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ABSTRACT
- The active control of acoustic pressure in a2 cavity with a flexible boundary (a beam)

is considered. Specifically, this control is implemented via piezoceramic patches on the beam
which prodcce pure bending moments. The incorporation of the feedback control in this
manner leads to a system with an unbounded input term. Approximation methods in the
context ora4Ql state space formulation are discussed and numerical results demonstrating
the effectiveness of this approach in computing feedback controls for noise reduction are
presented.
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1 Introduction
In recent years, the development of new fuel efficient turboprop engines has motivated the
development of a comprehensive active control methodology for interior pressure field cham-
bers. The active control of noise in this setting has been studied both in a frequency domain
setting [14, 19] and from an infinite dimensional state space time domain approach (PDE
approach) [2, 6, 7, 12] with techniques often centering around the generation of an appropri-
ate secondary pressure wave which optimally interferes with the offending primary pressure
wave. Here however, we consider a time domain state space formulation in which the active
control is implemented via piezoceramic patches which are imbedded in the boundary of the
acoustic cavity.

The example we consider consists of an exterior noise source which is separated from
an interior chamber by an active wall or plate. This plate transmits noise or vibrations
from the exterior field to the interior cavity via fluid/structure interactions thus leading to
the formulation of a system of partial differential equations consisting of an acoustic wave
equation coupled with elasticity equations for the plate. The control is implemented in the
example via piezoceramic patches on the plate which are excited in a manner so as to produce
pure bending moments. It should be noted that the incorporation of the feedback control
in this manner leads to a system with an unbounded input term. Experiments are being
designed and carried out at NASA Langley Research Center in which the interior cavity is
taken to be cylindrical with a circular active plate and sectorial patches.

As a first step toward developing an effective linear quadratic regulator (LQR) state space
control methodology for near field acoustic problems of this type, it is useful to consider a
simplified but typical model consisting of a 2-D interior cavity with an active beam at one

end (see Figure 1). Here T" represents a perturbing force on the beam due to an exterior
noise source. This in turn causes fluctuations in the interior acoustic pressure field and hence
unwanted noise. The goal in the control problem is to optimally reduce the interior pressure
deviations by effecting a force distribution on the beam that decouples the cavity acoustic
response.

In Section 2, a model set of differential equations for the problem is given and the math-
ematical framework needed to pose the control system in an abstract Cauchy formulation is
presented. Section 3 contains a brief discussion of the theory of finite and infinite dimensional
periodic optimal control problems while Section 4 is devoted to the general finite dimensional
approximation of the control problem. Specific approximation schemes are discussed in the
fifth section and examples demonstrating the viability of the method are presented.
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Figure 1. Acoustic chamber with piezoceramic patches.

2 Mathematical Model

When describing acoustic wave motion in a fluid, it is useful to introduce a velocity potential
4 which is a complex-valued function satisfying 6(t, x, y) = -V¢(t, x, y) where 6 denotes the
fluid's velocity [15, 16]. If the equilibrium density of the fluid is given by pj, the acoustic

pressure p (the deviation from the mean pressure at equilibrium) is related to this velocity
potential by p(t, x, y) = pf t(t, x,y). For acoustic waves with small amplitude, both the
potential and the pressure satisfy the undamped first order wave equation with uniform
speed of sound c in the fluid; hence

Ot = c 2A (x,y) E Q(t) ,t > 0.

The boundaries on three sides of the variable cavity Q(t) are taken to be "hard" walls thus
leading to the zero normal velocity boundary conditions

V. h= 0 (x,y) E r ,t > 0
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where h is the outer normal. It is assumed that the perturbable boundary consists of an
impenetrable fixed-end Euler-Bernoulli beam with Kelvin-Voigt damping. If w(i, x) is dsed
to denote the transverse displacement of the beam with linear mass density Pb, the equati.,us
of motion are

02 0<x<a,
Pbwt + -2M(tx) = -pfOt(tX, w(t,x)) + f(t,X)i9 2i> 0 , (2.1)

Ow Oww(t,0) =-(t,0) = w(t,a) = -(t, a) = 0 t>0
Ox Ox

where M(t, x) is the internal moment and f is the external applied force due to pressure from
the exterior noise field. For an uncontrolled beam with Kelvin-Voigt damping, the moment
contains both strain and strain rate components and is given by

,02w 03w
M(t,x) = EI- . 2 + CDI 1

2 0 .

The final coupling equation is the continuity.of velocity condition

wt(t,x) = VO(t,x,w(t,x)).fi, 0< x <a ,t >0 (2.2)

which results from the assumption that the beam is impenetrable to fluid. Under an as-
sumption of small displacements (w(t, x) = -(t, x) + 8 where tb = 0) which is inherent in
the Euler-Bernoulli formulation, the beam equation in (2.1) can be approximated by

a2

PbWUtt + "7X2 M(t x) = -.-pj[4t(t, x, 0) + OSy(t, x, 0)w + f(t, x)

while (2.2) can be approximated by

wt(t, x) = VO(t, x, 0)- h + (VOY(t, x, 0)w) .

