2 Tl * .
v
[ 4

4“[)'j“;2!1" :3;75’ ‘ . L

—

Wiy @)

. FOREIGN TECHNOLOGY DIVISION

POGO STABILITY, RELIABILITY AND PARAMETERS ANALYSIS
by

Qizheng Wang, Wanyong Gau, et. al.

92-01397
VRO - DTIC

PELECTF g2
. /AN 16 1992
¢ 8

Approved for public release;
Distribution unlimited,

92 1 15 0B}




FTD- 1p(RS)T-0572-91

HUMAN TRANSLATION

FTD-ID(RS)T-0572-91

19 November 1991

POGO STABILITY, RELIABILITY AND PARAMETERS ANALYSIS

By: Qizheng, Wang, Wanyong Gau, et. al.

English pages: 49

Source: Yuhang, Xuebao, NR 2, 1986, pp. 29-47

Country of origin: China
Translated by: SCITRAN

F33657-84-D~0165
Requester: FTD/TTTAV/A. G. Crowder
Approved for public release; Distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-
NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR
EDITORIAL COMMENT. STATEMENTS OR THEORIES
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE
AND DO NOT NECESSARILY REFLECT THE POSITION
OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
* WPAFB. OHIO.

FTD- 1p(rs)T-0572-91

Date 19 November 1991




GRAPHICS DISCLAIMER

[icoossion For
NTIS GRA&I &
DTIC TAB 0
Unarmounced
Justirication-“__..___
———\\
By
N 3 Distributioni
/ % e e ver . e e s et e g
R Availebility Qodes
Avall ¢ and/op
T Dist Special

&

——




POGO STABILITY. RELIABILITY AND PARAMETERS ANALYSIS

Wang, Qizheng: Gau. Wanyong: Gu. Yongchun; Zhang, Jitony:

and Li. Xianshan

Abstract POGO instability is one of the most important dynamical
problems of space vehicles. The mechanism of the POGO instability is
briefly clarified by a simplie free-free system which consists <f two
masses. a spring. and a damper. followed by POGO stability matrix
élgorithm, POGO stability single-transfer method. and POGQ stability
estimation methoi. The adaptability of these POGO stability analysi;
is illustrated through an example. After important parameters
rel@ted to POGO instability are discussed. the reliability analyesis

of POGO stability and its criteria are alsc introduced.
(Thics paper wWas received on September 6, 1984.)

I. Mechanism of POGQ Instabiiiny

The phenomenon of POGO not oniy has adverse effect on the
passenger-carrying space vehicles. it is also an important element
in structural design. The high pressure vibration in the propellent
line caused by POGO can result in the degradation of the performance
of the propulsion system. and sometimes even pre-mature engine shut-
down (1.2}].

In the 70's. the suppressicn »f POGO instability was viewed as
one of the most important criteria in the design of gas-liquid

structural system and manned space vehicle. In the 80's. it was




still a part of the research of space-traveling related structural
.dynamics [3].

Similar to flutter and galloping in the gas elasticity, POGO is
an important problem in the fluid-solid coupled dynamics. Flutter
anu galloping are the dynamic problems caused by the flowing of
fluid exterior of a solid, while POGO is the dynamic problem caiuBed
by the flowing of fluid interior of a solid. Since the structural
vibration is a three-dimensional problem, and the pipeline system in
real space consists of pipelines in all three dimensions which is
further controlled by the propulsion of the engine and other -
controlling forces, POGO is the dynamic problem of a large-loop
coupling system.

POGO is the study of structural instability of the rocket body
structural system and the longitudinal coupling of the propﬁlsion
system. Under the condition of POGO, longitudinal self-stimulating
non-convergent vibration of the space vehicle is caused which is
similar to the ever-jumping "pogo stick" and hence was given the
name.

The stability of POGO was already d:scussed in literatures (4]

to [7]. In the past, the mechanism of POGO was mostly discussed in

words or through complicated calculation. Similar to the mechanism
of flutter (8], POGO can be explained by the system of two free-free

masses(My, M) - damper(Cy) - spring(Ky). From figure 1.1b, we have

-

MX +CX, X))+ KX, - X)=F (1) (1.1)
M.X.+C,(X.-—X.)+K.(X.—X.)=0 (1,2)

let 6=X|"Xu 0'.=K:(M3+M:)/(M|Mu)
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2Laa=C,(M,+ M,)/(M ,M,) (1.3
\
Assuming that the pulse thrust F,(t) is proportional to the relative

deformation velocity 4. then

T=F,()/M,=2Lc0.é (1.4)
whers { is related to many factcrs of the propulsion system, Using

the above equation. we have

3+ 20a(Ln— L) + 0230 (1.5)

if‘the initial perturbation is 6, then the solution can be d=4,¢',

and we have

S+ 20a(6n—&)S +at =0 11.6)

the roots ares

Sl.:z "‘(g‘l - gc)mnijwn\/ 1:(.;1— 3:

i1.7)
and the solution ig thererfore,
6=(’.Ex‘)[—(;n-gl)wnt](M(oll"'o') (1 8)

where @e=ws/ 1={Ln~Le)'s

4, is a constant.
If equation (1.8) is plugged into equaticns (1.1) ko (1.3).
then the reverse motion of ¥) and X2 can be realized. If the actual

structural modular damping rat:io iz a positive damping. then whzn

Y




{={u—{.<0 then the unstable divergent vibration due to the negative
-damping of the system will occur. In this case. the system will
absorb energy and the source of energy is the work of pump and
engine. This is similar to the flutter of wings of aircraft., even
though the engine provide the flight speed to the aircratft. not all

the flight speed will cause unstable flutter of the wings. For POGO

systems. only under certain coupling conditions which render largeﬁg

can unstable pogo occur and the extent of instability if determined
by the magnitude of {. The magnitude of {. is further determined by
structure, pump. and the cleseness »f the gain of the engine and the
characteristic fréquency of the propellant line. The latter is an
important design criterion of POGO (see section V.3). If coupling is
removed by some measures. . can be reduced and system POGO can be
avoided.

