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POGO STABILITY. RELIABILITY AND PARAMETERS ANALYSIS

Wang, Qizheng: Gau. Wanyong: Gu. Yongchun; Zhana. Jitony;

and Li. Xianshan

Abstract POGO instability is one of the most important dynamical

problems of space vehicles. The mechanism of the POGO instability is

briefly clarified by a simple free-free system which consists of two

masses, a spring, and a damper. followed by POGO stability matrix

algorithm, POGO stability single-transfer method, and POGO stability

estimation methoc. The adaptability of these POGO stability analysis

is illustrated through an example. After important parameters

related to POGO instability are discussed, the reliability analysis

of POGO stability and its criteria are also introduced.

(This paper was received on September 6. 1984.)

I. Mechanism of POGO Instabili-t',

The phenomenon of POGO not oniv has adverse effect on the

passenger-carrying space vehicles, it is also an important element

in structural design. The high pressure vibration in the propellent

line caused by POGO can result in the degradation of the performance

of the propulsion system. and sometimes even pre-mature engine shut-

down (1.21.

In the 70's. the suppression of POGO instability was viewed as

one of the most important criteria in the design of gas-liquid

structural system and manned space vehicle. In the 80's. it was
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still a part of the research of space-traveling related structural

dynamics [3].

Similar to flutter and galloping in the gas elasticity, POGO is

an important problem in the fluid-solid coupled dynamics. Flutter

anu galloping are the dynamic problems caused by the flowing of

fluid exterior of a solid, while POGO is the dynamic problem Vidbed

by the flowing of fluid interior of a solid. Since the structural

vibration is a three-dimensional problem, and the pipeline system in

real space consists of pipelines in all three dimensions which is

further controlled by the propulsion of the engine and other

controlling forces. POGO is the dynamic problem of a large-loop

coupling system.

POGO is the study of structural instability of the rocket body

structural system and the longitudinal coupling of the propulsion

system. Under the condition of POGO, longitudinal self-stimulating

non-convergent vibration of the space vehicle is caused which is

similar to the ever-jumping "pogo stick" and hence was given the

name.

The stability of POGO was already dz3cussed in literatures (41

to [7]. In the past, the mechanism of POGO was mostly discussed in

words or through complicated calculation. Similar to the mechanism

of flutter [81, POGO can be explained by the system of two free-free

masses(Ml. M2) - damper(C2 ) - spring(K2 ). From figure 1.1b, we have

M.1 + C,(1, -t,)+ K,(X,- X,)= (1.1)
M,,+ C,(,-C,)+ K,(X, - X.)=0 (1.2)

let 5=X,-X,, 0- K,(M,+M,)/(M,M,)
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2C4.CM A1:)(M.1M1) (1 .3)

tz ~Assuming that the pulse thrust Flt) is proportional to the relative

deformation velocity I. then

where Cc is related to many factors of the propulsion system. Using

the above equation. we have

6 + co.C. C,) + ot.6 0(1.5)

I -the initial perturbation is 6,, then the solution can be =3c,

and we have

S'+ 2co(Ce. -)S + 0~ t1.6

the roots are

and the solution is therefcore.

a5= (.EXP -(. -. )~t]CO(W 4 + 0.)1.8

where COd=CO V'l( 1~

e.is a constant.

If equation (1.8) is pluacred into equations (1.1) t,:, (1.3).

then the reverse motion oil X, and X-) can be realized. It the actual

strictural modular damping l-t* ~sa positive damping. then when



C-C,-<O then the unstable divergent vibration due to the negative

-damping of the system will occur. In this case. the system will

absorb energy and the source of energy is the work of pump and

engine. This is similar to the flutter of wings of aircraft, even

though the engine provide the flight speed to the aircraft, not all

the flight speed will cause unstable flutter of the wings. For POGO

systems. only under certain coupling conditions which render large C,.

can unstable pogo occur and the extent of instability if determined

by the magnitude of C. The magnitude of C, is further determined by

structure, pump, and the closeness )f the gain of the engine and the

characteristic frequency of the propellant line. The latter is an

important design criterion of POGO (see section V.3). If coupling is

removed by some measures. C.can be reduced and system POGO can be

avoided.

As mentioned above. POGO of space vehicles is a problem of the

large-loop ccupling dynamics. Since the structure of space vehicles

consisted of many modules. many propellants. many pipelines, and the

simultaneous working of pump and engine, some local vibration cat

also couse POGO. theref re. the dynamic equations for many parts can

be generated (see sectio. El). Then the dynamic polynomials of the

entire POGO system can be tabulated and then the calculation of the

POGO stability of the entire system can be carrie d out (see section

III). However. since the physical Fignificance is hard to detect in

the initial stage of calculation, the POGO single-transfer and

estimation methods should be used (see section IV) to estimate the

POGO stability of the vehicle in a more efficient way. Nevertheless.

the relative error should be noted in the estimation procedure.
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There are many factors affecting POGO.. If the major factors are

identified. the requirements for the system design. test. planning.

and quality control can be outlined (see section V). Furthermore.

there are some uncertain parameterF in the POGO stability analysis

and the reliability analysis (section VI) and the POGO reliability

requirement which suppresses P(X;O (section VII) should be carried

out.

II. The Related Dynamic Equations of a POGO System

The typical block diagram of the simplified coupling of

propulsion-structure system is shown in figure 4.1. Four major sub-

systems are shown: structural system of the vehacle. propellant

pipeline system. pump system, and the thrust c.a-mber system. The

description of these syctems is foilowed.

I) Dynamic equations of the vehicle structural system

The dynamic eauations fo.n tne ith degree modular state are

--. S ,( )/G.( ±2)"I, -~ ( 2 . I .

(2.1.3)

7'i:-4(e) E ].(J) i(J)

where ,, ci, 0,j). oi(e). and G@(c) are the modular damping ratio.

macroscopic mass. circular frequency of the ith moduiar state. the

modular displacement of the 5th point, general modular displacement

of the engine, and structural 'rain. F. jl is the external force

applied on point i ,f the rocket J:-.dy. The physical displacement of

the ith point ,:n the structure iF.
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where qi is the macroscopic co,-dinat.e: The fcfi: o-f r. tyh,'_;Cri

external force F(j) is explained below.

