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Evaluation of Process Modeling Improvements

Abstract: The SEI has been involved with the development and analysis of soft-
ware process models for several years. As part of the ongoing process of tech-
nology evolution, a study has been undertaken to experimentally implement a set
of proposed improvements to the process modeling techniques used by the SEI,
and to evaluate the results of that experimentation. As a result of that study, a
number of modifications to our techniques have been identified. These modifica-
tions enhance the support of software engineering concepts in the development
and use of process models. This report describes the study and elaborates upon
the advantages and disadvantages of the proposed technique improvements.

1. Introduction
This report describes the results of the introduction of certain modifications to the process
modeling techniques used at the Software Engineering Institute (SEI) as part of the Soft-
ware Process Modeling Project. The purpose of these modifications, which arose as part of
natural technology maturation, was to provide increased clarity and manageability to the
resulting models. The specific changes introduced to the techniques evolved over time and
were the result of several iterations of proposal, experimentation, and evaluation.

This report details the changes and the rationale behind their introduction; the report pro-
vides examples of the revised techniques used in practice.

1.1. Background
In recent years, the software engineering research community has begun to focus significant
attention on the processes used to develop and support software. This serves as a comple-
ment to the more traditional focus on the products of those processes and the tools utilized
by those processes. This attention has led to the development and application of ap-
proaches to modeling and analyzing software processes [12, 15, 7, 14]. These models pro-
vide a means of reasoning about the organizational processes used to develop and support
software. Software Process Modeling is seen as an emerging technique that will contribute
to the improvement of software processes and their corresponding products.

Significant experience with process modeling has been gained at the SEI in recent years
[15, 14, 13]. Our modeling experience includes major efforts at modeling large-scale soft-

ware support processes in use by the U.S. Department of Defense. Previous software proc-
ess models developed at the SEI include a model of the process used by the U.S. Navy to
support the operational software for the F-14A aircraft and a model of the process used by
the US Air Force to support the operational flight program for the F-16AIB aircraft. These
models depict the full Post-Deployment Software Support (PDSS) process, from receipt of a
software trouble report, change request, or enhancement request, through to release of the
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corresponding software change to the field. The F-14A and F-16NB models are descriptive
of actual practice. The most recent SEI-developed process model is a prescriptive model
drawn from an existing specification. It is based upon MIL-HDBK-347, "Mission-Critical
Computer Resources Software Support" [16]. This Software Support Handbook (SSH)
"presents software support concepts, procedures, and guidance to all managers responsible
for Mission-Critical Computer Resources (MCCR) development or support." SEI has
modeled and analyzed those portions of the SSH pertaining to PDSS [11].

Currently, the process models developed at the SEI are created using a commercially avail-
able automated system, STATEMATE 1 [5, 10, 8, 9], to represent, analyze, and simulate soft-
ware processes. The SEI software process modeling techniques depict a process in terms
of who, what, where, when, and how, using the representations provided by STATEMATE.
These representations include three types of graphical diagrams (activity charts, statecharts,
and module charts) and supplemental textual "forms." The three types of diagrams are used
to represent three different viewpoints of a process (functional, behavioral, and organiza-
tional, respectively), while the textual forms are used to describe connections among the
three viewpoints, formal definitions, and informal narrative descriptions. The use of these
representations is described elsewhere [8] and is not detailed in this report.

Because process modeling is a young and evolving technology, valuable lessons are
learned as each new process model is developed. Frequently, schedules do not allow the
introduction of changes to the existing techniques as models are being developed; however,
it is desirable to examine new concepts as time permits so that modeling techniques can be
revised for application to subsequent models.

Several independent efforts are presently underway at the SEI to examine enhancements to
the modeling techniques with an eye to possible future use. One of those efforts, the sub-
ject of this report, involves the introduction of extensive structure into process models.
Other efforts currently underway are examining the introduction of quantitative information
and the modeling of aggregate processes.

1.2. Purpose
The purpose of this report is threefold: first, to describe the concepts and reasoning behind
the proposed structural improvements to process modeling; second, to describe the
mechanisms that were ultimately developed to embody the proposed improvements; and
third, to capture the essence of the results of experimentation and evaluation of the tech-
nique modifications.

1STATEMATE is a trademark of i-Logix, Inc., Burlington, MA.
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1.3. Target Audience and Report Organization
The intended audiences for this report are: those interested in the summary results of the
described effort, and those interested in the rationale behind the results. To accomodate
both audiences, the report is organized into two parts: the main body, and a set of appen-
dices. The body of the report describes the impetus behind the effort and the overall results,
while the appendices provide the detailed analysis and sample models.

The body of the report is divided into the following sections:

* Section 2, Approach, chronologically describes the various phases of this ef-
fort, including implementation of technique modifications and evaluation of
results.

" Section 3, Summary of Findings, describes, in abstract fashion, the findings of
this effort. Results are placed in the larger context of software engineering con-
cepts.

" Section 4, Conclusions, provides overall conclusions regarding proposed
changes to SEI process modeling techniques.

Detailed technical discussion of the proposed technique modifications, and descriptions of
our implementation of those modifications, are provided in several appendices:

* Appendix A: Revisions to the Modeling Techniques, details each of thp pro-
posed technique revisions.

* Appendix B: Revision of the Baseline Model, describes the results of an ex-
perimental implementation of the proposed revisions. The revisions were intro-
duced into a pre-existing process model.

* Appendix C: Analysis of Advantages and Disadvantages, oiscusses a com-
parison of the baseline and revised models described in Appendix B, and pro-
vides detailed descriptions of the advantages and disadvantages of introducing
the various technique revisions.

* Appendix D: Baseline Charts of the SSH Model, provides copies of the acti-
vity and statecharts of the baseline model discussed in Appendices B and C.

* Appendix E: Revised Charts of the SSH Model, provides copies of the activity
and statecharts of the revised model discussed in Appendices B and C.

CMUISEI-91-TR-5 3
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2. Approach
In recent years, several process models have been developed at the SEI as part of the
Software Process Modeling Project. These process models have depicted processes of
various sizes, characteristics, and complexity; as such, they provide a valuable basis for
critique. For example, the most recent process model depicts approximately 50 functional
activities and about as many behavioral states. The activities are related to one another
hierarchically and communicate with one another through the flow of information. Similarly,
the various behavioral states are related hierarchically and are interrelated based on a mul-
titude of semantic rules embodied in the language of statecharts [8].

The existing SEI process modeling techniques represent the various activities and states
within two "monolithic" charts: a single activity chart depicts all activities within the process,
while a single statechart depicts all states. These charts are referred to respectively as the
"functional view" and the "behavioral view"; these two views relate to one another implicitly
by way of certain scoping and visibility rules, or explicitly through flow of information and
activity control.2

2.1. Identification of Concerns
As part of an ongoing technical review, members of the process modeling team identified a
number of concerns related to the existing modeling techniques. At the earliest stages of
review, these concerns were identified in general terms based primarily upon their visual
manifestation. In particular, it was noted that as the processes being modeled became in-
creasingly complex, the visual representations of those processes became more and more
complex as well. As a result, the ability to understand and manage complex models was
seriously limited by the existing modeling techniques.

Further review, including the effort described in this report, helped to identify the essence of
the deficiency of the modeling techniques: a lack of sufficient structure. Structure is par-
tially embodied in the existing techniques in that hierarchical (compositional) relationships
are depicted in both the functional and behavioral views. However, additional structuring is
needed to alleviate problems that arise as the complexity of the models increases. Some of
the identified problems include:

" Visual clutter: as discussed above, increased conceptual complexity of the
process results in increased visual complexity of the model. Once the concep-
tual complexity of a process is beyond a finite limit, resulting models will be
difficult or impossible to understand and manage.

* No change localization: because monolithic charts are used and access to
data is global, all changes to the model are global in nature, complicating devel-
opment and management of the model. Incremental testing is not possible.

?The use of the third type of STATEMATE diagram, module charts, is not addressed by this report.
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" No parallel development: because monolithic charts are used, it is impossible

for multiple process modelers to modify different components of the same

model simultaneously.

" Information overload: because monolithic charts are used, all process details

are visible on a single chart. While this is arguably desirable for simple proc-

esses, with complex models this approach can lead to information overload for

those who must use the models. Mechanisms for controlling this visibility within

the existing modeling techniques are cumbersome.

