
Technical Report

AD-A244 292 CMU/SEI-91-TR-8

DTIC
K, LECTE
'.JAN 1 1992jJ

Issues in Tool Acquisition
Paul F. Zarrella

Dennis B. Smith
Edwin J. Morris

September 1991

IMO i3~j i

92-01245

92 1 14 029
.x

The following statWmnn of assurances a rae than a statMerner reotuired tD cor- py wtti We federal law Th:s is a s&ncere statemen try the ur vcrslj to assure th~at amt
people are includeo in the diversity which mnakes Carnegie Mellon an er-I V:j place Cafm-go Mellon wishes to include people Y6 thol refard to race erlc' riat rlti
ongin. sex. hrandcap, religion, Creed, anrecty beief. age. ve'warr SauS C' ruaig of Cntal-on-

Canegie Melon Untinrty does not discriniale and Crege Meion Urii..rVsit Stured rnot to *scriotnatemr adnsons ano eilowyi'et r4 i) bliii)J,f iat
-color national origin, sex or handicap in violation of Title VI of the is P R*gts Act of 1964. Tite IX of tie Educatona Amentulr:iN o 197? arid Sicton 504 of whe

Rehabilitation Ad of 1973 or other federal, Vtale. or local is or insuline orders In addiwo, Carnegie Mellon doems notA discrimnate in admsaons and eMplqyrnem (s,
the bani Of relion, Creed. ancestlry, belief, lot veteran SWS of sxul or~ftOil in loolation of any tederl, state, or laws or execuive orders lnqt~nes concern
ng application of lWw policy should be dieded toil Prowos. Carnesge Mellen Ujrsversy. W00 Forbes Anwa Pittsburgh, PA 15213. lulplw" (412) 268 "8 r ot
vice Preswdent for Enrolrmeril. Carnegi Melo Uvrty, 600O ForbtsAvnue, Pittsburgh. PA 1sm11 elphon (412) 268.2M5

Technical Report
CMU/SEI-91-TR-8

ESD-TR-91-8
September 1991

Issues in Tool Acquisition

Paul F. Zarrella
Dennis B. Smith
Edwin J. Morris

CASE Technology Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

harle.J Ran,M or, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the Department of Defense.

Copyright C 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a cnpy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS dr-ctly: National Technical Informaton Service, US. Department of Commerce,
Springfield, VA 22161.
Use of any trademarks in this document is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1
1.1 Overview of Current Issues 2
1.2 Cost 4

1.2.1 Types Of Tools 4
1.2.2 Start-up Costs 4
1.2.3 Ongoing Costs 6
1.2.4 Additional Hardware And Software Costs 6
1.2.5 Personnel Costs 7
1.2.6 Trends in CASE Tool Costs 8

1.3 Issues of Tool Performance 9
1.4 Support For Software Process 10

1.4.1 Changing Models And Methods 10
1.4.2 Tool Support For Software Development Methods 11

1.5 Maintainability of Tools 12
1.5.1 Tool Obsolescence 13
1.5.2 Immature Tool Technology 14

1.6 Data Management 15
1.6.1 Tools and Data 15
1.6.2 Database Technology 15
1.6.3 Configuration Management 16
1.6.4 Data Representation And Semantics 17

1.7 Tool Integration 18
1.7.1 Presentation Integration 18
1.7.2 Control Integration 19
1.7.3 Data Integration 20
1.7.4 Framework Technology 20
1.7.5 Tool Standardization 22

1.8 Formal Standards 22
1.8.1 De Facto Standards 23
1.8.2 Accepted (Unofficial) Standards 23

2 Conclusions 25
2.1 Make Judicious Use of Today's Technologies 25
2.2 Find Tool Support for Chosen Methods 25
2.3 Make Better Use Of Existing Tools 26
2.4 Develop Strategies For Tool Selection 27
2.5 Develop Internal Standards 27
2.6 Consider Personal And Group Productivity Tools 28
2.7 Identify the Most Cost Effective Tools 28
2.8 Track Emerging Standards Carefully 29
2.9 Make Selective Use Of Influence 30

CMU/SEI-91-TR-8

2.10 Maintain A Flexible Posture 30
2.11 Understand The Changing Tool Market 31
2.12 Consider Specific DoD Needs 31

2.12.1 Find Ways To Deal With Documentation Costs 32

3 Summary 33

CMU/SEI-91 -TR-8

List of Figures

Figure 1-1 Executives' Assessment of National Software Capacity 3
Figure 1-2 Start-Up CASE Investment 5
Figure 1-3 Ongoing CASE Costs 7
Figure 1-4 Levels of CASE Integration 19
Figure 1-5 Full IPSE Model 21

IAccession For

rFNTS -- 'RA& I

D.TIC TAF ~ E

Dist fcla

CMU/SEI-91 -TR-8 i

iv CMU/SEI-91 -TR-8

Issues in Tool Acquisition

Abstract: This technical report identifies issues involved in the acquisition of
Computer Aided Software Engineering (CASE) tools. Among the issues
identified and discussed are cost, performance, process support, maintenance,
data management, tool integration, and standardization. The report concludes
with recommendations intended for individuals or groups responsible for
acquiring CASE tools.

1 Introduction

In virtually every software engineering organization today, consideration of how to select and
use software development and support tools is crucial in improving staff productivity and prod-
uct quality. As each organization is different, so then does each organization have specific ex-
pectations and requirements to be addressed by tools. These tools must be carefully matched
to the adopting body to facilitate the development process. The choice of the wrong tools can
not only fail to improve the process, but can actually work to hinder it. Unfortunately, no spe-
cific, universal set of rules has ever been devised to aid users in their search for the "perfect"
set of tools, nor does a set of tools currently exist that would satisfy the needs of all organiza-
tions.

Users often tend to react negatively to changes in technology rather than anticipating and pre-
paring for them. Many times, users will find themselves anchored to a tool or methodology that
has become outdated. This can be detrimental to the organization when it becomes necessary
to upgrade the development environment. The organization may be locked out from technol-
ogy advances made in the industry due to incompatibility of the new technology with existing
processes and methods. To protect themselves from any of these risks, some users will pur-
posely decide not to commit to any particular technology until some specific version has "ma-
tured" or until it has been generally accepted.

Currently, there are few accepted tool standards, and there are no guidelines pointing out how
to make the best use of available tools. There are no absolute metrics with which the effects
or influences of any tool or method can be determined. There is currently no one tool or meth-
od that is appropriate or suitable to every organization (no "silver bullet") nor is there a means
by which to predict the future methodologies, tools, or standards that will eventually emerge
(no "crystal ball"). With this in mind, it becomes a matter of preparing for multiple technology
paths and attention to trends in tool technology for an organization to be best positioned for
the future directions of the tool market.

Even though a formidable task, it is not impossible to work within the framework of the currently
unpredictable state of tool evolution and to begin implementation of an organizational tool pol-
icy. One productive method for developing a tool selection and adoption strategy is to examine
the major issues confronting the tool implementation process and to plan for change, even

CMU/SEI-91-TR-8 1

though the lack of substantive, available data makes this a difficult proposition. This paper was
written to aid the reader in navigating through the complex considerations facing an organiza-
tion when making informed tool decisions. It outlines the principal issues currently under dis-
cussion in the area of tool technology and offers suggestions on how to cope with the current
uncertainty of tool selection and usage.

1.1 Overview of Current Issues
Numerous studies have shown that software is responsible for a large percentage of system
complexity and cost. The demand for quality software is rising faster than the ability to produce
it. Software systems are often on the critical path for system acquisition, and can be a leading
cause of problems in the system.

Unfortunately, it is likely that the problems of software complexity and cost will worsen sub-
stantially. A survey of senior executives in government and the private sector indicates that
the nation will have a serious problem in being able to produce mission-critical software over
the next five years [18]. Results of the survey are summarized in Figure 1-1.

There is an obvious need to develop quality systems more quickly, and to develop techniques
to support better and faster software development. Nevertheless, the software producing sec-
tor of the economy suffers from a relatively low level of capitalization relative to other indus-
tries. The cost of a good mechanic's toolset and garage equipment often far exceeds that of
tools provided to a software engineer in a typical software industry setting. In fairness to the
managers of software development and maintenance, the determination of the proper place
to spend corporate money has not been easy. Managers must weigh the costs and potential
benefits of improvements in hardware, staffing, and training against the less certain benefits
of providing new software development and maintenance tools.

One potential method for meeting the rising demands for software is to provide better tools to
software engineers to facilitate the production of more and better software. This approach is
best represented by the growing market for sophisticated Computer Aided Software Engineer-
ing (CASE) tools and other productivity tools (see Section 1.2.1 for a list of productivity tools
in a sophisticated environment).

Sophisticated software productivity tools are expected to:

* Improve software quality

* Increase developer productivity
* Improve control of the development process

* Lower development costs

* Lower maintenance costs
* Lead to improved customer satisfaction
* Reduce development backlogs

2 CMU/SEI-91 -TR-8

Percentage of executives who think that there will be a problem with the nation's software ca-

pacity to produce military software over the next five years (Seigel 1990)

Expect a problem Expect no problem (N)

Industry Executives 88% 12% 90

Government Executives 87% 13% 16

All Executives 88% 12% 106

The assessed degree of severity of the problem for those who expect a problem *

Mean Score (N)

Industry Executives 3.9 80

Government Executives 4.4 14

All Executives 4.0 94

*Scale Very Serious Serious Not Serious

5 4 321

Figure 1-1 Executives' Assessment of National Software Capacity
Unfortunately, the literature concerning the effectiveness of such productivity tools is inconclu-
sive. It is unclear whether individual CASE tools are effective. In addition, industry observers
disagree concerning the types of projects that benefit most from the use of the tools [15 and
171, the point at which improvements become obvious [I and 2], and the degree of improve-
ment [7 and 11]. Inconclusive results and contradictions offer the sc tware manager little guid-
ance in determining which tool or set of tools will be most useful.

