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THE EXISTENCE OF GENERALIZED EIGENFUNCTIONS

IN UNDERWATER ACOUSTICS

INTRODUCTION

The acoustic field due to a point source in a horizontally stratified

waveguide can be expressed as a contour integral.1 This contour follows a

path in the complex plane that separates the singularities of the depth- and

range-separated Green's functions. Because it is assumed that the depth-

separated problem is finite, the depth-separated Green's function will have

poles, but no branch-cut singularities. The poles of the Green's function are

the zeros of the characteristic equation and are the same as the eigen-

values. When the contour is enclosed around the poles, the solution can be

expressed as the sum of the residues at the poles. If the depth-separated

problem is self-adjoint, then the poles of the Green's function are simple,

the zeros of the characteristic function have a multiplicity equal to one,

and the residue series is the usual normal mode solution.2

If the depth-separated problem is non-self-adjoint, the poles of the

Green's function may not be simple, the zeros of the characteristic function

can have a multiplicity greater than one, and the residue series assumes a

more complicated form.3 The eigenfunctions must be augmented w;n the

generalized eigenfunctions (called associated functions in Naimark3 ) to

yield an expansion theorem. An example of this situation, with separated

boundary conditions, is shown in a useful book by Friedrian.4 His example

corresponds to an isovelocity waveguide bounded bN a free surface and a

special complex impedance bottom boundary condition. Similar examples
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occur in acoustic ducts with admittance boundary conditions.5

Non-self-adjoint problems occur in underwater acoustics when the

square of the wavenumber is given a complex value to allow for volume

attenuation. This report shows that complex wavenumbers can give rise to

multiple eigenvalues and generalized eigenfunctions in the same way as

complex impedance and admittance boundary conditions give rise to

multiple eigenvalues.
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THEORY

Consider a waveguide where the square of the wavenumber k2 (x) =

g x + h is a complex-valued linear function of the depth x for 0 < x < H. The

waveguide is assumed to be bounded by a free surface and bottom. The

homogeneous depth-separated problem is given by the complex Sturm-

Liouville boundary value (eigenvalue) problem

d&u +[gx+h-k]u = 0, (la)

dx
2

u(O) -0, (1 b)

u(H) 0, (1 c)

where . is the complex separation parameter. A nonzero function 4n (x) that

satisfies equation (1) is an eigenfunction and the corresponding Xn is an

eigenvalue. The Green's function G(x,s, X) of the depth-separated problem

satisfies the nonhomogeneous counterpart of equation (la) with a delta

function source at x = s. The Green's function also satisfies the boundary

conditions in equations (1b) and (1c).

Suppose that the differential operator L is defined by

Lu = d ! u + [gx+hlu (2)
dx

2

for functions satisfying the boundary conditions in equations (1 b) and (1 c).

The eigenfunction corresponding to Xn satisfies (L-2.n)n = 0. A

generalized eigenfunction (of rank 2) corresponding to X.n is a nonzero
3



function wn that satisfies (L-.n)2 Wn - 0, but (L-kn)xmn * 0. The Green's

function satisfies (L-;.)G = S(x-s).

Equation (1 a) can be solved with Airy functions after the linear change

of variables is made:

z(x) - .g-213 [ g x + (h - X) .(3)

Then equation (1) becomes

d2w _ z w 0, (4a)

dz2

w(z1 ) - 0 , (4b)

w(z 2 ) - 0, (4c)

where w(z) - u(x), z1 - z(0), and z2 = z(H). Grosjean and De Meyer 6 have

shown that there exist distinct complex numbers z1 and z2 and a corre-

sponding nonzero solution of equation (4) that, in addition, satisfies

z W2(Z) - 0, (5)

where w is determined uniquely up to an arbitrary nonzero multiplicative

factor.

The solution of Grosjean and De Meyer6 is transformed into a solution

of equation (1) with
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(Z1 -z , (6a)
H3

9-2/3 . ( 2  (6b)
(z1 - z)

and

h -X - "Zl (zl - z 2 )2  (6c)H2

The resulting solution n(x) - w[z(x)] is an eigenfunction of equation (1)

and, in addition, satisfies

f 4 (x) dx = 0 (7)

Once h is chosen, the X = Xn in equation (6c) is the eigenvalue correspond-

ing to On.

If Xn were a simple pole of the Green's function, the residue at 7n

would be2

[J0 (X) dx On(X) On(S) (8)

which is impossible in view of equation (7). Thus, Xn is not a simple pole of

the Green's function, and a generalized eigenfunction must exist that
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corresponds to Xn. Equation (7) can also be used, following the argument in

Ince,7 to show that the derivative of the characteristic function, at xn, is

zero. Consequently, Xn is not a simple zero of the characteristic function.

