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SUMMARY

The present computational and experimental investigation demonstrates the

validity of .he following observations:

1) The jet trajectory and the existence of impingement are strongly dcpcn-

dent on the velocity ratio. For R = 2, no impingement occurs for a plate

separation of ten jet diameters.

2) The cross stream is deflected laterally in the region near the jet entrance.

The jet is deflected downward by the total pressure forces. The high

shear around the jet edgzs in the near field results in a double vortex

structure. The vortex structure extends far downstream.

3) A wake region exists immediately downstream of the jet discharge. but

"lifts off" from the lower wall due to the strong inflow of the cross stream

towards the symmetric plane.

4) The turbulence field is highly anisotropic in the initial region, although

there is tendency towards isotropy further downstream.

5) The two-equation model of turbulence, with .comparison to experimental

data, predicts the flow downstream accurately but exhibits only fair

agreement in the initial region where the flow is highly anisotropic.

The turbulent flow field obtained by injecting a jet into a confined crossflow

provided a convenient case where data could be collected to examine the fine scale

structure of turbulence in a developing flow over a large range of turbulent

Rcvolds numbers. Calculations indicated the range of turbulent Reynolds numbers

to be 16.6 to 782, and the widely different values of integral length scale, varying

from 0.013 to 0.438 meters confirmed the developing nature of the flow.

By directing the output of the signal processing equipment to an analog/digital

converter operating in a direct memory access mode with the laboratory computer, a

data collection frequency of sufficient speed to capture the fine scale fliu-"ations



was attained. The digitized velocity values were then subjected to calculation proce-

dures designed to extract statistical estimates of certain physically relevant quanti-

tics.

Construction of normalized spectra for energy content, dissipation, and higher

order moments enabled an examination of the Reynolds number dependence of these

functions; the dependence was definite and well defined. Comparisons with other

research data, however, indicated that this Reynolds number dependence has not

been detected in some investigations of fully developed flows at comparable Reynolds

numbers.

The value of the constant pi from Komogorov's lognormal hypothesis was calcu-

lated to average 0.38 over the range of turbulent Reynolds numbers sampled. Its

Reynolds number dependence indicates the inappropriateness of the lognormal dis-

tribution to this flow as a whole.

The fractal dimension of the dissipative structures was estimated to be 2.45. An

attempt to reconcile the discrepancy between this value and another reported esti-

mate led to the tentative conclusion that the fractal dimension of this developing

flow and the fractal d;mension estimated for other developed flows encompassing a

wide range of Reynolds numbers may be quite close.
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INTRODUCTION

Turbulence is often referred to as the last unsolved problem in Newtonian

mc,._anics. Turbulent motion, a flow condition in which the scpcndcnt field vari-

ables such as velocity, pressure and temperature are random both in space and time.

is receiving an ever growing degree of interest among engineers and scientists. In

fact, the overwhelming percentage of flows which occur in Nature or arc created bN

Man is turbulent. Since a deterministic approach to turbulent motion is impossible

due to its randomness, research in turbulent fluid mechanics has resorted to the use

of experimental techniques and computational schemes.

Recent 'idvances in diagnostic techniques have injected new momentum and

excitement into turbulence research. As a consequence, a number of new aspects

and insights into turbulent flows have been discovered. The existence of coherent

structures is one good example. Such a discovery in turbulent flows has led to a fun-

damental reexamination of our understanding of turbulence. It is now commonly

accepted that large-scale coherent structures play important roles in energy pro-

duction, mixing and noise generation. The existence of coherent structures has been

extensively reviewed by many investigators.

A number of turbulence modeling techniques together with improved numerical

methods have been used as tools for the analysis of many engineering problems.

Numerical methods allow systematic variations of boundary conditions and geometric

variables, and also provide information on quantities of interest simultaneously and

economically in cost and time. However, numerical methods cannot yet resolve

details of flow physics such as scales of turbulence and other time-evolving quanti-

ties at practically occurring Reynolds numbers. Numerical methods in turbulence

research supplement, rather than replace, experimental measurements.

In this study. a combined experimental and computational approach is made for

the investigation of the turbulent flow field that results from the introduction of a jet
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transversely into a confined moving stream. The flowficld is a basic configuration

encountered in many real engineering problems such as V/STOL aerodynamics, the

design of gas turbine combustors, the internal cooling of turbine blades, and

hazardous waste disposal into bodies of water or the atmosphere. The ultimate objec-

tive of this study is to increase the understanding of the fluid dynamics involved in a

jet in a confined cross flow.

The flowfield produced by a singlc jet discharging into a unbounded crossflow has

been examined by many investigators including Crabb ct al.( 1 ), who also provided an

extensive review of earlier work. One important feature of the jet in a cross stream is

the deflection of the jet trajectory and the creation of a bluff body wake in the cross

stream. Another feature of the flowfield is the production of a pair of countcrrotat-

ing vortices created by the shear along the edges of the jet. if the velocity ratio is

large enough to permit impingement on the opposite platc, additional complexities

arise in the flowfield. The effect of the confining surface is examined in this work.

Turbulent jets in confined crossflows have received considerably less attention.

Such configurations are relevant for many practical applications such as gas-

turbine combustors, the internal cooling of turbine blades, and V/STOL aerodynam-

ics. Stoy and Ben-Haim ( 2 ) reported measurements of jet trajectories for a single

blockage ratio (HID = 3.05) and provided empirical correlations of the impingement

point in terms of the velocity ratios for 2.5 _< R <_ 7.0. Holdeman and Walker( 3 ) inves-

tigated a geometry relevant to diffusion air jets in gas-turbine combustion chambers.

Their measurements encompassed temperature fields for both a single jet and a row

of jets in a confined crossflow. These data were then used to develop correlations

characterizing the behavior of the jet in terms of flow and geometric variables.

Kamotani and Greber ( 4 ) presented both velocity and temperature measurements of a

single jet, a row of jets. and two opposing jets in a crossflow. The experiments were
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performed over a wide range of velocity ratios and geometric variables. So far, no

documentation of turbulent quantities for the confined problem has been provided.

This paper presents both numerical calculations and experimental results for the

mean and fluctuating velocity components and scalar fields of the confined problem

for jet-to-crossflow velocity ratios R of 2 an 4 at a fixed spacing between two parallel

plates (H/D = 10). One aim of this study is to provide reliable measurements of the

turbulent flowfield for test cz "*s of the present calculation procedure and, as a con-

sequence, to increase our understanding and ability to predict this complex flow.

The mean and fluctuating velocities were recorded with a laser-Doppler

anemometer (LDA) system adapted for the measurement of highly turbulent flows

and recirculating flows( 5 ). Such a system allows highly accurate, noninstrusive

measurements. The calculation procedure employed a finite-difference scheme for

the solution of the three-dimensional elliptic forms of the Reynolds equations. The

Reynolds stresses appearing in the time-averaged equations are calculated by the

two-equation model of turbulence in which the transport equations are solved for

the turLa!ent kinetic energy k and its dissipation rate F( 6 -9 ) .

The half-circular nozzle in the bottom plate is presented in the Cartesian coordi-

nate system by eight rectangular cells. The cell surface areas are modified so that

the specified jet velocity produces the correct mass fluxes through the surface.

The applicability and the limitations of the universal similarity theory first pro-

posed by Kolmogorov(l 0 ) with subsequent clarifications by Kolmogorov(' 1,1 2),

Obukhov ( 13 ) and Yaglom( 14 ) continue to be the focus of many investigations. A

larger data base of experimental results is required in order to establish the appro-

priate flow conditions for such theories.

The present work seeks to examine the suitability of flow models derived from the

universal similarity theories in the case of a developing flow. The models examined

include the Kolmogorov (LN) model( 12 ), the Novikov-Stewart (NS) model( 15 ). and the
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Frisch, Sulem, Nelkin (03) model( 16 ). The importance of the turbulent Reynolds

number (Rex= vk) is determined for various statistical properties of the flow. Such

properties include the energy and dissipation spectra, the skewness, and the kurtosis.

In addition, the applicability of fractal geometry to fine scale structures in a develop-

ing flow is also examined.

For relatively high Reynolds number flows, the energy containing large scale

turbulent eddies is unevenly distributed in space along with bursts of high fre-

quency fine scale structures separated by periods of relative quiet. This observation

led to refinements of Kolmogorov's first and second hypothesis by Kolmogorov(12) as

well as by Obukhov( 13) and Yaglom(1 4 ). Kolmogorov's third hypothesis models as a

lognormal random variable the locally averaged viscous dissipation of the turbulent

kinetic energy. Mathematically:

CY2 = A + ga In (1/r) with I >> r >> T (1

where o 2 is the standard deviation of the logarithm of the viscous dissipation rate, I is

the integral length scale of the flow, A is a constant depending on flow geometry, r is

the characteristic length of the averaging volumes, and p. is a universal constant.

The existence of a universal equilibrium range and an inertia subrange is a con-

sequence of Kolmogorov's original theory( 1 0 " 1 1). The first hypothesis of similarity

states that within an equilibrium range of wavenumbers there exists a nondimen-

sional and universal function, 01, such that for a locally isotopic field:

D F 1(k1) (2)

(EVS)V4

where:
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ul = fo* FI (kl) dkl,(3

u I is the velocity fluctuation component in the mean flow direction, x1 , e is the

viscous dissipation of the turbulent energy, v is the kinematic viscosity, and 71 =
* 3/4

(v 3 /E )1/4 is the Kolmogorov length scale. For this to be valid, Rex >> 1. The

Reynolds number, Re;(, used to characterize the turbulence is defined by:

1/22
Rex= (Ul) X/V (4)

where X is the Taylor microscale. Kolmogorov's second hypothesis is that for an even

larger Reynolds number, ReX 3 / 8 > > 1, there exists a subrange of wavenumbers

within the equilibrium region where the effects of viscosity are negligible(l- 2 ). The

one dimensional spectrum function takes the form:

F1 (kl)= al E2/ 3 kl- 5/3. (5)

With the assumption of a lognormal viscous dissipation according to Kolmogorov's

third hypothesis( 1 2 ):

FI(k) a e 2/ 3 k1 -5/3 - 1/9g. (6)

Gurvich and Yaglom(1 7 ) provided a mathematical basis for the LN model assumptions.