To first order, these last two equations can be approximated )y dropping the higher order
terms -pfOty(t, x, O)w and (Vqy(t, x, 0)w) . fi. Then upon approximating the domain fQ(t)
by the fixed domain S1 =_ [0, a] x [0, f], we obtain the approximate uncontrolled model

Ott = c'AO (x,y) E Q ,t > 0o,
Vq.i=c 0 (x,y)E r,t>0,

0 o(t,X,0) = -wi(t,X) 0<X < a ,t > 0,

P6W + 7 -- EI--92W + cD1I- ) -p,¢O(t, x, 0) + f(t, X) , (2.3)
AOw(4l SOw(\w(t,) Ox 2 a t ) t > 0

W(0,,9, 0)ko(xy) , w(0, ) = o( )

O,Y) = 0(XY) , w(0, ) = WO(X)
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For control of structural vibrations and the acoustic pressure field in this model, s piezo-
ceramic patches are attached to the beam as shown in Figure 1. These patches are excited
in a manner so as to produce pure bending moments ([8, 9, 111) (see Figure 2). If H is used
to denote the Heaviside function, the model for the controlled beam can be written as

02 [ 92W _ 3w
PbWtt , (EI~ + C 5at+ Pf Ot(t' XO)(24

(2.4)
2 EIBk ui(t) [H(x- al)- H(x- a 2)]) + f(t, x)

Here ui(t) is the voltage applied to the ith patch, K' is a parameter which depends on the
geometry and piezoceramic material properties, T is the patch thickness and k is a material
constant (see [8, 9]). It should be noted that the incor.,oration of (2.4) into (2.3) leads to a
system with an unbounded input term since it involves the second derivative of the Heaviside
function.

+
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Figure 2. Piezoceramic patch excitation.

To formulate this problem in the context of uxisting infinite dimensional control theoretic
results, it is advantageous to pose the control system in an abstract Cauchy formulatiou. To
accomplish this, the state is taken to be z (€,w) in the Hilbert space H -= L2(fn) x L 2 (r0)

with the energy inner product

Here L2(11) is the quotient space of L 2 :."er the constant functions. We also dcfine tile
Hilbert space V = fI'(fl) x If2(Io) where -"(fR) is the quotient space of H, over the
constant functions and ? (Fo) = {¢P E lI2 (ro) : i(x) = tk'(x) = 0 at x = 0, a}. Thc V inne,
product is taken as (hi.,c and below wc use the notation D =

KV . ..v.dw+ I.2zvD'yd..
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Following the ideas used in the theoretical results in [3, 4], we consider the Gelfand triple
V -+ H - V* with pivot space H and define sesquilinear forms oq : V x V --+ C, i = 1, 2
by

in(~ ~) LpfV V d + Jr ETD 2 wD 2 id-y,

a 2(, 1IF) = j 2{CxDI 2 7Wf D + pf(O - wC)}d-y

where -6 = ( , w) and I = (C, 17) are in V. It can be easily argued that the sesquilinear
forms satisfy the continuity and coercivity conditions

Re uj(4, ) V cl~l t,

ReO 2(, @) > c3 (2w,D2W)L 2(ro) = C Hw2(ro) ,

(for detailed argtments in a similar setting, see [1]). The control operator B E C(U, V*) is
defined by

r Kk 27dB
(Bu, 41 =, ]EIy- uj(Hi - i)

i=1

for ik E V, where Hii(x) - H(x - aij),i = 1,2,---, s, j = 1,2 and (., is the usual
duality pairing.

Finally, for F = (0, f/Pb) we can write the control system in weak or variational form

(zt,(t), P)v.,v + o2(zt(t), Q') + aj(z(t), %P) = (Bu(t) + F, @)V.,v (2.5)

for %I in V. The state is given by z(t) = (0(i, ..-), w(t,-)) in V + H. Since 0', and 0,2 are
bounded, we can define operators A1, A2 E C(V, V*) by

(Ail', T) V.,V = i('1P 7 I)

for i = 1,2. This then yields the system

zit(t) + A 2zi(t) + Aiz(t) = Bu(t) + F

in V*.
Continuing with our abstract formulation, we next write the system in first order form.