6



EXAMPLE

Let z1 - p e.'i 7U/3 and z2 - p ei be a pair of values given by Gros-

jean and De Meyer,6 where p is a positive root of

Jl/ 3(2!3 p3 2 ) .0 (9)

and J11/3 is the Bessel function of order 1/3. Based on equation (Ga),

the gradient is purely imaginary and is given by

g -8 p3S 3sr(x/3) i. (10)
H3

From equation (6c), the quantity h - ;L is given by

h L- 4 p3 sin2(n/3) [ cos(it/3) + sin(7c/3) ii. ()
H 2

Recall that k2(x) = g x + h and k2(0) = h. Let h be chosen as

h = (tf 2 + 8 p3 sin3 (7c/3) i ,(12)

where c is the nominal sound speed in m/s and f is the frequency in

hertz. The real part of h is the same as the real wavenumber squared.

The imaginary part of h is designed to make k2(H) - (2nt f 2/c2. The

multiple eigenvalue Xn is

Xn.(2 x ) - 4p3 Sn(/)cos(nt/3) + 4p3 sn(n/3) i. (13)
2H 2  H 2

7



The horizontal wavenumber kn corresponding to Xn is kn = (Xn) 1 /2,

where the square root has a positive imaginary part. The complex phase

velocity is defined by Cn - (2 f)/ kn. The eigenvalues occur in a strip

(see the appendix) in the complex A. plane defined by I Im A.I < a and

Re X < b, where

a = 8 p3 sin 3 (x/3) (14a)
H2

and

b .(2n f)2 ( b
c2

The multiple eigenvalue in equation (13) is in the middle of this strip.

The characteristic function will be constructed, and its behavior

at the multiple eigenvalue will be investigated. A solution of the

differential equation in equation (1 a) that satisfies the boundary

condition u(O, X) = 0 in equation (lb) is given by

u(x,k.) - Ai[z(0,X)] Ai[eeiz(x,X)] - Ai[z(x,.)] Ai[eeiz(0,X)] , (15)

where 0 = 27r/3 and z(x, .) = z(x) is defined by equation (3). The cube

root taken in equation (6b) places the arguments of the Airy functions

in the lower half z-plane, and the pair of functions Ai[z] and Ai[eOiz]

are the appropriate linear independent set for this region. The Airy

functions can be computed with the algorithm of Schulten, Anderson,

and Gordon. 8 The eigenvalues are determined by the roots of the

characteristic equation u(H, X) = 0 obtained from equation (1 c). The

eigenvalues are the zeros of the characteristic function F(;X), where
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F(X) = Ai[z(O,X)] Ai[eeiz(H,%)] - Ai[z'H,.)] Ai[eeiz(O,X)] (16)

A specific example will now be constructed. Let p be the smallest

positive root of equation (9) computed with9

p = [r (3/2) (2.9025862) ] 2/3 = 2.6663527 (17)

Suppose that the sound speed is c - 1500 m/s, the frequency is f = 25

Hz, and the thickness of the waveguide is H = 200 m. The imaginary part

of k2 (x) is linearly decreasing from a maximum at the surface to zero

at the bottom. The maximum attenuation a, computed with

a 20 loglo(e) c Im [k(O)] (18)

f

is 6.0896820 dB per wavelength, or about 0.1 dB per meter.

Figure 1 is a plot of the zero-crossing curves of the real and

imaginary parts of the characteristic function F(?,) in equation (16).

The curves are plotted in a rectangular region in the complex k2 = X

plane. The ReF(X) = 0 curves are solid and the ImFL) = 0 curves are

broken. The rectangle coincides with the strip defined by equation (14),

except that Re X is bounded below by (2n f)2 /C2 , where C = 1700 m/s is

a maximum phase velocity. The real part of the phase velocity corre-

sponding to the multiple eigenvalue in equation (13) is 1542.8188 m/s.

The multiple eigenvalue is contained in the rectangle.

The zero-crossing curves of the real and imaginary parts intersect

at a zero of the characteristic function. The principle of the argument

9
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Note: The solid curves are the zeros of the real part and the broken curves are the zeros of the
imaginary part. The plot is for a region in the complex k2 - A plane bounded in physical units, by the
phase velocities 1700 and 1500 mls and attenuation values 0.0 and 6.089682 dBwavelength. The
axes are annotatted with 100 times the real and imaginary parts of k2 X A The characteristic function

of the Example has a doule zero in this region of the complex plane.

Figure 1. The Zero-Crossing Curves Plotted for the Real and Imaginary Parts of the
Characteristic Function of the Example

10



implies that two curves intersect at a simple zero and four curves

intersect at a double zero. It is apparent from figure 1 that the first

eigenvalue, with the smallest phase velocity, is a double zero of the

characteristic function. There will be a generalized eigenfunction of

rank 2 corresponding to the first eigenvalue. The second eigenvalue is a

simple zero of the characteristic function.