Gurvich and Yaglom( 1 7 ) also concluded that the probability density function of any

nonnegative quantity associated with the fine scale structure of turbulence is

approximately lognormal with a variance similar to (1). Novikov and Stewart(15)
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proposed the N-S model for the spectrum of the dissipation spectrum, (2 E ' such that:

0E a k- 1 + I. This was also obtained by Gurvich and Yaglom(1 7 ) for g. < 1.

Frisch, Sulem and Nelkin(1 6 ) introduced the 13-model of fine structure

intermittency. For the P model:

FI(kl) - k1 -5/3 - 1/3g (7)

Experimental tests of the Kolmogorov third hypothesis and attempts to evaluate

the constant gt have been performed in both the laboratory and in high Reynolds

number atmospheric boundary layer flows by Pond and Stewart ( 18 ), Gibson, Stegen

and Williams( 19 ), Stewart et al.( 2 0 ) and Gibson, Stegen, and McConnell( 2 1). Averaged

dissipation rates have been studied by Van Atta and Chen( 2 2 ) who measured stream-

line velocity derivatives for flow above the ocean. Yaglom ( 14 ) has provided a physi-

cal basis for Kolmogorov's third hypothesis. Mandclbrot( 2 3 ) has shown this hypoth-

esis to be probably untenable. A variant of the generating model leading to the log-

normal has been proposed by Van Atta and Antonia( 24 ) who have examined the

influence of fluctuations in the rate of local turbulent energy dissipation on higher

order structure functions for small separation distances and on moments of turbulent

velocity derivatives using the hypothesis of Kolmogorov( 12 ) and Obukhov( 1 3 ). The

derivatives of the dissipation rates of turbulent velocity and temperature fields were

observed by Gibson and Masiello( 2 5 ) Departures from lognormality of the averaged

squared derivatives were present at lower Reynolds numbers. This proved to be

contrary to the proposal of Gurvich and Yagiom(1 7 ).

Experiments have yielded a wide range of values of p. Gibson and Masiello( 2 5 )

found the most probable value is within a range 0.17-0.80. Yaglom( 14 ) estimated a

value of 0.4. Antonia et al.( 2 6) suggested a value of p. = 0.2 from their investigations

8



of circular and plane jets along the axes of symmetry. Difficulties in comparing

experimental results appear to be attributable to the questionable universality of g.

The kurtosis or flatness of aul/ 1ax is defined as:

a1h 44 -22
K -

O  a u,1 , l'l (8)
Iaxl x) Lxl

Assuming local isotropy and the applicability of Taylor's hypothesis:

uau, = au, (9)
at ax,

or
-4 2K =(u u(10)

at [I a t J

9



EXPERIMENTAL SETUP AND MEASUREMENT SYSTEM

The experiments are performed in a subsonic wind tunnel in the Experimental

Fluid Dynamics Laboratory of the Mechanical Engineering Department at Louisiana

State University. The dimensions of the test section are 60 cm wide, 45 cm high, and

180 cm long. The nearly uniform flow in the test section is attained by routing the

airflow through a 12:1 contraction section and flow straightening honeycomb tubes.

The free stream turbulence intensity is less than 0.8% in the range of tunnel veloci-

ties (9.5 - 50.0 m/s). Optical access for the LDA measurements is provided through a

removable plexiglass wall in the test section.

The jet stream is supplied from the laboratory compressed air line and adjusted by

a high-precision pressure regulator. In order to minimize the effect of the tunnel

wall boundary layer, the jet exit is mounted flush in a flat plate located 12 cm above

the bottom wall of the tunnel and the jet is aligned with the test section center line.

A top plate is similarly mounted inside the test section of the tunnel, and its distance

from the wall is adjusted such that H/D = 10. The plates, which are made of 60-cm-

wide, 180-cm-long, and 0.6-cm-thick plexiglass, have been carefully contoured at the

leading edges to ensure smooth transition of the tunnel flow.

Special care is taken to obtain a flat velocity profile and low turbulence intensity

at the nozzle exit. This is accomplished by use of a settling chamber, a fine mesh

screen and a smooth shaped contraction section with the contraction ratio of 16: 1

through a 6.7-cm length. Variation of the mean velocity ratio values (R) is achieved

by adjustment of the compressed air line pressure regulator while keeping the

tunnel flow speed at 9.5 m/s. The maximum obtainable jet velocity is approximately

50.0 m/s and the corresponding Reynolds number based on the 1.27-cm jet diameter

is 3.8 x 104. The Reynolds numbers investigated are 1.5 x 104 for R = 2 and 3.0 x 104

for R = 4. The assumption of the symmetry of the entire flow field about the plane, z =

0, is validated. The jet flow and the tunnel flow are seeded independently with olive
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oil particles by use of an aerosol generator for tunnel flow and a pneumatic tool

lubricator for jet flow. A laboratory schematic of the entire experimental system is

presented in Figure 1.

The LDA optical arrangement (Figure 2) has been constructed from Dantec 55X

Modular Optics components. A Spectra Physics Model 106-1 He-Ne laser rated at 15

mW provides a monochromatic, coherent light source of wavelength X = 632.8 nm and

beam diameter 0.68 mm at l/e2 points. The beam splits into two parallel beams of

equal intensity by passing through a beam splitter module. The frequency of one

beam is upshifted 40 MHz by the Bragg cell which is driven by the frequency shifter.

The other beam is displaced by the displacer module. The shifted frequency causes

the interference fringes in the probe volume to move with a velocity Vf = 40 MH- x

df, where df is the fringe spacing. This capability allows the user to determine the

direction of the flow.

The emerging unshifted and shifted beams pass through the backscatter section

and are fed to the beam translator, which adjusts the intersection angle by reducing

the beam separation distance from 60 mm to 13 mm - 39 mm. The beams then proceed

through the beam expander which expands the parallel incoming beams by a factor,

1.95, and thereby decreases the size of the probe volume by the same factor, approxi-

mately quadrupling the light intensity. The beams leave the beam expander and pass

through a 600-mm focal length lens which focusses them to a joint. When a beam

separation distance of 39 mm is selected at the beam translator, the beam separation

distance equal to 76 mm at the front lens and an intersection angle equal to 7.250

result.

11



TOP OF WIND TUNVNEL

CONIFINING WALLS MEEN*-RO~FO

DEVICEREGL'LATOR

COMPRE55ED AIR LINE71

Figure 1: A Sectional View of the Flow Setup. The confining walls serve to e!*,.n.'±ic
the adverse effects of the tunnel boundary layer. A complete documenta-
tion of the mean and rms velocity fields is available in the technical litera-
lure (Catalano, ct al. 1989.)
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Figure 2: Schematic of the Optical Components
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The light scattered from seeding particles passing through the probe volume is

collected in the backward direction by the photomultiplier (PM) optics module. This

module, with a 150-mm focal length lens, focuses the collected light into a pinhole

aperture of 0.1-mm diameter. The PM section which acts as a spatial filter converts

the photon flux to an electric signal.

The optical setup described is a one-component backward scatter system operating

in the fringe-Doppler mode. The assembled LDV system can rotate 360 degrees as well

as traverse in three dimensions.

The LDV actually measures the instantaneous velocity of small particles suspended

in the flow. Hence, the particles must be small to follow the local velocity of the flow.

As mentioned before, the wind tunnel flow and the jet stream are seeded with olive

oil particles. For the seeding method used, the mean oil droplet diameter is estimated

to range from 0.8 - 3.0 gtm. This particle diameter range is appropriate to follow air

ilows where turbulence frequencies exceed I kHz( 9 ).

A method for signal processing and data acquisition is vital in LDV application.

The output signal from the PM consists of the sum of the Doppler frequency repre-

senting the velocity and the 40-MHz-shifted frequency. In order to achieve optimum

resolution and noise filtering in the signal analysis equipment, the signal is fed to

the mixer (frequency shifter) to be electronically down shifted. The effective shift

of the Doppler frequency f, can be selected to a desired level from ± 10 kHz to ± 9 MHz.

The electronic mixer output signal is analyzed by a TSI Tracker Type 1090. The

signals are first amplified to an optimum signal-to-noise ratio and passed through

selectable band pass filters prior to the signal analysis. The high pass filters remove

the DC component of the signal (pedestal) and the low pass filters remove the high

frequency noise. The tracker is a phase locked loop (PLL) device. The processor

locks onto the Doppler frequency and continues to track the instantaneous Doppler

frequency as long as the internal servo-loop stays locked.
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The continuous nature of the tracker output allows the mean and rms quantities to

be read directly on appropriate meters. The signal usually contains high frequency

noise. The noise is primarily due to the phase fluctuations of particles in the probe

volume (called the ambiguity noise). The errors in the mean and rms velocities due

to the noise are not significant. However, at a certain noise level, the tracker cannot

lock onto the instantaneous Doppler frequency. The term "drop-out" refers to a

condition in which the tracker is not locked onto the instantaneous frequency of the

Doppler signal. The drop-out also arises in sparsely seeded flows (in high speed air

flows). Fortunately, when the tracker enters the drop-out condition, a protection

circuit of the tracker (sample and hold circuit) is used to lock the loop on the last

measured frequency and hold the frequency until a valid Doppler signal is retrieved.