To accomplish this, define the product spaces V = V x V and i = V x H with the norms
j(, ,)12 = I 1 + I 12

and
I(,, y) = I*1 1 + I*'V V IV"

For X = (t, T) and 0 = (T, A), the sesquilinar form a: V x V -- C is then defined by

a((T, A), (D, fl)) = - (A, flV + a,(T, ly) + a2 (A, P) . (2.6)
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Since the duality product (, v is the unique extension by coitinuity of the scalar product
(' " from H x V to V* x V, it follows that for appropriate restrictions on 0 we can write

(O, x) = o((T, A), (¢, q)) = - (A, )v + (A1T, '12)v.,v +(A 2A, ')v.,v

= - (A, ¢,, + (A1T + A2 A, q)H

= ((-A,A1T + A2A),(-(D,q'))>

= (-Ao,x) .

The operator A: "H H Uis given by

A = A -A 2  (2.7)

where dom A = { = ('r, A) E R- : A E V, AT + A 2A E H}, A1 and A2 are the operators
defined by o1 and a2, respectively, and the above calculations hold for 0 E dom A (see [1]
for further examples concerning the definitions of operators and domains in this manner).

To write the first order system in weak or variational form, let Z(t) = (z(t), zt(t)),
.F(t) = (0, F(t)), and Bu(t) = (0, Bu(t)). The weak form of the system is then

(Z'(t), X)v.,v + O(Z(t), x) = (Bu(t) + F(t), X)v.,., (2.8)

for X E V. Formally, this is equivalent to the system

Zt(t) = AZ(t) + Bu(t) + .F(t) (2.9)

in W" where A is given in (2.7).

3 Periodic Control Problems

As noted in the introduction, ot" , ontrol problem is motivated by the desire to reduce
cavity pressure fluctuations resuhl:, %- from the perturbing noise F. In many applications,
it is reasonable to assume that F - periodic with period r; hence an important problem
of interest (e.g., see [6]) for the system (2.9) is an LQR problenm for ;- perioo~c disturbing
force '. This cz.n be formulated as the problem of finding u E J1(0, r; U) wl.ich minimizes
a quadratic cost function,' of the form

J(u) = I J {(QZ(t), Z(t))H + (Ru(t), u(t))u) dt

subject to (2.9) with Z(0) = Z(r). Since Z = (€, w, , w)T, the operator Q can be chosen
so as to emphasize the minimization of particular state variables as well as to create windows
that can be used to decrease state variations of certai:, frequencies. The control space U is
taken to be IW if s patches are used in the model, and .: is assumed that the operator R is
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an s x a diagonal matrix where rii > 0, i = 1,..., s is the weight on the controlling voltage
into the i" patch. In the case that B is bounded on H", a complete feedback theory for
this problem can be given as discussed in [10]. Under usual stabilizability and detectability
assumptions on the system as well as standard assumptions on Q, the optimal control is
given by

u(t) = -R- 1B -[1TZ(t) - r(t)]

where H is the unique nonnegative self-adjoint solution of the algebraic Riccati equation

A*1I + flA - HBR-'B*II + Q = 0. (3.1)

Here r is the unique r-periodic solution of

i(t) + (AS - IB -1 B)r(t) - I.F(t) = 0 (3.2)

and the optimal trajectory Z is the solution of

Z(t) = (A - BR-BL*n)Z(t) + BR-LB*r(t) + .F(t).

These equations (in particular (3.1), (3.2)) are infinite dimensional (i.e., in 7") and hence
ajpyroximation techniques a:e required to obtain approximate feedback gains. Using a stan-
dard Galerkin approach, one typically chuoses a sequence of %nite dimensional subspaces
7 jN C 'H with projections pN : -- + 'HN and defines an approyimating problem in 7WN of
milnimizing

JNV(u) = 0j(Qz~)z~) + (Ru (t), u(t)) u Idt

subject to an approximating system

jN(t) = ANZN(t) + BNU(t) + FN(t)

ZN(o) - ZN(r) = PNZ(o).

The solutions are given by

uN(t) = -R-1BNa[HNZN(t) - rN(t)]

ZN(t) = (AN - BN R-'BN*IIN)ZN(t) + BN R-BN*rN(t) + yrN(t)

where IN is the unique nonnegative self-adjoint solution of

AN*IN + IINAN - INBNR-1BN.IIN + QN = o

and rN is the unique r-periodic solution of

tN(t) + (A..'N - I*113 N R-I BN)rN (t) - IIN.FN(l) = 0.

In order to guarantee the convergence IINpNZ -- IZ for Z E H, rN(1) -+ r(t), and
hence the convergence of uN(t) to u(t), it is sufficient to impose various conditions on the
original and approximation systems. These hypothe;...s include convergence requirements for
the uncontrolled problem as well as the requirement that the approximation systems preserve
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stabilizability and detectability margins uniformly. A fully developed theory (see [4]) is
available for the case that T = 0 (in this case the tracking variable r does not appear in the
solution) even in the case that B is unbounded in the sense formulated in Section 1. The
theory in [4] requires rather strong damping assumptions on the second order system (2.5)
in order to be applicable. Under appropriate assumptions, the techniques and ideas of [3]
and [4] can be used to treat the case for F # 0 in both identification and feedback control
problems.

