n

v

e

WL-TR-91-3098

AD-A244 320
MR

COMPUTATION OF A KELVIN-HELMHOLTZ INSTABILITY
FOR DELTA WING VORTEX FLOWS

Raymond E. Gordnier
MicroCraft Inc.

207 Big Spriugs Avenue
PO Box 370

Tullahoma, TN 37388-0370

November 1991

Final Report for Period 1 September 1890 - 1 September 1991

Approved for public release; distribution is unlimited.

crarem

DTI

KLECTE
JAN14 199

FLIGHT DYNAMICS DIRECTORATE

WRIGHT LABORATORY

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

92-01%
|

54 R 113 ¢54:
I o

I




NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Govemnment-related procurement, the United
States Government incurs no responsibility nor any obligation whatsoever. The fact
that the government may have formulated, or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication or otherwise in any
manner construed, as licensing the holder or any other person or corporation, or as
conveying any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical lnformgrtion S_ervice (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Rl & s, AN e

RAYMOND E. GORDNIER }bggPH J. S. SHANG, Tech Mgr
Visiting Scientist Computational Aerodynamic Group
FOR THE COMMANDER

LI —

ROBERT L. HERKLOTZ, Col4:ﬁ§AF
Chief
Aeromechanics Division

. ) - i the
If your address has changed, if you wish to be removed. from our maxhng list, or if
addressee is no longer employed by your organization, please notify WL/ F1my,
Wright-Patterson AFB, OH 45433-6553. to help us maintain a current mguhng list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.




2 Form Approved
REPORT DOCUMENTAT:ON PAGE OB N 0188
Publu: reporting burden for this collection of information 15 estimated to average 1 hour per response, including the time for reviewing instructions, searching xisting data sources,
gand g thedata ded, and gand reviewing the collemon o! information Send comments regarding this burden estimate or any other aspect of this
coltection of information, including suggestions for reducmg this burden to dquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, a.d t0 the Office ofManagementand 8udget, Paperwork Reduction Project (0704-0188), Washington, 0C 20503
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
‘5 Nov 91 Final Report, 1 Sep 90 - 1 Sep 91
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS
(C) F33601-89-D0045
Computation of a Kelvin-Helmholtz Instability for (PE) 61102F
Delta Wing Vortex Flows (PR) 2307
W (TA) N6
(wu) 11

] Raymond E. Gordnier

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Micro Craft, Inc
207 Big Springs Avenue

PO Box 370

Tullahoma TN 37388-0370

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES& 10. SPONSORING/MONFORING
Joseph J. S. Shang, (513) 255-7127 AGENCY REPORT NUMBER

Flight Dynamics Directorate (WL/FIMM)
Wright Laboratory

Air Force Systems Command WL-TR-91-3098
Wright-Patterson AFB OH 45433-6553

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words)

The structure of the shear layer which emanates from the leading edge of a 76 degrees
sweep delta wing and forms the primary vortex is investigated numerically. The flow
conditions are Mo = 0,2, Re = 50,000 and angle of attack of 20.5 degrees. Computa-
tional results are obtained using a Beam-Warming type algorithm. The existence of a
Kelvin-Helmholtz type instability of the shear layer which emanates from the leading
edge of the delta wing is demonstrated. A description is provided of the three-
dimensional, unsteady behavior of the small-scale vortices associated with this
instability. The numerical results are compared qualitatively with experimental
flow visualizations exhibiting similar behavior.

14, SUBJECT TERMS 15. NUMBER OF PAGES
36
Delta Wing, Vortical Flow, Kelvin-Helmholtz Instability 16. PRICE CODE
17. SECURITY CLASSIFICA‘I’ION 18. SECURITY CLASSIFICATION ]19. SECURITY CLASSIFICATION T 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclagsified Unclassified Unclassgified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescnibed by ANSI Std 239.18
298-102




Table of Contents

Listof Figures . . . . ... ... .. .. ... ... i .eini...