Although continuous data output is recovered in this way, the errors in the mean and

rms of the output are present as well as the missing of the high frequency end of the

drop-out signal. These errors are referred to as statistically biased errors.

Depending on the flow condition and measurement location, the velocity signal in

this study exhibits either the continuous condition with high frequency noise or the

drop-out condition. The drop-out signal generally arises in highly sheared regions

where the rapid transition between the jet stream and the cross stream occurs.

The errors can be significantly reduced by appropriate correction methods using

computer analysis. Since computers operate on discrete data points, the resulting

data can be weighted by the time duration which is held between successive Doppler

signals. The probability density function, autocorrelation and spectrum analysis also

can be obtained by computer analysis.

The data acquisition system of this study consists of analog instruments as well as

a digital system. The analog system includes an integrator, DC and rms voltmeters,

and a spectrum analyzer. The digital data acquisition system is composed of a TSI

Model 1090 tracker processor, a DANTEC counter used solely for amplification and
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filtration, and a Zenith Z248 personal computer. The analog output of the tracker is

sent to the computer which is equipped with an OMEGA WB-800 data acquisition A/D

board. The data acquisition rate is set at 38 kHz. The number of data samples obtained

and stored at each flow location is 28,400. The data records, stored on micro floppy

diskettes, are transferred to the main frame, IBM 3090 computer, for statistical

analysis.

As discussed in the previous section, the desirable method in the LDV measure-

ment is to obtain the signal which is continuous in time. When the LDV is used in a

large scale wind tunnel, or the speed of interest is sufficiently high, the amount of

particle seeding in the flow required for continuous scattering becomes pro-

hibitively large. In addition, the inherent noise problems in LDV applications make

it difficult to obtain a continuous velocity signal. Another limiting factor, usually

arising in the statistical measurements, is the storage limit of the currently available

data acquisition system. This section describes the mathematical development and

calculation methods of statistical parameters, with considerations of the signal drop-

out and storage limit.

The moments of the instantaneous velocities are calculated by statistical analysis.

The straight arithmetic averages of the moment calculations provide sufficiently

accurate results when the sampled data are uniformly distributed in time.

Practically, this uniform distribution is difficult to obtain. The main obstacle to this

is the signal drop-out and velocity bias. Therefore, two types of correction methods

are introduced, the resident time weighting for the signal drop-out and the velocity

bias correction for the velocity bias. In the first method, the individual realization of

the ith sampled data Vi is weighted by the resident time At, of the realization Vi. The

resident time referred to here is the time which the tracker (sample and hold circuit)

holds one valid Doppler signal until a new valid signal is retrieved. The weighting is

automatically achieved by selecting the sampling rate less than the drop-out period.
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The velocity bias arises due to the proportionality of particle flux through the mea-

surement volume to the instantaneous velocity. This fact can be easily visualized

from the mass conservation of particles. This gives rise to a statistical bias towards

higher velocities. Therefore, the correction factor must be the inverse of the

velocity.

If Vi is the instantaneous velocity and N the number of samples taken, then the

corrected forms of the moment calculations are as follows:

Mean -EX= 1 VAW (1
N

Z1= W1

RMaN )211W 1 (12)

&4, ww1

RMS = , V V1W1

Flatness N (V, - V)w,

Fltns (14)
a4N1 1 W,

where Wi is the velocity bias correction function represented by W= V, - V is the

mean velocity, and a is the rms velocity (standard deviation). Discrepancies betwcen

the corrected and uncorrected averages are quantified to be a maximum 4% in the

mean velocity and 7% in the rms velocity for the turbulent fluctuations up to 20";

One further consideration in regard to the moment calculations is what sample

size and sampling rate (samples per second here) provide acceptable accuracy and

minimize the computational effort. The optimization of the sample si/c and the

sampling rate is essential due to the storage limit of current data acquisition system.
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Yanta and Smith( 27 ) provided the approximate solution to the question of how many

data are necessary to obtain good statistical parameters. Their analysis is based on

the assumption that the turbulence is Gaussian (i.e. isotropic turbulence). One

interesting result of their analysis is that the number of data points required is

dependent upon the local flow conditions, i.e. the local turbulence intensity. For

example, with 20% turbulence intensity, more than 1600 samples are required for

95% confidence limit and less than 1% error in the mean value. A similar analysis by

Bates and Hughs( 2 7 ) showed that the mean, rms, skewness and flatness are mainly

dependent on the sample size and weakly dependent on the sampling rate. The

analysis of this study on sample size and sampling rate requirements is based on

these two previous studies, but is quantified by preliminary tests.

The effects of sample size on the mean, rms, skewness and flatness values are

shown in Figure 3 for R = 2 at one specific point (x/D=4, y/D = 6 and z/D = 0). The

sampling rate is fixed at 2 kHz for all quantities. As can be seen from the figure, no

appreciable variations appear in the mean velocity and turbulence intensity curves.

The variation of the mean velocity as N increases from 200 to 5200 is not noticeable

and the corresponding variation of turbulence intensity is at most 0.37% (rms varia-

tLon about the average turbulence intensity from N = 200 to 5200). A sample size N

1 3 is used for the subsequent calculations of mean velocities and turbulence inten-

sities. The errors are expected to be less than 5% for both quantities.

On the other hand, the skewness and the flatness factors only tend to converge

with a sufficiently large sample size (N > 3000). and the scatter in both quantities

decreases as the sample size increases. In view of this result, the sample size, N =

2560. which is used for thc skewness and flatness factors. may not be sufficiently

large enough to obtain highly accurate results.
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Since the LDV system is a one-component measurement, the Reynolds stress is

calculated by averaging the projections of the velocity fluctuations in a plane. If the

axis of LDA Optics rotates, for example in the x-y plane, to 0, + a, and -aX degrees with

respect to the x-axis at a point, the three components of the Reynolds stresses can be

expressed as

= u0 (15)

2 _ _ -- cos 2 (+ C) + cos2 (-o)u2i 2+( 2 2 ]O--0 2
sin 2 (+ a) + sin 2 (- a) sin (+ a) + sin (- a) (16)

F u~a - U

Lcos (+ a) sin (+ a) + cos(-a) sin(-a) (17)

Other components of the Reynolds stress can be obtained by projecting the instanta-

neous velocity components in their planes.

The calculations are executed on the IBM 3090 main frame computer after data

transfer has been completed. One of the primary motivations for these statistical

measurements is the acquisition of turbulent scale information. A method is devised

to overcome obstacles due to limited storage space available and the existence of

periods of the signal drop-out.

The autocorrelation functions are first calculated. The autocorrelation function

of the longitudinal velocity component at a delay time, T, is customarily defined as:

R(T) = - ii
-1/2 -
u2  U 2  (18)
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where u = u(x,y, -, t) and u = u(x,y,-, t + Ar). The overbar in this equation denotes the

time average. The autocorrelation function can be evaluated by computer analysis

for each delay time, c = mAt with m = 0, ± 1, ± 2 ...... ±M, using the data samples of u(t)

corresponding to t = nAt with n = 0, ± 1, ± 2, ..., N or:

N-M-!
R(mAt) = X u(nAt)u((n + m)At) for Iml_< M

N - 2M n=M (19)

where N is the total number of velocity samples and the time delay is t = mAt. In

general, the sample time, (N - 1)At, must be at least an order of magnitude greater

than both the longest time scale of the flowfield and the maximum delay time, rmax =

(M-1)At. The estimated error is proportional to N" 1/ 2 as N becomes large. However,

for N = IM, and I ? 3, there exists an efficient algorithm to calculate the autocorrela-

tion function based on a Fast Fourier Transform (FFT) analysis.

The longitudinal integral scale is a convenient measure of the linear extent of the

region within which velocities are appreciably correlated. Mathematically:

L= f f(r)dr
Jo (20)

where f(r) is the longitudinal velocity correlation coefficient. When the longitudi-

nal correlation coefficient cannot be directly obtained by a one-component mea-

surement system, the integral length scale is conventionally calculated using the

Taylor's hypothesis. By rewriting the Eq. 20 in terms of the autocorrelation coeffi-

cient, R(t), we obtain:

L = U R(t) d r
Uo 

(21)
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where Uc is the local mean velocity. Typically the upper limit is chosen at the value

of r where R(r) first crosses the r axis.

The Taylor microscale is graphically obtained from the longitudinal correlation

coefficient by fitting a parabola near the origin of the coefficient. The Taylor

microscale approximately represents the eddy size where dissipation of turbulent

kinetic energy is most effective by expanding f(r) in a Taylor series, and by taking

into account the symmetry of f(r) with respect to r, the behavior of f(r) in the

neighborhood of the origin is expressed as:

f(r) 1+ r2 [.j 2f I+r4)
2 ro =0(22)

It is common practice to define a length XT for very small value of r as:

f(r) -1 - 12

XT2  
(23)

The length scale XT is called the Taylor microscale:

_ I__= a 2  f(r)Ir o
2 ar 2  (24)

or in terms of R(r):
I = - a 2 R(T) r -4 0

XT 2 aC2  (25)

Experimentally, the Taylor microscale is obtained from this equation by numerically

fitting the parabola near the origin of the curve.
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The power spectral density function of time historic records representing a

stationary random process can be defined by the Fourier transform of the corrcla-

tion function. The Fourier transform of the autocorrelation function can be written

as.

