---m (21)
gives

[(H{B} = [GHa} or {8} =[H]'[G]{q} (22)

Substituting {3} in the expression for complementary strain energy for an element of
volume v, one obtains

7 = [ 510)IS}o)dv

{8Y'[H){B}

DO —




b

= >{a}"[GI"[H][G{q}

w

= 5 {a)"[K}a}

where [K] = [G]T[H]}[G] is the stiffness matrix.

The stiffness matrix [K] will be rank deficient if it’s rank is less than n-l where n is the
number of degrees of freedom and [ is the number of rigid body nodes. A necessary condition
for the resulting stiffness matrix to have sufficient rank is m>n-l, where m is the number
of independent f3-stress parameters. Because the derivation of the element stiffness matrix
involves inversion of [H] matrix which is of the order mxm, it is advantageous to use as
minimum a number of 8- parameters as possible. "There are also indications that overuse of
f-parameters will yield over-rigid elements. An ideal situation is to choose the stress terms
such that m is equal to n-I. However, it is not always possible to adhere to this as the
number of S-terms is also governed by the fact that the assumed stress polynomial should
have as many terms as required to satisfy the equilibrium equation (12). Hence for some
elements, number of 3-terms may be more than n-I. The resulting element properties by this .
approach will in general not be invariant. However, if an optimal local reference coordinate
system is used in the element formulation, invariance may be achieved.

To illustrate the assumed stress hybrid method, components of the element stiffness
matrix are derived as follows.

The stress functions, involving 5 f-terms, that satisfy the equation of equilibrium may

be assumed as follows
000
1 0 ) =|P B
Lz ol d-(7)(e)

Oz | 1
HE
Ty 0 3

This is suitable for elements having up to 4 nodes. However for elements with higher
number of nodes, as in the case of voronoi elements, it is necessary to increase the number
of B-terms to get rank sufficiency of the stiffness matrix. The stress polynomial [P] for 10 3
terms is given as

A

Qow

1 y000 z 0y 0 z3
001 z0 0 y 6 z° y?
00001 -y -z 0 0 -2zy

10




and for 17 B terms as

1y000 z 0y> O
001z0 0 y 0 2 y

z?
2

00001 -y —z 0 0 -2zy —y%/2 —-z%/2 -3z% O

. zTY 0
0 zy

z3

3zy?

y* 3%y oz 0
0 y3 23 %

-3zy* —y3/3 -z3/3

The stress polynomial involving 17 S-terms is thus suitable for elements having up to 10
nodes (number of degrees of freedom 2x10, minus number of rigid body nodes 3, dictates a
minimum of 17 #-terms).Hence for elements having up to 4 nodes, 5 3-terms are used; for
elements having more than 4 but less than or equal to 6 nodes, 10 3-terms are used; for
elements having more than 6 but less than or equal to 10 nodes, 17 B terms are used.

For the :th side of an element

1-afl; 0

G = e =1

1<a/l; 0

af/l; 0 ]

afl;

q2i-1
g2

92i+1
Q2i+3

where [; is the length of side ¢ and a is the distance measured from node ¢ to node i+1. The
assumed boundary displacement variation is linear. Therefore, the interelement compatibil-
ity is assured if the nodal displacements of adjacent elements are matched.

Traction on the side i is given as (for the sake of simplicity only 5 §-terms are considered)

{T} _ | Fzna + TzyTi2 | _ | Rl YRa 0 0 nig
P tgnatomial | 0 0 ni oz ng
from which
[ n;l(l == a/l,-) 0 n,-la/l.-
yna(l —a/l) 0 ynaa/l;
[RITIL] = 0 na(l—a/ly) 0
0 :z:n.-g(l = a/l,-) 0
! n,-g(l — a/l.-) n,-;(l — a/l;) n,-ga/l;
and [G]; = [y, [R]7[L)ds for the side i.
The contribution to components G;,; for the side 7 is given by
J/1 21 -1 2 2t +1
1 n¢11§/2 0 n.-,l,-/2
2 nali(yi/3 + yis1/6) 0 niali(yi/6 + yis1/3)
3 0 nali/2 0
4 0 n,-gl,-(:r.-/3 + zi41 /6) 0
3 n,-gl.-/2 n;ll,-/2 n,-;l;/?

