AD-A244 3 -
W l'llll!)

WL-TR-91-3069

INVESTIGATION OF TURBULENT JET IMPINGEMENT IN A CONFINED CROSS-
FLOW

G.D. Catalano

Department of Mechanical Engineering
LSU

Baton Rouge, LA  70803-6413

November 1, 1991

Final Report for Period September 88 - December 90

DTIC

ELECTE g
Approved for public release; distribution is unlimited. N JAN16 1992
9 B

FLIGHT DYNAMICS DIRECTORATE

WRIGHT LABORATORY

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO  45433-6553

2-01317
HI!‘\| I \\l\\“}l\ L

2 1 15 009




NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in counnection with a definitely Goverumert-related
procurement, the United States Government incurs no responsibil.cy or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, 1t will be available to the general public, including
foreign nationms. '

This technical report has been reviewed and is approved for publica-~
tion.

LR e m&/}&ﬁ

W. PHILLIP WEBSTER H J. S. SHANG, Te gr
Aerospace Engineer Computatlonal Aerodynamics Group

FOR THE COMMANDER

el Lt

ROBERT L. HERKLOTZ, Col, USAF
Chief
Aeromechanics Division

If your address has changed, 1f you wish to be removed from our mailing
list, or if the addressee 1is no longer employed by your orgarization please
notify/ » WPAFB, OH 45433- s/ <.) to help us maintain a current
wailing 1list. '

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reparting burden for this coltection of information 15 estimated 10 average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collecuon of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jjetferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 4, 1991 Final Report; 1 Sep 83 - 1 Dec 90
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Investigation of Turbulent Jet Impingement in a Confined | PE: 61101F
Crossflow Uv: ILIR #88-31
A— TA: 10
6. AUTHOR(S) Wv: Bl
George D. Catalano F33615-88-C-3004
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Louisiana State University REPORT NUMBER

Mechanical Engineering Department
Baton Rouge, LA 70803-6413

‘ 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
W. Phillip Webster (513) 255-2551 AGENCY REPORT NUMBER
(WL/FIMM) WL-TR-91-3069

Flight Dynamics Directorate
Wrig Laboratory
Wright-Patterson AFB OH 45433-6553

11. SUPPLEMENTARY NOTES
This research was partially funded by the inhouse independent research fund.

12a. DISTRIBUTION / AVAILABILITY STATEMENT I12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

hse—————— -—— — — P
12 AGETOAFT /Ad-iimoe NN hd

Measurements and computations are reported for the flow of a turbulent jet
discharging into a crossflow confined between two parallel plates. For jet-to-crossflow
velocity ratios R equal to 2 and 4, mean and fluctuating velocity components are
measured by a laser-Doppler anemometer.

Higher order statistics of the streamwise velocity and its time derivative have been
measured in the plane of symmetry of a jet in a confined crossflow. The existence of
universal similarity of the fine scale structure of a developing turbulent velocity field
and the validity of the original Kolmogorov local similarity theory and later
formulations were investigated.  Construction of normalized spectra for energy content,
dissipation, and higher order moments enable an examination of the Reynolds number
dependence of these functions for the Re) range from 16 to 800. Estimates of the

Kolmogorov constant, p, ranging from 0.27 to 0.43 were obtained with the arithmetic
average equal! to 0.38. The fractal dimension of the fine scale structure was estimated
from the functional relationship between the flatness of the velocity time derivative
and Re,. For unfiltered data, the fractal dimension was estimated to be 2.45. However,

with a + 12 ¢ bandwidth, the fractal dimension increased to 2.73.

14. SUBJECT TERMS 15. NUMBER OF PAGES
84

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [ 19. SECURITY CLASSIFICATION |[20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

| P Unclassified Unclassified

NSN 7540-01-280-5580' . Standard Form 298 (Rev 2-89)

1 Prescribed by ANSE Sta 739-18
298-102




TABLE OF CONTENTS

LISU OF FIBUICS. ...ttt e ta e s e ettt te e ae e b eas Y
LisSt Of Tables. ..ot ettt s b e e ee e v
NOMENCTALUTE oottt e e bt s et e e st er e ee e e e aaeea s s asbeeneaeeeeeens vi
SUMIMEATY coiiiiiie et et te et e e ee e st e e s st beeesese e aasasesnnaaeeeea s sneeeeaesssssesaessenssanneseannes 1
INETOAUCTION L it ettt et te s et tteae e n e e s e eseaaa s e e e neteaeeas 3
Experimental Setup and Measurement SySLEM ....cocooiiiiiiiiiiiieieieeiiiieee e 10
Mathematical Model . ..ottt e e a e e 35
RICSUIIS ettt e e ettt ea e ee s e e e ee s e s se s s e s e s s neen s s snnsnnnnen 54
R T EMCES i e et e s sttt a e s s bt a et e e aataeaeaeeesntaeaeenennes 74

Accession PFor yd
NTTS GRA&I W
DTIC TAR m)
Unanneoaiced 0
Just il oot o

BY

Dlatridutions

g

Aviilal elity Dedea
b - . R
[ T i
i RARSEA ..’l‘,‘,'* Qer

Dist Spaclal

Al
iii A l




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

LIST OF FIGURES

A Sectional View of the Flow Setup......cccccooiiiiniiiiinnmiiiiiniice e, 12
Schematic of the Optical COMPONENLS......cuvumiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 13
Effects of Sampling Size or Statistical Parameters..............cccooooiiiiiiiiiii 19

Comparison of Autocorrelation Functions Betwcen

Conventional Average and FFT MethodsS...coovvieeiiiiiiiiiiiiiiiiicns e 25
Comparison of Length Scales between Conventional

Average and FFT Methods for Various Sample Sizes............oooerimiiiiiiiiiiiiicicennn. 26
Free Jet Mean Velocity Profiles at y/D = 1.0 and x/D = 0.0.....ccoovvrvvvveennieicnrinnnes 27
Grid Arrangement: (a) 2-D View of Staggered Grid Layout;

(b) LD Grid Clustered for Grid Point P.......eeooeniiiimi it 41
Modification of the Half Circular Nozzle by Rectangular Cells.........ccoeennnee.n. 48

Mean Velocity and Temperature Profiles at the
Jet Exit Plane for R = 2.ttt et ae s e s e e et e e e et st nneae e e aaes 49

Comparison of Mean Velocity, U/Uj, between two different
Jet Exit Boundary. Conditions in Plane of Symmetry........ccccooiiiiiiiiininninnn. 51

Dimensionless Scalar Field, C/C., and Line of Maximum

Maximorum, S, in X-Y Plane (Z = 0): (a) R =2 and
(b) R = 4. Conditions in the Plane of Symmetry:

(@) R = 2; and (D) R = 4 crtter e ee st rvee e e e e et aae e e e e s e esnnens 55
Mean Velocity Vectors in x - y Plane: (a) R=2;and (b) R =4.........ccvnnnnennn 55
Scalar Field, C/Cj, in y - z Plane at Several Downstream

Locations: (a) R = 2; and (b) R = 4o ot 56
Steamwise Component of Mecan Velocity Contours,

U/UO, iny -zPlane: (@A) R=2;and (b) R =4 et 56
Streamwise Component of Mean Vorticity Contours.............oceuuiieieeiiiiiiiiinnnnenenn. 59

Comparison bctween Predicted Profiles and Experimenial
Data in x-y Planc at R = 2. ettt 59

Comparison bctween Predicted Profiles and Experimental
Data in x-y Planc at R = 4

Normalized Reynolds Stress Distributions in x-y Plane at R =4........................ 60

Reynolds Number Dependency of 42" /(6)2" vs. n(n-1log Re,




20.

21.

22.

fOr various FIOW LOCALIONS.......ciiiiiiiieiiiieeeeeesereee e et eeeaetesee e e rerersesenoee s eesonnss 62-64

Examples of Typical Nondimensionalized Energy Spectra

and DiSSIPAliON SPECUIA.....ccooiiuiiiiiiiiiieitiie et e ettt e e e e e e esan e e s 69

Maximum Valucs of Various Spectra vs.

Turbulent Reynolds Numbers at Downstream Location................ccccccoooeeiiinnnnnnn. 71

Kurtosis of the Velocity Derivative as a Function of Turbulent

Reynolds Number both with and without Numerical Filtering......................... 73

LIST OF TABLES

SOUTCES Of EITOT. ..ot e e e ettt ae e e e e e e e e aeeens 34
The Goveming EqQUatiOnS...........coiiiiiiiiiiiiiiiiiiiieeccet ettt eeaaenaaaes 37
A Summary of Boundary ContitionS.......ccc...cccoiiiiiiiiiiiiiiniiiiieeeceeeieecee e eeen 50
Statistical Documentation for Various Velocity Ratios and Flow Locations........... 66




NOMENCLATURE

C species concentration
G species concentration at the jet entrance

C}.€2,cy constants in turbulence model

D jet diameter at the injection

df fringe spacing

dpv probec-volume diameter

E(k) 3-D encrgy spectrum function

f frequency

t(1) spatial correlation

Fi(k1) onc dimensional spectrum function
H channel spacing

I integer, 1 = N/M

k turbulent kinctic cnergy

K flatness Tractor

ki wave number in x direction

Ipv probe-volume length

L longitudinal integral length scale
M number of time delay in autocorrelation function
N number of velocity samples

P effecctive pressure, p + 2/3 pk

p prcssure

R velocity ratio (V)/Up)

Rc Recynolds number

R(1) autocorrclation function

S¢. S¢. S source terms in the governing equation
o P g g ¢q

S(h auto spectral density function

Su skewness  function

T integral time scale

U, V. W mcan vclocity components

u, v, w fluctuating velocity components

Up cross stream velocity (tunnel flow speed)
V) jet injection velocity

X,y.7 Cartesian covordinates

yt dimensionless value of y(= k'’ c)/4 y/u)




diffusion coefficient
dissipation rate of k
beam-intersection angle
under-relaxation factor
wavelength of laser beam
Taylor microscale

Kolmogorov Universal constant
molecular viscosity

kinematic viscosity
Kolmogorov Length Scale

general dependent variable
universal ecnergy function

dissipation function

density

turbulent Prandtl/Schmidt numbers

x-direction mean vorticity
delay time

rms of quantity




SUMMARY
The present computational and experimental investigation dcmonstrates  the
validity of ihe following obscrvations:

1) The jet trajectory and the existence of impingement arc strongly depen-
dent on the velocity ratio. For R = 2, no impingement occurs for a plalc
separation of ten jet diameters.

2) The cross stream is deflected laterally in the region necar the jet cntrance.
The jet is deflected downward by the total pressurc forces.  The high
shear around the jet edgss in the near ficld results in a double vortex
structure.  The vortex structurc extends far downstrcam.

3) A wake region cxists immediately downstream of the jet discharge, but
"lifts off" from the lower wall due to the strong inflow of the cross strcam
towards the symmectric plane.

4) The turbulence field is highly anisotropic in the inital region, although
there is tendency towards isotropy further downstrcam.

5) The two-equation model of turbulence, with comparison (o cxperimental
data, predicts the flow downstream accurately but cxhibits only fair
agreement in the initial region where the flow is highly anisotropic.