4-

S(f) = 2- -Re j 2 xfr dr
(26)

Then, S(f) is called the auto-spectral density function. The auto-spectral density

function is accomplished via a Digital Fourier Transform (DFT) originally developed

by Cooley and Tukey( 2 8 ). The computer algorithm computing the DFT is available

from the IMSL (International Mathematics and Scientific Language) subroutine code.

This algorithm is especially applicable in cases of poor signal-to-noise ratio and

periods of signal drop-out, such as is common in sparsely seeded airflows. The

number of calculations required is significantly reduced when the input number of

autocorrelation time steps M is represented by M = 2P where P is any integer from M 2

to M log M. The delay time step At and the maximum time delay Tmax are related to

the maximum frequency fmax (called the Nyquist cut-off frequency) and the

frequency interval Af:

AT = L and Tmax = _
2fmax 2Af (27)

In the present study, the autocorrelation functions are first calculated for a

number of time steps M equal to 256 with the same delay time interval AT as the

velocity sample time :iterval At (At = At = 0.2 msec).

Examples of the autocorrelation functions using the two different approaches, the

conventional averaging technique and the direct transform method( 2 9 ), are shown
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in Figure 4. Results are presented for I = 10 and 40 (I = N/M). Note that the

correlation curves become more closely aligned as I increases.

Of principal interest in this investigation, preliminary tests of length scales

dependent on the sample size and on the calculation methods of autocorrelation

functions are made. A comparison of the integral and Taylor microscales is pre-

sented in Figure 5 for I from 3 to 50. Several observations are appropriate. The

direct transform method yields length scale values which are consistently less than

those from the averaging approach. This is true for both the integral and Taylor

microscales. Second, there is considerably more scatter in the computational results

for the integral scale than for the microscale. One explanation for this second

observation may arise in the graphical calculation of the Taylor microscale.

Although a more accurate value of the Taylor microscale can be obtained with the

use of a more fine scale of the delay time, a certain amount of error is included in the

Taylor microscale calculations. This may overwhelm the actual variations of the

Taylor microscales between two different methods. Third, the direct transform

method yields a more accurate integral length scale than the averaging method

when a smaller number of samples is used (I !5 20).

The near-exit plane mean velocity profiles of the jet flowfield are presented in

Fig. 6 for R = 2 and R = 4. The turbulent intensities V/Vj are equal to 5.0% for the

lower value of R and equal to 1.4% for the higher value. Although not described

here, the autospectra of the jet exit field did not exhibit a potential core behavior for

R =2.
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Figure 4: Comparison of Autocorrelation Functions Between Conventional Average

and FFT Methods.
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Fig. 6 Free Jet Mean Velocity Profiles at y/D = 1.0 and x/D = 0.0.

The velocity-ratio values are achieved by adjustment of the compressed-air-line

pressure regulator on the jet flow system while keeping the tunnel flow fixed at 9.5

m/s. The assumption of symmetry of the entire flowfield about the plane z = 0 was

also validated. In the work presented here, all of the experimental data were

obtained in the plane of symmetry.
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The details of the LDA setup are as follows:

Beam-intersection angle, 0 = 7.25 deg

Fringe spacing, df = 5 pm

Probe-volume diameter, dpv = 0.25 mm

Probe-volume length, lpv = 3.6 mm

He-Ne laser rated at 15 mW, Xlaser = 632.8 nm.

The jet stream and the freestream are seeded with olive-oil particles using an

aerosol generator. The mean oil-droplet diameter is estimated to range from 0.8 - 3.0

Pm.

The difficulty in obtaining reliable measurements of small scale turbulence has

been discussed by previous investigators. Tennekes and Wyngaard( 3 1) discussed

signal-to-noise and integration time limitations that make measurements of moments

greater than the fourth difficult for large Reynolds number flows. Frenkiel and

Klebanoff( 3 2) discussed effects such as averaging intervals and convergent tails of

the probability density functions. Champagne( 3 3 ) discussed the credibility of the

results of previous investigators and devised three important criteria for the elimi-

nation of results. If the length of the sensors is much greater than the Kolmogorov

microscale, or the low pass filter setting is equal to or less than the Kolmogorov fre-

quency, then the data are suspect. Additionally, inadequate averaging time results in

excessive scatter. Antonia, Satyaprakash. and Hussain( 3 4 ) considered two further

points which were the closure of the tails of the probability density functions and

the effect of Taylor's hypothesis.

Snatial resolution

The spatial resolution of the sensor is clearly important to the study of the fine

structure. The ratio of length lpv(=3.6mm) to diameter dpv (=0.25mm) is 14.4. The

Kolmogorov scales measured ranged from nlmin(=0. 17 mm)to '1 ma, (=l.Omm). The
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ideal sensor would require lpv/71 _< 1, and dpv /-q <- 1. In the present investigation

lpv/n = 21 and dpv /41 = 1.5. The correctional approach of Schedvin, Stegen, and

Gibson( 3 5 ) was not used. This is in agreement with the work by Antonia ct al.(34).

Cut-off frequencv

The cut-off frequency setting for the DANTEC filters was determined at each mea-

surement location. It was initially set arbitrarily equal to a frequency typically

twice the upper limit of the spectral content of u1 . The spectral density, 0, obtained

using a real-time spectrum analyzer was first displayed on the built-in oscilloscope

of the analyzer to determine fc visually as described by Antonia et al.( 3 4 ). For the

present experimental conditions, it was found that for all flow field locations, the

value of fc was slightly greater than 1.5 fk"

Integration time

To reach a stable value for higher orders of moment requires a longer integration

time( 3 3 ). Tennekes and Lumley( 36 ) estimated this time by the relation:

. 2n
2 U1 In

w =2 _ -1 -

.n)2 T 
(25)

r

where w2 is the mean square relative error of U1 , T is the total record derivation and

In is the integral time scale of z ( U .-defined as:

1
In= f zt) znt + t) dT2 (29)

Zn
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Srcenivasan, Chambers, and Antonia( 3 7 ) have approximated the reduction in In as n

increases as

In
_- = 0.82 - 0.07n (30)

In the present investigation, T ( = 0.738 sec) was fixed, selecting an upperbound on

the Kolmogorov microscale n (= I x 10- 5 m) and To (= I x 103) (where Lo is a

characteristic transverse distance) and assuming a longitudinal mean velocity U1 (=

lOm/sec), then the mean square relative error for the flatness of the velocity

derivative was less than 2%. The mean square error of the skewness was similarly

estimated to be less than 1%.

Convergence of n.d.f.
,n

The average value of U can be written as:

.n .n
u1 =ul p(u)du (31)

where the probability density function:

f p(u)dut = 1 (32)

Careful attention must be paid to the close of the probability density function tails.

Values of u were computed directly from the digital record and also using the prob-

ability density function. The visual curve fits yielded results within 20% of the value

obtained from the digital record. Closure of the tails of p(u1) was reasonable even at
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n = 6, thus indicating that the dynamic range of the signal processing equipment was

satisfactory.

Efrect of Tavlor's hvnothees

Champagne( 3 3 ) applied corrections to several statistics of u due to the effect of a

fluctuating convection velocity on Taylor's hypotheses. An over estimate of the

mean dissipation for flow locations with high turbulence results because:

- U2 (u,2 u2 2(u 2+ u2

16 U2 +u I 2 U3(33)

The use of this formula in the present experimental investigation indicates that

xu 2 is underestimated by about 2%. Antonia, Phan-Thien and Chambers( 2 6 ) have

discussed the assumptions underlying eq. (33) and concluded that since little is

known about aul/ax1 , statistics of aul/ax 1 formed by decoupling I by U1 + u I may be

preferred. Antonia et al.( 26 ) found that:

uI = U xj (l+ 3 U 2 + 5 4)

Application of this formula to the present measurement indicates that (0ul 2 is under-

estimated by about 2%. Antonia, Phan-Thien. and Chambcrs ( 26 ) noted that further

work was required before a choice could be made between eqns. (33) and (34). Prior

to such an investigation, no corrections have been made in the present work to

either second or higher order increments as suggested by Antonia et al.( 2 6 ).
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Other Comments on Errors

The measurements and resilts presented in this study are meaningless without an

estimate of the errors involved. The ANSI/ASME( 38 ) procedure for calculating and

reporting measurement uncertainty is followed here.

Errors are divided into three categories: calibration errors, data acquisition

errors and data reduction errors. For each source of error there are a bias and a pre-

cision component. A bias error is a constant or systematic error present for the

duration of the test. Precision error is random error; the measure of precision error

is the statistic sample standard deviation. Error values are estimated from manufac-

turer's literature, by comparison of error estimates of similar equipment, by experi-

mentation and by the author's judgement. Estimates of the various components of

error are indicated in Table 1.

The total bias and precision errors are calculated by the root-sum-square method:

12 +2 2)112B=(B+ B 2 + B3) = 0.0526 volts (35)

P=(P' + P2 + P2)' = 0.0247 volts (36)

The final uncertairty, W, is obtained by combining bias and precision errors. The

95% confidence level interval( 38 ) is given by:

5 =(B2+(tPYI 2  (37)

tIerc, t is the student-t value and is a function of the number of degrees of freedom

used in calculating P. For precision indices associated with electronic equipment( 38 ),

a large number of degrees of freedom justifies choosing t as 2.0 or:
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W95 =[(0.0526Y + (2(0-0247))2]' /2 (38)

= 0.0722 volts = 0.36 m/sec (39)

A velocity measurement may, therefore, be expected with a 95% confidence level to

lie within ±0.36 m/sec of the experimentally obtained value. For the range of vcloc-

ity values obtained in this study, this corresponds to between 13.6 and 3.40 percent

error, maximum.
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Table 1. Sources of Error.