Complex decisions concerning tool strategy and adoption require projections based not only
on present conditions, but also on future trends, due to the long life of many software products.
Among the major tool issues discussed here are:

" Cost

* Performance

* Support for the software process

" Maintainability

" Data management

* Integration

CMU/SEI-91-TR-8 3

* Standardization

1.2 Cost

A large number of factors can influence initial and continuing cost of developing and maintain-
ing a state-of-the-art software development environment. Among these factors are the large
number of tools necessary in such an environment, the costs for the initial installation, long-
term maintenance costs, the costs of the supporting hardware and software environments,
and the costs for additional and better trained staff. These factors will be discussed in subse-
quent subsections.

1.2.1 Types Of Tools
An appreciation of the cost of developing a state-of-the-art environment should start with an
understanding of the tools that such an environment will offer. While each state-of-the-art en-
vironment will probably consist of different sets of tools, it is clear that all will consist of more
than code generation and documentation tools.

For the development and maintenance of software throughout the life cycle, representative
tools from the following categories are likely to be included in such an environment:

*Project management tools, including estimating tools, tracking and

scheduling tools, status reporting tools, and configuration management tools.

" Planning tools which provide capabilities for strategic data planning.

" Analysis and design tools, which provide support for one or more methods of
requirements elicitation and design.

" Code level tools, including compilers, code generators, debuggers and
performance analyzers.

" Documentation tools, which support sophisticated graphics and text
manipulation capabilities.

* Testing support tools, which analyze resulting software complexity and aid in
the generation of test suites.

1.2.2 Start-up Costs
We are unaware of any empirical data available on the cost of providing a full set of software
development tools. However, instructive lessons can be learned from the prolected costs as-
sociated with the implementation of a sophisticated suite of tools and the associated hardware
to support a staff of 150 engineers. Figure 1-2 contains a list of the projected start-up costs
from American Management Systems [11].

4 CMU/SEI-91 -TR-8

Workstation (personal computer hardware): 75 at $5,000 $375,000

CASE software:

System Planning tools (PC): 5 at $5,000 $25,000

Analysis/design tools (PC): 75 at $5,000 $375,000

Management tools (PC): 15 at $5,000 $75,000

Implementation tools (mainframe) ... $250,000

Bridge and interface software development:

Consultants: 50 day, - at $1 ,000/day ... $50,000

Staff training:

Trainers: 100 days at $1,000/day .. $100,000

Staff time: 10 days at $175/day ... $262,500

Total Investm ent: .. $1,512,500

Source: American Management Systems

Figure 1-2 Start-Up CASE Investment
According to the data presented in Figure 1-2, the total start-up costs associated with the in-
vestment in a sophisticated tool set would exceed $1.5 million. It should be noted that this es-
timate includes $375,000 allocated toward the purchase of a set of workstations at $5,000 per
unit. Such a purchase may or may not be necessary, depending on whether appropriate hard-
ware is already available. However, should hardware have to be purchased, the cost per plat-
form may exceed the $5,000 estimate.

Provision of a UNIX workstation environment, increasingly common in commercial systems
and DoD settings, can be even more expensive. Sophisticated workstations running the UNIX
operating system and providing adequate performance for modern CASE tools will typically
cost $10,000-$20,000 per platform, although some discounting is common. In addition, the
typical purchase price of a CASE tool running on the UNIX platform exceeds the figure of
$5,000 per copy quoted. Many popular CASE tools available for the UNIX environment cost
$15,000-$20,000 per copy, although again, discounting is the norm. Utilizing the new figures

CMU/SEI-91-TR-8 5

for a UNIX implementation of $10,000 per workstation, and $15,000 per copy of the tool, the
total cost of a tool implementation, with appropriate hardware, could exceed $3 million. Should
an organization decide to implement a VMS workstation environment, costs would be expect-
ed to be similar.

1.2.3 Ongoing Costs
In addition to the start-up costs associated with the tool implementation, ongoing costs for a
sophisticated tool implementation are also substantial. An estimate of these costs is provided
in Figure 1-3 [11].

Once again, if hardware is upgraded to UNIX workstations and provided to all engineers, over-
all ongoing maintenance costs will increase.

1.2.4 Additional Hardware And Software Costs
In addition to the high costs of the tools and operating platforms, the less obvious cost of de-
veloping and maintaining the networked computing environment required for maximum advan-
tage also needs to be considered. Whereas earlier generation qoftware engineering tools,
such as compilers, editors, and debuggers operated using terminals in a time-shared environ-
ment, many modern tools require a layered network approach, often using UNIX workstations,
with additional support for various other computers, including personal computers and mini-
computers. The costs of such a heterogenous network of computers can be significant, par-
ticularly when the migration from a time-share system is occurring concurrently with migration
to CASE tools. Multi-user CASE tools place a significant burden on this environment. To
achieve adequate performance, powerful and expensive tool servers must be purchased, and
often dedicated, to the execution of the CASE tool. It is likely that even relatively sophisticated
organizations will need to consider hardware upgrades to effectively support multi-user tools.

It should be pointed out that the cost for hardware to support CASE tools is declining. As new,
more powerful Reduced Instruction Set Computer (RISC) processors become available, the
price for computing resources adequate for CASE tools declines. In addition, the de facto stan-
dardization of the Xl 1 windowing system offers the potential for significant reduction in hard-
ware costs per engineer. Relatively inexpensive Xl 1 terminals have the potential to replace
workstations on some software developers' desks. Not only does this offer an immediate cost
benefit per seat to systems administrators, but it also offers the potential for reduced costs for
system administration staff. Along with the promise of reduced costs, however, Xll has
brought confusion to licensing schemes used by tool vendors for multi-user versions of tools.

6 CMU/SEI-91-TR-8

Software engineering group:

Three people at $50,000 (salary & benefits) $150,000

Hardware maintenance:

75 at $500 .. $37,500

Software upgrades/maintenance:

Estimated at 10% a year for PCs .. $47,500

Estimated at 15% per year mainframes $37,500

On-going staff training (done by engineering):

Two days per person for staff of 150 at $175 $52,500

Attendance at user meetings, symposia:

Two people to attend four meetings at $1500 $12,000

Miscellaneous:

e.g., books and publications .. $10,000

Total annual ongoing cost: ... $347,000

Figure 1-3 Ongoing CASE Costs
Vendors are only beginning to develop schemes that deal with the potential for multiple users
using X windows to access a single copy of the tool software.

1.2.5 Personnel Costs
Perhaps the greatest cost of the new, networked computer environments is that of providing
the necessary system maintenance staff. Experience within the Software Engineering Institute
suggests that networked environments require two to three times the number of maintenance
staff members than that required for older, time-shared systems. This increase in staff (and

CMU/SEI-91 -TR-8 7

perhaps in technical skills as well) appears to be related to two main factors: the support of
multiple platforms, and the maintenance of the sophisticated computing network capable of
supporting the heterogeneous platforms in the environment. Heterogenous networks attempt
to provide transparent file and process services to vastly different machine architectures and
operating systems. For each supported operating system and architecture, a core computing
staff is necessary to support both the different hardware and the different tools that populate
the environment. The maintenance of the sophisticated computing network to provide the in-
teractions between the various platforms itself requires an additional increase in staff.

The characteristics of the types of tools used in modern software development environments
also contribute to the need for increasing numbers of system support staff. As tools become
more sophisticated, both the level of sophistication necessary to maintain the tool and the
amount of maintenance required of the tool increase. Customers of tool vendors demand that
a sophisticated tool be tailorable to the user's environment. In response to the customers, the
majority of sophisticated tools available on the market today provide some degree of tailorabil-
ity. In fact, many sophisticated software engineering tools today now come with a maintenance
manual as large and complex as the tool's user manual. This situation differs from earlier en-
vironments that had relatively simple editors and compilers in that it requires more system ad-
ministration.

1.2.6 Trends In CASE Tool Costs
It is easy to predict the individual trends which will affect hardware and personnel costs related
to adopting and maintaining current generation CASE tools. The price to performance ratio of
hardware will continue to decline. Hardware will become more affordable. Likewise, one need
not be prescient to know that the cost of employing or contracting for personnel to manage the
systems, provide training, and design systems using CASE software will continue to escalate.

What is much harder to predict are the trends in costs for the actual purchase of a CASE tool
set or environment. The actual amount an organization will need to allocate for future CASE
purchases will be determined by the conflicting trends of a decrease in the costs per seat for
a specific tool function, mitigated by a corresponding increase in the functionality provided by
individual tools and by the overall CASE environment, and by the increasing number of users
who need access to the tools and data. These users will grow beyond the traditional software
developers to include system engineers, managers, quality control specialists, and documen-
talists.

It may not be apparent that costs per seat for a specific tool function will decline. Evidence of
this trend already exists, however. As the CASE tool market has become more competitive,
discounting of tools has become deeper. Even where tool costs have remained static or even
increased, the price reflects tools which provide far greater functionality for each dollar that is
spent. In addition, tools are incorporating new licensing schemes that allow for widespread ac-
cess to tools at little increase in cost.

8 CMU/SEI-91-TR-8

Another set of trends, now becoming apparent in the database market, may also affect the

overall per seat cost of CASE tools. One such trend is the increased bundling of software with

hardware purchases. It is expected that such bundling may act to reduce tool costs. In addi-

tion, database vendors have noticed a decrease in the amount of cost and effort purchasers

are willing to spend on customization of tools. It is unclear whether this change reflects a de-

crease in customization, or a decrease in the effort necessary to customize new tools with

built-in customization capabilities. Finally, a growing trend toward leasing of software rather

than purchasing software is developing. By leasing software, a company can reduce its up-

front expenditure, and amortize the cost of the software over some period.

1.3 Issues of Tool Performance
Before any organization can commit to the purchase of a full set of tools, including CASE tools,
a complete evaluation of the cost effectiveness of such a purchase should be determined. De-
termining the cost effectiveness of a tool set is difficult, as costs are divided up among costs
to initially acquire a sophisticated tool set, costs to maintain the tool set, costs to maintain the
appropriate computing environment, as well as costs to train and support a large staff to main-
tain and use the tools. The limited data concerning tool costs (Figure 1-2 and Figure 1-3) make
accurate cost projection difficult. Based on the little information available, total costs appear to
be high, and it is unclear whether the long-term expected benefit represents a reasonable val-
ue for the investment. Not enough empirical evidence exists to either support or undermine
the decision to purchase a sophisticated tool set or to support the claims of some tool vendors.
Each organization considering the purchase of sophisticated tools must evaluate its own risk
and potential benefits.

