At

2

j

[

i

|
i

I

1
|

AD—A'ZI’44 265
il

s 5&
B O ==
b
...... C=
- < O=
s QN=
i =
mmm-— ==
S T :;.‘*!"T :.({'"' JKPFOM f —
s R mmu;n%w
. DEPARTMENT OF THE AIR FORCE
e AIR UNIVERSITY -

:ﬁk FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/91D-04

ANALYSIS OF A DECISION SUPPORT SYSTEM
FOR CASE TOOL SELECTION AND
THE SPECIFICATION OF
AN ADA TO SQL ABSTRACT INTERFACE

THESIS

Tina M. DeAngelis
Captain, USAT

AFIT/GCS/ENG/91D

Approved for public release; distribution unlimited

AFIT/GCS/ENG/91D-04

ANALYSIS OF A DECISION SUPPORT SYSTEM
FOR CASE TOOL SELECTION
AND
THE SPECIFICATION OF
AN ADA TO SQL ABSTRACT INTERFACE

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air'University
In Partial Fulfillment of the Requirements for the Degree of Master of

Science (Computer Science)

Tina M. DeAngelis, B.S.E.E.
Captain, USAF

September 1991

Approved for public relcase: distribution unlimited

Acknowledgments

I would like to thank my advisor Lt Col Lawlis whose patience and guidance and

previous contributions to the field of Decision support tools helped to get this research

accomplished. I would also like to thank Major Roth whose expert assistance in the

database arena, helped me to accomplish a data analysis of the STEMdAB tool. 1 would

next like to acknowledge and thank the people from Draper Labs, Jim Van Buren and

Rick Hildebrant for providing me with documents, prototypes and answers pertaining to

the STEMAB tool. I would next like to thank Gary Petersen of the STSC whose

professionalism helped to insure that I seceived the information I needed to get the

reseai :h done. I would like to thank my readers Maj Howatt and Maj Gunsch for being

on my committee and for providing me with great feedback. I would also like to thank

my mother and sister whose continued encouragement kept me going. Finally, I would

like to praise God for helping to get me through this thesis effort.

Accesaion Por

NTIS GRA&I
DTIC TARB 0
Unannounced g
Justification e o ol

By

_Qggﬁgibutionl
Avallability Codens

Dist

“ ﬂ/ ‘

Avail acd/or
Spoaial

|

Table of Contents

Page
ACKNOWIEAZIMENLS ...uvervriercrerrrrreresoeensssresssssassassesassessssssesssseseeseseasnssesssssssssesesssssssssasess ii
TabIE OF COMIENLS 1..uuvureerencscneecericcnenicsnsnesensessesssssssessssssssssossssssasssssmsassssesssessassassesesssensoss iii
LISt Of FIZUIES v.o.errecieiserissssunsssessonnararersserssssssssssssasssssnsssssssessssssssssssassasnsssansssesessassssess v
LSt Of TaADIES.....ccsiniiniciriicrnneiicaisissninsssinsssisissssssessannssssnssesssesssnesssensnnsssessossasssssasstn vi
LSt Of ACTONYMS..c.veuvieererernrerrernreriasesescssesessssesessssesesssssnsssensssssassasasessasssassasesessonsssssensrass vii
ADSITACE ...ttt sttt sesssssssssssssstsssssssassssssssssssssssssstsnsssansesasssssrossssss viii
L INTOQUCTION......veueiticiriseisercrisinisinsisissesessssssesesssesasnssssssssnnsassessssmssssnsassosasssssssssrssssess 1
OVEIVIEW .ctiteneiierrenrnnrrrenseesssesnsrssssensssssnssssssssessssssssssessossessesesssssatessssssassanssnnsons 1
BaCKEIOUNA ...cveiriririiinniiiistinneiensinnne sresessssemsassssesestsssassssssssssssssssasssssssonssossans 1
PIODIEI oottt stsstsses st s e assssssssssssbonsss 2
RESEATCH ODJECHIVES «.ecveeereeercncreenrectsicsese e s sse e seasne s ssssnssbensaes 3
ASSUMPLONS ...cvrvrrrresnnnssnsassssssssssssseanensrenssssasessasensasess . v b
SCOPE ..cosinrrenrnemsecrsssssossussssscscssssnmssnensiseassssssssssssssossssssssssssasssuesssessssssusssnssssnssransons 4
Approach sressassassssnesison teerssuestanrasessessesssssaentonsensseassntesasssrasstss 5
II. Literature REeVIEWcocccvvcrenesinminncscsiensssenenessnensnssesessens reeesbsnssasbsarssstsnsase 6
INITOQUCTION cocvnrrtcnnsnsananiessacsesensnsesencenssssssssssssssssssassssssissssssssssnsssssnnasssnsnsssnsseses 6
CASE T00IS, WhY BOhEI?uveereeeererernencsnnsnsnnnscessessnsssesssssesesessassesesssssnsesess 6
CASE CalCBOTICS...cuererierrscesenensenescsssensssesaessnsmsnsressssestesersssesssnsssnssssassssasssssssnsas 7
CASE Pitfall§ c...cuvvececeiiereececerce s sessnsnscsnsnssneasnsnssssssssassssnsssssssnssen 7
CASE TOO! INMEGIAtiON......ccocrrirririeienreerernrnensansessssessssssssaressessasssssnssssssassnessses 8
Software Engineering EnVIirOnmENLscccocvervsiesnenccseisnnrscsosessssaesessasssssssnsns 9
CASE Evaluation and Selection Guidelinesceeecevcrrcrcenseecreessvsincsssnnnnns 10
CASE Selection System Design........cc.coereeeevnnrerenees ceresssnasnasssssesasnsanes 11
Entity Relationship DIQramsc..eeeveeveeeencrnnnecereneescssncsnesensennssnssesssesssssseneas 12
HYPCICATU oottt reesessesnesessasnens soseseesesmssenssesssmssasassssessssnensas 15
CONCIISIONS cacvvririsenisrtenescnsssiesescsisesisss st ssassssesssesesssacscscocsassessssonsasssssssnssaseses 15
I1I. Description and Analysis of The STEMdB Prototype Design.......ccccceveereececcsnenes 16
OVETVIEW worreiresiisnsesesisnacsisnsescsressesessssssassersssssssnsssssasssesescasssssnssssssssosessssssns 16
Description Of STEMUB.......oouc. coivorvcriniceininssenesenr et sesesasessssessaeseens 16
Scope and Purpose of STIEMUB.......ccvicieneicreiisseieccsennnaes 16
Background of STEMUAB.........cccoviverrrevercrenncresnsrevesnsessssensssssessssssessns 16
Top Level Description of STEMAB.ooveveinveieiniciccreeee e cnnees 19
Representative Requirements LISUNg...c.eeeceeececevnneeriecsnesvnnens 19
Implementation Design DESCHPUON. ... vvvevcenccrncnsicneissnsens 21
Detail Level Description of STEMAB......vveeoieeieieectceieteveevevenereeneens 22
STEMAB Data Model DesCriptionceeeeeceeceeeeeereessiecsssonconss 23
STEMUB Interface Design Description.ccccorcvecccsunnee 27
STEMAB Functional Design DESCHPUON.c.ccveecremerencnvsensennnes 27
ANAIYSIS vueeiirirriisinietsisine st eeree e e e sneree s seesssse st ens e ss s sssnsuanae s enersessansane 28
Arcas Well DESIZNed. ... eeivnieeiineniieierieie e cnereveseenssesesssnsanes 28
Arcas That Requirc MOre Work......oeenveceinncnccnesecicsininessesescssnens 29
New Approaches to Designing the STEMdAB Tool........oceneee 30
Improvements to Bc Made Within Context of Present
DICSIEN.cetrtiereeierecrvernesrsrsseesssaessssnssassssessensssnessesessssssssssessossansses 36
SUMMATY c..eoeirrrrrenerseneeresiessesssessnsssesssesesssssesesssserasssessssssssssssssssssnesasssesessonsesess D3

see

IV. New Approaches t0 STEMAB DESIENconeuvuciiriniisnsscsncrensemenseensencsemnmssssessssess 55

OVETVIEW c.ourececeererererennesesssesessssssssnsssssssasssssssssssassrensasssassssssssassssnssassosess e 55

Top Level Design of an Object Oriented STEMAB.......cvmevvnsccereinns 55

Design Discussion of New Formulator censeesnensrsrasese e 59

Design Discussion of New Evaluator...........ueeennninnnecsennnn wee 62

Design Discussion of New SCIECtOrovievernrinniniiivessismsnsenseresscassnene 64

Functionality of Rest Of OOD DESigN......cceervemvirnrmsrccemsesuranserermsisesnssessns 66

Top Level Design of an Abstract System Interface to an SQL Database 67

Problems Addressed by the SAME........veiecnincnencnccsesecvcsens 67

Overview of How to Apply the SAME Methodccveiirvmennnevcncannes 68

STLMdAB Abstract Interface Design Using SAMEooevevcvinencee. 75

Summary eetereessessesess crsesssnessessessesssssne 87

V. CONCIUSIONS 211d RECOMMENAAHONS...nrrrrrrooeerrsoersersesreessesssmesosssmeesorsseeressmrsssor 89

Overview reeeneaeteabasessasaeasasa st et enes et s e e 0 s0 s en st asatesasesasasassensssbas 89

Summiary of Researchcocceeeveevemrcesnsesicsssiesuccnsesssens 89

Conclusions reerersaseseteretatenes et s er e aaset e eseraese e st b SRS bS RS SRRSO SRS bR e bbb s u e B0 9]

