
AD-A244 295

NASA Contractor Report 189571

ICASE Report No. 91-83

ICASE
MASSIVELY PARALLEL ALGORITHMS FOR
TRACE-DRIVEN CACHE SIMULATIONS

-DTIC
It&ECT'

;

AN 1 3 1992
David M. Nicol B8 9
Albert G. Greenberg B
Boris D. Lubachevsky

jkpprovsd Wo t.~er o
Contract No. NAS1-18605 ' ,p,.dfo,.u. i r.1.as. i

November 1991

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

ASA
National Aeronati fice, nd
Spicr Administration

Langley Research Center 92-00666
i Jmpton, Virqinia 236(39 93225

92 1 8 058

Massively Parallel Algorithms for Trace-Driven Cache Simulations

David M. Nicol *Albert
G. Greenberg

Boris D. Lubachevsky
College of William and Mary AT & T Bell Laboratories

Abstract

Trace-driven cache simulation is central to computer design. A trace is a very long sequence, zi,

ZNj, of references to lines (contiguous locations) from main memory. At the t th instant, reference z is
hashed into a set of cache locations, the contents of which are then compared with Zt. If at the tth instant
xt is not present in the cache, then it is said to be a miil and is loaded into the cache set, possibly
forcing the replacement of some other memory line, and mak,.ig z, present for the (t + 1)" instant. The
problem of parallel simulation of a subtrace of N references directed to a C line cache set Is considered,
with the aim of determining which references are misses and related statistics.

A simulation method is presented for the Least-Recently-Used (LRU) policy, which regardless of
the set size C runs in time O(log N) using N processors on the exclusive read, exclusive write (EREW)
parallel model. A simpler LRU simulation algorithm is given that runs in O(C log N) time using N/log N
processors. We present timings of the second algorithm's implementation on the MasPar MP-1, a machine
with 16384 processors. A broad class of reference-baaed line replacement policies are considered, which

includes LRU as well as the Least-Frequently-Used and Random replacement policies. A simulation

method is presented for any such policy that on any trace of length N directed to a C line set runs in

time O(C log N) time with high probability using N processors on the EREW model. The algorithms
are simple, have very little space overhead, and are well-suited for SIMD implementation.

*This research was supported in part by NASA grants NAG-1-1132 and NAS-1-18605, in part by.NSF Grant ASC 8819373,

and-was initiated during a visit to AT&T Bell Laboratories.

/

1 Introduction

-- A cache is a high-speed memory on the access path to a larger, slower main memory. Cache performance is

critical to the overall performance of computer systems (10], and consequently a tremendous amount of effort

is put into the evaluation of cache designs. This is particularly true for RISC microprocessor designs, where

the ratio of the time needed to access an off-chip cache to that needed to access the main memory can be as

high as 10 [10], and the off-chip cache is typically at least 10 times smaller than the main memory. Trace-

driven simulations, which evaluate cache performance on actual reference streams taken from characteristic

programs, are the most reliable and widely used tools for cache design evaluation. These simulations require a

great deal of computation, because of the many different design possibilities that are simulated, and because

of the length of the reference traces that drive the simulation,* __

Data is moved between main memory and the cache in contiguous blocks called lines. Every memory line

is hashed to some fixed cache ect, but may be placed in any one of the C physical cache lines in the set. In

emerging computer designs, a microprocessor might be supported by a 1 Megabyte off-chip cache, with a line

size of 128 bytes, and a set size C = 4. A miss occurs whenever a memory line is referenced, but is not found

in its set. The cache hardware then fetches the desired line from main memory, overwriting another line in

the same set if the set is full. The rule used to select which line to replace is called the replacement policy.

An effective, widely used policy is Least-Recently-Used (LRU), which simply replaces the line accesied least

recently. The objective of a trace-driven simulation is to determine which references in the trace are misses.

Given the identities of the misses, statistics of chief interest in cache design are easily computed, such as the

fraction of read misses, the fraction of write misses, and the number of write-backs (stores of modified lines)

from cache to main memory.

Hleidelberger and Stone [9] showed that it is valuable to simulate a long trace directed to a few sets, when

cache miss statistics between sets are highly correlated.' High correlation removes the need to simulate all

sets, but also removes the easy parallelism that might be exploited by simulating a large number of sets in

parallel on different processing elements (PEs). A massively parallel method to handle the simulation of a

long trace targeted to a single set allows more powerful, flexible solutions.

We consider the problem of determining the misses in a given reference trace, xl , ... , ZN, directed to **/a

a set of size C. An algorithm is presented (Section 3) that solves this problem in O(log N) time using(%

N/log N PEs, on the exclusive-read, exclusive-write (EREW) model of a parallel machine. The algorithm 0 to
31-....---

and its complexity do not depend on C. The algorithm computes the stack distance At associated with each o

reference xt [16]. If zt is not a first reference to a line then At is the smallest set size for which xt would be

a hit; otherwise At = oo. .

In Section 4, we present an alternative LRU simulation, with running time O(C log N) time using N/log N al-

1Recent experiments (private commuication from Harold Stone) have validated that high correlation exists between sets,

but have also shown that special care must be taken when selecting the sets which are analyzed, as the measured miss ratio
from an arbitrary set simulation may not be an accurate predictor of the overall miss ratio. I COdes/DI~ ~ Codes....

IAvail and/or

s SPeolal

PEa on the EREW model. The algorithm computes the stack distance at level C, At(C), for each reference

Xt, If xz is not a first reference to a line then AI(C) is the smallest set size < C for which r, would be a hit;

otherwise Aj(C) = oo. The algorithm is simple and the implicit constant in the time bound is favorable.

We report timings of this algorithm's performance on a MasPar [4] SIMD computer having 16384 PEa.

In Section 5, a broad class of reference-based replacement policies is considered. Roughly, the class

contains all stack replacement policies where priorities controlling line replacement are static and can be

computed efficiently in parallel. This class includes LRU as well as:

* OPT: Replace the line referenced most remotely in the future. This unrealizable policy provably

minimizes the number of misses. Its simulation gives a baseline against which realizable policies can

be measured.

Least-Frequently-Used or LFU: Replace the line accessed least often in the past. Tics can be broken

by, for example, giving higher priority to the reference that has been in the cache the shortest length

of time.

Random: Replace one of the C lines, chosen independently and uniformly at random. Random re-

placement is easy to implement; furthermore, there is evidence that if the total number of lines in the

cache (not just the lines in one set) is sufficiently large, the policy works nearly as well as any other

implementable policy[10].

In Section 5, an algorithm is presented for reference-based policy simulation. Given any trace of N references

targeted to a C line set, the algorithm runs in time in O(ClogN) with high probability using N PEs on

the EREW model. (The algorithm is probabilistic, the choice of trace is not.) In Section 5.3, we extend the

class of reference-based replacement policies to include an aging mechanism, whereby stale lines lose priority

and tend to be flushed from the cache. Accommodating this mechanism increases the algorithm's running

time to O(C log2 N).