As mentioned above. POGO of space vehicles is a problem of the
large—-loop ccupling dynamices. 3ince the structure of space vehicles
congisted of many modgles. many propeilants. many pipelines. and the
simultaneous working of pump and engine. scome lccal vibraticon can
2lso couse POGO. theref v2. the dynamic esquaticns for many parts <an
be generated (see sectivi, [I). Then the dynamic polynomials ¢f the
entire POGO system can be tabulated and then the calculatvion of the
POGO stability of the entire system can be carrizd out (see section
III). However, since the physical significance is hard to detect in
the initial stage of calculation. the POGO single-transfer and
estimation methods should be used (see section IV) to estimate the
POGO stability of the vehicle in a more efficient way. Nevertheless,

the relative error should be noted in the estimation procedure.

S




There are many factors affectlﬁg POGO, If the major facrors are
identified. the requirements for the svstem design. test, planning,
and quality control can be cutlined (see section V), Furthermore,
there are some uncertain parametzre in the POGO stability analysis
and the reliability analysis (section VI) and the POGO reliability
requirement which suppresses POGO (section VII) should be carried

out.

X II. The Related Dynamic Eguaticne of a POGO Svystem

The typical block diagram <f the simplified coupling of

propulsion-structure system is shown in figure 4.1, Four major sub-
systems are shown: structural swvstem of the vehicle, propellant
pipeline system. pump system. and the thrust chamber system. The
description of these syctems g followed.

(I) Dynamic equations of th=2 wvehicle structural system

The dynamic equations for tns ith degree modular stats are
Xi(el -G ()T i(e) (2. 1.1
(e(5) - SGi(e) /(57 +28,0,5 - @i) (2.1.2
Gi(e)== ¢ M;
()= gile)f (2.1.3)
- 1 s .
7 — . J o :
{e)= g g6y 2 H D) (2.1.4)

where £? M;tw“ $:(i)s di(e). and Gi(e¢) are the modular dampaing ratio,
macroscopic mass. circular frequsncy of the 1th meduiar state. the
modular displacement »f the jth point., general mcdular displacement
of the engine. and structural q<sain. F{j1 is the external force

applied on point i <f the rocket pody. The physical displacement of

the jth point «<n the structurs s




X()= 25 X(i)=2 dii)a.e” (2.1.5)

=g =t
where iqi iz the macroscopic coordinate. The [orm of the Typical
external force F(j) is explained below.
1. The pulse thrust F(1) created by the pulse pressurz Pc of

the combustion chamber on the engine is

F(1)= 4uCiP.=S.P. 3

where Sg=A¢nCe. and Ap and Cg are the cross section of the neck of
the combustion chamber and thrust coefficient.

2. The forces F(2) and F(3) applied on the siructure ag a
result of the pulse pressure due to elbow or pipelines beforesafter

a pump and momentum change are (see figure 2.3)

F(2)= ~AyPy~pQu(2Qu/Au+ Xs) (2.1.7)
F(3)=~AoPs-p@o(2Q0/Ap- Ys)
where Ay, Py, @u.. Qu are the inlet cress secticn. pulse pressure.
steady state and pulsed volume flow of the upstream flow: and Agp.
Pp. @o» Qp are the corresponding quantities <of the downstream flow.
X, and ¥, are the transverse and longitudinal velocity at the elbow
or pump.
3. Due to change in cross sectional area, the change in
pressure and momentum result in an applied force on the structurs

F(4) (see figure 2.4) is

F(4)= —AyPy : AnPo-Zpa( 3" - ?-49--) . (2.1.9)
v [




4. The applied force F(5) as a result of the vigcogity of the
finid in a straight line (ges figure 2.1) is
F5)= = R (p, - Py SLAXY)
z (2.1.10)
where A, R, Z. L. X, are the corresponding crosg gectional area,
resgistance., impedance. inertia. and velocity.

5. The applied force creatsd v the pulsed flow Qp of the

propellent on the bcttom of the fuel tank on the center-of-mass of
the fuel tank with respect to the structure is
F(6)=phQ. (2.1.11)

where 4, is the heignht of the liguid in the fusl tank.
6. The applied force F(7: «<re=ated by the pulsed pressurs Pt at
the opening (tb) at the bottom of the fuel tank on the bottom

structure is (6]

F(7)=AP, .
(Zz.L.12)
whners
Pc=zphc¢x(f)QN"Lka ’ {(2.1.13
Kmy
Qr=Q:+ A.-Y(lb)==Qc '*‘Alz ¢K(‘b)¢K (2.1.14)

K=

where ¢x(f), ¢x(t6), and Ly are the modular displacement of the center-
of-mass of the liquid reserveir., the medular displacement of the
bottom of the tank, and inertiz <f the liguid in the tank. A; is the
area of the opening. and Qp and 2 are the relative and true flow

rate.




7. The force F(8) acting on the structure of the rocket becdy as

a result of the local. longitudinal motion of the pump is

F(8)=M,[X(i1p)-X,] (2.1.15)

where X(tp) is the acceleration of the pump component of the rocket
structure. X, is the acceleration due to lecal longitudinal motion
of the pump. and Mp is the mass 2f the pump component.

(IIY Dynamic equations 2f the pipeline secticns

1. straight pipeline secticns (see fiqure 2.1)

Assuming that the steady state velocity in the pipeline is much
less than the speed-of-sound. then the effect of Mach number can be

ignored and the following relaticonship holds

( -1 1
poy [ ch0 —fZsho ’ L ARsho 1
{Q - 1 Q - AR X
° |\ -z0sk0  che | 7(1—ch0)J (2.2.1)

where 0r=8c*Z/(SL); r=I/a, : 1 is the length »of the pipslins.
L=pl/dy Z=R+SL : a, 1s the =2quivalent spesd-of-scund 1gee
discussicens in secticn Vig) .
If the effect of viscosity can be ignored than R is

approximately zero and the above equation has the fellowing form

[ ch(xs) ———-—L":(“) P
U

o}

\ _t:h(r:) ch(rs) .Qu (2.2.2

If the etfect of compressibility can be 1gnorad. then &,

approaches infinity and the above equation is further simplifisd as

7
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- (Per [t -SLyPy (2.2.3)
Q. 1 Jipy,

2. If the pipeline system is complicated and the gas content of
the liquid and the gas bubble generated during flow of the liquid
can not be estimated easily, then the calculation of equivalent ...
speed-of-sound is made very difficult and the modular parameters of
the pipeline system can be estimated by the trial method. For
example, when the two ends of the pipeline connecting the bottom of
the liquid reservoir and the pump is closed/opened, then we have

(S*'+2LianS+a))qu=APu/M, (2.2.4)