" Loose connection between views: the correlation between behavioral and

functional views of the process is largely implied. Although the behavioral view

explicitly controls activities, control information from the functional view gener-

ally is not depicted to avoid further cluttering of the charts. Instead, the two

views are connected using informal guidelines of vague name association. One

side-effect of this loose connection is that animations of the model require ex-

tensive user inputs to drive them.

" Poor support for model alternatives: because monolithic charts are used and

access to data is global, building alternative sub-processes to assist in what-if

analyses is difficult.

2.2. Proposed Improvements

Based on the concerns identified in the previous section, several potential improvements to

the modeling techniques were proposed. Some of the proposed improvements were related

to new features and improvements to STATEMATE, while others were based on methodo-

logical revisions that were actually supported in previous releases of the tool. These pro-

posed improvements are described in detail in AppendixA, and are summarized below.

Four fundamental changes to the modeling technique were proposed:

1. Declutterlng of functional view: this modification is based on a new feature
of the modeling tool and results in the physical division of the monolithic acti-
vity chart into multiple charts based upon levels of composition. Used to the
extreme, decluttering results in a set of activity charts identical in nature to a
leveled set of data flow diagrams, such as those used by other structured
analysis methods [2,4, 19, 18] and most CASE tools.

2. Distribution of behavioral view: this modification results in the localization of
behavioral specification. For each activity level, a statechart is created that
contains only the behavior relevant to that particular activity level. This
scheme is recommended by the tool vendor and is precisely analogous to that
used by other real-time structured analysis methods [1, 6, 20], for the devel-
opment of software systems.

3. Constraining visibility of elements: this modification is based on enhance-
ments to the modeling tool and results in the localized visibility of all elements

of the model based on implicit (graphic) and explicit (textual) scoping restric-
tions.

4. Providing tighter connection of views: this modification results in the ex-
plicit connection of the functional view with the behavioral view through such
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things as the detection of reading and writing data. Events generated by
these actions are used to drive state changes in the behavioral view.

2.3. Experimental Implementation
In order to provide a basis for determining the value of the proposed modifications to the
modeling technique described in the preceding section, the proposed modifications were im-
plemented experimentally. The implementation of the modifications is described fully in Ap-
pendix B, and summarized below.

To facilitate a direct comparison of models exhibiting the original baseline modeling tech-
niques as well as the proposed revised techniques, an existing model was chosen for partial
redevelopment. The recently completed Software Support Handbook (SSH) model was se-
lected for redevelopment. In this report, the original model is referred to as the baseline
model, while the model resulting from redevelopment is referred to as the revised model.

Although the SSH model was redeveloped to incorporate the proposed technique revisions,
care was taken not to alter the functionality or behavior represented by the baseline model.
In other words, the processes represented by the baseline and revised models are identical.
Although time did not permit the redevelopment of the entire baseline model, one vertical
fragment of the baseline was redeveloped to the primitive level. The remainder of the model
was redeveloped to a lesser degree.

2.4. Evaluation of Results
The baseline and revised models (described previously in Section 2.3) were compared and
contrasted as part of an iterative process of review and critique. Extensive debate among
the Process Modeling project members resulted in a comprehensive evaluation of the
revised modeling techniques versus the baseline modeling techniques.

The findings of the evaluation process are summarized in Section 3, and are discussed in
complete detail in Appendix C.

CMU/SEI-91-TR.5
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3. Summary of Findings
Section 2 enumerated several concerns regarding the baseline process modeling tech-
niques used by the SEI. These concerns were identified as part of the normal process of

iterative methodology enhancement. In addition, proposed solutions to these concerns were

outlined, an experimental implementation of the solutions was conducted, and the results

were evaluated. The product of the resulting evaluation is an extensive list of advantages

and disadvantages presented in detail in Appendix C.

A broader interpretation of these advantages and disadvantages reveals that the revised

techniques embrace the fundamental system design principles of modularity, information
hiding, abstraction, and structure.

The revised techniques provide better support for modularity in several ways. The physical

separation of model components lends itself to parallel development of the model by a team

of modelers, and also supports a "divide and conquer" approach to testing the model. The
visibility constraints introduced as part of enhanced scoping enforcement make each com-
position level more of a stand-alone unit.

Similarly, the revised techniques dramatically improve support for Information hiding.
Functional, behavioral, and data details that are not relevant to a particular composition level
are hidden from view. Although the baseline modeling approach provides some
mechanisms for information hiding, they are primitive and cumbersome and must be imple-
mented manually.

The concepts of abstraction are also better supported in the revised techniques. Although
conceptual abstraction is supported to a degree in the baseline techniques as a result of the
use of leveled composition, the revised techniques provide the basis for the creation of alter-
native representations for sub-orocesses. Depending on its use, this feature can be consid-
ered analogous to the use of library subroutines or generic components in a programming
language. Further, the enhanced scoping rules of the revised techniques support the limited
reuse of labels, which also improves abstraction capability.

In a general sense, modularity, information hiding, and abstraction are all part of the notion
of structure. In this sense, the revised techniques have been shown to enhance model
structure. In addition, the revised techniques substantially improve structure by introducing
a more natural philosophy of separation of concerns. In the baseline model, function and
behavior are forcefully separated on a global scale, resulting in a model that exhibits poor
cohesion and thus poor structure. By contrast, the techniques employed in the revised
model closely associate the behavior of a function with the function itself, and instead imple-
ment separation of concerns by dividing the model based on natural functional distinctions.

In addition to the above improvements, the revised techniques also impact subjective issues
such as aesthetics and practicality of the resulting models. One example is the substantially
reduced visual clutter evident in a given baseline model chart in contrast to a given revised

CMU/SEI-91.TR.5 9



model chart. A second example is that the use of the revised techniques makes model
documentation and distribution more practical because the resulting charts are more readily
printed on standard-size paper using laser printers rather than expensive and inconvenient
plotters. Both of these examples are evidenced in the charts shown in Appendices D and E,
while these and other issues of aesthetics and practicality are discussed further in Appendix
C.

The evaluation of the revised techniques also revealed a number of disadvantages. Most of
the identified disadvantages are operational or logistical trade-offs related to the introduction
of the structural restrictions discussed above. Some examples of disadvantages of the
revised techniques include:

" The need to manage many more charts.
" The tool-imposed limitations on the number of windows that may be opened at

one time; under certain circumstances these limitations may be intrusive.
" The introduction of some types of changes into the model may be more time-

consuming.
" The inability to view all levels of detail of the model on a single physical chart.
" The inability to globally control activities arbitrarily due to scope enforcement.

These and other disadvantages are detailed in Appendix C.
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4. Conclusions
A system has been defined as "an organized set of doctrines, ideas, or principles usually
intended to explain the arrangement or working of a systematic whole.., an organized or
established procedure [21]." A software process has been defined as "the technical and
managerial framework established for applying people, methods, tools, and practices to the
development and evolution of software [71." By these definitions, it is evident that processes
are systems.

The design principles of modularity, information hiding, abstraction, and structure are well-
established as mechanisms of fundamental importance for the specification and design of
systems and software. It is reasonable to assume that these principles are equally valid for

specification and design of process models.

The efforts described in this report support this assumption. Indeed, the concerns regarding
the baseline modeling techniques, raised in Section 2.1, are merely manifestations of the
lack of support in those techniques for these fundamental design principles.

Furthermore, while the baseline techniques are unique as a modeling methodology, the
revised techniques are highly consistent with a large number of other methods and tools. In
particular, the revised techniques are compatible with commonplace structured analysis and
real-time structured analysis techniques. The use of the revised techniques will provide
process modelers with greater freedom in the selection of support tools. Even more com-
pelling is the fact that the baseline techniques are no longer supported in their entirety by
the lastest version of STATEMATE.

In addition to the support of basic design principles, the revised techniques also enhance
the aesthetics and manageability of complex process models, while introducing no serious
drawbacks. Most of the identified disadvantages of the revised techniques are attributable
to operational or logistical nuisances resulting from the introduction of structure to the
models.

While it may be possible or even desirable to employ some of the baseline techniques for
simple processes, or for selected subprocesses of more complex processes, the findings of
this effort indicate clearly that the proposed revisions to the process modeling techniques
should be used for modeling processes of any significant complexity.