Our algorithms are simple, require at most O(log N) space per PE, and break the computation down

into calls to a few primitive parallel subroutines. As a result the algorithms are well-suited for SIMD

architectures, such as the Connection Machine [11] or MasPar (4]. The O(ClogN) with high probability

bound holds because we have assumed that a fast probabilistic parallel algorithm [18] is used to solve a

certain trapezoidal decomposition problem (Sections 2, 5). Adopting the notation of [18], this algorithm

runs in (log N) time using N PEs, meaning that there is a constant k such that the time exceeds km log N

with probability less than N m for any m > 1. In practice, simpler, deterministic methods may do better,

while raising the asymptotic time bound to O(C log N).

For simplicity, we have assumed the problem size N is comparable to the number of PEs, so that it is as

if each PE handles a few references (up to log N). However, a "supersaturated" setup [8] may be effective

in practice, where a large block of consecutive references would be loaded in the local memory of each PE.

Our algorithms generalize to that setup, by using efficient supersaturated implementations of the underlying

'2

parallel primitives (cf. [12, 17]). Indeed, our implementation of the LRU algorithm is a supersaturated

one, with complexity O(C(N/P + log P)) for a reference trace with N elements on an architecture with P

processors.

Collecting the cache miss statistics mentioned above adds just O(logN) time. Moreover, by the nature

of the replacement policies and the simulation methods, statistics for each set size up to C can be computed

at this cost. All of our algorithms can be adapted for efilcient simultaneous simulation of many sets, by the

simple device of initially sorting the references on the basis of their set identifiers.

lleidelberger and Stone [9] had the original insight that trace-driven simulation of an LRU cache set

could be parallelized. Their algorithm is intended for a network of P MIMD processors, and requires P -C N

for good speedup. Our wo:k was motivated by theirs; our algorithms are different, apply to a larger class

of replacement policies, and to a different class of architectures. Lin, Baer, and Lazowska have considered

parallelizing cache simulations, in the context of multiprocessor cache protocols[15]. Their method assumes

that each individual processor's cache is simulated on a different PE, so that the degree of parallelism is

limited to the number of caches in the simulated system. An important and beautiful paper on cache

simulation was published in 1970 by Mattson, Gecsei, Slutz, and Traiger[16]. Most of our notation is taken

from that paper.

The practical utility of implementing trace-driven cache simulations on today's SIMD computers has yet

to be shown, although our implementation proves the great promise of the approach. It seems likely that a

very long reference trace will have to be partitioned into blocks, where one block is processed at a time. The

I/0 problem is to move the blocks to the processors fast enough to keep them busy. An attractive alternative

is to use a synthetic trace; for example Thiebiubt, Stone, and Wolf [20] recently proposed a simple method

for random generation of realistik traces.

2 Preliminaries

2.1 Cache Notation

Henceforth, we focus on a single set cache, and treat its size C as a parameter. Let BI(C) denote the set of

lines stored just after reference z,. Each reference must be cached, so z, 6 B,(C) for all C > 1 and t > 1.

(By convention, B1(0) is the empty set.) If the cache is full (IBt(C)I = C) and xt is a miss (zt € Bi-I(C))

then x -xeplaces a line in'BI-3(C). We refer to this replaced line as yl. All of the replacement policies we

consider are stack policies [16], meaning if a reference is a hit given that the cache size is C then the reference

will remain a hit if the cache size is increased to C + 1. That is,

* Bt(C) C B1(C +1) for all C>0.

This inclusion allows us to order the lines of the cache by the least size needed for thefr appearance.

3

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
st(l) 0 a c b c c a c a d b b d c d a a b a

--s(2) 0 0 a c b b c a c a d d b d c d d a b

8t(3) 0 0 0 a a a b b b c a a a b b c c d d

81(4) 0 0 0 0 0 0 0 0 0 b c c c a a b b c c
A t 00 00 00 2 1 3 2 2 00 4 1 2 4 2 4 1 4 2

Figure 1: An example of the LRU rule acting on an N = 18 line trace, with lines labeled a - d; 0 is the
empty line marker.

Dcfine the it" clement of BI(C) as

A M (i) - B,(i - 1) if IB(i)l = i

=i 0 otherwise (1)

The symbol 0 is an empty line marker; at(i) - 0 if fewer than i lines belong to Bg-.(i). We assume the stack

starts empty, and therefore let so(i) = 0 for all i > 0.

Figure 1 gives an example, for the LRU replacement policy. The trace length N = 18, and the lines are

labeled a - d. The first level, 8t(1) coincides with the trace itself. Consider the first two levels; i.e., the cache

contents giv6n C = 2. The cache is initially empty. The first two references, z = a, z2 = c, miss, and as

a result B(2) = {a), B2 (2) = {a,c). The third reference, X3 = b, also misses, forcing the replacement of

Y3 = a, yielding B3(2) = {b, c). The fourth reference, z4 = c hits, so B 4(2) = B3(2), and so forth.

Ilit and miss statistics are easily extracted from stack distances, defined as follows. Let the level i stack

distance A,(i) denote the smallest cache size < i such that Zg is a hit, or oo if z, is a miss for cache size

i. Thus, given A,(C), for t = 1, ... , N, we can extract the hits for any cache size c < C. More generally,

define the stack distance At = lirnc-.. Aj(C) to be the smallest cache size such that zt is a hit, or 00 if

there is no prior reference to the same line (z, = Zt for some a < t). Stack distances are shown in Figure 1.

2.2 Parallel Processing Model

Our algorithms are well-suited for a wide variety of parallel architectures, because the algorithms transform

data in simple ways using a small number of basic, highly parallelizable operations. However, to state

precise time and processor requirements, we must choose a precise model of parallel computation. The

EREW (exclusive read, exclusive write) model (cf. (14]) provides a nice blend of simplicity and realism.

In this model, the PEs operate in lockstep. There is a global shared memory, supporting at unit cost any

pattern of accesses except those where two PEs simultaneously access the same location.

We state the complexity of our algorithms with respect to the EREW model. We now list the parallel

subroutines used in our algorithms, and their complexities on the EREW model.

9 Merging: Two sorted lists each of length N can be merged in time O(log N) using N/ log N PEs, via

Batcher's odd-even merge algorithm [2].

4

9 Sorting: A list of length N can be sorted in time O(log N) time using N PEs (5].

* 2d Ranking: Given points (zj, yj), i = 1, ... , N, compute for each point (zi, yi) its rank, the number

of other points (z1 , yj) strictly above and to the right: zi < zj and yg < yj. In slightly different form,

this is the problem of computing the empirical cumulative distribution function (ECDF), considered

in [3]. The multidimensional divide-and-conquer serial algorithm given in (3] parallelizes easily to solve

the problem in O(log2 N) time using N PEs. Atallah et al. improved on this, lowering the time to

O(logN) using N PEs.