When the two ends are closed/closed, then

(§'+2L0:S+af)qi=—A(Py+Po)/M,

(2.2.5)
where (i @iv Miy qi . are the modular damping ratio, circular
frequency. macroscopic mass. and macroscopic coordinate of the
pipeline. |

3. The equation for the pressure retainer (or connecting

between branches) is (see figure 2.2)

e e

Pp _ 1 'O]Pu
{Q,} [-y. 1{0,,} (2.2.6)
where
Ya=8C,/(LaCuS*+R.,C.S +1); (2.2.7)
L¢=PII/A05 It=lo+8rl/(3")3 'All=”nur: (2.2.8)

V.P,/(¥vP*) (isothermal process)
¢, v opy=f T P

u




1PV P/ P [(PP) (adiabatic process)

Ro=v AP[K; K =2pg'(Cads)’ (2.2.10)
where 1l and ra are the length and radius of the manifold of the
pressure retainer., ny is the number of holes. v is the ratio of the
gspecific heat of the gases in the pressure retainer. pis the mass
density of the ;iquid. C3=0.8 is the ocutlet coefficient of the short
tube. Pg and Vg are the initial pressure and volume of the pressure
retainer. P is the meta-stable inlet pressure of the pressure
retainer during the flight. AP is the pulse pressure difference of
thé ends of a short tube when resistance Ry is measured. and g 1s
the gravitational acceleration.

(III) Dynamic equaticns of a pump system (see figure 2.3)

P C.7 A2y =S L -
{Q:}“‘[”H‘l-*-fs.éfp fp]{g;/}_*_[ i;fp 5‘;.: 10]{;\{:}

.-.
[CW]
(6]
s

where (m+l), Cp. Lp. Rp. Zp=P.p+SLp are the dynamic gain <f the pump.
softness of the gas clock, 1nertia. resistance and impedancs. When

(m+l)=] and X,=Y,=0 the abcve equaticn has the fellowing form

{g:}=[1+{(‘,‘;é, —Izp]{gz} (2.3.2)

when Zp=0 (only for the composite parameter Cp), the above equation

is transformed to

{2’:}:[_810' ‘;]{gz} (2.3.3)







{IV) Related equations for the engine (see figure 2.3)
1. equation for the after—pump pipeline gections (not

considering the compressibility of the liquid)

15 Al E il
v 1 JQy
where Zp=Rp+SLp. and Rp. Lp are the resistance and inertia of the
after pump pipeline section. and Yp is the pipe wall veleccity.

2. equation for the nozzle

When the compressibility of the liquid in the nozzle section is

not considered (similar the treatment above). we have

PJ-PC+Zij—AjRij (2.4.2)
where Z;=R;j+SL; and Aj. Rj, Lj. and Yj are'the cross sectional area,
resistance. inertia. and velocity of the nozzle section.

3. combustion chamber
From the combusticn thermodvnamics. the relatien betwsen
combustion chamber pulse pressure P- and two pulse propellant flow,
rates Qj and Q is
P.=2.(Qi+Qs) (2.4.3)
where Ze=He/ (1+7.S), He=C*/(A¢pg). and Atn. C*. r, and 2. are the
neck cross secticonal area. characteristic velocity. time delay. and

impedance.

III. POGO Stability Matrix Algerithm

74




There_are several methods which consider the stability ¢f the
gsystem. Most of these methods requivre the =golution of the close~
leoop/open~loop transfer coefrficients and the zeros, polar pointz and
the numbers. and then the stabkility of the entire close-locp can be
analyzed.

The transfer ccefficient for some gystems ¢an be deduced from

the trial method. However., 1t 13 very difficult to measure ths

(0]

transfer cecefficient »of a cloge—-loop system from an unstabkle ¢l ze-
loop test. Similarly. there arse stable and unstable open-loop
systems and the determination »f their transfer coefficients is
equally difficult. Ther=fore. it is very important to evaluate the
system characteristics (clos2 <r open lcop) based on the compeosite
calculation of the refined modsi of many sub-systems.

If a pseudo element or pgaude block is introduced into ths
series of equations of a cloge—1oop svetem 2 its block diagram. the
chérécteristic equaticon of a cloge-loup or the transfer coefficient
and the zer¢ polar peint of an [ven-loop gystem can be determined in
a unified and convenient way. D= ause the location of the opening g
net unique, the introductaion of 3 pseude block ig not unique eathsr.
The selection of the location for opening or testing, therefore,

should be based on experiencs. Of ccocurse, it is best 1f the pseuds

(o ])

block can be piaced on the main loop of a close-loop system.
Assuming that there is no sxtericr disturbance., we can obtain a

series of equations for the n wariables of the n equations of the

POGC system ag evplained in gesction II. To illustrate this point.

assume (or deduce from simplificztionsy that n=2, the following




T I b

-geries of equations .(in matrix form) correspoending to block dladgranm

3.1 is
0 Di(S) -—-M(S) T
Du(8) ~Mu(S) 0 Xo=[A(S)HX}=0 (3.0.1)
‘—Kp 0 1 '1“
wnere
0 Dg(S) ~-Ms(S) T
[A(S))=] Du(S) —Mu(S) 0 {X}=¢X (2.9.2)
-K, 0 I 5 T

S is the LaPlace variable, M(53) and D(3) are the corresponding
polynomials of the numerator and denominator.

Even though there are many analytical methods for the stabilaty
analysis., the basic nature of these methods is similar: namely. the
system is stable if the real part of the root of the close-loop
characteristic equation if negative. otherwise the system is
unstable. Two analytical metheods emanate from thie point: the close-
loop and open-loop analvtical method.

1. Direct root-finding from the characteristic equataicn <f the
cloge-loop system

From the real and imaginary parts of the root of the
characteristic equation IA(S)i=0. one can determine the stability of
a POGO system in any frequency range. Under the perturbation—-free
condition, the determinant of the variables of the nth order
polynomial is zeroc which is the characteristic system equaticen. If

there is a pseudo block. let Kp=1 and one would have

lA(S)I =DG(S)DII(S)—IWc(S)ﬁ’fu(S)=0 (3’. 1,11

/6
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of the characteristic equation is

: - Sis=Su £iSu=abatjor/1-C}

where

=S, +Sii s La=Sun/on
(3.1.3
where Sky and Syj are the real and imaginary parts of the

characteristic root: w, and & are the typical frequency and damping

ratio of the POGO system in question.