Evidence of the double zero can also be seen by considering a

sequence of values of the parameter p that surrounds the value in

equation (17). These values correspond to waveguides with different

attenuation gradients. The plots shown in figure 2 are similar to the

plot in figure 1, except that p has been given the values 2.6, 2.66,

2.665, 2.668, 2.67, and 2.7. In figure 2(a), with p = 2.6, there are three

simple zeros. In figure 2(c), with p = 2.665, the first two zeros have

moved close to each other and are aligned horizontally. In figure 2(d),

with p = 2.668, the first two zeros are still close, but now they are

aligned vertically. Finally, in figure 2(f), with p = 2.7, there are again

three well-separated simple zeros. The change in alignment occurs at

the value of p corresponding to the double zero. A movie made from a

large number of plots like those in figure 2, with a fine sampling of p,

would show that the first two zeros coalesce and then separat again.

11
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Note: The parameter p has been given Mhe values 2.6, 2.66, 2.66!;, 2.668, 2.67, and 2.7. The
sequence proceeds from top to bottom and left to right The double zero occurs between the bottom

of the first column and the top of the second column. The parameter p determines the attenuation
gradient in the waveguide.

Figure 2. A Sequence of Plots for Values of the Parameter p Surrounding the Value
Corresponding to the Double Zero
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CONCLUSIONS

The usual separation of variables (normal mode) solution for a point

source in the waveguide of the Example in the previous section is not

valid. This is because the usual normal mode solution assumes that the

poles of the Green's function are simple and that the residues at the poles

can be computed by equation (8). The Green's function in the Example has

a double pole, which involves a more complicated formula 3 to compute

the residue. Thus, the normal mode solution must be modified to include

both eigenfunctions and generalized eigenfunctions. A solution can also

be obtained with an alternate technique like the fast field program, 10

which computes the contour integral solution directly without using

residue theory.

It is clear from the derivation of the Example that there are many

such elementary examples. The amount of attenuation required to produce

the double pole in the Example is quite substantial. When the amount of

attenuation is very limited, it has been shown that all the poles are

simple.1 1 It remains to be determined if double poles must be treated

systematically in normal mode computer codes operating in more

realistic underwater acoustic environments.

13/14
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APPENDIX

BOUNDS FOR THE LOCATION OF THE

COMPLEX EIGENVALUES

A-1



This appendix derives two inequalities that bound the location of

the complex eigenvalues of the depth-separated wave equation.

Consider the differential equation

p(x) [ 1+ [q(x)-X]u 0 , (A-i)

dx p(x) dx]+ qx

where q(x) - r(x) + i s(x) is a complex-valued function and p(x) is a

positive real-valued function on the interval 0 _ x _ H. It is not initially

assumed that u satisfies any specific boundary conditions. Let the

superscript * stand for complex conjugation. If equation (A-i) is

multiplied by u and the sum and difference are formed with the

complex conjugate of the resulting equation, then it follows that

r u1
dx [p(x) dx dx =(x)

(A-2)
S[(X ± X')- (q(x) ± q(x))]U_.

p(x)

Equation (A-2) is integrated by parts on the interval [0,H] to yield

p(x)dx p(x) dxJ 0

(H p(x)[dx dx dxdx

, (H[(x ± X)> -(q(x) ± q'(x))] uLU- dx

Jo p(x)

A-2



It u - n is an eigenfunction and X = Xn is the corresponding eigen-

value, then the boundary conditions at 0 and H can be used to eliminate

the first term on the left-hand side of equation (A-3), and it becomes

Ij [(q(x) t 
x (d +xn) l-- x

(A-4)

± q*(x)) - (n ± X ) p(x) dx

where the identity I z 12 _ z z* has been used.

Taking the plus sign, equation (A-4) yields

H(1__ dx =

p(x) dx

H 
(A-5)

(x) p(x)fop

Because the integral on the left-hand side of equation (A-5) is

positive, it follows that

[JI:'12 ]JH:
Re < dx r(x) d dx. (A-6)p(x) p(x)

A-3



Let rmax - max{r(x): 0 < x < H). Replacing r(x) in the integral in

equation (A-6) with its maximum gives the strict inequality

Re X.n < rmax • (A- 7)

Taking the minus sign in equation (A-4) gives the equation

I1H
Im Xn - IOn4'l dxl s(x) iLodx (A-8)

p(x) JJ p(x)

Let Smin - min{s(x): 0 < x < H) and Smax = maxfs(x): 0 _ x < H). Replacing

s(x) in the integral in equation (A-8) with its minimum and maximum

gives the inequality

Smin <Im Xn ! Smax (A-9)

In the depth-separated wave equation, p(x) - p(x) is density, which

is positive, and q(x) - k2 (x) is the square of the wavenumber. Thus, Re

X is less than the maximum of r(x) - Re k2 (x), which is determined by

the minimum sound speed. The imaginary part of k2 (x), which causes

attenuation, is non-negative. Hence, Im Xn is non-negative and less than

or equal to the maximum of s(x) - Im k2 (x). This places Xn in an infinite

half-strip in the upper complex X - k2 plane.

A-4
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