The twurbulent flow field obtained by injecting a jet into a confincd crossflow
provided a convenient casc where data could be collected to examine the fine scale
structure  of turbulence in a developing flow over a large range of turbulent
Rcvnolds numbers. Calculations indicatcd the range of turbulent Rcynolds numbers
to be 16.6 to 782, and the widcly different values of integral length scale, varying
from 0.013 to 0.438 mecters confirmed the developing nature of the flow.

By directing the output of the signal processing equipment to an analog/digital
converter operating in a direct memory access mode with the laboratory computer, a

data collection frequency of sufficient spced to capture the finc scale fle~*rations




was attained.  The digitized velocity values were then subjected to calculation proce-
durcs designed to cxtract statistical estimates of certain physically relevant quanti-
tics.

Construction of normalized spectra for cnergy content, dissipation, and higher
order momcnts cnabled an examination of the Reynolds number dependence of these
functions; the decpendence was definite and well defined.  Comparisons with other
rescarch  data, however, indicated that this Reynolds number dependence has not
been detected in some investigations of fully developed flows at comparable Rcynolds
numbers.

The valuc of the constant p from Komogorov's lognormal hypothesis was calcu-
lated to avcrage 0.38 over the range of turbulent Reynolds numbers sampled. It
Reynolds number dependence indicates the inappropriatencss of the lognormal dis-
tribution to this flow as a whole.

The fractal dimcnsion of the dissipative structurcs was cstimated to be 2.45. An
attempt to rcconcile the discrepancy between this value and another reported csti-
matc led to the tcntative conclusion that the fractal dimension of this developing
flow and the fractal dJdimension estimated for other devecloped flows cncompassing a

wide range of Reynolds numbers may be quite close.




INTRODUCTION

Turbulence is often reierred to as the last unsolved problem in Ncwionian
mec..anics.  Turbulent motion, a flow condition in which the aependent ficld vari-
ables such as velocity, pressure and temperature are random both in space and time,
is receiving an ever growing degree of interest among cngineers and scientists.  In
fact. the overwhelming percentage of flows which occur in Nature or arc created by
Man is turbulent. Since a deterministic approach to turbulent motion is impossible
duc to its randomncess, rescarch in turbulent fluid mechanics has resorted to the usc
of cxperimental techniques and computational schemes.

Recent advances in diagnostic techniques have injected new momentum  and
cxcitement into turbulcnce rescarch. As a conscquence, a number of ncw aspects
and insights into turbulent flows have been discovered. The ecxistence of coherent
structures i1s one good cxample. Such a discovery in turbulent flows has led to a fun-
damental rcexamination of our understanding of turbulence. It s now commenly
accepted that large-scale coherent structures play important roles in cnergy pro-
duction, mixing and noise generation.  The cxistence of coherent structures has been
cxtensively reviewed by many investigators.

A number of turbulence modeling techniques together with improved numerical
mcthods have been used as tools for the analysis of many cngincering problems.
Numcrical mcthods allow systematic variations of boundary conditions and gecometric
variables, and also provide information on quantities of interest simultancouslv  and
cconomically in cost and timc. However, numerical methods cannot yet resolve
dectails of flow physics such as scales of turbulence and other timc-cvolving quanti-
tics at practically occurring Reynolds numbers. Numcrical mecthods in turbulence
rescarch  supplement, rather than replace. cxperimental measurements.

In this study. a combined cxperimental and computational approach is made for

the investigation of the turbulent flow ficld that results from the introduction of a jet




transversely into a confined moving stream. The flowficld is a basic configuration
cncountered in many real engincering problems such as V/STOL acrodynamics, the
design  of gas turbine combustors, the internal cooling of turbine blades, and
hazardous wasle disposal into bodies of water or the atmospherc. The ultimate objec-
tive of this study is to incrcase the undcrstanding of the fluid dynamics involved in a
jet in a confined cross flow.

The Mowficld produced by a singlc jet discharging into a unboundcd crossflow has
been cxamined by many investigators including Crabb ct al.(1), who also provided an
cxtensive review of ecarlier work.  One important feature of the jet in a cross stream is
the deflection of the jet trajectory and the creation of a bluff body wake in the cross
strcam.  Another fcature of the flowfield is the production of a pair of counterrotat-
ing vortices crcated by thc shear along the edges of the jet. If the vclocity ratio is
large cnough to permit impingement on the opposite platc, additional complexitics
arisc in the Rowficld. The cffect of the confining surface is examined in this work.

Turbulent jets in confined crossflows have received considerably less attention.
Such configurations are relevant for many practical applications such as gas-
turbinc combustors, the internal cooling of turbine blades, and V/STOL aerodynam-
ics.  Stoy and Ben-Haim(2) rcportcd measurements of jet trajectories for a single
blockage ratio (H/D = 3.05) and provided empirical corrclations of the impingement
point in terms of the vclocity ratios for 2.5 < R < 7.0. Holdeman and Walker(3) inves-
tigated a geomctry relevant to diffusion air jets in gas-turbine combustion chambers.
Their mcasurcments cncompassed temperature ficlds for both a single jet and a row
of jets in a confined crossflow. These data were then used to develop corrclations
characterizing the bchavior of the jet in terms of flow and gcometric variables.
Kamotani and Greber{4) presented both velocity and temperature measurements of a

single jet, a row of jeis, and two opposing jets in a crossflow. The experiments were




pcrformed over a wide range of velocity ratios and gcometric variables. So far, no
documentation of turbulent quantities for the confined problem has been provided.

This paper presents both numerical calculations and expcrimental results for the
mean and fluctuating velocity components and scalar fields of the confined problem
for jet-to-crossflow velocity ratios R of 2 an 4 at a fixed spacing between two parallel
plates (H/D = 10). One aim of this study is to provide reliable mcasurecments of the
turbulent flowfield for test cc-=s of the present calculation procedure and, as a con-
scquence, to increase our understanding and ability to predict this complex flow.

The mean and fluctuating velocities were rccorded with a laser-Doppler
ancmometer (LDA) system adapted for the measurement of highly turbulent flows
and recirculating flows(3), Such a system allows highly accurate, noninstrusive
mcasurements. The calculation procedure employed a finite-difference scheme for
the solution of the three-dimensional elliptic forms of the Reynolds equations. The
Reynolds stresses appearing in the time-averaged equations are calculated by the
two-equation model of turbulence in which the transport equations are solved for
the turbelent kinetic energy k and its dissipation rate €(6-9)

The half-zircular nozzle in the bottom plate is prescnted in the Cartesian coordi-
nate system by cight rectangular cells. The cell surface arcas are modified so that
the specified jet velocity produces the correct mass fluxes through the surface.

The applicability and the limitations of the universal similarity theory first pro-
posed by Kolmogorov(10) with subscquent clarifications by Kolmogorov(11.12)
Obukhov(13) and Yaglom(1%) continue 10 be the focus of many invcstigations. A
larger data base of experimcental results is required in order to establish the appro-
priate flow conditions for such thcorics.

The present work sccks to examine the suitability of flow models derived from the
universal similarity theories in the case of a dcveloping flow. The models examined

include the Kolmogorov (LN) model(12) (he Novikov-Stewart (NS) modecl(!5), and the




Frisch, Sulem, Nelkin (B) model(16) The importance of the turbulent Reynolds
number (Rc;,=13h) is determined for various statistical propcrties of the flow. Such
properties include the energy and dissipation spectra, the skewness, and the kurtosis.
In addition, the applicability of fractal gcometry to fine scalc structures in a devclop-
ing flow is also examined.

For relatively high Reynolds number flows, the cnergy containing large scale
turbulent eddies is unevenly distributed in space along with bursts of high fre-
quency fine scale structurcs scparated by periods of relative quict. This observation
led to refinements of Kolmogorov's first and second hypothesis by Kolmogorov(12) as
well as by Obukhov(13) and Yaglom(14). Kolmogorov's third hypothesis models as a
lognormal random variable the locally averaged viscous dissipation of the turbulent

kinctic energy. Mathematically:
62=A+pln /) withl>>r>>7 (1)

where 62 is the standard deviation of the logarithm of the viscous dissipation rate, 1 is
the integral length scale of the flow, A is a constant depending on flow geometry, r is
the characteristic length of the averaging volumes, and p is a universal constant.
The existence of a universal equilibrium range and an inertia subrange is a con-
scquence of Kolmogorov's original theory{10-11) " The first hypothcsis of similarity

states that within an equilibrium range of wavenumbers there exists a nondimen-

sional and universal function, @, such that for a locally isotopic field:

F (k)
®,(nky = —l’l—m (2)

(ev?)

where:




2
u, =f0°°F1(k1)dk1’ (3)

uy is the velocity fluctuation component in the mcan flow dircction, x;, € 1is the

viscous dissipation of the turbulent cnergy, v is the kinecmatic viscosity, and n =
3/4
(v3/e)1/4 is the Kolmogorov length scale. For this to be valid, Re, >>1. The

Reynolds number, Re,, used to characterize the turbulence is defined by:

___2_1/2
Rey = (u;) Av (4)

wherc A is the Taylor microscale. Kolmogorov's second hypothesis is that for an cvcn

larger Reynolds number, Re 3/8 5 > 1, there exists a subrange of wavenumbers
A g

within the equilibrium region where the effects of viscosity are negligible(1-2). The

onc dimensional spcctrum function takes the form:

Fy (k1)=(11€2/3 k1‘5/3. (5)

With the assumption of a lognormal viscous dissipation according to Kolmogorov's

third hypothesis(12):

Gurvich and Yaglom(17) provided a mathematical basis for the LN modcl assumptions.
Gurvich and Yaglom(!7) also concluded that the probability density function of any
nonnegative quantity associaled with the fine scale structurc of turbulence is

approximately lognormal with a variance similar to (1). Novikov and Stewan(13)




proposcd the N-S model for the spectrum of the dissipation spectrum, @, such that

¢, «a k-1 + B This was also obtained by Gurvich and Yaglom(17) for u < 1.

