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INVESTIGATION OF BURNETT EQUATIONS

FOR TWO-DIMENSIONAL HYPERSONIC FLOW

ABSTRACT

Our research to date on the Burnett equations has identified five basic scientific issues

in need of resolution before really satisfactory computations of 2D (or 3D) flow fields can

be made with these equations. Briefly, these issues relate to (1) surface boundary condi-

tions, (2) frame independence, (3) material derivative approximation, (4) positive-definite

dissipation (?), and (5) upper altitude limit for applicability.

The progress reported on herein involves three different areas of investigation conducted

by three different research assistants: (A) research on issues (1) and (4); (B) research on

issue (3); and (C) investigation of the interaction of a thick oblique shock impinging on a

cowl lip in high-altitude hypersonic flow.

(A). Issue (1)-Computations of 2D hypersonic flow over a flat plate have shown that

the question of what surface slip boundary conditions are most physically realistic for use

with the Burnett equations, is a crucial one. Comparison with corresponding particle-flow

simulations reveals that the conventional Maxwell/Smoluchowski boundary conditions for

velocity slip and temperature jump are not adequately realistic at medium and high Knudsen

numbers. Better slip and jump conditions are needed.

(A). Issue (4)-Burnett computations of the dissipation function for 2D hypersonic

flow over a blunt leading edge show the dissipation to be everywhere positive, suggesting

that this particular issue may not be a troublesome one.

(B). Issue (3)- Exploration has begun on different forms of the Burnett equations fat

ID hypersonic shock structure using various improved approximations for material deriva-

tive (improved relative to the approximation conventionally made), and no approximati, QW



at all. Each form involves different physical terms and introduces different numerical com-

putation difficulties, especially in the Burnett energy conservation equation. Results to date

on analytical stability analyses are outlined.

(C).-An analysis has been completed of the means for generating, from either the

Yavier-Stokes or Burnett equations, the velocity, density, and temperature field within an

oblique shock wave structure. Such generation is necessary for specifying the outer compu-

tational boundary condition that will produce a thick, oblique, impinging shock wave. It is

found that the velocity component in the direction parallel to the oblique shock wave is ev-

erywhere constant within the structure of that wave. This analytical result greatly simplifies

the procedure for setting up numerical computations of the interacting flow field of a thick

oblique shock impinging on a cowl lip.
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A. PROGRESS ON THE SURFACE BOUNDARY CONDITION

AND THE DISSIPATION ISSUES

Progress in this area was made between October 1, 1990 and August 1, 1991, during

which period Xiaolin Zhong was a research assistant. He has completed his Ph.D. thesis.

and has joined the faculty at UCLA on August 1, 1991. Research results were presented in

a paper given at the 4th International Symposium on Computational Fluid Dynamics. U.

C. Davis, September 9-12, 1991, entitled "Evaluation of Slip Boundary Conditions for the

Burnett Equations With Application to Hypersonic Leading Edge Flows" by Xiaolin Zhong.

Robert W. MacCormack, and Dean R. Chapman. A copy of this paper is appended to the

present annual report. The main results concerning surface boundary conditions are briefly

summarized in the Abstract above, and are described in more detail in the appended paper.

Our results to date concerning the issue of whether the Burnett dissipation is positive

definite are illustrated in Figure 13, the last figure in this report. The Burnett dissipation

is everywhere positive in this 2D hypersonic flow field in front of a blunt leading edge. as

required by physical considerations. Most of this dissipation comes from the Navier-Stokes

terms, as might be expected. We have no indication thus far of any problem with dissipation

using the Burnett equations.
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B. Development of Alternate Burnett
Constitutive Equations

During the past 55 years, a number of researchers have studied and sought to find

practical solutions to the Burnett equations. The clear majority of research, especially

attempts at numerical solutions, have been accomplished using various forms of what will

be termed the Conventional Burnett equations. At Stanford, the recent advances in

obtaining numerical solutions also made use of different forms of the Conventional.