1. The pulse thrust F(1) created by the pulse pressure Pc of

the combustion chamber on the engine is

F( I ):A,,CIP. S.I'C (2.1.6 .

where Se=AthCf. and Ath and Cf are the cross section of the neck of

the combustion chamber and thrust coefficient.

2. The forces F(2) and F(3) applied on the structure as a

result of the pulse pressure due to elbow or pipelines before/after

a pump and momentum change are (see figure 2.3)

F()= -AuPu -pOu(2Qu/Au X) 2. 1.7

F( 3 )= -AP-- pQ.(2QDIAD -
~(2.!1.8i

where AU , PU, Qu,. QU are the inlet cross section. pulse pressure.

steady state and pulsed volume flow of the upstream flow: and AD.

PD IQ,, QD are the corresponding quantities of the downstream flow.

X4 and ?b are the transverse and longitudinal velocity at the elbow

or pump.

3. Due to change in cross sectional area, the change in

pressure and momentum result in an applied force on the structure

F(4) (see figure 2.4) is

F(4)- -AuPu AnPo-2pQ( U QD.) (2.1.9)
A7



4. The applied force F(5) as a result of the viscosity of the

fluid in a straight line (see figure ',.I) is

F(S)=- -(Pu P,+SLAAj)

Z (2.1.. 10)

where A. R. Z. L. are the c,:resp,-nding cross sectional area.

resistance. impedance. inertia, and velocity.

5. The applied force created j.y the pulsed flow QR of the

propellent on the bottom of the fuel tank on the center-of-mass of

the fuel tank with respect to the structure is

F(6)=phi 0. (- i

where h,: is the height of the liquid in the fuel tank.

6. The applied force F(7 :'reated by the pulsed pressure Pt at

the opening (tb) at the bottom of the fuel tank on the bottom

structure is (61

F(7)=A,P,
(2. L. !2)

where

P, = Zph,0 (W4K-L ,Q A2. 1
(21.13)

Q.Q, r AI(b) Q, +-A,. xCtb)#A. (2.1.14)

where O(f), K(b), and Lt are the m,:.dular displacement of the center-

of-mass of the liquid reservoir. the modular displacement of the

bottom of the tank, and inertia -:f the liquid in the tank. A, is the

area of the opening. and QR and ', are the relative and true flow

rate.



7. The force F(8) acting on the structure of the rocket body as

a result of the local. longitudinal motion of the pump is

F(8)=M,[X(tp)-1,] (2.1.15)

where X(tp) is the acceleration of the pump component of the rocket

structure. l, is the acceleration due to local longitudinal motion

of the pump. and M is the mass of the pump component.

(II) Dynamic equations of the pipeline sections

1. straight pipeline sections (see figure 2.1)

Assuming that the steady state velocity in the pipeline is much

less than the speed-of-sound. then the effect of Mach number can be

ignored and the following relationship holds

r cho - 1 -ZshO -,Rh
{p D .0 o 1 _ 1 

1 A R h
Q: ( AR 2.2.i 

where 0'=S'r'Z/(SL), r=/a. I is the length of the pipeline.

L=pl/A, Z=R+SL a, s the equivalent speed-.f-eound !see

discussions in section V!A6H.

If the effect of viscosity can be ignored than R is

approximately zero and the above equation has the following form

ch _s) Lsh(r )'

~ ~:}=K~~~ ch(r.Q S(.22

If the etfect of compressibility can be ignored. then a.

approaches infinity and the above equation is further simplified as



P. Q.
PuQ.

A ~*4t~uI@P. Q.

a, XbLI1EE Ali)

Yb T D
PD QD PD QD

v - V.~ e"tine r

F icr 2. 1 F ia. Fia. 2 .3



S P} (2.2.3)

2. If the pipeline system is complicated and the gas content of

the liquid and the gas bubble generated during flow of the liquid

can not be estimated easily. then the calculation of equivalent

speed-of-sound is made very difficult and the modular parameters of

the pipeline system can be estimated by the trial method. For

example. when the two ends of the pipeline connecting the bottom of

the liquid reservoir and the pump is closed/opened, then we have

(S' + 2Ct, ,S+m')q, =APU/M,
(2.2.4)

When the two ends are closed/closed, then

(S'+2Cjo,S+$)q, = -A.(Pu+P)/MI (2.2.5)

where C1 .j, Mj, q,, . are the modular damping ratio, circular

frequency. macroscopic mass. and macroscopic coordinate of the

pipeline.

3. The equation for the pressure retainer (or connecting

between branches) is (see figure 2.2)

Q1[U J u-(2.2.6)

where

Ya = S"C./(LaCaS' + R.C.S + ); (2.2.7)

L,=pltl,.; 1,=1.+8r./(3x); A4.=jrn.r!. (2.2.8)

=V/(I)=f V.P(vp') (isothermal process)

c'I



(2.2.9)

1'.vt./P//(VP) (adiabatic process)

R.=VP/K, K=2pg:(CA4.)' (2.2.10)

where la and ra are the length and radius of the manifold of the

pressure retainer. na is the number of holes. v is the ratio of the

specific heat of the gases in the pressure retainer. p is the mass

density of the liquid. Cd-0 .8 is the outlet coefficient of the short

tube. P0 and V0 are the initial pressure and volume of the pressure

retainer. P is the meta-stable inlet pressure of the pressure

retainer during the flight. AP is the pulse pressure difference of

the ends of a short tube when resistance Ra is measured. and g is

the gravitational acceleration.

