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1 STATEMENT OF THE PROBLEM STUDIED

This report describes our research work for ARO grant DAAG03-88-KO087, on the logic of commonsense
and nonmonotonic reasoning. This work was a extension of our previous ARO grant in
the period from ).985 to 1988. The unifying theme in this work is that of the semantical basis
for commonsense reasoning, in terms both of algorithms (as in logic programming and deductive
databases) and of intelligent agents in a complex world.

We have focused our work on two principal themes. They are resource-limited belief systems,
and logic programming. The problem, brief outline is as follows: How can an intelligent system
deal with incomplete or uncertain information, and yet on average get useful answers? There is
a large body of research on this topic, which includes all of non-monotonic reasoning and more
besides. Our attack on the problem emphasized two special contexts: logic programming, and
situated (real-time) reasoning.

2 SUMMARY OF RESULTS

The work we accomplishe., can be indicated in the following outline; a detailed statement is given
in the subsequent text:

- Studies in Logic Programming

- Resource-Limited Belief Systems

2.1 Studies in Logic Programming

2.1.1 Introduction

In this section we outline theoretical results that have been developed in the field of logic program-
ming during the past grant period at the University of Maryland. We focus both on what is called
definite logic programming and disjunctive logic programming.

By a definite logic program we mean a set of statements that have the following form:

(1) A :- B1, ..., B,
where A and the Bi, 1 < i < n are atomic formulae. There are several forms of the formula that
one usually distinguishes. If the right hand side of the formula is empty, and the left hand side is
not empty, the formula is referred to as a fact. If the left hand side is not empty and the right
hand side is not empty, we refer to the formula as a procedure. The atom A is called the procedure
head, and the right hand side is the procedure body. The formula is read as "A if B1 and B2 and
... and Bn." If both the left and the right hand side are empty. the formula is referred to as the
halt statement. Finally, a query is a statement where the left haihd side of the formula is empty
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and the-right hand side is not empty. The formula where the left hand side is not empty and the
right hand side may or may not be empty is referred to as a program clause. A set of such program
clauses is said to constitute a definite logic program.

By a disjunctive logic progr.-m we mean a program which contains clauses of the form,

(2) A1,...,Amn :- B1,...,Bn,

where the Ai and Bj, 1 < i < m, 1 < j <5 n are atoms. A disjunctive clause is read as, "A1 or A 2 or
... or A.. if B1 and B 2 and ... and Bn." In both (1) and (2) variables in predicates are assumed to
be universally quantified. We refer to clauses such as in (2) clause as disjunctive program clauses.
The atoms in the left hand side of the clause are disjuncts, while the atoms in the right hand side
are conjuncts. If m=1 the disjunctive program clause reduces to a definite program clause.

We shall also consider clauses of the form (1) or (2), where the Bi may be literals. By a literal
we mean either an atom or the negation of an atom. A clause of the form (1) or (2) which contains
literals in the body is referred to as a normal or general logic program clause.

This article is divided into several sections. In each sectior we describe the contributions
made by others and then outline the extensions that have been made to logic programming at
the University of Maryland. Our contribut~ons have been to extend the foundations of definite
logic programming to disjunctive logic programming. In the section Definite and Disjunctive Logic

pogramming, we describe the theory developed to handle definite and disjunctive programs whose
forms-have been given above. In the section Negation in Definite and Disjunctive Logic Program-
ming, we describe the theory developed to handle negated queries in defiitite and disjunctive logic
programs. In the section Normal or General Logic Programs we discuss several topics: Stratified
Logic Programming, Well-Founded and Generalized Well-Founded Logic Programming and General-
ized-Disjunctive Well-Founded Logic Programming. In the subsection Stratified Logic Programming,
the theory for general logic programs with .o recursion through negative literals in the body of a
program clause is described. In the subsection Well-Founded and Generalized Well-Founded Logic
Programming, we describe extensions to the theory that handles general logic programs that are
not stratifiable. In the subsection Generalized Disjunctive Well-Founded Logic Programming, we
extend the results to disjunctive programs. This permits the full gamut of possible programs to be
discussed from a theoretical view. We do not treat theories in which the left hand side of a program
clause may contain negated atoms.