* Closest Larger Right Neighbor (CLRN) Problem: Given input numbers al, ... , aN, find, for each aj,

the index of the first larger number to the right; i.e., for each i = 1, ... , N - 1, compute bi = min{j >

i : Xj > xi) if there is some j > i with z1 > xz, bi = N + 1 otherwise. The CLRN problem can be

reduced to trapezoidal decomposition [18]: given a set of line segments and points, from each point,

report the line segment first hit (if any) by a ray shot horizontally to the right. To make the reduction,

consider the polygonal path connecting consecutive points (i, aj), i = 1, ... , N. If ai+i > ai then we

know bi '- ai+.. Otherwise, b1 is the height of the right end point aj of the segment from (j - 1, ap_1)

to (j, aj) first hit by the ray shot horizontally to the right from (i, ai), if there is an aj > aj, j > i.

If not then bi = N + 1. Reif and Sen give a probabilistic algorithm for trapezoidal decomposition.

Applying that algorithm to the CLRN problems yields its solution in &(logN) time using N PES.

Alternatively, the CLRN problem can be solved by a binary search-like algorithm, given in Section 5,

in Q(log2 N) time using N PEs.

o Parallel Prefix (scan, segmented scan): Given inputs al, ... , aN and an associative operator o, compute

the partial products pi, ... PN where pi = al oa 2 0.. .o a. Solutions to this parallel prefix problem [13]

are commonly called scan computations. The problem can be solved in O(log N) time using NI/log N

PEs [12].

A variation breaks the products over the indices [1,N] into segments over these indices, with the

segment boundaries also given as inputs. For example, an additional vector b1 , ... , bN, is given where

b, = 0, for i > 1, bi is either 0 or 1, and the O's mark the segments' left boundaries. Specifically, if

bi= 0 then pi = ai; otherwise, pi = aj o aj+1 o ... o aj where j is the largest index k, 1 < k < i, such

that bk = 0. The segmented problem has the same complexity as the original. In the algorithms below,

we use copy-scans defined by a o,6 = a, and add-scans where o is addition.

None of the algorithms listed above requires more than O(log N) space per PE.

3 Fast Parallel LRU Simulation

In this section we present a fast parallel algorithm for computing stack distances under the LRU replacement

policy.

" 5

LRU may be characterized as follows. Reference to a = Zt places a at the first level of the stack. Until

a is referenced again, it can only move down in the stack. Specifically, after a has been pushed to level i it

remains there until a reference is made either to a (moving a to level 1) or to a line not stored in levels 1

through i - 1 (moving a to level i + 1). As a result, the stack distance A, is one greater than the number of

distinct lines in the subtrace between t and the closest prior reference to a (or oo if there is no prior reference

to a). For example, in Figure 1, consider the consecutive references to line b at t = 3 and t = 10. The stack

distance A10 = 4 because 3 distinct symbols belong to the subtrace X4 , ... , X9. More generally, letting

prev(t) = <f tax{ <t:z,=t ifx,=x xfor somes<t
0 otherwise

we obtain
At 1 + number of distinct symbols in Z,,.5 (g)+,...,:xt-i if prev() >0

1 oc otherwise

Let us take a geometric view of this new problem of counting distinct symbols within subtraces. As

illustrated in Figtire 2, identify each reference x, with the point (t, next(t)), where

i max{s>t:x,= x) ifz,= x for some8>t
N + 1 otherwise

Note that the last references to symbols within the subtrace zp,,,(g)+ , ..., zxt- are identified by those points

(8, next(s)) satisfying

prev(i) < s < t < next(s).

These are the points that lie strictly within the rectangle with lower left hand corner (prcv(t), t), lower right

hand corner (t,t) and sides extending upwards to (prev(t),N + 1) and (t,N + 1). Again, see Figure 2.

Counting these points reduces to 2d-ranking. Specifically, suppose we know the 2d-rank, rank(u, v), of each

point (u, v) in the union of sets {(t, next(t)) : 1 < t < N) and {(t, t) : 1 < t < NJ. Then, the stack distance

rank(prey(t), t) - rank(t, t) if prev(t) > 0

00 otherwise

We see from Figure 2 that A10 = 4 because rank(3, 10) = 20 and rank(1O, 10) = 16.

Now, let us present the detailed simulation method. Suppose that the trace is initially stored in the

N-vector x. We use the additional N-vectors p, next, prev, and A. Initially, let pg = t, so x identifies

the line and pt the trace index of reference ig. Vectors next, prey, and A will hold permuted copies of the

vectors next, prey, and A, respectively. The algorithm is as follows.

1. [Compute next and prev.] Sort the tuples (xi,pt) using xs as the primary key and p, as the secondary

key: (xi,pt) < (x,,p,) if either x, < x, or xt = x, and p, < p,. Thus, the data now in location t of X

and p was in location p, before the sort. For all t = 1, ... , N, set

f pi-I ift >1 and xt-I =xt
prev = 0 otherwise

Reference Index 1 2 3 4 5 6 7 8 0 10 11 12 13 14 16 16 17 18
trace a c b c c a c a d b b d c d a a b a
prey 0 0 0 2 4 1 5 6 0 3 10 9 7 12 8 15 11 16
next 6 4 10 5 7 8 13 15 12 11 17 14 19 19 16 18 19 19

19- ++ ++
18- + 0

17- + 0
16- + 0

15*- + o
14- + 0

13- + o
12- + 0

11- + 0

10- - ------ 6

9" 0

8- + o
7- + 0

6- + 0

5- + 0

4- + 0
3- 0

2- 0
1 0

1 2 3 8 10 112 13 14 15 1 1'7 18

Figure 2: The trace of Figure 1 is repeated, along with corresponding next and prey values. The values
(t, next(i)) are plotted as +'s, and the values (t, t) as o's. The number of points strictly within the rectangle
indicated by dashed lines is one less than the stack distance of z10 = b.

SP,+1 ift < N and x,+j = x,
n N + 1 otherwise

At thispoint, the prey and next vectors hold permuted copies of the prey and next vectors discussed

above.

2. [2d-rank.] Compute the 2d-ranks of the set of points

{(pj,next) :1 <t < NJ U {(t,t): I < t < NJ

7

and set

At = rank(prev,pt) - rank(p,pl).

As a result, At Ap,, which completes the computation.

Sorting within the first step costs O(logN) time on N PEs, using the EREW model (5]. The next and

prey computations may be done within the same time and processor bounds using segmented copy-scans,

with changes in the x vector marking the segment boundaries. The 2d-ranking within the second step costs

O(log N) time on N PEs [1]. Thus:

Theorem 1 On the EREW model, given the trace z1 , ... , zN, the associated stack distances A, ... , AN

induced under the LRU replacement policy can be computed in O(logN) time using N PEs.