CMU/SEI-91 -TR-5 11
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Appendix A: Revisions to the Modeling Technique

This appendix briefly describes the changes examined in this report. These potential im-
provements hold promise of making software process models more manageable, as well as
easier to develop, analyze, and understand. The changes fall into two categories: those that
are the result of tool enhancements and those that are the result of a modification of tech-
niques. Changes of the first category include features to "declutter" the charts and to
"scope" the elements. These tool enhancements were included in the recent STATEMATE

upgrade to Version 3.0 and are described in [9]. These additions to STATEMATE were cre-
ated to enhance the support of large scale projects. The second category of changes in-
cludes distributed statecharts and alternative methods for controlling the charts of
STATEMATE. These modifications were options previously available in STATEMATE and are
described in [5, 8, 9]. Specific examples of each of these changes to the SSH model will be
discussed in Section B.2.

A.1. Decluttering of Charts
In STATEMATE, the concept of leveling is used to decompose the system under development
(SUD) into a set of sub-systems (e.g., functional decomposition when creating an activity
chart). In this respect, STATEMATE models are similar to traditional structured analysis/ data
flow diagram techniques.

In the previous versions of STATEMATE, the resulting multi-level description was presented
on a single diagram (or chart) for each perspective. Three charts would then diagrammati-
cally represent the three perspectives of the SUD. Figure A-1 provides a general example of
a multi-level "monolithic" activity chart.

In STATEMATE Version 3.0, charts may be decluttered using a feature referred to as the "box-
is-chart" operation. This enables the modeler to present individual levels of decomposition
on separate charts (or pages). STATEMATE treats the multiple physical pages as a single
logical chart. Figure A-2 provides a decluttered view of the activity chart in Figure A-1. The
single monolithic chart is represented by two separate charts. STATEMATE uses a special
"@" notation to denote a box whose contents are represented on a separate chart. For ex-
ample, the box named "ACT 2@B" means that the internal description of activity ACT2
appears in Chart B.
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The STATEMATE vendor, i-Logix, recommends decluttering when the details of a chart are

visually complex, when information hiding between the subsystems is desired, or when sev-

eral alternatives need to be presented by changing the contents of a "black box" (i.e., to

enhance interchangeability of system components). Decluttering is not recommended when

a system does not lend itself to neat structuring, when a tight inter-relationship exists be-

tween low-level elements, or when the resulting charts are found to be too cumbersome to

work with. Decluttering may be applied to all STATEMATE charts.

Decomposing a system into multiple charts raises issues of visibility and the scope of ele-

ments. These issues (i.e., scoping of elements and distributed statecharts) are addressed in

Sections A.2 and A.3.

A.2. Scoping of Elements

A strict enforcement of scoping rules is the second additional feature of STATEMATE Version

3.0. Scoping rules determine where an element is "visible" (i.e., the set of charts in which an
element is known and can be used).

Although the SUD was decomposed into multiple levelQ in STATEMATE Version 2.5, the scop-
ing rules were not enforced within the monolithir cna,; a!1 of the elements were considered
"global," that is, known throughout th", rwtciel. Element names were required to be unique
and could be referenced from anywhere within the system description.

In STATEMATE Version 3.0, elements may bU global ' visible to several charts) or "hidden"
inside specific charts depending on where the element is "defined" and the set of scoping
rules that determine where the element is visible. Graphical elements (activities, data-stores,
states, and modules) are defined in the chart in which they are drawn. Textual elements
(dataitems, information flows, events, conditions, and actions) are defined in the chart that
is specified in that element's textual form.

The parent-child-sibling relationship, created by decomposing the system into multiple
charts, is the basis for the set of scoping rules that govern the visibility of an element. In
STATEMATE Version 3.0, textual elements are visible to the chart in which it belongs and to
all its descendant charts. For example, a textual element defined in activity ACT.2 of Figure
A-2 is visible to ACT_2, ACT_21, ACT_22, ACT_23, ACT_24, and ACT_25, but is not visible
to activities ACT_1 and ACT_3. The textual element must be defined in the highest chart of
the structure in which it is to be used. Textual element names must be unique within each
chart. However, any other chart may define a different textual element using the same
name. STATEMATE refers to redefining a textual element as "masking." Graphical elements
are visible only to sibling graphical elements. For example, a statechart may control only
activities that are siblings of the control activity described by that statechart. The graphical
element names must be unique among its sibling graphical elements. The scope of a graph-
ical element is discussed in greater detail in Section A.3.
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A.3. Distributed Statecharts
Under STATEMATE Version 3.0, activity charts are developed by decomposing the SUD into a
set of subsystems. These subsystems are represented by multiple pages that are treated as
a single logical chart. Statecharts are developed quite differently. The SUD can not be
driven by a single logical statechart. Scoping rules restrict the controlling environment of a
statechart. A statechart may control only activities that are siblings of the control activity
described by this statechart. It cannot be used to control child activities within the siblings or
the parent activity in which it is defined. Therefore, statecharts must be distributed, i.e., sep-
arate statecharts are required to adequately represent the behavior of each non-primitive
activity. Although distributed statecharts were suggested in previous versions of
STATEMATE, the scoping restrictions of graphical elements were not sufficiently enforced to
require their use.

Developers of the previous SEI process models chose not to employ the distributed
statechart technique because it was felt that a monolithic statechart provided a better under-
standing of the overall behavior of the SUD. In those monolithic models, a single control
activity referred to a single statechart describing the entire behavior of all the activities.
Therefore, the control activity CONT_1 would refer to a single statechart to control all of the
activities in Figure A-3 3 . With distributed statecharts, the statechart referred to by CONT1
may control ACT_1, ACT_2, and ACT_3. The statechart cannot control ACT_21, ACT_22,
ACT._23, ACT_24, or ACT_25. A second controlling activity would have to be included
within the ACT_2 activity since the activities within ACT_2 are not visible to the statechart
referred to by CONT_1. Figure A-4 demonstrates the use of distributed statecharts. The
control activity CONT_2 refers to the statechart that describes the overall behavior of
ACT.1, ACT_2, and ACT_3. The control activity CONT_3 refers to the statechart that de-
scribes the behavior within ACT_2. The control activities within the monolithic and declut-
tered activity charts use the "@" notation to refer to the statechart describing the behavior of
the activities.

A.4. Controlling of Charts
Statecharts are responsible for controlling the activation and deactivation of activities, and
the timing of flow of information between them in activity charts. SEI process models devel-
oped using previous STATEMATE versions employed the following techniques to control the
charts.

* Events and conditions to trigger transitions within the charts.
" A "throughout" command to activate and deactivate activities.
" A "history" connector to re-enter a group of states.

3 Figures A-3 and A-4 are similar to Figures A-1 and A-2 with the addition of the control activities.
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The "throughout" command was defined within the textual form associated with the

statechart; the "history" connector was a re-entry connector to a system (or sub-system) that

returns control to the most recently visited state within a group.

Although these modeling techniques are valid ways to control the charts, alternative meth-

ods of control may provide improvements to the model in the following areas:

" Minimizing the interaction with the user during animation.4

" Reducing the visual complexity of the activity charts by reducing the required
number of events and conditions appearing on the charts.

* Creating a better visual link between an information flow and the transitioning
event associated with it.

* Designing the models to better represent the actual processes.

The techniques used are not new to the current languages of STATEMATE, but rather are a
different way of developing the models. These techniques are considered to be extensions

to the current modeling techniques.

STATEMATE provides multiple techniques to develop the control within the charts. Several of
these techniques are examined in this report to determine if they enhance the model in the
ways just described. This examination consists of substituting alternative methods of control
into the process model. These alternatives are:

" Using the "writedata/written" action/event pair to trigger transitions.

" Associating an action with the event of "entering" or "exiting" a state.

" Using the "start/stop" actions to activate and deactivate activities.

" Using the "suspend/resume" actions to temporarily exit and return to a state.

The "writedata/written" action/event pair could alternatively be replaced by the
"read data/read" action/event pair for triggering transitions within the charts.

