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The major concern of this year's research was modeling the neural systems of the barn
owl that perform timing comparisons of sound at the two ears with microsecond
accuracy. Models of neurons in the nucleus laminaris (NL) were developed. Analysis
and comuter simulations were performed that demonstrated that models of these neurons
that 'incorporate simple neuronal biophysics cannot reproduce the observed behavior
of laniinaris neurons. A model incorporating an abstract resonance mechanism could
reproduce the experimental phenomena. These results were pre,Pnted at two scientific
conferences. Papers will be published from one of these conferences. Work on this
project involves collaboration with the Princeton University subcontractor, who has
also approached this problem from another point of view. He has developed a model
neuron incorporating active channels that can reproduce the observed behavior.
More analysis of the behavior of the channels will clarify their signal processing
properties. Several experimental results relevant to last year's research have
also been reported by scientists in the Konishi laboratory at CalTech. Changes are
needed in some of the models developed last year to incorporate these results (OVER)
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I. BACKGROUND

The barn owl can hunt in total darkness, recognizing and locating prey by hearing alone.

One component of this behavior is a very accurate head-orienting response to salient sounds (the

head must rotate as the eyes are immobile). This head saccade centers the sound-producing object

for closer visual and acoustic scrutiny, prior to aerial attack. Study of this system promises to re-

veal general principles of the nervous system's approach to three types of problems: sensory en-

coding and processing, multi-sensory integration, and sensorimotor interaction. Considerable

progress has been made in the last 18 years in determining the acoustic and neural bases of the

head saccade.
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Fig. 1 Overview of the neural system for auditory localization of the barn owl. The grids indicate the map-like
representation of information at each processing stage. Acronyms such as VLVp, ICL, aod ICx ,ire defined in the
text. Arrows indicate the direction o" signal flow.

It is known that (see Fig. I. above): the azimuth and elevation of the sound source direction

are encoded at the periphery by, respectively, the inter-aural time difference (ITD) and the inter-

aural level difference (ILD): sound intensity and tirning information is processed by two parallel



streams before being recombined in a map-like representation of sound direction in the inferior

colliculus (ICx); the optic tectum contains a fused visual/auditory/motor representation of stimu-

lus and head saccade direction. The visual/auditory sensory fusion is dynamically recalibrated

while the head is growing, with the auditory map in the tectum adapting to realign with the tectal

visual map.

II. OBJECTIVES

The purpose of this project is to further the understanding of this system through the devel-

opment of biophysical and computational models and computer simulations. This work will pro-

duce explicit, testable predictions for neuroscience. In addition, it is expected that this research

will lead to new artificial neural network designs, with applications for signal processing, sensory

fusion, and sensorimotor integration. The following is the Statement of Work (for Year 2) con-

tained in the project proposal:

Task I Develop alternative model of sensory fusion in which the acoustic plasticity occurs in the

lCx and earlier, based on the model of basic ICx function developed in Year I (Item #3.

from Year I).

Task 2 Extend laminaris model developed in Year 1 (Item #2) to the bio-physical level to explain

signal processing properties in low-level neuronal terms.

Task 3 Continue development of head saccade motor system models (see Appendix C of propos-

al) in order to explain how sensory infomation of acoustic target position is t,,Islated

into motor sigcnals for head orientation towards target position.

III. STATUS

A. Task t

This task was not performed this year. The model of basic 1('. function needed to carry out

this task is not vet complete, as we are awaiting experimenta! verification of it.



B. Task 2

Neurons in nucleus laminaris receive input fiom both nuclei magnocellularis. Magnocellu-

laris neurons generate action potentials that are phase-locked to the stimulus (up to 10 kHz) and

nearly independent of intensity. Laminaris neurons are tuned to a particular frequency band and

inter-aural phase difference or time delay. This timing system is remarkably precise, with individ-

ual neurons being sensitive to time delays as small as 10 pts. Magnocellularis axons course

Phase locked input spikes from left ear

Phase locked input spikes from right ear

Fig. 2 Schematic diagram of an isofrequency slab of N L. The tick marks on the axons represent action po-
teniial pulses in the axons. The shaded bars in NL between the parallel axons represent the degree of excita-
tion of NL neurons, with darker shading representing greater excitation. NL neurons are best stimulated by
coincident bilateral input from NM.

through laminaris in a manner sugglestive of a coincident delay line mechanism (see Fig. 2.

above), and this in fact has been the dominant type of model in the literature. However, these

models have been specified at rather high levels of abstraction, in which individual neurons are

assumed capable of detecting coincidences in the arrival of action potentials with a resolution of

10 ps, This and a variety of other reasons suggested to us that such models are untenable.

To further illustrate this, we developed an approximate approach to the computation of a
simple neuron model's signal processing properties, including its response to realistic input from

magnocellularis. To verify the conclusions of that approach we also simulated the behavior of the

model neuron. The conclusion of that work is that a neuron with a sinzgle passive conIpartment

cannot reproduce a laminaris neuron's response to stimuli, no matter how fast the neuron's time



constants are. The reason for this is that the stimulus is encoded as a spike train (or a large number

of spike trains). The spikes are only statistically phase-locked, and have considerable jitter about

the optimal phase. Also the number of spikes arriving during one period of the stimulus can have

large fluctuations. These effects represent noise. A standard passive neuron acts as a low-pass fil-

ter, which can only suppress noise above some frequency. The remaining low frequency noise is

large- than the signal for a fairly realistic spike train from magnocellularis neurons.

Last year we studied such a mechanism by modeling a neuron as a damped harmonic oscil-

lator that is kicked bv each incoming action potential. Magnocellularis spike trains were modeled

by Poisson processes whose rates are modulated by the sound's instantaneous pressure, or as Pois-

son processes at some constant rate if there is no sound. This work ignored the signal processing

properties of the synaptic mechanism and cell membrane electrical properties. To take these into

account we repeated the computations and simulations described in the preceding paragraph on a

model similar to the single compartment model described above, but with the membrane potential

drivin,, a damped harmonic oscillator. There is a potential conflict between the response latency

of such a neuron and its ability to respond to high frequency stimuli. The response latency is

roughly given by the oscillator's damping time, but the longer the damping time, the better the os-

cillator will be at amplifying the signal and rejecting the noise. We chose to set the damping time

to I msec. Recently, we have heard of indirect evidence that laminaris' latency may be as long as

20 msec (H. Wagnei, private communication). This can discriminate between in-phase and out-

of-phase stimuli, given reasonable values for the membrane and synaptic time constants. A paper

Ill describing this work in detail can be found in Appendix A.