".1.2 Definite and Disjunctive Logic Programming

A question that arises with any programming language is that of the semantics of the program.
What does a program written in that language mean, and what programs can be written in the
language? In a logic program the fact that one is dealing with a set of logical statements permits
one to use concepts from classical logic to define a semantics for a logic program. It is convenient
and sufficient to focus on the Herbrand domain of a program to capture the semantics of a logic
program. By the fferbrand domain we mean the set of all rms formed from the set of all coistants
in the program and recursively the set of all functions whose arguments are terms. If there are no
constants in the program, then an arbitrary constant is added to the domain. Given the Herbrand
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domain, one can then consider the Herbrand Base, which is the set of all ground predicates that can

be constructed from the Herbrand domain. It is sufficient to define a semantics for the program

overthis domain. We use Herbrand interpretations, which are subsets of the Herbrand base to

specify the semantics of logic programs. A Herbrand model of a logic program is an interpretation

that satisfies all clauses in the program.

Definite Logic Programming In their 1976 paper, van Emden and Kowalski (86] defined three

different semantics for a definite logic program. These are referred to as model theoretic, proof

theoretic (or proc.dural), and fixpoint (or denotational) semantics. Since we are dealing with logic,
a natural semantics is to state that the meaning of a definite logic program is a Herbrand model
of the theory. However, this definitioii is too broad as there may be atoms in the Herbrand model
that one would not want to conclude to be true. For exampl,, the program {p(a), q(b)} has a
Herbrand model that consists of {p(a),p(b), q(a), q(b)). It is clear that the program does not state
that either p(b) or q(a) are true. Van Em:len and Kowalski showed that for definite logic programs,
the intersection of all Herbrand models of a program is a unique minimal Herbrand model of the

program. It is the least model as it is contained within all models. It represents the least amount
of information that can be specified as true. The least Herbrand model will be abbreviated to be

MV.

A- second semantics that can be associated with a program "s a procedural semantics. G6del
showed that one obtains the same results with proof theory as one does from model theory. van
Emden and Kowalski showed that if one uses a proof procedure called Linear Resolution with
Selection Function for Definite Programs (SLD-resolution), that the ground atoms that are derivable
using SLD from the program, forming the success set, (success(P)) of the program, are exactly the
same as the atoms in the least Herbraud model, Mp.

A third semantics is obtained by defining a mapping, T, from Herbrad interpretations to
Herbrand interpretations. As in denotational semantics, if the domain over which the mapping,
T, is defined is a complete lattice and the mapping is continuous, then the mapping, T, has a
least fixpoint (lfp(T)), which is taken to be the meaning of the program. By a fixpoint we mean
that a mapping, T, satisfies the formula T(I) = I, for some I. The following mapping, defined by

van Emden and Kowalski, which maps Herbrand interpretations to Herbrand interpretations, is

continuous. Let P be a definite program, and I be a subset of the Herbrand Base of P, then

(3) Tp(I) = {A in HB(P): A :- B 1,B 2,...,B,, is a ground instance of a clause in P, and
B1, B2,..., B, are in I}.
The major result is that Mp = lfp(Tp) = success(P). That i., the model theoret:, thile procedural
and fixpoint semantics all give the same meaning to a program: the set of grouml atoms that are
logical consequences of the program.

Disjunctive Logic Programming In a disjinctive logic program, there is not necessarily
unique minimal Herbrand mo 1 1. Consider the disjunctive program that consists of a single program
clause:
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(4) p(a),p(b)
where a and b are constants. This clause is equivalent to

(5) p(a) V p(b)
and has two minimal Herbrand models, {p(a)}, and {p(b)}. Neither model contains the other. Fur-
thermore, the intersection of the two minimal models is not a model. Hence, disjunctive programs
do not share the property of definite logic programs that the intersection of models is a model.

Although there is no unique minimal Herbrand model in a disjunctive logic program, there are
a set of minimal Herbrand models that do not contain one another. In 1982 Minker [51] developed
a suitable model theoretic semantics for disjunctive logic programs in terms of the minimal models.
He defined the meaning of the program to be the set of positive ground clauses that are true i.
every minimal model.