Acknowledgement . . . .. ... .............. e

1 Introduction

2 Governing Equations . . . .. ... ... . ... ... ...,

3 Numerical Procedure . . . . . ... ... .. ............
4 Grid Structure and Boundary Conditions . . . .. ... ...,

Results . . . . ... ... . . . i e

3

5.1 High Reynolds Nuniber Case . . .................
5.2 Low Reynolds Number Case . . . ... ..............

6 Discussion . . ............

iii

..............................

Asaesaicn Yor
N11S GRARI ?

DTIC TAB a
Unannounced a
Justiriont ot
By
Distpibution/
Availability Codes
Avall znd/er

Dist Spevial

T




List of Figures

1 Dye Sheet Visualization Showing Small-Scale Vortices for a 60° Sweep Delta Wing at 10°

Angleof Attack [1] . . . . . . . . e 19
2 Smoke Flow Visualization of Vortex over a 70° Sweep Delta Wing at 20° Angle of Attack [6] 20
3 Delta Wing Configuration . . . . ... ... ... .. ... . . . . 21
4 Grid Structure . . . . .. L e e e 22

5  Comparison of Time-Averaged Surface Pressure with Experiment{21] :a = 20.5°, Re = 900.000 23

6  C'omparison of the Time Histories of Pressure for Two Time Steps . . . .. .. .. ... .. 24

7  Three-Dimensional, Unsteady Vortex Structure r = 0.3—0.85. Contours of Axial Component
of Vorticity ‘on

..............................................

8  Unsteady Vortex Structure, r = 0.7, Contours of Axial Component of Vorticity: Blue > 0

Red 0 . . oo e e e 26
0 Typical Time History of Pressure for the Axial Location =07 .. ............. 27
10 Shedding Frequency as a Function of Axial Location . . . ... ................ 2%
11 Comparison of Time-Averaged Surface Pressure with the Maximum and Mininnun Values

for One Cycle, r = 0.7 . . . . o L e 29
12 Time History of Lift Coefficient . . . . . . . . .. . .. .. . i 30
13 Time History of Drag Coefficient . . . ... ..... ... ... ............... 31
14 ‘Typical Simulated Surface Oil Fiow Pattern, ¢ =0.425 . . . .. .. ... ........... 32
15 Reversed Flow Region . . . .. . . . ... e 33

bW A RSy % sk - » L AR

3 [

¢ 1 qulezenud .

Ay S RIS T - oy e = x - .

s v R -

4 L <A te? A ]
s o e 1
: EILR I

vy ’

H 'a LI

L -y -

- 8 et SYE - .

L Lt -~

iv

P e T

3 E, meed . %

e




T

Acknowiedgement

[ wish to thank Dr. Miguel Visbal for his many valuable contributions to this work. I also wish to thauk
Mr. William Clements, Director of the Computer Center at Eglin Air Force Bage, ilorida. for providing

the computer resources for these calculations.




1. Introduction

Enhancement of the maneuverability and controllability of current and future fighter aircraft requires
the ability to more accurately predict the aerodynamics of these vehicles during rapid maneuvers and at the
extremes of their flight envelopes. This has led to a particular interest in high angle of attack and unsteady
aerodynamics. One of the dominant. features of the flow field around a fighter aircraft at angle of attack
is thie vortex flow above the delta wing. A better understanding of this flow field will lead to an improved
understanding of the aerodynamics of a fighter aircraft. The vortex flow over a delta wing also provides a
good model for studying complex, three-dimensional vortical flows. This work is part of a continuing eflort
to improve predictive capabilities for both high angle of attack and unsteady aerodynamics.

The present work has developed out of a series of experimental and computational investigations of
the following background. Gad-el-Hak and Blackwelder [1] observed for water tunnel tests of two delta
wings that the vortex sheet which emanates from the leading edge of the delta wing rolls up into discrete
vortices that undergo a pairing process. The instability appears as alternating dark and light regions in
the dye sheet near the leading edge of the delta wing and extending along it, figure 1. This instability is
said to be similar to the instability and pairing process described by Brown and Roshko [2] and Winant
and Browand [3] for two-dimensional shear layers. Both are related to the classical Kelvin-Helmbholtz type
instability of two-dimensional shear layers.