CALIBRATION ERROR

Calibration Bias Limit Precision Index
(± volts) (± volts)

Excitation voltage BIl = 0.0010 Pl =0.0010
Tracker B21 = 0.0500 P2 1 = 0.0200
A/D converter B31 = 0.0020 P3 1 = 0.0010

B1 =[B 1 1+ B2
21 +3 = 0.0501 volts

P1 _[p, + p, + i 3,]1/2 = 0.0201 volts

DATA ACOUISITION ERROR

Error Source Bias Limit Precision Index
(± volts) (± volts)

Frequency shifter B12 = 0.0100 P12 = 0.0050
Excitation voltage B22 = 0.0050 P22 = 0.0050
Tracker B32 = 0.0100 P32 = 0.0050
A/D converter B42 = 0.0020 P4 2 = 0.0020
Atmospheric conditions B52 = 0.0000 P52 = 0.0050
Positioning error B62 = 0.0000 P62 = 0.0100
Velocity bias error B72 = 0.0050 P7 2 = 0.0000

B2 =11312 + 122 + ..- + i 2 = 0.0159 volts

P2 = 1P 2 + P)22 + --- + F = 0.0143 volts

DATA REDUCTION ERROR

Error Source Bias Limit Precision Index
(± volts) ± volts)

Computer resolution B13 = 0.0020 P13 = 0.0000

B3 = 0.0020
P3 = 0.0000
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MATHEMATICAL MODEL

The flow configuration is such that appreciable variations in the transported

quantities such as velocity, temperature, and species arise in all these coordinate

directions. It is thus necessary to solve the fully three-dimensional forms of the

partial differential conservation equations for mass, momentum and energy of

species concentration. Most current turbulence models rely on the solution of the

so-called Reynolds time-averaged equations in which the dependent variables are

decomposed into time-averaged and fluctuating components.

In Cartesian tensor notation, the time-averaged equations of continuity, momen-

tum, and species concentration describing a steady, three-dimensional flow may be

written as:

!(pUi) = 0aXi (40)

L (pUU)- E + (ij)
ax1  ai ax1  (41)

S(PUiC) = I (- pii-
aXj axj (42)

where p is the density, p is the static pressure, u and c are the fluctuating compo-

nents of velocity and concentration, respectively, and U and C are the corresponding

time-mean values. In the flow under consideration, molecular diffusion effects are

very small compared to turbulent ones, and thus all laminar diffusion coefficients

arc neglected.

The time-averaged equations are exact, since no assumptions have been intro-

duced in their derivation. However, they cannot be solved in this form, because the

new stress and flux terms (- puiuj and - puj) arising from the turbulent motion-

become additional unknowns. Accordingly, additional assumptions regarding the
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relationship between the turbulent stresses and fluxes and the time mean variables

must be incorporated into the turbulence model. Compilations and applications of

various turbulence modeling techniques may be found in the technical

literature( 6 )-( 9 ).

In the k-E model, the Reynolds stresses are related to mean straight rate via the

Boussinesq eddy viscosity concept:

- iu U i-+4{au J 2 pijk- uij= ajxj axi ]3- (43)

where 4t is the turbulent or eddy viscosity and k (=-ii/2) is the turbulent kinetic

encrgy, and 8ij is the Kronecker delta. The term 2 -pk can be thought of as the addi-
enrg3

tional pressure resulting from turbulent motion. The heat or mass flux term is

obtained using the Reynolds analogy between momentum transport and energy or

mass transport:

Ot Dxj (44)

where at is the turbulent Prandtl or Schmidt number. The at is the ratio of turbulent

diffusion coefficient of heat or mass transport to the corresponding momentum

transport.

The system is not closed until an expression of the eddy viscosity 4it is specified.

Kolmogorov( 10 ) suggested in the 1940s that the eddy viscosity can be evaluated as:

;It = CpLk 112  (45)

where Cp is an empirical constant and L is a characteristic length scale. The flow sit-

uation under consideration is such that an algebraic expression prescribing the

length scale, as in the mixing length model or its modified version, is not adequate to

properly simulate the complexities of the flow structure. Although a transport equa-
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tion can be derived for a length scale, the equation is difficult to model and interpret

physically. The proven applicability of the two-equation model k-e model stems from

the successful choice of length scale as L = Ctk 3/2/f. The transport equations for the

kinetic energy k and its dissipation rate e are derived from the Navier-Stokes equa-

tions.

The k-c model has been shown to provide appreciably better universality than

lower order model, where the higher order closure schemes (the Reynolds stress

model) appear at the moment to be insufficiently well developed to prove superior

even for two-dimensional flows. It is the purpose of the computational portion of

this study to apply and test the k-c model to the prediction of the present complex

three-dimensional situation. The standard version of the k-c model proposed by

Launder and Spalding( 6 ) is used for the calculation procedure.

After few mathematical manipulations, the governing equations may be written

in the following general forms:

axj axj x](6

Equations for continuity, momentum, species concentration, turbulent kinetic

energy, and dissipation rate of turbulent kinetic energy are presented in Table 2 in

terms of a general dependent variable 0, a diffusion coefficient rF and a source term

SV.

Table 2: The Governing Equations

1 0 0
Ui, i=l1,2,3 9at  a3P + a (g 'U't

ax, aI axJ1

C it/at 0

k ltt/Ok G - PE

E Elt/a (E/k)(c1G - c2pE)
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where P = p + 2-ok
3

G = taUI + aUI aUI

ax) ax cx

and gt = CtLpk 2/e

Cg = 0.09, at = 0.9, c1 = 1.44

C2 = 1.92, a7k = 1.0, aE = 1.3

The flow geometry under study and coordinate system are shown in Figure 1. The

flow is symmetric about a vertical plane passing through the center of the jet. The

calculations are therefore performed for a rectangular domain, one side of which

corresponds to this symmetric plane. Computational results are obtained using a

revision of the SIMPLER (Semi-implicit Methods for Pressure-Linked Equations)

algorithm. The detailed description of the algorithm is available( 7 ), and thus only the

important features of the procedure are described.

The first step of the solution procedure is the derivation of the finite-difference

forms of governing equations. The finite-difference equations are first formulated

by integrating the time-averaged equations over a small control volume surrounding

each grid point, along with suitable assumptions about the distribution of the depen-

dent variables between grid points. The combined effects of the convection and

diffusion between grid points will be handled by the power-law scheme. The method

is formulated in terms of staggered grid arrangements, in which the pressure and

other variables arc stored in the main grid points and the velocities in staggered

locations. A two-dimensional view of staggered grid layout is shown in Figure 7. A

corresponding three-dimensional grid pattern can be easily visualized in a similar

manner. The staggered arrangement is necessary to avoid checkerboard pressure

and velocity fields.
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As a result, the general form of the finite-difference equations for scalar vari-

ables derived at the main grid point P may be written as:

ap~p = aE(E + aWDW + aNON + aS(S + aTOT + aB4DB + b (47)

with:

aE= DeA( IPe 1) + [[- Fe, 011,

aw =DwA( lPw 1) + [[Fw, 011,

aN= DnA( Pn 1) + [[- Fn, 0]],

as = DsA( IPs I) + [[Fs, 011,

aT = DtA( Pt I) + [[- Ft, 011,

aB = DbA( IPb 1) + [[Fb, 011,

b = ScAxAyAz,

ap = aE + aw + aN + a + aT + aB - SpAxAyAz (48)

where Op represents the general dependent variables, a's are the coefficients result-

ing from the combined convection and diffusion effects, and b is the source term

containing all terms except the convection and diffusion terms. The upper case sub-

scripts E, W, N, S, T and B refer to the neighborhood grid points around the main grid

point P, named by east, west, north, south, top and bottom neighbor, respectively.

The lower case subscripts are the corresponding control volume faces. The doublc

bracket [[a, b)] is a special notation to denote the greater of a and b. The Peclet

number Pe, which is the ratio of convection to diffusion rate, is given by:

PC = Fe
D, (49)
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where Fe is the flow rate (pU)eAe at the control volume face E with an area Ae, and De

is the diffusion conductance given by:

(Ax). (50)

where (Ax)e is the control volume distance associated with the control volume face e.

The term A([P I) is the general notation categorizing various convection-diffusion

schemes, such as upwind, central, hybrid, power-law, and exponential scheme. In

the power-law scheme, the A(IP I) may be expressed as:

A( IPe 1) = [[0, (1-0.1 IPe I)511 (51)

Here again the double bracket [[ , 11 is a notation which takes the larger value of the

two in the bracket. The power-law scheme provides a more realistic distribution of a

convection-diffusion profile between two grid points than any other schemes except

the exponential scheme. The exponential scheme, however, requires more computa-

tional time than any other convection-diffusion scheme. Notice further the source

terms SC and Sp. The source term S4, originally defined in the derivation of the

general form of the governing equation, is further divided into two parts such as S@

= SC + SpOp. The SC is the constant part of Sb, while Sp is the coefficient of Op. The

coefficient term Sp must be always less than or equal to zero to satisfy the stability

requirement of the numerical scheme.

The finite-difference equations for the momentum equations are derived in a

manner analogous to those of scalar variables, but they are formulated at the

staggered locations. Special attention, however, is required for the pressure terms.

Note that there is no exact equation expressing the pressure term. Focusing on U

40



'N I

1 a I
i-

I I0
-- -- 4- A-- -- -

I I

(b)

Figure 7: Grid Arrangement; (a) two-dimensional view of staggercd grid layout, (b)
one dimensional grid clustered for grid point P.