4 Finite Dimensional Approximation

An advantageous feature of the state space approach for feedback control is that the optimal
control can be implemented using various approximation techniques. To illustrate the ideas
involved, let {B },_- denote the 1-D basis functions which are used to discretize the beam
and let {B i }i=1, m = (m., + 1) . (my + 1) - 1, denote the 2-D basis functions which are
used in the cavity. The n - 1 and m dimensional approximating subspaces are then taken
to be Hbn = span IBP-iT'i and H.- = span {Bi }i , respectively. Defining N = m + n - 1,
the approximating state space is HN = Hm7 x Hb and the product space for the first order
system is HN = HN x HN. The finite-dimensional approximation is then determined by
restricting a to 7HN X 7tN where a is given in (2.6). This yields the operator A N : HN -, HN

where

AN [N N]-AI -A2
and A N and A N are obtained by restricting a, and U2 to HN x HN . ' We observe that the
restriction of the infinite dimensional system (2.5) to the space 7jN x R.N yields for 'I = (, 7i)

zit),) + 0'2(z () +ljl~)

f 11'Bk ° f

= EI -- -U i(t) (Hi , - H ,)D 27d j+ fld~y .
ro T = or

When IF is chosen in H-N and the approximate beam and cavity solutions are taken to be

n-I

wN(t,x) = ,vt)B(x)
i=1

and
ON (t, X, 1)= F, i0 '(1)Bn(, Y),

=1
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respectively, this yields the system

MNjN(t) = ANyN(t) + B3NU(t) + PN(t)

M N YN(O ) = oN

where
(t = N(t)Y t) N(t)

Here jN(t) = (O(t),q2(t),..,+O(t),wN(t),w(t),... ,wNI(t))T denotes the N x 1 =

(m + n - 1) x 1 approximate state vector coefficients while u(t) - (u1 (t), ... u.(t))T contains
the s control variables. The full system has the form

MIN ] [ N(t) L MIN 1N(t)

MIN  0 1rN(O) 1
M [tN( O) J 2

with
MN = diag[MfN, Mf2],

- diag[M2 ', M2],
= diag[A , AN],11a 12

A~N 0 AN

and

PN(t=)  [ 0

29N(t)



The component matrices are given by

I jVB VBw DBMN] 2BD nd,

[dkN = = n p dy

[a, ]., = jIo CDID2BrD 2B;d7,
[42111,kjo '2B M2

Moreover, the vectors gf' = [gf , 9 ] and g f = [g , g]4 have elements

ll = j 4 1 B?"w fg~] = Jo w 1 B'd"

In all cases, the index ranges are k,£ = 1,.-.,m and i,p = 1,---.,n - 1. The patch index
j ranges from 1 to s. It should be noted that the~ matrices Aj'N and MN are symmetric and
positive definite by construction. The matrix ANf has a symmetric block and a skewsymmetric
block and the eigenvalues of AN are real and nonnegative.

nB-,"- a d N] ,n-

With the bases {}'t 1, and, {Bi }i= chosen, the finite dimensional theory outlined in
the last section holds with the various finite dimensional operators replaced by appropriate
matrices. Specifically, the finite dimensional control problem is then to find u E L2 (0, T)

which minimizes

JN(u) = if {(QNYN(t), yN(t))RNr + (Ru(i), u(i))Re} dt, N = m + n- 1

where QN is nonnegative definite and V/N solves

jN(t) = ANyN(t) + BNu(t) + FN(t)
yN(O) = N (4.1)

Here AN = (Mr') - AN, BN = (MvN) -1 JJN, FN(t) = (MN) -1 FNQt) with the initial

condition yN_- (MN) -' o. The optimal control is

UN(l) = R-I(BN) r [rN(t) - INyN(l)] (4.2)
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whert In is the solution to the algebraic Riccati equation

(AN)TIIN + IINAN _ INBNR-1 (BN)TIIN + QN =0 . (4.3)

Since QN denotes the matrix representation for the operator QN, a suitable choice for QN is

QN I 0]QN = D [ N

where the diagonal matrix V is given by

V = diag [d1Im,d 2In-1,d 3Im,dn-1]

Here k , k m, n - 1 , denotes a k x k identity and the parameters di are chosen to enhance
stability and performance of the feedback. The s x s diagonal matrix R contains the positive
control weights and has entries rit, i = 1,... ,s. For the regulator problem with periodic
forcing function FN(t), rN(t) solves the linear differential equation

N(t) [AN - BNR-'(BN)TIIN]T rN(t) + INFN(t)

rN(0) =rN(r)

while the optimal trajectory is the solution to the linear differential equation
N(t) = [AN - BNR(BN)TIIN] yN(t) + BNR- (BN)TrN(t) + FN(t)

(4.5)
YN(O) = yN(r)

5 Specific Approximations and Numerical Results

We next turn to a discussion of specific choices of basis functions in the general formulation of
the approximation schemes in the last section. We shall also present numerical results from
related computations. When choosing bases for the finite dimensional subspaces H and
H,' in a control setting, one must weigh criteria such as smoothness requirements, uniform
preservation of exponential stability of approximating systems (see [5]), accuracy, sparsity
of system matrices and ease of implementation.