Frisch, Sulem and Nelkin(16) introduced the B-model of fine structure

intermittency. For the B modcl:

Fl(k1)~k1-5/3 - 1/3u (7

Experimental tests of the Kolmogorov third hypothesis and attempts to evaluate
thc constant pu have been performed in both the laboratory and in high Reynolds
number atmospheric boundary layer flows by Pond and Stewart(183), Gibson, Stegen
and Williams(19), Stewant ct al.(20) and Gibson, Stegen, and McConnell(21),  Avcraged
dissipation rates have been studicd by Van Ata and Chen(22) who measured stream-
linc velocity derivatives for flow above the occan. Yaglom(14) has provided a physi-
cal basis for Kolmogorov's third hypothesis.  Mandelbrot(23) has shown this hypoth-
csis to be probably untenable. A variant of the generating model leading to the log-
normal has been proposed by Van Atta and Antonia(24) who have examined the
influence of fluctuations in the rate of local turbulent energy dissipation on higher
order structure functions for small separation distances and on moments of turbulent
velocity derivatives using the hypothesis of Kolmogorov(12) and Obukhov(13). The
dcrivatives of the dissipation rates of turbulent velocity and temperature ficlds were
observed by Gibson and Masicllo(23) Departures from lognormality of the averaged
squared dcrivatives were present at lower Reynolds numbers. This proved to be
contrary to the proposal of Gurvich and Yaglom(17),

Experiments have yielded a wide range of values of p. Gibson and Masiello(25)
found the most probable valuc is within a range 0.17-0.80. Yaglom(14) estimated a

valuc of 0.4. Antonia ct al.(26) suggested a value of u = 0.2 from their investigations




of circular and plane jets along the axes of symmetry. Difficultics in comparing

cxperimental results appear to be attributable to the questionable universality of p

The kurtosis or flatness of aullaxl is defined as:

aul) au, (8)
ox, axl

Assuming local isotropy and the applicability of Taylor's hypothesis:

= duy (9)
ot 9x

aul)/[( (10)




EXPERIMENTAL SETUP AND MEASUREMENT SYSTEM

The experiments are performed in a subsonic wind tunnel in the Experimental
Fluid Dynamics Laboratory of the Mechanical Engineering Department at Louisiana
State University. The dimensions of the test section are 60 cm wide, 45 cm high, and
180 cm long. The nearly uniform flow in the test section is attained by routing the
airflow through a 12:1 contraction section and flow straightening honeycomb tubes.
The free strcam turbulence intensity is less than 0.8% in the range of tunnel veloci-
tics (9.5 - 50.0 m/s). Optical access for the LDA measurcments is provided through a
rcmovable plexiglass wall in the test scction.

The jet stream is supplied from the laboratory compressed air line and adjusted by
a high-precision pressure regulator. In order to minimize the effect of the tunnel
wall boundary layer, the jet exit is mounted flush in a flat plate located 12 cm above
the bottom wall of the tunncl and the jet is aligned with the test section center line.
A top platc is similarly mounted inside the test section of the tunncl, and its distance
from the wall is adjusted such that H/D = 10. The plates, which are made of 60-cm-
wide, 180-cm-long, and 0.6-cm-thick plexiglass, have been carefully contoured at the
lcading edges to ensure smooth transition of the tunnel flow.

Special care is taken to obtain a flat velocity profile and low turbulence intensity
at the nozzle exit. This is accomplished by use of a scttling chamber, a fine mesh
scrcen and a smooth shaped contraction section with the contraction ratio of 16: 1
through a 6.7-cm length. Variation of the mean velocity ratio values (R) is achieved
by adjustment of the compressed air line pressure regulator while keeping the
tunncl flow speed at 9.5 m/s. The maximum obtainable jet velocilty is approximately
50.0 m/s and the corresponding Reynolds number based on the 1.27-cm jet diameter
is 3.8 x 104. The Reynolds numbers investigated are 1.5 x 104 for R = 2 and 3.0 x 10%
for R = 4. Thec assumption of thc symmetry of the entire flow ficld about the plane, z =

0, is validated. The jet flow and the tunnel flow are sceded indcpendently with olive

10




oil particles by use of an aerosol generator for tunncl flow and a pncumatic tool
lubricator for jet flow. A laboratory schematic of the entire experimental sysiem is
presented in Figure 1.

The LDA optical arrangement (Figure 2) has been constructed from Dantec 55X
Modular Optics components. A Spectra Physics Model 106-1 He-Nc lascr rated at 15
mW provides a monochromatic, coherent light source of wavelength A = 632.8 nm and
beam diameter 0.68 mm at 1/e2 points. The beam splits into two parallel beams of
cqual intensity by passing through a beam splitter module. The frequency of onc
beam is upshifted 40 MHz by the Bragg cell which is driven by the frequency shifter.
The other beam is displaced by the displacer module. The shifted frequency causes
the interference fringes in the probe volume to move with a velocity Vf = 40 MH = x
df, where df is the fringe spacing. This capability allows the uscr to determine the
direction of the flow.

The emerging unshifted and shifted beams pass through the backscatter section
and arc fed to the beam translator, which adjusts the intersection angle by reducing
thc beam separation distance from 60 mm to 13 mm - 39 mm. The beams then proceed
through the beam expander which expands the parallel incoming bcams by a factor,
1.95, and thereby decreases the size of the probe volume by the same factor, approxi-
mately quadrupling the light intensity. The beams leave the beam cxpander and pass
through a 600-mm focal length lens which focusses them to a joint. When a beam
scparation distance of 39 mm is sclected at the bcam translator, the beam scparation
distance cqual to 76 mm at the front lens and an intersection angle equal 1o 7.25°

rcsult.

11




TOP OF WIND TUNNEL

xﬁéﬁ‘i‘r"‘"’” Jﬁ&M&.MwJWue- ‘;‘: ~,¢,¢.«-mu~‘_-,_, o

CONFINING WALLS

NOZZLE ’

. . - ..-'\_*_“ - ‘.‘»"‘-‘Jﬂ’"—— "“""\"ﬁJavv*c'"‘* - r_\,M‘A:-n.—.J.‘;

PRESSURE
REGULATOR

SEEDING
OEVICE

Figure 1: A Sectional View of the Flow Sctup. The confining walls serve to eliminaic
the adverse cffects of the tunncl boundary layer. A complete documenta-
tion of the mcan and rms vclocity ficlds is available in the tcchnical litera-
turc (Catalano, ct al. 1989.)
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The light scattered from seeding particles passing through the probe volume is
collected in the backward direction by the photomultiplier (PM) optics module. This
module, with a 150-mm focal length lens, focuses the collected light into a pinhole
aperture of 0.1-mm diameter. The PM scction which acts as a spatial filter converts
the¢ photon flux to an electric signal.

The optical setup described is a onc-component backward scatter system operating
in the fringe-Doppler mode. The assembled LDV system can rotatc 360 degrees as well
as traverse in three dimensions.

The LDV actually measurcs the instantancous velocity of small particles suspended
in the flow. Hence, the particles must be small to follow the local vclocity of the flow.
As mentioned before, the wind tunnel flow and the jet stream arc seeded with olive
oil particles. For the seeding method used, the mean oil droplet diameter is estimated
1o range from 0.8 - 3.0 um. This particle diameter range is appropriate to follow air
flows where turbulence frequencics cxceed |1 kHz(9).

A method for signal processing and data acquisition is vital in LDV application.
The output signal from the PM consists of the sum of the Doppler frequency repre-
senting the velocity and the 40-MHz-shifted frequency. In ordcr to achieve optimum
rcsolution and noise filtering in the signal analysis cquipment, the signal is fed 1o
the mixer (frequency shifter) to be clectronically down shifted. The effective shift
of the Doppler frequency f, can be selected to a desired level from + 10 kHz to + 9 MHz.

The electronic mixer output signal is analyzed by a TSI Tracker Type 1090. The
signals are first amplified to an optimum signal-to-noise ratio and passed through
sclcctable band pass filters prior to the signal analysis. The high pass filters remove
thc DC component of the signal (pedestal) and the low pass filters remove the high
frcquency noise. The tracker is a phase locked loop (PLL) dcvice. The processor
locks onto the Doppler frequency and continues to track the instantancous Doppler

frcqucncy as long as the intcrnal scrvo-loop stays locked.
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The continuous naturc of the tracker output allows thc mecan and rms quantitics to
be read directly on appropriate meters. The signal usually contains high frequency
noise. The noise is primarily due to the phase fluctuations of particles in the probe
volume (called the ambiguity noise). The errors in the mean and rms velocitics duc
to the noise are not significant. Howcver, at a certain noise lcvel, the tracker cannot
lock onto the instantaneous Doppler frequency. The term "drop-out” refers to a
condition in which the tracker is not locked onto the instantancous frequency of the
Doppler signal. The drop-out also arises in sparsely seeded flows (in high speed air
flows). Fortunately, when the tracker enters the drop-out condition, a protection
circuit of the tracker (sample and hold circuit) is used to lock the loop on the last
mcasured frequency and hold the frequency until a valid Doppler signal is retrieved.
Although continuous data output is recovered in this way, the ecrrors in the mean and
rms of the output are present as well as the missing of the high frcquency end of the
drop-out signal. Thesc errors are rcferred to as statistically biased errors.
Dcpending on the flow condition and measurement location, the velocity signal in
this study exhibits ecither the continuous condition with high frequency noise or the
drop-out condition. The drop-out signal generally arises in highly shcared regions
where the rapid transition between the jet stream and the cross strcam occurs.

The errors can be significantly rcduced by appropriate correction methods using
computer analysis. Sincc computers opcratc on discrete data points, the resulting
data can be weighted by the time duration which is held between successive Doppler
signals. The probability density function, autocorrelation and spcctrum analysis also
can be obtained by computer analysis.

The data acquisition system of this study consists of analog instrumcnts as well as
a digital system. The analog system includes an integrator, DC and rms voltmeters,
and a spectrum analyzer. The digital data acquisition system is composcd of a TSI

Model 1090 tracker processor., a DANTEC counter used solely for amplification and
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filtration, and a Zenith Z248 personal computer. The analog output of the tracker is
scnt to the computer which is equipped with an OMEGA WB-800 data acquisition A/D
board. The data acquisition rate is sct at 38 kHz. The number of data samples obtained
and stored at each flow location is 28,400. The data records, storcd on micro floppy
diskettes, are transferred to the main frame, IBM 3090 computer, for statistical
analysis.

As discussed in the previous scction, the desirable method in the LDV measure-
ment is to obtain the signal which is continuous in time. When the LDV is used in a
large scale wind tunnel, or the speed of interest is sufficiently high, the amount of
particle sceding in the flow rcquired for continuous scattering becomes pro-
hibitively large. In addition, the inhercnt noisc problems in LDV applications make
it difficult to obtain a continuous velocity signal. Another limiting factor, usually
arising in the statistical mcasurcments, is the storage limit of the currently available
data acquisition system.  This scction describes the mathematical development and
calculation mecthods of statistical paramcters, with considerations of the signal drop-
out and storage limit.

The moments of the instantancous vclocities are calculated by statistical analysis.
The straight arithmetic averages of the moment calculations provide sufficiently
accurate results when the sampled data are wuniformly distributed in time.
Practically, this uniform distribution is difficult to obtain. The main obstacle to this
is the signal drop-out and velocity bias. Therefore, two types of corrcction methods
arc introduced, the resident time weighting for the signal drop-out and the velocity
bias correction for the velocity bias. In the first method, the individual realization of
thc ith sampled data V; is wecighted by the resident time At, of the realization V;. The
resident time referred to here is the time which the tracker (sample and hold circuit)
holds one valid Doppler signal until a new valid signal is rctrieved. The wecighting is

automatically achieved by selecting the sampling rate less than the drop-out period.
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The wvelocity bias arises due to the proportionality of particle flux through the mca-
surcment volume to the instantancous vclocity.  This fact can be casily visualized
from the mass conservation of particles. This gives rise to a statistical bias towards
higher velocities. Therefore, the correction factor must be the inverse of the
velocity.