In all STATEMATE versions, events and conditions are used to trigger transitions within the
charts. By using the "writedata/written" action/event pair (abbreviated wr! and wr,
respectively), an attempt is being made to better automate the transitioning process be-

tween states. The "writedata" action creates an event "written" that is immediately sensed
and the transition to the next state is initiated. This combination creates a sequence of steps
that automate the transition between states and reduces the need for externally inputting
events during animation by self generating the event.

The "entering" command associates an action with the event of having entered a particular

state, and it is usually defined within the "Reactions" fields in the associated textual form for
a state. In this report, the "entering" event is used in conjunction with the "writedata/written"

4Animation is the continuous display of the current status of a simulation by visually highlighting the active
graphical elements in the developed model [22].
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action/event pair. This combination creates a sequence that, upon entering a particular
state, generates the action to write (or assign) information and transition to the next state
once the information has been written (or assigned).

Figure A-5 provides an example of the "entering" event used in conjunction with the
"writedata/written" action/event pair. When event E_1 occurs, the statechart transitions
from state STA A to state STA _B. Within the textual form of state STA_B, the action to
assign a value to a data-item (which is referred to as "X" in the following discussion) 5 is
associated with the event of "entering" the state. Therefore, upon entering state STAB, the
action wr!(X), "writedata(X)," occurs. If event E_2 is defined as wr(X), "written(X)," the tran-
sition to state STAC occurs the instant the assignment takes place since X has been as-
signed a value. This example demonstrates the ability to create transitions on a statechart
without externally entering an event. The "start/stop" actions (abbreviated st! and sp!,
respectively) are not much different from the "throughout" command. Both activate and
deactivate activities. However, the "start/stop" explicitly starts and stops an activity, while
the throughout implicitly activates an activity when the associated state is entered and deac-
tivates the activity when the state is exited.

The "suspend/resume" (abbreviated sd! and rs!, respectively) must be used in conjunction
with "start/stop" actions. The "suspend/resume" actions cause an activity to "freeze" or
suspend, and resume from where it left off. Everything about the previous status of the
state is "remembered." The "history" entrance returns to the state from which it exited but
as a new entry into that state. All actions that are performed upon entry are repeated.

Figure A-6 represents a portion of a statechart where the "start/stop" and "suspend/resume"
actions may be employed. The actions to "start," "stop," "suspend," or "resume" may occur
within the textual forms of a statechart or be labeled with the event which triggers a transi-
tion. For example, if an activity is to be active during state STAB, it may be explicitly ac-
tivated by one of the following:

* Defining the "start" action with the event of "exiting" state STAA in the textual
form of STAA.

* Labeling the transition from state STAA to state STAB with the trigger that
causes it and the action to be taken.

In the second example, the event E_1 would appear as E_1/stI(activity). The action to start
the activity occurs instantaneously when the transition is taken.

SData-item X would appear as the data flow label exiting the current activity within the activity chart.
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As an example of the use of the "start," "stop," "suspend," and "resume" actions, let Figure
A-6 represent the behavioral view of an activity (ACT), that is active during state STAB,
suspended during states STAD or STAE, and idle for states STAA and STAC. For this
example, assume that activity ACT is active when a suspension occurs. Reasons for
suspensions may include requests for additional information, approval from an external
source, etc.. In this example, the actions will be defined within the textual forms of the
states. The instructional layout of the statechart for activity ACT would be as follows:

* Within the textual form of state STAA, the "exiting" event is associated with the
action to "start" activity ACT, st!(ACT).

* Within the textual forms of both STAD and STAE, the "entering" event is as-
sociated with the action to "suspend" ACT, sd!(ACT); the "exiting" event is as-
sociated with the action to "resume" ACT, rs!(ACT).

" Within the textual form of STAC, the "entering" event is associated with the
action to "stop" activity ACT, sp!(ACT).

When event El occurs, STAA is exited, activity ACT is activated, and the statechart tran-
sitions to state STAB. Activity ACT remains active unless events E 3, E_5, or E_2 occur. If
the control activity senses the event E_3, the statechart transitions to STA_D, and activity
ACT is suspended. The activity remains suspended until the event E_4 occurs. At this time,
STAD is exited, activity ACT is resumed and the statechart transitions back to STAB. The
event E_5 from STAB would yield the same sequence of steps. The suspension of activity
ACT by states STAD and STAE could represent a need for two different activities to be
active when ACT is suspended. Finally, the event E_2 will transition the statechart from
STAB to STAC. Upon entering STAC, activity ACT is explicitly stopped.

Please refer to the "Languages of STATEMATE" [8] for a more in-depth explanation of these
events and actions.
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Appendix B: Revision of the Baseline Model

This appendix discusses specific examples of the changes to the Software Support Hand-

book (SSH) model for this investigation.

B.1. Modeling Context

The recently completed SSH Process Model was the starting point for this investigation.

This process model was redeveloped with the potential modeling improvements provided by

the upgrade to STATEMATE Version 3.0 and the alternative methods to control the charts as

discussed in Appendix A. The re-development emphasized transforming the handbook

drawings into a second set of drawings without changing the functionality or behavior of the

model. To enable a comparison of the models, no additional system information was incor-

porated Into the basic model. The information that was not available at the time the SSH

process model was developed was not incorporated into the basic model before this investi-

gation started and is therefore carried over into the redeveloped model.

For this analysis, only the activity charts were decomposed via the box-is-chart operation

provided in STATEMATE because when decluttering was applied to the activity charts, the

resulting distributed statecharts were not complex enough to warrant their own decluttering.

In addition, since Version 3.0 does not require a complete separation of the leveled charts

(i.e., decluttering to the primitive levels), the activity charts were decluttered to a

"comfortable level of complexity." This reduced the time required to generate the additional

charts, yet yielded charts that could be easily viewed when printed within this report.

Statecharts were not developed for each non-primitive activity. This investigation focused on

developing a set of statecharts at each level of decomposition. This focus enabled an under-

standing of the development of a statechart for a particular activity within each level of the

decomposition, while minimizing the number of statecharts developed during this investiga-

tion. Consequently, portions of the original SSH model's "lowest levels" behavior was
omitted.

Module charts were not included in this examination.

B.2. Model Descriptions

The activity chart and statechart for the baseline SSH Process Model are presented in Ap-

pendix D. The redeveloped SSH process model charts are located in Appendix E. The chart

sets are referred to as the baseline and revised charts. respectively. Enlarged, color copies

of the baseline and revised charts are available for inspection in the SEI library.

The baseline charts define the system description with a single activity chart and statechart.
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Both charts are multi-leveled charts. The entire activity chart is controlled by the single
statechart. The transitions on the statechart are event- and condition-driven. For example,
transitions are taken when an activity is "done." For completeness, all of these transitioning
events should appear on the activity chart as control flows. However, they were previously
omitted for clarity of the chart. The history connector "H" was used in the baseline statechart
to return to the SUD after the Configuration Control Board (CCB) review.

The revised charts comprise multiple activity charts and statecharts. In this study, each
chart was not decomposed to its primitive level. Decluttering was applied only to the top
level of the original baseline charts. The advantages and disadvantages of decluttering
were clearly evident without the additional effort of completely separating all non-primitive
activities into separate charts. Activity charts, included in Appendix E, were created for the
overall system description and the initial analysis, software development, system integration
testing, and product logistics sub-systems. As in the baseline charts, the control flows for
the transitioning events were omitted in the activity charts. Appendix E includes the five
associated controlling statecharts for these activities. These individual statecharts are far
less complex than those of the baseline statechart.

