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INTRODUCTION

In many fluid dynamics problems of interest to U. S. Navy, the flows are
three-dimensional, unsteady and turbulent. Flow past submarine configurations,
flow through marine propellers and turbomachinery are examples of such flows.
Numerical procedures for accurate and efficient computations of such flows are
presently not possible due to the mixed elliptic-parabolic nature of the governing
equations. Indeed, methods for 3-D incompressible flows lag behind 3-E,
compressible flows by several years. Until accurate and efficient methods for 3-D
incompressible, unsteady flows become available, it will not be possible to attempt
challenging problems such as first principles based direct simulations of turbulent
flow over marine vehicles.

During the past year, under the support of the Office of Naval Research, a
research program dealing with numerical solution of 3-D incompressible viscous
flu,.,s has been underway at Georgia Tech. This report documents progress made
under the above project during the period June 1 - November 30, 1991.

OBJECTIVES OF THE PRESENT EFFORT K

The long term objective of the present effort is the development of solution .
techniques for direct numerical simulation of unsteady 3-D incompressible turbulent
flows. The kinetic aspects of this problem are governed by a set of parabolic partial
differential equations, which may be efficiently integrated by a variety of time
marching schemes. The kinematic aspects of this flow such as the relationship
between velocity and vorticity, and the relationship between velocity and pressure
are governed by elliptic partial differential equations, which can be solved at an,
instance in time, only by iterative techniques. Direct and/or large eddy simulation of
turbulent flows over submarine configurations, turbomachinery, pumps, ducts and
other configurations of interest to the U. S. Navy require efficient solution methods
for solving the governing equations.

The near term objective of the present research is to investigate and develop
efficient time marching schemes for integrating the governing equations, and to
evaluate the stability and accuracy of the schemes developed by studying a class of

Statement A per telecon
Spiro Lekoudis ONR/Code 1132
Arlington, VA 22217-5000

LNVW 1/13/92



2-D and 3-D unsteady external flows for which good quality experimental and

analytical results are available. The schemes developed as part of the present work

should meet the following criteria:

a) They should perform efficiently on the current and future generation
vector computers, as well as machines that employ scalable, massively parallel

processor architecture.

b) The algorithms should allow fourth or sixth order accuracy in space,

even on curvilinear, highly stretched grids. High spatial and tempoial accuracy will
be important for future direct and large eddy simulation of turbulent flow past

general geometries.

c) The algorithms should be cast in a moving, body-fitted, curvilinear
coordinate system, allowing a variety of 2-D and 3-D, stationary and moving (e.g.

rotating propeller blades) to be studied.

OVERVIEW OF THE SOLUTION PROCEDURE

The governing equations and the solution algorithms tested are cast in a
moving curvilinear system. For the sake of convenience, the details of the scheme

tested are described for 2-D flows in a Cartesian coordinate system.

The goal of the iterative time-marching algorithm tested is to advance the

flow properties (p,u,v) from a known time step 'n' to the next time step 'n + 1'. Let 'k'
be an iteration counter. Then a quantity such as un+l,k denotes the variable u at the

time level 'n+ 1' and iteration level 'k'. A good starting guess for the flow variables at
time level 'n+ 1' at the start of the iteration process is the values of these variables at

the previous time level. That is,

un+1,0 =u n

vn + 1,0 =vn
pn+ 1,0 = n

We also define 'delta quantities' Au, Av and Ap such that



Au=Un+l,k un+l,k-l

AV= vn + 1, k - vn+1,k-1

AP_ pn+lk pn+l,k-1

Thus, the goal of the iterative process at each time step is to drive these delta

quantities Au ,Av and Ap to zero.

An coupled system of equations for these delta variables may now be written.
.or example, consider the u- momentum equation (with density assumed to be

unity):

Ut + (u 2 )x + (uv)y + ap/ax = v, (Uxx + uyy)

For the sake of illustration, let us assume that a second order accuracy in
time is acceptable. Then, the time derivative a u/a t will be approximated as

au/at = (un + 1,k. un)/ At

The other terms in the above equation will be evaluated at the 'n + 1/2' time

level:

un+l/2,k = (un+lk + un)/2

un+1/2,k-1 = (un+l,k- 1 + un)/2

The spatial discretizations may be carried out using either a second order
accurate central/upwind difference form or a higher order form.