RECOMMENAALONScovererersecsesessisinsesessssesessorssorassssescorsnmsansos sssessessssssasssssassasans 92

SUIMMMNATY ...vvvrerrerenerereressiassesssesssssessssessssssasssssssssssssonsssssnsnsssrossssnassssssssssssssssosas 23

Appendix A. Example STSC Listing of Software Characteristics and Qualities 94
Appendix B. SAME Package LiStiNESccococvciiinveeriunisnsesssesereresesseusisumsmsssesssssasesessans 105
Appendix C. Abstract Interface Domain Primitive Types Code........cvveeemerennnnnnes enne 136
Appendix D. Abstract Interface Composite Methods Code.....emmunnnimcrecnenenrecnsnnne. 153
RELEICICES «...coveereerrereereresesesresessnssssersassssssssssnsssssassosssn sossasssssnsssssssssssssassssasssssassessnentoes 195
VIl .eeueeenrereneneensesessesesesssessssesesssssesssssssssssssasssssasasenssssses sssssssssssssssossasssssssasarsessssssonsassos 197

List of Figures

Figure Page

1. Decision Support System Top Level DESigncceeiseviemnnnsincsisscssnssssessssesencsns 13
2. STSC Test and Evaluation ProCesscincsiessncerccssnscecsessssesionsssasmonssssssssnnnes 17
3. Example Tool Domain Evaluation Frameworkcceeeemecneveeisniercercneseesssensanens 18
4. Original Design COMPONENLS....ccceeereecseraeseserenreeorsserseemsossasmassessassrssssessssassssssssasssns 21
S. STEMdB Requirements Table Relational Diagram........ueeeneeeesnceccsnrecsacnnasnenenes 23
6. Entity Relationship Diagram of STEMUABcccreeerrenrncnireeererccrsanesnssesenssnas 25
7. STEMAB Basic COMPONENLScceeercssrrseseenererssnsassormrsssesssnscassssessssorsserssassassssessns 28
8. Entity Relationship Diagram ReVISCd.......ccueiveererensnreensssennneieronssssesessensacsssnssssesees 41
9. Sclection_Set REACSIZNcoueurvererireerrniererrererenesnserseresesessssnssseresesssnsstasssesassssssssnns 45
10. Object Oriented STEMAB DESIEN......couvirecricrererenieinineensnnnneessesennsesesssessssesssassens 56
11. Formulator INEMAl VIEWecuvreeinirieniencsinrensnnncsserssisinineseesssssssssssenssasssansnsesncs 61
12. Evaluator INEmMAal VICWc..cvicceicrisinreierereereeesnerencsnnessensnstesssssssssasesssssessasssasases 63
13, Selector INtemal VIEW.....uoucciieencccrernnnisncssssasensssssosnstansssnsesesssasaos .. 65
14. SAME Foundational Types.............. seetsresasstentssne e nsasass s sesasssse st sassserssesstnsess 71
15. Formulator Altered ObJects........cocvceeccervrarcnsassarencaees . .. 82
16. Evaluator AIEred ODJECLSeeereeceecriernrnrerersseersescsneressssserensaesssssssessesssssssnssasassres 83
17, Selector ARETEd ObDJECLS....ouccercirerereecnrnnsrnnneesesenssaseesessrseesssssasesssssassassasesssenssessess 84
18. Type Build Process. Formulator State AIterations..........cuceeesiseecnnssscsisisnensacees 86
19. Application Logic Calls to Abstract INterface..........coeccveeevnveervenesvsrcssensvaesreseenenes 87

List of Tubles

Table

Page
1. Functional Dependencies of STEMAB SCREma....uucceeerniececviniecieecceccrennceccsenes 38
2. Map of Table 1’s Relationship 10 AUTIDULEScceeerrerersseccsosisssssressreresssnnssesesenes 40
3. SQL Statement t0 Ada MapPPINES......ccoeecruerrrcemrsiseccsusssssssssssanssnssonssencssssssasassssesssss 75
4. Functions Provided by an Abstract Dynamic Interfaceccecvveeeerervereneenrvereccenen 78

vi

ACRONYM

ASSIST
BCD
BCNF/3NF
CASE
DOD
DSS
GSC
GUl1
I-CASE
IPSE’s
KB
MPW C
00D
SADT
SAl
SAME
SD
SEA
SEE’s
SQL
SQLDA
SSC’s
STEM
STEMdB
STSC
T&E
TEG’s
TEP

List of Acronyms

NAME

Ada Software Selection assISTant
Binary Code Decimal

Boyce-Codd normal form/Third normal form
Computer Aided Software Engineering
Department of Defense

Decision Support System

General Software Characteristic
Graphical user interface

Ideal software developmer.t environment
Integrated Project Support Environments
Knowledge base

Macintosh Programers Workshop C
Object Oriented Design

Structured Analysis and Design
Software Area of Interest

Structured Query Language Ada Module Extensions
Structured Design

Software tngincering Activity

Software Engincering Environments
Structured Query Language

SQL Description Arca

Specific Software Characteristic’s
Software Tool Evaluation Modecl

STEM Databasc

Software Technology Support Center
Test and Evaluation

T&E Guidclincs

T&E Procedure

vii

AFIT/GCS/ENG/91D-04

Abstract

/_a Information overload has long been a problem in the fast moving technical field of
software development. Yet quality information is needed to make informed decisions
about buying software tools that help in software development. Computer Aided
Software Engineering (CASE) tools help to. coordinate and control information in large
software developments. Many CASE tool purchases, however, are being based on ad
hoc tool evaluation and selection methods which depend on biased vendor information.
To capture specific knowledge about how to pick a tool for a given software development
effort, a historical database that identifies important tool characteristics needed to be
maintained by an unbiased organization and a mechanism (in the form of a decision
support system) for interpreting that database needed to be made available.

To address this deficiency, the Softwal\re Technology Support Center at Hill AFB in
Utah was developing a CASE tool selection support tool, the STEMdAB. This rescarch
accomplishes an analysis of this tool and sﬁggcsts ways to make it morc robust, portablc
and maintainable. It presents an object oriented approach to the design while addressing

the issue of portability by accomplishing an Ada to Structured Qucry Language (SQL)

abstract interface design.

ANALYSIS OF A DECISION SUPPORT SYSTEM
FOR CASE TOOL SELECTION
AND
THE SPECIFICATION OF
AN ADA TO SQL ABSTRACT INTERFACE

L Introduction

Overview

This research was directed at comparing two known CASE tool evaluation and
selection prototypes to be able to influence the ongoing prototype effort towards
developing a more maintainable and upgradeable decision support tool. The first
prototype tool was developed based on object oriented methodology, the second ongoing
prototype is being developed using the functional decomposition method. The research
also provides a suggested abstract interface design that would be used by the system to

communicate with an Structured Query Language (SQL) database.

Background

When computers were first developed the engineering community had its hands full
trying to optimize computer hardware to reduce high costs. Computers were so
expensive and huge in the days of relay and vacuum tube technology, that engincers
would never have been able to visualize the 1990 desk top personal computer. With this
new, smaller more powerful technology, the costs of hardware became insignificant
compared to its countcrpart, software.

Engineers were forced to standardize the development approach to hardware as a
result of those initial high costs. They ncglected developing just such an approach for
software development, since it was considered more an art than a science from their
view-point. As a result, software was approached in an ad hoc way until the Structured
Design (SD) Mcthodology surfaced. Once this methodology surfaced and was

implemcnted more complicated, larger software cfforts could be undertaken with more

success. But as these efforts got larger, the SD methodology alone was not enough to
ensure that software systems could be developed and implemented on time and within
budget. This lack of control of software cost (which is the critical cost driver in today’s
systems) and software quality, resulted in what scholars of the 1980’s referred to as the
software crisis [21:389].

This is where Computer Aided Software Engincering (CASE) tools entered into the
equation. Many in the software engineering community viewed these tools initially as a
solution to the crisis. However, full understanding of the necessity of having a well
understood software process model is a prerequisite to the purchasing of any CASE tool
[20:41-44; 27:9]. It is also beneficial to have a gencral understanding of different
software engineering environments and how CASE tools fit into thesc environments.
Once all this has been accomplished, software professionals can select a CASE tool, a
disjoint set of CASE tools, or an intcgrated development environment that supports
project needs. In order to make the best choice of devclopment tools, a survey of
available tools and their capabilitics must be requested and reviewed. Unfortunately, the
volume of data availablc on the different capabilitics of tools is both subjective and
overwhelming. Efforts have been made in two complementary prototype tools, the
Software Tool Evaluation Model (STEM) [27:6-8] and the Ada Software Sclection
assISTant (ASSIST) {24), 1o automatc this sclection process. It is at this point where this

thesis comes in.

Problem

There is no way of sclecting CASE tools or, in the bigger scnse, software support
cnvironments, without extensive rescarch of very subjective data. The human ability o
process data cffectively is taxed beyond its capabilitics when juggling more than about

scven plus or minus two picees of information at one time. One CASE tool alone can

have close to 100 different capabilities that must be evaluated [18:C.2-C.5]. Since
humans are incapable of evaluating this much data, an automated evaluation system, that
would scale the selection problem down, needs to be developed. At the time of this
research, this researcher was not aware of any existing automation system that was able
to implement evaluation criteria, take into account users’ selection requirements, and
propose solution tools.

The Software Technology Support Center (STSC) at Hill AFB, understood this
problem and was developing the STEM prototype [27]. Although the developers of the
STEM had not completely implemented the selection part of the prototype at the time of
this research, what was there appeared to be tailored more to individual CASE tool
selection than CASE environment selections. With the trend in CASE tools heading
down the CASE environment path, the STEM may steer the CASE selection tool effort
towards an obsolete end requirement.