Because this investigation exam, ed all levels of decomposition of the SSH process, the
initial analysis sub-syster- . chosen as the example for further study. Notice that the
three non-primitive a,-".",s within the INITIALANALYSIS activity (STATUSACCTG,
IMPACTANALYSES, CUNFIGCTRLDECIS) are not presented on separate iges. This
relates to the amount of decluttering the developer deems appropriate for activity chart com-
plexity. Appendix E also contains the controlling statecharts for these sub-activities. Table
B-1 provide4 the location of each of the charts referenced within Appendix E. Time did not
permit the development of a complete set of charts for this model. if the SUD had been
decluttered to its primitive levels, an estimated 34 charts (activity charts and statecharts)
would have been developed. Most of these charts would have been conceptually trivial.
However, the scoping restrictions posed their own unique complexities when developing the
statecharts for the lowest level activities.
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Activity Charts Figure Number

PMTACTOVW E-1
INITIALANALYSIS E-3

STATUSACCTG
IMPACTANALYSIS
CONFIGCTRLDECIS

SWDEVELOPMENT E-8
SYS_INTEGTESTG E-10
PRODLOGISTICS E-12

Statecharts Figure Number

SSASTATE E-2
INITANALSTATE E-4
SWDEV_STATE E-9
SYS_INTEGSTATE E-11
PRODLOGSTATE E-13
STATUSACCTGSTATE E-5
IMPACTANALSTATE E-6
CCDSTATE E-7

Table B-i: Figure Numbers of the Revised Model Charts
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Figure B-1 provides the hierarchy of the individual charts developed for the revised model.
For example, the details of the parent activity chart, PMTACTOVW, are provided in the
statechart, SSASTATE, and in the activity charts INITIALANALYSIS,
SWDEVELOPMENT, SYSINTEGTESTG, and PRODLOGISTICS. Since, the non-
primitive sub-activities within INITIALANALYSIS were not decluttered, they do not appear
on this hierarchy chart. Their associated statecharts are represented by:
STATUSACCTGSTATE, IMPACTANALSTATE, and CCDSTATE. Table B-2 lists the
controlling statecharts for each non-primitive activity examined in this analysis.

The revised charts are functionally equivalent to the baseline model, and do not incorporate
any additional process information (i.e., unresolved issues identified by the baseline model-
ing effort and resulting from limitations in the handbook being modeled). The unresolved
issues that are seen in the baseline charts reappear in the revised charts, since it was the
intent of this report to redevelop the baseline charts "as is." Examples of the unresolved
issues include lack of:

" Destinations for information flows or transitions.
* Determination of how the conditions are actually set in an activity.
" Details of an information feedback.

These unresolved issues are detailed in [11].

A comparison of the baseline and revised activity charts shows little difference in the con-
tents of the activity description. Activities in the revised charts are extracted from the base-
line chart and placed in separate charts. This decluttering reduces the visual complexity of
the charts but does not alter them functionally. By contrast, the most drastic difference is in
the development of the statecharts. Statecharts no longer have the ability to globally control
all the activities within the SUD. A statechart may control only its siblings within an activity.
For example, the statechart INITANAL_STATE is the controlling statechart for the activity
INITIALANALYSIS. The only activities it may control are: STATUSACCTG,
INITCONFIGCTRL, IMPACTANALYSES, and CONFIGCTRLDECIS. It may not con-
trol the sub-activities of STATUSACCTG, IMPACTANALYSES, or
CONFIGCTRLDECIS. Additional statecharts must be developed to control those sub-
activities. Therefore, for this report, the STATUSACCTGSTATE,
IMPACTANALSTATE, and CCDSTATE statecharts were developed. However, an ex-
ception to this rule exists. For nonbasic activities that have no control activity, STATEMATE
provides a special default behavior. This default behavior starts and stops all subactivities
with the parent activity. An example of this is tound in the IMPACTANALYSES activity.
Located within IMPACTANALYSES are three sub-activities: MGMTANALYSIS,
TECHANALYSIS, SUPPORTANALYSIS. If no control activity is defined within
IMPACTANALYSES, the three sub-activities are assumed to be active as long as
IMPACTANALYSES is active. The statechart, IMPACTANALSTATE, represents this
type of default control. Therefore, it was not necessary to develop this statechart. If an acti-
vity must exhibit behavior other than this default, this behavior must be modeled explicitly in
a controlling statechart.
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Figure B-1: Hierarchy of the Revised Model Charts

Activity Controlling Statechart

PMTACTOVW SSASTATE
INITIAL_-ANALYSIS INITANALSTATE
STATUS_-ACCTG STATUSA CCTGSTATE
IMPACTANALYSIS IMPACTANAL-STATE
CONFIGCTRLDECIS CCDSTATE
SW_-DEVELOPM ENT SW_DEVSTATE
SYS_-INTEG_TESTG SYS_INTEG STATE
PRODLOGISTICS PRODLOG STATE

Table B-2: Controlling Statecharts for the Revised Model Activities
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The statecharts of the revised model were developed using the alternative techniques to
control the charts. Examples of these alternatives are shown in the statecharts that control
the activities within INITIALANALYSIS. Examining the states controlling this chart provides
specific examples of each of the controlling mechanisms being investigated. As stated
previously, these alternatives were an attempt to simplify the interactive animation of the
process model.

In the revised model, several examples demonstrate the technique employed to step
through a basic state.6 Examples of the basic states controlling the activities within
INITIALANALYSIS are: IMPACTANALYSESACTIV in Figure E-4 (or
IMPACTANALSTATE in Figure E-6), INITACCTGACTIV and FINALACCTGACTIV in
Figure E-5, and PRODDELIVPLANACTIV in Figure E-7. Within the textual form of each
of these states, the event of entering the state triggers the action to assign a value to a
data-item. By associating the "writedata" action with the event of entering the state, the
state itself sets up the transitioning event. The instant a value is assigned to the data-item,
the "written" event transitions the statechart to the next state. In the baseline model, transi-
tions occurred based on manually entering data indicating that an event had completed or
was "done." This technique of "writing" the information flow allows the developer to create a
hands-off sequence of events for animation. In addition, this technique can be expanded to
traverse a sequence of basic states.

The following is an in-depth example, from Figures E-3 through E-5, of the technique
employed to step through a basic state. Usted are the steps that occur from the initial ac-
tivation of activity chart INITIALANALYSIS to activity INITCONFIGCTRL. These steps
are:

" Activity chart INITIALANALYSIS is activated.
" Control is transferred to statechart INITANALSTATE.
" The default is transitioned to the state STATUSACCTGACTIV.
" The activity STATUSACCTG is activated.
" Control is transferred to statechart STATUSACCTG_STATE.
" Control is transferred to state INITACCTGACTIV since the default condition

of ANALYSISPASSED is false.
" The activity INIT STATUSACCTG is activated.
" Within the textual form of state INITACCTG ACTIV, a definition exists that

upon "entering" the state, the write-data action writes the information flow
IDPROBCHGREPT.

Once IDPROBCHGREPT is "written":

" The activity IN IT STATUSACCTG terminates.

" A transition from the state INITACCTGACTIV occurs.

6A basic state, a state with a single input and a single output, controls a primative level activity. No decisions
are to be made within the control of an activity.
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" The statechart STATUSACCTGSTATE terminates.
" The activity STATUSACCTG terminates.
" The activity INITCONFIGCTRL is' explicitly activated (see following

discussion).
" The statechart INITANALSTATE transitions from STATUSACCTGACTIV

to the state ICCACTIV.

The key to this sequence of steps is the definition within the textual form of state
INITACCTGACTIV. The above example demonstrates the ability to traverse basic states
without any external input for animation.

The INITCONFIGCTRL activity within INITIALANALYSIS provides an example of an ac-
tivity that is controlled by the alternative techniques used to explicitly "start," "stop,"
"suspend," and "resume" activities in the revised model. This activity must be suspended
when requesting additional information or a CCB review. The portion of statechart
INITANAL._STATE which controls activity INITCONFIGCTRL was developed similar to
FIGURE A-6 discussed in Section A with activity A representing INITCONFIGCTRL and
state STAB representing state ICCACTIV.

During animation, activity INITCONFIGCTRL is explicitly started by the event "exiting"
within the textual form of STATUSACCTGACTIV before transitioning to state ICC__ACTIV.
Once control is transitioned to ICCACTIV, three possible decisions are available: to re-
quest additional information, to request a CCB review or to implement the software change.
Since ICCACTIV is a multi-decision state, the decision must be entered externally. The
"suspend/resume" actions are used when requesting additional information or a CCB re-
view. For example, when a request for information is made, ICCACTIV generates a
WR!(INFOREQUEST) action which creates a transition to the WAITFORINFO state via
the WR(INFOREQUEST) event. Within the textual form of WAITFORINFO:

" The "entering" event suspends the activity INITCONFIGCTRL.
" The "entering" event generates a WR!(ADDLINFO) action.
" The "exiting" event resumes the activity INITCONFIGCTRL

Therefore, when state WAIT_FOR_INFO ir ntered, INITCONFIGCTRL is suspended, a
WR!(ADDL INFO) action is generated, thL late is exited via the WR(ADDLINFO) event,
activity INIT_CONFIG_CTRL is resumed, and the statechart transitions baCK to state
ICCACTIV.