Burnett equations. Yet, it is in the derivation of these forms of the Conventional Burnett

equations that we may gain insight into a potentially more accurate form of the Burnett

constitutive relations.

In 1935, Burnett l1 developed a higher order set of constitutive stress relationships from a

class of solutions to the Boltzmznn equations. An example of one term of the original

Burnett Stress' , which is added to the Navier-Stokes stress, is listed below.

3 DtPlaz ax ll at))J KI 4-0 (a) M(a)2a

v 2  2 P._h aX, h)
2  

, , aaz ax

2n aZ h2 aZ z x h 2 cx -'y h 2 y

K4 2 2 h 4~t ~121

2---1 az ax) t
_L 2 a~ aawa-KE 6 ( 2 + 3V} 6u- + - +3 +

6 hau a s te (ax afi

In his paper, Burnea used the z-axis as the principal flow direction.
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Note the presence of the material derivative* in the first term of the stress expression.

This derivative also appears in the other five stress terms.

In 1939, Chapman and Cowling 21 published an alternate form of the Burnett stress term
as well as the corresponding order heat conduction expression. The publication

developed forms of the Burnett stress and heat conduction terms where the material

derivative terms were replaced with spatial flow field gradients through the use of the

inviscid conservation equations for momentum and energy. These forms of Burnett
equations we here to refer as the "Conventional" Burnett equations. Replacing the

material derivatives eliminates the time dependent terms in the Burnett constitutive
relationships in favor of partial derivatives of the same order as the remaining Burnett

stress and heat conduction terms.

Sporadic research into Burnett applications transpired over the next several decades with
limited success in finding practical solutions. Research during this period centered on the

Conventional Burnett equations. In 1948, Wang Chang and Uhlenbeck(31 reexamined the
Conventional Burnett equations, attempting to find solutions using a type of series

approximation. In 1959, Talbot and Sherman [4 ] were able to obtain solutions to the
Burnett equations for Mach numbers below 2. In 1973, Fochi51 attempted to use an

ordinary differential equation approach to numerically solve the Conventional Burnett
equations, but was unable to obtain solutions for Mach numbers above what Talbot and

Sherman had achieved more than a decade earlier. In 1976, Tannehill and Eisler(61

examined the Conventional Burnett equations for a flow over a leading edge.

In the early 80s, WoodsE7'8 1 developed the Burnett equations in a derivation independent

of the earlier Chapman-Enskog expansion method Burnett used in 1935. Instead, Woods
used mean free path arguments to obtain the stress and heat conduction relationships.
Interestingly, the constitutive relationships contained a material derivative term in the

stress and heat conduction expressions. The Woods formulated Burnett expressions are

The materiai derivative has the formal definition: D=---a -+
Dt at ax"
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2Woos p o e+ o2 De-2 2 x + "RVVT+o (&VPVT

+ " RoVTVT+ a6eei (2:

qwood =*-tfeVT+62(DVT-2xVT+03 e.Vp+04TV/e+05e.V

In the general Burnett expressions listed above, e is the deviator of the velocity gradient

tensor, and is related to the velocity gradient tensor by the expression

= I-(e= -e+Z)-- el

2 3

where: e = VV

= Transpose of e

x
e - Trace of e

I Identity Tensor
0

Given a tensor A, the operator A has the formal definition

0 IA = (A +  I A :I3

where: A Transpose of A

I a Identity Tensor

Research into the Burnett equations at Stanford began in the mid-1980s. Fisko[9 1

investigated two forms of the Conventional Burnett equations for the shock structure of

monatomic gases. Lumpkint 01 followed the work of Fisko by extending the applicability

of the Burnett equations to polyatomic gases. Lastly, Zhong [11 1 solved a stability

problem of the Conventional Burnett equations by adding three Super-Burnett like terms

to obtain the augmented Burnett equations. These allowed numerical solutions of the

Burnett equations to be computed for any Mach number at any altitude.
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The Conventional Burnett Equations