To obtain the proof theoretic semantics of a disjunctive logic program, the inference system,
Linear Resolution with Selection Function for Indefinite Programs (SLI-resolution), developed by
Minker and Zanon [58] is used. As the proof theoretic semantics one should take the set of all
positive ground clauses that one can derived from the program using SLI resolution. We call this
set the success set, (succ(P)), of P. The proof theoretic and the model theoretic semantics yield
the same results.

To obtain the fixpoint semantics of a program, Minker and Rajasekar have modified the van
Emden-Kowalski fixpoint operator. When working with disjunctive programs, it is not possible to
map Herbrand interpretations to Herbrand interpretations. The natural mapping with a disjunctive
theory is to map a set of positive ground disjuncts to positive ground disjuncts. Minker and
Rajasekar [78] therefore defined the Extended Herbrand Base (EH.Bp) to consist of the set of all
disjuncts that can be constructed using the Herbrand Base. Subsets of the EHBp under the partial
order subset form a lattice. Subsets of the EHB are referred to as states. Minker and Raj,'sekar
defined their fixpoint operaor to be:

(6) Tp(S) = {A in EHBp: A' :- B 1, 8 2,...,B,, is a ground instance of a clause in P, and
B1 V C1, B 2 V C2, ..., B. V C , are in S, and A is the smallest factor of the clause A' V C1 V ... V C,
where the Ci, I < i < n and A' are positive clauses.}

The major result in disjunctive logic programming is that the model semantics, the proof
semantics and the fixp..int semantics yield the same semantics and capture the set of minimal
positive clauses that are logical consequences of the program.

There is a corresponding result with respect to disjunctive logic programs that is similar to the
minimal model property. Let a model state be defined to be a subset o: the EHBp of a program
such that every model of the program is contained in or equal to a model of the set of clauses in
the model state, and every minimal model of the model state is a model of the program. Then the
intersection of all model states is a model state and it is the minimal model state.
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2.1.3 Negation in Definite and Disjunctive Programs

Given a definite or a disjunctive progran, the ouly answers that may be derived are positive. It

is not possible to answer a negative query. One would have to permit negative information to be

stored with the program. However, adding negative data could overwhelm a system as there is

an unlimited amount of negative information that may apply. Furthermore, it may be necessary

to invoke a .full theorem prover to find answers to queries. We escribe several ways in which

one may conclude negative information from definite or disjunctive theories without having to add

negative data to the program. The theories of negation described below lead to nonmonotonic

logics, important for commonsense reasoning. By a nonmonotonic logic is meant one in which the
addition of a new fact to a theory may cause previous conclusions to become false.

Negation in Definite Programs Reiter [81] and independently Clark [13] were the first to
address negation in definite logic programs and deductive databases. Their results appeared in a
book edited by Galaire and Minker [27] entitled, Logic and Data Bases. To answer negated queries,

Reiter defined the closed world assumption (CWA). According to the CWA, one can assume a
negated atom to be true if one cannot prove the atom from the program. Reiter showed that the
union of the theory and the negated atoms proved by the CWA is consistent. Clark argues that the
way in which one should view negation is that the clauses in a definite lo.ic program supply "if"
conditions. What one shoul, do is consider definitions to imply "if-and-only-i V conditions. To do
so,-one effectively reverses the "if" condition to be an "only-if" condition and ther, takes the union
ofthis set of clauses with the original program clauses. The union of these two sets, augmented by
equality axioms is referred to as the Clark completion operator, and written comp(P). The program
need no longer be definite when the "only-if" conditions are added to the "if" conditions. However,
Clark shows that by using tegation as finite failure (NAF) on the "if" definitions, then one can
conclude the negation of an a.+om if it fails finitely along every branch of the proof. The proof
procedure SLDNF is used for this purpose. SLDNF is sound and complete with respect to the
comp(P).

Shepherdson [84] showed a relationship between answers found using the CWA and the comp(P)
theories of negation. He provides conditions under which they are the same and under which they
may differ.

Negation in Disjunctive Theories ,iis discussion of the CWA in 1978, Reiter showeI that
the CWA applied to disjunctive theories leads to inconsistencies. Consider the theory {p(e) vp(b)}.
Since it is neither possible to prove p(a) nor p(b), by the CWA, one ma assunxe -,p(c) :nd -'p(b).
But the union, {p(a) V p(b), -p(a), -,p(b)}, is now inconsistent.