Payne e al. [4] also observed an instability in the shear layer forming the primary vortex using smoke
flow visualization techniques. They again relate the growth of these secondary structures to the classival
Kelvin- Helmholtz type of instability. The .bserved vortical structures appeared to be static, lowever, and
did not rotate with the vortex. They relate these observations [5] to those of Gad-el-Hak and Blackwelder.

Lowson [6] itas carried out low speed wind tunnel tests to investigate the vortex sheet structure formed
about delta wings. In this work he concludes that not one, but two types of instability exist in the shear
layer leaving the leading edge. The first, shown in figure 2 is the quasi two-dimensional type of instability
observed by Gad-el-Hak. The second is a locally streamwise instability of the vortex sheet that gives rise
to steady structures within the vortex core. Lowson suggests that this is thz instability observed by Payne
el al,

All these experimental results have been obtained for scaled models at relatively low Reyunolds mnnber.
Recent photographic evidence shows that similar types of secondary vortical structures are observed for
the LEX vortex flow on an F-18 in flight [7]. This strongly indicates that the vortex structure found

experimentally at lower Reynolds number occurs in flight conditions at full scale Reyuolds wmmmiber,




A similar type of shear-layer instability was observe ] by the present authors [8] in calculations for a 76°
sweep delta wing at 20.5° angle of attack and a Reynolds number of 900,000. An unsteady behavior of the
sheat layer which emanates from the leading edge of the delta wing, related to the instability lescribed hy
(iad-of Hak and Blackwelder. was found in these calculations. Uncertainties in the effect of grid resolution,
temporal accuracy, and Reynolds number were noted.

The current work addresses some of the uncertainties noted for the previous work. Further computations
are performed at a lower Reynolds number, Re = 50, 000. and for enhanced grid resolution. An improvad
description of the unsteady process observed will be given. The lower values of Reynolds number will also
provide the ability to more closely relate the numerical results to the existing experimental observations

just desciibed.




2. Governing Equations
The governing equations for the present problem are the unsteady, three-dimensional, full Navier-Stokes
equctons written in strong conservation form [9] using a general coordinate transformation £.1).C.1:
. L4 - 1
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The system of equations is closed using the perfect gas law, Sutherland’s formula for viscosity. and tae
- assumplion of a constant Prandtl number. Pr = 0.72. Flow quantities have heen nondimensionalized oy
their respective free stream values except for pressure, which is nondimensionzlized by twice the freesiream
dynamic pressure, and speed of sound which is nondimensionalized by the freestream velocity. All lengths
have been normalized by the root chord length of the delta wing.




] 3. Numerical Procedure

The governing eqyuations are solved numerically using the implicit approximately factored algoritlna
of Beam-Warming [10]. The equations are differenced using Euler implicit time-differencing and second-
order accurate central differences for all spatial derivatives. A blend of second and fourth order nonlinear
dissipation, as suggested by Jameson [11], is used to stabilize the central difference scheme. The current
work, in which subsonic flows are investigated, requires only fourth-order dissipation.

A fully vectorized, time-accurate solver has been developed to implement the aforementioned scheme [12].
The computational requirements of the scheme are approximately 38 words/grid point and 4.4 x 107"
C'PU sec/grid point/iteration on a Cray 2. This code has been validated for a number of simple laminar
flows. Solutions for the case of a supersonic delta wing have been compared with both experimental results
and other numerical results [13]. Good agreement for both comparisons has heen obtained. The code has
also been shown to capture successfully transition from Couette flow to Taylor-vortex fiow due to centrifu-
gal instability [12]. Uusteady results have been obtained for a pitching slender body of revolution [11].
Finally, the code has been used to calculate both steady and unsteady hiorseshoe vortex flows occurring
at a cylinder/flat plate juncture [15]. These results have provided a good validation base for the code. It
is of particular importance that the Jatter results demonstrate the ability to correctly simulate naturally
ocruring instabilities in the flow field and the transition of the flow from steady to unsteady Lehavior.