A closer examination of the Conventional Burnett equations is best carried out in one-

dimension. Recall from Woods the stress and heat conduction terms which contain the

material derivative. These may be written:

OIWo c' B&in, = (... + Const D()+ ...PDt abx (3)

q s Burntt " L (. +ConsiD- .(T)+

The material derivative in the stress term may be approximated as

using the inviscid momentum equation

DI-x -L P (5)

Dr P ax

The material derivative in the heat conduction term may be approximated as

D? aTI  aP auI au aT
Dt xI -X 1 ; TXI- ax ax'

using the inviscid energy equation

DE= p au (7)
Dt pcv x"

These Conventional Burnett equations become in one dimension

OConwntiuonoJBuza = L!(. + Contfl V U + ) (8).
c ,, -= '~( + Cons... ax Pc'v TOx I 'x

The substitution made in forming the Conventional Burnett equations is due to an

approximation. For regions of a flow field where gradients are reasonably small, the

approximation made in writing the Conventional Burnett equations is a good one. When

flow field gradients are large, in a boundary layer, shock, or a free shear layer, the



approximation made in developing the Conventional Burnett expressions must be
examined more closely.

Recall that the substitutions made for the material derivative terms were completed
through the use of inviscid conservation equations for momentum and energy. A
comparison was made of the left and right hand side terms of equations 5 and 7 through
a normal shock in Argon gas as computed from the Navier-Stokes equations. Figure 1
plots the inviscid momentum terms and figure 2 plots the inviscid energy equation terms,
each non-dimensionalized by the appropriate free-stream quantities and an appropriate
mean free path.

If the approximations made in developing the respective Conventional Burnett stress and
heat conduction terms are accurate then the material derivative terms, represented by a
solid line in figures 1 and 2 ,should be close to the approximated terms, represented by a
dashed line. A comparison of the respective stress terms in figure 1 shows a fairly good
match between the two expressions. The primary difference is that the material
derivative expression is shifted upstream of the pressure gradient expression. The
differences in figure 2, corresponding to the heat conductions terms, are much more
striking. While the material derivative expression is shifted upstream from the velocity
gradient expression as was the case for the stress comparison, here the magnitude of the
material derivative term is a factor of two larger. The approximation used in developing
the heat conduction expression of the Conventional Burnett equations introduces a
sizeable error when gradients are significant. This observation apparently has not been
made before.

Development of Alternate Expressions

Two ideas are readily apparent to overcome the error introduced when approximating the
material derivative in the Burnett stress and heat conduction expressions. The first idea,
and most obvious, is to keep the material derivative expression intact, without
approximations, when developing the constitutive relationships for stress and heat
conduction. This leads to what we term the Material Derivative Based (MDB) Burnett
equations. The second idea is to use the viscous momentum and energy equations
(Navier-Stokes) instead of the inviscid momentum and energy equations when rewriting
the material derivative terms in the Burnett stress and heat conduction expressions. This

8



leads to what we term the Navier-Stokes Based (NSB) Burnett equations. Upon
introducing the two ideas, the two alternate sets of Burnett equations are easily
developed.

It is useful to examine the different forms of the Burnett equations in one-dimension for a
Maxwellian gas. The stress and heat conduction terms for the Conventional Burnett

equations are:

aCoveongt Burnet 4eA a e: [ j- + ax3 aX_ =P 9 "3 P 3 x2  3p 2 xaxa

+2&i+T2 2.Rl
T Dxi 3 ax2j (9)

a l2F95 _ a a P
qCMD,.tvaBwn k + L L u _ +_

ax P 8 T axax 4  ax Pax ax

The stress and heat conductions terms of the material derivative based (MDB) Burnett
equations, where the original definition of the material derivative is maintained in
developing the Burnett expressions, are:

aMDB= A/L+&F Iau ._L + 2a.~1 +28 &(~+2 R li3 x ' L3at ax 3 aX2  9 T ax ax2J
2 [_5 +_45 u t +_&tLu T +2cj~ 2.Lu 1 (0)

47DO kax +P L8Tata I T ax 4Taxax ax2  PaxaxL

Since these equations for one-dimensional flow are equivalent to the corresponding
equations derived by Burnett in 1935 for a one-dimensional flow, they also could be
termed the "Original" Burnett equations.