To overcome this problem, Mirker [51] defined thie Generalized Closed World Assumption
(GCWA). There are two ways to characterize the GCWA: model theoretic and proof theoretic.
In the model theoretic approach an atom p(a) is assumed to be false if it is not true in all minimal
models. In the proof theoretic approach, one may assume p(a, to be false if for all positive clauses
K, whenever p(a) v K can be derived from the program, then K can be derived from the program.
Minker showed that these two definitions are equivalent. Computing answers with the GCWA is



computationally difficult as shown by Chomicki and Subrahmanian [12].

As shown by Lobo, Minker and Rajasekar [44] , one can define a completion for a disjunctive
program in a manner similar to the Clark completion operator. This leads to a theory of nega-
tion called the Weak Generalized Closed World Assumption (WGCWA), which is no more difficult
-to compute than negation in the completion theory associated with definite programs, and com-
putationally less complex than the GCWA. In the WGCWA, we may assume the negation of an
atom p(a) if there is no positive ground clause that can be derived from the program that con-
tains p(a). We refer to the completed theory for disjunctive programs as dcomp(P). The WGCWA
was discovered independently by Ross and Topor who call it the disjunctive database rule (DDR).
Lobo, Minker and Rajasekar show that the GCWA implies the WGCWA. Both the GCWA and
the WGCWA compute answers to negated atoms when they are ground.

2.1.4 Normal or General Logic Programs

Definite programs or disjunctive programs do not allow negated atoms in the right hand side of a
program clause. This restricts the expressiveness that one may achteve in writing programs with
negaon in the body of a rule. As noted earlier, programs with nrzgated atoms in the body of
a program clause are referred to as normal or general programs. One can, of course, write an
equivalent formula for a Tormal program which does not contain net,ated atoms, by moving the
negated atom to the head of the program clause to achieve a disjunct:on of atoms in the head of
the clause. This, however, has a different connotation than that intended by a negated atom in the
body of a clause. It is intended in the latter case that the negated atom be considered solved by a
default rule, such as the CWA or negation as finite failure.

As noted by Apt, Blair and Walker [2] , and also by Van Gelder [87], by Naqvi [61] and by
Chandra and Harel [11], problems arise with the intended meaning of a program in some instances.
For example, the program {p : -- q, q : -p} raises questions as to its meaning. We describe

alternative ways to handle normal definite programs and the corresponding approach with normal
disjunctive programs.

Stratified Normal Programs In a stratified program one allows normal programs which do not
permit recursion through negation. In the example given in the previous section, one would not
permit the program clauses {p : -- ,q, q : -p} to be in the program since there is recursion through
negation. That is, we have "p if -,q" and "q if p" which needs recursive application of the two
rules to solve p and the application is through the negative literal '-q' When one excludes these
constructs, one can place program clauses into different strata. Stratified programs are a simple
generalization of a class of programs introduced in the context of deductive databases by Chandra
and Harel.

Apt, Blair and Walker show..d that if one has a stratified definite normal program, then one
can find a flxpoint for the first stratum and then use this fixpoint as the starting point, find the
fixpoint of the next stratum and continue until a fixpoint is obtained for the last stratum. This
final fixpoint is taken as the meaning of the program. They show that the fixpoint is a model and
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furthermore, is a minimal model of the program. The model semantics achieved is independent
of the manner in which the program is stratified. Przymusinski [75] has defined the concept of a
perfect model and has shown that every stratified logic program has exactly one perfect model. It
is identical to the model obtained by Apt, Blair and Walker.

Problems arise in programs where a negated literal has to be evaluated and the literal contains a
variable. In this case, the program is said to flounder. Chan [10] has defined constructive negation,
that will find correct answers even in the case of negated literals that contain variables. The
underlying idea behind constructive negation is to answer queries using formulas involving only
equality predicates.

Stratified Disjunctive Programs Rajasekar and Minker [79] apply the nonmonotonic fixpoint
semantics developed by Apt, Blair and Walker to a closure operator Tc to develop a fixpoint
theory for stratified disjunctive logic programs. In addition, they develop an iterative definition
for negation, called the Generalized Closed World Assumption for Stratified programs (GCWAS),
and show that the semantics captures this definition. A model-theoretic semantics is developed for
stratified disjunctive programs which is shown to be the least state characterized by the fixpoint
semantics that corresponds to a stable-state defined in a manner similar to the stable models of
Gelfond and Lifsdiitz [28]. A weaker semantics is also developed for stratification based on the
WGCWA.