If the damping ratio of the nth mcdular state of the original
real structure is ¢, and if the damping ratic of certain modular
state is changed from ¢ to &. (while other damping ratios are
either kept constant or changed with the same ratio). then we should
% " .have at least one neutral stable root (if Ske=0) and the width A

(dB) of the stable gain of the system is

A(dB)=20Log,e(La/e)s (£c>0)
If &<0. this would indicate that the system is already a stakle
device. The system is stable if A0, whereas the system is unstable
if Ac=0. | '
2. Open-loop analytical method
Taking advantage of the pseudo block method and let Kp=0. one

can obtain the characteristic equation-polar point equation of the

open—-loop system

Ao(S)=]A(S,Kp=0)| =Dc(S)Du(S)=0 (3.2.0)

1§




. The magnitude and number of the roois of the opel-loop
characteristic equation can be obtained acceordingly. Using the

pseudo block but delete the row and column where KD zituated from

A(S), then the determinant of one less order can be obtained

AM(S)=1A(S, delete the row and colume where Kp situated:
=Mg (SIMYy(S)=0 (3.2.2)
and the number of the zero peints and their quantity of the open-
loop can be obtained. From Ap(S) and Am(S)., the transfer function

-'${S) of the open-loop can be obtained

Me(SIMu(S)
4o(S) 6(S)Du(S)

W
S

=G(SYH(S) (3.2.

”based on open—-loop frequency déc2w: and stability analysis. the polar
coordinate (Nyquist) diagram. lcgaraithm amplitude diagram. phase-—
frequency (Bocde) diagram, logaritim amplitude-phase (Nichols:

. diagram can be generated and the =tzbility and width of the POGO

system can be determined. (See figures 4.2, 4.3.)

IV. Single-Transfer and Estimaticn Method of POGO Stability Analysis
POGO has its own special features. In fluid-solid coupled
dynamic analysis. some systems require at least two modular
 vibrational states to cause the unstable vibration of the entire
system. For example. the gas dynamic vibration of aircraft wings
require. bending and twisting vibrational modes. Compared with the
inertia and weight of the crose section of the structure. if the gas

dynamic force is large enough. then a larger deviation of the

19
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characteristic frequendy of the system can be caused. However, for
some other systems such as galloping or pogo. the fluid or pulse
dynamic force is relatively small compared with those of larger and
heavier structures and only small deviation of the system
characteristic frequency can be caused. The stability analysis of
these systems can be carried out with single-valence modular state
parameter method. In this secticon. we consider only the single-
valence modular state of the rocket structure and the propellent
system and use them in the POGQ stability analysis. The number of
équations involved in greatly reduced in this way. Based on the
general feature of the structure of pressure retainer (see figure
4.1), 19 equations for the 19 parameters can be obtained from the
discussion in section II. The stability analysis can be carried out
using the method discussed in section III; using eithef the
characteristic root of the cluge-locp squation or the transfer
functicn based on pseudo bleck principle. One can also carry out
parameter elimination from thes 19 sqguations and the transfer

equation of the loop in questicon rsze table 4.1) is

X =G(ST
(4.1)
whereas the transfer equation of the feedback loop is
I=11($)X (4.2)
Then the transfer function of the close-loop with output and
feedback is
F(S)=G(S$)/T1~G(SIH(S)] (4.3)

2/




Table 4.1: Transfer function corresponding te¢ figure 4.1lb

key:

1 - tank bottom total outlet cross sectional area

r, wml/a, L=rdi/(Aig)

T, =ch(se)eh(se,)+LeiLysh(se,)sh(sr)]/(es L N?)
T: =lrich(sti)sh(se)V Ly+Lrish(st)ch(sy)I/(L.NY)
Ty =ch(st,)+[r,Lich(sr)sh(sc)Y/(r, LN sh(se,)]

Ty =[r,sh(sv)1/ Ls+Lrich(sr)}/LL N +h(st)}
TppmUch(st)+(Y o Lysh(s7)) /v 3T +{ T: Lysh(sr,))/7,

T pom{ch(st)+(Y o Lysh(s7))/0 1T +0 T, Lsh(sty) 1T,
Topml(rsh(s%3))/ Ls+y4ch(s¥)1T + Trch(st;)

T oo=[(*sh(s%5))/ Ly+y.ch(ss)]T,+ T ch(sry)

Tp’'om[ T poLish(sr)l/7,
N(s)=[SPu(TpsTa’a~Tr'0T ar)V/da(e)

Dy(s)m=T p'o(SCr+(m+1)/2.)+To'o
H(s)=[(m+1)Z¢/Ze~Asba(p)/(Sedu(eI)INS.N(s)/D,\(5)

To'o={TaoLish(sz,)]/7,

* Hy(s)m—sN P, K\(s)/D(s)

Ki(2)={N(s)~(sP D\(5)T »5)$.(e)V/Tr'o

. H:(‘)‘:‘NA|'Pn¢n(‘)/¢-'(¢)' Zc=Zr+ZJ+ZP
" H(s)=—~N ACN(s),/D(s), E(s)=Z (m+1)/Z,

Hy(s)m=—C,Hi(s)/ A",

Cl"["'f&-(’ﬁ)éPISIJ/[Aidn(P)FI‘(S)
Comlmpda’(20)921/20hida(t)Bu(FIF +(s)}
Py=Pyr=rhida(f)g

A=A/ =HEsmogmEs/N O

Nt =1R4

D =mpclsil/l, S’ =Adpt/l,
Fp(s)=S'4+2Lp0pS+0,p?