A second set of issues concern lack of adequate tool performance. As a system gets larger,
the time required to perform simple actions can increase rapidly. For example, while some
tools can regenerate data dictionaries transparently, others require complex rebuilds that take
hours to perform. Such performance problems can be attributed to both hardware and soft-
ware causes.

Some sophisticated CASE tools place heavy demands on hardware resources. This is partic-
ularly true of multiple user versions of tools, which place large demands on both the tool serv-
ers on a network and on the network itself. Several simultaneous users of a tool can tax even

the most sophisticated computer facilities. One observer [14] suggests that before large-scale
integrated software development environments will be feasible, new storage technologies that
store more data and retrieve it more rapidly, such as optical disks, must be perfected.

In addition to the demands placed by software engineering tools on computing hardware, an
equally stringent set of demands is placed by the tools on software technology, particularly in
the area of data storage and retrieval. As discussed in Section 1.6.2, the needs of new, so-
phisticated software engineering tools cannot always be adequately met by simple file storage
systems, nor is it clear that they are met by relational database technology [5]. New, reposito-
ry-based technologies utilizing object-oriented databases are only now being developed.

CMU/SEI-91-TR-8 9

1.4 Support For Software Process
According to Humphrey [13], the software process is the set of tools, methods, and practices
used to create a software product. The tools used by a software organization, however, must
reflect the software methods and practices in place within the organization. Smith [19] advises
that an overall tool strategy for an organization or project should consider the process and
methods in place, determine the functions of the lifecycle that need to be supported, and ac-
count for the environmental infrastructure that will let tools work together.

For a tool to be successful in a large-scale development project, it must support a process that
is well entrenched rather than existing outside the bounds of the process. Those tools that of-
fer a useful service, but do not fit smoothly in the existing process, are not likely to be success-
fully used on large projects. Likewise, tools that require manual reentering of data to go from
the previous stage to the supported stage or from the supported stage to the next offer addi-
tional problems due to the loss of data during the transfer.

A number of modern environments have attempted to institutionalize the process environment
into the toolset. Notable examples of this approach are ISTAR [10], based around a business
contract model of software engineering, and SLCSE (Software Life Cycle Support Environ-
ment), based around a DOD-STD-2167A approach to software development.

It is important to note that the purchase of any tool, particularly modem tools that claim to offer
cradle-to-grave support for the software process, entails a set of risks. We cannot know what
new methods, tools, or systems will be devised, or which will fall into disfavor during the life of
an application. While it is obvious that the purchase of tools is necessary, all purchases should
be framed in terms of the costs, benefits, and risks associated with the tool.

1.4.1 Changing Models And Methods
The development of a strategy for tool selection is not simple.The software engineering com-
munity has not reached consensus on what processes, methods, and practices are most suc-
cessful. In fact, both practices and methods within software engineering are currently under-
going a considerable transformation.

A major influence on the practices maintained within a software organization is the model of
software development accepted by the organization. Through the 1970s and for much of the
1980s, the waterfall model of software development was the accepted model for the software
development process. The software maintenance process was often viewed as a smaller
scale analog of the development process. It is not surprising to find the major features of the
waterfall model embedded in government standards such as DOD-STD-2167A, in the meth-
odologies supported by commonly available tools, and in software environments based on
these standards and tools, such as SLCSE.

Recently, alternative software development models have been suggested, including the cyclic
model [3] and various models based on rapid prototyping and reuse of existing software com-
ponents. It is unclear whether any of these new models will supercede the waterfall model as

10 CMUISEI-91-TR-8

the accepted standard. In fact, it is most likely that the software community is entering a period

where multiple models of the software development cycle are common. What is less clear are

the changes in the types and functionality of tools that will be necessary for effective support

of new models of software development.

Just as the practices within software development are changing, so are the methods that are

used to develop software as new object-oriented, rapid prototyping, and reuse-oriented meth-

odologies are introduced. There is a significant field of debate in the software engineering

community concerning the effectiveness of the established structured analysis and design

techniques, particularly for large systems. Proponents of object-oriented methodologies be-

lieve that these newer methods offer better overall system design, facilitating reuse of software

components. Proponents of rapid prototyping methodologies argue that they are best able to

establish user requirements and reduce the risk of development. Secondary ongoing contro-

versies concern the appropriateness of the new methodologies tor various types and sizes of

software, and for various stages in the development process.

There is little or no empirical data to suggest that one specific method will lead to greater suc-
cess. Wood (1989) found little to support the choice of one structured specification method

over another. It is unclear whether the use of newer object-oriented, prototyping-oriented, or
reuse-oriented methods will enhance the chances for success. Successful, as well as unsuc-
cessful, projects have been completed with all of the contending methodologies.

While it is possible that the object-oriented, prototyping-oriented, and reuse-oriented methods
and processes being developed will be completely compatible with existing tools, the possibil-
ity also exists that they will be incompatible. Recently, tool vendors have attempted to develop
methods of integrating standard structured analysis and design techniques with object-orient-
ed methods. The level of success of these integration attempts is unclear. In the meantime
other, low-technology support for new methods is being defined. For example, one of the most
popular development practices for the object-oriented method, Class Responsibility Collabo-
rators (CRC), uses only low-tech index cards as a design aid.

1.4.2 Tool Support For Software Development Methods
There have occasionally been some mistaken references to a "CASE methodology". There is,
in fact, nothing unique or original about the methods that CASE tools support. Some common-
ly available CASE tools support many of the software development methodologies that have
been available for over a decade prior to the introduction of the tool.

All of the software development methods represented in CASE tools attempt to provide sup-
port for accepted standards of good software engineering. These methods provide, at a mini-
mum, support for modeling of a system at various levels of abstraction using various views of
the system. The methods often provide guidelines for decomposition of a system into appro-
priate software units. Actual choice of one method over another will continue to be a factor of
the type of software to be developed, experience with the methods, and personal preference.

CMU/SEI-91-TR-8 11

The representation of a method in a tool can be difficult, particularly when the tool is to be used
to create large-scale software products. Two potential problems are incomplete support for the
chosen method, and lack of tool support for team-oriented development. While CASE tools
have improved considerably in accurate and complete representation of the supported meth-
od, support for team-oriented development requires a level of integration with other tools (such
as document preparation tools, configuration management tools, and project planning tools)
that remains generally unavailable today.

It is important to recognize that all available tools are the result of compromises between per-
formance, features, and development costs. Just as it is unlikely that a single computer lan-
guage will be appropriate for all projects, no single set of tool features are appropriate for all
projects.

Tool builders must make compromises concerning tool performance and the look and feel, and
between the conflicting needs of users.

One example of the compromises made by tool vendors can be seen in the provision of auto-
mated code generation capabilities. For the developers of small to medium-sized systems, au-
tomated code generation capabilities available in modern tools provide an excellent way of
verifying the consistency of module interfaces. On the other hand, builders of large software
systems may find that the level of modeling necessary to generate realistic code interfaces
may be too low for large-scale development. These users may choose to model at a higher
level, which is appropriate according to the methodology. In this case, sophisticated code gen-
eration capabilities are not required. Regardless of whether a project can make appropriate
use of a feature, most tools are configured such that the user pays for the feature, both in dol-
lars and cents and in increased complexity of the tool interface.

1.5 Maintainability of Tools
Large-scale development projects are likely to also be long-lived development projects. Often,
the project is economically feasible only if it can be argued that the software will last for years.
Therefore, the costs of the software should be weighed against years of benefit. It has been
argued in the CASE literature that the primary benefits of CASE tools do not come from the
savings during initial development, but rather from savings that become apparent during main-
tenance [1]. Thus, it can be expected that a tool that offers a large return on investment will be
one that lives a long life, assisting in the maintenance of the software possibly for the life of
the software. In fact, a number of agencies request delivery of the development tool set along
with the finished software product.

Unfortunately, long-term maintenance of a set of tools presents problems due to the immatu-
rity of existing tools and the potential that a tool may become obsolete during the life cycle of
software products reliant on the tools.

12 CMU/SEI-91-TR-8

1.5.1 Tool Obsolescence
First among these problems is the common problem of tool obsolescence. Tool vendors mar-
ket their products today in a number of configurations for different operating systems, different
windowing systems, and different hardware platforms. In addition, they sign large numbers of
new agreements with other tool vendors, hardware suppliers, and framework suppliers to pro-
vide some degree of integration with other products. They regularly produce new, improved
versions of their software.

The problem for the developers of software tools is obvious: the more people are devoted to
maintenance of tools on the various platforms, the less people that are available to develop
new products to compete in the market. The tool developers must either drop support for less
popular platforms and frameworks, or face the risk of overextension.

The problem for the organizations that wish to buy a tool is also obvious: there is no guarantee
that a tool will be supported 10 years, 5 years, or even 1 year from today. Without the tool that
was originally built to maintain the software, maintenance may become more difficult, and the
benefit from use of the tool during implementation may be lost.

It is not always the case, however, that the same tools that are used for software development
are the best tools to use for software maintenance. For example, software maintainers may
find re-engineering and restructuring capabilities more useful than other tool features. A tool
may fall into disuse because it is no longer appropriate for the job, even when it continues to
be supported by the vendor.

The effect of this problem in the DoD world is significant. Due to product liability for software
systems produced for the DoD, contractors are justifiably cautious about purchasing tools oth-
er than those that are well established.

The difficulties of maintaining a tool over the life of a large piece of software are compounded
by the complex interrelationships between current tools. Many modem tools are integrated
with other tools such as documentation systems, windowing systems, and configuration man-
agement systems and are dependent on those systems. Unfortunately, system upgrades to
tools in the environment do not happen simultaneously. It is common to find various tools at
different parts of their life cycle: some just released (with the associated bugs), others having
reached the stability of middle age, and still others aging, falling behind in interfaces to other
tools and in technology. Often the version of a tool (or even an operating system) that an or-
ganization can run is more dependent on the interactions between tools than on the features
the user wishes to have available. During the maintenance cycle, when the tools used to de-
velop software (e.g., operating systems, methods, compilers) become 2, 5, 10, or even 20
years out of date, the maintenance of a tool environment can become difficult.