Aiming for a simpler implementation and smaller implicit constants, we may sacrifice a logN factor in

the running time. The natural parallelization of Bentley's multidimensional divide and conquer method [3]

gives a 2d-ranking algorithm that runs in O(log2 N) time using N PEs. Using, for example, Batcher's sorting

method [2] requires time O(log 2 N) on N PEs.

4 Parallel Simulation of LRU Level by Level

An alternative approach is to simulate LRU level by level, at the igh iteration computing the level i cache

contents sl(i), ... , SrN(i) and stack distances Ai(i), ... , AN(i). Assuming a set size of C, the final results

are the stack distances AI(C), ... , ANj(C).

Define reference xt to be a prior hit (prior miss) at level i if z, is a hit (miss) given that the cache size is

i - 1. That is, xt is a prior miss at level i ifx, Bt-,(i - 1). If :t is a prior hit at level i then At(i - 1) < i;

otherwise At(i) = oo. In Figure 3, we have marked the prior hits :t at level 3 by underscoring the symbol at

level 2 in column t. In studying this figure one should remember that an underscore on symbol st(i) means

that symbol xt was a hit in a (i - 1)-line cache, not that st(i) was. The placement of underscores was chosen

to highlight the propagation of a symbol across a sequence of prior hit positions, to be described below. For

example, of the first ten references four are prior hits at level 3-Z4, Z, 27, and zs-because c (= x4,25,27)

is found in B3(2), B4(2) and B6(2), and symbol a (zs) is found in B7(2).

Any prior hit at level i - 1 is also a prior hit at level i (for example, Z5 in Figure 3). Under LRU, the

other prior hits at level i are the references zi satisfying zx = sg-.(i - 1); i.e., the references that hit at the

last level of the size i - 1 cache (for example, X4 in Figure 3).

The key to the simulation method is that under LRU, for all t _ 1 and i > 1.

8 s-1(i- 1) if zg is a prior miss at level i
et(i) = ~ 1st-1(i) otherwise ' (2)

where

(1) -z,,so(i) 0.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
st(1) 0 a c b c c a c a d b b d c d a a b a
s (2) 0 0 a c b b c a c a d d b d c d d a b
st(3) 0 0 0 a a a b b b c a a a b b c c d d
A,(3) o0 00 00 00 2 1 3 2 2 00 00 1 2 oo 2 oo 1 00 2

Figure 3: LRU a.cting on an 18 line trace, assuming a cache size C = 3. Each prior hit Zt at level 3 is
identified by underscoring st(2).

To see this, suppose zt Bt- 1(i - 1). The LRU rule puts zt into level one, and shifts lines 1, 2, ..., i - 1

down one level, which pushes st- I (i- 1) to level i. On the other hand, if Zt is a prior hit at level i, the cache

update leaves level i unchanged. In Figure 3, we see that the 3rd and the 6th references are prior misses at

level 3, and that the intervening references are prior hits. As a result, 82(2) = a enters level 3 at t = 3 and

propagates over prior hits' at level 3 until t = 6, where it is replaced with ss(2) = b, which in turn propagates

up through t = 8.

We now describe the simulation algorithm, taking special care with the details because similar meth-

ods are needed in Section 5. At the (i - 1)' t iteration we will overwrite vectors 3 = (s0, s1,...,SN)

and d = (d1,d2,...,dN) with the level i cache contents and stack distances, (eo(i),ai(i),...,sN(i)) and

(Al(i), A 2 (i),..., AN(i)), respectively. A vector x = (xl,x2,...,xN) holds the trace (XI,z2,...,zN), and

another vector u = (u,. . . ,UN) will hold a copy of (so(i - 1), s 1(i - 1),.. .,sN-I(i - 1)). To initialize the

computation, for t = 1, ... , N, set d = o, and st = xt, so = . For i = 1, ... , C, do as follows.

1. [Update the Level i Cache Contents via equation (2).] For t = 1, ... , N, set ut = st-1. For t - 1,...,

N, if dg 6 oo then set at = at-,; otherwise, at = ut. This is to be understood, but not implemented,

as a serial update: first s, is updated, then 82, and so forth.

2. [Update the Stack Distances.] For t = 1, ... , N, set dt = i if dt = oo and ut = xt; otherwise leave dt

unchanged.

The right shift of s into u in step 1 and the update to the stack distances in step 2 are naturally parallel

operations. The update of s is a segmented copy-scan, with the coordinates t with de = oo marking the

segment boundaries. Hence, the cost of both steps is just O(log N) time using N/log N PEs. As there are

a total of C iterations to perform, we obtain:

Theorem 2 On the EREW model, given the trace zl, ... , ZN, the associated level C stack distances AI(C),

AN(C) under the LRU replacement policy can be computed in O(ClogN) time using N/log N proces-

sors.

We implemented this algorithm on a MasPar MP-1 computer [4], with 16384 PEs. Each PE is a 4-bit

processor with a clock cycle of 80 nanoseconds. A typical integer operation such as those common in our

' 9

V

Trace Length
C 214 215 216 217 218 219 220 221 222 223 224 225

4 3.7 3.4 3.9 5.0 7.3 11.4 20 37.1 71.1 139 275 548
8 8.6 8.4 9.6 12 16.7 25.8 44.3 81.3 155 303 599 1190
16 18.6 18.5 20.9 25.8 35.5 54.5 93 170 324 630 1245 2474
32 38.5 38.7 43.6 53.4 73.1 120 190 347 660 1286 2539 5043

Table 1: Execution time of the LRU algorithm on a MasPar MP- 1 with 214 PEs, in milliseconds, as a function
of trace length and set size

algorithm requires a few ten's of clocks.

Our implementation supports "super-saturation" of the PE's, as described earlier. The PE memory size

permit us to assign as many as 2048 references to each PE, thereby permitting the simultaneous simulation

of a trace with over 33 million references. The performance data we present includes only the time spent in

the solution phase of the algorithm. The traces were generated randomly. For a given trace length and cache

set size we observed a 10-15% increase in running time between caches with a very low hit ratio, and caches

with a high hit ratio. This is likely due to the fact that long segments accompany high hit ratios, requiring

greater inter-PE communication to implement the copy-scan. The timings presented are from traces with

nearly perfect hit ratios, and so represent an upper bound on the timing one might expect from an actual

trace.

A full implementation would have to spend time loading the trace; the I/O time required depends on the

available I/O hardware and the organization of the trace on the I/O devices. In light of our timings, it is clear

that moving the trace onto the machine may well be the most serious bottleneck an actual implementation

would face.

Our experiments vary the length of the trace from 214 to 225, and the set size C from 2 to 32. The

presented timings are averages, given in milliseconds, taken by executing the solution loop many times in

succession.

Observe that about five seconds of execution time were required to analyze the behavior of a 32-line set

on a trace with 225 = 33,554,432 references. This is 710 times faster than the solution time (with trace

generation costs subtracted off) of an optimized serial algorithm we implemented on a Sparc-l+ workstation.