From energy considerations, it follows that the system (2.3) is dissipative; hence all the
eigenvalues lie in the left half plane. The model of Section 1 includes no medium damping
however, and hence the energy dissipation in the cavity results exclusively from the boundary
(Kelvin-Voigt damping in the beam) thus making the system (2.3) only weakly damped.
In spite of the lack of strong damping, numerical tests have indicated that when physically
relevant parameters are used in the model, the system (2.3) is exponentially stable (the fixed-
end boundary conditions on the beam make difficult a thorough analytical analysis of the
eigenstructure). When considering various methods of discretizing the problem, one would
like to choose schemes which uniformly preserve the exponential decay rate as the dimension
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of the approximate system (4.1) increases. This can be easily checked by determining whether
or not there exists a uniform margin for increasing N between the open loop eigenvalues of
the system matrix AN in (4.1) and the imaginary axis.

When considering the control problem, one is also concerned with the preservation of
uniform stabilizability and detectability margin , for the closed loop approximation systems.
Hence care must also be taken so that approximation schemes are chosen so as to preserve
a uniform margin between the closed loop eigenvalues of AN - BNR- (BN)TIIN and the
imaginary axis. Numerical schemes which satisfy these various criteria will now be discussed.

Cubic splines were used as a basis for Hb' since they satisfy the smoothness requirement
as well as being easily implemented when adapting to the fixed-end boundary conditions
and patch discretizations. For a given positive integer n, a uniform partition was taken with

th {^doit x'=} .. j+2
the gridpoints x = -a, i = 0,1,...,n. If IB n is used to denote the standard cubic
spline basis corresponding to this partition (see [18], page 79), then the basis functions for
the beam discretization were taken to be

Bi=B' ; i =2,3,...,n-2

It is readily seen that these basis functions satisfy the essential boundary conditions; that is,

Bi'(0) = DB (0) = B'n(a) = DB'i(a) = 0

for i = 1,2,. . , n - 1. As mentioned previously, the corresponding n - 1 dimensional
approximating subspace is then given by H' = span {Bin}n-1 and the approximate beam
solution is taken to be

n-1

wN(t,x) = w (t)B (X)
i=1

With this choice of basis functions, the matrices MfN and M2 are easily constructed and
are 7-banded. It should be noted that a Tau-Legendre discretization was also considered
for the beam but had the disadvantage of the loss of four equations due to the constraints
mandated by the fixed-end boundary ;onditions (see [13] for a discussion of Tau methods).

The bases that were considered for the cavity discretization included tensored one-
dimensional Legendre polynomials, tensored linear splines and finite elements. The methods
of system formulation as well as the advantages and disadvantages of each can be summa-
rized as follows. Consider first the Legendre basis. Let Pa(x) and Pil(y) denote the standard
Legendre polynomials that have been scaled by transformation to the intervals [0, a] and
[0,i ], respectively. The basis functions {B } for the cavity are then defined as

Bi(x,y) =P (x)P(y) for i=0,1,...,ra, j=0,1,...,my, i+joO,

where m = (mx + 1). (m, + 1) - 1. The condition i +j # 0 eliminates the constant function
thus guaranteeing that the set of functions is suitable as a basis for the quotient space. For
definiteness, the basis functions are ordered by assuming that i varies for each fixed j which

12



is analogous to a left to right, bottom to top ordering. Notice that because natural boundary
conditions occur on all sides of the cavity, one does not have to employ a Tau method; that
is, the method is simply a Galerkin scheme without modification of the basis elements to
satisfy some essential boundary conditions.

The component matrices M1 and M2 can then be succinctly described as follows. Let
the fundamental (m., + 1) x (m, + 1) matrices My7 and IK1, be defined as

M 1ij = f Pa(x)Pa(x)dxa
[Iglij = j DPia(x)DP(x)dx

with similar definitions for M , K,. Using the tensor properties of the 2-D basis, we can
form the matrices Mf'/ and M2 defined by

MlNf = M ® K + If p® M2

The ordering in the above definition depends on the ordering of the basis functions. The
matrices M1 and M2 are obtained by removing the first row and first column of M and
M2,/ to reflect the deletion of the constant function from the basis set. Note that with
this definition, both matrices are very easily constructed and that the mass matrix M2

1 is
diagonal; hence the inverse is trivial to calculate. Although the matrx M 11 is not sparse, it
has a well-defined structure due to its tensor product nature and the fact that M 7 and Mp
are diagonal. It too can be efficiently inverted when one takes advantage of this structure. In
the case that pf is constant, the stiffness matrix AN can be constructed in the same manner
as M11 and the tensor product structure can be used advantageously both when solving the
Riccati equation (4.3) and the ODE systems'(4.4) and (4.5).