One major problem that contributes to this situation is a lack of universal agreement on a stan-
dard operating system, windowing system, convention for tool interfaces, data dictionary, and
data storage mechanisms. Without such accepted standards, long-term maintenance of a tool
is difficult for tool vendors and users alike.

CML SEI-gi -TR-8 13

A software organization that wishes to use sophisticated tools must develop a strategy to man-

age the change in tools over the life cycle of the affected software products. Any decision to
import new tools for beginning or existing projects should be tempered by the costs of reverse
engineering the software product to the formats of the new tool. Without common interchange
formats, or built-in reverse engineering capabilities, the updating of tools may offer little or no
advantage.

Some tool vendors are beginning to recognize the problem of maintaining tools over the life of
a software product and are starting to provide mechanisms to manage the long-term configu-
rations of tools in relationship to the software developed with the tools. For example, Sun's
Network Software Environment (NSE) [20] provides a method of creating and maintaining tool
and software environments that can be managed as configuration objects (see Section 1.6.3).
However, the costs of maintaining personnel trained in the use of old tools cannot be mitigat-
ed.

1.5.2 Immature Tool Technology

A second maintenance problem is due to the use of immature technologies in the available
tools. The first available CASE tools were characterized by sophisticated graphical drawing
capabilities with little or no page layout capabilities, limited integration with a select set of tools,
little or no project management support, little or no data gathering or software metrics support,
limited code generation support, methodological naivete (no methodological guidance), and
no support for software reuse. Newer tools planned by tool vendors, however, offer features
including improved ease of use, multi-user capabilities, project management support, metrics
support, artificial intelligence (AI) assistance, autolayout capabilities, reverse engineering,
methodological flexibility, and support for new methodologies.

The transition toward these newer CASE products, as well as the entry into the CASE market
by IBM, Digital Equipment, Hewlett Packard, and Texas Instruments indicates that a market
shake-out may be in order. Small vendors who do not have a strong niche in the market may
be forced out of the industry. The small vendors' position is made more precarious by the ten-
uous grip they hold in the market. Gane [9], in his book Computer-Aided Software Engineering,
listed projected 1988 revenues for 22 CASE vendors. Half of that group subsist on a market
share of 1 to 3 percent. In a market subject to the competitive pressure applied by the large
computing giants, the survival of small vendors is uncertain. In fact, the only chance for sur-
vival for many of the smaller vendors may be to rapidly transition to offering interfaces com-
patible with those offered by the larger vendors.

In addition to market shake-out, the immaturity of the marketplace is expressed in the devel-
opment of competing frameworks for CASE tools. In the United States and Europe, various
groups have banded together to form a variety of standardization committees (CAIS-A, CIS,
PCTE, PCTE+, PCIS). Large computer manufacturers have introduced their own CASE
frameworks. The situation can be confusing for a developer or potential purchaser of CASE
tools. For example, experts familiar with the PCTE and PCTE+ efforts express little hope of
convergence of the standards. In fact, they expect the two to remain distinct frameworks for

14 CMU/SEI-91 -TR-8

the foreseeable future. To determine which standards the vendor should sign up to is not a
simple matter. In many cases, adhering to any of the proposed standards would require the

CASE vendor to remove functionality from a tool. As we move toward environments containing
integrated configuration management and database capabilities, these functions must be re-
moved from existing tools. The vendor will need to choose to support one particular standard
and tailor his tool to that standard, or must choose to remain independent with a full-featured
product. The stakes are high for any vendor making these decisions.

1.6 Data Management
One of the major areas of concern to tool vendors and end users is the issue of data manage-
ment. There are numerous facets to the data management issue. Many vendors have com-
peting interests in definition of data interface protocols, structure of common storage, and data
exchange formats. Data management concerns can be decomposed into the following issues:

* Tools and data

" Database technology

" Configuration management

* Data representation and semantics

1.6.1 Tools and Data
Tools operate on data objects that are generally stored in some form of proprietary database.
The purpose of the database is to provide a vendor with a way of maintaining data consistency
within the tool set. Users who wish to share complex data between tools are generally con-
strained to tools offered by a single vendor due to the current limitations of inter-tool data in-
tegration. Most vendors do not offer a full life-cycle complement of integrated tools nor do they
adhere to any accepted standard for data representation, effectively isolating their tool data-
bases from access by the tools of other vendors.

Most tools use localized, non-distributed databases to store tool objects. This creates prob-
lems with data consistency between tools and users and puts the burdens of data synchroni-
zation and reconciliation onto the user or the tool framework. Also, snd user tools are often
precluded from interfacing with the data directly due to the proprietary nature of most tool da-
tabases. These problems increase data maintenance overhead throughout the development
life cycle as provisions must be made for integration of data from a variety of diverse sources
(e.g., local and remote databases, tools, users).

1.6.2 Database Technology

As tools and their interfaces have become more sophisticated, so have the requirements of
data types and data storage facilities. Over time, these data storage requirements have
evolved from simple, sequential file access to complex, database management technologies.
Data management must not only take into account the increased volume of information that is

CMU/SEI-91 -TR-8 15

being stored by tools, but also must be able to distinguish between a growing number of com-
plex and derived data types.

Unfortunately, the properties of an object management system (e.g., object distribution and
locking, flexible data types, versioning) are not fully served by available data storage tech-
niques. There is a contention that current database technology cannot effectively support full
storage of all object data in a central repository.

According to Brown [5], relational databases cannot readily accommodate the flexible, com-
plex object/data types (e.g., code segments, design diagrams, user processes) required by
large-scale development technologies (such as CASE). They are generally unable to handle
the amount of data that it takes to implement a fine-grained object management system (i.e.,
objects are composed of data items and interrelationships that are more complex than the lev-
el afforded by a singular file or character string representation). Software engineering databas-
es must handle continuously evolving data, continuous schema modifications performed by a
large group of software engineers, and data of many different types including ASCII text, var-
ious document formats, source and object images of a program, and graphical design formats.
In addition, these databases are loaded with little initial data, but must expect rapid growth
both in terms of structure of the data and the contents of the data. They must also handle mul-
tiple versions or configurations of the data and support long-lived transactions with many indi-
vidual units of information that are smaller than those locked by relational databases. This
combination of demands can lead to significant performance problems as the volume of the
data in the database grows.

To overcome the limitations of relational databases, many tool vendors are currently exploring
alternatives to the local dictionary for data storage/access. This new technology is generally
referred to as a data "repository." The repository is a database designed to hold the types of
data necessary for large-scale software development and maintenance. Repositories are gen-
erally built on top of relational or object-oriented databases.

Object-oriented databases differ from relational databases in that they store data maintenance
and access rules along with the object data. This technology provides extended capabilities
(e.g., multiple object views, modifiable rules and object types) and enhances the distribution/-
performance aspects of a shared database. However, object-oriented database technology is
relatively new (no single data model) and many vendors, users, and standards organizations
have existing commitments to relational databases.

1.6.3 Configuration Management
An important requirement of any tool used for large-scale development is that the tool provide
adequate support for maintaining multiple versions of the data in the tool, or that the tool pro-
vide output that can be archived in existing configuration management (CM) tools. In a large
software development project, data and source code may exist in hundreds of different con-
figurations and intermediate forms. If a tool is to prove valuable to users during this process,
it must be capable of maintaining many forms, or must provide mechanisms to allow some oth-

16 CMU/SEI-91-TR-8

er tool to maintain them. Unfortunately, there are no existing standards for versioning and CM
tools.

Two common approaches are chosen by tool builders today. The simplest, most frequently
chosen approach is to require the user to provide his own configuration management capabil-
ities. This approach is often unworkable for the user because the nonstandard data formats
utilized by tools cannot by handled by many configuration management systems. In addition,
the unit of configuration management must, by default, become the tool builder's unit of data
storage in the file system (most often a file). Users, however, often wish to manage items with
smaller granularity than the data file as the need evolves for control over a set of object types
more varied than simple source code. However, the users are prohibited from doing so.

The second alternative chosen by some tool builders is to build in a proprietary CM capability
specifica!y to support the needs of the tool. A primary example cf this approach is the Ada
program library, which maintains information about the source, object, and intermediate forms
of an Ada program. Unfortunately, this approach causes considerable difficulty in integrating
tools with other tools and frameworks in the environment. For example, the automated build
facilities of sophisticated CM tools are often unable to work in the context of Ada program li-
braries, which provide their own (conflicting) build facilities. Also, extension of tools to include
configuration support must be given careful consideration so as not to provoke the scalability
problems (particularly data storage and performance limitations) previously outlined.

A third approach, likely to become more common as large vendors begin to offer framework
products, is to tie into existing configuration management tools. Configuration management
system vendors have begun to recognize the potential to integrate tools through CM capabil-
ities, and are offering features that support inter-tool communication [20 and 12].

1.6.4 Data Representation And Semantics

Resolution of the data integration issue is also impeded by the problem of reconciliation of the
different internal representations of the subject data. Most vendors not only utilize incompati-
ble data interfaces, but also define incompatible data formats.

Some vendors have developed import/export facilities and tool extensions to deal with the
problems of data dictionaries that are not capable of being shared among different tools or
among multiple users. However, there is an inherent problem of data loss/mismatch when at-
tempting to merge two (possibly) incompatible data sets. There is the possibility that insuffi-
cient data is being either exported or imported. Data objects/relationships used by the export-
ing tool may simply be extraneous to the importing tool or may not fit into its data model (e.g.,
type, format, naming conventions).

Many vendors realize the importance of publishing their tool interfaces to help other vendors
(and users) interface their own tools with the vendor tools. However, this does not address the
larger problem of data incompatibility as the semantics of the data are still not fully understood.
Not only might the format of the data be different, but the contents of the dictionaries may be

CMU/SEI-91-TR-8 17

inconsistent. The weaknesses of relational databases are also exacerbated when objects are
transformed. Since data rules are imposed by the tcols (as opposed to the database), the con-
sistency of objects (the "view") may well be distorted as meaning is lost or misinterpreted when
moving the data between tools.