If V; is the instantaneous velocity and N the number of samples taken, then the

corrected forms of the moment calculations are as follows:

Mcan=-—:—“§-——‘—‘ (11

. ( ) 172
RMS LV - VI W, (12)
=™NwW,
. —\3
Skewness = Ee (V"' viw, (13)
ojztl wl
)
Flatness = i V'N_ VI W, (14)
0“}:,‘;,W,

where Wi is the velocity bias correction function represented by W, ={V|'. V is the
mcan velocity, and ¢ is the rms velocity (standard deviation).  Discrepancics between
the corrected and uncorrected averages are quantified to be a maximum 4% in the
mcan velocity and 7% in the rms vclocity for the turbulent fluctuations up to 20%
One further considecration in recgard to the moment calculations is what sample
size and sampling ratc (samples per sccond here) provide acceptable accuracy and
minimize the computational cffort. The optimization of the sample size and the

sampling rate is csscntial duc to the storage limit of current data acquisition system.
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Yanta and Smith(27) provided the approximate solution to the question of hov; many
data are nccessary o obtain good statistical paramecters. Their analysis is based on
the assumption that the turbulence is Gaussian (i.e. isotropic turbulence). One
intecresting result of their analysis is that the number of data points required is
dependent upon the local flow conditions, i.e. the local turbulence intensity.  For
cxample, with 20% turbulence intensity, more than 1600 samples are required for
95% confidence limit and less than 1% crror in the mcan valuc. A similar analysis by
Batcs and Hughs(27) showed that the mecan, rms, skewness and flainess are mainly
dcpendent on the sample size and weakly dependent on the sampling rate.  The
analysis of this study on sample size and sampling rate requircments is based on
these two previous studics, but is quantified by preliminary tesis.

The cffects of sample size on the mean, rms, skewness and flainess values are
shown in Figure 3 for R = 2 at onc specific point (x/D=4, y/D = 6 and z/D = 0). The
sampling rate is fixed at 2 kHz for all quantitics. As can be seen from the figure, no
appreciablc variations appcar in thc mean velocity and turbulence intensity curves.
The variation of the mean velocity as N increases from 200 to 5200 is not noticcable
and the corresponding variation of turbulence intensity is at most 0.37% (rms varia-
ton about the average turbulence intensity from N = 200 to 5200). A sample size N =
103 is used for the subsequent calculations of mecan velocitics and turbulence inten-
sitics. The errors are expected to be less than 5% for both quantitics.

On the other hand. the skewness and the flatness factors only tend to converge
with a sufficiently large sample size (N > 3000), and the scatter in both quantitics
dccrcases as the sample size increases. In view of this rcsult, the sample size, N =
2560, which is usced for the skewness and flatness factors, may not be sufficiently

large cnough to obtain highly accurate results,
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Since the LDV system is a one-component measurement, the Reynolds stress is
calculated by averaging the projections of the velocity fluctuations in a plane. If the
axis of LDA Optics rotates, for example in the x-y plane, to 0, + «, and -a degrces with
respect to the x-axis at a point, the three components of the Reynolds stresses can be

cxpressed as

u? =u§ (15)
o= uly +u_§a_ i ;gcos2 (+ o) + cos? (- a)

sin2(+ o) + sin® (-a) sin2(+ o) + sin’ (- o) (16)
= 1_{: uig -uly

2 [cos (+ a) sin (+ a) + cos(-a) sin(-a) (17)

Other components of the Rcynolds stress can be obtained by projecting the instanta-
ncous velocity components in their planes.

The calculations are executed on the IBM 3090 main frame computer after data
transfer has been completed. One of the primary motivations for these statistical
mcasurcments is the acquisition of turbulent scale information. A method is devised
to overcome obstacles due to Ilimited storage space available and the existence of
pcriods of the signal drop-out.

The autocorrelation functions are first calculated. The autocorrelation function
of thc longitudinal velocity component at a delay time, 1, 1s customarily defined as:

R(1)=—HU_

“in—1n2
u2  u? (18)
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where u = u(x,y, =, t) and u = u(x,y,=, t + At). The overbar in this cquation dcnotcs the
time average. The autocorrelation function can be evaluated by computer analysis
for each delay time, 1 = mAt withm =0, £ 1, + 2, ..., +M, using the data samples of u(t)

corresponding 10 t = nAtwithn=0,%1, %2, ., Nor

N-M-1
R(ma)=—1 ¥ u(natu((n + m)ay) for jm{< M
N-2M ,m (19)

where N is the total number of velocity samples and the time delay is t = mAt In
general, the sample time, (N - 1)At, musi be at least an order of magnitude greater
than both the longest time scale of the flowfield and the maximum declay time, tTmax =
(M-1)At. The estimated error is proportional to N-1/2 as N becomes large. However,
for N = IM, and I 2 3, there exists an efficient algorithm to calculate the autocorrela-
tion function based on a Fast Fourier Transform (FFT) analysis.

The longitudinal integral scale is a convenient measure of the linear extent of the

rcgion within which velocities are appreciably correlated.  Mathematically:

L=I f(r)dr
0 (20)

where f(r) is the longitudinal velocity correlation coefficient.  When the longitudi-
nal correlation coefficient cannot be directly obtained by a onc-component meca-
surcment system, the integral length scale is conventionally calculated using the
Taylor's hypothesis. By rewriting the Eq. 20 in terms of the autocorrelation cocffi-

cicnt, R(tr), we obtain:

L=UCJ R(1)dr
0 (21)
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where Uc is the local mean velocity. Typically the upper limit is chosen at the value
of © where R(t) first crosses the t axis.

The Taylor microscale is graphically obtained from the longitudinal correlation
cocfficient by fitting a parabola near the origin of the coefficient. The Taylor
microscale approximately represents the eddy size where dissipation of turbulent
kinctic energy is most effective by expanding f(r) in a Taylor scries, and by taking
into account the symmetry of f(r) with respect to r, the behavior of f(r) in the

ncighborhood of the origin is expressed as:

f(r)=1+1—|2[a—2f]' - o)
2 ot (22)

It is common practice to define a length A for very small value of r as:

f() = 1-12
A (23)

The length scale At is called the Taylor microscale:

A 2 ar? (24)

or in terms of R(r):

A2 2 a? (25)

Expcrimentally, the Taylor microscale is obtained from this cquation by numerically

fiting the parabola near the origin of the curve.
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The power spectral density function of time historic records representing a
stationary random process can be defined by the Fourier transform of the corrcla-

tion function. The Fourier transform of the autocorrclation function can be written

as:
s =1L J R(t)e 2% dt
2r J_ (26)
Then, S(f) is called the auto-spectral density function. The auto-spectiral dcensity

function is accomplished via a Digital Fourier Transform (DFT) originally developed
by Cooley and Tukey(28). The computer algorithm computing the DFT is availablc
from the IMSL (International Mathematics and Scientific Language) subroutine codec.
This algorithm is especially applicable in cases of poor signal-to-noise ratio and
periods of signal drop-out, such as is common in sparsely sccded airflows. The
number of calculations required is significantly reduced when the input number of
autocorrclation time steps M is represented by M = 2P where P is any integer from M2
to M log M. The delay time step At and the maximum time dclay tmax are related to
the maximum frequency fpax (called the Nyquist cut-off frcquency) and the

frequency interval Af:

at=—1_and Tmax = —1— .
2fmax 2Af 27)

In the present study, the autocorrelation functions are first calculated for a
number of time steps M equal to 256 with the same delay time interval At as the
vclocity sample time interval At (At = At = 0.2 msec).

Examples of the autocorrelation functions using the two different approaches, the

conventional averaging technique and the direct transform mecthod(29), arc shown
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in Figure 4. Results are presented for I = 10 and 40 (I = N/M). Note that the
correlation curves become more closely aligned as I increases.

Of principal interest in this investigation, preliminary tests of length scales
dcpendent on the sample size and on the calculation methods of autocorrelation
functions are made. A comparison of the integral and Taylor microscales is pre-
scnted in Figure 5 for I from 3 to 50. Several observations arc appropriate. The
dircct transform method yields length scale values which are consistently less than
those from the averaging approach. This is true for both the integral and Taylor
microscales. Second, there is considerably more scatter in the computational results
for the integral scale than for the microscale. One explanation for this second
observation may arise in the graphical calculation of the Taylor microscale.
Although a more accurate value of the Taylor microscale can be obtained with the
usc of a more fine scale of the delay time, a certain amount of error is included in the
Taylor microscale calculations. This may overwhelm the actual variations of the
Taylor microscales between two different methods. Third, the direct transform
mcthod yields a more accurate integral length scale than the averaging method
when a smaller number of samples is used (I < 20).

The near-exit plane mean velocity profiles of the jet flowfield are presented in
Fig. 6 for R = 2 and R = 4. The turbulent intensities v/V; are equal to 5.0% for the
lower value of R and equal to 1.4% for the higher value. Although not described
here, the autospectra of the jet exit field did not exhibit a potential core behavior for

R=2
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Fig. 6 Free Jet Mean Velocity Profiles at y/D = 1.0 and x/D = 0.0.

The velocity-ratio values are achieved by adjustment of the compressed-air-linc
pressure regulator on the jet flow system while keeping the tunncl flow fixed at 9.5
m/s. The assumption of symmetry of the entire flowficld about the plane z = 0 was
also validated. In the work presented here, all of the expcrimental data were

obtained in the plane of symmetry.
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The details of the LDA setup are as follows:
Beam-intersection angle, 8 = 7.25 deg
Fringe spacing, df =5 pm
Probc-volume diameter, dpy = 0.25 mm
Probe-volume length, lpy = 3.6 mm
He-Ne laser rated at 15 mW, Ajzser = 632.8 nm.

The jet stream and the freestream are seeded with olive-oil particles using an
acrosol generator. The mean oil-droplet diameter is estimated to range from 0.8 - 3.0
pum,

The difficulty in obtaining reliable mcasurements of small scale turbulence has
been discussed by previous investigators.  Tennckes and Wyngaard(31) discussed
signal-to-noise and integration time limitations that make measurements of moments
grcater than the fourth difficult for large Reynolds number flows.  Frenkiel and
Klebanoff(32) discussed effects such as averaging intervals and convergent tails of
thc probability density functions. Champagne(33) discussed the credibility of the
rcsults of previous investigators and devised three important criteria for the elimi-
nation of results. If the length of the sensors is much greater than the Kolmogorov
microscale, or the low pass filter setting is equal to or less than the Kolmogorov fre-
quency, then the data are suspect. Additionally, inadequate averaging time results in
cxcessive scatter.  Antonia, Satyaprakash, and Hussain(34) considered two further
points which were the closure of the tails of the probability density functions and

the effect of Taylor's hypothesis.

Spatial luti
The spatial resolution of the scnsor is clearly important to the study of the fine

structure. The ratio of length lpv(=3.6mm) to diameter dpv (=0.25mm) is 14.4. The

Kolmogorov scales measured ranged from nmin(=0.17 mm) to Mmax (=1.01lmm). The

28




idcal sensor would require Ipv/m < 1, and dpv /q < 1. In the present investigation
lpv/m = 21 and dpv /n = 1.5. The correctional approach of Schedvin, Stegen, and

Gibson(35) was not used. This is in agreement with the work by Antonia et al.(34),

Cut-off frequency

The cut-off frequency setting for the DANTEC filters was dectermined at each meca-
surcment location. It was initially set arbitrarily equal to a frequency typically
twice the upper limit of the spectral content of ujy. The spectral density, ®, obtaincd
using a real-time spectrum analyzer was first displayed on the built-in oscilloscope
of the analyzer to determine fc visually as described by Antonia ct al.(34). For the

precsent experimental conditions, it was found that for all flow ficld locations, the

value of fc was slightly greater than 1.5 f.