(III) Dynamic equations of a pump system (see figure 2.3)

(PD =[Ftf+l+SCpZp __zfljj~ei _4+[jtzP -SLP.*l- 1X
1Q0 VL -sc 1 ' " -, -,[ (2.3.1)

where (re+l). C,. Lp. R-. Zp=Rp+SLp are the dynamic crain -.f the pump.

softness of the gas clock, inertia, resistance and impedance. When

(m+l)=1 and X6b=Y=O the above equation has the following fc_,rm

PD }+SCjZp PU} (2.3.2)

when Zp-0 (only for the composite parameter Cp), the above equation

is transformed to

{P K_[, 0]{Pu (2.3.3)

Q S I QU
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(IV) Related equations for the engine (see figure 2.5)

1. equation for the after-pump pipeline sections (not

considering the compressibility of the liquid)

~PD}[ -Z, 1 PU}ADDD(.4iQU 0 (QUII D'Y

where ZD-RD+SLD. and RD. LD are the resistance and inertia of the

after pump pipeline section. and f'D is the pipe wall velocity.

2. equation for the nozzle

When the compressibility of the liquid in the nozzle section is

not considered (similar the treatment above), we have

P-Pc +Z Qj -Aj Rj (2.4.2)

where Zj-Rj+SLj and Aj. Rj. Lj. and kj are the cross sectional area.

resistance, inertia, and velocity of the nozzle section.

3. combustion chamber

From the combustion thermodynamics, the relation between

combustion chamber pulse pressure P, and two pulse pl'opellant flow,

rates Qj and Qk is

P= Z(Qi+ Q) (2.4.3)

where Zc-He/(l+ S), He-C*/(Athg), and Ath. C . r, and Zc are the

neck cross sectional area. characteristic velocity, time delay, and

impedance.

III. POGO Stability Matrix Alaorithm



There are several methods which consider the stability of the

system. Most of these methods require the solution of the close-

loop/open-loop transfer coefficients and the zeros, polar points and

the numbers. and then the stability of the entire close-loop can be

analyzed.

The transfer coefficient for s o:me systems can be deduced from

the trial method. However. it is very difficult to measure the

transfer coefficient of a clc'se-l,:.:, system from an unstable c 1 se-

loop test. Similarly, there are stable and unstable open-loop

systems and the determination off their transfer coefficients is

equally difficult. Therefore. it is very important to evaluate the

system characteristics (close ..r open loop) based on the composite

calculation of the refined model of many sub-systems.

If a pseudo element or Dse.udo block is introduced into the

series of ecuations of a ci,-se-,:.co system or its block diactram. the

characteristic equation of . ,:,c'-l',, or the transfer coefficient

and the =ero polar point of .tn t-?n-loor system can be determined in

a unified and convenient way. O;<'.u-e the location of the oening is

not unique, the introduction _,f 5, oseudo block is not unique either.

The selection of the location for opening or testing, therefore.

should be based on experience. 'bf course, it is best if the pseudo

block can be placed on the main ioop of a close-loop system.

Assuming that there is no exterior disturbance, we can obtain a

series of equations for the n var'iables of the n equations of the

POGC system as explained in se,'ta.r, II. To illustrate this point.

assume (or deduce from siolificati,:,ni that n=3. the following



-series of equations (in matrix form) correspondlng to block dia'fratm

3-.1 is F0 D0cS) -MG(S) 1
lD,(S) -MH(S) 0 =[0(S) {X} 10
-Ka 0 1 J 0

where

[A(S)M= D.(S) -M.(S) 0 .. 0.2
-K, 0 I T"

S is the LaPlace variable. M(S) and D(S) are the corresponding

polynomials of the numerator and denominator.

Even though there are many analytical methods for the stability

&nalvsis. the basic nature of these methods is similar: namely, the

sys-tem is stable if the real part of the root of the close-loop

characteristic equation if negative. otherwise the system is

unstable. Two analvtical methods emanate from this point: the close-

loop and open-loop analytical method.

1. Direct root-findina from the characteristic equati-n ,,f the

close-loop system

From the real and imaginary parts of the root of the

characteristic equation :A(S):-O. one can determine the stability of

a POGO system in any frequency range. Under the perturbation-free

condition, the determinant of the variables of the nth order

polynomial is zero which is the characteristic system equation. If

there is a pseudo block, let KD=i and one would have

1JA(S) I =DG(S)D,,(S) - .(.S)A,,(S) =o ( 3. !. 1
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The form of root of the characteristic equation is

sl-= Sj
(3.1.2)

* where

(3.1.3)

where Skr and Ski are the real and imaginary parts of the

characteris tic root: wj, and . are the typical frequency and damping

ratio of the POGO system in question.

If the damping ratio of the nth modular state of the original

real structure is ., and if the damping ratio of certain modular

state is changed from . to (while other damping ratios are

either kept constant or changed with the same ratio), then we should

have at least one neutral stable root (if Skr=O) and the width A

(dB) of the stable gain of the system is

A(dB)=2OLog,,(./C,). ( >O) (3.j.4)

If Ce<O. this would indicate that the system is already a stable

device. The system is stable if A ,0. whereas the system is unitable

if A<-0.

2. Open-loop analytical method

Taking advantage of the pseudo block method and let KD0-. one

can obtain the characteristic equation-polar point equation of the

open-loop system

AD(S)= A(S,K,=o)I -- D(S)D,(S)=O (3.2.1)



The magnitude and number of the r:s of the opeli-lootP

characteristic equation can be obtained accordingly. Using the

pseudo block but delete the row and column where KD sltuated fr"om
D

A(S), then the determinant of one less order can be obtained

AM(S)=:A(S, delete the row and colume where KD situated:

-MG S )MH(S)=O  (3.2.2)

and the number of the zero Doints and their quantity of the open-

loop can be obtained. From AD(S) and AM(S). the transfer function

- 1*S) of the open-loop can be obtained

(S, A(S) M6(S)MH(S) -CSH(S)-oCSS

-AD(S) DG(S)DH(ST IIS)323

based on open-loop frequency 0(11w? and stability analysis. the polar

coordinate (Nyquist) diagram. logarithm amplitude diagram. phase-

frequency (Bode) diagram. logarithm amplitude-phase (Nichols

diagram can be generated and the -:i-ability and width of the POGO

system can be determined. (See f--.e,-es 4.2. 4.3.)