MacCormack[16] suggests that a desirable form of a numerical method is:
{numerics}Aq = {physics} 3.0

This form allows modifications to the left-hand side of equation (3.1) for numerical reasons (e.g.. efficiency)
without affecting the accurate representation of the governing physical equations contained on the right-
hand side. The current numerical procedure has this form for steady flows. Implementing a Newton-
like subiteration procedure recovers this forn for unsteady flows. This subiteration procedure has been
successfully used by several authors [17,18,19). The Newton subiteration procedure can provide distinct
improvements to the current numerical scheme. Subiteration improves the accuracy of the scheme via
reduction or elimination of both factorization and linearization errors. Relaxation of stabilily limits in the
three-factored scheme due to the reduction of the factorization error improves the efficiency of the schem: .
Finally, one may obtain higher-order temporal accuracy in a straightforward fashion.

The subiteratiou procedure is implemented in the currently existing code with a few simple modifica-




tions. The standard Beam-Warming algorithin for equation (2.1) is written as follows:

! .
[.]n+l +atl ]]"H[Jnﬂ + AtLﬂ]‘]”“(JnH +AtLag” = —AtR" (3.2)

with:

R = 6F+6,G+6H - %[651".. +6,Go+6:H)
Aqn = qm)-l - qn
Le = 66(.4 + Qie)
Ln = 6:)(3 + Q'.’q)
L; = &(C+Q3)
where 4. B, and € are the inviscid flux Jacobians and Q;,Q-. and Qs are the appropriate viscous flux

Jacobians. For the subiteration procedure one term is added to the right hand side of equation (3.2) and

the definition of A¢” is modified, yielding:

[ J,,I“ +AtL ]J”“[m-i-.sl[,,,]J”“[ 77 +1 +AfL)AG" = —AI,[ Ai,. +R"] (3.3)
where:
¢ = q/J
AP = gH ¢
At, = subiteration time step
At,py = physical time step.

Here p is the subiteration count. For p =0, ¢* = ¢” and the scheme reverts to the noniterative forim of the
algoritiim, equation (3.2). As p — ., ¢" — ¢"*! and the solution at the new time level is obtained.
Currently, the subiteration procedure is implemented using the same factorization scheme as the non-
iterative algorithm. Since the physics of the problem now is contained in the right-hand side of eyua-
tion (3.3). the left-hand side may be modified to improve the efficiency of the numerical scheme without.

adversely affecting the time accuracy of the problem. This area remains for future investigation.

o




4. Grid Structure and Boundary Conditions

‘The computational grid for the deita wing was obtained using simple algebraic grid generstion tech-
niques. ‘T'he grid structure is of an H-H type with planar grids being stacked in *he axial direction. The H-H
structure provides for good resolution of the sharp leading edge with no rounding. All farfield boundaries
are located 1.5 to 2 chord lengths away from the delta wing. The grid configuration is shown in figure 4.

‘The lsoundary conditions are implemented in the following manner. On the wing surface. the Lo
slip-condition for the velocities. adiabatic wall temperature condition and zero normal pressure gradient
condition are used. At the downstream boundary. flow variables are extrapolated from the interior. This
allows for convection of the vortices out of the computational domain. Symmetry conditions are imposed
along the mid-plane of the wing.

Characteristic boundary conditions [20] are used at the upper, lower, side, and upstream boundaries.
Locally one-dimensional flow is assumed from which the corresponding characteristic variables are obtained.
The boundary conditions are then applied to the characteristic variables with their values being specified
from cither the freestream or interior values depending on the sign of the corresponding eigenvalue. For
subsonic inflow four characteristic variables are specified from the freestream conditions with the fifth
extrapolated from the interior. For subsonic outflow four characteristic variables are specified from the
interior with one variable specified from the freestream values. In the present calculations. the upstream
and lower boundaries are inflow boundaries, and the upper and side boundaries are outflow houndaries.
‘The specification of characteristic conditions reduce undesirable reflections from the boundaries of the

computational domain.
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5. Results

5.1 High Reynolds Number Case

All results presented are calculated for a 76° sweep delta wing of aspect ratio 1 (fig. 3). This confignra-
tion has been investigated experimentally by Hummel [21,22). The first calculations for this configuration [K]
are made at Reynolds number 900,000, angle of attack of 20.5°, and a freestream Mach nwmber 0.2. Thege
conditions correspond to the experiment of Hummel, except for the Mach number which is higher than
the experitmental Mach number, 0.05. A node system consisting of 66 x 151 x 100 grid points is used. 37
points in the axial direction and 80 points in the spanwise d'. 'ction are located on the wing. The minimum
spacing at the surface is A: = 0.00001 and a uniform spacing along the leading edge, Ay = 0.00011, is
specified.