The ASSIST prototype, however, is set up as a theoretical environment evaluator
with the capability to look at sub-components of a total environment. Although targeted

for Ada tools and environments, its principles arc applicable to CASE tools in gencral.

Research Objectives

The objective of this research was to provide an analysis of an ongoing Decision
Support System (DSS) design that would help guide the facilitators to develop a more
substantial tool to meet future maintainability and upgradecability requircments. The
potential for the STEM tool and its follow-on effort, the STEM Database (STEMdB)

tool, to become highly sought atter and used tools depends on their portability and

flexibility. This rescarch provides ways to achicve this portability and flexibility.

Assumptions

The initial research assumptions were:

- CASE tool decision support selection systems are badly needed in government
and industry, and will continue to be needed for some time.

- The ASSIST theoretical architecture would provide a good basis for
comparing the STEMdB tool’s functionality.

- Providing both an object oriented approach and an abstract interface approach
to the developing organization would help to convince them to design the STEMdB using
these approaches versus using a functional design which was totally dependent on a
single database.

- The underlying structures of an ASSIST and the STEM data representation
could be made compatible.

- The SQL Ada Module Extensions (SAME) was designed using good software
engineering principles so it was a good Ada to SQL binding method to choose.

- A STEMAB developed with the end goal of supporting remote users would
force its design to be more robust, if it was designed using good software engineering
principles.

- Providing a top level interface design would help convince the developing
organization to approach the STEMdB design from a remote user requirements
perspective.

- Providing a top level object oriented design approach to the STEMdB would
help to convince the organization of it’s merits and would help them to understand how tn
work with the STEMdB as a DSS that depends on a Knowledge Base.

Scope

The research analysis only concentrated on the portions of the software development
life cycle domains that were targeted by the STSC. This researcher accomplished an
analysis of the STEMdB design from the data object and behavioral perspectives. This
rescarcher also accomplished a top level object oriented design of the STEMdB while

providing inforn.atinn on how to work with a knowledge base. Finally, this researcher

accomplished a top level abstract interface design using the SAME mcthod. The

applications that call the interface rcsources were not provided.

Approach

First an extensive literature search was accomplished to get a background on
decision support systems, CASE tool categorization, CASE evaluation and selection
criteria, database modeling, Ada to SQL bindings, and the Macintosh development
cnvironment. In Chapter III all this knowledge is used to evaluate both a working
prototype and a proposed follow-on prototype effort. Chapter IV addresses solutions to
two related problems with the STEMdB design that were identified in the analysis. In

particular, it presents an object oriented design and an abstract interface design. Finally

Chapter V concludes with lessons learned.

I1. Literature Review

Introduction

The following literature review was accomplished to learn about CASE tools,
Software engineering environments, CASE evaluation and selection processes, CASE
selection system design, Entity Relationship modeling and a Macintosh development
environment.

Specifically, the literature gave insight into reasons an organization would purchase
CABSE tools, and identified different ways to categorize CASE tools. Some articles
discussed the pitfalls of CASE while others addressed the different levels of tool
integration. The Entity Relation diagramming, and the Decision Support tool studies
helped with analyzing the STEMdB design and suggesting improvements. The
Macintosh HyperCard development environment literature also provided insights into
how the ASSIST prototype accomplished its job and into how a commercial databasc,

Oracle, provided a programming interface to its database.

CASE Tools, Why Bother?

Brook’s book, [12], as well as Batt and Sims in [10:1; 28:1] discussed differcnt
aspects of the software crisis. Both Batt and Sims theses [10; 28] used the perceived
crisis as justification for studying CASE technology as a possiblc solution to the crisis.
Other literature also eluded to aspects of the software crisis as rcason to study the
possible benefits of CASE in software development.

Software tool automation could facilitatc consistency checking, automatic
documentation of design, configuration management of code, overall project tracking,
design generation, the enforcement of formalisms and structured methodologics [26:75],

and design accessibility (via tools that use relational databasc querics or Hypertext

[11:23]) according to general consensus. Hypertext was defined by Bigelow in [11:23]

as:
Hypertext is a medium-grained, entity-relationship model that lets
information be structured arbitrarily and keeps a complete version history of
both information and structure. [11:23]

CASE Categories

CASE tools were categorized by different authors in distinct ways. Tamanaha
viewed CASE tool categories as falling within some phase of the Waterfall software life
cycle model, as falling within a narrow discipline like documentation, or as falling into a
specific application domain like real-time systems [29:6]. She identifies five phases
associated with the Waterfall model: requirements/analysis, design, code, test and
maintenance.

Sim’s took a much higher level approach than Tamanaha. He viewed CASE
tools as falling in four categories: Upper-CASE, Lower-CASE, Reverse
Engineering/maintenance-CASE and Project Management-CASE. The Upper-CASE
tools applied to the life cycle phases requirements through design; the Lower-CASE
applied to code through test; the Reverse Engincering/maintenance-CASE applied to the
end of the life cycle after test; the Project Management-CASE applied to all phases of the
life cycle [28:33-34]. Sim’s also reported survey results which highlighted Upper-CASE
tools as being the most used, 75% usage in industry during 1988 versus less than 20%

usage in any other of his categories [28:72].

CASE Pitfalls
In both [22:25-29; 20:41-44] the reader was warned about potential pitfalls that
could occur while attempting to begin and 10 continuc using CASE technology. Not

understanding an organization’s softwarc process model was onc pitfall that was

repeatedly acknowledged in diffcrent literatore. Keuftel reinforces this by ending his
article with this quote about the software methods:
“CASE systems,” DeMarco concluded, “have tended to be most helpful to
people who had the least trouble applying the method, even without
automated support.” [22:29]
Another identified pitfall was the fact that vendors were producing volumes of subjective
material about the sanctity of their products [22:25]. Keuffel in {22:29] stated that

“current CASE tools either ignore many rules or enforce them too rigidly”. He advocated

making tools “transparent” to the users [22:28] in order to support user friendliness.

CASE Tool Integration

Different levels of CASE tool integration were aiso a common topic in the literature.
According to Keuffel, the highest achicvable level of integration was achievable through
“Groupware” [22:29]. Groupware is a real-time response CASE system that could
become a design group’s intelligent whiteboard.

Batt, in [10:13}, introduced the term I-CASE. He defined this term as, “I-CASE
toolkits incorporate all the best features of many CASE tools into a single package that is
intended to cover the entirc SDLC” [10:13]) (where SDLC stands for software
devclopment life cycle). Bz;tt stated that a true 1-CASE tool would incorporate over 100
sub-tools and that no true I-CASE tool cxisted at that time. The term I-CASE can be
thought of conceptually as the idcal software development environment where all tools
inter-operate and sharc common data.

The term, Data Encyclopedia, was introduced and defined by Batt as “The heart of
an I-CASE toolkit.” [10:13]. In other environment contexts it was called the object
management system. The Data Encyclopedia’s counterpart in the non-integrated CASE

world was the equivalent of the Data Dictionary. Batt indirectly addressed at Ieast four

levels of CASE integration in his thesis. Those Ievels were: no integration, limited

integration in one CASE tool line, some integration outside of one product line and total
integration. The integration literature, in general, agreed that higher levels of CASE
integration could be achieved from industry support of open CASE architectures and

CASE tool interface standards.

Software Engineering Environments

Wybolt in [30:57] provides a good overview of the requirements/attributes of
Integrated Project Support Environments (IPSE’s). He lists the following as desirable
characteristics of an IPSE [30:57]:

» cover all phases of development and support

« support or connect with multiple disciplines like CAD or CAE

cover many project activities such as planning, controlling
and documentation

deal with multiple vendors and platforms

adapt to existing organizational culture and work flows

can be introduced incrementally

can be serviced and supported

are fast and inexpensive

Wybolt also clarifyed how a framework was the building block of IPSE’s. He
defined the structure of a framework as having a common user interface, a set of tools, an
integrating agent, and an object management system. He defined the four styles of
integration that could be implemented within a framework as: presentation, control, data
and semantics. Presentation integration was provided through a common user interface;
data integration among tools was provided through a common rcpository; control
integration was provided through repositorics with links between them; and semantic
intcgration was provided through modcling of the semantics of tools and their data along
with conflict reconciliation. [30:56-59]

Finally, Wybolt clarificd that “integration is a property of a rclationship between two

or more tools” [30:59] not a property of an environment or tool.

CASE Evaluation and Selection Guidelines

The draft document in [1] provided some guidance on the process of evaluation and
selection of CASE tools that support the software project management, configuration
management, and software engineering domains. To clarify the difference between the
two processes, evaluation is “the process of measurement” and recording while selection
is “the process of applying thresholds and weights to evaluation results and arriving at
decisions” [1]. The IEEE document in [1] also emphasized the iterative nature of these
two processes and the necessity for feedback ‘tom the selection process. Feedback was
to take the form of user critiijues of any selection and evaluation system that was being
used. Without this feedback neither process could become a mature process. Criteria that
are measured both quantitatively and qualitatively are the common link betwzen the two
processes. [1] defined users requirenients as the only driving force towards deciding on
these criteria and suggested several possivle classification schemes, including the E&V
Reference manual [2].