IV. Single-Transfer and Estimation Method of POGO Stability Analysis

POGO has its own special features. In fluid-solid coupled

dynamic analysis. some systems require at least two modular

vibrational states to cause the unstable vibration of the entire

system. For example. the gas dynamic vibration of aircraft wings

require. bending and twisting vibrational modes. Compared with the

inertia and weight of the cross section of the structure, if the gas

dynamic force is large enough. then a larger deviation of the

jq
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characteristic frequency of the system can be caused. However, for

some other systems suc'h as galloping or pogo. the fluid or pulse

dynamic force is relatively small compared with those of larger and

heavier structures and only small deviation of the system

characteristic frequency can be caused. The stability analysis of

these systems can be carried out with single-valence modular state

parameter method. In this section. we consider only the single-

valence modular state of the rocket sti'ucture and the propellent

system and use them in the POGO stability analysis. The number of

equations involved in greatly reduced in this way. Based on the

general feature of the structure of pressure retainer (see figure

4.1), 19 equations for the 19 parameters can be obtained from the

discussion in section II. The stability analysis can be carried out

using the method discussed in section III; using either the

characteristic root of the clc-se-loop equation or the transfer

function based on pseudo block principle. One can also carry out

parameter elimination from the 19 equations and the transfer

equation of the loop in questi.n .see table 4.1) is

X =G(S)T
(4.1)

whereas the transfer equation of the feedback loop is

T= II(S)X (4.2)

Then the transfer function of the close-loop with output and

feedback is

F(S) =G(S)lI -G(S).t(S)) (4.3)



Table 4.1: Transfer function corresponding to figure 4.lb

key: 1. tank bottom total outlet cross sectional area /N

T, mch(sri)ch(sr,)+[rs L ash(sr)sh(srs)J/(r,, LIN#)
T, um[rch(sr 1)sh(sr,)]I L,+Er,sh (sr,)ch(sr1 )J/( L ,fhJ)

T, -ch(sr,)4-(r,L,ch(sr)sh(sr,)J/(r3 L,PJ'sh(sr,)I

T. -(rsh(sr,)J L1 +(ric h(srs)J/( L 1N' .- (sr,)J

Tpo.{ch(sr)+(Y. Lsh(srO)/Ir1 ,+[T 4 L~sh(sr5 )]/r,

r op .((rs(sr,))I Ls+y.c h(sr)]T5 + Tich(srs)
Teo-((rsah(sr,)) L ,+y.ch(sr5 )JT1 + T~ch(sr,)
Tp'Q-( TPQ L~sh(svjr,)r1  roo=( ?QQ L 1sh(sr 1J/t
N,(s)-csPa(Tpr o@p-r 0 T, rp)J]1#.(e)

DIU)- T ,o(scp+(m+i)/z.) + To'*

*H,(s)u.-sNP.'K1 (s)/D,(s)

KI H [ls s,,(s) r p Pa6(I/~a().(e r .Z.4Z+Z

*H.Cs)--NAAC,(s)./D1 (s), E(s)-Z,(vi+1)/Z,

(Pp -Mpclp,/Ip

F p(s) -SI +2Cpc pS+G) pl

H(s) =H(s)+H(s)+H,(s)+H,s)+H(s)=Ha(s) + jHdx.,)

G(s) -G.(e)s/(s'+2.co.s+.9



and the open-loop transfer function is

4(S)=G(S)H{S)=T ItT- nI2 )
't n ),It in (4.4)

where X. ' are the velocity and equivalent thrust of the engine at

its normal state. The expressions f,-or G(S) and H(S) are shown in

table 4.1.

Based on Norquist stability criteria, the system stability can

be determined through the calculation of the characteristic

frequency 4(jw) of the open-l.p. From table 4.1 cne has

G(j ){[G.(e)cosOGc/2C.a}))eic ( .5)

90=tg-'[( :- 0)I(2C.a.)] 46
('4.6)

H(jc,)= I H(jo,)jei*
(4.8)e,, =tg-'EH,(0)/H(o,)] (4. 8

then

=Ge)I H(j,)I I Gcei,#

If this system eXhibit :t y.- 1 t or :4(jw :.11 for any phase

orientation, then this system is stable (or unstable).

If there exists w-w C and 10#(w,)=O,

o(0.)= -9.(w.) (4.10)

and we have

1 I. I 1 j.) I =G.(,) H,(n)/(2C .) .



let

C.= { =G, e)HJi,o)/( 20.) ( 2
(4.12)

based on general control theory, the stable amplitude width AdB)

of the system POGO is

A~d?) 20 lOog ,.( 14(ic.) I )' oo o(d;)=ztg,(;/.,(;>o

where C.. has the same meanina as before.

If the open-loop frequency is maximum at o=o, and

. I 0(iO) I. I 0(iO.) I 10 1 ,.> ( .4
(4.14)

'then co=o, and

I 4,/a , I = j-"(e)IH.(iwJ)I cos Oa(c,),)=
M m~. ( 4.15)"

and we have

: 0 ,) cos'[2. ,/G,',~l ~ jo))l ) .(4.16 )

then the phase width is

(4.17)

If system 1I,1i and !$,I." at non-zero phase orientation, then

this is called the phase-orientation stable system and pure phase

shift would cause unstable POGO of the system.

So far. except for the assumption of single modular state and

single propellent, there is no other assumptions made for the POGO

stability analysis. From equations (4.12) and (4.13) we know that

1. the rocket body structure damping ratio 4. is small:



2. the mass is somewhat large or cj. is small:

3. rocket body gain Gn(e) is high: and

4. the real part HR ( C ) of feedback transfer function H(jo), is

large.

All the factors mentioned above will decrease A(dB) and unstable

POGO of the system is even more easy to occur. This method and its

conclusions also apply to other stability analysis of similar fluid-

solid coupling systems.