The stress and heat conductions terms of the Navier-Stokes based (NSB) Burnett
equations, where the viscous momentum and energy equations are used to rewrite the
material derivative expressions. are:

9



aNsD =cneto s,,,,,ff + E! LU L9 -a 9u a2

qNSB = qonvntional arntt + a' k ( TT - 1- -412 a (x -(x

MaU aU M a,, (au 112 _3 2 6 'a I- 3;

pRT ax ax2 P2RT ax ax

It is critical to note the differences in the partial derivatives and in the coefficients to the

comparable partial derivatives in each of the sets of Burnett relations. Certainly, these

variations may lead to observable differences in numerical computations. Numerical

experiments must be carried out to evaluate the accuracy of each of the alternate Burnett

expressions.

Recall the earlier comparisons of the Material derivative and the inviscid substitutions for

the Material derivative through the argon shock. The comparisons showed the stress

terms to be similar and the energy terms to be disparate. While the Conventional Burnett

stress expression might be adequate, either the MDB or the NSB Burnett heat conduction

e'pressions should provide a more accurate description of the heat conduction through a

shock than the analogous Conventional Burnett expression.

It is also important to note that the numerical accuracy of computations made with a

given Burnett stress and heat conduction closure model will ultimately determine if any

of the alternate forms of the Burnett expressions developed above will actually supplant

the Conventional Burnett equations as the most accurate Burnett model. Numerical

experimentation, currently accomplished by examining the shock structure of a one-

dimesional monatomic gas, is the most established avenue available for comparing

different Burnett models. For completeness, we will examine each of the stress models

with each of the heat conductions models to compare their physical accuracy and

computational stability with the Conventional and Augmeitted Burnett equations. Table

I lists the different Burnett stress and heat conduction combinations.
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Table 1: Stress and Heat Conduction Combinations

Stress Heat Conduction Analysis

F Navier-Stokes NRavier-Stokes - Cornpleted
Cnventonal Burnett Conventional Burnett Cmleted

~T Au ented Burnett Au ented Burnett ped
4 MDB Burnett MDB Burnett Inogress
5 Steady MDB Burnett Steady MDB Burnett gress

SNSB Burnett N SB urnett
SConventional Burnett Steady MDB Burnett rogress

8 ConvendrT urnet, NSBurnett

W7 Steady MDB Burnett RSW Burnett gress
-"Tf-SB Burnett Steady MDB Burnett "In"Progress

The need for identifying both the unsteady and steady MDB Burnett closure models will

become apparent during the subsequent discussion of stability.

Stability of Burnett Equations

Alternate forms of the Burnett constitutive equations have been developed to hopefully

improve the accuracy of numerical predictions of gas flow fields, in the contiuum

transitional flow regime. In order for the modified constitutive equations to be useful,

they must be stable to small wavelength disturbances.

Bobylev [' 21 in 1982 showed that the linearized Conventional Burnett equations were

unstable to small periodic disturbances in a uniform flow field. Fisko showed

numerically that the Conventional Burnett equations for a Maxwell gas were unstable for

fine grid meshes with spacings smaller than a characteristic mean free path of the fluid.

This meant that numerical solutions to high altitude problems would be difficult since the

mesh spacing required to capture significant flow features might be smaller than a

characteristic mean free path of the fluid.

Zhong was able to develop the Augmented Burnett equations to overcome this deficiency

in the Conventional Burnett equations. By adding three Super-Burnett like terms to the

set of Conventional Burnett equations, Zhong developed a set of constitutive relations
which were stable to a linearized stability analysis, and which were stable numerically to

a rigorous numerical test.