Lobo [42] extends the concept of constructive negation, introduced by Chan for stratified logic
programs, to apply to stratified disjunctive logic programs. The results include the theories of
negation for disjunctive logic programs: the GCWAS and the WGCWAS.

Well-Founded and Generalized Well-Founded Logic Programs There exist programs that
are not stratifiable and yet we desire to compute answers to queries over these theories. An example
of a program that is not stratified is: {p : -a,p : -b,a : -- ,b,b : -- ,a}. Van Gelder, Ross and
Schlipf [88] define the concept of well-founded semantics to handle such programs. Przymusinski
[73] presents the ideas of well-founded semantics in terms of a three-valued logic consisting of true,
false and unknown. Thus, in the above program, we conclude that p, a, and b are all unknown.
That is, we cannot conclude that they are true or false. Van Gelder, Ross and Schlipf develop
fixpoint and model theoretic semantics for such programs. Ross [83] and Przymusinski [76] develop
procedural semantics. The three different semantics are equivalent.

If one analyzes the above program, another meaning to the program is also possible. In par-
ticular, the last two program clauses state that a is true if b is not true, and b is true if a is not
true, while the first two clauses state that if a is true then p must be true and if b is true p must
be true. Thus, although we may not be able to conclude which of a or b are true, we can surely
conclude that p must be true. Baral, Lobo and Minker [6] develop model theoretic, fixpoint and
procedural semantics to capture the meaning of programs such as given above. They term this
generalized well-founded semantics (GWFS). The fixpoint definition is similar to the definitions of
well-founded semantics of Przymusinski and iterates over partial interpretations. At each iteration
concepts borrowed from the GCWA are introduced to provide the appropriate semantics. Every
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atom proved to be true in the well-founded semantics is also true in the generalized well-founded
semantics. However, some additional atoms may be proved true in the GWFS.

Generalized Disjunctive Well-Founded Semantics There have been extensions of the well-
founded theory to disjunctive logic programs. Ross [82] developed a strong well-founded semantics
and Przymusinski [74] developed what is called a stationary semantics. This work extends well-
founded semantics to disjunctive logic programs.

Baral, Lobo and Minker [3, 7] extend the GWFS to generalized disjunctive well-founded seman-
:tics (GDWFS). They describe fixpoint, model theoretic and procedural semantics and show that
they are equivalent. The semantics achieved is stronger than that of either Ross or Przymusinski.
The idea of the fixpoint semantics is an extension of the fixpoint semantics for the GWFS and
iterates over a pair of sets, one a set of disjunctions of atoms assumed to be true and the other a
pair of conjunctions of atoms assumed to be false. Instead of only assuming dLtoms to be false, the
extension permits conjunctions to be false. It is shown that the extension is no more complex to
compute than the GCWA.

2.1.5 Summary

We have described the foundational theory that exists for definite normal logic programs and the
extensions that have been made at the University of Maryland to that theory and to disjunctive
normal lcgic programs. The theory of definite and disjunctive logic programs applies equally to
deductive databases where one typically assumes that the rules are function-free. A firm foundation
now exists both for definite normal and disjunctive normal programs for deductive databases and
logic programming.

Although we have developed model theoretic, proof theoretic and fixpoint semantics for dis-
junctive logic programs, efficient techniques will be required for computing answers to queries in
disjunctive deductive databases and logic programs. Some preliminary work has been reported by
Grant and Minker [53], Liu and Sunderraman [411, and by Henschen and his rtudents Yahya and
Park [89, 32]. However, a great deal of additional work is required.

2.2 Resource-Limited Belief Systems

In the area of resource-limited reasoning, we pursued three related topics. Nonmonotonic reasoning
has long been known to involve a form of introspective reasoning. We studied this in two aspects:
purely formal methods, and real-time (semi-)formal methods. Our purely formal results are re-
ported in [63] [65] [20]. In the first of these papers we showed that negative introspection is indeed
computable in many cases, allowing not only for default reasoning but also a more general kind
of reasoning about possibilities (i.e., about one's ignorance). In the second paper we showed that
certain formalisms for default reasoning are inherently inconsistent, and that a new approach is
needed if we are to maintain highly expressive representation languages. In the third paper, we
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found a way to circumvent certain difficulties of non-monotonic reasoning in which default conclu-
sions were too liberally drawn, producing intuitively incorrect results; our new approach involved
the notion of limiting the "scope" (or range) of application of default reasoning (to objects of imme-
diate interest). All of this involves a weak sense of resource-limitation, in that all that we required
was semi-decidability. However, this was already a severe restriction of the much nore frequent
undecidable formalisms in the literature.