The oscillator model is abstract, in the sense that we are not proposing a biophysical mecha-

nism. The model also uses an effective mechanism that would seem to require fairly exotic bio-

physics. There are several ordinary possibilities for improving a model neuron's ability to mimic a

real laminaris neuron. One of these is the extended stnIcture of a neuron, which could be simulat-

ed by a multiple compartment model. However, it is hard to see how this could improve the neu-

ron's response to a particular high frequency, since such a network of compartments would act as
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a network of low-pass filters. Another possibility is that active channels may have peculiar behav-

ior. An effective model of the behavior of active channels is Hill's model, which simply employs

an adaptive threshold. The threshold adapts to slow variations in the membrane potential, and so

could effectively filter out low-frequency noise. A more detailed model might employ the

Hodgkin-Huxley equations to accomplish the same thing. Dr. Sullivan has simulated such a mod-

el, which gave good results. A manuscript [21 describing his work is in Appendix B.

C. Task 3

This task was not performed this year. Task 3 will be performed as time and interest dictate.

D. Other Related Work

Some of our work this year has been a continuation of Task 3 from last year. in particular the

development of models for the ILD maps in VLVp and ICL (see Fig. 1) [3, 4, 5, 61. An alternative

to our criss-cross model of the interconnection of the two VLVps was suggested by Ralph Adol-

phs. In principle, the alternative requires more careful adjustment of the system by the owl, but

that does not make it obviously wrong. Experimental work is needed to decide which is correct, if

either is, but this may be difficult. Also, our model of elevation processing in the ICL assumed

that VLVp projected to the contralateral ICL and not the ipsilateral ICL. Bilateral projection has

since been observed (R. Adolphs, private communication). Some of the previous simulations need

to be repeated using a model that incorporates these findings.

In addition to his role as consultant to the research effort at Sarnoff, Dr. Sullivan has pursued

a number of neurocomputational research topics related to the theme of this contract. Several

manuscripts are in preparation (see Section IV, on page 6), and a draft version of one manuscript

is included in Appendix C.

IV. PUBLICATIONS

Il Pearson. J.C.. Spence, C.D. and Adolphs. R., "'Model of the origin of neuronal selectivity for
binaural intensity difference in the barn owl.- Proceedings of the second Analysis and Model-
in- of Neural Systems Workshop, Berkeley, CA (in preparation).



[2] Spence, C.D. and Pearson, J.C., "A resonance model of high frequency binaural phase sensi-
tivity in the barn owl's auditory brainstem," Proceedings of the Second Analysis and Model-
ing of Neural Systems Workshop, Berkeley, CA (in press).

[31 Spence, C.D. and Pearson, J.C., "A resonance model of microsecond time sensitivity in nucle-
us laminaris of the barn owl," Society for Neuroscience Abstracts 17 (124.20), 306 (1991).

[41 Sullivan, W.E., "Possible mechanisms of high frequency phase comparison in barn owls," So-

ciety for Neuroscience Abstracts 17 (181.19), 447 (1991).

[51 Sullivan, W.E., "Non-linear processes in binaural time comparison: Possible structure-func-
tion correlations in dendrites and axons and their implications for the origins of functional
segregation and parallel processing," (in preparation, to be submitted to Nature).

[6] Sullivan, W.E., "Modeling high frequency phaqe comparison in nucleus laminaris of the barn
owl," (in preparation, to be submitted to the Journal of Neuroscience).

V. PERSONNEL

The principle investigators are J. C. Pearson, Head, Computational Science Research, at the

David Samoff Research Center and Professor W. E. Sullivan of the Biology Department of Princ-

eton University, both institutions are located in Princeton, NJ. Dr. Pearson is the project director,

and is also involved with research in the applications of artificial neural networks to signal pro-

cessing problems. Dr. Sullivan, who is an experimental neuroscientist active in this field, serves as

a consultant and ensures that the models developed at Sarnoff incorporate the latest findings and

are biologically feasible and testable. Dr. Sullivan is also developing neurocomputational models

related to the themes of this project. Working with Dr. Pearson at Sarnoff is Dr. C. D. Spence,

Member of the Technical Staff.

VI. INTERACTIONS

Communication with R. Adolphs, a graduate student in the Konishi Lab of CalTech, contin-

ued this year, as described in Section III-D.

We are planning a joint proposal with T. Takahashi at the University of Oregon to study the

simultaneous processing of multiple sources of sound.

In July. Dr. Pearson gave an invited talk describing our models of elevation or intensity dif-

ference processing at the second "Analysis and Modeling of Neural Systems'" workshop held in
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Sari Francisco, CA. At the same conference, Drs. Pearson and Spence also presented a poster (pa-

per in press, see Appendix B) about the laminaris analysis.

In November, Drs. Spence and Pearson presented a poster at the Society for Neuroscience

meeting in New Orleans, LA.
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A resonance model of high frequency binaural phase
sensitivity in the barn owl's auditory brainstem

Clay Spence and John Pearson
David Sarnoff Research Center

CN5300
Princeton, NJ 08543-5300

e-mail: cds@samoff.sarnoff.com

ABSTRACT

The auditory system of the barn owl (tyto alba) contains
neurons sensitive to the phase of sounds of remarkably
high frequency, up to 9 kHz. Nucleus Laminaris
represents phase differences as part of the computation
of stimulus azimuth. The high frequency of the stimulus
and the high level of noise in the input spike trains make
the response properties of laminaris neurons hard to
explain. We use simulations and semi-numerical
analysis to show that the cellular and synaptic time
constants must be unreasonably fast in order for
ordinary biophysical mechanisms to reproduce the
observed behavior. Several people have suggested that a
resonance mechar.!sm may exist in laminaris neurons to
amplify the signal. We present a simple neuronal
resonance model tha! can deal with realistic input.

INTRODUCTION

The barn owl (tyto alba) uses inter-aural phase difference as a cue for azimuth
[Moiseff and Konishi, 1981; Moiseff, 19891. At the neural level, action potentials
in the eighth nerve, in the neurons of nucleus magnocellularis (NM), and in the neu-
rons of nucleus laminaris (NL) are all phase locked to the stimulus [Sullivan and
Konishi, 1984: Sullivan and Konishi, 1986]. They do not occur on every cycle of
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Figure 1. The Jeffress model. Circles labelled C and A represent neurons at
coincident and anti-coincident positions for this stimulus condition. The heavy
lines are axons with spike trains.

the stimulus, but a phase histogram shows a maximum at a particular phase and a
minimum 180" from this phase. This phase sensitivity of the response decreases
with increasing frequency, but is still pr---.nt at nearly nine kHz. Nucleus magno-
cellularis (NM) receives synapses from the eighth nerve and is monaural. Axons
from each NM innervate nucleus laminaris on both sides of the brain, penetrating
the nucleus in opposite directions. NL neurons are sensitive to the binaural phase
difference of the stimulus, showing a large response to a particular phase difference
and very small response when the phase difference is 180" from the optimal, and in
fact the response at this phase is less than the response to a monaural stimulus.
There is evidence that the optimal phases of NL neurons vary systematically with
their position, thus forming a map of inter-aural phase difference [Sullivan and
Konishi, 1984; Carr and Konishi, 1988; Carr and Konishi, 1990].