In order to use a tensored linear spline or finite element basis in the cavity, some constraint
must be applied in order to guarantee that Hm is a quotient space (one cannot simply drop
the constant function as was done with the tensored Legendre polynomials). One such
constraint which is commonly used is the requirement that

.fro N(t'x,'y)dw = 0 .

If {Bi}7.1 is used to denote the standard tensor product linear spline basis (see page 129
oi [18]), then the integral constraint leads to the quotient basis {B} i=2 where

B,(xY) = ,}(xy) - 4ajB3(xy)

with ai = 1, , 1 depending upon whether the function B " is a corner basis function, a
side basis function or an interior basis function, respectively. As a result of the modifica-
tions needed to obtain a quotient space basis with the tensored linear splines, the matrices
M 1j, MfN and All are full and hence one loses the structural advantages obtained with the
Legendre basis.
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Similar modifications must be made when using a finite element basis in a quotient space
with the result that the system matrices are also full in that case. Moreover, the lower
order accuracy of the splines and finite elements necessitates the use of a larger number of
basis functions and hence larger matrices in order to match the accuracy of the Legendre
polynomials. The fact that the Legendre basis yields smaller, structured matrices than
those obtained with the linear splines and finite elements is important but not crucial in the
problem under consideration since the cavity is only two dimensional and hence matrix sizes
are reasonably small. This issue will become much more critical when considering the 3-D
problem of interest because of the large matrix sizes which will be encountered.

As discussed earlier, a final item which should be considered when choosing a means
of discretizing the control problem is whether or not the approximation scheme effects a
uniform preservation of exponential stability for the open and closed loop approximating
systems. This issue is illustrated by the results in the Example 5.1.

The problem under consideration in Examples 5.1 and 5.2 is

Ot = c2 AO (x,y) E l ,t > 0 ,

v¢.ii=0 (x,y) E r,t >o,

0(t,x,O) = -wt(t,x) 0< x <.6 t > 0,

02 / 2w _03WPbWtt + +I-+CDI( ) & 2at.

92 (EI u(t) [H(x - all) - I(x - a12)]

pjqt (t,x,0) + f(t,x) 0 < x < .6, t > 0,
Ow Ow

w(t,) =O (t,O) = w(t,.6) = -z (t,.6) = 0 t>0

0(0, , Y) = 0,0, XY) = W(0O ) = wo(0,X) 0

where
f(t, x) = 2.04 sin(150't)

The parameter choices a = .6 m, e = 1 m, pf = 1.21 kg/m 3  c2 
- 117649 m 2/sec2,

Pb = 1.35 kg/m, El = 73.96 Nm 2, CDI = .001 kgm 3/sec, KB = 82.9629, T = .0005 ni,
k = 1.9 x 10"0 m/V, ai = .25 and Cai2 = .35 are physically reasonable for a .6 m by 1 in
cavity in which the bounding end beam has a centered piezoceramic patch covering 1/6 of
its length (see Figure 3). The beam is assumed to have width and thickness .1 m and .005m,
respectively. The quadratic cost functional parameters were taken to be dI = d2 = d1, = 1,
d3 = 10' and R = 10- ' with d3 of much larger magnitude than dj, d2 or d4 to emphasize
the penalization of large pressure variations. Note that because there is only one patch, the
control weight R is simply a positive scalar.

For a beam with the above dimensions and density, the natural frequency of the first
mode is 73.21 hertz and the frequency of the forcing function was chosen so as to be close
to this value. To obtain the magnitude 2.04, it was assuimed that the forcing function was

14



the result of an exterior plane wave with a sound pressure level of 120 dB (which forces an
interior sound pressure level of 98 dB).

1

fl

.25 .35\ /
0 .6

Figure 3. Example acoustic chamber with one piezoceramic patch.

Example 5.1
In this example, the uniform preservation of exponential stability for the open and closed

loop approximating systems is examined. For n = m, = m, = 5,6,7 and 8, the margins of
stability for the open and closed loop systems obtained with tensored Legendre polynomials
and tensored linear splines are listed in Tables 1 and 2, respectively. The gains needed
for the closed loop system were calculated via Potter's method (see [17]). For each n, the
locations of the open and closed loop eigenvalues obtained with the Legendre polynomials
are displayed in figures 4 and 5, respectively. When plotting the eigenvalues of AN and

A N - BNR- (B N) II , those eigenvalues having real parts with magnitude greater than
1 have been excluded in order to better see the distribution near the imaginary axis. Note
that a uniform margin of stability is maintained between both the open and closed loop
eigenvalues and the imaginary axis for both sets of bases. Results similar to those obtained
with the Legendre basis were obtained when finite elements were used as a basis for H,.
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Table 1. Margin between the open and closed loop eigenvalues and the imaginary axis with
tensored Legendre polynomials.