Our second effort in this area involved further work in step-logics, in which real-time methods
are employed. Here a formal logic is altered so that the time taken to use the syntactic rules in
forming proofs is itself a parameter internal to the well-formed formulas in the logic, and thus
as proofs proceed these parameters change their values. The best analogy for such a parameter
is simply a watch or clock that the reasoner (computer) looks at as it carries out its reasoning.
However, the data derived from the dock (the present time) is used in the course of reasoning. This
is particularly useful in deadline situations, since the reasoning must come to a useful conclusion
before the deadline is reached. We were able to develop such real-time formalisms sufficiently to
be able to solve several classical problems with them, including the Brother Problem of R. Moore
(see [17]), the Three-Wise-Men Problem (see [14]), and the Nell & Dudley Problem of McDermott
(see [39]), all restated in more realistic temporal terms.

In [40], we showed that circumscriptive methods lend themselves well to reasoning about the
ignorance of others, which is important in communication as well as many other multi-agent in-
teractions. Gal and Minker [26] studied the problem of providing cooperative answers to provide
better communication between man and machine.

2.2.1 Introspection and Nonmonotonic Reasoning

Nonmonotonic forms of reasoning depend on a means for determining when certain propositions are
not known. This is so since the usual form of nonmonotonic inference in commonsense reasoning is

B & Consistent(A) -- C.

In fact, typically, C is simply A, as in

SovietTank(x) & Consistent(Functional(x)) - Functional(x).

Now, consistency of a wff A simply amounts to unprovability of -'A. Thus to reason nonmonotoni-
cally as above, an agent must be able to determine that it is unable to deduce -A, i.e., that it does
not have information allowing the conclusion -'A. This facility is called negative introspection.

This presents a problem, since in general the set of logical consequences of given axioms is
undecidable. However, we developed a variant of circumscription, called autocircumscriptior that
indicates certain cases in which an agent can indeed compute that it does not know (cannot deduce)
a wif such as -'A (see [63]). We applied this successfully to a number of proble-ms in commonsense
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reasoning, reported in [401. Later, Vladimir Lifschitz developed a yet stronger form of autocircum-
scription that he calls introspective circumscription.

Or. issue that arises, is that of possible conflicts that can arise when nonmonotonic (default)
con,:Lusions are drawn. For if, on the basis of not knowing A, it is found that A, then the agent does
know A after all. Of course, this is simply a result of temporally distinct states: at first A was not
known, and then later it was known. But this presents problems for the formalization of default
reasoning which may best be handled by passage to a different form of logic. We have investigated
this matter in more detail, indicated in the next section.

2.2.2 Step-Logic

We extended our work on step-logic further into the first-order (non-propositional) case and trained
it on some difficult problems in knowledge representation, such as the Three-Wise-Men Problem.
We present a variation of this classic problem which was frst introduced by McCarthy. A king
wishes to know whether his three advisors are as wise as t. y claim to be. Three chairs are lined
up, all facing the same direction, with one behind the other. The wise men are instructed to sit
down. The wise man in the back (A) can see the backs of the other two men. The man in the
middle (B) can only see the one wise man in front of him (C); and the wise man in front (C) can
see neither A nor B. The king begins with five cards, three white, and two black. He throws two
(of unknown color) away, then places one card, face up, behind each of the three wise men. The
men are given 30 minutes to determine the color of the card that sits behind his own chair. The
room is silent; then, after 29 minutes, C says 'My card is white!'.