The numerical calculations for this case were found to be unsteady unless a coarse grid is employed. ‘T'he
unsteadiness in the calculations is attributed to a Kelvin-Helinholtz type instability of the shear layer which
emanates from the leading edge of the delta wing and forming the primary vortex. This unsteady flcw
field is characterized by the formation and shedding of small-scale shear-layer vortical structures from the
leading edge of the delta wing. It is suggested that this behavior is similar to that observed by Gad-el-lak
and Blackwelder in their water tunnel experiments (1].

A comparison of the average surface pressure at several axial locations along the wing with the experi-
mental data of Humme! [22] is given in figure 5. The calculated results compare well with the experimental
data showiug only a slightly greater expansion in the region below the core of the primary vortex. The
overprediction of the pressure at z = 0.9 is consistent with the calculations of Thomas [23] and is due in part
to the onset of transition near the trailing edge in the experiment. Further details of these computations
may be found in reference [8}.

An investigation of the effect of time resolution on the unsteady behavior of the high Reynolds number
casc is carried out. Two values of At are considered, At = 0.001 and At = 0.00025. Three subiteratioax
are used for each step at At = 0.001. The pressure is monitored at points traversed hy the small scale
vortices shed from the leading edge. Results for both time steps at an axial location r = 0.3 are given in
figure 6. This location provided the highest computed frequency and should therefore be the most sensitive
to time step resolution. The frequency for the smaller time step, St & 24, is higher than the frequency
for the larger time step, St = 20. The basic nature of the flow remains the same, however. A time step

of Af = 0.000125 is chosen for subsequent calculations. This time step should provide adequate temporal




resolution, with approximately 300 time steps per cycle at the highest frequency. No subiterations are

found to be necessary for this small time step.

5.2 Low Reynolds Number Case

Calculations are also made for a low Reynolds number, Re = 50,000. This provides several distinct
advantages. First, the calculations are in the Reynolds number range of the experiments of Gad-cl-Hak (1]
and Lowson [6). Better comparison of the computed results with experiment is then possible. Secondly.
this lower value of Reynolds number also <liminates questions involving transition and turbulence that
arise at the higher Reynolds number. Finally, the lower value of Reynolds number results in improved
sitnulations for a given grid size.

The delta wing geometry itself is modelled as a flat plate. This is done to simplify the grid structure
in the leading edge region of the delta wing. It is felt that the underside geometry has no significant effect
on the flow physics being investigated.

Caleulations for the lower value of Reynolds number are carried out on a 96 x 151 x 171 grid. This
grid contains 54 points in the axial direction and 80 points in the spanwise dicection on the delta wirg
with 133 points located above the delta wing. The minimum spacing at the wall is Az = 0.000} and
the spacing along the leading edge of the delta wing varies from Ay = 0.0005 at the trailing edge to
Ay = 3.165 x 10-5 at the apex. The spacing in the axial direction at the apex is Ar = 0.01 and at
the trailing edge, Ax = 0.003. For the predominant portion of the wing there is a constant axial spacing
of Ar = 0.025. This grid provides significant improvements in spatial resolution in all three coordinate
directions.

'The unsteadiness ohserved at high values of Reynolds number remains at Re = 50,000. The unsteady
hehavior of the flow field for this case is represented in figures 7 and 8. Each figure covers a time period

corresponding to approximately one cycle of the unsteady behavior based on the frequency at the axial

-

location, » = 0.7.