11



The previous sections outlined the development of several alternate forms of the Burnett
equations which are currently being investigated. In order to be generally applicable to

problems over a wide range of Knudsen Numbers, as is the Augmented Burnett

equations, the new forms of the Burnett equations must be shown to be free from

instabilities due to small wavelength disturbances. This requires that each of the alternate
Burnett equations be stable in both a linearized stability analysis and a rigorous numerical

test.

The linearized small disturbance stability analysis provides a necessary though not

sufficient condition for stability. If a set of equations is unstable to a linearized stability

analysis, then it will be unstable at some small mesh spacing in a numerical computation.
If, however, a set of equations is stable to a linearized stability analysis, a rigorous

numerical test is still required to prove stability of the non-linear terms of the equations.

Since the cost of a linearized stability analysis is small, it is easily used to remove ill-

posed sets of equations prior to the more costly and difficult numerical stability test.

The linearized small disturbance stability analysis is carried out in the following manner.

A monatomic gas at rest (uo = 0) with an initial density and temperature Po and To

respectively is perturbed. The non-dimensional pertubation variables

p' = (p - pYpo
T' = (T- 7"o)/"o
T' =( u-T,,1T

t' -- X'/U'
'%o UfRTo

are substituted into the conservation equations for mass, momentum and energy:

apat +x (pu) = 0

a(pu) + (pu2 +p + a) = 0 (12)

aE +a ((E + p + r)u + q) =
at ax

where

12



p=pRT

E =p(cT +- u2)

For a weak disturbance, the following pertubation equations result:

p0101 0
av I v a 0 113

,ax ax j
02.0 2.q

where V'=

' is the linearized stress and q' the linearized heat conduction. Dropping the prime

notation from subsequent expressions, the linearized stress and heat conduction terms for

the respective constitutive equations are listed in table 2. The derivative coefficients

correspond to a Maxwellian Gas. These coefficients would be somewhat different for

other gases such a Argon or Nitrogen.

Table 2: Linearized Constitutive Equations

Constitutive Equations Linearized Stress Linearized Heat Conduction
Navier-Stokes - i ux _ U T.

3 4
Conventional Burnett -IU =+IT .,-IU

3__ _ _ 33 3 4X4

Augmented Burnett - IZ- 4.P= + 2 Tx + 4 4 1 685 T Iu +LT= Ip

MDB Burnett - 4 u +1 l,+ 2 T.=- 'T,+ 4 2-Tt + 2 u.
3 3 4 8

Steady MDB Burnett 4 u.+ 2 T= - 1 1T. +2 u,.
__ _ _ _ 3 4

NSB Burnett -AUZ -Ip= +I jax + 1-6 u Ur 4 T.,-7u= + 22 T.

Once the stress and heat conduction terms are specified, a pertubation solution of the

form

V = Vo ei"' e' (14)

13



is defined. Here, o is the periodic spatial frequency and 0 controls the time response of

the initial pertubations. 0 can be written as:

0 =az+fP i

where a and ,P are real numbers and represent the attenuation and dispersion respectively.

The solutions to the partial differential equations are stable if the attenuation is not

positive.

Substituting the pertubation solution, equation 14, into equation 13 yields a system of

algebraic equations of the form:

[A] V =0 (15)

The elements of matrix A are a function of the stress and heat conduction models used as

constitutive relations.

The characteristic polynomial

)= 0 (16)

is found from the non-trivial solution to the system of algebraic equations. Table 3 lists

the resulting characteristic polynomials for each of the alternate Burnett stress and .,;at

conduction combinations.
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Table 3: Characteristic Polynomials For Stress and Heat Conduction Combinations

Case Stress Heat Conduction Characteristic Polynomial
I Navier-Stokes Navier-Stokes 18 03 + 69 0)2 02 +(30 + 60 0)2) 0)2

+ 45 W4

T Conventional Conventional 18 03 + 69 02 02 + (30 + 97 ) 2 - 14 (14) ) 2

Burnett Burnett + 45 )4 + 6) 0)6

3 Augmented Augmented 216 03 + (828 + 147 (02) 0)2 02 + (360 + 1164 0)2
Burnett Burnett + 84 W4 + 22 0)6) C02 0 + 540 0)4 + 909 C06 + 72 0