H(s) =H\(s)+Hys)+H(s)+H (s)+H(s)=Hals)+ jH(s)
G(s) =G.(e)s/(s2 42, Was+w,?)

le  mGa(e)Ha(wa)/(204)
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and the open-~loop transfer function is
¢(S)=G(S)H(S)=Tn D) tlTiﬂ: X’) ut’xin (4.4)
where X, T are the velocity and equivalent thrust of the engine at
ite normal state. The expressicons for G(S) and H(S) are shown in |
table 4.1.
Based on Norquist stabilitvy c¢riteria. the system stability can

be determined through the calculation of the characteristic

frequency §(iw) of the open—-lcep. From table 4.1 cone has

G(jo){[Ga(e)cosfc]/2tswe)}ei?%

(4.5)
-t 2 __ .2
bc=tg"'[(@% —@*)/(2{ewa)] (4.6)
H(jo)=|H(ja)lei*s (4.7)
0 =tg~'[H :(0)/H x(@)] (4.8}
then
)= Gl H(ja)|cosbs,;
#(jo) T (.03
0s=0c+0y
If this system =2xhibit igraw 1 tor (é0iw)i 1) for any phassz
orientation. then this system is stable (or unstable).
If there exists w=w, and ¥4(w.)=0,
) Oc(ae)= —Ou(ar) (4.10)
) and we hawve
[8e] =18(jw.)| =Ga(e) H o(w.)/(2L2n) (4.11)
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let

Le=Gu(e)H x(a.)/(204) (4.12)
based on general control theory. the stable amplitude width A'dB)

of the system POGO is

AldB) = 20l0g .o(| #(jwe)| )~ = ~20log {o(gc/gn)“ 201og 16(£n/8:)9 (L>0)

(4.13)
where {.. has the same meaning as before.
If the open-loop frequency is maximum at o=, and
|¢(iw)lnlt=:|¢(jwﬂ)l =l¢m|>l (4. 14)
"then w=w, and
. _ Gu(e)|H(jo,)| cosfs(w,) _ .
S (4.15)
and we have
O5(e,) = cos™'[2Lswa/[Grie) | H(jo, )1)] (4.16)
then the phase width is
0, =0u(a,)+0s(0,)
(4.17)

If system |¢.l<1 and |®,.| 1 at non-zero phase orientation, then
this is called the phase-corientation stable system and pure phase
shift Qould cause unstable POGO of the system.

So far. except for the assumpticn of single mecdular state and
single propellent, there is no other assumptions made for the POGO

stability analysis. From equations (4.12) and (4.13) we know that

1. the rocket body structure damping tratio & is small:
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the mass is somewhat large or w., is small:

. rocket body gain G.te) is high: and

n

oW

the real part H (wé) of feedback transfer function H(je) is

R

large.
All the factors mentioned above will decrease A(dB) and unstable
POGO of the system is even more easy to occur. This method and its
conclusions also apply to other stability analysis of similar fluid-
solid coupling systems.

From the results of the root of characteristic equation and the
above analysis, one can realize that the frequency for POGO to occur
is very similar to the modular state frequency of rock body
structure. In other words, if POGO should occur, the frequency
should be around the structure single-valence modular frequency. One
can also know that the feedback transfer function of POGO system has
its own characteristics: namely. before the measures were taken to
overcome the unstable pogo. the characteristic frequency H(jw) is

slow-changing with respect tc G(jw) and

|[H(jo) | = 1 H(jo) | = 1 H(jon)| % | 1{(jon)]

(4.18)
or Hp(o)=H (@)= H @) = [ (cn)
then we should obtain the following estimation equations
vg=Gu H " )
¢ (e)H x(@n)/(20 (4.19)
R(dB)=20log,i(Lw/E.) (4.20)

0, =0u(we) + cos~'[2Lua/(Gale) | F1(jwu)])] (4.21)
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Table “4.2: Assumed parameters for space vehicle"
(r) WESM O '
(/) 1) oo

: @ | |
ux, (ary nal| adr | AS | % | 0k | 8B | S.0. WK HoR
@ | HeBug A, lewt, | o0 |RetRe| Lorlelbombon | LOR WS RE

X
@
1 lho-s’/cm'[ho-sfcm} | cm em [eomfs [ko-s/cm® h.—c'/cmtl‘,-n cm? Igt, s La
& Lssd | tase | measc re2 |72 | emis | s | 1.0 lmu .0025 0.0I_
Q‘ X107 | X107 ! x100 | %107 | %107t ¢ |
. : i 1 ! :
_ (b)) R ®
H | 1
x 'Eﬁ*ﬂﬂiﬁ%€§.§ﬁ -3 %%Di‘zr"x.GSE it !ﬁbg&g’i& | !ﬂlgggﬂﬂ! ’VEEEEH!
&‘ « 3 ' @, Rft 1 Mo ho-s*/cm m+1 i ke em : Cp cmhy
. 0 | | wa 0 | e 9.522
w | m | wem | 13 ] ma “wa
* %0 [ o | s | 1 | .0 9.22
" * \ 126 8929 3.0 I s 174,79
® | 00 14 4.485 5.4 3.1 s49.58

key: 1 ~ fixed parameters
2 ~ system
3 ~ oxidizing agent
4 ~ density
5 -~ resistance of thrust chamber

- [F. 6~ cross sectional area of suction. 38T

3 - O Tl WO PP
PR b . = ETN
R 2 I ~ w - hd

7 ~ length of suction pipe

8 - speed of sound

9 - resistance

10 ~ inertia

11 - modular ratioc

12 - thrust chamber time-delay constant
13 - modular damping ratio

14 - (b) time dependent parameters

15 - system

16 - oxidizing agent

17 - percentage of time of flight

18 - modular frequency -
19 - macroscopic mass

20 - pump dynamic gain

21 - liquid height of liquid reservolr

22 - pump gas softness
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Table 4.3

related parameters and pressure retainer parameters

in table 4.2 for 95% time of flight

POGO stability equation and calculated resulte

estimation methed
single-transfer method
pressure-retainer free
pressure-retainer

note: Effect of tanii-bottom flow is

net included.
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where &(dB), 8, are the amplitude of the POGO system and the estimated

value of the phase-stability width. Following this method, the
varying scanning freduency o can be manually fixed at the single-
valence modular frequency . If this algorithm is followed. than
the amount of calcﬁlation is reduced and an overall estimation can
be accomplished.

Literatures {4) and (5] have studied the estimation method.

‘however. the error and direction of deviation were not given and

there these methods can not be used independently. in table 4.2, a
set of aircraft parameters were listed (see [5]) and table 4.3 is
thg,calculaiional fesulps (with and without pressure retainer) based
on parameters in‘tabie 4.2. In these calculations, single-transfer
and estimation methods were used. Figure 4.2 and 4.3 are the polar
coordinate (Nyquist), logérithm amplitude—phasé (Nichols). logarithm
amplitude. phase-frequency (Bede). and {.(f) and ¢, (f)-frequency
diagrams corresponding to the single—transfef method. From these
diagrams, the width of the system stability and the 2rror of single-
transfer and estimation methods can be deduced.