From the results of the root of characteristic equation and the

above analysis, one can realize that the frequency for POGO to occur

is very similar to the modular state frequency of rock body

structure. In other words, if POGO should occur, the frequency

should be around the structure single-valence modular frequency. One

can also know that the feedback transfer function of POGO system has

its own characteristics: namely, before the measures were taken to

overcome the unstable pogo. the characteristic frequency H(jw) is

slow-changing with respect to G(jw) and

11( Y o) I = IH ( i c), ) I = IH ( j .) I z I /[ ( j (.) 1( . 8

or HR(w.) HR(m,)= HR(ro) Hc.

then we should obtain the following estimation equations

* . ,=G,(e)HR(Qfl)/(2c0, (. 9
~(4'. 19)

A(dB)=20 log ,(/jj (4.20)

. =OH(W,) + cos-'1[E2Ct /(G.(e) I if(io.) 1)3 (4.21)



key: I - polar coordinate diagram

2 - logarithm amplitude - phase diagram

3 - logarithm amplitude, phase - frequency diagram

4 - fc. Or - frequency diagram
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Fig. 4.2: Single-transfer stability analysis of pressure

retainer free system (Ca=0)



key: 1 - polar coordinate diagram

2 - logarithm amplitude - phase diagram

3 - logarithm amplitude, phase - frequency diagram

4 - c. *r - frequency diagram
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Fig. 4.3: Single-transfer stability analysis of system with

pressure retainer (Ca=18 .57cm2 /kg)



T able 4.2: Assmed. ameters for space vehicle'

(a) I**m '1

I H. I Q d'

'0 do I( ' ,4') ,, As liM.a a$ RP +Rd I&P + •) 1,Wasg Mt

ig .a/m~k-/m got Ca CM/a he-a/CM' k.ea/c 1 ,n~ cm' $1.

4t r ,,1 
*41t 3,111 1.1 1 1.. 0025 001

x to'$ X 10'4 X 1to X 4'
"  x IV

(b) ill4 ±)

__.... '' -. ..... . I1 *

0 72 464.31 1.0 - 634.639.2

$3.26 1.3 46.61

4t 30I 10 2.14 18160.02 03.22

its 121.329 
2.0 635814.16

- p° ., .° ,,- ,,.
t oo 148 4.6 S"A 35.1 34"'.58

key: I - fixed parameters

2 - system

3 - oxidizing agent

4 - density

5 - resistance of thrust chamber
Q ".- cross sectional area of suction-DiPe-..........................

7 - length of suction pipe

8 - speed of sound

9 - resistance

10 - inertia

11 - modular ratio

12 - thrust chamber time-delay constant

13 - modular damping ratio

14 - (b) time dependent parameters

15 - system

16 - oxidizing agent

17 - percentage of time of flight

i8 - modular frequency

19 - macroscopic mass

20 - pump dynamic gain

21 - liquid height of liquid reservoir

22 - pump gas softness

4,

S 
- •



Table 4.3

key: 1 - related parameters and pressure retainer parameters

in table 4.2 for 95% time of flight

2 - POGO stability equation and calculated results

3 - estimation method

4 - single-transfer method

5 - pressure-retainer free

6 - pressure-retainer

7 - note: Effect of tank-bottom flow is not included.

A4.2 9ssm an 9Bv EEI
R" N "[, .- o L,=3.432x'10,k,-S,/ m'

C0 oC., CM 'k C.,cm ,/A,

90.89 18.574

19), 0.03607 I -0.007145 1.076XI0 "'

'fji-. (4.20), A(dB) -1I.i4dB 59.36dB
tit-21,,C eg -11.44*

" 3-.9e -32.90
0.03825 0.004296 0.01903

Alyt(4.13),A(dB) -1.65 . 15.62 -6.0
537-

40307

C-7



^whereA(dB), 9i are the amplitude of the POGO system and the estimated

value of the phase-stability width. Following this method, the

varying scanning frequency o can be manually fixed at the single-

valence modular frequency ic. If this algorithm is followed, than

the amount of calculation is reduced and an overall estimation can

be accomplished.

Literatures (4] and [51 have studied the estimation method.

however, the error and direction of deviation were not given and

there these methods can not be used independently, in table 4.2. a

set of aircraft parameters were listed (see (51) and table 4.3 is

the calculational results (with and without pressure retainer) based

on parameters in' table 4.2. In these calculations, single-tratisfer

and estimation methods were used. Figure 4.2 and 4.3 are the polar

coordinate (Nyquist), logarithm amplitude-phase (Nichols), logarithm

amplitude, phase-frequency (Bode). and C,.(f) and Or(f)-frequency

diagrams corresponding to the single-transfer method. From these

diagrams, the width of the system stability and the error of single-

transfer and estimation methods can be deduced.

From these tables. figures. and calculation experience, it is

known that before measures were taken to overcome POGO of space

vehicles (such as installation of pressure retainer), estimation

method provides good accuracy (relative error smaller than 3dB).

however, after overcome measures are taken and estimation method is

used to select parameters, the error is large (a few tens of dB) and

the results tend to be not as reliable. Therefore. more accurate

methoas such as single-transfer or the methods explained in sec'tion

III should be used to check the results.
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Another preliminary estimation method for the analysis of pO.GO-

stability is to use the characteristic of open-lr.p frequency

'(jw)=G(jw)H(jw). When at zero phase orientation, if w-w than
c

IH(jo,.) I > I llG(j,.) i
(4.22)

then the POGO system is not stable. If w c is in the vicinity of the

peak frequency w* of :H(jw):. stability of the system can be

determined from the closeness of w* and wn. Therefore. the first of

determining the stability of the system is to obtain the

characteristic frequency w of H(jw). To make the problem simpler.

one can consider the five cross sections t-1-3-5-D of figure 4.1.

there are four transfer functions (from section II)

-JPD IFi+scpzj,,-zA I ChO, , -Z~shB5S9 , I$
-O.sh ,,. c O

QD -SC,, Z, ch,
1 , 0 c O , -Z ,s h O , , " " ( 4 .2 3 )

' O, L P,

[ Y, O,shO,, Q:
baseonh, ' chO, , at s

based on the "open" (Pi=O, Q,.A) or "close" (Pi:*O Q,=O1 at Cross

sections t and D, one can obtain the low-frequency and high-

frequency resonance equation a.nd formulae for various feedback

systems (mainly the pipeline and pump systems).