Two points are apparent in this sequences of steps. First, the activity,
INITCONFIGCTRL, is never completely stopped. It is "frozen" while the request is being
made. Second, once the decision to make a request is made, no external inputs are re-
quired to transition through the "loop."

Finally, once the decision to implement the software change is made, the statechart transi-
tions to state IMPACTANALYSESACTIV, where the activity INITCONFIGCTRL is ex-
plicitly stopped.
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Appendix C: Analysis of Advantages and
Disadvantages

This appendix provides an in-depth comparison of each of the techniques used in devel-

oping the baseline model versus the revised model. The comparisons consist of the follow-
ing subsections:

" Advantages: where the development technique of the revised model resulted in
a clear advantage over the development technique of the baseline model.

" Disadvantages: where the development technique of the revised model resulted
in a clear disadvantage over the development technique of the baseline model.

" Comments: where there is no clear advantage or disadvantage; a set of conse-
quences or personal preferences.

The discussion of these issues is based on their applicability to SPM. The conclusions
drawn may or may not apply to other types of modeling.

C.1. Decluttered vs. Monolithic Charts
The activity charts of the revised model represent a decluttered version of the baseline
monolithic activity chart. The box-is-chart operation within STATEMATE Version 3.0 enables
the developer to create a multiple chart configuration that presents the individual levels of
decomposition on separate charts. In this example, multiple activity charts were developed
to describe the functional view of the SUD.

C.1 .1. Advantages of Decluttering
The clear advantage of using STATEMATE Version 3.0 is the reduced visual complexity of the
individual charts. (This is easily demonstrated by a brief exarvination and comparison of the
charts in Appendices D and E.) The overall conceptua complexity of the functional view
(activity charts) is identical in the revised and baseline models because they represent the
same conceptual picture. However, the individual charts of the revised model are less
visually complex and less cluttered than those generated in the baseline model.

The visual complexity of the revised charts is independent of the conceptual complexity of
the system. As the system conceptual complexity increases, only the number of charts de-
fining that system increases. The individual charts do not increase in their visual complexity.
With the baseline charts, however, each perspective is presented on a single chart and the
conceptual complexity of the SUD drives the visual complexity of the chart. Therefore, as
the conceptual complexity of the system increases, so does the visual complexity of the
monolithic charts.

The visual complexity issue becomes evident when the revised and baseline charts of the
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SSH model are plotted. This visual complexity is extremely important when documenting
and distributing the results of a SPM effort. As demonstrated in Appendix E, the revised
model charts can be easily inspected and understood when printed on 8 1/2 by 11 inch
paper. In contrast, the baseline charts of Appendix D are cluttered and visually complex.7

In a situation where the conceptual complexity of the SUD is significantly increased, the
techniques used to create the revised model would yield a larger set of charts similar in
visual complexity to those presented in Appendix E, whereas the techniques used to devel-
op the baseline model would become increasingly cluttered and eventually yield an unread-
able set of charts. Expanding this discussion to include the 24 by 36 inch plotter paper only
extends the problem further (i.e., the monolithic approach places a finite upper limit on the
conceptual complexity of the SUD, beyond which the resulting models become difficult or
impossible to read and understand). The decluttered approach poses no such limit.

In contrast to previous STATEMATE versions, the multiple chart configuration of Version 3.0
provides more flexibility when developing a process model. To provide configuration man-
agement, STATEMATE limits access to a specific chart to a single user at any given time.
Since the baseline model represents the SUD by one chart per perspective, it is awkward for
multiple users to develop a chart. A user must "release" a chart before another user may
access it. The multiple charts configuration of the revised model enables multiple users to
simultaneously work on the SUD. Thus the development of the charts can be spread out
over multiple users. For example, because the activity chart is represented by multiple
pages, each user can access his or her particular portion (or sub-activity) without interfering
with the other users.

Process understanding and training of personnel are important aspects of modeling a soft-
ware process. The multiple charts configuration used in the revised model enhances the
ability of a model developer (or demonstrator) to focus on specific details of the system with-
out being bogged down with the non-relevant information. For example, each chart could
represent a task to be completed by a specific individual or group. Only information relevant
to the task would be provided with the necessary sources and sinks of the external infor-
mation. (A monolithic chart provides all of the information of the entire process.) On line
"viewing" commands can reduce the scope of information presented; however, the resulting
charts are visually inferior to the charts created by decluttering.

The decluttered approach of the revised model enhances the ability to manage a set of al-
ternative representations for a variety of chart components, for example, three alternatives
for INITIALANALYSIS and four alternatives for SWDEVELOPMENT. Each component is
treated as a separate chart, and multiple versions of each chart can be managed. As long
as the interfaces are consistent and only the internal details differ, alternative versions can
be easily interchanged. This issue originates from the long term goal of process modeling to

7STATEMATE provides an option to plot (or view) a specific level of a chart by hiding the lower levels of detail.
However, the resulting charts are plotted with flows (or transitions) to and from unknown destinations. This may
create more confusion for users examining the charts.
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perform "what-if" analyses. (Managing a set of alternatives becomes increasingly difficult

with a monolithic chart as the number of alternatives increase.)

The multiple chart configuration created by decluttering enabled us to use a "divide and
conquer" approach to testing the charts. Therefore, the advantage of testing the revised
model was that each chart could be tested individually, as a combination of activity chart
and its controlling statechart, or as an entire package (or model). Each page of an activity
chart could be tested separately before combining all pages into one logical chart and then
retesting. On the other hand, the baseline model could not be tested piecemeal. For ex-
ample, the activity chart could not be properly tested until it had been completed.

C.1.2. Disadvantages of Decluttering
The SEI platform limitations have posed problems in running animated simulations. The
X-window version of STATEMATE is currently running on our Sun 3/80 machines with the
4.0.3 operating system. The maximum amount of real memory is 16 MB and a maximum of
40 MB of swap. If approximately 6 or more windows are open in addition to the simulator,
the platform runs out of memory, and the simulation aborts. This count of approximately 6
windows includes both activity charts and statecharts, meaning that only a fraction of the
model can be open for simulation at any one time. No memory limitation problems have
occurred during non-simulator operations.

Changes to the charts are more time consuming to make in cases where a change affects
interface elements that appear on both a child and parent chart (e.g., labels on flows,
adding/deleting flows, changing box names for flow source/targets) because the change
must be made consistently on two charts.

It is not possible to automatically generate a plot showing the entire conceptual (logical)
chart. This type of plot is beneficial when inspecting a desired view that spans more than a
single chart. For example, suppose that the IMPACTANALYSIS activity in the revised
model was decomposed into its own separate chart. The decluttering approach would not
provide a detailed inspection of INITIALANALYSIS in one chart. The information would be
spread out over two charts whereas, all of INITIALANALYSIS could be seen at once with a
monolithic chart.

With the clecluttered approach of the revised model, a manually produced overview chart
may be required to help reviewers follow through the model. An example of this type of
overview is shown in Figure B-1.

C.1.3. Comments on Decluttering
The largest consequence of decluttering the charts is the necessity of dealing with the
resulting number of charts. The SSH process model charts could conceivably have grown
from 2 charts (one activity chart and one statechart) in the baseline model to as many as 34
charts in the revised model. In addition to their creation, all 34 charts would have required
maintenance and testing. Furthermore, during simulation (animation), STATEMATE provides

CMU/SEI-91-TR-5 37



no guidance in identifying the appropriate charts required or the hierarchy of the charts for
traversing the SUD. This burden is placed on the user.

Clear and firm interfaces must be established between portions of the model. This may bedifficult when developing a process model because such processes may not possess clearinterfaces between components. This type of situation is more likely to occur when model-
ing descriptive models rather than prescriptive models.

The degree to which an activity chart is decluttered is strictly a personal preference.STATEMATE does not require a certain amount of decluttering on charts. An individual maychose to represent the SUD by a single monolithic activity chart, a set of basic activity
charts, or anything in between.