I { T
To reach a stable value for higher orders of moment requires a longer intcgration

time(33).  Tennckes and Lumley(36) estimated this time by the rclation:

.

u
w2=2 ___1_ -1 I_n

n T (25)
(U1 )2

T

2 is thc mcan squarc rclative crror of Y1 | T is the total record derivation and

where w

: : : .n _n
[,, is thc integral time scale of (E u, ‘“1) , defined as:

n

Sozft)yzf{t+ 1) dt

)
#
N H._.

(29)

= ]
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Srcenivasan, Chambers, and Antonia(37) have approximated the reduction in In as n

incrcases as

In
TT = 0.82-0.07n (30)

In the present investigation, T ( = 0.738 sec) was fixed, selecting an upperbound on

TU
thc Kolmogorov microscale i (=1 x 10‘5m) and Ll =1x 103) (where L, is a

o

characteristic transverse distance) and assuming a longitudinal mean velocity U; (=

10m/scc), then the mean square relative error for the flatness of the velocity
derivative was less than 2%. The mean square error of the skewness was similarly

cstimated to be less than 1%.

Convergence of p.d.f,

.M ]
The average value of u; can be written as:

i T T
u; =u; p(updu (31)

where the probability density function:

Jp(dl)ddl= 1 (32)

Carcful attention must be paid to the close of the probability density function tails.

‘n . 3 . .
Valucs of u were computed dircctly from the digital record and also using the prob-

ability density function. The visual curve fits yielded results within 20% of the valuc

obtained from the digital record. Closure of the tails of p(u'l) was reasonable even at
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n = 6, thus indicating that the dynamic range of the signal proccssing cquipment was

satisfactory.

Effect of Tavlor's hypotheses
Champagne(33) applied corrections to several statistics of u duc to the effect of a
fluctuating convection velocity on Taylor's hypotheses. An over estimate of the

mcan dissipation for flow locations with high turbulence results because:

2
2 2 [du, Up  2(uy +u;
o) [ T o

The use of this formula in the present experimental investigation indicutes that

du |2
Ixt is underestimated by about 2%. Antonia, Phan-Thien and Chambers(26) have
'

discussed the assumptions underlying eq. (33) and concluded that since little is

known about du;/dx, statistics of du;/dx; formed by decoupling d, by Uj + uj may be

preferred.  Antonia ct al.(26) found that:

2 4 (34)

2
Application of this formula to the present mecasurcment indicates that ‘3& is undcr-
Xy

cstimatcd by about 2%.  Antonia, Phan-Thicn, and Chambers(26) noted that further

work was required before a choice could be made between eqns. (33) and (34). Prior

to such an investigation, no corrcctions have been made in the present work to

cither second or higher order increments as suggested by Antonia ct al.(26)
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Other Comments on Errors

The measurements and resilts presented in this study are mcaningless without an
cstimate of the errors involved. The ANSI/ASME(38) procedure for calculating and
rcporting measurement uncertainty is followed here.

Errors are divided into thrce categorics: calibration errors, data acquisition
crrors and data rcduction errors. For each source of error there are a bias and a pre-
cision component. A bias error is a constant or systematic error present for the
duration of the test. Precision error is random error; ihc mecasure of precision error
is the statistic sample standard deviation. Error values are estimated from manufac-
turcr's literature, by comparison of error estimates of similar cquipment, by experi-
mcntation and by the author's judgement. Estimates of the various componcnts of
crror arc indicated in Table 1.

The total bias and precision errors are caiculated by the root-sum-square method:

1/2
B=(B2+ B+ B2 = 0.0526 vols (35)
1/2
P=(p] + P} + P})

0.0247 volts (36)

The final uncertainty, w, is obtained by combining bias and precision ecrrors. The

95% confidence level interval(38) is given by:
2 1/2
vss =(B% + (tPY) (37)

Herc, t is the student-t value and is a function of the number of degrees of frcedom
uscd in calculating P. For precision indices associated with electronic equipment(38),

a large number of degrees of freedom justifies choosing t as 2.0 or:
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wes =[(0.0526 + (2(0.0247)P]' " (38)

= 0.0722 volts = 0.36 m/sec (39)

A velocitly measurement may, therefore, be expected with a 95% confidence level to
lie within +0.36 m/sec of the experimentally obtained value. For the range of veloc-
ity values obtained in this study, this corresponds to between 13.6 and 3.40 percent

error, maximum.
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Table 1.

Sources of Error.

CALIBRATION ERROR
Calibration I Bias Limit | Precision Index
( volts) (£ volts)
Excitation voltage B11 =0.0010 P11 = 0.0010
Tracker B21 = 0.0500 P21 = 0.0200
A/D converter B31 = 0.0020 P31 = 0.0010
12
B, =[B2“ + an + 823,] = 0.0501 volts
172
P, =[P}, + P + P4y) = 0.0201 volts
DATA A ISITION ERROR
Error Source Bias Limit Precision Index
(£ volts) (£ volts)
Frcquency shifter B12 = 0.0100 P12 = 0.0050
Excitation voltage B22 = 0.0050 P22 = 0.0050
Tracker B32 = 0.0100 P32 = 0.0050
A/D converter B4z = 0.0020 P42 = 0.0020
Atmospheric conditions Bs2 = 0.0000 P52 = 0.0050
Positioning error Bg2 = 0.0000 Pg2 = 0.0100
Vclocity bias error B7; = 0'0050 Py = 0'0000
By=|Bl, + Boy+ ... + Byg = 0.0159 volts
112
Py=[P2y+ Pyt ..+ Pyl = 0.0143 volis
DATA REDUCTION ERROR
Error Source Bias Limit Precision Index
(x volts) (+ volts)
Computer resolution | B13 = 0.0020 | P13 = 0.0000
B3 = 0.0020
P3 = 0.0000
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MATHEMATICAL MODEL

The flow configuration is such that appreciable variations in the transported
quantitics such as velocity, temperature, and species arise in all these coordinatc
directions. It is thus necessary to solve the fully three-dimensional forms of the
partial differential conservation equations for mass, momentum and cnergy of
species concentration.  Most current turbulence models rely on the solution of the
so-called Reynolds time-averaged equations in which the depcendent variables arc
dccomposed into time-averaged and fluctuating components.

In Cartesian tensor notation, the time-averaged equations of continuity, momen-

tum, and specics concentration describing a steady, three-dimensional flow may be

written as:
—@—(PUi)=0
9x; (40)
d d d —
— U'Ui=-—2+—- Ui
2% (P i ) x; axj( pu;u;) @
2 (pUQ)= 2= (- piic)
X Jxj 42)

where p is the density, p is the static pressure, u and ¢ are the fluctuating compo-
nents of velocity and concentration, respectively, and U and C arc thc corresponding
lime-mean values. In the flow under consideration, molecular diffusion effects are
very small compared to turbulent ones, and thus all laminar diffusion coefficients
arc ncglected.

Thc time-averaged equations are exact, since no assumptions have been intro-
duced in their derivation. However, they cannot be solved in this form, because the

ncw stress and flux terms (- puu; and - puic) arising from the turbulent motion-

bccome additional unknowns. Accordingly, additional assumptions regarding the
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rclationship between the turbulent stresses and fluxes and the time mean variables
must be incorporated into the turbulence model. Compilations and applications of
various turbulence modeling techniques may be found in the technical
literature(6)-(9),

In the k-e¢ model, the Reynolds stresses are related to mean straight rate via the

Boussinesq eddy viscosity concept:

U, , U;
ox;  0x;

- pujuj = u{ - %Psijk

(43)

where p is the turbulent or eddy viscosity and k (=0;ui/2) is the turbulent kinetic

cncrgy, and 5ij is the Kronecker delta. The term %—Pk can be thought of as the addi-

tional pressure resulting from turbulent motion. The heat or mass flux term is
obtained wusing the Reynolds analogy between momentum transport and energy or

mass transport:

-pug = X
9% (44)

where o, is the turbulent Prandtl or Schmidt number. The o, is the ratio of turbulent

diffusion coecfficient of heat or mass transport to the corresponding momentum

transport.

The system is not closed until an expression of the eddy viscosity u; is specified.

Kolmogorov(1®) suggesied in the 1940s that the eddy viscosity can be evaluated as:
12
e = CupLk (45)

where Cyy is an empirical constant and L is a characteristic length scale. The flow sit-
uvation undcr consideration is such that an algebraic expression prescribing the
lcngth scale, as in the mixing length model or its modified version, is not adequate to

properly simulate the complexitiecs of the flow structure. Although a transport equa-
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tion can be derived for a length scale, the equation is difficult to model and interpret
physically. The proven applicability of the two-equation model k-¢ modecl stems from
the successful choice of length scale as L = Cuk3/2/e. The transport cquations for the
kinetic energy k and its dissipation rate € are derived from the Navier-Stokes equa-
tions.

The k-¢e model has been shown to provide appreciably better universality than
lower order model, where the higher order closure schemes (the Reynolds stress
model) appear at the moment to be insufficiently well developed to prove supcrior
ecven for two-dimensional flows. It is the purpose of the computational portion of
this study to apply and test the k-¢ model to the prediction of the present complex
three-dimensional situation. The standard version of the k-¢ model proposed by
Launder and Spalding(®) is used for the calculation procedure.

After few mathematical manipulations, the governing equations may be wrilten

in the following general forms:

J 3 [ 90
axj(p ) axj( ® ax;

+S°

(46)

Equations for continuity, momentum, species conccntration, turbulent Kkinetic

cnergy, and dissipation rate of turbulent kinetic energy are presented in Table 2 in

terms of a general dependent variable @, a diffusion coefficient T'y, and a source term
So-

Table 2: The Governing Equations

< I'd So
1 0 0
Ui, i=123 ™ ] aaTPI*a_gj(“‘ %_l%)
C ui/oy 0
k Ki/ok G- pe
2 Hi/O¢ (e/k)(c1G - c2p¢)
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where P = p + %—Pk

G =, [2U1L 4 2U1|3U;
an aXl an

and p, = Cypk?2/e
Cu=0.09,01=09,c1 =144
¢2=192, 0k =10,0¢ =13

The flow geometry under study and coordinate system are shown in Figure 1. The
flow is symmetric about a vertical plane passing through the center of the jet. The
calculations are therefore performed for a rectangular domain, one side of which
corrcsponds to this symmetric plane. Computational results are obtained using a
rcvision of the SIMPLER (Semi-Implicit Methods for Pressure-Linked Equations)
algorithm. The detailed description of the algorithm is available(7), and thus only the
important features of the procedure are described.