V. Analysis and Discussion of Ma3or Parameters

The analysis in this section is based on the related equations

in section IV (see table 4.1).

1. outlet flow from the bottom of the tank
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Table 4.4

ft 4.1 it:" 4-1 rt§

T ,' Cos(cl,/a,)-O, ora o,(l+2n)/21,,.=Ol,2 .....

® J . l j I a I o- sin(0,aj)_=0,'.-2nira,/(2I"),n= 1 .2, .

cF'Cp , Lp . 2 (L,+Lp)I(LLpCp) (.pCp),( L, Lp,

C~ CRP LP C. Go) wIZ.I1[LIC.+CP))

ffffpJ -' P L C. L. cc ,=Li(C.+Cp)±L.C. C. +C,_LI>L.irflfI.

13T., CO, C. Le c...

I . .!. . . . .. .. . --- - - - .-- ..- -

:qM Cp Ro L , C. Le -0 c'o'(Cca/,,(l. /oC )

'L .. . c._

.. y..1.. .. ~ I. . . . . ...... .. . ... ...... .. ..(C.C. ...l

WMAI
. mcc, L, C. L. c zZ-(C.+C,)I[C.C,(L.. L,),(L,>> Ls L.), 3 ff;, .. ,,C.. Le w,'--/cc.(,.,+L.)]-2Z.>>k;,..,,E , A )

4)!c i P L.IC. IL. (ai ,,-(C.+c, 1CC.c,(,.+,s)

key: 1 -component parameters
14 - open-close

2 - main component of the system
15 - open-close

3 - long suction pipe
16 - open-open

4 - long suction pipe, pump

17 - close-close
5 - long suction pipe. pressure retainer, pump

18 - open-close
6- long suction pipe. pressure retainer, short suction

19 - open-close
pipe. pump

20 - open-open
* 7 - boundary condition

21 - close-close
8 - open-close

22 - pump
9 - open-open

23 - softness
10 - open-close

11 - open-open

12 - open-close



table 4.4 (key continued)

24 -resistance

25 -inertia

26 -short tube

27 - inertia

28 - pressure retainer

29 - softness

30 -inertia

31 -long pipe

32 -speed of sound

33 - See figure 4.1 and section II for related transfer

function. If suitable boundarv conditions are

plugged in. the fo~llowing frequency equations can

be obtained.

3*4 -gas bubble -frequency

35 -high frequency condition

36 -high frecuency, co nd it io n

37 -reverse resonaic' frequency

38 -Long pipe inertiai Li and length i11i.
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When calculate or test the modular states, the tank bottom is

either closed or the liquid is not flowing. When the flight POGO

analysis is carried out, the tank bottom is opened and the liquid is

flowing and, therefore, the contribution of the outlet flow from the

bottom of the tank to the macroscopic force should be considered.

This is reflected in the H2 (S) and H3 (S) in table 4.1. This factor

will contribute to the stability of the system and it is over-

conservative if this factor is not considered.

2. local pump longitudinal Nbration

The effect of local pump longitudinal vibration is reflected in

the contribution to the macroscopic force and is manifested in H3(S)

and H4 (S) terms. When the frequency of the local pump longitudinal

vibration wp is close to or overlapping with the rocket body

structural modular state frequency wn, installation of pressure

retainer will not suppress POGO. As a result, it is very important

to clarify the parameters for local pump longitudinal vibration

before flight.

3. composite pre-ump pipeline resonance frequency w

Experience showed that when the characteristic pre-pump

frequency w* is close to the rocket body structure modular frequency

wn. unstable POGO of the system will occur. Hence. to separate w*

far from wn is one of the important criteria for the design of space

vehicles. (91 This can be made clear from the following analysis.

i. When the tank bottom outlet flow and local pump longitudinal

vibration are not considered. we have

) AS 4 /, NS.AsISE.(S)N(S)/1(S)



the meaning of these symbols is explained in table 4.1 and figure

4.1 (same for the following equat2:.ns.

ii. When there is only one pipeline section and pressure

retainer prior to the pump. the D(S) in the above equation takes the

form of D(iw) and

o(jcj)=z.(i ,) i ) -. 'C C, + C
•t "I"o(co) T--:-C., " - ....gk I ca,) l l~oRro-C~loo .5.3.2)

+ j(m +l)lCo

where Ct is the composite softness of the gas bubbles in the liquid

within the pipeline.

iii. When the inertia ,.f the pressure retainer and resistance

are not considered, we have

(5.3.3)

wherec=xa,/(21,)and is the first valence frequency of the open-close

pipeline, and ab=[I,(C.+C,+C,)]-) :  is the gas bubble frequency.

iv. Let

Fw= ma/(2o,1 -C._.a
P )-tgCjrw,/Ccj,)) col, .3 4

if w=w . then F(w*)=O and is called the composite resonance

frequency of the pipeline. When D(jwk, is a minimum. H(jw*) is a

maximum and C,(w*) is also a ma:x:imum. Therefore. when w*=wn ,

unstable POGO of the system would occur very easily. However, it is

not true that POGO should always occur because there are other

parameters which also control the mechanism (see below).

4. Overlapping of w*=w n



From above, when 1) the tank bottom outlet flow is not

considered. 2) local longitudinal pump vibration occurs. 3) no

pressure retainer, and 4) only one section of equivalent pipeline

exists prior to the pump, we can have
.- G.(e)NS.A,,Rrj h,. 0 Ey !-'

~=G.(e)HR(w.)/) W.-=-I] + FT,*-S iFF2(m+)ct, L I qSosin(r0,,,)L- S.,,J

From the above equation, one can learn that even if w*-wn. !,<Cn is

possible under certain conditions and pogo will not occur. Among

these conditions, the gain of the engine E 9 is an important

parameter. The significance of eq. (5.4.1) is that the effect of

related parameters. modular states, or structural gains on the

system stability can be determined.

5. parameters and location of pressure retainer

So far there are three methods to select the parameters for

pressure retainer

i. reverse resonance frequency method. namely, wa=w Wn:

ii. POGO stability dependability method: and

iii. compromised method, which suppresses the unstable P13C *:.r

the system and at the same time keep the typical frequency of

pressure retainer line to different from the fixed frequency wk4 Wn.