4 MDBBurnett MDBBurnett (12-61 0)2+6004) 0 3 +(46_100C02)0)20 2 +

1__ (20 - 37 0)2 + 32 )4 0)2 0 + 30 0)4
5 Steady MDB Steady MDB 18 03 + 69 0)2 02 +(30 + 12 0)2 +48 (04) 0)2

Burnett Burnett_________+ 45w04

6 NSB Burn NSB Burnett 72 03 +(276 + 803 0)2 (02 02 + (120 + 388 (02

1 + 1164 W4 + 1200 0)6 0)2 0 + 180 C04 + 915 0)6 + 900w 8

7 Conventional Steady MDB 18 03 + 69 C02 w 2 + (30 + 52 w02 + 16 0)4) )2
Burnett Burnett + 45 0)4 + 60 )6

8 Conventional NSB Burnett 72 3 + (276 + 675 0)2 0)2 0 2 + (120 + 388 )2Burnett
+ 844 0)4)W2 0 + 180 0)4 + 915 0)6 + 900 a 8

9 Steady MDB NSB Burnett 72 0 3 +(276 + 675 w02) w02 02 +(120 + 292 0)2Burnett Burnett + 844 0)4 0)2 0 + 180 W4 + 675 0)6
IT NSB Burnett Steady MDB 18 03 +(69 + 32 0)2) 0)2 02 +(30 + 52 W2 + 96 0)4) C02

Burnett
1 _ 1__Burnett _ + 45 0)4 + 60 0)6

The time response of the initial pertubation is a function of the periodic frequency. The
characteristic polynomial determines the relationship between 0 and ). Solutions to the

characteristic polynomials of the form 0 =f()) are plotted in figures 3 through 12.

Figures 3 through 5 show the characteristic trajectories of the known constitutive
equations. Both the Navier-Stokes and Augmented Burnett equations yield stable
characteristic trajectories. The Conventional Burnett equations show branches of the
characteristic trajectories which have a positive attenuation, indicating frequencies at
which the initial pertubations would grow exponentially.

Figures 6 - 12 show the characteristic trajectories for the alternate forms of the Burnett
equations proposed earlier. Notice that two different forms of the MDB Burnett
equations are evaluated; the complete MDB Burnett equations and the steady MDB
Burnett equations where the time dependent stress and heat conduction terms have been

15



removed. Figure 6, that of the complete, unsteady MDB Burnett equations, shows
characteristic trajectories which exhibit positive attenuation, thereby indicating

frequencies at which the MDB Burnett equations are unstable. Each of the other stress
and heat conductions combinations yield stable characteristic trajectories, including the

steady MDB Burnett relationships. Therefore, cases 7 - 12 listed in table 3 should be

explored further for numerical stability and physical accuracy. This exploration will be

part of our research program during the next contract year.

Numerical Test of Alternate Burnett Equations

A second order implicit flux-split method"11 13 ] has been developed to numerically test

the alternate Burnett stress and heat conduction models. The numerical method follows a

procedure identical to an earlier successful method for solving the Burnett equations at

Stanford. Initial verification of the code has been completed by examining a one-

dimensional shock in a Maxwellian gas, using the Conventional and Augmented Burnett

equations as constitutive relations. Work now focuses on evaluating the numerical

stability of each of the alternate Burnett stress and heat conduction terms.

To date, each of the steady MDB Burnett and NSB Burnett stress and heat conduction

terms has been tested for computational stability. All but three of the heat conduction

terms have proved to be stable in combination with both the Navier-Stokes and steady

MDB or NSB stress and heat conduction terms.