If presented poorly, a multiple charts configuration could hinder a discussion of the entireSUD because all the system information is no longer provided by a single source (or chart).Viewers of a monolithic activity chart view the "whole picture" or whole process from a singlechart, whereas when viewing the entire system from multiple charts, the information is distri-buted and viewers may experience confusion due to "flip flopping" between charts. Thistype of situation may occur during animation of the revised SSH process model.8 Whenanimating the revised model, the user has to swap windows in and out to follow the anima-tion. This may create a seemingly unorganized traversal of the system. The presentationwill be beneficial only if the individual presenting it is organized. However, it must be notedthat animating any system of extreme complexity may be confusing to a viewer.

When decluttering a chart, no automated assistance is available to duplicate required infor-mation across charts. Additional effort and time is required to ensure that the duplicated
information is consistent across the decomposition.

Bi-directional browsing of charts is not adequately supported by STATEMATE Version 3.0.This issue is not a disadvantage to decluttering; however, the desirability of such a feature ismade apparent by the use of decluttered charts. The bi-directional browsing feature shouldmaintain a record of existing charts and a record of the charts' location within the hierarchyof the charts. A "logical dive" operation is currently provided in the graphic editor that willstart up another graphic editor for the child chart of a box-is-chart box. This is conceptuallyconvenient for top-down browsing. However, If the child chart is not loaded in the work areabut does exist, the tool assumes that the user wished to create a new chart rather thanaccess the chart not loaded. Furthermore, no convenient support is provided for bottom-upbrowsing, i.e., readily accessing the parent chart. If the name of the parent chart is un-known, the user must ide.tfy the chart name from the textual form of the child chart beforeinvoking a new graphic editor from the main menu. If the desired parent chart is not loadedinto the work area, the tool again assumes that the user wished to create a new chart rather
than identify whether the chart existed but was not loaded.

OAnimation is used for demonstrating the model. Animating a model can be compared to walking an individual
through the model.
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C.2. Scoping of Elements

The charts of the revised model were developed under a strict set of visibility rules that

govern the scope of textual and graphical elements. STATEMATE Version 3.0 enforces these

visibility rules whereas, within previous versions of STATEMATE, all elements were accessed
globally. The baseline modei takes advantage of this global nature of elements by employ-
ing monolithic charts.

C.2.1. Advantages of Scoping of Elements
The primary advantage to element scoping is the establishment of a well-defined set of

visibility rules. These rules enhance the ability of the developer to create a well-structured,9

modular10 process model. Structure and modularity have been shown to be effective tech-
niques for the specification and design of software systems. It is reasonable to assume that
such techniques would be equally effective in developing process models. The develop-
ment of the revised model appears to support this assumption.

Two aspects of the new STATEMATE scoping rules provide the additional capability to gener-
ate modularity within a model: visibility rules for textual elements and visibility rules for
graphical elements. The visibility rules for textual elements enable the developer to govern
the scope of a textual element. This scope may range from a globally defined textual ele-
ment to a locally defined element for information hiding." In this respect, the visibility rules
for a textual element resemble those employed in modem programming languages support-
ing nesting and block structure.

The visibility rules for graphical elements are the second aspect of the new STATEMATE
scoping rules. The scope of a graphical element is limited to sibling graphical elements.
This restricted visibility is the mechanism by which the modularity is enhanced. The scope
of the graphical element requires the control activities to be localized (i.e., the behavior of a
non-primitive activity is defined by its own control activity).

Modularity within the model is initially established by the decomposition (abstract leveling) of
the SUD. The addition of the visibility rules for a textual element provides the ability to hide
information and define the interfaces between the modules of the model. The visibility rules
for graphical elements complete the ability to develop stand-alone, modular units within the
model by requiring the control activity to be defined at a local level. The result is a modular
system consisting of well-defined modules with well-defined interfaces among them.

The result of modularity in the revised model is a set of manageable subsystems, where

nThe use of structuring permits decomposition of a large system into smaller, more manageable units with

well-defined relationships to the other units in the system [3].

1°Modularity is the single attribute of software that allows a program to be intellectually manageable [17].

"Hiding implies that effective modularity can be achieved by defining a set of independent modules that
communicate with one another only that information necessary [17].
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each subsystem within the SSH model hides its internal details (function and control) and
communicates only through well-defined interfaces. The modular model:

" Reduces the perceived complexity of the model by breaking it into manageable
pieces.

" Facilitates change (critical to maintainability of the model).
* Enables subsystems to be developed in parallel [17].

By contrast, the baseline model did not exhibit modularity. All elements were global. There
was no information hiding and control activities were not defined within a subsystem. The
lack of visibility rules on graphical elements enabled the development of statecharts which
were analogous to the use of "go to" commands in a programming language.

Scoping of elements permits the reuse of variable names within different areas of the model.
Therefore, independent developers may name their local elements as they wish regardless
of the possibility of an identical name elsewhere in the model. This advantage becomes
increasingly more important as the system being modeled increases in complexity. In addi-
tion, each independent module developed may be tested individually by the developer. The
freedom to distribute the modeling effort was not practical in developing a model with the
techniques of the baseline model.

C.2.2. Disadvantages of Scoping of Elements
Introducing restrictions always entails trade-offs. The approach to modeling a system must
be altered to accommodate these restrictions. A trade-off may be the increased effort to
develop a portion of the model for the sake of creating modularity. An example of this type
of a trade-off involves the development of statecharts under STATEMATE Version 3.0. With
the visibility rules, multiple statecharts must be used to describe the behavior of the SUD.
The disadvantage is not necessarily the effort in creating the additional statecharts but
rather the loss of freedom in developing the behavioral view.

C.2.3. Comments on Scoping of Elements
The scoping restriction had a strong impact on the model development, especially on the
scope of a statechart. The set of visibility rules that govern the scope of a graphical element
defined the controlling environment of a statechart. Distributed statecharts are necessary
since STATEMATE Version 3.0 strongly enforces element scoping. Monolithic statecharts no
longer can be used to describe the behavior of the entire SUD because the scoping restric-
tions force the behavior of each non-primitive activity to be defined by its own controlling
statechart.
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C.3. Distributed vs. Monolithic Statecharts

Creation of the charts for the revised model was guided by a strong set of restrictions. Dis-
tributed statecharts were necessary to adequately represent the behavior of each non-
primitive activity. The following is a list of advantages, disadvantages, and comments on
distributed statecharts.

C.3.1. Advantages of Distributed Statecharts
Distribution of statecharts offers many of the same advantages as decluttering. With distri-
buted statecharts, the behavioral view is distributed over several statecharts rather than a

monolithic chart. By reducing the amount of control described in a statechart, the statechart
is less visually complex, the behavior being described is easier to understand, easier to test,
and less cluttered to plot and view on a computer screen. By distributing the behavior of the

SUD over several statecharts, each statechart is conceptually less complex, development of
the statecharts can be spread out over multiple users, the ability to manage a set of alter-
native representations is enhanced, and the ability of a model developer to focus in on spe-
cific details of the system (behavior) is simplified.

By distributing the statecharts, the structure and modularity of the model is increased. The
enhanced structure minimizes the amount of inter-chart control flows; the enhanced modu-
larity makes it easier to introduce localized changes since we are now dealing with small,
self-contained diagrams that describe the behavior of small, self-contained activities. By
distributing the statecharts, the emphasis is placed on separating the functional concerns of
the model.

Distributed statecharts were supported during the development of the baseline and revised
models. STATEMATE Version 2.5 incorporated a lax set of visibility rules, thus enabling the
developer to employ a monolithic approach to modeling the baseline model. However,
STATEMATE Version 3.0 strengthened the visibility restrictions. STATEMATE no longer sup-
ports the connection of a monolithic statechart to control multiple levels of activities. There-
fore, the advantage of distributed statecharts is that it provides the only acceptable means of
creating control within the current version of STATEMATE.

Distributed statecharts are more consistent with virtually all other structured analysis
techniques [1, 2, 4, 6, 20, 19]. The approach of distributing the control information enables
the modeling to be more generic (i.e., tool independent). Therefore, more emphasis is
placed on the concepts and techniques rather than on the tool being employed to model the
process.