41



only and explicitly separating the pressure gradient from the source term, b, the

resulting finite-difference equation of U derived at the control volume face e can be

wri'tcn as:

aeUe = 7 anbUnb + b + (pp - PE) Ae (52)

where the summation term, 7, anbUnb, denotes the sum of the neighbor terms of Ue.

The momentum equation can be solved only when the pressure field is provided.

Unless the correct pressure field is employed, the resulting velocity field will not

satisfy the continuity equation. This problem is handled by successive iterations

with an appropriate correction to the velocity field at each iteration step. A few steps

of this iteration scheme will be developed.

The imperfect velocity field based on a trial pressure field (will be denoted by p')

results from the solution of the following equation:

aU, = EanbUnb + b + (p - p1 )A, (53)

The problem is now to find an appropriate correction formula to this imperfect

velocity field such that the imperfect velocities in successive iterations converge,

and this solution will ultimately satisfy the continuity equation. Suppose that the

trial pressure field can be corrected by a pressure correction p' as:

p = p* + p' (54)

and next the velocity field is corrected by a velocity correction Ue:

Uo= U. + U, (55)

42



Then, the relation between the pressure correction and the velocity correction can

be obtained by subtracting:

aU' = EanbUnb + (pp - pE)AC (56)

The final form of the velocity correction formula is obtained by temporarily

dropping the term, lanbU'nb, from this equation and by replacing Ue:

U,= U, + de(pp - PE) (57)

where de = Ae/ac. Though not prcsented here, the correction formula for the veloc-

ity components in other directions can be obtained in a similar manner. Now,

having an expression for solving p', the system of solution scheme is esser'ially

complete.

The p' equation is derived by substituting velocity corrections for all velocity

components into the continuity equation. The p' equation is called the pressure

correction equation and given by:

appp = anbPnb + b (58)

where:

b = (pU'A). - (pU*A)e + (pV*A) - (pVA)n + (pW*A)b - (pW*A) (59)

If b in this equation is zero, the starred velocities satisfy the continuity equation and

itcration terminates. The term b thus represents a "mass source", indicating the
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extcnt to which the velocity field does not satisfy mass conservation considerations at

a particular iteration stage.

The solution procedures introduced up to this point are the basic algorithm of the

SIMPLE methods. In an attempt to improve the rate of convergence, a revised ver-

sion of SIMPLE (called SIMPLER) is more effectively worked out( 7 ). SIMPLER con-

tinues to use the pressure correction equation, but employs a separate pressure

equation to more effectively predict the pressure field than does the SIMPLE method.

The motivation for this arises from the rather exaggerated velocity corrections

which are obtained by omitting the term IanbU'nb when the p' equation is derived.

Introducing a velocity Ue (called the "pseudo velocity") by:

Oe = IanbUnb + b

a, (60)

the momentum equation for Ue can be rewritten as:

U. = U. + d(pp- PE) (61)

where de = Ae/ae. In a manner analogous to the development of the pressure cor-

rection equation, the final form of the pressure equation may be written:

appp = £anbPnb + b (62)

where:

b = (pUAL - (puA), + (pA), - (p)AL + (pWA) - (pWA), (63)
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The pressure field from this equation is a direct consequence of the given velocity

field, and thus the convergence is faster than any other solution procedure contain-

ing only the pressure correction equation.

All of the equations needed for obtaining velocities, pressure and other scalar

variables have been developed. The iteration procedures are now summarized. The

finite-difference equations are solved by line-by-line iterations in which all the

variables along a line are simultaneously solved with temporarily fixed variables

lying off the line. The pressure field is first calculated, using an initially guessed or

given velocity field from the previous iteration step. Then, an intermediate velocity

field (starred velocities) is obtained from the momentum equation. This velocity field

is once again connected to the continuity equation to obtain the pressure correction

equation. This velecity field, in general, does not satisfy the continuity equation.

Therefore, corrections to the velocity field are made until the latter solution satisfies

both the momentum equations and the continuity equation.

The governing equations appropriate to the present flow configuration required

boundary conditions for the dependent variables on all of the boundary surfaces of

the solution domain. The boundaries are the inlet plane of the cross stream, the

downstream plane, one symmetric plane passing through the center of the jet, one

side wall, and two confining plates. Whenever the velocity is specified at a boundary,

the boundary condition for the pressure is not necessary, because only the relative

magnitude of pressure force plays a role in the momentum equations.

The upstream boundary conditions are prescribed, as far as possible, from the

experimental measurements. These data include the x-component mean velocity, the

turbulent kinetic energy, and the length scale. At the symmetric plane, Neumann

boundary conditions are applied, i.e., the normal gradients of all variables except the

normal velocity component are taken to be zero. The normal velocity is set to zero (W

= 0).
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At the downstream plane the gradients of all dependent variables in the x-direc-

tion are equal to zero. These conditions may not correspond #: thlose prevailing in

the real flow. The conditions are satisfactory only when the fully developed profile

assumptions of the variables are valid. This requirement l'jcates the boundary

unnecessarily far downstream (for example, x/D > 100 with R = 6). Practically, the

boundary location is adjusted such that the specified boundary conditions, which in a

certain range differ from the fully-developed conditions, have negligible influence

in the region of interest. For the variations of all dependent variables less than 1%,

the conditions are achieved by computational trials, approximately at x/D = 24 for R =

2, x/D = 32 forR=4, and x/D=48 forR=6.

The boundary conditions on the walls require special considerations. This is

primarily due to the significant effects of molecular viscosity. Note that the two-

equation model of turbulence previously introduced has neglected the molecular

viscosity. The neglect of molecular viscosity is valid only in the fully turbulent

regions. A two-layer model of the wall function method proposed by Launder and

Spalding( 6 ) is utilized in the present computational study. Usual no-slip conditions

are still valid for the convection fluxes. For the two velocity components parallel to

'he wall, the diffusion fluxes are patched onto the wall law profiles:

ff = l if y* < 11.5 (64)

and:
P'f= gy+ if y+_> 11.5

(1/0}! n(Ey+) (65)

where K is the Von-Karman constant (= 0.41) and E is another constant with a value of

9.0. The y+ is the normalized distance of the first internal grid point from the wall,

defined by:
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y+ ,1/2.. 1/4 Y!= pk C C (66)

where y" is the actual distance of the grid from the wall. Because of the considerable

variations of turbulent quantities near the wall, the mean generation rate G and the

mean dissipation rate E of the turbulent kinetic energy appearing in the governing

turbulent kinetic equation (Table 2) are evaluated using the profile assumptions of

the turbulent quantities near the wall cell.

All of the dependent variables also must be specified at the jet exit plane. The

half-circular nozzle, however, is modified by the rectangular cells in the Cartesian

coordinate system (Figure 8). The cell surface areas are adjusted such that the spec-

ified jet velocity provides the correct mass flux through the surface. In order to

investigate the influence of the jet boundary conditions on the computed results, two

different profiles are tested as the jet field initial conditions for R = 2 and 4. The first

is the uniform profile (top hat shape in Figure 9), characterizing the flow exiting a

contraction/nozzle arrangement. The second profile maintains the same momentum

flux, but is skewed downstream.

The velocity and species concentration profiles used for the second condition arc

from the measurements by Andreopoulos( 39 ,40). His measurements revealed that the

jet stream at the exit plane is distorted due to the pressure gradients across the plane

and the distortion increases as the velocity ratio R decreases. Figure 10 shows the

longitudinal mean velocity profiles nondimensionalized with the free stream value,

U/Uo, plotted versus vertical distance. The maximum deviation of U/Uo between two

conditions at x/D = 0.0 is at most 6% for both velocity ratios. After x/D > 2, there are

essentially negligible differences between profiles with two different boundary

conditions. Though not depicted here, the same observations are correct for the

profiles of the scalar concentration field.
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Figure 8: Modification of the Half-Circular Nozzle by Rectangular Cells.
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Figure 9: Mean Velocity and Temperaure Profiles at the Jet Exit Plane for R 2.
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One conclusion reached from these observations is that only the total momentum

flux at the jet exit plane (not its profiles) is important for the development of the

flow field downstream. Physically, this means that near the jet discharge the flow

field is not significantly influenced by viscous effects, so that the viscous diffusion

due to the velocity gradients at the jet exit plane may be neglected. The first bound-

ary condition is chosen for the subsequent calculations because it is the simplest and

most generally used in computational situations. Particularly for the flow situation

under study, the realistic profile of the second condition is not expected to provide

appreciably better results over the first, simpler one.

The bourdary conditions described above are tabulated in Table 3. In this table,

W(T/B) denotes the wall function applied both to the top and bottom walls, and W(S)

applicd to the side wall. At all grid points near the wall, the local equilibrium values

of the turbulent quantities replace the dissipation rate E, instead of solving it from

iic transport equation. The equilibrium profile is given in the bottom right corner

in Table 3. The isotropic assumption is used for the boundary condition of the

turbulent kinetic energy at the upstream boundary plane.

Table 3: A Summary of Boundary Conditions

Upstream Downstream Symmetry Jet exit Walls

U Uo au/ax = 0 Dula- = 0 0 W(S), W(T/B)

V 0 aV/lax = 0 aV/a. = 0 0 W(S)

W 0 aW/x =0 0 Vj W(T/B)

C 0 aC/lax =0 aC/ a- = 0 1 CaN*

k (3/2)u z  ak/ax = 0 ak/a- = 0 W(S), W(T/B)

E k 3/ 2 /0.165H) ac/ax =0 ae/a- = 0 k 312/(0.5D) (/4 k32)/(Kyl)-

*Impermeable wall boundary condition

*Local equilibrium profile specified on the grids nearest the wall
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Figure 10: Comparison of Mean Velocity U/Uo between two different Jet Exit
Boundary Conditions in the Plane of Symmetry; (a) R = 2; (b) R = 4.