From these tables. figures. and calculation experience. it is
kﬁown that before meﬁsures were taken to overcome POGO of space
vehicles (such as installation of pressure retainer), estimation
method provides good accuracy (relative error smaller than 3dB).
however, after overcome measures are taken and estimation method is
used to select parameters, the error is large (a few tens of dB) and
the results tend to be not as reliable. Therefore. more accurate
methoas such as single-transfer or the methods explained in section

III should be used to check the results.
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Another preliminary estimaticn method for the analysis of FOGO
stability is to use the characteristic of open-laoop fraquency

d(iwr=G(iw)H(iw). When at zero phase orientation, if w-wC than

|H(jo) |2 11/G(jad)]
(4.22)

then the POGO system is not stable. If wo is in the vicinity of the
peak frequency w* of (H(jw)!:. stability of the system can be
determined from the closeness of w' and w,. Therefore. the first of
determining the stability of the system is to obtain the
characteristic frequency w" of H(jw). To make the problem simpler.
one can consider the five cross sections t-1-3-5-D of figure 4.1,
there are four transfer functions (from section II)

. (p,) (1+5Chz,, -2, cho, , i;;sﬂ’z-

—0,shd,,

H

Qo —=S5Cpy 1 chd,

. (4.23)

1, 0 ]( ch0, ,:.Z_"osﬁ.ql.‘f g P

X l .
=0.sh0,, P l
—Y.,l J ZI Chol o Q( }

based on the "open" (Pj=0, Q,#C) or "ciose" (P#0, Q

=01 at cross

1

sections t and D, one can obtain th

(]

loew—-frequency and high-
frequency resonance equation and focrmulae for various feedback
systems (mainly the pipeline and pump systems).
V. Analysis‘and Discussion ¢f Major Parameters

The analysis in this section is based on the related equacions
in section TV (see table 4.1).

1. outlet flow from the bottoem of the tank

3/
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Table 4.4
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m+1=1, ay=co, REMEH L., KEN D

~ component parameters
- main component of the system ,
- long suction pipe
- long suction pipe. pump
- long suction pape.
- long suction pipe.
pipe. pump
- boundary condition

- open-close

open-open
- open-close
~ open-open

- open-close

pressure retainer,

pressure retainer,

13 - open-opeu

14 - open-close

15 - open-close

16 - open-open

17 - close-close
pump

18 - open-close
short suction

19 - open-close

20 - open-open

21 - close-close

22 - pump

23 - softness
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25

34

35

T

36
37

Table 4.4 (key continued)

- resistance

- inertia

— short tube

- inertia

- pressure retainer

- goftness

- inertia

- long pipe

~ speed of sound

- See figure 4.1 and section II for related transfer
function. If suitable boundary cenditions are
plugged in. the following frequency equations can

be obtained.

gas bubble frequency

high frequency ~sanditicon

high freauency condition

~ reverse reschancs rreguancy

Long pipe inertiz 12 L; and length

[y
n
—




When calculate or test the modular states, the tank bottom is
either closed or the liquid is not flowing. When the flight POGO
analysis is carried out, the tank bottom is opened and the liquid is
flowing and, therefore, the contribution of the outlet flow from the
bottom of the tank to the macroscopic force should be considered.
This is reflected in the H5(S) and H3(S) in table 4.1. This factor
will contribute to the stability of the system and it is over-
conservative if this factor is not considered.

2. local pump longitudinal \ _.bration

The effect of local pump longitudinal vibraticn is reflected in
the contribution to the macroscopic force and is manifested in H5(3)
and Hq(S) terms. When the frequency of the local pump longitudinal
vibration Wp is close to or overlapping with the rocket body
structural modular state frequency wp, installation of pressure
retainer will not suppress POGO. As a result. it is very important
to clarify the parameters for local pump longitudinal vibration
before flight.

3. composite pre-ump pipeline resonance frequency w”

Experience showed that when the characteristic pre-pump
frequency w* is close to the rocket body structure modular frequency
Wn. unstable POGO of the system will occur. Hence. to separate w"
far from w, is one of the important criteria for the design of space
vehicles. [9] This can be made clear from the following analysis.

i. When the tank bottom cutlet flow and local pump longitudinal
vibration are not considered. we have

- _ _ Asd - SV
H(S)=H($)=[E(S) o ‘:}NS,A,I.SL,(S)\(S)/I)(S) -

Co
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thewmeaning of these symbols is explained in table 4.1 and figur=
4.1 (same for the tfollowing equaticnei.

| ii. When there is only ons pipeline section and pressure
retainer prior to the pump. the D(S) in the above equation takes the

form of D(iw) and

i0)=2Z.(jo)| —Fe/(2) 4 N R
D(jo) Z'(]m)[tg(:ra)/(Zw.)) Lat(Co +Co s 1+jC.R@ --C,,Im')]

+ji(m+1)lo

{5.3.2)

where Cy is the composite softness of the gas bubbles in the liguid
within the pipeline.

iii. When the inertia <f the ptessure retainer and resistance

4]

are not considered. we have

. N_2 70/(2w,)  _ @] e
D("")_Z'(’”)[Fg—(;bmb’ﬁ' m::l-i-](n-! Do ,
' (5.2.3).

where osze,/(2l,)and is the first valence frequency of the open-close
pipeline., and @=[0(C.+C,+C/)I " ie the gas bubble freguency.

iv. Let

Flo)= rw/(20,) ")

‘8(“0/(20-3—)— oK (5.3.4)

if w=w". then F(w')=0 and is called the composite rescnance
frequency of the pipeline. When D(jw": is a minimum. H(jw*) is a
maximum and {,(w") is also a maximum. Therefore. when w*=wp,
unstable POGO ¢f the system would occur very easily. However, it is
not true that POGO should always <ccur because there are other
parameters which also contrel the mechanism (see belew).

4. Overlapping of w'=w,




PN

From above, when 1) the tank bottom outlet flow is not
considered. 2) local longitudinal pump vibration occurs. 3) no
pressure retainer., and 4) only one section of eguivalent pipeline

exists prior to the pump, we can have

¥ - ~_ {e)NS,4s¢ R'r hl‘é 1@Wa _{_1.5_05__
L =Gu(e)H w(@a)/) 20,7 =57 990t s ) +z.¢,sir’f(r.m.)][5’ 5 5

From the above equation, one can learn that even if w'=w,. £4.<f is
possible under certain conditions and pogo will not cccur. Among
these conditions. the gain of the engine Eg is an important
parameter. The significance of eqg. (5.4.1) is that the effect of
related parameters: modular states. or structural gains on the
system stability can be determined.