Laminaris appears to be a perfect example of Jeffress' model for convertin, g timing
information at the ears into the azimuth of the source (Fig. 1) [Jeffress, 19G48]. If a
source of sound is to the right of the direction the animal is facing, its soind reaches
the right ear before the left, and the difference of arrival times is a function of the
azimuthal angle. In Jeffress' model, monaural neurons on each side of the head
generate precisely timed action potentials in response to the sound. Thus the spike
trains from each side of the head are very similar except for a relative time shift
which reflects the azimuth of the source. These axons pass each other in opposite
directions, making synapses onto binaural neurons. For each such neuron, there is
an azimuth for which the difference in the time delays from a source to the ears is
compensated by the difference in the neural time delays, so that the difference in
the total time delays is zero. For this azimuth, spikes will arrive in coincidence at
this neuron (a stimulus condition we will call in-phase). For the same stimulus,
other neurons will have positions at which the spikes arrive first from one side and
then the other, or in anti-coincidence (out-of-phase). If it can respond differently to
coincident spike arrival than to anti-coincident arrival, the population of binaural
neurons will form a map of inter-aural time difference and hence azimuth.

The essential features of the Jeffress model are the use of axons as delay lines and
coincidence detection by binaural neurons. Although the evidence for the function
of magnocellularis axons as delay lines is compelling, there is no real evidence that
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laminaris neurons can detect the coincidence of action potentials. There is strong
reason to believe that they cannot do this, simply because laminaris functions at up
to nine kHz, which should exceed the speed limitations of an ordinary neuron. Also
the jitter or imprecise timing of magnocellularis action potentials represents a
source of noise which can swamp the signal that laminaris is trying to detect. We
will analyze a single compartment model of a laminaris neuron to illustrate this.
Such a model works only if the time constants for the synaptic conductances and
the membrane potential are extremely fast, and then it works poorly.

As an alternative to coincidence detection, several people have suggested that a res-
onance mechanism of some sort may be present in NL neurons. This would serve to
amplify the signal a laminaris neuron is trying to detect while suppressing the
noise. As a preliminary model of a resonator, we show that a damped harmonic
oscillator has the same response behavior as NL neurons to several types of stimuli:
a large response to binaural in-phase stimuli, a smaller response to monaural stim-
uli, and very little response to binaural out-of-phase stimuli. We will present results
showing that such a system can perform quite well, but good performance with rea-
sonable synaptic and membrane time constants may require the cell's latency to be
longer than is experimentally observed.

This work is still preliminary. In the last section we discuss the limitations of these
models, and what remains to be done.

LAMINARIS NEURONS ARE NOT COINC[DENCE DETEC-
TORS: QUALITATIVE ARGUMENTS

In the simplest picture of a laminaris neuron as a coincidence detector, incoming
spikes from nucleus magnocellularis excite the neuron. If the spikes occur in coin-
cidence from each side of the brain, the excitation is relatively large, whereas if the
spikes are anti-coincident, their effects do not add as effectively, and so the excita-
tion is relatively small. One would only need to set a threshold to distinguish
between the two stimulus conditions. However, there are laminaris neurons with
best frequencies of around nine kHz. Synaptic and membrane time constants are
usually thought to be on the order of one millisecond, so a typical neuron would
badly smear signals with a frequency greater than about one kHz.

If the input to a laminaris neuron had no noise the membrane potential would have
a DC component and a very small component following the input signal. A thresh-
olding mechanism could still work if the threshold could be adjusted with sufficient
accuracy. However, the input to laminaris is noisy. The magnocellularis neurons
providing this input show little or no modulation of their firing rates with stimulus
intensity, but phase lock to the stimulus. They do not fire spikes at exactly the same
phase of the stimulus, rather the spikes are spread over some range of phases. Fur-
thermore, they do not fire during every period of the stimulus, nor are their spikes
spaced by a predictable number of stimulus periods. This randomness in the occur-
rence of spikes represents noise in the input to each laminaris neuron.
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One might imagine that by making the synaptic and membrane time constants short
enough the modulation of the spike rate will become detectable by the cell. This
may require the time constants to be unreasonably fast. A more basic problem with
this picture is that it does not really cure the noise problem. Because the stimulus
period is so short, only a few spikes arrive during one such period on average, and
the fluctuation in the number of spikes arriving is substantial, unless magnocellu-
laris neurons communicate with each other so that the average number firing in a
given period does not fluctuate much, a possibility which we think is unlikely.

THE SIGNAL-TO-NOISE RATIO IN LAMINARIS

To give a more quantitative analysis of the problem, we will estimate the mean
squared amplitude of the noise fluctuations and of the signal in the membrane
potential of a single compartment model of a laminaris neuron. We model the input
to a laminaris neuron as a Poisson process 4 (t) whose rate is modulated sinusoi-
dally. (A periodic but non-sinusoidal modulation will not give better performance
in a linearized model, since it differs from a sinusoidal modulation only by having
non-zero harmonics of the fundamental frequency. These higher frequencies are
suppressed even more than the fundamental.) In the in-phase condition the modula-
tion is maximal, so has average

( (t)) = R(I +cos (Mt+ q)) 1
where p is a random phase, R is the long-time-averaged rate and 92 is the (angular)
stimulus frequency. The auto-correlation function is

(t +,c) (t)) = R (1 +cos(Q(t+t,) +)) (1 + cos (Ot+pT))

+R8(r) (1 + cos (9t + p)) 2

Averaged over (p, this gives

+ )(t) R 2 +(1 + cos (K2Q)) +R5(,) 3

The mean square fluctuation of a stochastic process is given by the total power of
the process, so we would like the power spectrum of the model input process. The
power spectrum of this process is (taking the Fourier transform)

P(o) = R+R 25(o) +-(6(o- 8 ) +S(te+ )) 4

4

The first term is noise and is present at all frequencies. The second term represents
a DC offset. The third term is the signal. Notice that the total power in the noise is
infinite.