The first step of the solution procedure is the derivation of the finite-difference
forms of governing equations. The finite-difference equations are first formulated
by intcgrating the time-averaged equations over a small control volume surrounding
cach grid point, along with suitable assumptions about the distribution of the depen-
dent variables between grid points. The combined effects of the convection and
diffusion between grid points will be handled by the power-law scheme. The method
is formulated in terms of staggered grid arrangements, in which the pressure and
othcr variables arc storcd in the main grid points and the velocitics in staggercd
locations. A two-dimensional view of staggered grid layout is shown in Figure 7. A
corrcsponding three-dimensional grid pattern can be easily visualized in a similar
manncr. The staggered arrangement is necessary to avoid checkerboard pressure

and velocity fields.
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As a result, the general form of the finite-difference equations for scalar vari-

ables derived at the main grid point P may be written as:
apdp = ag®E + awdw + aNON + a§dS + aTdT + aPB + b (47)

with:
ag = DeA([Pe |) + [[- Fe, 011,
aw = DwA(Pw ) + [[Fw, 0]],
aN = DpA(IPy ) + ([- Fq, 0],
a§ = DsA(IPg)) + [[Fs, 011,
aT = DIA(IPt|) + [[- Fy, 011,
aB = DpA(IPp ) + [[Fp, 0]},
b = ScAxAyAz,

ap = aE + aw + aN + a§ + aT + aB - SpAxAyAz (48)

where ®p represents the general dependent variables, a's are the coefficients result-
ing from the combined convection and diffusion effects, and b is the source term
containing all terms except the convection and diffusion terms. The upper case sub-
scripts E, W, N, S, T and B refer to the neighborhood grid points around the main grid
point P, named by east, west, north, south, top and bottom ncighbor, respectively.
The lower case subscripts are the corresponding control volume faces. The doublc

bracket ([a, b]] is a speccial notation to denote the greater of a and b. The Peclet

number Pe, which is the ratio of convection to diffusion rate, is given by:

Pez.Ei
D, (49)
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where Fe is the flow rate (pU)eAe at the control volume face &€ with an area Ae, and De

is the diffusion conductance given by:

3
I
o
&

>
>
~

(50)

where (Ax)e is the control volume distance associated with the control volume face e.
The term A(IP|) is the general notation categorizing various convection-diffusion
schemes, such as upwind, central, hybrid, power-law, and exponential scheme. In

the power-law scheme, the A( IP|) may be expressed as:

A(IPe ) = [[0, (1-0.1 [Pe 1)3]] (51)

Here again the double bracket [[ , ]] is a notation which takes the larger value of the
two in the bracket. The power-law scheme provides a more realistic distribution of a
convection-diffusion profile between two grid points than any other schemes except
thc cxponential scheme. The exponential scheme, however, requires more computa-
tional time than any other convection-diffusion scheme. Notice further the source
tcrms Sc and Sp. The source term S¢, originally defined in the derivation of the
general form of the governing equation, is further divided into two parts such as S¢
= SC + Sp®p. The SC is the constant part of S¢, while Sp is the coefficient of ®p. The
cocfficient term Sp must be always less than or equal to zero to satisfy the stability
rcquirement of the numerical scheme.

The finite-difference equations for the momentum equations are derived in a
manner analogous to those of scalar variables, but they are formulated at the
staggered locations.  Special attention, however, is required for the pressure terms.

Notc that there is no exact equation expressing the pressure term. Focusing on U
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Figurc 7: Grid Arrangement; (a) two-dimensional view of staggered grid layout. (b)
one dimensional grid clustered for grid point P.
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only and explicitly separating the pressure gradient from the source term, b, the
rcsulting  finite-difference equation of U derived at the control volume face e can be

written  as:
agUe = 2 anpUnb + b + (pp - PE) Ae (52)

where the summation term, X appUpp. denotes the sum of the neighbor terms of Ue.
The momentum equation can be solved only when the pressure field is provided.
Unless the correct pressure field is employed, the resulting velocity field will not
satisfy the continuity equation. This problem is handled by successive iterations
with an appropriate correction to the velocity field at each iteration step. A few steps
of this iteration scheme will be developed.

The imperfect velocity field based on a trial pressure field (will be denoted by p')

rcsults from the solution of the following equation:

acUs = ZamUns + b + (p; - PEJA. (53)

Thc problem is now to find an appropriate correction formula to this imperfect
velocity field such that the imperfect velocities in successive iterations converge,
and this solution will ultimately satisfy the continuity equation. Suppose that the

trial pressure field can be corrected by a pressure correction p' as:
p=p*+p (54)
and next the velocity field is corrected by a velocity correction U;:

U.=U, + U, (55)
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Then, the relation between the pressure correction and the velocity correction can

be obtained by subtracting:

a.Ue = ZagUny + (Pp - pE)Ae (56)

The final form of the velocity correction formula is obtained by temporarily

dropping the term, ):a-,,.,U'n.,, from this equation and by replacing U'e:

U = U +ddp} - pi) (57)

where de = Ae/ae. Though not prcsented here, the correction formula for the vcloc-
ity components in other directions can be obtained in a similar manner. Now,
having an expression for solving p’, the system of solution scheme is esser‘ially
complete.

The p' equiation is derived by substituting velocity corrections for all vclocity
components into the continuity equation. The p' equation is called the pressure

corrcction equation and given by:

app;,=2anbp',,b+b (58)

where:
b={pU"A), - (U Ak + (pV'A), - (V" A), + (W A}, - (oW'A) (59)

If b in this equation is zcro, the starred velocities satisfy the continuity equation and

itcration terminates.  The term b thus represents a "mass source”, indicating the
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cxtent to which the velocity field does not satisfy mass conservation considcrations at
a particular iteration stage.

The solution procedures introduced up to this point are the basic algorithm of the
SIMPLE methods. In an attempt to improve the rate of convergence, a revised ver-
sion of SIMPLE (called SIMPLER) is more effectively worked out(?). SIMPLER con-
tinues to use the pressure correction equation, but employs a scparate pressure
cquation to more effectively predict the pressure ficld than does the SIMPLE method.
The motivation for this arises from the rather exaggerated velocity corrections
which are obtained by omitting the term XanbU',,b when the p' equation is derived.

Introducing a velocity ac (called the "pseudo velocity") by:

G = ZagyUpp + b
¢ a. (60)

thc momentum equation for Ue can be rewritten as:

Ue= U, + de(pp - PE) (61)

where de = Ae/ae. In a manner analogous to the development of the pressure cor-

rcction equation. the final form of the pressure equation may be written:

apPp = Zappppy + b (62)

where:

b= (pﬁA)w - (pGA)e + (pQA), - (pQA)n + (pV’\\IAL - (p\?'A). (63)

44




The pressure field from this equation is a direct consequence of thc given vclocity
ficld, and thus the convergence is faster than any other solution proccdure contain-
ing only thc pressurc corrcction cquation.

All of the equations needed for obtaining velocities, pressure and other scalar
vaniables have been developed. The iteration procedures are now summarized. The
finitc-difference equations are solved by line-by-line iterations in which all the
variables along a line are simultaneously solved with temporarily fixed variables
lying off the line. The pressure ficld is first calculated, using an initially guesscd or
given velocity field from the previous iteration step. Then, an intermediate velocity
ficld (starred velocities) is obtained from the momentum equation. This velocity ficld
is once again connected to the continuity equation to obtain the pressure correction
cquation.  This velccity field, in general, does not satisfy the continuity equation.
Thercfore, corrections to the velocity field are made until the latter solution satisfics
both the momentum equations and the continuity equation.

The governing cquations appropriate to the present flow configuration required
boundary conditions for the dependent variables on all of the boundary surfaces of
the solution domain. The boundaries are the inlet plane of thc cross stream, the
downstrcam plane, one symmetric planc passing through the center of the jet, onc
side wall, and two confining plates. Whenever the velocity is specified at a boundary,
thc boundary condition for the pressure is not nccessary, becausc only the relative
magnitude of pressure force plays a role in the momentum ecquations.

The upstream boundary conditions are prescribed, as far as possible, from the
cxperimental measurements.  These data include the x-component mean velocity, the
turbulent kinetic energy, and the length scale. At the symmetric plane, Neumann
boundary conditions are applicd, i.c., the normal gradicnts of all variables except the
normal velocity component arc taken to be zero. The normal velocity is set 1o zero (W

= {}).




At the downstream plane the gradients of all dcpendent variables in the x-direc-
tion are equal to zero. These conditions may not correspond ' thosc prevailing in
thc rcal flow. The conditions are satisfactory only when the fully developed profile
assumptions of the variables are valid. This requiremcnt lucates the beundary
unnccessarily far downstream (for example, x/D > 100 with R = 6). Practically, the
boundary location is adjusted such that the specified boundary conditions, which in a
certain range differ from the fully-developed conditions, have negligible influence
in the rcgion of interest. For the variations of all dependent variables less than 1%,
the conditions are achieved by computational trials, approximately at x/D = 24 for R =
2, x/D=32forR=4, and x/D = 48 for R = 6.

The boundary conditions on the walls require special considerations. This is
primarily due to the significant effects of molecular viscosity. Note that the two-
cquation model of turbulence previously introduced has neglected the molecular
viscosity.  The neglect of molecular viscosity is valid only in the fully turbulent
rcgions. A two-layer model of the wall function method proposed by Launder and
Spalding(®) is utilized in the present computational study. Usual no-slip conditions
arc still valid for the convection fluxes. For the two velocity components parallel to

the wall, the diffusion fluxes are patched onto the wall law profiles:

Her=p if y" <115 (64)
and:
I O A S N §
(1/x )1 n(Ey+) (65)

where x is the Von-Karman coustant (= 0.41) and E is another constant with a value of
9.0. The y+ is the normalized distance of the first internal grid point from the wall,

dcfincd by:
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172.1/4
+= ok “Ct YL
y =¢ o (66)

where yy is the actual distance of the grid from the wall. Because of the considerable

variations of turbulent quantities near the wall, the mean gencration ratc G and the
mcan dissipation rate € of the turbulent kinetic energy appearing in the governing
turbulent kinetic equation (Table 2) are evaluated using the profile assumptions of
the turbulent quantities near the wall cell.

All of the dependent variables also must be specified at the jet exit plane. The
half-circular nozzle, .however. is modified by the rectangular cells in the Cartesian
coordinate system (Figure 8). The cell surface arecas are adjusted such that the spec-
ificd jet velocity provides the correct mass flux through the surface. In order 1o
investigate the influence of the jet boundary conditions on the computed results, two
different profiles are tested as the jet field initial conditions for R = 2 and 4. The first
is the uniform profile (top hat shape in Figure 9), characterizing the flow exiting a
contraction/nozzle arrangement. The second profile maintains the same momentum
flux, but is skewed downstream.