5. parameters and location of pressure retainer

So far there are three methods to select the parameters for
pressure retainer

i. reverse recsonance frequency méthod. namely, wa=w*=wn:

ii. POGO stability dependability method: and

iii. compromised methed. which suppresses the unstakle POGO of
the system and at the same time keep the typical freguency of
pressure retainer line to different from the fixed frequency w'#wn.

From table 4.4, the effect of the parameters and location of
pressure retainer on the w* can be observed. If the pressure
retainer is placed near the pump inlet, the efficiency of changing
w' is enhanced and the adjustment of pressure retainer parameters is
made easier. while on the other hand. the water impact pressure is
reduced and the pressure-reduction due to pre-pump high pulse

pressure.

3¢




Ji}édded. when the pre-pump pipeline is under the condition of open-

From table 4.4, it is known that after the pregsure retainer iz

A &

and w are

close. the first and second valence frequencies w 3 ’

wt=1/ vI(C,+C,) (5.5.1)
ot=vC,+C,/vVU. 1)C.Cy

(5.5.2)
7Attention should be paid to the range of applicability of above
eduations. Generally, w"j can be reduced by increasing C5. however.
w5 can not be increased infinitely by reducing (lg+lz) and the w*p
Qill be lower than the original second valence frequency (without
addition of pressure retainer).

6. equivalent speed-of-scund of pipeline liquid

From (5.3.3), it can be learned that ag first affect w, then
: ﬁ*, and finally the POGO stabilitv.

Not only is ap related with the preperty of the liquid. it is
also related with the gas content Vg generated during the flow
process, pipeline material. and boundary supporting conditions. When
the volume of liquid in the pipeline is V). the total velume is

M=V1Vg and the composite density p is

p=p[V'/V+ng’/V

(5.6.1)
and the composite elastic modulus K and a, are
K=K+ V) Ki/Ky—1)] (5.6.2)
8,=VK/je IVi+(KIEXD/$)C
(5.6.3)

where D, 4, Ef p are the inner diameter., thickness. elastic

(o}

modulus. and Poisson's ratio ¢of the pipeline material. Note that
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is related with the boundary supporting condition. When the upstream
end of the pipeline is fixed and the downstream end is free. C=1-
B/2; when there is no axial strain of the entire pipeline, C=1-u%
when there is not axial stress, C=l.

The gas content in the pipeline liquid vg/v and the theoretical
and experimentally obtained a. curves are skown in figure 5.1. [10]

7. pre—-pump liquid gas content softness C| and pump gas
softness Cp

From (5.3.3), the major factors influencing wp is C; and Cp.
Theoretical determination of these quantities is difficult and only
experimental metho& can be applied. Based on the experimentally
determined w* and w] and through equation (5.3.4) (F(w")=0). wp can
be obtained and C;+Cp can be calculated.

8. boundary condition of pre~-pump pipeline

Generally, when the characteristic frequency of the pre—pump
pireline is calculated or experimentally determined, the effect of
the boundary supporting conditions (both ends) is significant.
However, in POGO calculation, the boundary condition of the
connection between pipelines is not clearly defined. This is because
the boundary condition should be determined by ths continuous
condition of the system loop. For example, when CatCpt+C1=0, from eq.
(5.3.4) F(w")=0 |

o*=ga,(2n—-1)/(2l,), n=1, 2 (5.8.1)

and this corresponds to the open-close boundary condition.

Similarly, when Ca+Cp+Cy=o>. then
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a)*=mra./l., "=1, 2, e

~ e S

and this corresponds to the open-open boundary condition. In
reality.
0<Ce+Cp+Ci<co
(5.8.3)

and if F(w")=0 is used toc calculate composite resonance frequency of
the pipeline, then we should come up with the boundary condition for
either open-open nor open—-close.

9. dynamic gain (m+l1l) of the pump

Dynamic gain of the pump is one of the quantities that is
somewhat difficult to determine. It affects the gain of the engine
Eg and other quantities (see eqg. 5.4.1) and furthermore. the system
stability. One of the key parameters in POGO calculation is m+l.
From the relationship of the variables in section II. we have

='. ] D P. Zc ] ZD ]
(m+1)=2,(jo)Po/lPZ(jo)+Zo(jw)] (5.9.1)

where Z.. Zp. Zg (see table 4.1) can be obtained from calculation.
Py, and Pp are the pressure pulse before and after the pump. which
can be obtained from experiment.

10. gain of the engine Eg

From eq. (5.4.1). when Eg<A50p/(Se0e). We have £ <0 and the
design of the engine is adequate. No POGO will occur even if the
resonance frequency w* of the pre-pump pipeline is overlapped with
Wn. This is also one of the most important design criteria for the
un’

engine of space vehicles.

11. gain of rocket body structure én(e)

Y0




The structure gain Gp(e) can be defined based on eg. (2.1.3)
and from eq.s (4.12) and (5.4.1), it can be seen that ¢, or its
estimated value 5; are proportional to Gn(e). Since Gn(e) can be
expressed in terms of the time-of-flight as Gp(e,t), therefore. the
trend of {a(t) and & (t) is similar to that of Gple.t) and the
accuracy of the result can be determined. Gain of rocket body
structure is also one of the key parameters in POGO design.
Sometimes even slight change in the structure modular frequency will
result in significant change in structure gain.

12, structure modular damping ratic {»

s consists 6f three parts: fluid damping. material damping.
and structure damping. It can be learned from eq.s (3.1.4), (4.13)
and (4.20) that the magnitude of ¢, has a direct effect on the
accuracy of POGO stability analysis. Hence. this parameter is an
important parameter and is generally provided by test or experience.
The test result, even if identical method were used. will show
discrepancy. The discrepancy of the ¢, of same order based on
various methods will be even greater. In reference [12], & was
obtained based on various test and processing technigues and the
discrepancy is very significant. From a broader prospective,
decreases with modular frequency as shown in figure 5.2. {12] If
high vacuum, low gravity, and other conditions that can not easily
simulated on earth is considered, it is even more obvious that
dependability analysis of {» should be carried out. Because of the
difference in test methods, boundary supporting conditions. payload
conditions, and the non-linear effects. the ¢, obtained from the

full scale test will show large discrepancy and is not dependable.

e/
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" Even though in the stability calculation. the valus iz taken
to be 0.01 and 0.007 by groups in USA and France. respectively. it
is generaliy believed that it is not over-conservative even 1if a
lower value of (. is used. If the suppression of POGQO is difficult
using other methods. the increase in damping ratio of the key parts
of ihe rocket structure, the modular damping ¢ of the overall
rocket structure will be increased and POGO can be suppr=ssed. [13)
13. comparison of the importance of wvaricugs structural modular
parameters of different orders

The importance of the structural modular parameters of certain
order is evidently determined by the actual problems sncountesred.