An evaluation process should address tool issues of multi-project support and
multi-function support. In other words it should provide for an evaluation which
measures tools that are abstract enough to address both the immediate project functional
needs of the user as well as any futurc new project requirements. It should be repeatable
for the objective criteria and it should accommodate documentation of multiplc evaluator
inputs for the subjective criteria. [1]

A selection process shouid allow for a narrowing down of information. The rcasons
for steps taken during the sclection process should be recorded. Since sclection criteria
will be cither numceric or binary, a way of weighing and combining both types must be
addressed. Traceability of the feedback loop to the evaluator process must be addressed.
If the evalnator process never receives feedback from the users or 100l sclectors, then the

cvaluator works in a vacuum and the whole cvaluation and sclection process runs the risk

10

of being useless. Finally, a sensitivity analysis should be supported. Sensitivity must be
addressed so that selector or user is able to judge how valid his /her results were based on
the limitations of the system. [1]

The workshop notes in 3] discussed pre-selection proces:; strategy considerations
that need to be considered prior to an organization entering into the CASE tool selection

process.

CASE Selection System Design

The Lawlis dissertation provides guidelines on how tc ‘s the above evaluation and
selection techniques, as w<ll as other design criteria to creaic an automated decisicn
support system for CASE tool selection.

The basic processing in her design began with the narrowing down of candidace
tools. She assessed three levels with respect to the user’s needs: the scope/context of the
solution space, the tool category, and the application area. Once these were input her tool
requested the specific weights of applicable characteristics. Finally the ASSIST would
process the inputs and provide some suggested solutions.

The basic structure of systems that support this design would be composed of four
top level objects as is shown in Figure 1.

The Knowledge Acquisition object allows users to load and update data stored in
both the Knowledge Base and the Databasc. The user could access the Knowledge Basc
and the Database indirectly through both this object and the Decision Logic object.

The Knowledge Base object provides the opcrations necessary to use the data. It
could accomplish these tasks because it maintained the design knowledge on how the
data was structured. In addition, it could control how a selector used that data.

According to [24:70] a critical part of the design of a DSS is the isolation of its

dynamic elements and operations to the Knowledge Base Subsystem. Specifically, the

11

Knowledge Base Subsystem should define which software ch aracteristics are made
visible to the rest of the DSS. It should know the types and the allowable operations on
all characteristics and it should provide this knowledge to the rest of the system. Since
leveling of information is necessary to make a selection tool effective, the Knowledge
Base Subsystem should contain knowledge on levels of views and it should provide the
information on how to process these levels to the rest of the system. Finally a Knowledge
Basc Subsystem shouid contain the knowledge oi how to transform evaluation data into
ratings. By concentrating all of these volatile design areas, a DSS design maintains
robustness and ensures that most future revisions affect only the implcmentation part of
the DSS Knowledge Base object.

One concept of this design that was hard to comprehend was understanding the
difference between a Knowledge Base and a Database. It was discovered that the
differences between a database system and a knowledge base system could be
distinguished by the kind of data stored in each and the opcrations provided by each. For
example, a databasc system would provide the services of storage and retrieval of all
cvaluation/selection data. A knowledge base system would provide for the interpretation
of that data.

The Decision Logic Object is the controller of the Decision Support System
processes. Essentially, it addressed requirements that were based on a user that was in

the process of selection.

Entity Relationship Diagrams

A quick explanation of an Entity Rclationship diagram and how it rclates to the table
relational design is provided next, so that readers will have the proper background to
understand the work accomplished in Chapter 111 Entitics arc objects that cxist and

which have specific descriptive attributes that distinguish them from onc another. For

instance a mother and a child are two entities which both have an attribute of social
security number, but the value of those attributes differs for each of them. A relationship
is a connection between two or more entities. For instance two relationships, has_child
and has_genetic_child, between a mother and her five children would contain the names
of all five children in the first relationship and would contain the name of only one child

in the second relationship if the mother had adopted four of her five children.

Knowledge * Decision
Acquisition Logic
Subsystem Subsystem

Figurc 1. Dccision Support System Top Level Design{24:291]

Entity Relationship models provide several different pieces of information. They
provide entily and relationship definitions in the form of named rectangles and named
diamonds, respectively. They display all important attributes (distihguishing key
attributes with bold capital letters), and they display the cardinality 'and optionality (these
are explained in the next paragraph) between entities and relationships. They also
support the notion of abstraction by the concept of an uggregate. In simple terms an
aggregate is a means of showing a n-way relationship (where “n” is the number of related
entities). In structural terms an aggregate is a super entity that enc'oses two or more
related entities and acquires the key attributes of those related entities.

Cardinality and optionality are constraints that the design of an actual database
implementation would maintain [23:28]. Cardinality is just a mapping function between
two related entities. For instance, the cardinality could define that exactly one of each
entity relate to one of another (a one to one function) or it could define a one to many, a
many to many, or a many to one relationship. Optionality shows an existence
dependency between two entities over a relationship. If an entity has a mandatory
relationship with another entity, then the latter entity will nced to be altered as a result of
a dcletion in the former entity (in one to many/many to one, but not necessarily in many
to many). Conceptually, optionality can be understood by asking the question, what is
the minimum number of associations that must hold in a relationship between entities.
An cxistential dependency of onc entity on another mcans that the dependent entity docs
not make sensc in the model if its required entity relationship no longer exists. Finally,
the graphical representation of optionality and cardinality takes the following form:
“o:B”. Where o represents the optionality and it takes on valucs of cither 0" or 1" and
B represents the cardinality where it becomes a letter in the alphabet to represent “many”
or it becomes the number ~i”. For instance, 1:N" mcans an entity is mandatory and that

it has the cardinality of “many” in a rclationship with another entity.

HyperCard

In [2:11] it was stated that HyperCard could be used to “gather, organize, present,
search, and customize information”. Design ideas based on HyperCard’s data
representation were presented in [1]. HyperCard supports external function calls to
pre-compiled C and Pascal code. This tool was used to create a user’s tutorial for each of
the three prototype tools in {7; 8; 9]. It was also used as a development environment for
[24] and as a database interface called Hyper*SQL within Oracle [25]). HyperCard
provides the user interface and test program capability which reduce the level of work

required for a prototype effort in the Macintosh environment.

Conclusions

CASE to0ls are needed to help in both large and small software projects. The larger
the communication gap in a project the more severe the problems become. CASE tools
as they become more mature, and as they integrate more, should achieve some positive
impact on these software problems by increasing project data accessibility.

There are multiple ways of viewing CASE tool membership categories. There are
also several ways of getting into trouble with CASE tools. Integration appears 1o be

where the future of CASE development is headed.

15

IIl. Description and Analysis of The STEMdB Prototype Design

Overview

This chapter provides the reader with an understanding of Software Tool Evaluation
Model Database (STEMdB) design efforts that were going on concurrently with this
research. It begins by providing a description of the the Software Technology Support
Center’s (STSC’s) development efforts and mission objectives. It discusses the
background work that the STSC had accomplished which lay the foundation for
develcpment efforts towards the STEMdB. The chapter then provides the reader with the
objectives of the STEMdB within a defincd scope. It then accomplishes a multi-level
description of the design followed by an analysis. The analysis results were based on the
knowledge gained from Chapter II. In particular, the analysis compares the STEMdB
design to the knowledge gleaned from [1] and the ASSIST prototype.

Description of STEMdB

Scope and Purpose of STEMdB. Scope: To definc an evaluation framework that
could be populated with evaluation information that would support the sclcction of CASE
tools. Specifically, to support selection of CASE tools that would mect support critcria
over multiple phases of the softwarc development life cycle, different application
domains and different subscts of softwarc engincering activitics.

Purpose: According to [19:1], “The purpose of stemDB is to allow the systematic,
reliable, repeatablie, and helpful sclection of CASE tools for those in nced of such

technology™.

Background of STEMdB. In order to understand the background of the STEMdJB

design at the time of this rescarch, the historical work of the organization that was

developing the STEMdB had to be presented. The STSC located at Hill AFB in Utah
was the developing organization. Part of the mission of the STSC was to provide the Air
Force with “centralized support for the evaluation and selection of software tools,
methods and environments...” [18:1]. To accomplish this mission, the STSC defined an
iterating process which identified both software problems and requirements of the Air
Force, analyzed current software tools and technologies, and recommended possible
solution tools, methods, and environments [18:1].

According to [21:5] “the primary objective” for any process should be “to achieve a
controlled and measured process as the foundation for continued improvements”.
Humphrey showed in [21:5] that the first step towards achieving a mature process at this
level would be to achicve repeatability. To achieve repeatability, the STSC implemented
their newly defined iterating process within the framework of a Test and Evaluation
(T&E) Process. This process was composed of area-specific T&E Guidelines (TEG?’s)
that were used to evaluate software characteristics. Given a tool. a software characteristic
and an area of interest or domain as inputs, the T&E Process would produce two outputs:
an evaluation result and a T&E Procedure (TEP). A TEP was the documentation of an

evaluator’s actions taken while implementing a TEG. Figure 2 illustrates this process.

Test and Evaluation

Process Software
/ Evaluation
Software Value
Characteristic

Figure 2. STSC Test and Evaluation Process

17

The culmination of these efforts, at the time of this research, was a series of
databases that categorized specific software characteristics within high-level functional
domains of software usage (i.e., Test, Documentation, Upper Case, Software Engineering
Environments (SEE’s)). The STSC defined these high-level domains as tool domains
where “Tool domains categorize software tools by their major functional capabilities to
compare similar tools” [18: 7). Figure 3 gives a clearer picture of how to visualize these
domains. The high-level domain equates to the Evaluation Framework node in the tree of
Figure 3. The rest of the nodes in the figure represent the software characteristics that
would be analyzed for a specific tool. Appendix A provides a representative STSC
listing of specific software characteristics and qualitics for the Requirements Analysis

and Design (or Upper Case) Domain [18:66-75].