51



The computations are executed on an IBM 3090 at Louisiana State University. In

order to minimize the number of grid points to be used, nonuniform spacing is used

so that grid nodes could be clustered where rapid variations of dependent variables

are expected. This means that fine grid spacing is used near the jet discharge, and an

increasingly larger grid spacing is used away from the discharge hole in all three

coordinate directions. The location of the grid line nearest the wall is adjusted such

that all grid points on the line occur in the fully turbulent region (11 < y+ < 300)

where the logarithmic wall law profiles are valid.

At each iteration it is necessary to employ under-relaxation when solving the

algebraic, finite-difference equations (i.e., 0 = X(D Onew + (1 - X() 4Dold). The number

of iterations and the stability or divergence of the solutions are directly affected by

the value of the under-relaxation factor XcD. Typical values of X(D used are X4 = 0.2 to

0.4 for the velocity components and X(D = 0.5 for all scalar variables. The iteration

terminates when the normalized sum of the mass source with respect to inflow mass

flux (b in Eq. 4.30), which represents the deviation of the velocity field from the mass

conservation, is less than 10- 5 and the variations of all dependent variables between

two successive iterations are less than 0.1%. A typical calculation using 20 x 15 x 15

points (x, y and z direction, respectively) required approximately 250 iterations and

14 minutes of CPU time.

Computer storage limitations in the 3-D calculation nccessitate the use of a rela-

tively coarse grid distribution. The actual variations of the dependent variables

between grid points in the convection-diffusion problems exhibit an exponential

behavior (power-law scheme represents this behavior). A truncated Taylor series in

an upwind or central difference scheme fails to be an adequate representation of the

exponential behavior except for fine grid size(7). The power-law scheme adapted in

this work provides an acceptable representation of the exponential behavior and

therefore minimizes false diffusion. Demuren( 8) provides estimation methods of false
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diffusion in 3-D calculations. However, for the present work, with the computer

storage available at this time, it is difficult to refine the finite-difference grid

further. There are, however, indications that the results are grid dependent, as the

contour shapes are repeatable with a coarser grid size (15 x 10 x 10 in the x, y and z

directions, respectively) but the magnitude of, for example, the x-component of mean

velocity may vary up to 10%.
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RESULTS

The jet-to-cross-stream velocity ratios (R) investigated were 2 and 4. The spacing

between the parallel plates is fixed at 10 jet diameters and each side wall is located 15

jet diameters from the jet center. Figure 11 shows isocontour plots of the nondimen-

sionalized species concentration C/Cj in the plane of symmetry. The contours indi-

cate the extent of the penetration of the marked jet particles into the outer stream.

With the presentation of the isocontours, the line S of maximum maximorum (i.e.,

maximum of maximums) is identified. From this line, a qualitative representation of

the flowfield is achieved including the extent of the jet deflection and the existence

of impingement. Note that impingement does not occur for R = 2. Total mean velocity

vectors in the plane of symmetry of thc flowfield are shown in Figure 12. With R = 4,

significant upward motion continues farther downstream. For the case of R = 2, the

jet is deflected downward near the jet discharge and more rapidly aligned with the

cross stream. Note the wake regions in the outer flow immediately upstream and

downstream of the jet entrance.

The predicted isocontours of the scalar field at three transverse cross sections

downstream are presented in Figure 13 for both the velocity ratios of 2 an 4. The top

wall is not shown for R = 2. The results indicate that the diffusion characteristics of

the jet stream strongly depend on the velocity ratio. For the lower velocity ratio, the

jet is deflected rapidly by the influence of the cross-stream momentum. The jet

stream is convected downstream and diffuses out in both the vertical and transverse
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directions (y and z directions, respectively). In the case of the higher velocity ratio,

the jet stream directly impinges on the opposite plate and diffuses more rapidly in

the side direction (z direction). The kidney-shaped cross section of the jet is clearly

seen as the jet develops downstream. The point of the maximum scalar value occurs

on the top wall and along the centerline after the impingement.

Figure 14 shows contours of the x-direction mean velocity in the y - z planes at

two downstream locations. The velocity is nondimensionalized with the cross-stream

velocity. In the initial region, the crossflow is accelerated around the edge of the jet

and produces a velocity maxima near-side of the jet discharge. In Figure 14, the jet

stream gradually gains axial-direction momentum as it is convected downstream.

Note that the cross stream is deflected sideways in the initial region. This cross

stream then accelerates the jet stream from the edges of the jet cross section after the

jet is aligned with the cross stream.

As mentioned previously, a major feature of a jet in a crossflow is the production

of the counter-rotating vortices, which are created by the shear along the edge of

the jet. Numerical calculations of this study predict the vortex production (Fig. 15).

The streamwise component of mean vortices is calculated from the velocity vectors in

the cross-section planes. Here, the vorticity is defined as follows:

-=w1u0) -V/U 0)
y/D) a z/D) (67)

Only the vortices in the half-plane extending from the symmetric plane are pre-

scnted. The opposite half-plane can be visualized with an opposite sign of the vortex

strength. The core of the vortex structure in each plane is seen to propagate towards

the upper surface as it is convected downstream. The cross-sectional shape of the

vortex structure seems to be similar to that of the aai fi,2d diawi iM ihi sanic
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cross-section planes except for the wake formed near the bottom wall. It is

interesting to note that the vortex structure still exists after the jet impinges on the

wall (Figure 15).

Two components of mean velocity are compared with experimental results at four

downstream locations in the x-y plane (Figs. 16 and 17). The results show that agree-

ment is generally fair. The main discrepancy, however, is the axial-direction veloc-

ity component U, especially in the upstream regions where the flow exhibits strong

anisotropy. The streamwise component velocity profiles both at R = 2 and R = 4

clearly show wake behavior of the flow behind the jet and close to the wall. The

wake region is induced by the backflow of the cross stream into the low-pressure

region immediately downstream of the jet discharge. The wake region extends

downstream but "lifts off" from the lower wall due to the strong inflow of the cross

stream towards the symmetric plane. This inward motion carried high-momentum

fluid from the cross stream to the symmetric plane. Therefore, the axial component

velocity profiles gradually smooth out downstream.

Measurements of the turbulent distributions are presented in Fig. 18 for R = 4 at

four downstream locations in the x - y plane. The turbulent shear stress u--v is com-

pared with the calculation of the k - E model. Again the agreement is less in the

initial region. Moving downstream there is a tendency towards an isotropic flow and

the agreement improves. The position of the maximum i" and u-- profiles corresponds

approximately to the center of the jet cross section where the velocity gradients

UtJ/,X and aU3/Y are maximum. The 7 profile maximum corresponds to the edges of

the jet where aV/iY is maximum. Recalling from the turbulent and mean kinetic

energy equation, the maximum transfer energy from the mean flow to the turbulent

Ilow occurs when IpuiiUiiif-U 1 aXQ is maximum. Thus, the turbulent intensities which

arc an indication of the level of turbulence will be a maximum when the Reynolds

sircsses and mean velocity gradient are maximum.
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E'stimiates of L

The dependence of the Reynolds number Re), and order n of higher even-order

moments for n = 2, 3, 4 is plotted in Hgurc 19. Frenkiel and

Klebanoff( 3 2 ), using the properties of the lognormal distribution, showed that:

(-1)l- (L)1fl(n-1)- Re- (68)

under the isot-opic assumption that L/71 Re?, 3 / 2 . The local slope of the experimental

distribution of Figure 19 is proportional to p and thus the plots shown in Figure 19

can be thought of as a possible method for determining 4. Nine sets of experimental

data are presented corresponding to different velocity ratios ()L = 1,2,4) and flow

locations (x/D = -2,4,8). A straight line has been fitted up to a value of n(n-1) log Re x

of approximately 20. The arithmetic average value of m is estimated to be 0.38

obtained from a power curve fit with a coefficient of correlation equal to 0.95. It has

bccn suggested by Frenkiel et al.( 3 2 ) and Antonia et al.( 2 6 ) that the decrease of 4 with

n is universal for a given value of fc in the sense that it does not depend on the

particular flow. The present data provide further support for this suggestion. A

comparison with the previous results also indicates a slightly higher value of the

C%\ ci order moments.
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(b) Mean Velocity Ratio. = 2.0
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Figure 19 (b): Reynolds Number Dependency of vs. n(n-1) log Rex; for Various
(Li 2 )f

Flow Locations.
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(c) Mean Velocity Ratio, X i= 4.0
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Figurc 19 (c): Reynolds Number Dependency of (0 vs. n(n-1) log Rek; for Various(r
Flow Locations.
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The implications of these results are significant. First, the magnitude of g for this

particular flow is quite close to the value originally predicted by Yaglom(1 4 ) (g = 0.4).

This value is considerably higher than the value proposed by Antonia et al.( 2 6 ) (g =

0.2) and less than the estimate of Gibson et al.( 2 5 ) (g = 0.5). Secondly, the particular

flow field investigated in this work must be considered developing, rather than fully

developed. Hence, it would seem arguable that the fully developed restriction may be

relaxed and the universal equilibrium theories may apply to the near-field problem

in turbulence, as well.

Skewness and Flatness Factors of the Velocity Derivatives

Flatness and skewness factors of aul/at are presented in Table 4. Several general

observations may be made. First, although the largest flatness values of skewness are

found at larger flatness values, distributions with large flatness values appear to be

equally likely to have large or small values of skewness. The flatness values range

from 30 to 1000. These large flatness values indicate a higher than normal probabil-

ity of values far from the mean, and the non-Gaussian nature of the derivatives is

evident. Predictions of the relationship between flatness and skewness predicted by

the lognormal model (S (x K3/ 8 ) or by the 03-model (K at S2 ) are not indicated by this

data. The flatness is seen to increase monotonically with the turbulent Reynolds

n u m b e r.