1.7 Tool Integration
Despite the existence of numerous tools directed at facilitation of the software development
process, a major impediment to realization of a comprehensive solution is the current state of
tool integration. Users are hesitant to commit to a single vendor for tool support. They are also
wary of being locked out of technology advances that may be reflected in tools that are incom-
patible with those that are already in use. At the same time, vendors realize that no one com-
pany can afford to attempt to provide a complete set of tools that spans all of the phases of
the development life cycle.

With the realization that cooperation is necessary to survival, vendors are now examining the
various integration characteristics of tools and exploring the specific mechanisms that can be
used to standardize tool interfaces. Analysis of tool integration (and assouiated standards ac-
tivity) is generally separated into three functional areas (see Figure 1-4).

* Presentation integration

* Control integration

* Data integration

1.7.1 Presentation Integration
In general, one of the basic concerns of integrating tools is the issue of a consistent user in-
terface/presentation. The investment that an organization makes in selecting tools is more
than just the cost of the tools. It involves the time and cost of comprehensive training and sup-
port (both from the vendor and from the users). Standardized user interfaces and tool functions
will help keep these costs under control as well as offer greater tool/choice flexibility to the us-
ers.

Presentation integration represents the development of consistent user interfaces for widely
different tools. Some vendors are looking at a standardized user presentation format to de-
crease the tool learning curve and provide smoother transition between different vendor offer-
ings. Vendors also realize that most users operate in a diverse network of heterogeneous sys-
tems and that commonality among these systems is an important consideration when select-
ing a standard.

18 CMU/SEI-91 -TR-8

No Integration Data Exchange

To Tobol A Tan

Pnvate data o I

Presentation Integration Control Integration
(Common Tool Access) (Trigger Mechanism)

Common User Interface Common User Interface

ToolA Tool B oA lB TlC

Translator
-.......... ;.......... .

Triggers

Data Integration
(Data 3haring) Full Integration

Common User Interface [Common User Interface

I TolA 1 o[B TolC

Trigger Mechanism

Metadala

Shared fProied tPm

Data (Repository') Dt Rpst

a CASE OUTLOOK - VSOIN2-MWIWp"g

Figure 1-4 Levels of CASE Integration

1.7.2 Control Integration

Control integration refers to the ability of tools to inform other tools of their actions and to re-
quest actions by other tools. One mechanism used to facilitate control integration requires in-
terface formats to be defined by specific tools. A tool wishing to communicate with another tool
must invoke the tool via the defined interface, thus providing the potential for control integra-
tion. Unfortunately, the development of these tool-specific interfaces is labor-intensive and of-
ten occurs only through joint agreement of specific tool vendors. The user who wishes to utilize
tools with these control integration capabilities is thus limited in their selection of tools.

A second, more complex mechanism requires an intervening monitor that receives tool notifi-
cations or requests and subsequently sends appropriate notifications and requests to other

CMU/SEI-91-TR-8 19

tools in the environment. Each tool would maintain its internal database, but would provide an
interface to import, export, and perform operations on objects in the database. This second
technique requires that the monitor maintain an overview of both the other tools in the envi-
ronment and the process that is to be implemented.

1.7.3 Data Integration

Data integration refers to the transfer of information between tools and the establishment of
relationships between data maintained by different tools. One method requires that individual
tools agree with specific data interfaces. This approach is relatively simple to implement and
widely applicable to many types of tools. This method, however, provides only for the ex-
change of data and is neither effective at establishing links between data maintained by differ-
ent tools nor at maintaining the semantic context of data.

A second method for achieving data integration involves the development of a shared repos-
itory in which a variety of tools store information. A fully functioning repository would provide
the capability of maintaining a core semantic content of objects together with tool-specific
views and would permit several tools to work together because of the common dictionary. Re-
positories have been discussed widely but are still several years from maturity, due to the com-
plex database requirements.

1.7.4 Framework Technology
In addition to consideration of the forms of tool integration are the concerns over the processes
involved in combining these aspects under a single point of control. Currently, efforts are being
expended in definition and development of tool "frameworks." A framework is sometimes re-
ferred to as an Integrated Project Support Environment (IPSE) (see Figure 1-5). The intent of
a framework is to provide for greater interoperability of tools across the software life cycle and
to enable the software development and maintenance cycles to become more integrated as
objects created by different tools flow between phases.

20 CMU/SEI-91-TR-8

operating system

DaeRepository
Dat Integration Services

Task Management Services
User Interface

X Windows

Presentation
Manager [I

Source: Hewlett-Packard, Software Engineering Systems;
as printed in SOFTWARE MAGAZINE, October 1989,
Sentry Publishing Co., Inc., Westborough, MA01581

Figure 1-5 Full IPSE Model
Frameworks provide for the life-cycle integration goals of tools via "plug-in" tool integration with
a tool management executive or 'backplane." The executive handles the overhead involved
with coordination (control integration) of the tool suite (e.g., tool registration and instantiation,
error reporting). At the front end of the framework is the mechanism ihat provides a consistent
user interface (presentation integration) across the tool set. At the back end of the framework
is a common data interface/repository (data integration), messaging system, and operating
system services manager. These interfaces unburden the tool modules of the particulars of
the host environment and allow for a broader, more interchangeable product set.

Framework development work has been going on for several years. Many vendors acknowl-
edge the value of tool frameworks, but few are actively looking to integrate their tools into ex-
isting backplanes. Here, the issue of standards comes into play. The framework must be tightly
integrated with respect to the control interfaces involved in a proper implementation. All of the
tools in the framework must use standard protocols upon which to support the various control
mechanisms (e.g., invocation format, parameter passing, results notification). Since no one

CMU/SEI-91-TR-8 21

vendor can currently define a standard for framework integration by offering a truly compre-
hensive set of single-vendor CASE tools, and no defined standard has yet to be agreed upon,
no single version of framework technology has been able to claim market dominance.

1.7.5 Tool Standardization
There are approximately 250 tool interconnection standards efforts currently in progress [16].
These range from government backed efforts to industry efforts to ad hoc standards commit-
tees. Many of the standards are aimed directly at the process of data management (data stor-
age and/or data exchange). These efforts also deal with issues of tool portability (tool environ-
ment), tool integration (tool frameworks), and/or tool architecture (tool/interface consistency).

Much of the interest in current standardization efforts stems from the fact that each vendor has
invested significant amounts of time and money in the development of their own proprietary
tool interfaces. Each would ultimately like theirs to be the basis on which the industry standard-
izes. Realistically, vendors want to expend the least amount of effort necessary to adhere to
any finalized standard and certainly do not want to be forced to support multiple conflicting
standards. To this end, many vendors are examining the alternative approaches to standard-
ization, including forming vendor partnerships and lobbying for acceptance of specific stan-
dards.

1.8 Formal Standards
One problem facing standardization is the "wait and see" attitude expressed by some tool ven-
dors. These vendors are unwilling to support any specific standards effort or participate in sev-
eral conflicting efforts in an attempt to "hedge their bets." In these regards, they reduce the risk
that they will adopt the wrong standard and also maintain the possibility that their interfaces
already meet or approximate the (yet to be agreed upon) standard. This posture actually de-
tracts from the standards efforts because failure to work actively toward a single standard is,
in essence, a position against standardization.

The overall standards effort is further confounded by the fact that different standards address
different aspects of integration. Some standards focus primarily on repository specifications,
others on framework definition, and others on data exchange. Many of the standards efforts
do overlap, but not all members of each standards body belong to all of the standards bodies.
Thus, different viewpoints and agendas are driving standards for similar functions, which will
most probably result in incompatible standards definitions.

All of this means that the emergence of multiple standards for tool integration is a possibility.
Also, since most of the standards efforts had been progressing virtually independently of each
other (at least until the inception of the International Workshop on CASE [IWOC] Standards
Coordination Committee, and with the exception of any pending standards mergers), it could
very well come to pass that the first defined standards predominate the industry or that no real
consensus emerges at all.

22 CMU/SEI-91 -TR-8

1.8.1 De Facto Standards
While the formal standards efforts attempt to find common ground, the tool industry is seeing
another form of standards process taking shape in the form of de facto standards. Generally
when speaking of de facto standards, one is discussing a market driven by larger vendors.
Such is the case with software tools. There are both positive and negative implications of this
type of standards process.

On the one hand, de facto standards have the most likely chance of causing any type of real
tool integration in the foreseeable future. Unfortunately, they are generally dictated by the larg-
er vendors to the rest of the tool community. This means that smaller vendors and end users
are forced to accept the unilateral decisions of the larger vendors without much chance for in-
put on the shape of the interface standards.

Most vendors cannot be convinced to expend effort to adhere to an interface that may be su-
perceded in the near future. This is the concern with de facto standards, basically because
vendor integration of the tool/data interfaces of another vendor is a very costly proposition. The
cost ultimately includes the indirect support and maintenance associated with the tools and
interfaces of the other vendor. The costs are multiplied exponentially by the number of non-
standard interfaces and the number of platforms and environments supported by these other
vendors. It is unlikely that smaller tool vendors will be able to continue to compete in this type
of environment for long.

While there are always inherent problems in this type of standards adoption, at least there
would be a focal point on which to build the forward process of enhancing the tool market.
More users would be able to get started on their own tool implementation plans and a wider
range of integrated tools would ultimately result. Also on the positive side, de facto standards
should cause other vendors to finally come to s*'ndards "realization." That is, as the larger
vendors get users to start accepting their products and then start touting their particular defi-
nition of a standard, other vendors will be forced to join up with the standard or quickly consol-
idate around acceptance of other (hopefully well defined) standard(s).

1.8.2 Accepted (Unofficial) Standards
In addition to de facto standards, some tool interfaces and environmental and operating stan-
dards, such as X-windows and UNIX (more specifically, POSIX compliance) have already
been generally accepted by the vendor/user community. The standards in use today have
proven to be effective in enhancing the viability of many vendor products. This ultimately al-
lows users to "mix and match" the most effective tools available from a variety of different
sources.