11

B
= [R]:{8}

Bs

0

0
n,-ga/l,-
zngafl;
n,-la/l.- ]

2t+2
0
0
72,'2[,'/2
nili(zi/6 + Tis1/3)
nalif2




It is interesting to note that for a four node element if only three 3-terms are used, the
element stiffness matrix obtained by assumed stress hybrid method becomes exactly same as
that obtained by Mallett’s finite difference element scheme. Usage of three S-terms means
assumption of constant o, oy and 7, within the element which is also the case in finite

difference element scheme.

3.2 Invariance of Stiffness Matrix

The stiffness matrix of an element calculated on the basis of global coordinates is not invari-
ant as not all the assumed stresses are complete polynomials of the same degree. However,
invariance may be achieved, as suggested by Cook [3], without changing the stress polynomial
by calculating the element stiffness in a local coordinate system having a fixed orientation
with respect to the element, regardless of how tHe element may be oriented in global coordi-
nates. Thus if a given structure and its loads are rotated some amount in global coordinates,
nodal loads associated with each element maintain their original direction with respect to
the local element coordinates. Thus the element response becomes invariant as it is not

affected by the rotation. .
Once a local coordinate system is defined the calculation proceeds in the following man-

ner.

1. Nodal coordinates of an element is transferred to the local system and the stiffness
matrix is calculated in the local system.

2. Element stiffness matrix in the local system is then transformed to the global coordinate
system and assembled in the global stifness matrix. The transformation is accomplished
by the operation

[klsiotat = [AT][Kiocat{A] (23)
where [A] is the coordinate tranformation matrix.

3. After assembly, element nodal displacements are calculated in the global xy directions.

4. To compute stresses, stress parameters S calculated in the local system are used.
{e}10cat = [Pliocat{B}iocal gives stesses in the local system which are then transformed

to the global system.

Choice of finding the angle, the local system makes with global system, is not unique and
alternative definitions of this angle are possible. However, finding a local coordinate system
for a polygonal element is a problem as a polygon does not exhibit any preferred direction.
In the present formulation, the local coordinate of an element is defined by two different

methods.

12




In the first method, one of the axes of the local coordinate system is aligned with the
longest edge of the element. In other words, the angle the longest edge makes with one of the
global axes, is the angle by which the global axes are rotated to obtain the local coordinate
axes for the particular element.

In the second method, an element is first mapped to a master 4, 8 or 12 node plane
isoparametric element in s-¢t space. If the element has less than or equal to 4 nodes, it is
mapped to a 4 node master element, if it has nodes between 5 and 8 it is mapped to an 8
node master element and so on. Wherever necessary, extra nodes are created in the element
mid sides so that there is a one to one correspondence between the nodes of the actual and
master element. Jacobian matrix for this transformation is then calculated and decomposed

into

[J1=[R][U] (24)
where [R] represents a pure rotational transformation matrix and
U] = - (C + VaICT)
\/ traceC + 2vdetC

where [€] = 1T1)

From the above relationship [R] is obtained as

[R] = ][] (25)

This rotational transformation matrix then is used for rotating the global axie to obtain
the local coordinate axes. Rest of the calculation proceeds as outlined earlier.

3.3 Numerical Examples

Stretching Problem:

A square material body of size 40 mm x 40 mm is discretized into 24 voronoi polygons,
as shown earlier in Fig. 1, and is subjected to a uniform tensile force of 100 KN. Analysis
of this problem by the Assumed Stress Hybrid Method yields exact end deflection of 4.55
mm in X direction and o of 2.5 kN/sq.mm in all elements. Also the displacement of the
nodes in X direction versus their position from the fixed end has been found to be linearly
proportional (Fig. 2). Thus both Mallett’s method and assumed stress hybrid method yield
exact results of a stretching problem.

The material body is now aligned at 45° to the global axes and is subjected to the same
stretching load (Fig. 6). The results of deflection and stress in the direction the load are

again found to be 4.55 mm and 2.5 KN/sq.mm which are exact figures.

13




Fig. 6. Body oriented at 43° and subjected to tensile load.

Simple Shear Problem:

The same 40 mm x 40 mm material body discretised with the same 24 voronoi polygons
is subjected to suitable displacement boundary condition so as to simulate simple shear (Fig.
7). Assumed stress hybrid method yielded exact value of 7., = 0.0385 KN/sq.mm and o, =
oy = 0 in every element.

2mm—-1-

»X A

Fig. 7. Body subjected to simple shear.
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Bending Problems:
Example 1.