The model neuron's membrane potential obeys the equation

dvCd = -g(v - v) - E(v-VE) 5
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where C is the membrane capacitance, gL and vL are the constant leakage conduc-
tance and reversal potential, gE is the excitatory synaptic conductance, and VE is
the constant excitatory reversal potential. The response of gE to a spike is just the
commonly used function Ate 's [MacGregor, 1987]. The response of gE to several
spikes is just the sum of the responses to individual spikes. This gives gE the value

f dsA. (t - s) e" - (s) 6

The conductance response to the spike train is a just a linearly filtered version of it.
The power spectrum of the conductance is the power spectrum of the input multi-
plied by the squared-amplitude of the fourier transform of the response of the con-
ductances impulse response, which is

A)2
((02 + S)

2

The equation for the membrane potential is non-linear, but for time constants which
are not too fast the fluctuations in the membrane potential are small compared to the
DC offset, so we can linearize about the constant parts of the potential and synaptic
conductance. Denoting the fluctuating part of the potential by u, we get

C du +gu+G Eu+gE(U-v E) = 0 8
dt

where the capital letters denote constant parts and small letters denote the fluctuat-
ing parts. The impulse response of u to gE is

(U- rE) 2/C2

gL+ GE 2 9

(gL + GE) IC is just the inverse of the average time constant of the membrane
potential, so we will call it yc in what follows. Thus the power spectrum of the
noise in the membrane potential is

RA
2 (U_ V ) 2/C

2

(02 + _s 2 ( 0 )2 + y) 10

The total power is

fdo RA 2 (U-vE)2/C 2  RA 2 (U-vE)2 y/c+_2ys
(- S 2 --)- (02 + yc-2- ) C 2

The total power of the signal in the membrane potential is trivial to evaluate
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Figure 2. The signal-to-noise ratio of a passive compartment as a function
of the synaptic and membrane time constants. Note the maximum without
an oscillator.

because of the delta-functions. It is

A 2R2 (U- VE)2/C 2  12
41r (f12 + YS) 2 (g22 + yC2)

The signal-to-noise ratio is

RYcl' (yc + ys) 2 13

c (yC + 2ys) ( Q2 + S) 2 (f2 +C)

Figure 2 is a contour plot of the signal-to-noise ratio versus yC and ys, with
KI = 21c x 5 kHz, and R = 30 spikes per msec (100 synapses times 0.3 spikes per
msec per synapse). Note that the function has a maximum. The signal-to-noise ratio
there is -9.6 dB. Furthermore, this maximum occurs for yc = 0.015 msec and
y' = 0.0074 msec, which we think are unreasonably small.

RESONATORS IN LAMINARIS NEURONS?

A resonator can help a laminaris neuron by suppressing the noise while amplifying
the signal. A linear resonator has some of the response properties of a laminaris
neuron:

Real laminaris neurons have a binaural response that is roughly a sinusoidal
function of the phase difference. In a resonator model, the average input
spike rate is the sum of two periodic signals. The amplitude of the modula-
tion at the stimulus frequency is a smooth function of the phase difference,
and so the response of a linear filter at this frequency will also be a smooth



A RESONANCE MODEL IN THE OWL

function of the phase difference.

Real laminaris neurons have a monaural response that is roughly half of the
in-phase binaural response. In a resonator model, the input spike rate would
have two pieces: a constant piece due to the unstimulated ear and a maxi-
mally modulated piece from the stimulated ear. The modulation of the total
rate at the stimulus frequency has half of the amplitude of the in-phase bin-
aural stimulus condition, so a linear filter will also have half of the response
at the stimulus frequency.

A simple and familiar model of a resonator is a damped harmonic oscillator. The
oscillator's response at the resonance frequency can be made arbitrarily large, but at
the cost of increasing the time it takes for the oscillator to reach its steady-state
response. This means a oscillator model neuron could have an unacceptably long
latency.

We repeat the same calculations as the last section, except with the cell voltage
driving a damped harmonic oscillator. In the simplest model, there is no feedback to
the cell voltage. So we have simply added an extra equation,

d2q + dq 1d-" 2 q+- d + Q 22q = Bv 14

The power spectrum of q is just the power spectrum for v, but with the additional
factor

B 15
((02 - g2) 2 +

In principle, the resulting power spectrum can also be integrated, but it is more
tedious than the case without the oscillator, so we have computed the total power by
integrating the power spectrum numerically. Since the damping constant yo is the
inverse of the oscillator's latency, we choose the constant to be one kHz. The
results are shown in figure 2. Obviously, the oscillator improves the performance
quite a bit, but for this value of yo the synaptic and cellular time constants must
still be rather short.

SIMULATIONS

In sections 3 and 4, we had to use very fast time constants in order to get acceptable
behavior from the model neuron. At very fast time constants, the linear approxima-
tion used breaks down, so one might question the relevance of the results. Also,
while the signal-to-noise ratio may give the relative magnitudes of the signal and
noise fluctuations, this is still not the same as spike rates. In this section we present
the results of simulations of the model laminaris neuron, with and without the har-
monic oscillator.

The differential equations for the membrane potential (without linearizing it) and
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Figure 3. Rate difference between the in-phaseand out-of-phase stimulus con-
ditions from a simulation of a passive compartment model. The rate difference
is expressed asa fraction of the maximum possible firing rate. The synaptic
time constant was 0.01 msec.

the oscillator were integrated in time steps much shorter than the stimulus period or
any of the time constants. The synaptic conductance obeys the equation for a criti-
cally damped harmonic oscillator driven by the input spikes:

d2gE dg6dT + 2ys + -sgE = At) 16

A input spike just increments dgE/dt by A. This is just a convenient way of realiz-
ing equation 3.6. Spikes only arrived at the beginning of time steps. Each indepen-
dent variable's differential equation was integrated by using the exact expression
for the solution of the same equation with the other variables held constant. An
action potential was considered to be generated when the membrane potential
exceeded a fixed threshold, or when the oscillator coordinate q exceeded a thresh-
old in the model with an oscillator. The threshold which gave the largest difference
in the firing rate in a 100 msec interval was used. The cell's capacitance was 30 pF
(from a specific capacitance of 1 .iF/cm2 and a cell diameter of 30 pin). The upper
limits were chosen to give similar time constants as in figure 2. For comparison,
note that if the soma had a high density (500 / gm2) of sodium channels as in the
Hodgkin-Huxley model and all of them were open (conductance - 0.01 nmho), the
conductance would be about 50000 nmho, giving a time constant of about
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Figure 4. Rate difference between the in-phase and out-of-phase stimulus con-
ditions from a simulation of a passive compartment model driving a damped
harmonic oscillator. The rate difference is expressed as a fraction of the maxi-
mum possible firing rate. The synaptic time constant was 0.25 msec.

0.0006 msec. Figures 3 and 4 show the resulting difference between the in-phase
and out-of-phase fir-ing rates, shown as a fraction of the maximum firing rate. With-
out an oscillator, the rate difference is significant, but only at very high conduc-
tance values. With an oscillator there is substantial improvement, but it is still
questionable whether a neuron can have such high conductances and short synaptic
time constants.