If the quantities such as u2 , uv and p appearing in the above discretization
are linearized about known information un and un+1,k-1, then a difference equation
linking AU , AV and Ap results. Such an equation is given for the u- momentum

equation below:



Au/At+ [6x(2un+l/ 2'k-lAu)+6y(un+l/ 2,k4lAv+vn+l/ 2 k-'lAu)] +6x(Ap)] /2

-V/2 (sxx+6yy)AU =-[(un+lk' -un)/At + {6x(U 2 ) + sy(uv) + 5xP

V v (6xxU+6 yyu)}n+ 1/2,k-1]

Here 6x , 6y , 6xx etc. stand for suitable, high order upwind or central

approximations to the spatial derivatives.

Note that the right side of the above equation is simply the Crank-Nicholson

approximation to the u- momentum equation. If the right side is driven to zero, then

the unsteady u- momentum equation will be fully satisfied at the current time level

n+1.

A similar equation may be written for the v- momentum equation, linking the

quantities Au , Av and Ap. In the case of continuity equation, one can draw upon the
Marker and Cell approach, to link the iterative changes in pressure to changes in

velocity, and write

pAp =- (Sxu+6yv)n+lk-l

Here p is a free parameter, that may even vary from node to node. it shoLild
be noted that the addition of 0 Ap to the left side of the above equation is not
equivalent to a pseudo-compressibility approach. As long as Ap is driven to zero, the
discretized form of the continuity equation is exactly satisfied at each time step.

Applying the above discretizations in time and space at all the rodes in the
flow field, a system of simultaneous equations results for the quantity Aq equal to
(A u, Av, Ap). This system may be formally written as:

[A] {A q} = {R} ()

Here, the right hand side is the governing equation, with the temporal andl

spatial derivative approximated as discussed above. The right side also contains the

time derivatives that appear in the governing equation. In traditional iteratixe



schemes such as the pseudocompressibility scheme, the right side contains only the
spatial derivatives. Thus, in these schemes, only the steady state solution is
guaranteed. In the present approach, the time accurate solution at each time step is
guaranteed, if the right side can be driven to zero.

The matrix A is a sparse, banded matrix whose elements are 3x3 (4x4 in 3-D)
matrices, if standard central difference formulas are used to approximate the spatial

derivatives. Direct inversion of this matrix requires a huge number of ari:hmetic
operations, despite its sparsity. A common strategy in iterative solutions of elliptic
equations is to approximate the matrix A by another, easily inverted matrix B. The
closer the matrix A is to B, the faster the iterative convergence of the solution at an\

time step.

During the reporting period, we tested a B matrix that contains only the
diagonal contributions of matrix A. Since the inversion of a diagonal matrix is trivial,
the equation system is easily inverted. The solution procedure also exhibits volume
parallelism. That is, the flow properties at each and every node in the flow field ma\
be updated in parallel. The algorithm performs efficiently on Cray Y/MP class of
machines, but should work equally well on parallel architectures. The price for this
simplicity is the large number of iterations needed at each time step (typically 20 to
25, for Reynolds numbers of the order of 1,000,000).

SUMMARY OF SIGNIFICANT RESULTS TO DATE

The algorithm described above has been implemented both in a two-dimensional
Navier-Stokes solver and in a 3-D Navier-Stokes solver.

Two-Dimensional Results: The iterative algorithm described above was tested by
computing unsteady laminar viscous flow past a sinusoidally pitching NACA 0012
airfoil, at a Reynolds number of 5,000. This case has been previously studied by
Mehta at NASA Ames Research Center using a velocity-vorticity formulation.
Figure 1 shows the body-fitted grid around the airfoil used in this study. Figure 2

shows the variations in lift, drag and pitching moment as a function of angle of
attack as the airfoil pitches up to 20 degrees and returns to zero degree. A massive.
highly unsteady, separated flow over the airfoil occurs during this maneuver. ThLIs.
this case provides a good test of the present algorithm's ability to maintain time



accuracy. Figure 3 shows the streamlines, velocity vectors over the airfoil, vorticitv

contours and surface pressure distribution at several instances in time. For the sake

of comparison, the surface pressure distributions of Mehta, computed using a
vorticity-stream function formulation is shown. In general, excellent agreement was

found between the computed results and Mehta's solution.

Three-Dimensional Results: A three-dimensional, incompressible Navier-Stokes
method, capable of predicting massively separated flow over bluff configurations

such as an ellipsoid of revolution at an angle of attack has also been developed. Like

the 2-D solver, this method allows the body to move in a very general fashion and
undergo pitching, plunging and yawing motions. The solution procedure is third
order accurate in space, and uses an upwind scheme. Second order accuracy in time

is possible.