In figure 7 contours of the z-component of vorticity are shown for time ¢ = 0.4375 to t = 0.4875 on cress
planes located from 0.3 to 0.85. Positive valu s of vorticity are represented by the colors yellow, red, and
magenta, with magenta representing the largest values. Negative values of vorticity are represented by the
colors blue, cyan, and green with blue representing the smallest values. Clearly visible in the picture is the
primary vortex over the delta wing. Also visible are a series of distinct small-scale vortical structures ‘n

the shear layer which emanates from the leading edge of the delta wing. These three-dimensional. vortical




structures are first evident in the flow at an axial location # & 0.3. The small-scale vortices consist of a
cohierent structure that forms first nearer the apex of the delta wing. The structure does not extend initially
as a single vortex over the whole length of the leading edge of the delta wing. As the vortex sheds nearer
the apex of the delta wing new parts of the vortical structure are forming further downstream. When
the vortex sheds, it is convected around the primary vortex and its strength is dissipated. This proeess
proceeds much more rapidly nearer the apex of the delta wing where the scale of the primary vortex is
smaller. As the previous voriex is shed a new vortex is formed to take its place. The temporal evolution
of this process is seen in figure 7. ‘These small-scale vortices are believed to he the source of the strintions
observed by Gad-el-Hak, figure 1, and also observed by Lowson [6] in his smoke flow visualizations.

Further insight into the unsteady behavior may be obtained by looking at the evolution of the vortical
structure for a typical cross plane, & = 0.7, figure 8. In this figure contours of the axial component of
vorticity are plotted with blue contours being positive and red contours being negative. At time t = 0.425.
the cycle begins with a smallscale vortex starting to form. As time progresses fromt = 0.4375 to t = 0.4625.
this vortex grows in size and strength. Subsequently, for ¢ = 0.4625 to t = 0.4875 the small-scale vortex is
ghed. The vortex convects around the primary vortex and is dissipated. During this process of shear-layer
roll up and vortex shedding an interaction can be observed with the secondary regiou of vorticity. Vorticity
of the opposite sign is shredded from this region and is dissipated along with the small-scale vortex as it is
convected along the primary vortex. Even though contours of vorticity may not be compared directly (v
smoke flow visualizations, these figures appear to agree qualitatively with those of Lowson, figure 2.

A time history of the pressure at points in the flow field where the passing of the small-scale vortires
may be monitored is made at several axial locations. A typical time history for the axial location » = 0.7
is given in figure 9. A dominant frequency is clearly seen even though the existence of otlier harmonics
is evident. This dominant frequency is found to correspond to the shedding of the small-scale vortical
structures. While the time histories are not sufficiently long to allow for an accurate frequency donam
analysis, an average dominant frequency at each location can be found, and the results are shown in
figure 10. The average frequencies are seen to scale alimost linearly with axial distance.

The effect of the unsteady behavior on the surface pressure is shown for axial location « = 0.7, figure |1.
The shedding of the small-scale vortices contributes to only a small temporal variation of the surface
pressure outhoard of the core of the primary vortex. This contrasts with the high Reynolds munher
case [8] where a marked temporal effect on the surface pressure outboard of the core of the primary vortex
was seen. For the high Reynolds number the small-scale vortices form and are shed from the leading edge

of the delta wing. In the Jow Reynolds number case the small-scale vortices form further away from the

9




leading edge of the delta wing, thus their interaction with the secondary separation region and with the
flow near the surface of the wing is reduced. Time histories of the lift and drag coefficients also show only
a slight temporal variation, figures 12 and 13. The lift coefficient varies by approximately 2.5% and the
drag coefficient varies by approximately 1.8%. This temporal variation occurs at a much lower frequency
than the shedding frequency of the small-scale vortices.

A typical simulated surface oil flow pattern for the delta wing is given in figure 14. A rather extensive
region of reversed flow is seen outboard of the secondary separation line. This reversed flow region extends
to nearly the midchord of the delta wing in an area located between the secondary and tertiary lines of
separation. The three-dimensional extent of this reversed flow region is seen in figure 15 where the surfeee
of zero r-component of velocity is plotted. From this figure it is seen that the largest region of reversal
flow is located between the 75% chord location and the trailing edge. The reversed flow region extending
forward to approximately midchord is only a small tertiary separation region near the surface of the delta

wing.