Evaluation
Framework
User Management
Concerns Concems
Functional Quality Opcrational Acquisition
Capabilitics Attributcs Constraints Concemns

Figure 3. Examplc Tool Domain Evaluation Framework [18: 12]

As the reader will soon realize, all of this work helped the STSC to define the
specific requirements that an automated system, the STEMdB, should be built to meet.

With this background in mind, the details of the STEMdB design can now be provided.

Top Level Description of STEMdB. In order to describe the functional operations of
the STEMdB, the structural and functional requirements will be presented next, followed

by an implementation design description.

Representative Requirements Listing. The list is a representative rather than
exhaustive list of key STEMdB requirements as recognized by this researcher. For more
details the reader is referred to [19].

1. Build STEMdAB tool to work around a hierarchical organization of CASE tool
software characteristics.

2. Use linearly weighted combination of a tool’s characteristics to arrive at a scalar
measure for tool scores [19:8].

3. Use the identifying concept of a Software Area of Interest (SAI) to categorize
tools. The SAl is defined by a high lcvel domain, a target application or Software
Engineering Activity (SEA) within that domain and a life cycle phase. The STSC defines
a domain as being ¢ither "Management, Development, Test, Revicw, or Product
Support”. The STSC provides an example of an SEA in Management as being cither
“Project Management” or “Configuration Management”. Finally the STSC dcefines a life
cycle phase as consisting of onc of the following: “Concept, Requircments, Preliminary
Design, Detailed Design, Implementation and Unit Test, Intcgration and Test, Acceptance
and Delivery, or Maintenancc™. [14.5]

How this all relatcs to the “high-level functional domains of software usage” is
defined by the part of the STEMAB catled the Formulator (a description of the

composition of the STEMAB is presented later in this chapter).

19

4. Compute a function related score for each characteristic in the data model using
the linearly weighted method. Perform a similar analysis for each of twelve quality
attributes associated with the characteristic. Allow the user to enter the weights used.
[19:9]

5. Use the framework of a General Software Characteristic (GSC) with
instantiations of this framework, Specific Software Characteristic’s (SSC’s) containing a
functional value, a TEP, quality values and evaluation information for specific tools. All
GSC’s will be defined by the tunctional/non-functional tooi characteristic identification
work being accomplished at the STSC during the time of this research. A more detailed
definition of a GSC will follow in the implementation and detail level design
descriptions.

6. Allow five types of evaluation answers (Evaluate Children, Yes or No, Multiple
Choice, Single Item Checklist, and Text) within the characteristic framework [19:12].

7. Support three separate functional operations, Formulation, Evaluation and
Selection. Allow concurrent evaluation and selection operations, but force the
formulation stage to a stable state before allowing evaluations and selections to occur.
{19:10]

8. Use a commcrcial database that supports Structured Query Language (SQL) to
manipulate and store the characteristic data. Provide for a tool interface that will issue
SQL commands to the database and reccive data from the database. The commercial
database must be able to support up to 2000 tool cvaluations with as many as 1000
software characteristics. [19:10, 20-23]

9. Front cnd programming language chosen for implementation will be “limited to
those that support SQL commands with a particular databasc” | 19:75].

10. **Platform upon which the system will run is limited to thosc that can host both

the front end implementation language and the databasc” [19:75].

20

Implementation Design Description. Essentially the STEMdB is composed of
five systems: The commercial database, the Formulator, the Evaluator, the Selector and a
user interface front end. Figure 4 shows how such a system could be visualized. The

arrows indicate communication between components in the form of commands.

Front End T
Commercial .
: Database %7

>

Subsvstem

Selector

Formulator Evaluator

Subsystem

Subsystem Subsystem

Figurc 4. Original Design Components

Conceptually, the data that describes a CASE tool’s functionality within a domain
can be viewed as a description trec, where the functionality of the top node of that trce
describes the functionality of the tool. This concept is based on requircment 4, where the
functionality of a node is equal to the weighted sum of the functionality of its children.

Each node in the description tree will be a SSC which contains the cvaluation data

associated with the functionality of that nodc.

The database subsystem would be chosen to provide both an SQL interface and the
full functionality of a standard database. A front end interface would be used to
communicate between the database and the other three subsystems.

The Formulator’s principle function would be *“to specify the various functional
areas that describe the performance of CASE tools and then to build a description tree for
each area” [19]. The Formulator subsystem must be able to build description trees out of
a framework of GSC’s. The GSC’s chosen for the framework will be identified as a
result of the work that is still ongoing at the STSC under the T&E Process. The method
that describes how to evaluate a description tree will be implicitly defined by the “type”
of evaluation answer that the Formulator encodes at each node in the tree. The
Formulator needs to be able to access the database to store SAIl design’s.

The Evaluator must be able to access a specific SAI design in the database, to
understand how to evaluate its description tree based on the types associated at each GSC
node, and it must be able to store the evaluations as an instantiation of the SAI design for
a specific tool. Once the Evaluator subsystem evaluates a GSC, it should be able to store
the results in the SSC that maps to that GSC.

The Sclector must be able to access tool specific instantiations of the SAI design. It
must be able to define weights for every SSC node in the design. It must be able to save
these weights in a weight set area of the database for the tool specific instantiation. It
must be able to understand how to score a tool and its individual characteristics given

both an SAI description tree and a weight sct. It must be able to save sets of uscr defined

" tool names.

Deztail Level Description of STEMdB. The next three sections present a description
of thc STEMAB dcsign data semantics, subsystems communications, and subsystcm

processing.

22

STEMdB Data Model Description. One of the best ways to visualize a data
model is through a graphical illustration. Data models provide both “data and structural
information” [19:3]. The requirements document in [19:25] provided the table relational

diagram shown in Figure 5, but this illustration did not provide an immediate picture of

how the data was structured without extensive study.

-B Selection_Set ﬁ The_Area
Sel_Neme Domain fﬁ Genersl_Soft._.Cher
theTools SEA Choeracteristic._Name
Phase theArean
The_Too} theTouls / Number
'&gol,Nome theSEATree Formuletion_Question
V&L%LQIJ Specific_Soft_Cher Evaluation_Question
endor Rk eTool Evslustion_Help
Cost theTool Essentisl_Flag
theGeneralChor
theSelectionSet Vel \ Evaluation_Method
theAreas olue theSpecificChars
theSpecificChars TEP theParent
theToolScores - theQualities theChildren
theEvaluators theWeights
[Tooi_score theScores
theTo = -
he -;oithtSet | The_Score rﬁ The_Oualltg
Function_Score theweightSet Quality.Neme
Quetity_Score theSpecificChars Quolity_Velue
Function_Score theSpecificChors
‘?3_1 Weight_Set Quelity_Score E—
ght.Set_Name - e_Evaluator
Default ﬁ The_Weight Eirst_Nome
theToolScores L theWeightSet Last_Name
theScores the6energiChor Dete
theWeights Function_weight U theSpecificChars
Quality_Weight

Figure 5. STEMdB Requirements Table Relational Diagram

To gain morc-insight into how the data was structurced, the entity relationship (ER)
diagram in Figure 6 was devcloped from both general tool usage knowledge and from the
table rclational diagram of Figure 5. An attempt was made to maintain the same naming

conventions used in {19:25-32} in order not to contfusc those referring back to this STSC

23

requirements document. To achieve better readability ar d understandability of the
design, however, the following changes were tnade :

1. Four relational table names were changed

- Specific_Soft_Char and General_Soft_Char tables were expanded io their full
rames - The_Score table was renamed software_char_score
- The_Weight table was renamed software_char_weight

2. The linking relationships were provided shorter names that all began with “link”
and ended in two capital letters that matched the first distinguishing letter of each linked
table. For instance linkAT connected the The_Tool table to the The_Area table. There
were two cases where this rule was broken. The first case involves all non-trivial
relationships (1elationships that contained attributes in exczss of the mandatory keys) of
linked entities. All non-trivial relationships were given a descriptive relationship name.
The other case involves the “root_node” relationship. This relationship needed a more
descriptive name to identify it as linking an area to the top node of a description tree.

3. Finally, one linking relation was added between The_Arca and The
General_Software_Characteristic tables. The root_node link was added to clarify the
relationship between the Area and a general software characteristic.

The way that an ER model is converted to the table relational form is
straightforward. In general all entitics and relations become tables with their attributes
becoming table field names (or column names in other words). Distinguishing attributes
become key attributes in the tables. Each gencral characteristic, for cxample, would be
designated a row (or a record) in the General_Software_Characteristic tablc. To access
the attributes of a specific general characteristic, one would scarch for the unique key,
GCS_ID, that equals the desired GCS_ID key. Rciation tables also inherit as key
attributes the key attributes of the entities that they connect. If aggregatior. exists then the

aggregate inherits attributes of its internal relationship and it becomes a table. For

instancc, the Specific Software Characteristic aggregate table would have ficld names of:

24

SSC_ID, GCS_ID. TOOL_ID, value, and tep. The SSC_ID, value and tep were alrcady
attributes of the Specific Software Characteristic relationship , it inherited the TOOL_ID
key from the The_Tool entity and it inherited the GCS_ID from the General Software

Characteristic entity.