The reasoning that supposedly occurred is as follows. Because the king started out with three
white and two black cards, then threw two away, each wise man must realize there is at least
one white card. If the cards of B and C were black, then A would have been able to announce
immediately that his card was white. They all eventually come to realize this (they are all truly
wise). Since A kept silent past the point at which the others would expect A to have realized this,
either B's card is white, or C's is. Shortly after this B should be able to predict, if C's were black,
that his card was white. C expects then that B has realized this by now. Since B also remains
silent, C concludes his card must be white. Clearly each wise man must be able to reason about
the time-bound reasoning of the others. We developed a formalism which is capable of performing
the above reasoning. See [17].

While this is rather complex reasoning, there are simple counterparts in everyday reasoning.
For a military application of this kind of reasoning, consider General A who must decide if the
opposing General B has yet broken A's secret code. If B had figured it out, then (so A reasons)
B would have reacted to A's messages concerning a plan to build up forces to the South. Since no
reaction is observed, A concludes that B has not yet broken the code.

Parallelism comes into this problem in at least two ways: (1) A wise man carries out reasoning
in a step-like fashion, but each step may involve several simultaneous deductions, and (2) the three
wise men reason concurrently so that a parallel implementation would allow for three copies of a
"Wise Man" program to interact with one another, providing experimental material in multiple
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agent reasoning. This latter feature ties in with later proposed work below.

We briefly mention a further example in which the effort or time spent is crucial. McDermott
[47] and Haas [31] have studied aspects of the problem of saving someone ("little Nell") from an
onrushing train. Step-logic should provide a natural context for dealing with the particular difficulty
arising from the fact that it is not appropriate to spend hours figuring out a plan to save Nell here,
for she will no longer need saving by then. That is, it is often important to take into account the
very passage of time as one's reasoning goes on. In part, these are problems of modeling time, as
has been studied by Allen [1] and McDermott [47]. However, there is more to it than this. Not
only must the agent be able to reason about time, it must be able to reason in time. That is, as it
makes more deductions, time passes, and this fact itself must be recognized. Otherwise we again
face the prospect of losing Nell while deducing that it will take too long to get to a phone to call che
train depot. We may even take too long to deduce that it will take too long! Treatments of time
in the literature are themselves still in the standard mold of unlimited reasoning, while realistic
situations require timely decisions. We have now some results on this problem, reported in [39].

2.2.3 Interagent understanding

Kraus and Perlis [40] showed that one agent can at times reason successfully about another agent's
knowledge and lack of knowledge. Although this is not in itself a matter of communication or
understanding between agents, it is a necessary preamble to such. For if one agent, A, cannot assess
whether another agent, B, does or does not know a certain fact, F, then A's task of communicating
with B is made all the harder. If B does know F then A can assume this knowledge on B's
part, but otherwise A must first acquaint B with the fact F. The method we used involved the
autocircumscription technique of [63], in which the possibility of some assertion, instead of a default
about it, is concluded. We were able to apply this to a problem posed by McCarthy: How can one
formally conclude that Mikhail Gorbachev does not (as a reasonable assumption) know whether
Ronald Reagan is now standing or sitting? [Or, in more military terms, how can we conclude that
General Orlov does not (as a reasonable assumption) know whether our tanks are runnning out of
fuel?] We were able to solve such problems, in simple cases, by applying autocircumscription to
our own knowledge about things that were likely to be sources of knowledge for others. If we could
show that we were ignorant of anything that could lead to another's knowledge of fact F, then we
were in a reasonable position to assume F was unknown to that person.

2.2.4 Cooperative Answering and Communicating Agents

Gal and Minker have in their papers [2G, 24] pursued natural language aspects to the query-answer
issue. They have dev.oped a general theory as to how to provide intelligent or cooperative (rather
than simply literal) natural language responses to queries. Their approach takes advantage of
integrity constraints that exist for a database. Detailed heuristics have been developed for this
purpose. A prototype of the method has been implemented in PROLOG. A meta-interpreter
written in PROLOG [43] combines integrity constraints with axioms in logic programs. The meta-
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interpreter is currently running and has been extended to incorporate some heuristics and aspects of
the theory to permit cooperative answers to be obtained, and to produce natural language output.

As an example, consider a database with the integrity constraint, "Only senior engineers may
earn more than their managers." Then the following query, "List all employees who earn more
than their managers," might reasonably be answered by

(i) Only senior engineers may earn more than their managers;

these employees are Smith, Brown, and White.