For example. if the structural response t¢ the acute bottom geat

vibration (for aircraft or satellites! is considered. the modular-~

state related parameters such as "effective mass" is an impertant
basis for the determinaticn <of the importance of certain meodular
states.,

For the POGO problem. the modular states which cause POCO

are obviously the important states. They are:
i. large mass. low frequency wg:
ii,

{e):

higher structural gain G,

iii. small modular damping ratic {,: and

iv. modular states which make w* close to Wp.

VI. Dependability of POGO Stability Calculation

The design of space vehicles is based on the nominal values of
various parameters. In reality. all the parameters will deviate from
the nominal value. The test value of a certain parameter will also

installation method,

¥3

depend on the location. taime. temperature.




humidity. and status of the instrument. Furthermore, the result will
be different if test methods is different.

Since the development cost of space wvehicle is huge. to
gua;antee flawless design. the dependability calculation and
analysis is important. If a new product is invelved. the test data
may be scarce. the correct data may be difficult to obtain from
theoretical calculation or from a single test. Often it would
require a lot of man-power, a long preparation periced. and a
tremendous budget for a particular test which may be extremely
contaminating to the environment. For the systems which include
parameters of this kind. it is better to use the computer to carry
out a Monte Carlo system dependability analysis.

From sections II and III. it ig clear that there are many
primitive parameters involved in the dependability analysis and =ach
parameter has its own probabiiity distribution. The c¢ombination of
all the parameters represents a sinulated flight and the
dependability analysis for thig particular flight can be carried
out. Hence, the combination <f random sampling of all the paramsters
(based on ites probability distribution) and the estimaticon craitericon
for unstable POGQO will generate n sets of parameters which represent
n timee of simulated flight. The POGO stability analysis for these n
flights can be proceeded and than the preobability of unstable POGO
can be calculated based on s~me credibility criﬁerion.

There are constants. time-dependent constants. random constants
of varicus probability distributi<n. and time-dependent randcm
constants in a POGO system. For example. modular state damping ratico

{» evhibits the minimum-value Adistribution. pump dynamic gain (mtl)

9




exhibits the maximum-value digtribution. pump gas scoftness Cp and
pipeline equivalent speed-of-sound a, exhibit normal distribution.

The sampling method for these parameters are:

C-I=U.+B.lnln[1/(1_R-I)], i=1, 2, --n

(6.1
(m;i+1)=Us~ByInnl1/Ru], j=1, 2, n (5.2)
aol=l‘a+a¢S¢I j=1’ 29 ‘e n (6.3)

where Up. Ux. Bp. By can be determined by the estimated wvalues of
related overall parameter and Rp,; and Ry ; are the number of uniform-
divisions. pe and o, are the averages of related overall parameters
and estimated value of standard deviation. Scj is the normal state
random number and i is the designation of the random state.

From section V. one learng that some of the parameters are
important but difficult to.determine. If sampling 1s carried out fer
all the parameters. and then POGO stability analysis cconducted for
all the combinations (while the flight condition 1s changed in unit
of second). the amcunt <f calculation will be significant. From
evperience. some of the undstermined parametsrs can be manually
reduced or combined to reduce the amcunt of calculatieon. Likewise,
the number of combinations can be reduced or the flight simulation

can be carried out based on a longer time unit.

VII. Criteria for POGO Stability and Dependability
It can be seen from sections III and IV that POGO stability is
determined by the amplitude width A(d4dB) and phase width @, (degree!.
The critericn for POGO stability is similar tc the contirol

system: namely, amplitude width A36dB and phase width ! 6 ,! > 30°.
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This corresponds to the structural safety consideratiocn of design
safety coefficient of 2. However. this stability width can not ke

extended to uncertain parameters such as iy’ Cp. or (m+x) and

dependability statics should be employed. Unde; these circumstances.
the criterion for POGO stability is 30: namely. the probability of
unstable POGO as a result of the random combination of all the
parameters is less than 0.00135.

From abcve. it can be concluded that a better dependability
criterion of POGO stability is for the nominal widths to be A.-64B
and ! 8,! > 30° in addition to the acceptable probability of

unstable POGO of P<0.00135.

VIII. Conclusions

1. When the space vehicle engine pulse thrust frequency and the
rocket body structural frequency (w" and Wp of Wh! are near or
overlapped and the structural gain is sufficient. then the pulse

motion of the liquid in the fuel tank 1s equivalent tc the pulcse

[ 1)

excitor and it becomes as a source of excitation for the thrust
system behind the tank bottom. This constitutes a positive feedback
sysgem. The simplest model for th:s system is the free-free double
mass—-spring—damper system. This mcdel connects the POGO stability
damper analysis principles based on various methods.

2. After the dynamic equations of POGO system are introduced,
the POGO matrix analytical method. computer calculation of open-loop
transfer function, POGO single-transfer method and estimation method

are explained. These methods can be used in various design stages

and can be complementary to one another. Through the use of
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examples, accuracy of the estimation method is evaluated hefore
suppressing measures were taken. However. after suppression measure
parameters are selected (or during selecticn). the application of
estimation method should be cauticned and calibraticon with more

accurate methods should be performed.

in
[N
(]

3. Analysis and discussion of some impcortant parameters

given in section V. This section also points out some of th

1d

important parameters in the design of space vehicles. engins system,
or the suppression measures of unstable POGO. Furthermore., the
various measures for suppressing POGO is discussed.

4. Dependability analysis should be carried out for POGO

(9

stability analysis. Based on the test data and test experiencs. th
computer simulation (such as Monte Carlo method) can be used for the
dependability analysis. Tae critericon for the POGO stability/
dependability is such that the nominal width A>»6dB and ! 0r1>30°

plus the probebkility of unstable POGO P<0.00135.
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