Many vendors are looking at a standardized user presentation format to decrease the learning
curve and provide smoother transition between different vendor offerings. Some vendors have
chosen X-windows as a standard upon which windowing systems for tools presentation are
built. This provides a definitive "look and feel" to the diverse tool set offerings and, in some
cases, allows the familiar user interface to be extended to user-integrated tools as well. Al-

CMU/SEI-91 -TR-8 23

though no set standard has been officially declared, X-window acceptance is an example of
how support by a wide range of vendors for a particular interface can help drive the standards
definition process.

Another consideration is the emergence of a standard for the UNIX operating system. The
UNIX system has been showing promise as a "cross-over" operating system catering to the
needs of both the technical and commercial markets. In this respect, tool vendors would be
relieved of the burden of maintaining separate product lines for multiple operating systems by
targeting the UNIX system. This would also alleviate many of the rehosting issues facing the
vendors because product porting would become an issue of hardware (UNIX system platform)
only. Tool and database distribution would be greatly enhanced through the accessibility of ex-
isting network support functions (e.g., NFS, TCP/IP).

In addition to UNIX networking functions, the Open System Interconnection (OSI) standard for
local area network data communications has emerged in the international software communi-
ty. The OSI reference model consists of a clearly defined, seven layer structure for reliable
connections between heterogeneous computing networks. The working model defines the ca-
pabilities of the different layers but leaves the particulars of the interface implementation to the
vendor. This helps to make the standard more attractive to vendors by resolving ambiguity
without mandating a specific solution. In fact, most vendors adhering to the OSI standard do
not incorporate distinct protocols for each of the layers.

24 CMU/SEI-91-TR-8

2 Conclusions

To make reasonable decisions about tool selection, an organization should be concerned with
both the short-term selection issues and the long-term implications of the current trends in
tools and tool use. In many ways, these selection issues and implications are defined by the
changing tool market. Recommendations to assist in the making of informed decisions about

tool purchases in this volatile market are presented in the following sections.

2.1 Make Judicious Use of Today's Technologies
Limited fixes to the problems remaining in tool integration are beginning to emerge. Not only
are tool vendors beginning to develop common operating formats (e.g., inputs, error messag-
es, editors) to be shared with strategic partners, but other vendors of important "substrate"
products, such as configuration management systems, are developing new technologies to al-
low the sharing of information between engineers and tools.

One area of interest is the provision of tool notification functions in products such as Sun's
NSE [20] and Hewlett Packard's Softbench Encapsulator [12]. These tools provide a method
to notify tools in the environment of changes made by other tools. Notification functions re-
spond to modifications made to the system and perform automatic update and/or notification
of the appropriate resultant actions. These workspace management attributes then provide
the capacity for improved source/data modification traceability. While requiring significant c.f-
fort on the part of the tool user to establish and maintain relationships, this functionality repre-
sents an initial step at providing traceability between tools.

A second interesting development allows software engineers to manage the configuration of
tools in concert with the data and software produced by use of the tools. This feature, available
in sophisticated configuration management systems such as Sun's NSE [20], simplifies the
management of tool configurations over the life cycle of a software product.

There is a general feeling that the user interface contributes significantly to the acceptance
and learning time for a product. A third type of developing technology allows the provision of
a consistent user interface across tools, thus facilitating tool acceptance and reducing learning
time. Tool vendors such as Hewlett Packard [12] are developing common interface generators
that allow for this simplified integration of proprietary (or third-party) tools into the vendor tool
set.

2.2 Find Tool Support for Chosen Methods
Another trend that must be considered in the area of tools is that of changing software devel-
opment methods. With the onset of next generation design methods (e.g., object-oriented de-
sign, rapid prototyping), users will find it necessary to carefully consider the impact on the or-
ganization of these methods and the associated tools.

CMU/SEI-91-TR-8 25

Users should not jump to adopt a new, strictly imposed process for software development if
they are best served by some internally developed or hybrid process. However, the most ef-
fective tools may be those that can be adapted to evolutionary changes in the software engi-
neering process/model. Specifically, tools that are not adaptable to these changes will quickly
become useless.

2.3 Make Better Use Of Existing Tools
While complete, integrated solutions remain out of reach, and the tool market remains in a
state of flux, tool purchase will be a risky business. Although the situation with new tools re-
mains unclear, much is to be gained by making better use of existing tools and technologies.
According to Humphrey [13], organizations that score poorly on the process maturity scale are
unlikely to make successful use of existing software tools. Most organizations are at the lowest
level of process maturity and therefore are making poor use of tools. A first step in making bet-
ter use of existing tools is to improve the software process that the tools support. Humphrey
recommends that to make effective use of CASE tools, an organization must have established
at least basic project controls, including project planning, management oversight, software
quality assurance, and change control. Key problem areas to be addressed include training,
technical practices involving reviews and testing, and the process focus involving standards
and process groups.

Perhaps the most common method used to make better use of existing tools is to use practical,
though rudimentary, methods of integration to achieve a unified product. Several users have
successfully taken commercial off-the-shelf software and integrated these into tool sets.
These users have selected those tools that provide well-documented public interfaces. Such
efforts, which have been primarily undertaken by large corporations, are notable both in the
relatively modest degree of success and in the amount of effort required. In addition to user-
driven integration efforts, strategic marketing agreements between tool vendors have provided
primitive integration between CASE analysis and design tools, and documentation tools. In
both user-integrated toolsets and vendor-integrated toolsets, the level of integration in many
cases is limited to primitive callable interfaces. Little progress has been made in the complex
area of data integration.

Several authors, [4 and 6], suggest that users can make better use of existing tool technolo-
gies by improving the process through which tools are adopted. These authors contend that
failures to achieve the desired results with CASE tools are often due to a failed process for
dealing with the significant technological change represented by the tools. Andrews [1] has
noted that an organization can maximize the benefit of CASE tools and minimize adoption
problems by gaining management and engineering support, providing proper education and
training, selecting appropriate tools, developing internal standards, and managing the expec-
tations of management and engineers.

26 CMU/SEI-91-TR-8

2.4 Develop Strategies For Tool Selection
When deciding on a strategy for tool selection, users must also take into account the amount
and extent of adaptation that will be required by them (or on their behalf) to fully integrate a set
of tools originating from diverse sources.

One important consideration in selecting an "open" tool set is that of tool flexibility. For tools to
be fully integrated, users must be able to modify the characteristic behavior of the tool (e.g.,
design rules, object types, process), not just the display interface.

Users are faced with an interface support problem similar to that of the tool vendors. Users
must decide if the effort required to integrate a set of proprietary tools would be greater than
that required to develop a specific, tailored tool interface. Users also may not be willing or able
to wait for a standard to emerge, or to integrate their tools to a (potentially) nonstandard inter-
face. By adopting a private solution, the user also maintains control over tool definition as well
as data, interface, and expansion characteristics (i.e., flexibility) and faces less risk of forced
re-adaptation of tools due to interface and/or environment changes.

Given the current state of standardization efforts, ultimately the end users themselves may
have to act as systems integrators and write the code necessary to effectively integrate a set
of vendor tools. This assumes, of course, that the tool interfaces are documented by the ven-
dors and that the user can afford to expend the time and cost necessary to implement the tool
integration. In the interim, users are left to the task of manually coordinating changes between
tool databases.

2.5 Develop Internal Standards
When considering the effectiveness of productivity tools, users should take into account that
tools will be best utilized when tailored to the specific software development environment. In-
ternal standards should be developed to facilitate the selection and usage of tools and to fa-
cilitate the transition of information to other internal and external organizations.

Users should be sure that they understand which capabilities and support technologies they
require from a productivity tool. Users should then purchase tools that track developing tech-
nologies and are capable of being adapted to evolutionary changes in the software engineer-
ing process/model.

Tools should be considered as an extension of the operating environment. As such, users
should be sure to consider any modifications to operating systems, support software, and/or
system hardware that would be required to support the selected tool(s).

To gain the most from a tool set, users should work to a specific standard for tool data, process
description, and documentation production. This will help prevent misinterpretation of tool
data, facilitate the communication process between project members, and ultimately expedite
tool effectiveness.

CMU/SEI-g1-TR-8 27

Finally, a defined set of metrics should be developed that would be used to quantify tool re-
suits. This will help users to measure their progress with respect to both productivity and qual-

ity improvements.

2.6 Consider Personal And Group Productivity Tools
Before making a final decision on tools, users should also consider the possibilities of personal
or group productivity tools. It is not always necessary to select a fully distributed, multi-user
tool set to improve group productivity.

In many cases, the costs associated with adopting a new set of state-of-the-art tools (from ini-
tial purchase, training, etc.) are prohibitive. In these instances, an organization might be better
served by focusing instead on localized tool functions.

With the opening of the UNIX market, a number of productivity tools have become available
for a growing base of UNIX platforms. Virtually every computer from PC to mainframe now has
some flavor of the UNIX operating system available, and tool vendors are now offering prod-
ucts that run on many of these versions.

When using personal tools, decisions have to be made concerning how to handle/synchronize
user data. In the case of local databases, the organization must have a plan for database up-
date and distribution throughout the project(s) involved. In the case of a central, single-thread-
ed database there are several complex issues (e.g., security, roll-back, integrity) that have to
be addressed. These solutions require different levels of user tool interaction and coordination
of data.

An organization should also determine how best to organize its staff for optimum tool use and
support efficiency. Some organizations could utilize local tool "experts" to facilitate the pro-
cess. Projects should also be organized to allow efficient communication of data/information
throughout the development life cycle.