The velocity and species concentration profiles used for the sccond condition arc
from the measurements by Andreopoulos(39.40)  His measurements revealed that the
jet stream at the exit plane is distorted due to the pressure gradients across the planc
and the distortion incrcases as the velocity ratio R decreases. Figure 10 shows the
longitudinal mean velocity profiles nondimensionalized with the free stream value,
U/Ug, plotted versus vertical distance. The maximum deviation of U/Ug between two
conditions at x/D = 0.0 is at most 6% for both velocity ratios. Afier x/D > 2, thcre are
cssentially ncgligible diffcrences between profiles with two different boundary
conditions. Though not dcpicted here, the same observations are correct for the

profiles of the scalar concentration field.
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Figurc 8: Modification of the Half-Circular Nozzle by Rectangular Cells.
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Figurc 9: Mean Velocity and Temperaure Profiles at the Jet Exit Planc for R = 2.
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Onc conclusion reached from these observations is that only the total momentum
flux at the jet exit plane (not its profiles) is important for the devclopment of the
flow field downstream. Physically, this means that near the jet discharge the flow
ficld is not significantly influenced by viscous effects, so that the viscous diffusion
duc to the velocity gradients at the jet exit plane may be neglected. The first bound-
ary condition is chosen for the subsequent calculations because it is the simplest and
most generally used in computational situations. Particularly for the flow situation
under study, the realistic profile of the second condition is not expected to provide
apprcciably better results over the first, simpler one.

The bourdary conditions described above are tabulated in Table 3. In this table,
W(T/B) denotes the wall function applied both to the top and bottom walls, and W(S)
applicd to the side wall. At all grid points near the wall, the local equilibrium values
of the turbulent quantities replace the dissipation rate e, instead of solving it from
the transport equation. The equilibrium profile is given in the bottom right comer
in Table 3. The isotropic assumption is used for the boundary condition of the

turbulecnt kinetic energy at the upstrcam boundary plane.

Table 3: A Summary of Boundary Conditions

Upstream Downstream ] Symmetry Jet exit Walls
U Ug 3U/ax = 0 U/~ = 0 W(S), W(T/B) _
v 0 aV/ax = 0 Vo= = 0 W(S)
W 0 aW/ax = 0 0 \2 W(T/B)
C 0 3C/Ix =0 3C/a==0 1 JC/aN *
K (3/2)? 3k/ax = 0 k/a= = (1/2)vf) W(S), W(T/B)
e Jx*n0.065H) | aesox=0 | aepp-=0 | x**0sp) | (S Y eyn”

*Impermeable wall boundary condition
**.ocal cquilibrium profile specified on the grids ncarest thc wall

50




—— Boundary Condition !

—-=— Boundary Condition 2
6r -

Figurc 10:  Comparison of Mean Velocity U/Ug between two different Jet Exit
Boundary Conditions in the Plane of Symmetry; (a) R = 2; (b) R = 4.
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The computations are executed on an IBM 3090 at Louisiana State University. In
order to minimize the number of grid points to be used, nonuniform spacing is used
so that grid nodes could be clustered where rapid variations of dependent variables
arc expected. This means that fine grid spacing is used near the jet discharge, and an
incrcasingly larger grid spacing is used away from the discharge hole in all three
coordinate directions. The location of the grid line ncarest the wall is adjusted such
that all grid points on the line occur in the fully turbulent region (11 < y* < 300)
where the logarithmic wall law profiles are valid.

At cach iteration it is necessary to employ under-relaxation when solving the
algebraic, finite-difference equations (i.e., ® =Ap Ppnew + (1 - Ap)Pold). The number
of itcrations and the stability or divergence of the solutions are directly affecied by
thc value of the under-relaxation factor Ag. Typical values of A¢p used are App = 0.2 to
0.4 for the velocity components and Ag = 0.5 for all scalar variables. The iteration
icrminates when the normalized sum of the mass source with respect to inflow mass
flux (b in Eq. 4.30), which represents the deviation of the velocity ficld from the mass
conservation, is less than 10°3 and the variations of all dependent variables between
two successive iterations are less than 0.1%. A typical calculation using 20 x 15 x 15
points (x, y and z direction, respectively) required approximately 250 iterations and
14 minutes of CPU time.

Computer storage limitations in the 3-D calculation nccessitate the use of a rela-
tively coarse grid distribution. The actual variations of the dependent variables
between grid points in  the convection-diffusion problems exhibit an exponential
bechavior (power-law scheme represents this behavior). A truncalcd Taylor scrics in
an upwind or central difference scheme fails to be an adcquate representation of the
cxponential behavior except for finc grid size(7).  The powcr-law scheme adapted in
this work provides an acceptable reprcsentation of the cxponcential bchavior and

thercfore minimizes false diffusion. Demuren(8) provides estimation mcthods of false
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diffusion in 3-D calculations. @ However, for the present work, with the computer
storage available at this time, it is difficult to refine the finite-difference grid
furthcr. There are, however, indications that the results are grid dependent, as the
contour shapes are repeatable with a coarser grid size (15 x 10 x 10 in the x, y and z
dircctions, respectively) but the magnitude of, for example, the x-component of mcan

vclocity may vary up to 10%.
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RESULTS

The jet-to-cross-stream velocity ratios (R) investigated were 2 and 4. The spacing
between the parallel plates is fixed at 10 jet diameters and each side wall is located 15
jet diameters from the jet center. Figure 11 shows isocontour plots of the nondimen-
sionalized species concentration C/Cj in the plane of symmetry. The contours indi-
catc the extent of the penetration of the marked jet particles into the outer stream.
With the presentation of the isocontours, the line S of maximum maximorum (i.e.,
maximum of maximums) is identified. From this line, a qualitative representation of
th¢ flowfield is achieved including the extent of the jet deflection and the existence
of impingement. Note that impingement does not occur for R = 2. Total mean velocity
vectors in the plane of symmetry of ihc flowfield are shown in Figure 12. With R = 4,
significant upward motion continues farther downstream. For the case of R = 2, the
jet is dcflected downward near the jet discharge and more rapidly aligned with the
cross stream. Notc the wake regions in the outer flow immediately upstream and
downstream of the jet entrance.

The predicted isocontours of the scalar field at three transverse cross sections
downstream are presented in Figure 13 for both the velocity ratios of 2 an 4. The top
wall is not shown for R = 2. The results indicate that the diffusion characteristics of
the jct stream strongly depend on the velocity ratio. For the lower velocity ratio, the
jet is deflected rapidly by the influence of the cross-stream momentum. The jet

strcam is convected downstream and diffuses out in both the vertical and transverse

54




Figure 11: Dimensionless Scalar Field C/CJ- and Line of

x-y plane (z = 0): a) R = 2; and b) R =4,
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Figurc 12:  Mean Velocity Vectors in x - y plane:
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Figurc 13:  Scalar Field C/Cj in y - z Plane at several downstream locations: (a) R = 2:
and (b) R = 4,

Figurc 14:  Sircamwisc Component of Mean Velocity Contours, U/Uo in y-z Plane:
(a) R =2; and (b) R = 4.
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dircctions (y and z directions, respectively).  In the case of the higher velocity ratio,
the jet stream directly impinges on the opposite plate and diffuscs more rapidly in
the side direction (z direction). The kidney-shaped cross section of the jet is clearly
scen as the jet develops downstream. The point of the maximum scalar value occurs

on the top wall and along the centerline after the impingcment.

Figure 14 shows contours of the x-direction mean velocity in the y - z plancs at

two downstream locations. The velocity is nondimensionalized with the cross-stream
velocity,  In the initial region, the crossflow is accelerated around the edge of the jet
and produces a velocity maxima near-side of the jet discharge. In Figure 14, the jct
strcam gradually gains axial-direction momentum as it is convected downstrcam.
Notc that the cross stream is deflected sideways in the initial region. This cross
strcam then accelerates the jet stream from the edges of the jet cross section after the
jet is aligned with the cross stream.

As mentioned previously, a major fcature of a jet in a crossflow is the production
of the counter-rotating vortices, which are crcated by the shecar along the cdge of
the jet.  Numerical calculations of this study predict the vortex production (Fig. 15).
The streamwise component of mean vortices is calculated from the velocity vectors in

thc cross-section planes. Here, the vorticity is defined as follows:

_AW/U,) _AV/U,)
" dy/D)  Az/D) (67)

Only the vortices in the half-planec extending from the symmectric plane arc pre-
scntcd.  The opposite half-plane can bc visualized with an oppositc sign of the vortex
strength. The core of the vortex structure in each planc is scen to propagate towards
the upper surface as it is convected downstrcam.  The cross-scctional shape of the

vortcx structure secems to be similar to that of the scaiai ficld diawn in ihe same
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cross-section planes except for the wake formed near the bottom wall. It is
intcrcsting to note that the vortex structure still exists after the jet impinges on the
wall (Figure 15).

Two components of mean velocity are compared with experimental results at four
downstream locations in the x-y plane (Figs. 16 and 17). The results show that agree-
mcnt is generally fair. The main discrepancy, however, is the axial-direction veloc-
ity component U, especially in the upstream regions where the flow exhibits strong
anisotropy. The streamwise component velocity profiles both at R = 2 and R = 4
clcarly show wake behavior of the flow behind the jet and close to the wall. The
wakce region is induced by the backflow of the cross stream into the low-pressure
rcgion immediately downstream of the jet discharge. The wake region extends
downstrcam but "lifts off" from the lower wall due to the strong inflow of the cross
strcam towards thc symmctric plane. This inward motion carricd high-momentum
fluid from the cross stream to the symmetric plane. Therefore¢, the axial component
vclocity profiles gradually smooth out downstream.

Mcasurements of the turbulent distributions are presented in Fig. 18 for R = 4 at
four downstream locations in the x - y plane. The turbulent shear stress uv is com-
parcd with the calculation of the k - & model. Again the agreement is less in the
invi(iul rcgion. Moving downstrcam there is a tendency towards an isotropic flow and
thc agrecement improves. The position of the maximum uand uv profiles corresponds
approximately to the center of the jet cross section where the velocity gradients
dU/aX and dU/9Y arc maximum. The v profile maximum corrcsponds to the cdges of
the jet where 9V/3Y is maximum. Recalling from the turbulent and mean kinetic
cnergy equation, the maximum transfer energy from the mean flow to the turbulent
flow occurs when Ipu—EllaU—,/afﬂ is maximum. Thus, the turbulent intensitics which
arc an indication of the levei of turbulence will be a maximum when the Reynolds

stresscs and mean  velocity gradicnt are maximum.
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Figurc 15: Streamwise Componcnt of Mean Vorticity Contours, Q¢ =
[0(W/Ug)/d(y/D)] - [d(V/Up)/e(z/D)}: a) R=2; and b) R = 4.
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Figure 16: Comparison between Predicted Profiles and Experimental Data in x - y
plane at R = 2., mcasurement and -, prediction: (a) U/Ug; and (b) V/Vj.
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Estim; ¢

The dependence of the Rceynolds number Rey and order n of higher cven-order

n

p-! 2
du, &, : - .
moments > ! ||— for n = 2, 3, 4 is plotted in Figurc 19. Frenkicl and

Klcbanoff(32), using the propertics of the lognormal distribution, showed that:

N (68)

undcr the isotropic assumption that L/n _ Rcl3/2. The local slope of the cxperimental

distribution of Figurc 19 is proportional to p and thus the plots shown in Figurc 19

can be thought of as a possible method for determining p. Ninc scts of cxpcrimental

data are presented corresponding to different velocity ratios (lj = 1,2,4) and flow
locations (x/D = -2,4,8). A straight line has been fitted up to a value of n(n-1) log Rey
of approximately 20. The arithmetic average value of m is estimatcd to bc 0.38
obtaincd from a power curve fit with a cocfficient of corrclation equal to 0.95. It has
been suggested by Frenkiel et al.(32) and Antonia et al.(26) that the decrease of p with
n is universal for a given value of f. in the sense that it does not depend on the
particular flow.  The present data provide further support for this suggestion. A
comparison with the previous rcsults also indicates a slightly higher value of the

cven  order moments.
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Flow Locations.
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(b) Mean Velocity Ratio, XJ-=2.0
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(c) Mean Velocity Ratio, ).j=4.0
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The implications of these results are significant. First, thc magnitude of p for this
particular flow is quite close to the value originally predicted by Yaglom(14) (u = 0.4).
This value is considerably higher than the value proposed by Antonia ct al.(2%) (u =
0.2) and less than the estimate of Gibson et al.(25) (u = 0.5). Sccondly, the particular
flow field investigated in this work must be considered developing, rather than fully
devcloped. Hence, it would seem arguable that the fully devcloped restriction may be
rclaxed and the universal equilibrium theories may apply tc the necar-field problem

in turbulence, as well.