CONCLUSIONS AND FUTURE WORK

We have presented the results of calculations of a passive single compartment
model for a laminaris neuron. The results show that such a model cannot work at
the high frequencies and noise levels which are typical of the input to a laminaris
neuron. Faster time constants for the synaptic conductance and membrane potential
cannot cure the problem, which arises from the noisy nature of the input. There
must be some mechanism for filtering the neuron's input to suppress the noise rela-
Live to the signal. We have also presented calculat~on., for a resonance model of
such filtering. This model has substantially improved performance, and in fact can
work well if the synaptic and membrane ime constants are fast enough. It can work
well even if those time constants are slow, but only by increasing the latency of the
cell's response.
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Part of the purpose of this work was to determine if ordinary neuron models can
show behavior similar to that of a laminaris neuron. There are several fairly con-
ventional changes to these models which could improve their performance. One
such change would be an adaptive effective threshold. This would suppress low fre-
quency components in the input, thereby raising the signal-to-noise ratio. Active
channels as in the Hodgkin-Huxley model could do this, or one could use a simpler
model like Hill's [Hill, 1936]. Another change of the model which could improve
its performance would be a more realistic input spike train model. The Poisson pro-
cess model of the input is the noisiest possible choice, and is almost certainly nois-
icr than the actual input. For example, the refractory periods of magnocellular
neurons prevent more than a certain number of spikes from arriving at laminaris in
a given interval. There may also be a lower limit on the number of spikes which can
arrive in a given interval, if magnocellularis neurons can't go longer than a certain
interval without spiking. These properties are not true of a Poisson process, and
may reduce the noise.

There is also the question of the biophysical mechanism of such high-frequency
resonance. Active channels can show behavior similar to resonance, but they are
normally thought to respond too slowly. In addition, they would form a non-linear
system whereas laminaris at least shows hints of being linear in the magnitude of
the modulation of the input firing rate. Hudspeth proposed a resonator model of
cochlear hair cells [Hudspeth, 1985]. However, this model requires different exter-
nal ionic concentrations on different parts of the resonating cell's membrane. The
structure of laminaris gives no hint that it can maintain such differences. Also, Hud-
speth's model operates at very low frequencies, on the order of one hundred Hertz.

We do not yet have a mechanism to suggest, we can only say that some enhance-
ment of the signal relative to the noise is necessary. In order to make further
progress, the resonator hypothesis needs to be tested experimentally. The voltage
response to step current injections and/or sinusoidal current injections at various
amplitudes and frequencies around the neuron's best frequency should reveal the
presence of a resonator and provide insight into its mechanism, if in fact a resonator
is found.
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Abstract

The horizontal localization of sounds by measurement of interaural

time difference involves a system of neural "delay-lines" and binaural
tocoincidence detectors" (Jeffress 1948). This study explores the

biophysical problems inherent in high frequency phase processing by barn

owls to gain new insights into possible mechanisms of coincidence

detection. The analyses show that both the time course of synaptic

transmitter release and the biophysics of spike generation can play
important roles in producing a phase discriminant spike output for high

frequency inputs.

The "input" to a neuron is the spatial-temporal conductance pattern

evoked by its afferent synapses. Simulations of conductance patterns

produced by many phase-locked cochlear nucleus axons synapsing onto the

soma and short somatic spines of a barn owl laminaris neuron, show that

conductance is modulated at the stimulus frequency when all input axons

are coherently phase-locked. The relative strength of this modulation

depends on the shape and duration of individual conductance changes, on

the number of converging inputs and on the relative phase of bilateral
inputs, being maximal for in phase stimulation and absent for out-of-

phase stimulation. Greater synaptic durations produce a larger amount of

random variation in synaptic inp A relative to the stimulus dependent

signal and a larger background of continuous excitation.

Simulations of spike output using modifications to the Hodgkin-Huxley

model show that a robust, discriminatory response can be achieved with

either brief or long synaptic durations, but that the parameters required

for spike generation depend on the characteristics of the synaptic input.

The weaker phase-dependent conductance signal and larger background

excitation produced by long synaptic durations can be compensated by

increases in voltage sensitive channel density and activation rate either

alone or in combination with a larger leakage conductance and/or steady
inhibition. Inhibition may also be important in compensating for increases
in excitatory input level to produce a response whose magnitude is

affected only by relative phase. Finally, voltage sensitive potassium

channels were found to enable a response to high frequency, phase

dependent modulations in preference to the random modulations of lower



frequency, suggesting a model for coincidence detection involving
frequency filtering or resonance rather than simple threshold detection
(Spence and Pearson 1991).

The results suggest that specializations of both synaptic input and
spike output can enable phase discrimination at high frequencies. This, in
addition to further sharpening at higher levels in the auditory pathway,
obviates the necessity for extremely large changes in any one parameter.

Introduction:

Although the computation of horizontal sound location commonly
involves measurements of binaural differences in waveform timing (or
phase), the barn owl is thought to be unique in its ability to use high
frequency sounds for this purpose (Moiseff and Konishi 1981). In birds.
neural sensitivity to binaural phase difference is generated in nucleus
laminaris, the avian analog of the medial superior olivary nucleus (Moiseff
and Konishi 1983, Young and Rubel 1983, Sullivan and Konishi 1986, Carr
and Konishi 1988,1990, Overholt et.al. 1992). Cells in this nucleus
receive phase-locked synaptic inputs from each magnocellular cochlear
nucleus and can respond both to monaural and binaural stimulation
(Sullivan and Konishi 1984, Takahashi and Konishi 1988). The oinaural
response is sensitive to interaural time difference or ITD (Sullivan and
Konishi 1986, Carr and Konishi 1988, 1990), such that a cell's best ITD
occurs when the inputs from the two sides are coherent. This suggested
that laminaris neurons act as coincidence detectors in the sense that
simultaneous inputs from the two ears are necessary for a maximal
response (Jeffress 1948).

While phenomenological evidence in favor of Jeffress' "delay-line /
coincidence detector" model is quite strong, little is known about the
actual biophysical mechanisms by which coincidence detection is
achieved, especially at frequencies whose period is much less than a
millisecond. The simplest coincidence model assumes that each synaptic
input is subthreshold so that two, nearly simultaneous inputs are required
to cause an output. However, this does not take into account the high



sound frequencies and large degree of convergence which together subject
barn owl laminaris neurons to a continuous bombardment of synaptic
inputs. That is, rather than selecting on the basis of one vs. two synaptic

events, laminaris neurons must be sensitive to differences in synaptic
pattern which distinguish in-phase from out-of-phase arrival of a large
number of synapses from the two sides. The purpose of the present study
is to explore possible mechanisms of coincidence detection in the barn
owl by simulating both synaptic input patterns and spike generation
processes. What emerges from these analyses is the conclusion that both
mechanisms to control the shape and duration of synaptic input and to
produce spike output can contribute to high frequency phase selectivity,
and that the changes required to produce this selectivity are not
unreasonably large. Since further sharpening of ITD tuning occurs after
its generation in laminaris (Fujita and Konishi 1991), it is likely that the
dramatic improvements in localizing high frequency sound by phase
comparison seen in the barn owl are due to numerous, but less dramatic
changes at many points along the time pathway. The analyses also suggest
that the simple threshold model should be modified in favor of a model
that selects both on the amplitude and rate of change of synaptic inputs.