10




6. Discussion

The curtent calculutions show some similarities to the flow visualizations of hoth Gad-cl-Hak al
Blackwelder [1] and Lowson [6]. Direct comparison of the computations with experiments renains difficult.,
however, and only qualitative observations are possible. The majority of the results of Lowson, for exampie,
are subject to & 50 Hz wind-tunnel background excitation which is not modelled in the computations.
Furtherniore, compatisons of vorticity contows with both smoke and dye flow visualizations are not exact
and can sometimes be misleading [24]. Finaily, the experiments and the computations are all done for
different sweep angles. With these cautions noted the following observations can be made.

Both Gad-el-Hak and Lowson view the instability as a series of vortices formed and shed (rom the leading

vdge of the delta wing at a single frequer.cy. Gad-el-Hak gives an empirical relatjon for this frequeney :

. _ 1625
St = .t
VR o
while Lowson gives the relation:
o 2DTT
St = (6.2)
Re

Tlhis description of the instability is not completely consistent with what is observed in the caleulations,
liowever. Here the small-scale vottices do not form at the leading edge but further along the vortex sheet,
Furthetmore, the vortices do not roll up as a single unit along the entire length of the leading edge, but
rather form first nearer the apex of the delta wing and then subsequently farther back along the leading
edge of the wing. In the case of the experiments of Lowson this difference in character may be attributable
to the 50 Hz wind-tunnel excitation of the flow field forcing the vortices to form at the leading edge.

Rather than a single frequency, an alinost linear variation of the frequency of formation of the simall-
scale vortices is observed, with higher frequencies nearer the apex of the delta wing. For e = 50,000,
the empirical formula of Gad-el-Hak,equation (6.1) predicts a frequency, St = 7.2 while Lowson's relation,
eyuation (6.2) predicts a frequency, St = 11.5. These values are of the same order as the [requencies
computed in the aft portion of the delta wing. This gives confidence that the computed frequencies are
not out of line with the actual physical situation.

Further insight into the shear-layer instability is obtained by considering an inviscid, linear stability
analysis for a two-dimensional shear layer between co-flowing streams. Monkewitz and Huerre [25) hanve

considered analytically the ease where the mean velocity profile is described by:

U(y) = l+z\tanh(:%) (6.0
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where A = (AU/20) is a measure of the velocity difference across the layer with U7 the average velocity of
the two streams and y = 4y* /4., where y* is the dimensional length and &, is the vorticity thickness. For
A = | the maximum amplified frequency from the linear spatial stahility analysis was found to he w = 00 2!

where:

b (27f) .
1 T (6 1)

w =

This value does not depend strongly on A.

In an individual cross-plane at a given time, the flow which emanates from the leading edge of a delta
wing may be viewed as a skewed shear layer. This shear layer may be separated into two components.
an axiol component in the r-dircetion and a shear or cross-flow component. ‘To a first approximation the
stahility of the sheat component is assumed to be the dominant factor in the stability of the shear layer. If
the shedding frevaencies at the cross-planes previously considered are nondimensionalized as in equation
{6.1), values of w are obtained in the range w = 0.13—0.32 with the specific value of w dependent on the local
shear-layer properties at the location chosen for nondimensionalization. These values of w are of the same
order as the maximum amplified frequency w = 0.21 found in the spatial stability analysis. Furthermore,
a value of w &2 0.21 always occurs at the approximate location where the small scale vortices are forming
in the shear layer. This simplified analysis indicates that the computed flow fiehd unsteadiness results fron
a shear-layer instability.  Furthermore, the observed frequencies are consistent with a two-dimensiontd,
spatial, lincar stability analysis for these types of shear-layer flows,

Pairing of the small-scale vortical structures has been observed in both the experiments of Gad-el-Hak
ad Lowson. Gad-el-Hak suggests that the primary vortex over the delta wing originates as a series of
nairings of the smaller scale ve.tices shed from the leading edge of the delta wing. Pairing of the smill
vortices is not observed in the computations. The reason for this discrepancy is not fully understood. The
shear layer which emanates from the wing leading edge is expected to be highly susceptible to modification
due 1o external excitation, intentional or unintentional. This excitation of the shear layer could pro.note the
pairing process and is currently not modelled in the computations. In order to obtain a rigorous comparison
of computations with experiment, a known forcing frequency might be required in both esperiment aned
computation. The effect on the pairing process due to munericai dissipation in the calculations is also not
Tully understood, and requires further investigation.