One of the unstable partial derivatives is from the steady MDB heat conduction

expression, listed in Eq. (10) The unstable, non-linear term is

45_A2Ua 2T

8 pT ax2

The other two unstable heat conduction terms are from the NSB heat conduction

expression listed in Eq. (11). The first partial derivative of the heat conduction

expression can be expanded into three terms by using the relationships

k U j41R

4
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The expanded partial derivative may be written

2 M2 _2 ( k _0-TJ = 3a(a-l) aT 3 + 3 a a2T +

4 pRT.x2T a xl 16 p2 ax- 16 pT2 T 2 aX ax2  16 p 2 T ax3

The first term of the three terms from the expanded first NSB Burnett heat conduction

partial derivative is stable. Stable differencing schemes for the other two expanded terms

above have not yet been found.

In the near term, alternate methods for developing a stable differencing scheme §or the

three unstable terms will be examined. Once a method is developed for handling the

thee partial derivatives, the work effort will shift towards examining each of the alternate

stress and heat conduction constitutive relations for physical accuracy. The accuracy of

each of the alternate Burnett equations will be presented in future reports as they become

available.

17



Nomenclature

Roman Symbols

cV = specific heat

e = velocity gradient tensor
0
e = deviator of the velocity gradient tensor
x
e = trace of the velocity gradient tensor

h = lI2kT

k = Boltzmann Constant

k = coefficient of thermal conductivity

Ki = Burnett Stress Coefficients

m = molecular mass

p = pRT, thermodynamic pressure

P(0,) = characteristic polynomial

R = specific gas constant, kim

q = one dimensional heat conductions

q = general heat conduction vector

q' = linearized, one dimensional heat conduction

T = translational temperature

TO = freestream translational temperature

u = component of fluid velocity

V = component of fluid velocity

V = vector of pertubation variables, p', u', T'

w = component of fluid velocity

x = spatial coordinate

y = spatial coordinate

- = spatial coordinate



Greek Symbols

a = viscosity-temperature exponent

0= time response coefficient

Ao = characteristic mean free path

1 = viscosity

.o = freestream viscosity

p = density

O'2 -= viscous stress tensor

o = one dimensional viscous stress

o = general viscous stress tensor

' = linearized, one dimensional stress

Oi = Burnett heat conduction coefficients

v = number of molecules per unit volume

(0 = periodic spatial frequency

toi = Burnett stress coefficients

= fluid rotation, IV xv
2
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C. THICK OBLIQUE SHOCK IMPINGING ON COWL LIP

The interaction of a relatively thick oblique shock impinging on the bow shock in front of

a blunt leading edge is important in certain high altitude hypersonic flight applications. Such

interaction is of special relevance, for example, to thin cowl lips on air-breathing propulsive

systems of vehicles such as NASP. To date, the known experiments and computations for

this shock interaction phenomena have been restricted to conditions of relatively low altitude

flight wherein shock thickness is negligible compared to the normal shock detachment dis-

tance. The interaction with relatively thick shock structures is expected to be considerably

different, possibly involving, for example, quite different over heating ratios compared to

very thin shock structures. Our research will explore this interaction phenomenon for thick

shock waves corresponding to flight conditions at high altitude. Initially the Navier-Stokes

equations will be used, and subsequently, the Burnett equations. Research on this subject

began this past summer.

Our first step has been to determine what the computational boundary conditions

should be for properly generating an impinging, relatively thick, hypersonic, oblique-shock

structure. Previously, only 1D normal shock structures have been investigated. The desired

boundary condition corresponds to specification on an outer computational boundary of tIle

distribution of u and v velocity components that will generate an impinging oblique shock

structure of a given strength and thickness. Once generated, interaction with the bow wave

on a blunt leading edge can thereby be computed with the usual CFD techniques. It is

expected that a very fine grid will be required.