With distributed statecharts, each module is described by the activity of the module and the
statechart that describes its control. The module may be considered a portable package.
The module may be exported to other STATEMATE modeling efforts as a black box, provided
the interfaces are consistent. This type of reuse would not be available if the behavior of the
module (or non-primitive activity) were buried within a monolithic statechart.
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C.3.2. Disadvantages of Distributed Statecharts
Monolithic statecharts provided the developer the ability to create a transition that activated
an activity within any arbitrary level of the activity chart. This freedom reduced the effort in
creating control for a set of activities. Distributed statecharts for the revised model were
more difficult to develop because the statecharts had to implicitly exchange information
among themselves in order to recreate the behavior of the baseline model. Only through
the use of conditions can this exchange be accomplished. However, this solution raises a
flag during the basic testing of the model.

The dependency between the functional and behavioral perspectives created by distributed
statecharts may be a hindrance during model development and modification. Small
changes in the functional view may cause a large number of changes in the behavioral view.
For example, the addition or removal of encapsulating activity boxes may yield substantial
changes in the statecharts, even though no process behavior is modified by the presence or
absence of the encapsulating activity box.

Often, it is impossible to obtain a unified view of the behavioral perspective on the process
being modeled. With decluttering, there is a conceptually unified single chart, which has
been decomposed into multiple levels (charts). However, with distributed statecharts, there
is no unified conceptual view of the behavioral perspective. Therefore, the ability to present
the entire behavior of the SUD is extremely difficult. With a monolithic statechart, the SUD
could be discussed purely from the behavioral view. By distributing the statecharts, the be-
havioral view must be discussed through the functional view.

The use of distributed statecharts reduces the understandability of the behavioral perspec-
tive at the interfaces between the several distributed statecharts. With a monolithic
statechart, the graphical construct of a state transition line is used to illustrate the sequenc-
ing of one step after another. However, a transition cannot cross the interface between
distributed statecharts. Instead, one must use separate transitions on the separate charts.

C.3.3. Comments on Distributed Statecharts
A consequence of distributed statecharts is the necessity of dealing with the resulting num-
ber of charts. As discussed in Section C.1.3, each of these charts must be created, main-
tained, and tested. Distributed statecharts increase the extent of dependency between the
functional and behavioral perspectives in software process modeling. This violates one of
the basic premises upon which the previous SEI process modeling approach was designed:
the modeling perspectives were to be made as separate, distinct, and orthogonal as
feasible.

For example, following the previous SEI premise allows one to modify the functional organi-
zation (e.g., grouping by encapsulation) without changing the other modeling perspectives
(charts), or to change the sequencing behavior of process tasks without modifying other
modeling perspectives. However, in the revised modeling approach, functional concerns
are separated from each other. This may be a far more natural distinction than would sepa-
rating functional from behavioral.
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The difficulty in recreating the behavior of the baseline model using distributed statecharts
may lie in the fact that the baseline model was not structured with the concept of distributing
control. The need to exchange information between statecharts could be minimized if the
model were originally developed with distributed statecharts.

C.4. Controlling of Charts
STATEMATE provides multiple techniques to control the activation and deactivation of activi-
ties and the timing of flow of information between them in activity charts. Several previously
unused techniques were incorporated into the statecharts of the revised model. These alter-
native methods of control were examined to determine their impact on modeling and the
indmation capability.

C.4.1. Advantages of the Alternative Methods of Control
The alternative methods of control applied in the revised model significantly improved the
animation process, enabling the modeler to animate the process with minimal external input
of information. This type of animation is not a batch driven, but rather an interactive walk
through of the model with the modeler entering data as required. By tying a state transition
to an information flow with the "writedata/written" action/event pair, and associating an ac-
tion with the event of "entering" a state, sequential activities could be traversed without ex-
ternal input until decision points of the process were reached. (In a non-batch animation of
the baseline model, each event was externally entered individually as the sequential activi-
ties were traversed. This hindered any demonstration of the process model.)

By tying a state transition to an information flow with the "write data/written" action/event
pair, and associating an action with the event of "entering" a state, fewer control flows clut-
tered the activity charts because these methods of control appear on the statecharts and
statechart textual forms. Any other event, X, would have to appear as an event flow to the
control activity on the activity chart.

By tying a state transition to an information flow with the "write data/written" action/event
pair, a visual link is established between an information flow in the activity chart and the
associated transitioning event in the controlling statechart. This link simplifies the examina-
tion process of the charts. This advantage would be more apparent if the process model did
not have the one-to-one mapping of states to activities that the SSH process model exhibits.

The "suspend/resume" actions better represent the process being modeled. This concept is
demonstrated when an activity is temporarily exited (e.g., a request for additional
information). Theoretically, the activity would suspend upon requesting the information and
resume when the information is provided, rather than stop when the information is requested
and start over again when the information is received. This is exactly the difference be-
tween the "suspend/resume" actions and the "history" connector of the baseline model. In
addition, the "suspend/resume" technique visually highlights activities that are suspended
during animation. The technique of using the history connector in the baseline model dis-
plays only whether the activity is active or not.
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Explicitly starting and stopping an activity was an advantage only when the
"suspend/resume" actions were to be employed. Otherwise, the throughout command
employed in the baseline model was the better choice.

C.4.2. Disadvantages of the Alternative Methods of Control
A disadvantage of the alternative methods of control is that too much information may be
hidden within the textual forms. The events causing the transitions are no longer obvious by
examining the charts.

Another, more subtle impact of the control method used in the revised model versus that
used in the baseline model is that the modeler must be more aware of the model execution
and animation semantics. As previously discussed, in the baseline model, activities are trig-
gered by the arrival of events (usually named with a "done" suffix). These events are sup-
plied interactively by entering event names at the appropriate times. Because these events
are not generated internally within the model, the modeler need not be concerned about the
logic or timing of their generation. By comparison, activity triggers in the revised model are
generated internally within the model itself. As a result, execution of the model is more
stand-alone, and animations can be carried out with much less user interaction than neces-
sary with the baseline model approach. One side-effect of this revised model approach is
that the modeler may spend considerably more time creating modeling alternatives that
make animation possible, smoother, or more interesting, whereas modeling decisions made
using the baseline approach can be more arbitrary in nature. It is possible that the time
spent on animation considerations can cause the modeler to lose focus on what may be a
more important concern: describing the target process as clearly and succinctly as possible.

C.4.3. Comments on the Alternative Methods of Control
A tradeoff occurs between the amount of information hidden within a statechart textual form
and the length of the label provided on a statechart. If the information is to be "up front,"
then that information must be included with a transition label on the statechart. In the revised
model, the actions to "start," "stop," "suspend," "resume," and "writedata" are hidden within
the statechart textual forms.
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Appendix D: Baseline Charts of the SSH Model

This appendix presents the baseline charts of the SSH model. These baseline drawings are
slightly restructured versions of the original SSH model drawings. The changes aid in the
visual clarity of the drawings and are strictly cosmetic.
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Figure D-1: Baseline Monolithic Activity Chart
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Appendix E: Revised Charts of the SSH Model

This appendix presents the revised charts of the SSH model. The layout of the revised
activity drawings was created with clarity being of prime importance. Therefore, when ex-
amining the drawings, pay close attention to the names within the "external" boxes rather
than to the direction in which a flow exits the activity. Figure B-1 provides the hierarchy of
the charts of the revised model.

The revised charts comprise multiple activity charts and statecharts. Ideally, each level of
decomposition would be represented on a separate page. However, in this study, each
chart was not decomposed to its primitive level. Decluttcring was applied only to the top
level of the original baseline charts. The resulting activity charts were felt to be of a comfor-
table level of visual complexity. Time did not permit the development of a complete set of
charts for this model. The redevelopment of the SSH model primarily focused on the initial
analysis portion of the model. Therefore, a complete set of charts describing the activities
and behavior were generated for the initial analysis subsystem, and portions of the remain-
ing original SSH model's lowest levels of behavior were omitted.

If declutt-,nng was applied to a chart (denoted by a 0@* symbol in an activity box), the inter-
nal information of that box is presented in a separate chart. For example, the box name,
INITIALANALYSIS@PHASEI in chart PMT_ACT_OVW, means that the internal informa-
tion for box INITIALANALYSIS is located in chart PHASE_I. In addition, the control of each
non-primitive activity is represented in a statechart referred to by the control activity. There-
fore, the control activity @SSASTATE refers to statechart SSASTATE for the control in-
formation of the chart PMTACTOVW.

Section B.2 provides an example of walking through a portion of the revised model.
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