From table 4.4. the effect of the parameters and location of

pressure retainer on the w can be observed. If the pressure

retainer is placed near the pump inlet, the efficiency of changing

w* is enhanced and the adjustment of pressure retainer parameters is

made easier. while on the other hand, the water impact pressure is

reduced and the pressure-reduction due to pre-pump high pulse

pressure.
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From table 4.4. it is known -hat after the pressure retainer is

-added, when the pre-pump pipeline is under the condition of open-

cilose. the first and second valence frequencies w and w 2 are

C(5.5.2)

Attention should be paid to the range of applicability of above

equations. Generally, w*j can be reduced by increasing Ca. however.

k*w 2 can not be increased infinitely by reducing (Is+la) and the w*2

will be lower than the original second valence frequency (without

-addition of pressure retainer).

6. equivalent speed-of-sound of pipeline liquid

From (5.3.3), it can be learned that ae first affect w, then

w*, and finally the POGO stability.

Not only is ae related with the property of the liquid, it is

_a°l-so related with the gas content Vg generated during the flow

process. pipeline material, and boundary supporting conditions. When

the volume of liquid in the pipeline is VI. the total volume is

V-ViVg and the composite density @ is

P =PV/V + PgV,/'
(5.6.1)

and the composite elastic modulus K and ae are

K =K/[I +(V,/V)(Kj/K,-I)] (5.6.2)
..= VKpV i+(K/E(/)

(5.6.3)

where D. a, E. p are the inner diameter, thickness, elastic

modulus. and Poisson's ratio of the pipeline material. Note that C
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is related with the boundary supporting condition. When the upstream

end of the pipeline is fixed and the downstream end is free. C-i-

A/2; when there is no axial strain of the entire pipeline, C=l-16

when there is not axial stress. C=.

The gas content in the pipeline liquid Vg/V and the theoretical

and experimentally obtained ae curves are shown in figuire 5.1. [10]

7. pre-pump liquid gas content softness C1 and pump gas

softness C

From (5.3.3). the major factors influencing wb is C1 and Cp.

Theoretical determination of these quantities is difficult and only

experimental method can be applied. Based on the experimentally

determined w* and wl and through equation (5.3.4) (F(w*)-O). wb can

be obtained and C+C p can be calculated.

8. boundary condition of pre-pump pipeline

Generally. when the characteristic frequency of the pre-pump

pi.eline is calculated or experimentally determined, the effect of

the boundary supporting conditions (both ends) is signifacant.

However, in POGO calculation, the boundary condition of the

connection between pipelines is not clearly defined. This is because

the boundary condition should be determined by tb: continuous

condition of the system loop. For example, when Ca+Cp+Cl=O, from eq.

(5.3.4) F(w*)-O

*= a.(2n-1)/(2l,), n=I, 2... (5 8.1)

and this corresponds to the open-close boundary condition.

Similarly, when Ca+Cp+C1 .o6. then



key: 1 - test

2 - theory

3 - static pressure

- I-

- ----- -
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VI , V 3k

Fig. 5.1: Relationship between speed of sound ae and gas

bubble content Vg/V



o*=, /l,, ,1, 2, ... (5.8.2)

and this corresponds to the open-open boundary condition. In

reality.

0 <C.+C,+C<o
(5.8.3)

and if F(w*)-O is used to calculate composite resonance frequency of

the pipeline, then we should come up with the boundary condition for

either open-open nor open-close.

9. dynamic gain (m+1) of the pump

Dynamic gain of the pump is one of the quantities that is

somewhat difficult to determine. It affects the gain of the engine

Eg and other quantities (see eq. 5.4.1) and furthermore, the system

stability. One of the key parameters in POGO calculation is m+l-.

From the relationship of the variables in section II. we have

(,n + 1) = Z.( j)PD/I[P.(Z( j6)) + ZD(j*)]
(5.9.1)

where Zc. ZD. Ze (see table 4.1) can be obtained from calculation.

Pu and PD are the pressure pulse before and after the pump. which

can be obtained from experiment.

10. gain of the engine Eg

From eq. (5.4.1). when Eg<ASOp/(SeOe). we have 1,<0 and the

design of the engine is adequate. No POGO will occur even if the

resonance frequency w* of the pre-pump pipeline is overlapped with

wn. This is also one of the most important design criteria for the

engine of space vehicles. 'Ci

11. gain of rocket body structure Gn(e)



The structure gain Gn(e) can be defined based on eq. (2.1.3)

and from eq.s (4.12) and (5.4.1), it can be seen that , or its

estimated value are proportional to Gn (e). Since G (e) can be

expressed in terms of the time-of-flight as Gn(e,t). therefore. the

trend of C.,(t) and &(t) is similar to that of Gn(e.t) and the

accuracy of the result can be determined. Gain of rocket body

structure is also one of the key parameters in POGO design.

Sometimes even slight change in the structure modular frequency will

result in significant change in structure gain.

12. structure modular damping ratio L,

. consists of three parts: fluid damping. material damping.

and structure damping. It can be learned from eq.s (3.1.4). (4.13)

and (4.20) that the magnitude of C. has a direct effect on the

accuracy of POGO stability analysis. Hence. this parameter is an

important parameter and is generally provided by test or experience.

The test result, even if identical method were used, will show

discrepancy. The discrepancy of the C.. of same order based on

various methods will be even areater. In reference [12], C. was

obtained based on various test and processing techniques and the

discrepancy is very significant. From a broader prospective,

decreases with modular frequency as shown in figure 5.2. (121 If

high vacuum, low gravity, and other conditions that can not easily

simulated on earth is considered, it is even more obvious that

dependability analysis of , should be carried out. Because of the

difference in test methods, boundary supporting conditions, payload

conditions, and the non-linear effects, the 1. obtained from the

full scale test will show large discrepancy and is not dependable.



key: 1 -sinusoidal fix*ed frequency test data

2 - 4 excitors random test data

3 -3 excitors random test data

4 -909% of the data are lower than this line

5 -modular damping ratio
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Fig. 5.2: Modular damping ratio obtained from various

methods
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Even though in the stability calculation, the value of is taken

to be 0.01 and 0.007 by groups in USA and France. respectively, it

is generally believed that it is not over-conservative even if a

lower value of C is used. If the suppression of POGO is difficult

using other methods, the increase in damping ratio of the key parts

of the rocket structure, the modular damping Cn of the overall

rocket structure will be increased and POGO can be suppressed. (13]

13. comparison of the importance of various structural modular

parameters of different orders

The importance of the structural modular parameters of certain

order is evidently determined by the actual problems encountered.