S| i FI F £ 1 Veloci Derivati

Flatness and skewness factors of duj/dt are presented in Table 4. Several general
obscrvations may be made. First, although the largest flatness valucs of skewncss are
found at larger flatness values, distributions with large flatness values appcar to be
cqually likely to have large or small values of skewness. The flatness valucs range
from 30 to 1000. These large flatness values indicate a higher than normal probabil-
ity of values far from the mecan, and the non-Gaussian nature of the derivatives is
cvident.  Predictions of the relationship between flatness and skewness predicted by
the lognormal model (S « K3/8) or by the B-model (K a 52) are not indicated by this
data.  The flatness is scen to increase monotonically with the turbulent Reynolds

number.

One-di ional

The one-dimensional cnergy spectra is Fi(ky) whose intcgral over all wavcnum-

2

bers is uy“.  Taylor's approximation in the form k; = 2r f/U; was uscd to transform the

frequency f to the wavenumber kg, thc x; component.  The spectra are presenied
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Table 4. Statistical Documentation for Various Velocity Ratios and Flow Locations.

Velocity Ratio, Aj = 4.0

X/D y/D t Vk lk € Rcl K S
(m) 1102  (m/s) x104 (m%/s3)
(m) (m)

+8 +1 .0626 .603 465 344 2929 260 335 -5.50
+2 .0741 .794 510 314 4218 407 228 -2.02

+4 .053 479 .453 .353 2637 181 245 -0.08

+6 .0323 .446 472 339 3100 178 285 -1.03

+8 .0544 .550 353 454 967 209 134 -2.10

+4 +1 .157 .905 761 210 20918 567 624 -2.06
+2 128 AR 740 216 18727 512 211 1.05

+4 .0944 .396 746 214 19351 114 1367 0.070

+6 438 1.25 495 323 3750 582 1002 0.065

+8 .0456 .431 .243 .658 218 63 199 0.085

-2 +1 .0659 .748 473 .338 3125 358 340 2.10
+2 .0913 11 344 465 873 197 199 1.06

+4 A77 .257 .184 871 713 22.1 664 (.95

+6 .0699 .286 .186 .860 75 24 .4 80.1 0.92

Velocity Ratio, Aj = 2.0
X/D y/D b Nr Vk lk € Rex K S
(m) x102  (m/s) xj04  (m%5sd)
(m) (m)

+8 +1 129 .694 .569 .281 6550 384 352 -2.05
+2 .0421 .543 .553 .289 5860 274 204 2.16

+4 .0438 .535 411 389 1790 243 105 -3.78
+8 0146  .199 .166 .965 47.15 15 39.6 -0.088

+4 +1 0178 .320 .595 .269 7853 158 119 -4.05
+2 .0283 .366 .587 272 7440 165 329 -5.47

+4 .0302 418 .288 .555 432 99.8 124  -4.56

+6 0126 210 172 930 54.7 17.2 52.3 0.075

+8 0132 .207 169 .948 50.77 16.7 33.7 0.011

-2 +1 130 735 518 309 4503 345 248 0.010
+2 .0887 .742 379 423 1283 262 322 -0.026
+4 .0188 239 158 1.01 39.2 17.2 37.9 -0.028
+6 .0243 228 175 916 58.3 18.9 419 -0.005
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Velocity Ratio, Aj = 1.0

X/D y/D 1 vk Ik £ Rey K S
(m) 102 (m/s) x104 (m?%s3)
(m) (m)

+4 +1 125 331 .996 161 61600 124 824 -4.5
+1.5  .184 1.04 .667 240 12300 714 503 2.3
+2 .0838 .827 .442 .362 2390 425 226 -1.8
+3 0241 376 .246 651 228 652 189 -1.95
+4 0214 278 .170 .943 51.8 243 43.6  -0.05

+2 +1 179 .552 .948 .169 50500 277 756 -2.05
+1.5  .303 681 .417 .383 1900 317 269 -1.55
+2 0722 .647 437 367 2276 326 185 -1.95
+3 .045 369 .216 .740 137 482 236 -1.95

-2 +1 0578 .588 .421 .380 1970 214 254 -0.75
+1.5  .0309 488 .392 410 1480 177 157 -1.12
+2 .0594 667 .391 408 1460 258 199 0.08
+3 0359 321 .189 .846 79.9 323 74.5 0.65
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here in Kolmogorov - normalized form, i.e., divided by (e v5)1/4, in Figure 20(a). The
valuc of the dissipation rate € was estimated from the sccond moment of the
dimensional spectra (Figure 20(b)) using the assumption of dissipative local isotropy,

or:
e = 15vde” k2 Fy(k)dk. (69)

Variation of the functions (nk)2 ®(nk), (nk)3/3 ®(nk) and (nk)* ®(nk) with Re, is

cxamined. The maximum values from each function are plotted against Rey in Figure

21 (a)-(c). Variation of these maximum values was found to vary with the logarithm

of Re,. For (nk)2 ®(nk), the relationship:
M = 0.0413logRe; - 0.0326 10<Re; <1000 (70)

was obtained, where M, denotes the maximum value of ('nk)2 ®(nk). The coefficient

of correlation for the curve is 0.96. For the function (nk)3/3 ®(nk), a similar rela-

tionship was found to be (M, is the maximum):

M, = 0.0856logRe, - 0.171 10<Re; <1000 (71)
2 A A

with a coefficient of correlation of 0.95. Finally, for (nk)4 & (nk), the variation

obtained was (M3 is the maximum):
Mj = 0.1009 - 0.0140logRey 10<Re; <150 (72)

with coefficient of corrclation 0.98. For values of Re;, greater than 150, the peak

valucs displayed a decreased dependence on Re,.
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Figure 20: (a) Example of Typical Nondimensionalized Energy Spectra for
Aj = 40 and x/D = 8.0 at various locations between the plates.
y/D = 1.0, Rey = 260; y/D = 2.0, Rey, = 407; y/D = 4.0, Re; = 189
y/D = 6.0, Rey = 178; y/D = 8.0, Re; = 209
(b) Examnles of Typical Nondimensionalized Dissipation Spectra for

Aj = 40 and x/D = 8.0 at various locations bctween the plates.
parison to Grid Flow Data, from Champagne (33)

y/D = 1.0, Re; = 260; y/D = 2.0, Re) =407; y/D = 4.0, Rej = 189
y/D = 6.0, Rey = 178; y/D = 8.0, Rey = 209

Com-
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Some comparisons with earlier studies can be made. Dissipation spectra from

Frcnkiel and Klebanoff(32) have been presented. For Re; = 60.8, they found the
maximum value of (nk)2 ®(nk) to be 0.22. For Re, = 45.2, the corresponding maximum

was 0.19. The correlation determined in this study, eq. (68), would predict M = 0.14 for

Rcy = 60.8 and M = 0.12 for Re; = 45.2. Champagne(33) compiled and graphed (nk)2
®(nk) from four research sources of varying Reynolds number: (1) a cylinder wake
flow, Re) = 138, (2) a grid flow, Re; = 41, (3) a grid flow, Re; = 65, and (4) a homoge-
ncous shear flow, Re; = 130. These curves were found to be very nearly the same,

lcading Champagne to conclude that the fine-scale structure of the different flow

ficlds is similar at least for the Re, range presented here, viz 40-138. The results

obtained here indicate that for this developing flow field, Reynolds number indepen-

dence is not found, neither for 40 < Rey < 138, nor for the entire range investigated,

16.6 < Rc;‘ < 782.

Er; i i issipation r

The fractal dimension, D, of the dissipation structure was determined from calcu-
lations of the turbulent Reynolds number and the flatness of the velocity derivatives
at cach measuring location. Figure 22 shows a plot of the results. The slope of the
linc is 0.823, calculated by Ilcast-squarcs nonlinear regression, and having a corre-

lation coefficient of 0.77. The relationship:

K = Rel3/2(3'D) (73)

beccomes:

K = 2.72Re, 0-823 (74)

giving a fractal dimension D = 2.45.
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Figure 21:
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Srccnivasan and Meneveau(30) reported a fractal dimension value of 2.73 to 2.78,
bascd on a collection of research data. A comparison made of the flatness values in
thc present work and the other research indicated a possible explanation for the
discrcpancy. The flatness values found in this study are up to an order of magnitude
larger than flatness factors reported elsewhere for flows of comparable Rej. Somc of
thc increases may be attributable to the dcveloping nature of the flow in this study,
where large variations in velocity occur due to the complex supcrposition of
diffcrcnt flow patterns.  However, the developing (versus fully dcveloped) nature of
thc fow cannot be considered completely responsible for the difference in flatness
valucs. The main recason for the discrepancy, however, may be different measuring
tecchniques used. The velocity derivative values in this research were calculated
from digitized velocity data. It is possible that the digital velocity derivative calcula-
tions producced high and low values not discriminated by the analog instruments used
in carlier studies.

To test what effect such a loss of high and low end data could have on the estima-
tion of D, a "filter" was applied to our data. The width of the filter was set at 12 times
thc standard deviation of the sample and centered at its mean. New flatness factors
were calculated for the filtered data, and found to be substantially lower.

When the filtered data were plotted against Re,, as shown in Figure 22, the slope
of thc resultant line led to a fractal dimension of D = 2.73, exactly in the range
cstimated by Sreenivasan et al.(30),

Srcecnivasan and Mecneveau(30) also reported fractal dimensions of the
turbulent/nonturbulent surface in several types of turbulent shear flows (boundary
laycr, axisymmetric jet, plane wake and mixing layer). They found an interface
dimension of 2.3 1o 2.4 which apparently was independent of the type of flow. It is
interesting  that the turbulent interface fractal dimension is closc to the 2.45 fractal

dimcnsion of the dissipation structures.
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Figurc 22: (a), (b) Kurtosis of the Velocity Derivative as a Function of the Turbulent
Reynolds Number for Two Cases:
(a) Without Numerical Filter
(b)  With Numerical Filter, + 120
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