M,= Myn max f{ReA, A, E o(AN)} max { ReAl A E o, (AN - BNRl1 (BN) T uIN)}

5 5 -. 0145 -. 0196
6 6 -. 0213 -. 0220
7 7 -. 0200 -. 0200
8 8 -. 0158 -. 0290

Table 2. Margin between the open and closed loop eigenvalues and the imaginary axis with
ten ored linear splines.

M=m n max {ReA, A E(AN)} max {Re,A E o(AN -BNRl (BN)T nN) }
5 5 -.0269 -.0868
6 6 -.0612 -.0612
7 7 -.1222 -.2732
8 8 -.2361 -.2388

X10 4  n=5 104  n=6

2- 00002 00 % so 0 o

0 000 0 00
oo
°  

0 o 0 o %8  o Oo l
00o CID 0 o% 00 o0 o 8

20 .00 0 0 oo 0%
0 0 00-2- 0 -2- 00, 00

-41 .41
-1 -0.5 0 -1 -0.5 0

4 x10 4  n=7 4x10 4  n=8
.0

0 0 0 00000

2- ,e 0 o Q, 2- oc o00
2 co 0 0 2 o 0

.0 0  0 o No o°  0
0000 %0 00- 0P 0 : 0  0 b8

0 O

-2 l) -2 +,
00 6 000 S O%

0 0 0 0

-1 -0.5 0 -1 .0.5 0

Figure 4. Eigenvalues of AN for n = m= my = 5,6,7 and 8 with tensored Legendre
polynomials.

16



4 x104  n=5 x10 4  n=6

2 0 00 2 0 '00
0 0 0 00
0 0 0 0 0 0 0 0 00

0000 0 OLco 0

0 0 0 0 0 0 00

-2 0 *o-2[ 0000

-1-0.5 0 .4-1 -0.5 0

X10 4  n=7 X10 4  n=8
0 o 00

oo 0000

2 0 2 o 0
00 0 0 000 0 P40 0

0 0 Q 0 0 0

00 0 0 0 0
0 0 000 0 00 0

-2- 0 -2 0 o
o0 00O 

00001

-4 ,-4,

-1 -0.5 0 -1 0.5 0

Figure 5. Eigenvalues of [AN - BNR (BN)T NI for n 7n n = , 5,6,7 and 8 with

tensored Legendre polynomials.

As seen in Example 5.1, a larger margin of stability is minitained iii both the open and
closed loop systems with the linear spline basis than with thc Legcndrc basis; hence one might
conclude that the linear splines are the basis of chioice whien solving thle control problem. As
noted earlier however, one must also weigh factors such as system size, accuracy and efficiency
when choosing a numerical method. Numerical tests have indicated that in spite of the larger
eigenvalue margins of the linear splines, their performance when used in the control p~rob~lem
is nearly identical to that obtained with the Legendre p~olynomials. Moreover, because of the
lower order accuracy of the splines, a larger number of basis functions is needed to obtain
suitable accuracy thus leading to matrix dimensions that are almost twice those resulting
from the Legendre discretization. Finally, as noted earlier in this section, the matrices
obtained with the Legendre discretization are muchi more structured thian tlv'se obtained
with finite elements or linear splines hence making Legenclre implementation more efficient
than the other cases. Results for the LQR control problcen for (5.1) with thle teinsored
Legendre basis for the cavity and cubic splines for thle beani withi in. = illy = 4 and it = 8
are reported in Example 5.2.
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Example 5.2
In this example, the effect of the feedback c( ntrol on the problem for system (5.1) is de-

scribed. In order to solve for the optimal control and tra.ectory, it is necessary to solve both
the trajectory equation (4.5) and the tracking equation (4.4). Because numerical evidence
indicated that both unconstrained solutions were roughly periodic with period 7 = 1/75, the
problems were solved as initial value problems with starting values y(O) = 0 and r(10/75) = 0
rather than as free boundary value problems. The choice for initial state is physically rea-
sonable while the choice to integrate backwards in time in (4.4) is made to reduce numerical
instability when solving the ODE system for rN(t).