For example. if the structural response to the acute bottom seat

vibration (for aircraft or satellitesi is considered. the modular-

state related parameters such as "effective mass" is an important

basis for the determination of the importance of certain modular

states. For the POGO problem. the modular states which cause P1'GO

are obviously the important states. They are:

i. large mass. low frequency wn:

ii. higher structural gain Gn(e):

iii. small modular damping ratio C.n: and

iv. modular states which make w* close to Wp.

VI. Dependability of POGO Stability Calculation

The design of space vehicles is based on the nominal values of

various parameters. In reality, all the parameters will deviate from

the nominal value. The test value of a certain parameter will also

depend on the location. time, installation method, temperature.

V3



humidity. and status of the instrument. Furthermore, the result will

be different if test methods is different.

Since the development cost of space vehicle is huge. to

guarantee flawless design. the dependability calculation and

analysis is important. If a new product is involved. the test data

may be scarce, the correct data may be difficult to obtain from

theoretical calculation or from a sinale test. Often it would

require a lot of man-power, a long preparation period, and a

tremendous budget for a particular test which may be extremely

contaminating to the environment. For the systems which include

parameters of this kind. it is better to use the computer to carry

out a Monte Carlo system dependability analysis.

From sections II and III. it i-" clear that there are many

primitive parameters involved in the dependability analysis and each

parameter has its own probability distribution. The combination of

all the parameters represents a simulated flight and the

dependability analysis for this particular fliaht can be carried

out. Hence. the combination .f "an,:loni sampling of all the parameters

(based on its probability distribution) and the estimation criterion

for unstable POGO will aenerate n sets of parameters which represent

n times of simulated flight. The POGO stability analysis for these n

flights can be proceeded and than the probability of unstable POGO

can be calculated based on some credibility criterion.

There are constants, time-dependent constants, random constants

of various probability distributi..n. and tame-dependent random

constants in a POGO system. For e:ample. modular state damping ratio

A exhibits the minimum-value distribution. pump dynamic gain (mr1)



exhibits the maximum-value distribution, pump gas softness C and
p

pipeline equivalent speed-of-sound ae exhibit normal distribution.
4e

The sampling method for these parameters are:

CiU.+B.Inln[1/(1-R.)3, jffi v , -.., (6.1i)

(mi+1)=UA-BInln11RkJ, j=1, 2, .n (62)

a,1=p.+'.S, j=l, 2, "..n (6.3)

where Un. Uk. Bn. Bk can be determined by the estimated values of

related overall parameter and Rni and Rkj are the number of uniform-

divisions. 'e and a. are the averages of related overall parameters

and estimated value of standard deviation. Scj is the normal state

random number and j is the designation of the random state.

From section V. one learns that some of the parameters are

important but difficult to.determine. If sampling is carried out for

all the parameters. and then POGO stability analysis conducted for

all the combinations (while the flight condition is changed in unit

of second), the amount of calculation will be significant. From

experience, some of the undetermined parameters can be manually

reduced or combined to reduce the amount of calculation. Likewise.

the number of combinations can be reduced or the flight simulation

can be carried out based on a longer time unit.

VII. Criteria for POGO Stability and Dependability

It can be seen from sections III and IV that POGO stability is

determined by the amplitude width A(dB) and phase width O,.(degree).

The criterion for POGO stability is similar to the control

system: namely. amplitude width A>6dB and phase width : 0 r: > 300.



This corresponds to the structural safety consideration of design

safety coefficient of 2. However. this stability width can not be

extended to uncertain parameters such as Cp. or (m4i+,) and
n p,

dependability statics should be employed. Under these circumstances.

the criterion for POGO stability is 3a: namely. the probability of

unstable POGO as a result of the random combination of all the

parameters is less than 0.00135.

From abcve. it can be concluded that a better dependability

criterion of POGO stability is for the nominal widths to be A.:,6dB

and Or: > 300 in addition to the acceptable probability of

unstable POGO of P<0.00135.

VIII. Conclusions

1. When the space vehicle engine pulse thrust frequency and the
[A

rocket body structural frequency (w* and Wp or Wnl are near or

overlapped and the structural gain is sufficient, then the pulse

motion of the liquid in the fuel tank is equivalent to the pulse

excitor and it becomes as a source of excitation for the thrust

system behind the tank bottom. This constitutes a positive feedback

system. The simplest model for this system is the free-free double

mass-spring-damper system. This model connects the POGO stability

damper analysis principles based on various methods.

2. After the dynamic equations of POGO system are introduced,

the POGO matrix analytical method, computer calculation of open-loop

transfer function. POGO single-transfer method and estimation method
I

are explained. These methods can be used in various design stages

and can be complementary to one another. Through the use of



examples. accuracy of the estimation method is evaluated before

suppressing measures were taken. However. after suppression measure
$

parameters are selected (or during selection), the application of

estimation method should be cautioned and calibration with more

accurate methods should be performed.

3. Analysis and discussion of some important parameters is

given in section V. This section also points out some of the

important parameters in the design of space vehicles. engine system.

or the suppression measures of unstable POGO. Furthermore. the

various measures for suppressing POGO is discussed.

4. Dependability analysis should be carried out for POGO

stability analysis. Based on the test data and test experience, the

computer simulation (such as Monte Carlo method) can be used for the

dependability analysis. The criterion for the POGO stability/

dependability is such that the nominal width A:>6dB and Gr.:.30-

plus the probability of unstable POGO P,:0.00135.
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