EVAL_ID . QUAL_ID
The_Evaluator] FIRST NAME I The_Quility RquaLrTy_NaME
LAST NAME | QUALITY \ALUE

SET_NAME

Selection_Set

date LN L_,
QUAL_ID
EVAL _ID
TOOL_ID — ssc |-() SSC_Ib
=M M
S .
TOOL 1D GSC_1»
TOOLNAME { .\ CHARA_NAME

VERSION formu_?

vendor valve Gaeral evaly_?

cost [The_Tool l Software cvals_help
1:x | Characteristic Josscminl.flx
: cvalu_mehod

- Speafic
Sofiware
Charsctensuc

E:N

TOOL_ID
AREA_ID

GSC_ID

WEIGHT _SET_NAYE \
fua ction_weigls software

quaty _weight

IS PIPIINYD ATRM)J 08 D1 12D f

prye

IAREA 1D

DOMAIN
. SEA SSC_1b
1zl PHASE WEIGHT _SET_NAME
function_score
qualsy_score
PARENT_GSC 1D
CHILD GSC 1D
TOOL_ID
WEIGHT_SET_NAMH 1N N
funchion_score 8
qualas _score \\élghl,:‘cl
b

[Ho ST

WFIGIT_SET N AM
FIGHT_SET N AME AKEA 1D

defauk

/\u t

nade

Figurc 6. Entity Rclationship Diagram of STEMdB

Description of Key Entities and Relationships of Figure 6. The entitics in
the STEMdB data model are as follows:
1. The_Tool - Contains basic tool information as defined in the attributes of
Figure 6.
2. The_Area - Functional areas to which CASE tools will map. These areas map to
the high level tool domains discussed earlier.
3. General_Software_Characteristic - Framework which the STEMdB tool is built

on. The following is an explanation of all non-self explanatory attributes:

formu_? - Is an explanation comment stored in the GSC by the designer of the
domain description tree. The comment explains why the designer chose to insert a
particular characteristic at a particular location in the tree.

evalu_? - Is the evaluation question that an evaluator must answer to evaluate
the characteristic.

evalu_help - Explains the justification for addressing the evaluation question of
a characteristic.

essential_flag - Maps back to the STSC “short tool list” concept. In [27] a short
tool list was the list of tools that met the minimum Air Force Requirements as detcrmined
by the STSC. In the context of the STEMdAB, the Formulator tool flags a characteristic
as essential when it must be evaluated favorably for the tool to be considered in a
selection.

evalu_method - This is a Boolean variable that lets the evaluation tool know
whether or not this characteristic must be evaluated. When a characteristic contains the
type of “Text”, for example, this attribute will have truth value of “falsc”. All other
answer types will result in a truth value of “true”.
4. Specific_Softwarc_Characteristic (SSC) - This is the instantiation of the GSC
after it has been cvaluated. The “value” attribute contains the functional results in a form
that is defined by the answer type in its corresponding GSC. The “tep” maps to the TEP

of Figure 2 and rcpresents the same information.

5. Wecight_sct - Contains the names of stored weight sets for specific high level tool

domains. The default attribute is a Boolcan that determines if this weight sct is a default

weight sct.

6. Selection_Set - Contains the names of sets of tools that were considered and
stored by a selector.

7. The_Quality - This entity has a quality_name attribute that can be assigned one of
twelve quality names (see Appendix A). The QUALITY_VALUE associated with a
specific QUALITY_NAME is an integer score (between O and 10) arrived at by an
evaluator based on a TEP.

8. The_Evaluator - Represents specific evaluator information about the person who

evaluated a SSC for a tool in a given functional domain.

The non-trivial relationships (non-trivial meaning that the relation tables contain
attributes in excess of the mandatory inherited key attributes) are as follows.

1. tool_score - Given a weight sct and a tool this relation provides the overall
function and quality score of a tool within the context of a domain.

2. software_char_score - Given a weight set and a SSC this relation provides a
function and quality score for that particular SSC within the context of a domain.

3. softwarc_chai_weight - Given a weight sct and a GSC this relation provides the

specific function and quality weight for the GSC.

STEMdB Interface Design Description. There were two types of interfacing
that [19] described, the uscr interface and the functional tool subsystem interface to the
database subsystem. Although the user interface was not required to adhere to any
particular graphical user interface (GUI) standards, the design did specify that a GUI
would bc used. The tool interface between database and STEMAB application was

defined in {19:21] as in Figurc 7:

STEMdB Functional Design Description. A top level description of the

functional requirements was alrcady provided carlicr in the Implementation Design

27

Description section. The reader is referred to [19] for a detailed description of the
functional components of the design. A flavor for these details will be provided in the

analysis section of this chapter which follows.

stemDB

SOL Commands
- Database
Front-End | CASEToolData | Iheine
- (e.g., Oracle)

Figure 7. STEMdB Basic Components

Analysis

Areas Well Designed. In general the STEMdB effort had accomplished a lot of
good work towards creating the end product of the STEMdB tool. The developing
organization understood the need to learn more about the problem space and used
prototyping as a means to help firm up requirements. To accomplish this prototyping,
two prototyping efforts werc launched. The first effort resulted in a Think Pascal
implementation that was devcloped in the MacApp development environment. This
cffort produced the three working prototypes rcterenced in [8; 7; 9]. These prototypes
concentrated on modeling Formulator and Evaluator tool functionality more than the
Selector tool functionality. Another product of this prototype stage was the creation of
three Hypercard Tutorial stacks that were targeted towards training users of the

prototypes. The next stage prototype| 19:3] was an ongoing cffort that was described in

28

the requirements document. Its purpose was to show how the STEMdB would work with
a database storage facility, and to show how the user would interface with a STEMdB
tool.

Much of the functionality described in the requirements document and the
prototyping efforts showed the developing organization’s dual concerns for providing
both a useful tool and a user friendly tool. The following section identifies some of these
requirements.

The design addresses how to process data from multiple evaluators by merging
evaluation trees. The design also specifies that a Graphical User Interface will be used.
The design partially addresses the issue of helping the user by providing textual
information on the Formulator and Evaluator processing. The design identifies that a
database could contain incomplete information from both Formulator and Evaluator
processing. Incomplete information in this sense, however, is an added functionality of
these two tools, since a user is released from the requirement of having to complete a
session in one sitting. The design also addresses one aspect of maintainability from the
viewpoint of supporting a rapidiy changing data model. Since identifying characteristics
of tools could change frequently (due to the ever-increasing improvements to software
design), the design will address how an old data model can be mapped onto a new design
[19:12]. Although this mapping concept was identified in the requirements document as

necessary, no design was presented at the time of this rescarch.

Areas That Require More Work. Evcn though the prototyping efforts produced
many valid design requirecments, questions still remained about the design’s
maintainability and upgradeability. This rescarcher identifies two top level arcas that

require more work duc to a lack of maintainability and upgradcability in design

consideraticns and unnecessary data and functional limitations. The first arca identified

discusses new approaches to designing the STEMdB tool that support upgradeability and
maintainability requirements. The second area identified addresses improvements that

can be made within the context of the present tools dataz unctional designs.

New Approaches to Designing the STEMdB Tool. This section is divided into
two new approaches for the present design. The first approach presents an argument for a
change in design methodology, the second approach presents an argument for setting a
higher goal for system maintainability and upgradeability. Both arguments complement

one another.

A Change in Design Methodology. The STEMdB was designed from a
functionally oriented approach. In the STEMdB requirements document the Front End
module was identified as providing all the functionality of the STEMdB tool. It
controlled the Formulator, Selector and Evaluator, while providing scoring, reporting,
interfacing, database initialization, and a uscr interface [19:22]). Since the STEMdB was
designed with behavioral goals that map closely to the behavioral goals of the Lawlis
dissertation tool ASSIST, the STEMdB 100l is a decision support tool. Lawlis states that
there is “"a strong rclationship among the object oriented concepts and knowledge
representation concepts of frames and scmantic nets™ [24:55]). She further states that if a
decision support tool “‘uscs these knowledge representation concepts™, it should naturally
follow that the tool be developed using object oriented concepts [24:55]. The STEMdB
is developed based on the idea of frame bascd knowledge and semantic nets. The
description trce is a scmantic net and cach node contains a frame of knowledge.
Therefore, it should naturally follow that the STEMdJB be developed using an object
oricnted design approach instcad of the present functional decomposition approach. In
addition, if thc STEMJB is a tool that will be utilized over many years then

upgradcability and maintainability become an issuc. In the functional decomposition

30

designs of past and present, maintainability and upgradeability arc hampered by designs
whose state information is dispersed throughout the functional modules. Borland is one
example of a commercial company that has switched to object oriented programming in
all of their products and is reaping the rewards of this new methodology. In an October
1991 US News and World Report news release, Borland claimed that the Object
Oriented Design (OOD) methodology cut new upgrade release development time one
third to a half while also reducing lines of source code. In the article, Borland used their
old way of doing business, Structured Analysis and Design (SADT) and Functional
Decomposition, as a benchmark for these assertions. Changing the design approach
could reap similar rewards for the STEMdB when it comes time to maintain and upgrade
it. Besides, much of the work that has already gone into developing the STEMdB
prototype efforts can also be used in an object oriented approach.

The Lawlis dissertation lays the framework for an object oriented approach.

Chapter IV shows how the STSC design can be re-accomplished using this framework.

Improving System Maintainability and Upgradeability. According to the
design, the STEMdB was targeted for one Jiatform that supported one type of SQL
database. Furthermorc, the STEMdB implementation language could not be Ada since
requirements ninc and ten in the Design Description Scction of this chapter explicitly
statcd that the implemcntation language must be supported by a database provided
interfacc. At the time of this research there were no knowr. QL commercial databascs
that provided interfaces in the Ada language. By climinating Ada as an implementation
language and by restricting the tool to operation in one specific environment, the
devcloping organization was not providing for long term maintainability or

upgradeability.