The simulations are organized into three major phases as shown in
figure 1. First, stochastic spike trains possessing interspike interval and

period histogram statistics similar to those of magnocellular afferents
are constructed by a pseudorandom process. Next, these spike trains are
used to compute synaptic conductance functions using variable
assumptions about the shape and duration of individual post-synaptic
conductance changes. Synaptic conductance is chosen as an intermediary
since it represents the actual input to the laminaris cell and unlike

current and voltage is assumed not to be a function of the post-synaptic
cell's membrane properties ( a safe assumption if channels such as NMDA
receptors are not involved). Amplitude and spectral analysis of this
"conductance signal" suggest some ways in which choices of synaptic
conductance functions affect the discrimination problem faced by the
laminaris cell. Third, this synaptic conductance signal is used as the
input to a biophysical model of the laminaris cell employing the Hodgkin-



Huxley model of action potential generation to which parameter
modifications are applied.

Modelina the laminaris synagtic inOut:

The properties of magnocellular spike trains suggest that they can be
modeled as a stochastic process in which firing probability is sinusoidally
modulated (Molnar and Pfeiffer 1968). As shown in figure 2, for every
time step (10 gsec), a pseudo-random number is generated which produces
a "spike" if this number exceeds a sinusoidally modulated threshold value.
Each spike is followed by an absolute refractory period (where threshold
is infinite) and a relative refractory period in which threshold falls
exponentially to its resting value.

As shown in figure 3, this process produces an interspike interval
histogram resembling a Poisson distribution. When compared to data
obtained from magnocellular units however, this simple procedure
produces unrealistic results. If the relative refractory period chosen is
relatively short, the peak of the interspike histogram can be
approximately matched, but the artificially generated ISI falls off much
more rapidly than the real histogram. Conversely, if the relative
refractory period is greater, both the peak and the tail of the histogram
are not properly matched. It appears therefore that magnocellular units
have too many long interspike intervals relative to their peak interval to
be matched by this procedure. This observation led to the hypothesis that
short interspike intervals may tend to be followed by long interspike
intervals and vice versa. That is, if a cell has fired two spikes in rapid
succession, it may have built up refractoriness such that it will tend not
to fire for a greater period. In contrast, if a cell had fired after a long
interspike interval, it is assumed to have recovered enough to be capable
of producing a much shorter interval with the next spike. The feasibility
of this hypothesis was verified by modifying the simulation such that the
rate of exponential recovery during the relative refractory period was
made to be contingent upon the last interspike interval. To do this, a
reference interval was chosen and was divided by each spike interval so
that a short interval produces a large ratio and a large interval a small



The effects of synaptic duration are shown graphically by comparing
conductance patterns produced by short and long durations (fig. 4 and 5
respectively). Figure 4 shows the conductance patterns and frequency
spectra computed for a fairly long synaptic duration. (This consists of the
"alpha" function defined by Rail 1969 as t/T e(-t/T) in which the time

constant T is 150 gsec. This function has a start to finish duration of
about 1 msec and a 1/2 width of 367 gsec.) The resulting conductance
patterns computed for in-phase and out-of-phase conditions have similar
peak-to-peak amplitudes and a substantial offset bias. The major
difference between the two is in their spectral content, with the in-phase
pattern containing a modulation at the "stimulus" frequency (i.e. the
modulation frequency used to create the input spike trains). In contrast,
if a much shorter synaptic duration is employed as in fig. 5 (alpha time

constant = 20 jusec), the in-phase signal has a clearly larger peak-to-peak
amplitude and both patterns have a small offset. The spectral differences
between the two patterns are also greater as shown by Fourier analysis.

The effects of the arbitrary choices of synaptic shape and duration
were examined by varying these over a wide range and computing the
resulting S/N ratio of the resulting synatic waveforms. The "signal"
strength was taken as the peak of the Fourier power spectrum for the in-
phase condition and the "noise" was measured by computing the sum of

squared deviations from the mean of the signal computed for the out-of-
phase condition, since it is the former which the laminaris neuron must

detect and the latter that must be rejected. As shown in figure 6, the
exact shape of the synaptic conductance function appears to have little
significance while the duration (measured by the time delay between 50%
crossings of the rising and falling phases) of the individual synaptic
conductance change has a significant effect. Signal-to-noise ratio is
maximal for synaptic durations of approximately 1/2 the duration of the
original "stimulus" period which was 200 Asec in these simulations, and
at this peak, signal-to-noise seems to be independent of shape.

A further analysis at higher synaptic durations suggests that the rise
time of the synaptic function controls the size of the 5 kHz stimulus



dependent signal while its overall duration controls both the size of the
noise signal and of the sustained excitatory offset (fig. 7). Figure 7a
plots the size of the in-phase stimulus signal as a function of overall
synaptic duration given constant rise time. This value reaches a peak at
1/2 of the stimulus period but for long durations it remains essentially
constant. The mean squared deviation of the out-of-phase signal
continues to build as duration increases (fig 7b). This is most likely due
to the fact that longer durations enable a greater accumulation of errors
in that abberent spikes have a lingering influence on the synaptic pattern.
Note that the size of this random signal becomes smaller relative to the
size of the sustained offset component (which increases linearly with
duration) but is larger with respect to the (constant) in-phase signal, and
it is this latter comparison which is crucial in understanding the
laminaris cell's discrimination problem.

In addition to synaptic duration and time course, the number of synaptic
inputs (or convergence ratio) to a single laminaris cell is an important
factor in determining how the amplitude and spectral properties of
synaptic input change with interaural time delay. As shown in figure 8,
increases in convergence ratio cause the synaptic ensemble calculated for
coherent inputs to increase in magnitude relative to that calculated for
out of phase inputs. Interestingly, improvements in signal-to-noise show
diminishing returns after more than 200 to 300 inputs (fig. 8b), which is
close to the convergence ratio estimated by Carr (personal
communication). It is also interesting to note that improvements in
signal-to-noise ratio with increases in synaptic convergence are most
prominent at the peak of the duration curve, where S/N ratio is already
optimized. For long synaptic duration, there appears to be less
improvement with increased averaging and most of the improvement that
is seen occurs as N is initially increased (see figure 8b), so that S/N ratio
reaches its assymptotic value at these durations for convergence ratios of
100 or less. This would suggest that long synaptic durations are
detrimental both because of their inherently poor S/N properties and
because this low S/N is resistant to averaging. This property is probably
related to the high coefficient of variation in the interspike intervals of
the magnocellular inputs (Sullivan 1985 and above).