It should also be noted that both experiments [26] and computations [27] for flow over slender hodies of
revolution at large incidence exhibit a similar type of shear-layer instability. Small scale. three-dimensional
vortices are ohserved to move along the piumary surface of crossflow separation emanating from the body.

The high frequency phenomenon observed is distinet from the von Karman-ty pe siedding that oceurs




very high incidence for s »nder hodies of revolution. The experiments [26] and computations [27) compare
only qualitatively, but the numerical calculations capture the physical instability.

Finally, computations for the same delta wing and flow properties have been performed by others using
several different numerical techniques [23.28.29). These computations all show good agreement with the
experimental measurements. No unsteady flow behavior similar to the instability previonsly discussed is
reported in these references. however. Murman [30] has observed an unsteady flow hehavior that results in
a lack of convergence of the residual to steady state for Euler calculations over delta wings. The source of
the lack of convergence is traced to the existence of unsteady, small-scale vortices in the shear layer from
the wing leading edge. Since the computations are not fully time accurate, these observations are only
yualitative. A full understanding of the effect of numerical technigue. grid topology. and grid resolution

on the computation of this type of shear-layer instability will require further investigations.
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7. Conclusions

A numerical investigation of the unsteady vortex structure over a 76° sweep delta wing at 20.5° angle
of attack has been carried out. C'alculations are performed for a Mach number 0.2, and a Reynolds nunbher
50.000. The numerical calculations show that the shear layer which emanates from the leading edge of
the delta wing is subject to a Kelvin-Helmholtz type instability. Small-scale, thiee-dimensional vortical
struclures are observed in the shear layer. The small-scale vortices consist of a coherent structure tliv
foftns first nearer the apex of the delta wing and subsequently farther aft along the leading edge. These
vortices are shed and convected around the primary vortex with their strength beiug dissipated. The
frequency of shedding of these small-scale structures is seen to vary nearly linearly with axial location.
"I'he observed frequencies are consistent with the maximum amplified frequency found from an inviscid.
linear, spatial stability analysis for a two-dimensional. - ross-flow shear layer. The small-scale vortical
structures have been shown to be related qualitatively to those observed by Gad-el-Hak [I] and Lowson [6)
in their flow visualization experiments, though some differences in the specific character of the computed

and experimental structures have been noted.
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8. Nomenclature

pressure coefficient

total energy

frequency

transformation Jacobian

root. chord length

‘reegtream Mach number
“ressure

Prandtl number

Reynolds number

Strouhal number St = fL/u~,
nondimensional time ¢ = fua.//.
velocity components in x,y and :
physical coordinates

location of leading edge
computational coordinates
vorticity thickness

density

viscosity coefficient
nondimensional frequency

stress tensor
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Figure 1: Dye Sheet Visualization Showing Small-Scale Vortices for a 60° Sweep Delta Wing at 10° Angle

of Attack [1]
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Figure 2: Smoke Flow Visualization of Vortex over a 70° Sweep Delta Wing at 20° Angle of Attack [
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Figure 3: Delta Wing Configuration
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Figure 4: Grid Structure
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Figure 5: Comparison of Time-Averaged Surface Pressure with Experiment[21]: = 20.5°, Re = 900, 000
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Figure 6: Comparison of the Time Histories of Pressure for Two Time Steps
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Figure 8: Unsteady Vortex Structure, £ = 0.7, Contours of Axial Component of Vorticity: Blue > 0
Red < 0
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Figure 9: Typical Time History of Pressure for (he Axial Location « = 0.7
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Figure 11: Comparison of Time-Averaged Surface Pressure with the Maximum and Minimum Values for

One Cycle. r = 0.7
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Figure 12: Time History of Lift Coefficient
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