A material body of size 40 mm x 160 mm is used as a cantilever beam with one end
fixed and other end subjected to pure moment of 40 KN-mm. The beam is discretized
into 28 voronoi polygon elements (Fig. 9). Longitudinal stress o along a transverse section
calculated by assumed stress hybrid method conformed more closely to the theoretical values
than that obtained by Mallett’s method (Fig. 10). The vertical displacements of the nodes
at the top surface agree very well with the theoretical values (Fig. 11). The calcui ted tip
deflection of 4.175 mm has an error of 4.4% with respect to the theoretical deflection of 4.368

mm.
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Fig. 11. Deflection of top surface.

Examples 2 and 3.

The same 40 mm x 160 mm beam is now discretized into 53 and 152 voronoi polygon
elements respectively (Fig. 12 & 13) and subjected to pure end moment of 40 KN-mm.
0. along a transverse section is plotted (Fig. 14) for all three cases, i.e. beam discretized
by 28 elements, 53 elements and 152 elements. The calculated tip deflection for the beam
with 33 elements is 4.346 mm, an error of 0.3% compared to the theoretical-deflection. The
corresponding figures for the beam with 152 elements are 1.452 mm an@% respectively.

- ) /
. _.--\-w"\"‘-l- T"

A% ALY A AN SN

>X

Fig. 12. Beam subjected to pure end moment (53 elements).
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Fig. 14. Sigma X along a transverse section.

Fig. 14 indicates that as more and more elementis are used to discretize the beam, the
stress distribution converges towards the theoretical value. Fig. 15 shows the distribution
of o throughout the beam discretized by 152 elements. Except near the area of application
of moment load, where the Saint Venant effect is predominant, the o. stress distribution
conforms well with the theoretical stress distribution.
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Fig. 15. Distribution of Sigma X in beam having 152 elements.

The beam, discretized into 53 elements, is now aligned at 45° with the global axis(Fig.
16). Stresses in some elements deteriorate if the calculations are based on global coordi-
nate. However, use of a local coordinate system for every element improves the results and
makes the elements invariant with respect to the orientation of the beam with the global
axis (Fig. 17). Local coordinate for an element is usually obtained by rotating the global
system until one of the axes aligned with the largest edge of the element, and is identified as
Cook’s method. In this example the matrix used to transform the global system to the local
coordinate system is also obtained by decomposing the Jacobian matrix, as detailed earlier,
and is identified as Jacobian method. Results based on local coordinate system, obtained by
either method, compare well with each other. '
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The above exercise is carried out on the beam with 152 elements, aligned at 45° with the
global axis. Results based on local coordinate system are found to improve (Fig. 18). _ P .
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Fig. 18. Longitudinal stress along a transverse section using Local & Global coordinate.
(152 elements)

Example 4.

Having shown that the results improve as the number of elements increase, the same 40
mm x 160 mm beam is discretized into 86 elements (Fig. 19), most of which are of regular
hexagonal shape, and the same exercise is carried out. Fig. 20 indicates that longitudinal
stresses in the elements across a transverse section agree very well with the theoretical values.
Fig.21 shows the distribution of o in the entire beam. Except near the area of application
of moment load, where the Saint Venant effect is predominant, the o, stress distribution
couforms very well with the theoretical stress distribution.

Results of this example indicate that as the elements become more regular in shape, the

results improve.
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The beam is now oreinted at 45° with the global axis (Fig. 22). Fig. 23 indicates that
a local coordinate system for every element produces better results than that obtained by a

global coordinate system.

>

Fig. 22. Beam oriented at 45° and subjected to end moment.

23




15000E400

$.0000E-01

3.0000E-01 -

LEGEND

~1.0000E-01 = (r——————
a Local Coordinata I

Bongitudinal Stress at x = 0,94 from fixed end

& Theoralles! veiue :

“0.0000E-0Y .

T I . . T T v T 1
] ' ' T T . >

0.0000E+00 £0600E-DY 1.6000E«00 2.4000E 00

Distance along transverse direction

Fig. 23. Longitudinal stress along a transverse section using Local & Global coord.

Example 3.