31

Ada provides many of the capabilities that support good software engineering
practices which, when properly implemented, can create a more maintainable application.
The language provides strong typing, the mechanisms for information hiding and the
ability to communicate with other implementation languages. It also provides the
capability to create abstract interfaces in software applications which can be used to
establish hardware independence. For instance, when a software application using an
abstract interface must be re-hosted on a different machine, the implementation part in the
body of the interface will need to be revised but the rest of the application logic and
structure will remain unaffected. Since Ada can communicate indirectly with SQL
databases through pragmas, it becomes a candidate implementation language for the
STEMdB. Further, since the Department of Defense (DOD) edict states that all DOD
software developments will be accomplished in Ada unless it is not cost effective [4], the
STEMdB must be developed in Ada . Using Ada to communicate with a database opens
up a further design decision as to how to approach this interface design. At the time of
this rescarch much of the procedural program interfacing with databases used a de facto
standard of pre-compiler technology [14:3]. Pre-compiler technology was a method used
for embedding SQL statements within a procedural application program Jike Ada.
Chastek et al. wams against using this technology in the development of Ada applications
since it in effect creates a new language that “...no longer conforms with the Ada
Standard.” [14:3]. A solution to crcating an Ada to SQL binding, or an intcrface
independent of pre-compiler technology, was established by the work accomplished in
[14; 13; 17; 16]. The model developed by Graham ctal. {145 13:17; 16] is called the
Structured Query Language Ada Module Extensions (SAME) and will be discussed in

detail in Chapter IV. A solution design using the requircments of the STEMdJB will also

be presented in that chapter,

Top Level Requirements Change. A significant arca in the STEMdB

design that was not addressed by the requirements was the identification of end users of
the STEMdB tool itself. Due to the widespread need for this type of tool in both industry
and the government, and due to the limited resources of any DOD organization, the tool
should be developed with remote usage users and multiple platform configurations in
mind. Building on the concept of abstract interfacing and hardware independence,
extending the STEMdB requircments to support remote users and multiple platform
configurations becomes trivial. The requirements should reflect this as a design goal.
Given that this is a valid requirement, the following implications must be addressed by
the design:

1. With the many variables associated with CASE tool sclection, the tool should be
built and tailored as a decision support system. It should be built so that a user who has
no previous knowledge of evaluation and selection processes can use it effectively.
Decision support systems do not have the expert knowledge that an expert system has,
but they do have some degree of domain knowledge which allows them to provide the
user with an informed decision. With this in mind and armed with the knowledge of
information proliferation from Chapter I. any tool that helps reduce volumes of
information into some uscable form benefits all users. This can be understood by looking
at the only alternative to such a tool which would be a user inept at evaluation and
selection processes attempting to select an appropriatc CASE tool. Such a user more than
likely would accomplish an ad hoc evaluation and selection with limited information that
may not meet his/her needs.

2. Incremental development would allow various phases to the tool to be developed
to meet the goal of remote usage with multiple platform configuration. The first phasc
would involve strictly in-housc use at the STSC, the second phase would involve the

STSC scnding personnel out to remote locations (locations other than the STSC) to both

33

test the remote database access and the remote application operation. Remote testing
could also involve a joint training session with the remote organization on how to operate
the STEMdB tool. The next phase would allow pilot remote organizations trained in the
correct usage of STEMdB to operate it remotely and supply feedback. These first three
phases would have to be repeated for all target platform configurations. The final phase
for any configuration would involve providing both the tool and tool training to any
organization that has a need and that has the remote interfaces, software and hardware to
support the tool.

One of the major problems associated with this type of approach is the complexity
that results from relationships between different hardware platforms, different user
interfaces, and different database interfaces. This complexity can be reduced by
designing the system around abstract interfaces to these areas. The STEMdB itself would
have to be configured by using “concrete interface” [17:6] modules in the implementation
part of an abstract interface. Concrete interface modules, according to Graham, arc the
modules that are implementation dependent. The use of concrete interface modules along
with their enclosing abstract interfaces, would allow an application such as the STEMdB
to be portable across different configurations. As the need for more remote platform
support becomes necessary, the STSC would have the option of extending the STEMdB’s
target platform domain to meet this neced. In addition, the STSC could provide to the Ada
software dcvelopment community a library of these interfaces. The Ada development
community would then have the capability of making their Ada applications morc
portable across different configurations.

The onc interface in this scction that may not be feasibly abstracted is the user
interface. This may be the case if the STEMdB user interface is built using a
commercially developed user interface application. One cxample of where a

commercially developed user interface could not be feasibly abstracted out of an

34

application is a HyperCard program running on a Macintosh computer. This was
discovered by Lawlis while implementing her ASSIST prototype in Hypercard.

3. Other design changes resulting from remote usage would require that the
STEMdB:

a. Provide an initialization routine in the abstract application interface that
creates the tables that will mimic the database format of the STSC database.

b. Provide capability to download and import the data into a users local
database. This capability could initially be provided as a manual procedure. In this case,
users must understand how to import data based on their own database and the format of
the downloaded data (i.e. comma separated text, tab separated text).

c. Add the capability for the tool to check downloaded data against a date flag.
By ensuring that upon “download date expiration” any further selection work will not be
allowed to proceed unless new information is downloaded, the STEMdB will help
maintain the data currency requirements. Due to consistency considerations that local
database information, additional capabilities will need to be provided tor local database
currency updates. For instance, the local weight set data will be updated with any new
default weight set data in the currency update process. If steps are not taken to preserve
the original user defined weight set data, it could be overwritten in the update process.
Similarly, the remote tool will need to be sure not to upload any Selection_Sct
information (since this information only makes sensc when the remote user identifics tool
sets important to his/her organization) and it will Liave to provide for restoring
softwarc_char_weights. Two constraints that must be checked on the newly uploaded
data would be that all restored linkST Tool_ID cntrics have matching tools in The_Tool
and that all restored GCS_ID’s in softwarc_char_wcight have matching GCS_ID’s in the

Gencral Software Characteristic table. These consistency checks are necessary since the

newly uploaded data may have added or deleted information that the earlier system used.
For instance, a tool could have been deleted from the database.

d. Finally, the remote tool should be able to check an application integrity
constraint that would guarantee that the remote application and the STSC database are
compatible. This would ensure that there were no structural revisions to the database

design after the STEMdB remote application was released.

Improvements to Be Made Within Context of Present Design. This section will
suggest improvements to the Data model, the Formulator functionality, the Evaluator

functionality, and the Selector functionality.

Data Model. There were six areas that needed to be addressed further
within the Data Model.

The first area concems the relational database design goals of Boyce-Codd normal
form/Third normal form(BCNF/3NF), lossless join decompositions and dependency
preservation. According to [23:209] these design goals are principle criteria for good
relational database design. The overall minimal requirement in any database design is to
reduce update redundancies while preserving functional dependencics. Either normal
form accomplishes the goal of reducing update redundancies with BCNF also minimizing
those redundancies. The difference between BCNF and 3NF is that 3NF is a less
restrictive form (it can have some redundancy) that maintains functional dependency
preservation whereas the BCNF form is a more restrictive form that guarantces minimal
redundancy at the possible cost of dependency preservation. A definition of BCNF form
is provided in the following analysis sections. Since 3NF form was not nceded in the
following analysis sections, its definition is not discussed. Dependency prescrvation
means that after a database scheme is decomposced into its sub schemes, cach of the

problem spacc dependencies “can be tested in at Ieast one relation in the decomposition”

[23:182]. According to [23:181], when accomplishing relational decomposition,
designers must ensure lossless decomposition/joins. This means that the designer
decomposes a scheme so that no functional dependencies are lost as a result of the
decomposition [23:184]. There was no indication in the STEMdB documentation of
requiring any of the design goals discussed in this paragraph.

Without knowledge of how the STEMdB relational data model was designed, more
confidence in the design had to be gained. To gain this confidence, a canonical cover
with dependencies defined in Table 1, was derived. A canonical cover is a minimal set of
functional dependencies that fully defines a schema with minimal repetition of
information. A canonical cover of dependencies must be able to completely derive all
original dependencies without adding any additional information. The form of each
component functional dependency in the cover is required to have a unique left hand side.
Table 1 lists one possible cover that fully defines the STEMdB Schema [5]. The syntax
T = A isread “T implies A”.

For better readability of candidate key resuits, and for functional dependency
processing derivation, it is desirable to represent keys in some abbreviated form. The
acronyms used in Table 1 represent the keys/attributes of Figure 6. In general, if a list of
attributes was defined by long words in Figure 6, for instance the software_char_score
non-key attributes, then the acronym used to describe this list was written with
distinguishing capital letters followed by an “_a”. One cxample of an acronym
conversion follows: The software_char_score non-key attributes in long hand would be
written “function_score, quality_score”, but this new notation reduces 1o the following
notation: SCS_a. When a key attribute was represented in shorthand, it was just

distinguished by an obvious sct of capital letters. Table 2 maps the acronyms of Table |

to the keys/attributes they represent in Figure 6.

Table 1. Functional Dependencies of STEMdB Schema

GSC, T = SSC_a, Parent_GSC
WS,GSC = SCW_a
A = GSC
WS, T,GSC = SCS_a, TS_a
EVAL = date
WS = default
GSC = GSC_a, A

T = T_a

QUAL = QUAL _a

The main result of the derivation of a canonical cover was the identification of a
STEMGAB functional closure. Closure analysis identified {T, A, WS, EVAL, QUAL} or
{T, GSC, WS, EVAL, QUAL} as the candidate keys. Candidate keys provide the
minimum functional information a database schema must have to fully identify all
functional dependencies. This analysis shows that given an Area or GSC, a Weight Set, a
Tool and evaluator/quality information ail other dependencies in the database can be
derived. The candidate key with the GSC in it will only work, however, if that GSC is a
root node in the present design.