One-dimensional energy spectra

The one-dimensional energy spectra is Fl(kl) whose integral over all wavenum-

bers is u 1
2. Taylor's approximation in the form k1 = 2nt f/U 1 was used to transform the

frequency f to the wavenumber k1 , the x, component. The spectra are presented
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Table 4. Statistical Documentation for Various Velocity Ratios and Flow Locations.

Velocity Ratio, Xj = 4.0

X/D y/D t vk  Ik E Rq K S
(m) x10 2  (m/s) x10 4  (m 2 /s 3 )

(mn) min)
+8 +1 .0626 .603 .465 .344 2929 260 335 -5.50

+2 .0741 .794 .510 .314 4218 407 228 -2.02
+4 .053 .479 .453 .353 2637 181 245 -0.08
+6 .0323 .446 .472 .339 3100 178 285 -1.03
+8 .0544 .550 .353 .454 967 209 134 -2.10

+4 +1 .157 .905 .761 .210 20918 567 624 -2.06
+2 .128 .711 .740 .216 18727 512 211 1.05
+4 .0944 .396 .746 .214 19351 114 1367 0.070
+6 .438 1.25 .495 .323 3750 582 1002 0.065
+8 .0456 .431 .243 .658 218 63 199 0.085

-2 +1 .0659 .748 .473 .338 3125 358 340 2.10
+2 .0913 .711 .344 .465 873 197 199 1.06
+4 .177 .257 .184 .871 713 22.1 66.4 0.95
+6 .0699 .286 .186 .860 75 24.4 80.1 0.92

Velocity Ratio, Xj = 2.0

X/D y/D t XT  v k  Ik E Rex K S
(m) x10 2  (m/s) x10 4  (m 2 /s3 )

(mn) (in)
+8 +1 .129 .694 .569 .281 6550 384 352 -2.05

+2 .0421 .543 .553 .289 5860 274 204 2.16
+4 .0438 .535 .411 .389 1790 243 105 -3.78
+8 .0146 .199 .166 .965 47.15 15 39.6 -0.088

+4 +1 .0178 .320 .595 .269 7853 158 119 -4.05
+2 .0283 .366 .587 .272 7440 165 329 -5.47
+4 .0302 .418 .288 .555 432 99.8 124 -4.56
+6 .0126 .210 .172 .930 54.7 17.2 52.3 0.075
+8 .0132 .207 169 .948 50.77 16.7 33.7 0.011

-2 +1 .130 .735 .518 .309 4503 345 248 0.010
+2 .0887 .742 .379 .423 1283 262 322 -0.026
+4 .0188 .239 .158 1.01 39.2 17.2 37.9 -0.028
+6 .0243 .228 .175 .916 58.3 18.9 41.9 -0.005
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Velocity Ratio, j = 1.0

X/D y/D t Vk Ik E Rex K S
(M) x10 2  (m/s) x10 4  (m 2 /s 3 )

(M) (M)
+4 +1 .125 .331 .996 .161 61600 124 824 -4.5

+1.5 .184 1.04 .667 .240 12300 714 503 2.3
+2 .0838 .827 .442 .362 2390 425 226 -1.8
+3 .0241 .376 .246 .651 228 65.2 189 -1.95
+4 .0214 .278 .170 .943 51.8 24.3 43.6 -0.05

+2 +1 .179 .552 .948 .169 50500 277 756 -2.05
+1.5 .303 .681 .417 .383 1900 317 269 -1.55
+2 .0722 .647 .437 .367 2276 326 185 -1.95
+3 .045 .369 .216 .740 137 48.2 236 -1.95

-2 +1 .0578 .588 .421 .380 1970 214 254 -0.75
+1.5 .0309 .488 .392 .410 1480 177 157 -1.12
+2 .0594 .667 .391 .408 1460 258 199 0.08
+3 .0359 .321 .189 .846 79.9 32.3 74.5 0.65
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here in Kolmogorov - normalized form, i.e., divided by (E v5 )1/4, in Figure 20(a). The

value of the dissipation rate E was estimated from the second moment of the

dimensional spectra (Figure 20(b)) using the assumption of dissipative local isotropy,

or:

= 15v foj k1
2 Fl(kl)dk. (69)

Variation of the functions (rik) 2 0(71k), (rilk) 5 / 3 D(Tk) and (rlk) 4 4(jlk) with Rex is

examined. The maximum values from each function are plotted against Rex in Figure

21 (a)-(c). Variation of these maximum values was found to vary with the logarithm

of Rex. For (Tlk) 2 (rjk), the relationship:

M 1 = 0.0413logRex - 0.0326 10<Rex<1000 (70)

was obtained, where M, denotes the maximum value of (7k) 2 0 ( l k). The coefficient

of correlation for the curve is 0.96. For the function (uk) 5 / 3 (l1k), a similar rela-

tionship was found to be (M2 is the maximum):

M 2 = 0.0856logRe k - 0.171 10<Rek<1000 (71)

with a coefficient of correlation of 0.95. Finally, for (ruk) 4 ( rl k), the variation

obtained was (M3 is the maximum):

M 3 = 0.1009 - 0.0140logRe k  I0<Rex<150 (72)

with coefficient of correlation 0.98. For values of Rex, greater than 150, the peak

values displayed a decreased dependence on Rex.
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Figure 20: (a) Example of Typical Nondimensionalized Energy Spectra for
Xj = 4.0 and x/D = 8.0 at various locations between the plates.
y/D = 1.0, Rek = 260; y/D = 2.0, Re) = 407; y/D = 4.0, Re?, = 189
y/D = 6.0, Rex = 178; y/D = 8.0, Re) = 209

(b) Examnles of Typical Nondimensionalized Dissipation Spectra for
j = 4.0 and x/D = 8.0 at various locations between the plates. Com-

parison to Grid Flow Data, from Champagne (33)
y/D = 1.0, Re = 260; y/D = 2.0, Rek = 407; y/D = 4.0, Rc) = 189

y/D = 6.0, Rex = 178; y/D = 8.0, Rex = 209
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Some comparisons with earlier studies can be made. Dissipation spectra from

Frcnkiel and Klebanoff( 3 2 ) have been presented. For Rex = 60.8, they found the

maximum value of (1lk) 2 O(Tjk) to be 0.22. For Rex = 45.2, the corresponding maximum

was 0.19. The correlation determined in this study, eq. (68), would predict M = 0.14 for

Rex = 60.8 and M = 0.12 for Rex = 45.2. Champagne( 3 3 ) compiled and graphed @1k) 2

1(ik) from four research sources of varying Reynolds number: (1) a cylinder wake

flow, Re x = 138, (2) a grid flow, Rex = 41, (3) a grid flow, Rex = 65, and (4) a homoge-

neous shear flow, Rex = 130. These curves were found to be very nearly the same,

leading Champagne to conclude that the fine-scale structure of the different flow

fields is similar at least for the Rex range presented here, viz 40-138. The results

obtained here indicate that for this developing flow field, Reynolds number indepen-

dence is not found, neither for 40 < Rex < 138, nor for the entire range investigated,

16.6 < Rex < 782.

Fractal Dimension of the Dissipation Structure.

The fractal dimension, D, of the dissipation structure was determined from calcu-

lations of the turbulent Reynolds number and the flatness of the velocity derivatives

at each measuring location. Figure 22 shows a plot of the results. The slope of the

line is 0.823, calculated by least-squares nonlinear regression, and having a corre-

lation coefficient of 0.77. The relationship:

K - Rex 3/2( 3-D) (73)

becomes:

K = 2.72Re. .8 2 3  (74)

giving a fractal dimension D = 2.45.
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Sreenivasan and Meneveau( 30 ) reported a fractal dimension value of 2.73 to 2.78,

based on a collection of research data. A comparison made of the flatness values in

the present work and the other research indicated a possible explanation for the

discrepancy. The flatness values found in this study are up to an order of magnitude

larger than flatness factors reported elsewhere for flows of comparable Rex. Some of

the increases may be attributable to the developing nature of the flow in this study,

where large variations in velocity occur due to the complex superposition of

different flow patterns. However, the developing (versus fully developed) nature of

the flow cannot be considered completely responsible for the difference in flatness

values. The main reason for the discrepancy, however, may be different measuring

techniques used. The velocity derivative values in this research were calculated

from digitized velocity data. It is possible that the digital velocity derivative calcula-

tions produced high and low values not discriminated by the analog instruments used

in earlier studies.

To test what effect such a loss of high and low end data could have on the estima-

tion of D, a "filter" was applied to our data. The width of the filter was set at 12 times

the standard deviation of the sample and centered at its mean. New flatness factors

were calculated for the filtered data, and found to be substantially lower.

When the filtered data were plotted against Rex, as shown in Figure 22, the slope

of the resultant line led to a fractal dimension of D = 2.73, exactly in the range

estimated by Sreenivasan et al. ( 3 0 ) .

Srccnivasan and Meneveau( 3 0 ) also reported fractal dimensions of the

turbulent/nonturbulent surface in several types of turbulent shear flows (boundary

layer, axisymmetric jet, plane wake and mixing layer). They found an interface

dimension of 2.3 to 2.4 which apparently was independent of the type of flow. It is

interesting that the turbulent interface fractal dimension is close to the 2.45 fractal

dimension of the dissipation structures.
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