These timings demonstrate the remarkable promise of massive parallelism for trace-driven cache simulation.

5 Reference Based Replacement Policies

We now broaden the scope of our methods, to handle a large class of line rep. .ement policies, which we

term reference-based. In Section 5.3, we extend the class to handle policies that allow priorities associated

with cached lines to "age" so that stale lines tend to be flushed.

10

Mattson et al. [16] show that a stack policy is obtained if a numerical priority P(st(i)) is assigned to each

line al (i) at reference Z,, and the line y,(C) chosen for replacement on loading Zt is the one with least priority

among the members of Bt-I(C). In the class of policies we now consider, a line's priority is established at

the point it appears in the reference stream, after which it remains constant until the line is referenced again.

Of course we must be able to calculate the priorities from the reference trace. Thus we limit attention to

policies that support efficient parallel priority calculations. As practical policies seem to use very simple

priority assignments, this limitation is mild. Here, "efficient" means within the resource bounds needed for

the rest of our simulation method: O6(lg N) time using N processors. Recall (Section 2.2) that O(log N)

means O(log N) with high probability.

Let us define the class of reference-based replacement policies as those stack policies induced by priorities

satisfying the following conditions.

RI: All P(zt) values can be computed quickly in parallel: in N(logN) time using N PEs. For example,

the priorities for LFU (Least Frequently Used) can be established with a sort on the reference tags,

followed by, a segmented sum-scan.

R2: A line's replacement priority does not change except when the line appears in the reference stream.

Several important replacement policies are reference-based, including

* LRU: P(xt) = t.

e LFU: P(xt) = Count(zt,t), the number of references z. = zt for u < 1. Ties can be broken, for

example, by lexicographic ordering of the lines, or by giving higher priority to the line that has been in

the cache the shortest length of time. (P(zt) = Count(zt, t) - 1/(t + 1) would serve the latter purpose.)

* OPT: P(zt) is the negation of the smallest index u > t such that zu = zt.

In addition, the Random replacement (RR) policy shares most of the properties we need to quickly simulate

reference-based policies, and we include it in this class as a special case. Under RR, priorities are chosen

that determine a- uniform random ranking of the cache contents; details are given below.

Figure 4 gives an example of the operation of LFU with ties broken by lexicographic ordering, a < b <

c < d. A line's subscript equals the number of earlier references to the line. First, note that the stack order

and the priority order may differ. A line with low priority can be buried in the middle of the stack order;

for example, line d at t = 13. There are important departures from the behavior of the LRU policy. Under

LRU, the replaced line is the one at the lowest stack level. Here, we see that if the cache size is 2 then at

t = 9, line d misses and replaces line a at the first stack level, leaving line c in place at the second stack level.

To illustrate the entry and propagation of lines across a given level, each prior miss zt at level 3 is marked

by underscoring st(2). As in LRU, a line propagates across all prior hits. Unlike LRU, a line may propagate

across some prior misses. For example, line a enters level 3 at t - 9 and propagates until t - 15, across the

prior misses at t = 10 and t = 12.

11

t 0 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18
trace 0 a c b c c a c a d b b d c d a a b a

st(1) 0 ao co bo cl c2 a, c3 a2 do bi b2 di c4 d2 a3 a 4 b3 a 5

s,(2) o a0 co b o C2 2 1 E3 C3 C3 f3 C3 di f C4 !4 C4 C4

. st(3) 0 0 0 ao ao a0 bo bo bo a2 a 2 a 2 a2 a 2 a2 d2 d2 a 4 b3
3't (4) 0 0 0 0 0 0 0 0 0 bo do do b2 b2 b2 b2 b2 d2 d2

. Ao(2)o o0 oo c 2 1 oo 2 2 oo oo 1 oo 2 2 oo 1 oo

yt(2) 0 0 0 a b b b a a a d b b d d d a a b

Figure 4: LFU; ties are broken by a < b < c < d. The subscripts count the number of earlier references, and
underscores mark prior hits at level 3. Also shown are the stack distances At(2) at level 2 and the lowest
priority lines y,(2) C B,_ 1(2) at level 2.

By convention, the priority of 0, the empty line marker, is -oo. As before, we assume so(i) 0 for

i = 1,.. ., C. It follows from the analysis of [16] that a stack policy is induced by the rule stating that the

line of least priority is selected for replacement. We refer to line yl(C) as a replacee, and define yi(C) to be

the least priority line in Bt-(C) if Bt-(C) is full; i.e., JBt-i(C) = C. If B- 1(C) is not full then we let

yt(C) = 0. In studying our notation it is important to remember that yt(C) refers to a line with a particular

property in the cache after reference xt-1, not after xt. This convention follows Mattson et al. [16].

A simple recurrence determines the level i cache contents. Given two cached lines a and/3, let maxp{a,/3}

select the die with higher priority. For all t > 0, st(l) = zt. For all i > 1 and t > 0,

s,-,(i) if z, is a prior hit at level i

st(i) yt(i - 1) if xt is a prior miss at level i and st-(i) = . (3)

maxp{yt(i - 1), st.1(i)} otherwise

Notice that the only lines that ever enter level i are the least priority lines yi(i- 1) from lower levels.

5.1 Parallel Simulation Level by Level

In this section, we present a rapid parallel simulation algorithm for any reference-based replacement policy.

For any given C > 0, the objective is to compute the level C stack distances Ai(C), ... , AN(C). The

algorithm works level by level, like the LRU simulation algorithm presented in Section 4. Specifically, we

* compute the cache contents st(i), the replacees y,(i) and the stack distances A,(i) at level i, given these

same quantities at level i - 1. As in the LRU simulation, just 0(1) space per reference is needed, with the

results of the level i computation overwriting those for level i - 1.

Level 1 is easy: st(l) - xt, yt(l) - st-i(1), At(1) = 1 if st(1) = st-i(1), and Ag(l) = 0o otherwise. Two

facts, which follow from equation (3), are crucial to our approach for computing the desired results for level

i>1:

12

* If a new line, say a, enters level i > 1 at time I (meaning si(i) = a, si-l(i) #6 a) then xt must be a

prior miss at level i and ce must be the replacee yt(i - 1).

o A,,sfhiing a = yt(i - 1) does enter level i > 1, it propagates until coming to the first reference

x, u > i, where either x, = a or x, ii a prior miss and P(yt(i - 1)) < P(yu(i - 1)). That is,

st(i) = ... = sU.,i(i) = a. If u < N + 1 then replacee y,,(i - 1) enters level i at time u. If there is no

such u < N + 1 then the replacee yt(i - 1) propagates on through time N. For every reference xt let

u(t) denote the index so identified.