Models of laminaris outl~ut: General considerations

An understanding of the synaptic input is quite important because it
will affect the type of spike mechanism needed to discriminate between
the input patterns associated with different phase conditions. As shown
above, input analysis suggests that the synaptic conductance pattern will
contain a phase-dependent modulation at the stimulation frequency as
well as random fluctuations at lower frequencies. To perform its
function, a laminaris neuron must respond selectively to this phase-
dependent signal. This implies first that high frequency modulations are
not removed by post-synaptic membrane filtering and secondly that the
phase-dependent signal causes a response above that due to the noise. If
signal-to-noise ratio is sufficient, a simple threshold spike model should
enable reasonable interaural phase discrimination. However, with longer
synaptic durations (which seem more feasible), amplitude differences
will be small whereas spectral differences can still provide a reasonable
basis for discrimination. Therefore, if laminaris neurons act as frequency
tuned filters or resonators, they could respond preferentially to the in-
phase conductance signal even if synaptic durations are in the millisecond
rather than the microsecond range.

To explore possible spike output mechanisms, a standard model of
action potential generation (Hodgkin and Huxley 1952) was employed (see
Appendix I). Using the synaptic conductance patterns previously
computed, spike outputs were calculated with different combinations of
voltage sensitive channel densities, activation rate constants and
excitatory and inhibitory conductances, to find those regions of parameter
space capable of producing a selective response to the in-phase synaptic
signal. The numerical simulations employed a Fourth-order Runge-Kutta
algorithm with an adaptive time step (Press et.al. 1988). The input for
these simulations was calculated for a 5 kHz, stimulus with 200 inputs
from each side.

As shown in figure 9, given the assumption of relatively long synaptic
duration and thus a poor input signal-to-noise ratio, parameter



combinations can still be found for which a strong response is only seen
with phase coherent synaptic inputs over a wide range of synaptic
conductance. Other parameter combinations produce large responses for
both in- and out-of-phase inputs (fig. 10) or for neither. A strong but
indiscriminate response can either be due to loss of the high frequency
synaptic signal by post-synaptic filtering or to a spike generating process
which is non-selective by virtue of being too easily triggered. In general,
models which respond well both to correlated and uncorrelated inputs
have sustained responses to constant excitation (fig. 10) whereas
selective models respond transiently (fig. 9). The transient response is
not however synonymous with good selectivity for input coherence, since
models which are insensitive to either condition also display a transient
response. Selective models have the ability to respond to the rapid
modulations present in correlated inputs but not to the slower
fluctuations and/or steady excitation seen with uncorrelated inputs.
Veltage sensitive potassium channels appear to be critically important
for this latter property.

To quantify the discriminative properties of a model, the total number
of spikes evoked over the model's sensitive range (see below) was
computed for both the in-phase and out-of-phase input conditions. These
values were entered into the formula: 1.0 - [Sum of spikes for out-of-
phase input] / [Sum of spikes for in-phase input]. If as in figure 10, the
cumulative spike counts for these two conditions are similar, the ratio of
Out/In is close to 1.0 and the above difference is near 0.0. Conversely, if
the response to the in-phase condition is much greater than the response
to the out-of-phase input (as in figure 9), the Out/In ratio is near 0 and
the difference near 1. This "phase discrimination index" thus provides a
measure of the modulation depth in spike rate that a laminaris output cell
would produce. As shown in figures 11 and 12, this discrimination index
was computed for different combinations of sodium and potassium channel
gating rates and as shown in figure 13, contour plots of discrimination
index as functions of gating rate were computed for a number of different
channel densities using both long and short duration synaptic inputs.



Analysis of results obtained with different combinations of voltage
sensitive sodium and potassium channel densities and activation rates
suggest that all of these factors are important in achieving phase
selectivity at high frequencies. In all simulations (see figures 9 through
12), there is a range of synaptic conductance within which sustained
activity is seen. Below this range, the input fails to achieve threshold and
above this range, the model is held in a refractory state (Holden and Yoda
1981). Models with fewer voltage sensitive channels are more easily
depolarized into this refractory range and can therefore be activated only
by low synaptic conductances. Since membrane time constant is inversely
proportional to conductance, the low conductances required for impedence
matching prevent the membrane voltage from responding to rapid input
modulations. Decreasing membrane time constant by increasing leakage
conductance or adding steady inhibition in these models creates a
different impedence matching problem because the inhibitory
conductances create too large of a load on spike generation and the model
becomes unresponsive. Finally, isolating the spike generator by putting it
in the axon rather than the soma reduces the load on spike generation and
increases threshold (thus enabling higher synaptic conductances to be
used), but trades one form of low-pass filtering for another (unpublished
observations). Thus, it seems clear that given a low input signal-to-
noise, responsiveness to high frequency synaptic inputs requires large
voltage sensitive conductances (as discussed below, this is more feasible
biophysically than it is to consider large decreases in membrane
capacitance).

If the density and/or activation rate of sodium charn,s is too high
relative to that of potassium channels, discrimination between phase
coherent and random inputs is poor because spikes are too easily
triggered. In contrast if potassium channel density and/or rate constant
is too high, there is no response to any input and no discrimination as
well. As shown in figures 11 and 13 (right), discrimination between in-
phase and out-of-phase inputs is maximized when these two voltage
sensitive currents are large enough and properly balanced in terms of
their relative density and activation kinetics. Voltage sensitive K+
channels eliminate responses to slow modulations while leaving



responses to rapid modulations intact. Potassium channels thus perform a

high-pass filtering function which boosts the relative influence of the

high frequency information bearing conductance signal over that of lower

frequency noise.

The balance between the voltage sensitive sodium and potassium

currents needed for maximal discrimination can be achieved with a

number of combinations of relative channel density, activation rate and
leakage conductance. However, while the effects of increasing voltage

sensitive conductances and activation rate constants are similar, they are

not identical. First of all, changes in rate constants do not affect

impedence matching. Thus, at low channel densities, increases in 'the

activation sp,.ed of sodium and potassium channels do not make the model

sensitive to rapid modulations because the model's behavior is limited by

its membrane time constant (fig. 13, bottom right). The explosive
positive feedback loop leading to an action potential contains two steps,

one in which the present sodium conductance causes membrane

depolarization and the second in which the new voltage causes activation

of more sodium channels. Channel density affects both of these steps
while activation rate affects only the second. At low channel densities,
the speed of this loop is limited by the conductance-to-voltage step and

no increase in channel rate can affect this limit. Increases in channel

density bring about improvements in high frequency response both by
producing smaller time constants and by enabling faster channel kinetics

to be employed (figure 13, top right).