This solver was tested by computing the flow past an ellipsoid of revolution
at 10 degree angle of attack, at a Reynolds number of 5,000. Figure 4 shows the

body-fitted grid used in the study. Figure 5 shows the particle traces over the body
surface, and the velocity vector field in the immediate vicinity of the body. There is a
limited amount of experimental data available for this particular configuration, at a
high turbulent Reynolds number. Figure 6 shows the surface pressure distribution

on the windward and leeward sides of the symmetry plane, along with the
experimental data. Good agreement is evident everywhere except in the last 10W" - ol
the body, where the present laminar simulation predicts flow separation, and ai

flattening out of the pressure distribution.

Acceleration of 2-D Unsteady Flow by Multigrid Techniques: The multigrid

technique was developed during the 1970s as a technique for accelerating iterative
numerical solution of elliptic partial differential equations. Since that time, thik
technique has been applied to a variety of fluid flow problems including stead

transonic potential flow, and 2-D and 3-D inviscid rotational flows.

During the reporting period, it was investigated whether some of the
iterations for u, v and p at a time step 'n+ 1' can be done inexpensively on a coarse
grid (where fewer grid points exist), without sacrificing the fine grid accuracy of the
numerical solution. This is equivalent to computing a first estimate for the quantity
qnl appearing on a coarse grid. The following procedure was developed to advance



the flow properties q at time level 'n+ 1', at iteration level 'k', qn +lk to the next
iteration, qf + 1,k + 1

i) Compute the residual {R} appearing on the right side of equation (1) on the fine
grid using qn+ 1,k

ii) Transfer the residual from the fine grid to a coarse grid using the injection

operation, Ih2hR. A typical injection operation that is easy to implement is given at
any node (ij) by

Ih2hRij = Ri j  + (Ri+,j+Rilj+Rij+ l+Ri,j-)/2
+ (Ri+l,j.1 + Ri-l,j+1 + Ri.l,j_l + Rilj+1)/4

iii) Compute the quantity Aq at every point on the coarse grid by solving the system

of equations:

[B] {Aq} = {Ih 2 hR}

As mentioned earlier, in our present implementation, the matrix [B] is just

the diagonal portion of the matrix [A].

iv) Interpolate the A q values computed in step (iii) back onto the fine grid.

v) Compute the updated values of the flow properties qn + 1,k + 1 as qn + Lk + A q

Repeat step (i) - (v) till Aq is driven to zero. The resulting coverged solution

qn + 1 forms an excellent starting guess for subsequent fine grid iterations.

At first glance, no CPU time appears to have been saved, because the
residuals in step (i) need to be computed at all fine grid node points. Indeed, there
are no significant CPU time savings per iteration in the multi-grid method just
outlined. But the savings come in the form of larger time steps that may be used
without instability, improved starting guesses for q on the fine grid, and fewer
iterations on the fine grid to drive {R} to zero.

The multigrid process described above has been implemented in the 2-)
unsteady viscous flow analysis. For steady flow applications, where an asymptotic:all\



steady state solution is reached after several time steps, the multigrid process
reduced the overall CPU time by over 30%, compared to a single grid iteration
procedure.

ANTICIPATED RESULTS FOR THE NEXT REPORTING PERIOD

By the conclusion of the next reporting period (May 31, 1992), we plan to
have the following work completed.

a) In all the work done, the matrix B (which is an approximation to the matrix
A) is a simple diagonal-matrix. While use of such a simple diagonal matrix simplifies
the inversion, and makes the flow solver 100% vectorizable, it leads to slow
convergence of the pressure and velocity fields at every time step. We will be
investigating alternate B matrices, for example, a B matrix that is constructed by
transferring the system of equations (1) to a coarser grid using classical multi-grid

techniques. Another choice for the B matrix is an LU approximation to the A
matrix. Inversion of LU matrices can be done on vector machines efficiently, if the
equations are properly ordered, so that the elimination is done along diagonal lines
or planes.

b) The equation set (1) may be inverted using classical conjugate gradient schemes.
We plan to investigate a class of conjugate gradient methods, known as the

Generalized Minimum Residual method (GMRES) for the efficient inversion of the
solution scheme. We have experience using the GMRES algorithm in another
(compressible) flow solver, and found the flow solver to yield a factor of 4 speed up
compared to classical ADI methods, when applied to unsteady viscous flows.

CONCLUDING REMARKS

It is anticipated that the present efforts will lead to a fairly general, and
efficient ways of solving the 3-D incompressible Navier-Stokes equations. The
resulting methods will provide a very good starting point for more ambitious efforts

such as direct numerical simulation of turbulent flow over 3-D submarine
configurations.
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Figure 1. Body-Fitted Grid Around a NACA 0012 airfoil
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Figure 2. Dynamic Stall Hysteresis Loops for a NACA 00121 Airfoil
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Figure 4. Body-Fitted Grid Around an Ellipsoid of Revolution
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