Consider the graph where the vertices are the indices t of all prior misses xt and there is an edge from

t to u(t). This edge records the fact that if yt(i - 1) enters level i then st(i) = ... = su().1(i) = y,(i 1),

whereupon it is replaced by yu(Q(i- 1) (if u(t) < N+ 1). Observe that not all such yt(i- 1) actually do enter

level i-for instance, in Figure 4, y10(2) = d does not enter level 3, because P(ylo(2)) < P(so(3)). However,

the set of references that do actually enter level i can be determined by following the maximal path through

the graph, starting at vertex 1. Replacee yl(i) = 0 enters at time 1 and propagates until time v = u(1) - 1.

If v < N + 1 then replacee yv+l(i - 1) enters level i, and propagates until time w = u(v) - 1. If w < N + 1

then replacee yw+l(i - 1)enters level .i, and so forth.

Converting this serial process for simulating level i into a parallel one, we simulate level i > 1 as follows:

1. [Compute tentative propagation intervals.] For each prior miss xt, compute

stop(t) = least s > t such that P(x,) > P(xt), and x, is a prior miss at level i (4)

next(t) = least s > t such that x, =t,

where, by convention, stop(t) and next(t) equal N + 1 if the index s above does not exist. Set

p(t) = min{next(t), stop(t)}. By earlier remarks, ifyt(i-1) enters level i then st(i) = ... = sp(_t)1(i) =

Ye(i - 1).

2. [Follow propagation chain.] The pointers u(t) determine the replacees that enter level i, namely,

those with indices: 0, u(0), u(u(O)), ... , with the sequence stopping at v = u(... u(0)...) $ N + 1,

u(v) = N + 1. Mark these replacees.

3. [Compute level i results.] For each marked replacee y (i- 1) and each v in the interval [t, u(t) - 1], set

s 0 (i) = yt(i - 1). For every xt set yt+I(i) to maxp{st(i), ye+I(i - 1)}. Following this, if Xt is a prior

miss at level i - 1 and if sti(i) = x, set At(i) = i. Set A,(i) = A,(i - 1) for prior hits.

Computing the stop(t) values is an instance of the closest larger right neighbor (CLRN) problem, discussed

in Section 2.2. It can be solved in O(log N) time using N PEs. A simpler O(log2 N) time solution is described

below. Computing the next (t) values via sorting is described in Section 3; the time needed is O(log N) using

N PEs. Marking the replacees on the chain of pointers from 0 to N + 1 is a pointer jumping problem [14],

which can be solved in O(logN) time using N/logN PEs. The final step of updating the level i cache

13

7
[1,8]

[1,4] (5,8]

[1,2] [3,4] [5,6] [7,8]

[1,1] (2,2] [3,3] [4,4] (5,5] [6,6] (7,7] (8,8]

Figure 5: Search tree identifying maximum values over subintervals, which is used to solve the nearest right
neighbor problem.

contents and stack distances is essentially the same as was done for LRU simulation in Section 4. We do not

repeat the details. The time needed is O(log N) time using N/log N PEs. Summing up, the total time is

(O(log N)'using N PEs. To produce the level C results, the computation must be repeated for each i = 2,

... , C. Thus,

Theorem 3 On the EREW model, given the trace xj, ... , ZN, the associated level C stack distances Al(C),

AN(C) induced by any reference-based replacement policy can be computed in time 6(Clog N) using N

PEs.

We close this section with a simple method for solving the CLRN problem. This method plays the key

role in generalizing the simulation method to accommodate priority aging (Section 5.3).

Let a,, ..., av be a sequence of N numbers, and, for simplicity, assume that N is a power of two and

aN= +00. For each ai, i = 1, ... , N - 1, we wish to find the closest right larger neighbor aj; i.e., j > i is

as small as possible and ai < aj. Construct a binary tree over the inputs as illustrated in Figure 5. Each

node is labeled with the maximum value of the inputs in its subtree and with the corresponding subrange

of indices. To find the closest larger right neighbor aj of ai a two phase search is initiated. Phase one starts

at the leaf node ai, and progresses in steps up the tree. At each step we move from the present node to the

nearest internal node at the next higher level whose span includes a node to the right. This phase ends upon

visiting (i) an internal node which is rightmost at its level, or (ii) a node whose value is (strictly) greater

than aj. In the example of Figure 5, the first phase for a3 visits nodes representing ranges [3,4] and [5,8]. In

general, the first phase stops at a node spanning an interval [m+2k , m+2k+l], with i < m+2k, which must

contain the sought a3 . In phase two the search descends down to aj, at each step moving to the left child if

the left child's value exceeds ai, or to the right child otherwise. On a concurrent read model, carrying out

all N searches in parallel gives an O(log N) time solution. On an exclusive read model, standard methods

[14] for resolving the read conflicts add an O(log N) factor, bringing the total time to O(log2 N).

14

Al

5.2 Random Replacement

The Random Replacement (RR) rule selects the line to replace on a cache miss independently and uniformly

at random from the set of cached lines. Mattson et al. [16] observed that the selections can be made so as

preserve the stack property (B(i - 1) C Bg(i); for all t, i > 1), by coupling the random decisions as follows.

Suppose the members of Bt(i - 1) have been ranked randomly from 1 to i - 1, with the understanding

that the higher a line's rank the lower its priority. To build Bt(i), insert st(i) into the priority structure by

randomly choosing an integer rank for it from (1, il, say k. Members of Bt(i - 1) with ranks > k have their

ranks incremented by one in Bt(i - 1). Other members of Bt(i - 1) retain their rank. Thus, for each prior

miss xt at level i, we may decide the line yt(i) of least rank in Bt(i) by a coin toss: with probability 1/i,

line yt(i) = st-i(i), and with the complementary probability yt(i) = yt(i - 1). Moreover, the outcome is

completely independent of st- 1 (i),

This independence can be exploited to considerably simplify the simulation of level i over that described

above. Step 1 becomes: For each prior miss Zt, compute next(t) as before, and use a coin toss to decide

whether to label index t as a "stopper" (probability 1/i) or leave the index unlabeled (probability 1 - 1/i).

Let stop(t) be the least stopper u > t, or N + 1 if no such u exists. Let u(t) = min{stop(t), next(t)) as

before. Steps 2 and 3 remain the same.

Computing the stop(t) values entails N independent coin tosses and a segmented copy-scan (cf. Section

2.2), operations that net O(log N) time using N PEs. As a result, we obtain

Theorem 4 On the EREW model, given the trace xl, ... , XN, the associated level C stack distances A1 (C),

., AN(C) induced by the RR policy can be computed in time O(ClogN) using N PEs.

Comparing with Theorem 3 we see that dropping the CLRN problem and the probabilistic algorithm

used to solve it strengthens the running time bound from one that holds with high probability to one that

holds deterministically.