2.7 Identify the Most Cost Effective Tools
Due to the expense of purchasing a tool, few organizations can afford to do it without first at-
tempting to analyze the actual tool costs. Before settling on purchase of a tool, it is useful to
examine the overall process for areas that can be improved with other potentially cheaper
tools. For example, if the CM process suffers from lack of tool support, it may well make sense
to invest in a CM tool prior to investing in a more expensive tool to support other activities. Sim-
ilarly, simple tools such as notes facilities can have a significant impact on productivity and
quality by providing a better means to communicate project decisions and history. For exam-
ple, one group of developers at Digital Equipment Corporation have found that the greatest
benefit from the use of a tool set for software development came through use of technologi-
cally unsophisticated communication tools. At the recent SETAl conference, when asked
what tool improvements would be most beneficial to them, real-time developers cited improve-
ments in such commonly available tools as compilers, debuggers, profilers, and linkers.

28 CMU/SEI-91 -TR-8

To select the most cost effective tool, the user must analyze their software development pro-
cess to identify the most expensive areas and perform an analysis of individual tools similar to

that presented in Figure 1-2 and Figure 1-3. Unfortunately, due to the lack of historical metric
data about productivity and costs in much of the industry, it is likely that many organizations

do not know where the majority of their software development and maintenance budgets are
spent. General guidance is available from experts in the field of software metrics. However,
general guidelines cannot replace data collected from within the organization.

In Jones [14], data on over 3500 software projects was presented and indicates that the work
breakdown characteristics for software vary along the dimensions of system size (in SLOC
and function points), system type (MIS, systems, real time, Al, etc.), system sponsor (internal

use, commercial, DoD), and life-cycle phase (development or maintenance). The data implies
that different tools will be more or less cost-effective depending on these characteristics. For
example, Jones suggests that paperwork costs account for 45% of total costs in an average
military system, but only 25% of costs in an MIS system. It is unlikely that a tool that is cost
effective in one setting will be equally cost-effective in the other.

Differing work breakdown characteristics for software will influence not only the type of tool
that is most cost effective in a specific setting, but also will influence which tool should be con-
sidered as the best for a specifir setting. Many sets of guidelines are available for tool assess-
ment, among them one puow ied by the Software Engineering Institute [8]. Care must be tak-
en, however, to apply ..r,..opriate weights to tool functions based on the work breakdown
characteristics wher determining which tool is most appropriate for the organization.

2.8 Track Emerging Standards Carefully
To anticipate the direction of the tool market as opposed to simply reacting to it, users should
get more involved in the process that will determine the future of the practice. This can be ac-
complished via several constructive approaches.

Users should get involved in selected standards efforts. By attaining representation on the
standards committees that most directly affect the users' end product or service, users can get
their input considered directly by the standards body. This will help reduce product interface
restructuring once a standard is adopted.

Users should look for complementary standards efforts. When adopting tools from different
vendors, try to select tools that will integrate with little or no end-user adaptation. Users should
look for vendors with interests common to their own. There are a number of vendor partner-
ships that were established to address the issues of development and integration of compre-
hensive tool suites.

Users should be sure to consider basic standards. Make sure that tools are purchased from a
vendor that adheres to the accepted standards. Small vendors who choose to "go it alone" will
likely not be in existence for long. Choosing tools with standard interfaces will save time and

CMU/SEI-91-TR-8 29

money in the future, especially if end-user enhancements or adaptations have been per-
formed.

2.9 Make Selective Use Of Influence
In addition to tracking standards, users should work to influence tool decisions as is reason-
able. Users should first determine what level of influence is desired. Any user efforts in this
regard are bound to place a burden on the user organization and would best be expended in
protecting one's interests rather than being spread out too widely.

Users should also try to determine what level of influence is practical given their level of ex-
pertise and interest. For example, attempting to define a standard alone is likely to be less ef-
fective than participating in the standards definition. Users would best be served by meshing
their own desires and expectations with similar interests in other organizations.

Finally, users should try to anticipate the expected payoff period of their participation. If in-
volvement in tool definition would produce the "ideal" tool but take too long to produce it, then
the effect of the influence would be negated by missing the window of application need. It is
also likely that ongoing advances in technology would render this resulting tool obsolete. In
this case, users would be better served by using off-the-shelf tools and working to help facili-
tate the tool integration and adaptation aspects of the implementation.

2.10 Maintain A Flexible Posture
Currently, the emphasis of tools is on the "bigger is better" approach. That is, tools are often
developed that contain multiple software development functions (e.g., graphics editor, version
control, data management) in one complete package. This may partly be due to the standard-
ization and external integration problems previously mentioned. With the exception of specific
vendor partnerships, multiple vendors generally seem unable to come to terms and produce
a comprehensive set of integrated software tools.

It is still uncertain what will happen in the area of tool frameworks. There are many consider-
ations that have to be addressed with respect to standardized interfaces for the three principal
integration areas: control, data, and presentation. Full, open tool set integration is not likely to
occur in this sense. It is most likely that framework standards will be adopted by limited private
vendor partnerships and that the resulting proprietary flavor will act to exclude general vendor
and user acceptance.

In the future, tools are most likely to become more specialized. As de facto tool standards
emerge, vendors will start to produce tools that fit with the defined interfaces. It is possible that
the larger vendors will continue to produce monolithic tool sets, but smaller vendors will likely
develop specific specialized "point" tools that will be compatible with the established formats.

30 CMU/SEI-91 -TR-8

2.11 Understand The Changing Tool Market

It is important to keep in perspective the relatively small size of the software development mar-

ket for tools in relation to the overall tool market. The majority of tools available on the mass

tool market today are not specifically aimed at software developers, but rather at end users.
Even tools such as documentation systems, which have gained wide acceptance in the soft-
ware engineering market, were not originally intended for that market. In many cases, software

developers have been a late group to take advantage of developing tool technology. One need

only compare the vast array of personal productivity tools available for personal computers to
the relatively small number of personal productivity tools available for the workstation market
to realize that software developers do not control the general market.

It is also important to note the DoD market is smaller still. According to Jones [14], military soft-
ware makes up 22% of U.S. software production. This 22/6 total is further divided into almost

every conceivable type of software. If military budgets shrink relative to the rest of the econo-

my, the impact of DoD software will be even smaller.

As the percentage of DoD software declines when compared to the total software market, the
influence of the DoD on the tools market will likely follow. The DoD will find it difficult to take
the sole lead in developing enterprises like ARPANET, or in enforcing standards like TCP/IP.
DoD organizations that wish to maintain their current level of influence must develop strategic
partnerships with like-minded, non-DoD organizations. The influence of DoD organizations
may be made most effective through active participation in a variety of commercial standards
efforts, some of which are advancing standards only peripherally related to software engineer-
ing, such as document interchange formats.

2.12 Consider Specific DoD Needs
While the DoD must become part of the larger software development and software user com-
munities, it still possesses unique needs in the areas of security, hardware and systems soft-
ware, legal issues, and documentation.

The security needs of the DoD will continue to be unique both in the level of security necessary
and in the determination of access to information. In this area, defense organizations must
continue to take a leading role for the foreseeable future, although orientation will be on influ-
encing commercial standards to include functionality for DoD needs rather than developing
unique security requirements. One case where this is already taking place is in the upgrade of
PCTE security standards to those of PCTE+. This upgrade was initiated due to the efforts to
migrate the European commercially-funded PCTE toward the U.S. DoD-backed CAIS-A stan-
dard.

In the area of hardware and systems software, DoD needs will continue to require exception-
ally high performance systems for some hard real-time applications. On the other hand, as
hardware improves, an increasingly greater portion of DoD needs can and will be met by com-
mercially supported UNIX systems. Many groups within the military have recognized the grow-

CMU/SEI-91-TR-8 31

ing acceptance of UNIX as a standard within the computing community, and have begun the
massive effort to transition to the UNIX environment. A larger number of compilers running on
U NIX workstations and providing for generation of code for military embedded computers are
becoming commercially available. This will reduce the need for the military to support the
building of specialized development environments, such as ALS/N, in the future.

Prior to the acceptance of systems built with sophisticated toolsets, the military must work out
legal and practical issues concerning the purchasing of tools and support environments spe-
cific to applications. Recognition of the difficulty in maintaining DoD-specific support environ-
ments is evident in the recent emphasis of the STARS program to produce commercially via-
ble support environments that interface with exi,ting tools and technologies. It should be rec-
ognized that military organizations purchasing a iarge, long-lived system must purchase not
only the system, but also the technology to maintain the system. In the near future, it is possi-
ble that the development environment may become as important in awarding contracts as the
contracted system itself.

2.12.1 Find Ways To Deal With Documentation Costs
According to Jones [14], overall productivity for military software production lags behind that
of commercial systems software production by greater than 30%, yet it appears that produc-
tivity during implementation is equivalent. The vast majority of the difference between produc-
tivity of military vs. commercial systems is attributed to documentation costs. Large-scale DoD
tasks, unlike commercial systems software or MIS tasks, spend the largest portion of their
project budget on tasks related to paperwork.

The large documentation costs in the military sector can be reduced in one of two ways: by
finding better methods of producing required documentation or by reducing the amount of re-
quired documentation. Both methods are possible in the military environment. Modern CASE
tools often provide documentation capabilities specific to DOD-STD-2167A, which can be
used in conjunction with documentation tools. In fact, most users of CASE tools agree that the
tools offer a significant advantage in the generation of documentation.

Perhaps an even more significant reduction in documentation costs and a corresponding gain
in productivity can come from a concerted effort to determine what form and volume of docu-
mentation is of use to the software maintainer. Informal IBM studies revealed that much of the
documentation generated during development at IBM was of minimum use to maintainers. A
similar effort on the part of the military sector to determine an optimal form and amount of doc-
umentation could be used to tailor the level of documentation required of system builders,
even within the framework of DOD-STD-2167A.

32 CMU/SEI-91 -TR-8

3 Summary

The computing environment in which military software is developed is changing rapidly, and it
will continue in a state of flux until at least the year 2000. The basic issues presented in this
paper are not likely to be solved quickly. Military organizations must realize that they will be
most effective in influencing the character that the solutions take by working in concert with
the larger, commercial software community of developers and users. It is imperative that mili-
tary organizations move in the direction of developing standards for hardware and software by
advancing the military computing environment in the direction of the best commercial stan-
dards. Failure to do so will mean that military organizations will not be capable of taking ad-
vantage of technological advances in computing environments as they occur.