In order to determine how to construct the proper boundary velocity components. ali

analytical investigation has been made of the governing differential equations for obliqt e

shock structure. Both Navier-Stokes and Burnett equations were considered. A coordinate

system was used such that x,1, un is the direction and velocity normal, and yp, c-p the

corresponding quantities parallel, to the oblique shock. In this coordinate system (legyp = I)

for all physical quantities. We find that the continuity equation, the momentum equath,[1
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in the z, direction, and the energy equation all reduce to precisely the same differential

equations as for 1D normal shocks. This is the case for both Navier-Stokes and Burnett

equations. The momentum equation in the yp direction, however, does not vanish as it ,,cs

for ID normal shocks, and instead becomes an auxilliary equation that must also be satise ,id

for oblique shocks. With the Navier-Stokes equations this momentum equation for stead.-

state conditions is

i Xn drf a /
One solution is simply c) = constant = p1 = t'p2, where v1p is the parallel velocity compone:.t

upstream. and t'p2 is that component downstream, of the oblique shock.

There is, however, another possible solution. The continuity equation shows that pi, is

constant through the oblique shock, hence the above momentum equation can be integrated

once to

PUn(t'p - t'pl) =dvp
dsrp

and a second integration to

(Pu,) d-- = ln(t'p - upi) i- constant

Downstream of the shock ln(vp - vp,) approaches negative infinity, whereas the integral on

the left-hand side approaches positive infinity. Thus this type of solution does not satisfy

the required boundary conditions: hence the only physically possible solution for Navier-

Stokes oblique shock structure is the simple solution of vp = constant throughout the shw ,',

structure.

With the conventional Burnett equations the auxillary equation representing monitl:.-

turn conservation in the direction parallel to the shock is

Pun(VP - VP) = A dvdun'1  ki - +-
d~[ p d.rn

where ki, k2 , ks are the Burnett constants for a given vas. Just as in the case of the Nay.1:

Stokes equations. a solution to this equation is vp = constant = t'pj = vp2. The Burn,-

terms within the square brackets above are smaller than unity. Hence the term in sq'1.,
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brackets is always positive and upon integration, the same impossibility is encountered as

for the Navier-Stokes equations.

ln(vp - vpl) = dxconstantO~ _ ," ,(k _, +/p +cntn

Downstream of the shock the left side approaches negative infinity, while the right side

approaches positive infinity, which does not satisfy the required boundary condition.

We conclude, therefore, that the only physically possible solution for oblique shock

structure is V, = constant = vpl = vp for both the Burnett equations and the Navier-Stokes

equations. This result greatly simplifies the construction of appropriate velocity boundary

conditions that will generate a thick impinging oblique shock wave. For any desired strength

of oblique wave, as represented by the thermodynamic jump conditions across that wave. a

ID normal shock structure is first computed for these same jump conditions and for a Mach

number equal to that normal to the oblique wave. Then vector addition of an appropriate

constant velocity component in the direction parallel to the oblique wave completes the

generation of the desired shock structure for the impinging oblique wave.
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Figure 3: Stability of Pertubation Equations Using Navier-Stokes Stress and Heat
Conduction.
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Figure 4: Stability of Pertubation Equations Using Conventional Burnett Stress and Heat
Conduction.
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Figure 5: Stability of Pertubation Equations Using Augmented Burnett Stress and Heat

Conduction.
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Figure 6: Stability of Pertubation Equations Using Unsteady MDB Burnett Stress and
Heat Conduction.
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Figure 7: Stability of Pertubation Equations Using Steady MDB Burnett Stress and Heat

Conduction.
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Figure 8: Stability of Pertubation Equations Using NSB Burnett Stress and Heat
Conduction.
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Figure 9: Stability of Pertubation Equations Using Conventional Burnett Stress and

Steady MDB Burnett Heat Conduction.
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Figure 10: Stability of Pertubation Equations Using Conventional Burnett Stress and

NSB Burnett Heat Conduction.



0

'E)

Stable Unstable

-1I _ __ ___

-3 -2 -1 0 1
Attenuation

Figure 11: Stability of Pertubation Equations Using Steady MDB Burnett Stress and
NSB Burnett Heat Conduction.
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Figure 12: Stability of Pertubation Equations Using NSB Burnett Stress and Steady
MDB Burnett Heat Conduction.
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