The uncontrolled and controlled approximate acoustic pressurt's (pN = p$¢) at the
point (X, Y) = (.3, .1) are plotted in Figure 6 for the time interval [0, 10/75]. Similar plots
for the approximate beam displacement at X = .3 are given in Figure 7. The uncontrol'ed
solutions exhibit a beat phenomenon which results from the fact that the frequency of the
forcing function is slightly -" .ater than the natural frequenmy of the first mode of the beam.
After a 1ransient interval, the controlled rolutions are peridic and are maintained at a
level which is approximately 10% of that found in the uncontrolled case (note the scales in
Figures 6 and 7). This produces an interio. sound pressure level of 77 dB which is a 21 dB
reduction. To further illustrate the state reduction with feedback control, the uncontrolled
and controlled acoustic pressures at the times T = 1/75, 2/75, 6/75 and 10/75 are plotted
in Figures 8 - 11, respectively. The two dimensional plots in each figure show spatial slices
of the uncontrolled and controlled pressures at X = .3, 0 < y < 1. Figures 12 and 13
contain plots of the uncontrolled and controlled beam displacements at the times T = 6/75
and T = 10/75, respectively. The results in Figures 8 - 13 are reoresentative of those found
throughout the time interval (0, 10/75] and in conjurction with Figures 6 and 7, demonstrate
that the pressure and beam displacement are uniformly reduced and mairained at a very
low level of magnitude in spite of the periodic forcing function.

The controlling voltage u(t) is plotted in Figure 14. As expected, it is periodic with
period 1/75. It should be noted that the magnitude of u(t) remains less than 601' which is
a physically reasonable voltage to put into the piezoceramic patches.

As mentioned in the last section, the choice of the quadratic cost functinal parameters
d, - d4 and R influences the control stability and performance of the feedback. In this
problem, the emphasis is on the the reduction of variations in the acoustic pressure; hence
d3 was taken to be larger than dl, d2 or d4. It should be iioted that this choice of parameters
does not exclude the control of the other state variables; in fact, the beam displacement is
significantly reduced as seen in Figures 7, 12 and 13. Since the parameter R is a penalty
term for u(t), more control of the state variables can be effected by choosing R smaller. The
tradeoff, however, is an increase in the voltage. Hence one must weigh the amount of state
reduction desired against the amount of voltage which can be put into the patches.

The amount of control is also directly influenced by patch size, placement and the number
of patches being used. In the examples that we have observed, the best results were obtained
with one centered patch, and we have noticed that the amount of control obtained increases
with increasing patch length. Thus one must weigh the amount of control desired against
physical limitations on the size of the piezoceramic patches being used.
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4. Uncontrolled Pressure at .X.Y) = (3..)

< 2-
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Figure 6. Uncontrolled and controlled pressures at the point (X, Y) =(.3,. 1) throughout
the time interval [0, 10/75].

x10-4  Uncontrolled Beam Displacement at X =.3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Time (sec)

x10-5  Controlled Beam Displacement at X = 3

~0.5-

0

A' -0.0-

0 00 004 00 0.8 01 0.12 0.14

Figure 7. Uncontrolled and controlled beam displacements at the point X =-.3 throughout
the time interval [0, 10/751.
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Figure 8. Uncontrolled and controlled pressures at T =1/75, - uncontrolled pressure,
--- controlled pressure.

20



T =2/75

1.07451

1.5

rev~e rem

.0.

-~. -CO-Oe - onrold resue

22



TF 6f7'S

I4

- - - controledepressure

22W
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Figure 11. Uncontrolled and controlled pressures at T'= 10/75 - uncontrolled pressure,
- - - controlled pressure.
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Figure 12. Uncontrolled and controlled beam displacements at T = 6/75
uncontrolled displacement, - - - controlled displacement.
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Figure 13. Uncontrolled and controlled beam displacements at T = 10/75
-uncontrolled displacement, - - - controlled displacement.
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The Optimal Control
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Figure 14. The optimal control u(t).
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6 Conclusion

For the 2-D acoustic problem involving the transmission of exterior noise into an interior
cavity via fluid/structure interactions, a model set of differential equations has been devel-
oped. Control is implemented in the model via piezoceramic patches on the beam which are
excited in a manner so as to produce pure bending moments. By writing the resulting system
as an abstract Cauchy equation, the problem of reducing interior pressure fluctuations can
be posed in the context of an LQR time domain state space formulation and approximation
schemes which are suitable for this theory are presented.

For one typical patch configuration, examples are given which demonstrate the stabiliz-
ability of the open and closed loop systems under approximation as well as the reduction of
cavity pressure and beam displacement when the feedback control is invoked. The examples
show that input of the optimally controlling voltage u(t) uniformly reduces both the pressure
and the beam displacement and maintains them at a very low level of magnitude throughout
the time interval of interest.

As mentioned in the example section, the amount of control obtained is directly influenced
by patch size, placement and the number of patches being used. Initial results have indicated
that for a uniform periodic forcing function, the best results can be obtained with one
centered patch with the amount of control increasing with increasing patch length. Further
computational studies are currently being conducted to determine the effect of various pat,'h
configurations and forcing functions on the decibel reduction in the cavity.
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