CMU/SEI-91-TR-8 33

34 CMU/SEI-91 -TR-8

References
1 Andrews, D. C. "CASE Users Find Implementation Trail Tough, But Following Correct Path Re-

sults in Gains." MIS Week, 10, 6 (Feb 1989), 48-50.

2 Blechar, M. J. "Is it CASE or is it a Pretender? Tools Must Address All Stages of the Development
Process." Computing Canada, 14, 22 (Oct 1988), 44.

3 Boehm, B. "A Spiral Model of Software Development and Enhancement" Computer, 21, 5 (May
1998), 61.

4 Bouldin, B.M. "Out With Wimps, In With Benign Despots (Implementing CASE Tools Requires Un-
derstanding how People Learn)" Software Magazine, 9, 5 (April 1989), 38.

5 Brown, A. W. Database Support for Software Engineering. New York: Wiley, 1989.

6 Ellison, R. J., Huff, C. H., Morris, E. J., Smith, D B., & Zarrella, P. F. 'Tools Within Software
Engineering Practice." Software Engineering Institute Technical Review, (1989), 11-20.

7 Feuche, M. "Implementing CASE? Learn From the Users." MIS Week, 10, 37 (Sep 1989), 1-2.

8 Firth, R., Mosley, V., Pethia, R., Roberts, L., & Wood, W. A Guide to the Classification and As-
sessment of Software Engineering Tools. Software Engineering Institute Technical Report
CMU/SEI-87-TR-10 (DTIC: ADA213968) (Aug 1987).

9 Gane, C. Computer Aided Software Engineering. Prentice Hall, 1988.

10 Graham, M., & Miller, D. ISTAR Evaluation. Software Engineering Institute Technical Report
CMU/SEI-88-TR-3 (DTIC: ADA201345) (Jul 1988).

11 Grochow, J. M. "Cost Justifying CASE Requires Specific Identification." MIS Week, 9, 26 (Jun
1988), 35.

12 HP Encapsulator 1.0: "Technical Data. Hewlett Packard Co., 1989.

13 Humphrey, W. S. CASE Planning and the Software Process. Software Engineering Institute Tech-
nical Report CMU/SEI-89-TR-26 (DTIC: ADA219066) (May 1989).

14 Jones, C. Software Measurement and Estimation, DCI Seminar Notes, Boston, Mass., Aug 2-3,
1990.

15 Nelson, R. R., & Loh, M. "Reaping CASE Harvests." Datamation, 35, 13 (Jul 1989), 31-33.
16 Poston, R. M. "Proposed Standard Eases Tool Interconnection." IEEE Software, 6, 6 (Nov 1989),

69-70.

17 Powell, M. "The Madness in the Method." Computer Weekly, 1164 (May 1989), 22-23.

18 Seigel, J., Stewman, S., Konda, K., Larkey, P.,& Wagner, W. G. NationalSoftware Capacity: Near
Term Study. Software Engineering Institute Technical Report CMU/SEI-90-TR-12 (DTIC:
ADA227564) (May 1990).

19 Smith, D. B., & Oman, P. W. "Software Tools in Context." IEEE Software, 7,3 (May 1990), 14-18.

20 Network Software Environment: Reference Manual. Sun Microsystems, Inc., 1988.

CMU/SEI-91-TR-8 35

36 CMU/SEI-91 -TR-8

UNLIMITED, UNCLASSIFIED
SECURrTY CLASSFICATION OF ThiS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release

2b. DECLASSIFICATION/DOWNGRADING SCHEDLE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-91-TR-8 ESD-TR-91-8

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program OfficeSEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

&a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANZATION (if applicable) F1962890C0003

SEI Joint Program Office ESD/AVS

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENTNO NO. NO NO.

_63756E N/A N/A N/A
II. TITLE (Include Security Classification)

Issues in Tool Acquisition

12. PERSONAL AUTHOR(S)

Paul F. Zarrella, Dennis B. Smith, Edwin J. Morris
3a. TYPE OF REPOR 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mm. Day) 15 PAGE COUNT

Final IFROM TOSeptember 1991 48
16. SUPPLEMENTARY NOTATION

Paul F. Zarrella, Dennis B. Smith, and Edwin J. Morris

17. COSATI CODES 18. SUBJECT TERMS (Continue an rev me of neouaary and identify by block number)
FIELD GROUP SUB. GR. Software development, tools, CASE

19. ABSTRAL'I (Continue on revere if necessary and idenify by block number)

This technical report identifies issues involved in the acquisition of Computer Aided Software Engi-
neering (CASE) tools. Among the issues identified and discussed are cost, performance, process
support, maintenance, data management, tool integration, and standardization. The report con-
cludes with recommendations intended for individuals or groups responsible for acquiring CASE
tools.

(please turn over)

20. DISTRIBUTION/AVAILABILiTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED E SAME AS RPTE DTIC USERS l Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL

Charles J. Ryan, Major, USAF (412) 268-7631 ESD/AVS (SEI)

DD FORM 1473.83 APR EDMON of I JAN 73 IS OBSOLETE UNLJMITED, UNCLASSIFIED
SECMY CLASSIFICATION' OF TIS

SUPPLEMENTARY

INFORMATION

;A

-'- Carnegie Mellon University

-- Software Engineering Institute

January 30, 1992 , 9Ij .

Dear Colleague:

The SEI technical report Issues in Tool Acquisition (CMU/SEI-91-TR-8), which we recentl," sent to
you, had formatting and spelling errors on pages 3 and 35. Enclosed are new versions of (hese
pages with corrections.

Sincerely,

Bill McSteen
Information Management

wkmj: wkm
Enl',sure

ca Meo Unmity
Piftsburgh. Pennsylvania 15213-890
(412) 266-7700
FAX: (412) 26-576

Percentage of executives who think that there will be a problem with the nation's software ca-
pacity to produce military software over the next five years [18]

Expect a problem Expect no problem (N)

Industry Executives 88% 12% 90

Government Executives 87% 13% 16

All Executives 88% 12% 106

The assessed degree of severity of the problem for those who expect a problem *

Mean Score (N)

Industry Executives 3.9 80

Government Executives 4.4 14

All Executives 4.0 94

*Scale Very Serious Serious Not Serious

5 4 3 2 1

Figure 1-1 Executives' Assessment of National Software Capacity
Unfortunately, the literature concerning the effectiveness of such productivity tools is inconclu-
sive. It is unclear whether individual CASE tools are effective. In addition, industry observers
disagree concerning the types of projects that benefit most from the use of the tools [15 and
17], the point at which improvements become obvious [land 2], and the degree of Improve-
ment [7 and 11]. Inconclusive result, and contradictions offer the software manager little guid-
ance in determining which tool or set of tools will be most useful.

Complex decisions concerning tool strategy and adoption require projections based not only
on present conditions, but also on future trends, due to the long life of many software products.
Among the major tool issues discussed here are:

" Cost

" Performance

" Support for the software process

" Maintainability

" Data management

" Integration *

CMU/SEI-91-TR-8

V!

References
1 Andrews, D. C. "CASE Users Find Implementation Trail Tough, But Following Correct Path Re-

suits in Gai is." MIS Week, 10, 6 (Feb 1989), 48-50.

2 Blechar, M. J. "Is it CASE or is it a Pretender? Tools Must Address All Stages of the Development
Process." Computing Canada, 14, 22 (Oct 1988), 44.

3 Boehm, B. "A Spiral Model of Software Development and Enhancement" Computer, 21, 5 (May

1998), 61.

4 Bouldin, B.M. "Out With Wimps, In With Benign Despots (Implementing CASE Tools Requires Un-
derstanding how People Learn)" Software Magazine, 9, 5 (April 1989), 38.

5 Brown, A. W. Database Support for Software Engineering. New York: Wiley, 1989.

6 Ellison, R. J., Huff, C. H., Morris, E. J., Smith, D B., & Zar 'la, P. F. "Tools Within Software

Engineering Practice." Software Engineering Institute Technical Review, (1989), 11-20.

7 Feuche, M. "Implementing CASE? Learn From the Users." MIS Week, 10, 37 (Sep 1989), 1-2.

8 Firth, R., Mosley, V., Pethia, R., Roberts, L., & Wood, W. A Guide to the Classification and As-
sessment of Software Engineering Tools. Software Engineering Institute Technical Report
CMU/SEI-87-TR-10 (DTIC: ADA213968) (Aug 1987).

9 Gane, C. Computer Aided Software Engineering. Prentice Hall, 1988.

10 Graham, M., & Miller, D. ISTAR Evaluation. Software Engineering Institute Technical Report
CMU/SEI-88-TR-3 (DTIC: ADA201345) (Jul 1988).

11 Grochow, J. M. "Cost Justifying CASE Requires Specific Identification." MIS Week, 9, 26 (Jun
1988), 35.

12 HP Encapsulator 1.0: Technical Data. Hewlett Packard Co., 1989.

13 Humphrey, W. S. CASE Planning and the Software Process. Software Engineering Institute Tech-
nical Report CMU/SEI-89-TR-26 (DTIC: ADA219066) (May 1989).

14 Jones, C. Software Measurement and Estimation, DCI Seminar Notes, Boston, Mass., Aug 2-3,
1990.

15 Nelson, R. R., & Loh, M. "Reaping CASE Harvests." Datamation, 35, 13 (Jul 1989), 31-33.

16 Poston, R. M. "Proposed Standard Eases Tool Interconnection." IEEE Software, 6, 6 (Nov 1989),

60-70.

17 Powell, M. "The Madness In the Method." Computer Weekly, 1164 (Ma', 1989), 22-23.

18 Siegel, J., Stewrnan, S., Konda, K., Larkey, P.,& Wagner, W. G. National Software Capacity: Near
Tenm Study. Software Engineering Institute Technical Report CMU/SEI-90-TR-12 (DTIC:
ADA227564) (May 1990).

19 Smith, D. B., & Oman, P. W. "Software Tools In Context." IEEE Software, 7,3 (May 1990),14-18.

20 Network Software Environment: Reference Manual Sun Microsystems, Inc., 1988.

CMU/SE1gl-TR-8 35