5.3 Priority Aging

Under any reference-based replacement rule other than RR, a line's priority is fixed when it enters the

cache. If the policy is a practical one, then it is likely that the priority is a simple function of the previous

references. For example, under LFU a line's priority is the number of earlier references to the line. Past

cache activity gives an imperfect indication of future cache activity. Under LFU a flurry of references to

a small set of lines might lead to their long retention during a subsequent period when the lines are not

needed. To counter this, it is natural to consider policies that allow a line's priority to age; i.e., to decrease

monotonically while the line remains unreferenced. In this Section, we extend our reference-based simulation

method to accommodate aging.

Let : -- R be a monotonically decreasing operator, and let od represent the d-fold application of

4. Let Ps(a) denote the priority of a line c held in the cache at the time of zt. We consider replacement

15

policics where the initial priority of line xt is reference-based (Pt(xi) satisfies R1 of Section 5), but the line's

priority "ages" to Pt+d(xi) = 0j(Pj(xt)) in the cache Bt+d(C) if it remains unreferenced throughout time

t + 1, .. , + d. As before, the replacement policy always selects the line with least priority. Some natural

aging operators are O(x) = x - a for some fixed or > 0 or O(x) = ax for some fixed av E (0, 1). We assume

that for any d = 1, ... , N - 1, od(x) can be computed in 0(1) time.

Equation (3) describing the evolution of the stack levels continues to hold. A little thought shows that

to adapt the simulation method to accommodate aging, we need only change the definition of stop(t) in

equation (4) to

stop(t) = least s > t such that P,(x,) > 0'-(Pt(xt)), and x, is a prior miss at level i.

Computing these new values stop(t) can be posed as the following variant of the CLRN problem. Let al,

aN be a sequence of N numbers, and, for simplicity, assume that N is a power of two and aN = +oo. For

each i = 1,..., N - 1, we wish to find the smallest j > i such that

(a)< aj.

We now sketch how to extend the binary search solution given in Section 5 to solve the new problem.

Let € denote the inverse of 0. Since is monotone increasing, the inequality above implies to

Cu(ai) < &(a,) for all nonnegative integers u, v with u + v = j - i.

Letting [u, v] be any range of indices with u > i,

V- (ai) < a for all j G [u, v] 4 OU-i(a,) < maxau, (.(av)}.

This equivalence reveals a way to determine whether ai ages below some a3 , j E [u, v], and i < u; i.e.,

whether j-i'(ai) < aj. For j > u define eJ-u(aj) to be the "rejuvenated" value of aj with respect to index

u (i.e., aj's priority if "de-aged" back to position u). Let ru, , = max~av, u(au+,),..., O-u(a,,) denote the

maximum (over j E [u, v]) rejuvenated value of any aj with respect to u. To find out if ai ages below some

aj with j E [u, v], we may simply compare ou-i(ai) and ru,,. Since a, is arbitrary in this discussibn, it is

possible to use ru,, concurrently in many searches.

A "rejuvenation-max" tree can be built in parallel using the following observation: for any M (assumed

to be a power of 2)

max {qS-i(ai)} = max{ max {€'-(ai)}, max{ max { ii-'(ai)}}
1<i<M I<i<M/2 M/2+I<i<M

- max{i max {i-i(ai)}, M/2(a(aM2+i)})}
Ii<M/2 Iis<M/2

This recursion shows we can build a rejuvenation-max tree over ai,..., aN in log N steps. At every step,

all nodes at a given level of the tree are constructed. Leaves are understood to be at level log N, the root

is at level 0. A node spanning an interval [u, v] is labeled with ru,V. The recusion shows that to compute

16

512
[1,8]

[1,4) [5,8)

14
[1,2] [3,4) [5,6] [7,8]

[1,1] [2,2) [3,3] [4,41 [5,5] [6,6] [7,7] [8,8]

Figure 6: Rejuvenation-max tree, which is used to solve the nearest right neighbor problem when aging is
permitted. In tlis example, the aging operator O(x) = x/2.

the label of a node at level k, one computes the maximum of (i) the label on the node's left-child, and (ii)

the label on the node's right-child promoted by an operator 4', with c = 21ogN-k. Thus, the parent of a left

node with value a and right node with value b has label max{a, .(b)}. Figure 6 illustrates how the tree of

Figure 5 is modified to accommodate the aging operator O(x) = x/2.

Given ai we wish to find the closest aj to the right such that -i(aj) < aj. The same two phase strategy

described in Section 5 works, replacing the comparison of the value ai with the label of a node spanning an

interval [u, v] with the comparison of ou-i(ai) with ru , or an equivalent comparison. For example, consider

a3 's search for the setup of Figure 5. In the first phase, the search moves up and to the right in the tree,

looking over successively larger intervals for a value that a3 ages below. First, we compare a3 = 6 with

r3,4 = 6, and since a3 is not smaller continue the first phase. The next node visited represents [5,8]. We

compare 0 2(a3) - 1.5 with r5,8 = 32, and as a3 is smaller, phase one stops at this node. In the second phase,

the search moves down from [5, 8] to locate the leftmost a3 in (5, 8] that a3 ages below. First, we branch

left to [5, 6], because r5 ,6 = 14 is larger than 0
2 (a 3) = 1.5. Second, we branch left again to [5,5] because

r5,5 = 3 > 0
2 (a 3) = 1.5. Since [5, 5] is a leaf, the search stops, having located the right match, a5, for a3 .

Building the rejuvenation-max tree costs O(log N) time using N PEs. On the CREW model, we may

assign one processor to the search for each input, and so obtain an O(logN) time solution using N PEs.

This in turn implies an O(log2 N) time solution using N PEs on the EREW model. The final result is:

Theorem 5 On the EREW model, given the trace xi, ... , XN, the level C stack distances AI(C), .

AN(C) induced by any reference-based policy with aging can be computed in time O(C log2 N) using N PEs.

6 Summary

Trace driven cache simulation is an important tool used in the design of computer systems. Parallel pro-

cessing offers the promise of reducing the time required to execute a cache simulation, and hence reduce the

17

overall cache design time. We have shown how massively parallel SIMD architectures can be applied to this

important problem area.

We note that the bottleneck problem in our simulation of reference-based replacement policies is the

closest larger right neighbor problem. An improvement in the solution of this problem to O(logN) time

(without u-ing probabilistic methods) and N PEs on the EREW model appears possible [7], This would

improve the reference-based simulation method to deterministic O(Clog N) time using N PEs.

A number of important issues remain. There is a class of "clock-based" stack algorithms which do not

appear to fit within our framework. The classical clock algorithm [6] associates one bit with each physical

line in the cache: The bit is set whenever a new line is written into the physical location. A clock counter

determines replacement lines. On a hit the counter is untouched, but on a miss, the counter scans the set

for a clear bit; the first clear bit found identifies the replacement line. The scan begins where the counter

was last left, and any set bit encountered in the scan is cleared. Thus, at most one scan of the set is needed

to find a clear bit. The clock algorithm is induced if we assign priority d to line r if d lines must be scanned

by the clock before choosing r as the replacement. A line's priority ages as it sits in the cache, but in a

highly state-dependent way. One object of our future research is to determine whether -clock-based stack

algorithms can be simulated in parallel.