The previous results were obtained with input ensembles computed

assuming a fairly long synaptic duration. If the much shorter, optimal
synaptic duration is chosen, similar performance can be achieved with

fewer voltage sensitive channels (figs. 12 &13 left). These models still
benefit from the effects of voltage sensitive potassium channels which if

too numerous or too fast, shut off spike output and if too scarce or too

slow, enable significant responses for both in-phase or out-of-phase input

ensembles. In fact, with a highly modulated signal as produced by brief
synaptic inputs, optimal phase discrimination performance is observed
when potassium channel activation is slightly faster than sodium channel



activation, the reverse of what was seen with the longer synaptic
duration. However, with the greater signal-to-noise ratio and lower
steady excitation bias seen with short synaptic durations, higher channel
densities are less important because the strong in-phase signal is still
significant even after post-synaptic electrical filtering. A comparison of
the parameters required for high frequency coincidence detection, must in
part be determined by pre-synaptic mechanisms.

Inhibition - with high density, greater leakage or inhibitory
conductance and enable good discrimination with slower activation rates..
Inhibition can also compensate for changes in average firing rate so that
output is more closely related to phase difference

Discussion:

Phase comparison at high frequencies undoubtedly involves a number
of anatomical and physiological specializations, some to ensure that
information at the frequency of interest is present in the synaptic input
and others to enable that information to be processed. Ideally, the
synaptic input to a laminaris cell should convey the temporal properties

of each monaural stimulus while minimizing noise. This can be achieved
by increasing the number of converging inputs and by decreasing the
duration of each synaptic conductance change. If these input
specializations are of sufficient magnitude, subsequent filtering other
than threshold crossing detection at the laminaris spike output may be
unnecessary. However, the laminaris cell must still contain some

specializations to prevent it from filtering out the high frequency
information bearing signal either through its passive membrane properties
or in the process of spike generation. As shown by the present analysis,
these changes can also increase signal-to-noise at the output which in
turn lessen the demand for extreme modifications of synaptic input. In
other words, high frequency phase comparison is a complex process which
is likely to involve a number of specializations of neural function acting
in concert. While this poses a problem for the modeler since the number

of possible configurations increases exponentially with the number of



free parameters, in the evolutionary sense every parameter is more or
less free. In this perspective, it is probably more reasonable to expect

that the system as a whole will be optimized both because repeated
mutations affecting a single parameter are unlikely and because some

parameters cannot be modified alone without disrupting some important

functional balance. For sound localization, in addition to mechanisms

which improve the synaptic input signal or the detection capabilities of

the laminaris neuron, further processing e.g. by lateral inhibition can

contribute to the overall performance of the system. Because these
mechanisms operate in series, the dramatic improvements in frequency
response culminating in the barn owl's ability to localize high frequency
signals may be due to numerous, but less dramatic changes in neural
mechanism at several steps along the "time" pathway (references).

As discussed previously, the pattern of synaptic input is dependent on

the shape and duration of each synaptic conductance change. This in turn
depends on the time course of neurotransmitter-receptor binding and of

subsequent channel gating. That is, although transmitter release is
triggered by action potentials in the pre-synaptic terminal, the time
course of the post-synaptic conductance change is not directly linked to

that of the pre-synaptic voltage change. There are several intermediate
sites at which decreases in synaptic duration can be effected where speed

limitations posed by membrane capacitance are not relevant. First, it is
well established that transmitter release is controlled by the presence of

Ca++ in the pre-synaptic terminal. Therefore, if Ca++ is prevented from
lingering in the pre-synaptic terminal by rapid sequestering or binding, or

by rapid inactivation of voltage-dependent Ca++ channels, transmitter
release can be truncated. As well, the duration of synaptic conductance

change can be controlled post-synaptically since chemical synapses
generally contain mechanisms by which neurotransmitter is inactivated

either by enzymatic degradation or by re-uptake. The post-synaptic
receptor-channel itself may also provide a site whereby rapid truncation

of conductance could occur. In addition to these molecular mechanisms,
structural specializations in the pre-synaptic terminal which restrict
transmitter release to a sub-set of pre-positioned vesicles could
contribute both to rapid onset and brief duration. Thus, there are a number



of sites whereby the critical parameter of post-synaptic conductance
timing could be modified independently of the timing of the pre-synaptic
action potential. However, there is evidence both from single unit records
of auditory nerve fibers (Sullivan and Konishi 1984) and from neurophonic
recordings in laminaris (Sullivan and Konishi 1986) that these spikes may
themselves be a bit faster than normal.

Although the hypotheses suggested above would indicate that short
synaptic durations may be feasible, it is not clear what the lower limits
of these processes acting either alone or in series may be. In addition,
input simulations suggest that extremely short synaptic durations of 100
lasec or less while desirable, may not be necessary if the time course of
the post-synaptic conductance change is asymmetrical. The relaxation of
assumptions about input timing can also be compensated by modifications
of spike output which enable steady and/or low frequency inputs (which
are the necessary biproducts of longer synaptic duration) to be filtered
out. With longer synaptic durations (i.e. above 1 millisecond or so) the
mechanisms proposed herein become less effective as the low frequency
noise first equals then surpasses the size of the information bearing
signal and as the amount of synaptic modulation relative to background
level decreases. Nevertheless, there is obviously some intermediate range
in which conservative changes in several parameters can enable clear
discrimination of phase differences in high frequency signals.

In models displaying the most robust discrimination, several changes in
synaptic and active conductances were made. In general, increases in the
density and/or rate of voltage sensitive sodium channels lead to greater
sensitivity to all frequencies but this results in reduced selectivity for
high frequency modulations at threshold. Unilateral increases in

potassium channel density and/or rate first selectively eliminate
responses to low frequency and steady inputs but eventually render all
inputs ineffective. Increases in all four of these parameters thus enable
improved high frequency sensitivity to be combined with high frequency

selectivity. The finding that multiple changes in model parameters seem
to be required for optimal performance, while reducing the magnitude
required of any single change, also raises the question of how these



changes could have co-evolved especially if these parameters are
independently regulated genetically. Membrane conductance is a function
of individua: channel conductance and of channel density. Variations in
the former would probably require mutations in each of the genes coding
for the channel proteins whereas changes in the latter could be
accomplished by gene duplications of by changes in gene regulation. In
this respect, the co-regulation of voltage sensitive and synaptic channel
density could be accomplished at the regulatory level. Furthermore, this

arrangement would be adaptive since it allows appropriate impedence
balances to be maintained. Similarly, increases in gating rate of the
voltage sensitive channels can be individually controlled at the level of

the channel genes or globally by factors such as temperature. Global
changes in gating rate was found to be a more efficient way of increasing
high frequency selectivity so that a factor of 2 to 3 over the normal rate
constants for homeothermic systems may be sufficient. This represents a
temperature difference of only ?? degrees Centigrade.

Experimental results suggest that laminaris neurons in the 5 kHz range
have maximum modulations of about 50%. Although the present analysis
shows that this is not the theoretical upper limit, further processing in
the time pathway can augment this initial ITD filtering, rendering further
improvements in laminaris unnecessary. Recent work by Fujita and
Konishi shows that ITD tuning may be sharpened by GABAergic lateral
inhibition ---

Testability of the model -