The material body of size 40 mm x 160 mm, with regular 86 elements, is used as a
cantilever beam subjecied to a downward acting load of 0.5 KN at the end (Fig. 24). The
load is distributed over the edge in a parabolic distribution such that the total area under
the parabola is equal to the load 0.5 KN. Shear stress aczoss a transverse section is plotted
in Fig. 25 and found to agree well with the theoretical cistribution.

o

ANANIANM RN

Fig. 24. Beam under end load
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4 Modelling of Second Phase Material Present in Voronoi
Cell

Having established a finite element formuiation for polygonal elements with isotropic material
properties, next step is to account for tze second phase particulate present in every element.
The problem of modelling the presence of a second phase material within a finite element was
addressed by Accorsi [4] by introducing 2 transformation strain in those regions. The finite
element method reflects the shape, size 2nd location of the second phase material within the

element.

4.1 Problem Formulation

The formulation is based on dividing the total problem into two separate subproblems.
First, called homogeneous problem, corresponds to the finite element analysis of the body
without material discontinuity and the second, called the deviation problem is defined by the
difference between the actual and homogeneous field quantities. The solution of the actual
problem can be found by adding the corresponding solutions of homogenous and deviation

problems.
Let superscripts t, o and / indicate the actual or nonhomogenous problem, the homoge-

nous problem and the deviation problem respectively.
The constitutive relation for the actuzl material is thus given as

¢t = C(z)¢ (26)

where C(z) is the elasticity matrix.
The transformation strain mentioned earlier is defined by the following equation.

o' =Clz)e' = C°(e' - €) (27)

where C° is the elasticity matrix of homogenous material and €* is the strain in the discon-
tinuity. From the above relationship one obtains

¢ =[C° - Ciz)]"IC%" = H(z)C°€ (28)
where H(z) = [C° - C(z)]™?

Now as per earlier definition
€=¢+¢ (29)

or
e~ =H(z)C¢ (30)

The constitutive relation for the deviation problem is given as
o'=0'-0°=C - ¢€) (31)
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Discretization of the homogenous problem is straight forward. Using the principle of
minimum potential energy, the element equations are obtained. The assembled equations

for the homogenous problem are written as

K°8° = F° (32)

where K°,6° F° are the global stifiness matrix, global displacement vector and global
load vector respectively. For the purpose of solving the above equation. they can be rewritten

as

§° = (Kz)™' Fm (33)

where K2, F, indicate K°, F° modified for displacement boundary conditions.
Similarly, the element equation for the discretized deviation problem is written as

K8 =F: ' (34)
where
F= /.,. BTCoedv (35)
B is the strain displacement matrix such that
€. = B6. (36)

and K is the elemental stiffness matrix.
For an element of matrix material C? containing m, microstructural discontinuities with

material property C”,r = 1,2..m, and occupying regions {2,, the transformation strain is
non zero only within the region 2,. The equation (35) becomes

F*= zl jﬂ BTCiedy (37)

As the transformation strain €" is constant within a discontinuity the above equation (37)
is further reduced to

me

Fr =Y (R)TCee (38)
r=1
where
R = | Bdv
Qr

Assembly of the equation (34) gives




where
_L"' = Z QZ F :
e

#. is a transformation matrix which when operated on global displacement vector §

returns the element displacement vector é,.
Equation (39), when modified for displacement boundary condition, takes the form

Kyé6' =vF" (40)

Since the displacement boundary conditions for the homogenous and deviation problems
correspond to the same nodes, the modification to the stiffness matrix is same for both the
problems. For the deviation problem, wherever the displacement boundary conditions are
zero, zeros are placed in the corresponding positions in F*. To carry out this modification
of F* a matrix ¢ is used. ¢ is an identity matrix with zeros in the diagonal in the positions
corresponding to the displacement boundary conditions.

From equation (40)

§ = (Kp) 'wF* (41)
Therefore

b = 0.0

= ée(Ky,) o F

= (K)o S (RTCee

=1

M
= .(K3) 6 Y ol (RY)TCLe (42)

s=1

where M is the total number of discontinuities in the system.
Writing equation (30) in terms of nodal displacements for an element, one obtains

B&® + B§! = H(z)C%" (43)

Integrating equation (43) over §,, the domain of rth discontinuity in the element, one
obtains

RI8 + R6 = V,HICo

28




where V, is volume of rth discontinuity and H] = [C? — C]™1.
Rearranging the above equation

V,H[C3¢" — RIE, = RI6: = RI4.6° (44)

Substituting the value of 8 from equation (42) into equation (44) we have

M
Z [V,H;’G" - R:é:([(;)'lwqb:TR:T] C2€™ = R.0.6° (43)
s=1
where 67 is the Kronecker delta. The above equation is now assembled by evaluating the
terms for each discontinuity in the system r.s = 1,2...., M. The assembled equation takes
the form

S(C°¢) = R6° (46)

It may be observed from equation (45 ) that €** is function of R and H]. R.(= f,, Bdv)
in turn is dependent upon the shape and size of the discontinuity, as the integration is over
1., and also on the location of the discontinuity within the element due to the presence of
B matrix in the expression. If the element to start with is not constant strain type, B is a
function of the coordinates within the element. H] matrix contains the material property of
the discontinuity. Thus ¢*" depends upon the shape, size and location of the discontinuity
within the element.