We believe that the geometric methods used to obtain the fast, set size independent LRU simulation

method of Section 3 might yield similar simulation methods for OPT and for general reference-based policies.

Another important issue is whether these techniques can be extended to the simulation of multiprocessor

caches. Yet another issue is the use of SIMD processors to generate synthetic cache traces. The method

discussed in [20] is basically LRU "in reverse": given the stack distances, compute the reference string. We

believe we can implement this method in poly-log time using ideas similar to those developed here. Given

the promise of SIMD trace-driven simulation, a more comprehensive study of parallelized synthetic trace

generation will be useful.

Acknowledgments

We are grateful to Sandeep Sen, who pointed out the reduction of the CLRN problem to trapezoidal decom-

position mentioned in Section 2.2. We are indebted to Subhas Roy for implementing the LRU simulation

algorithm of Section 4 on the MasPar MP-1. We also thank Philip Gibbons for several helpful discussions.

18

References

[1] M.J. Atallah, R. Cole, and M. Goodrich. Cascading divide-and-conquer. SIAM Journal on Computing,

18(3):499-532, June 1989.

[2] K.E. 13atcher. Sorting networks and their applications. In AFIPS 1968 Spring Joint Computer Confer.

cncc, pages 307-314, Atlantic City,NJ, May 1968. AFIPS Press; Montvale, NJ.

[3] J.L. Bentley. Multidimensional divide and conquer. Communications of the ACM, 23:214-219, 1980.

[4] T. Blank. The MasPar MP-1 architecture. In Compcon Spring 1990, San Francisco, CA, February 1990.

IUEE Computer Society Press.

[5] R. Cole. Parallel mergc sort. SIAM Journal on Computing, 17(4):770-785, August 1988.

[G] I.A. Finkel. An Operating Systems VADE MECUM. Prentice Hall, Englewood Cliffs, NJ, 1988.

[7] 'hilip Gibbons, 1992. personal communication.

[8] A. Gottlieb and C.P. Kruskal. Complexity results for permuting data and other computations on parallel

processors. Journal of the ACM, 31:193-209, 1984.

[9] P. Ileidelberger and II. Stone. Parallel trace-driven cache simulation by time partitioning. In 1990

Winter Simulation Conference, pages 734-737, New Orleans, LA, December 1990. IEEE.

[10] J.L. Ilennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach. Morgn Kauf-

mann Publishers, Palo Alto, CA, 1990.

[11] W.D. Ilillis and Jr. G.L. Steele. Data parallel algorithms. Communications of the ACM, 29(12):1170-

1183, December 1986.

[12] C. P. Kruskal, L. Rudolph, and M. Snir. The power of parallel prefix. IEEE Transactions on Computers,

C-34(10), October 1985.

(13] R.1 Ladner and M.J. Fischer. Parallel prefix computation. Journal of the ACM, 27:831-838, 1980.

[14] F.T. Leighton. An Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.

Morgan Kaufman, San Mateo, CA, 1992.

[15] Y-B. Lin, J.-L. Baer, and L.D. Lazowska. Tailoring a parallel trace-driven simulation technique to

specific multiprocessor cache coherence protocols. In Distributed Simulation 1989, volume 21, pages

185-190. The Society for Computer Simulation, 1989.

[16] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation techniques for storage hierarchies. IBM

Systems Journal, 12(2):78-117, 1970.

,.! 19

[17] C.G. Plaxton. Load balancing, selection and sorting on the hypercube. In 1989 ACM Symposium on

Parallel Algorithms and Architectures, pages 64-73, Santa Fe, New Mexico, June 1989.

[18] J.ll. Reif and S. Sen. Randomized algorithms for binary search and load balancing on fixed connection

networks with geometric applications. In 1991 ACM Symposium on Parallel Algorithms and Architec-

tuLres, pages 327-337, Crete Greece, July 1991.

[19] II. Stone. High Performance Computer Architecture. Addison-Wesley, Reading, MA, .second edition,

1990.

[20] D:Thiebiubt, II. Stone, , and J. Wolf. Synthetic traces for trace-driven simulation of cache memories.

Technical Report RC 14268, IBM Research Division, December 1988.

20

S form ApprovedREPORT DOCUMENTATION PAGE oM1 No o04188

1. AGEN(N USE ONLY eave bidnk) 2 REPORT DA7F 3 REPORT TYPE AND DATES COVERED
I November 1991 J Contractor I!norr

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

MASSIVELY PARALLEL ALGORITHMS FOR TRACE-DRIVEN CACHE
SIMULATIONS

C NASI-18605

David M. Nicol WUT 505-90-52-01

Albert G. Greenberg
Boris D. Lubachevskv

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Institute for Computer Applications
in Science

and Engineering ICASE Report No. 91-83

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Langley Research Center NASA CR-189571
Hampton, VA 23665-5225 ICASE Report No. 91-83

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card Submitted to IEEE Trans. on
Final Report Parallel and Distributed

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DIS 'RIBUTION LODE

Unclassified - Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

Trace-driven cache simulation is central to computer design. A trace is a very long sequence, zi,...,
Z J, of references to lines (contiguous locations) from main memory. At the ti h instant, reference z, is
hashed into a aet of cache locations, the contents of which are then compared with zt. If at the &ea instant
z, is not present in the cache, then it is said to be a miss, and is loaded into the cache set, possibly

forcing the replacement of some other memory line, and maling z, present for the (t + 1) " instant. The

problem of parallel simulation of a subtrace of N references directed to a C line cache set is considered,
with the aim of determining which references are misses and related statistics.

A simulation method is presented for the Least-Recently-Used (LRU) policy, which regardless of

the set size C runs in time O(log N) using N processors on the exclurve read, exclusive write (EREW)

parallel mo lel. A simpler LRU simulation algorithm is given that runs in O(C log N) time using N/log N
processors. We present timings of the second algorithm's implementation on the MasPr MP-1, a machine

with 16384 processors. A broad class of reference-based line replacement policies are considered, which

includes LRU as well as the Least-Frequently-Used and Random replacement policies. A simulation

method is presented for any such policy that on any trace of length N directed to a C line set runs in

time O(C log N) time with high probability using N processors on the EREW model. The algorithms

are simple, have very little space overhead, and are well-suited for SIMD implementation.

14 SUBJECT TERMS 15. NUMBER OF PAGES

parallel algorithms; caches; trace-driven simulation; SIMD; 22

memory management; least-recently-used; stack policies 16. PRICE CODE
A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGEI OF ABSTRACT

Unclassified Unclassified

NSN 7540.0.280-5500 Standard Form 298 (Rev 289)

298 102
NASA-Langley. 1991