Note that this avoids both extremes, of ignoring helpful information, as in

(ii) Smith, Brown, and White.

and of presenting irrelevant detail as in

(iii) Smith, Brown, and White are the only such employees; and they are senior engineers all over
50 years old and Smith earns more than Brown or White.

The proper use of heuristics should allow cooperative answers such as (i) while avoiding the others.

A natural language database interface was developed that has four stages:

* A parser translates a natural language query into a logic query.

* An optimizer uses integrity constraints to transform the logic query into an equivalent but
more efficient form. Moreover the deductive part of the database is used to express the query
with extensional terms only. This stage also collects all information it can gather about
integrity constraints related to the question, without searching in the extensional database.

* A response generator receives the optimized logic query and searches in the extensional
database for the answers to the query, for the validity of the presuppositions of the query
and evaluates those integrity constraints added to the query, which need extensional database
search to be evaluated. It then applies selection rules to produce a cooperative response in
logic.

* A synthesizer translates the logic response into a natural language response.

Some progress has already been made on each of the four stages. More work on generalizing
the heuristics, implementing a meta-interpreter, and developing a natural language paragraph of
the answer, is needed. With regard to the latter problem, anaphoric (pronominal) reference is one
key issue. For instance, if the optimized logic query leads to the cooperative logic response to the
effect that Jack saw Jack in the mirror, e.g., Saw-in-mirror(Jack,Jack) we would want a natural
language response such as Jack saw himself in the mirror. Here the pronoun himself is substituted
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for the second reference to Jack. This is the inverse problem of pronominal reference; the direct
problem is that of inferring from the second version that himself refers to Jack. The latter is the
subject of work we undertook for the pronoun 'P in [49, 48], and which we plan to extend to other
pronouns as well.

Directly related to our above work on cooperation principles and natural language is the problem
of communicating agents that may share some, but not all, data and syntax. This is a resource-
limitation in that each agent has limited access to data and syntax. As an example, we consider
agent E and agent F, who speak English and French, respectively. Communication proceeds by a
suitable translation function EF from English to French, and FE from French to English. However,
not all expressions understood by E may, under EF, produce expressions understood by F, and
vice versa. In effect, EF and FE may be partial functions. Moreover, FE and EF may also be
multi-valued in that several French expressions may serve as translations of one English expression,
and vice versa. Finally, beliefs of E when translated by EF, may not be beliefs of F even when
understood by F. Numerous questions arise here, highly relevant to deductive databases and logic
programming.

Now, genuine translation algorithms between natural languages are notoriously difficult to con-
struct; indeed so far no one has succeeded in so doing. However, the underlying concept applies
to other, perhaps simpler, domains. As an example, suppose E is %n (English-speaking) economist
and F an (English-speaking) general. E and F may need to communicate about certain logistical
issues involving both budgetary aspects and order-of-battle aspects. Although they share a com-
mon language, it is a partial sharing in that each knows terminology and concepts unknown to
the other. The same broad questions noted above arise here, concerning the ability of E and F to
communicate, both in terms of their terminology and also their beliefs.

One way to approach these problems is to view E and F as comprising two large databases
written in the same language but in which certain predicates are missing from each. We may
suppose given a translation function, or we may try to construct one based on the axioms and facts
in E and F. Each of these leads to interesting questions.

For example, it seems likely that a sufficiently massive database of commonsense information,
will allow a unique characterization of many commonsense concepts. Thus, the word 'weapon' may,
in the context of ordinary information about weapons, be sufficient to distinguish the meaning of
that word from, say, 'device that can cause harm' (which is too broad) or from, say, 'deadly device'
(which is both too narrow and too broad). We hope to be able to determine conditions (necessary
or sufficient or both) related to such unicity. Thi, would aid on the understanding of the nature
of communication, since without such a sufficiently massive database to guarantee (nearly) unique
characterizations, communication will instead become mis-communication.

Related issues are those undertaken in our study [70, 71] of the nature of reference and meaning
in general. That preliminary effort will be developed further as well, especially in the context of
communicating agents.
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3 RESEARCH PAPERS WRITTEN WITH ARO SUPPORT

During the three year grant from July 1988 to June 1991, we published:

* 14 refereed journal articles

* 28 refereed conference papers

* 15 refereed book chapters

These papers are denoted by an asterisk (,) in the following list.
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