The subroutine for calculation of §’ follows the following steps
-From equation (46) calculate C?¢™"

-Calculate F7 = =™ (R7)TC2¢™ by substituting the value of C2¢™
-Find global F* =Y, ¢TF |
-Substitute F* in equation (41), to get 8’ = (K3, ) 1y F*
A standard 2-D finite element program FEM-2 [5] is used to calculate é° and ¢, i.e.

the solution of the homogenous and deviation problem respectively. Solution of the actual
problem is thus 6! = §° + ¢'.
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4.2 Numerical Examples

Stretching Problem:

The homogenization formulation allows the discontinuity to be treated as a void by set-
ting its material properties to zero. A square material body with a central hole is subjected
to tensile load. Resulting stress distribution along a transverse section passing through the
hole is calculated by conventional FEM and FEM coupled with homogenization method. For
the first case (Fig. 26) material around the hole is discretized by four node eiements and for
the second case (Fig. 27), the material is discretized in such a way that toe entire hole is
contained within an element.

“7 (2]

Fig. 26. Analysed by FEM2

&/ -~
Fig. 27. Analysed by FEM2 with Homogenization.
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Stress distribution (Fig. 28) by either method compare well up to a distance 2 from the
edge of the hole, D being the hoic diameter. After that, the sharp rise in stress as the edge is
approached is not reflected properly by homogenization method. This however, is expected
as the homogenization method models the presence of the entire hole in an element in an
average sense.
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Fig. 28. Sigma X across a section through the hole.

Bending Problem:

A cantilever beam, having three second phase materials and subjected to a pure mo-
ment at the end is analyzed by conventional FEM and FEM coupled with homogenization
method. For the « >nvent.onal FEM the beam is discretized as shown in Fig. 29 and for the
homogenization method the discretization is shown in Fig. 30. The Young’s modulus of the
second phase material is assumed as 4 KN/sq.mm which is double that of matrix material.
Poisson’s ratio is assumed as 0.3.
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Fig. 30. Analysed by FEM2 with Homogenization.

The stress distribution, along a transverse section passing through the second phase
materials, obtained by either method is plotted in Fig. 31. The stress predicted by homoge-
nization technique is found to compare somewhat well in the matrix material, however w;'hin
the second phase material, the stress is well above than that predicted by conventional FEM.
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Fig. 31. Sigma X across a section through the second phase material.

All the numerical results of conventional FEM and homogenization methods, discussed so
far, are based on a program for analysis of linearly elastic structures in a plane using 4-node
isoparametric elements, called FEM2. However, for the analysis of composites with randomly
dispersed second phase materials, the elements that will be encountered, as explained earlier
in the report, will have more than four nodes. For the apalysis of these polygonal elements,
assumed stress hybrid method is introduced. The present problem of a beam dispersed with
three second phase materials and subjected to a pure end moment is then analysed by the
homogeneation technique coupled with assumed stress hybrid method. The results, as shown
in Fig. 30 compare very well with that obtained by homogenization method coupled with

TEM2.
_The same beam bending problem is solved by discretizing the beam into irregular polygo-
nal elements (Fig. 32) and using homogenization coupled with assumned stress hybrid method.

Longitudinal stresses along the same transverse section using irregular and regular mesh are
plotted in Fig. 33. The results are found to compare well.
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Fig. 33. Sigma X across a section through the second phase material.

Finally the beam of size 40 mmx 160 mm which was used in several earlier examples,
is analysed by homogenization coupled with assumed stress hybrid method. The beam,

34




however, is now dispersed with 64 second phase particulates and is subjected to a pure end
moment of 40 KN-mm(Fig. 34). Longitudinal stresses aiong a transverse section which
passes through several second phase particulates are plotted in Fig. 35.
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Fig. 34. Composite beam subjected to pure end moment (64 elements)
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