Upon further analysis each relation scheme of the STEMAB, in the original Figure 6,
tuzas out to be in a BCNF form that is dependency preserving. This is true since all but
two relations were of the form of Super Key = attributes. To check for dependency
preservation, any relation that has functional dependencies beyond those of
Super key = attributes must have these dependencics preserved and accounted for in the

cover analysis. The two relations that had additional constraints were the root_node and

3R

the linkGG. Additional constraints surface whenever there is a one to one or a one to
many relationship. The two additional functional dependencies resulting from the one to
one relationship between The_Area and the General Software Characteristic were
incorporated into Table 1 and were maintained in the design by the cardinality. The same
can be said for the child GSC_ID determining its Parent GCS_ID, which results from the
one to many relationship in linkGG. Since all relations that make up the STEMdB are in
dependency preserving BCNF form, the STEMdB Schema is in BCNF. These results
allowed this researcher to conclude that the schema now reflected the database design
goals established earlier.

During the course of this analysis a problem was discovered in the context of the
problem space, however. Ambiguities were resulting from the design using two binary
relationships to define the tool_score relationship. This relationship is truly a three way
relationship that depends on a root GSC node, a tool and a weight set. By designing it as
a binary relationship the integrity of the data was compromised. The best way to show
this is through a scenario that uses the structure of Figurc 6.

1. Given atool, T1, that maps to two cvaluation domains, A1 and A2 through two

root GSC nodes, G1 and G2.

2. Given one weight set, WS1, that maps to both G] and G2.

3. Provide the tool_score for T1 using WS1.
As the reader can surmisce there arc actually two different domain dependent scorcs that
the tool can be assigned based on whether Al or A2 is selccted. This ambiguity can be
climinatcd from the design by specifying a GSC that defines which domain the score is
desired in. The original STSC design omitted the key attributc of GSC_ID. The redesign
in Figurc 8 implements this correction by connecting the tool_score relation to the

Software Char Wcight aggregate thus inheriting the GSC_ID key from it.

39

Table 2. Map of Table 1’s Relationship to Attributes

T = TOOL_ID

A = AREA_ID

EVAL = EVAL_ID

QUAL = QUAL_ID

GSC = GSC_ID

Ta = The_Tool non-key attributes

GSC_a = General Software Characteristic non-key attributes
WS = WEIGHT_SET_NAME

SCW_a = software_char_weight non-key attributes
SCS_a = software_char_score non-key attributes
TS_a = tool_score non-key attributes

EVAL a = The_Evaluator non-key attributzs
Parent_GSC = Parent_GSC_ID

QUAL _a = The_Quality non-kcy attributes

The second area that needed to be addressed further within the Data Model concerns
table optimizations that can be made in the design. The original STSC design lacked any
refcrence to a relationship called root_node between the The_Arca and the
General_Sottware_Characteristic cntitics. The design of Figure S refcrences the
theSEATTrce as a link in the The_Area table and it references the keys of the The_Arca
tablc as a key in the General_Soft_Characteristic table, yet the rest of the design never
references how these are connected. It appears as though the system designers were
incorporating an optimized design into the requirements document while omitting the

source design. According to Dr. Roth in [6], it is important to keep a record of the

40

original design prior to any implementation optimizations. In order to re-host the design

on a different target architecture (on a distributed system for instance) at some future

date, this record along with a record of optimizations will help to prevent any reverse

engineering from being required.

SET_NAME EVAL_ID
Selection_Set FARST_N AME
LAST_NAME

LN date
SET_NAME EVAL_ID
TOOL_ID SSC_ID

QUAL_ID
QUALITY_NAME
QUALITY_VALUE

TOOL_1D SSC_ID GSC_Ib
TOOL_NAME M GCs.ID

VERSION

formu _?

General

CHARACT NAME

»
o
2
=
n
vendor evak_? gk
cost . ; Software GVIN_.I'rlp =
: 1:M - Characteristic esseatil_flag z
Chancienstic evahi_method z
I:M .
o
=
_* Fi
M e
-
=X
TOOL_ID GSC_ID Iy
AREA_ID WEIGHT_SET_NAME =a
fenction _w eiglt =
SSC_Ip quality_weight
WEIGHT SET_NAME
functmn _scose N
quably_score
1M
. PARENT GSC 1D
I) I CHILD_GSC 1D
The_Arca
|] AREA_ID
DOMaIN TOOL_tb
SEA . bt
i WEIGHT_SET_NAME Weight_set
I
sneton seote WEIGHT_SET_NAME
quality_scote - -
defavit
1IN

Software Char Weig ht

Figurc 8. Entity Relationship Diagram Revised

41

AREA_ID

By incorporating a root_node linking relationship (as shown in both Figures 6 and
8) the connection between the General_Software_Characteristi> and the The_Area tables
can be established and any previous optimization is eliminated. Since the basis for the
previous optimization was not stated, it’s existence could not be justified. The one to one
nature of the new root_node relationship implies that table optimization can be
accomplished by eliminating the root_node relationship table and by adding keys to the
appropriate tables. Since The_Area requires exactly one root GSC node, the GSC_ID of
the root node can be linked to exactly one entry of the The_Area table by adding it as an
attribute. Since a GSC does not necessarily have to be linked to an entry in the The_Area
table, adding an AREA_ID key to the General Software Characteristic table would be a
waste of storage space for the design in this chapter. Consider, for instance, that only one
node of all GSC’s for an area must have an AREA_ID attached to it. All other GSC’s
have an implied association with that area through their linkage to the root node.
Therefore by adding the attribute of root_nodelD to the The_Area table and eliminating
the need for the root_node relation, functional dependency between the two entities is
maintained while storage space is saved. The original design which associated an area
with every GSC was wasteful unless the developers had a design goal that was not
specified in the requirements document. By eliminating the linkGG table and placing a
parent_GSC_ID kcey in the GSC table, another table optimization can be ¢stablished.
This would be functionality correct sincc every GSC has cxactly onc parent, except for
the root node GSC which has a null parent.

Another interesting twist to the old design can be secn by concentrating on the
hicrarchy of GSC’s. Early in the rescarch a STEMdAB designer commented that the GSC
structure was more of a directcd graph than a tree since it could have more than one
parent assigned to the same child. Allowing this type of design would save space with

common GSC’s shared by different description trees. Since the original design had an

42

Area associated with every GSC node, there would have to be a way of coding multiple
Areas into each GSC node. Associating multiple areas with one GSC node would change
the cardinality of the original design to many to many and would require that another
relationship table be added to the original relational design of Figure 5. During this
research, the multiple parent concept was discarded by the STEMdB designers. The
complications associated with this type of design were determined to out-weigh any of
the benefits. From one perspective, this could be considered a good design tradeoff
decision since it does reduce the complexity of the design. From the big picture
perspective, this design decision may have placed unnecessary restrictions on the design
too early. Chapter V will present a more detailed argument against carly restrictive
design decisions. |

The third Data Model area requiring re-work concerns the naming conventions used
in [19:26-28]. The relationships Tool_Score, The_Scorc and The_Weight are not listed
in the linking relations section of the design document. Thesc three rclations are linking
relations as can be seen by their counterparts of Figure 6, therefore they should be
identified as such.

The fourth area has to do with optimization questions about the Specific Software
Characteristic table. The Specific Software Characteristic cntity can be thought of
conceptually as consisting of itself, The_Evaluator and The_Quality cntitics. The present
design requires tablc joins to be accomplished between the Specific Software
Characteristic and The_Evaluator and the Specific Software Characteristic and
The_Quality tables through the linking tables of cach. Join operations arc time cxpensive
when one considers that the underlying operation depends on searching for matching
attributes in the cross product of two table’s entrics. To access all SSC data on any arca,
the access time will be of order (Number of Specific Software Characteristics * Join time

required per characteristic fetch). This join time is functionally dependent on the size of

43

the Specific Software Characteristic table (maximum = 1000 entries), the Evaluator table,

the Quality table, their linking tables, and the efficiency of the search algorithm. If

memory space is not a limitation, the lag time associated with the present design can be

eliminated by placing all of the attributes/keys into one table, the Specific Software

Characteristic table. A drawback of this is the limitations that result from a fixed design

of the number of allowable entries of evaluators and quality values per characteristic.
The fifth area concems the re-design of the conceptual relationships of the

Selection_Set and the Weight_Set.

Selection_Set Re-design. Presently the Selection_Set retains only a list
of tools that were evaluated under some domain and some weight set. To remind the
selector of the original context of the selection set, an automatic connection to both an
area and a weight set should be associated with all selection scts. To address this design
in the data model, a four way relationship link could be created connecting the
Selection_Set, The_Tool, The_Area and the Weight_Set. Figure 9 shows what this
would involve for the entitics discussed. The linkSAWT relation would then replace the

1inkST relation of Figure 8.

Weight_Set Re-design. For more flexibility of the design, there should
be three levels of default weight sets: the automatic default that assigns all nodes within
the same level equal weights, an explicit Formulator system default that assigns weights
10 nodes based on empirical cvidence for a domain, and the user definable default. This
design could be implemented with an optional one to onc relationship between the
The_Area and the Wcight_Set tables or it could be implemented with access time
optimization by adding the attributc of system_default_wcight_sct_namgc to The_Arca
tablc. Onc other way of implementing this would be to add an “cmpirical _wcight”

attributc to the GSC Table. This re-design would require that the Formulator be

44

re-designed to create and store the default weights. A further justification for this re-

design will be presented in the analysis section on Formulator functionality.

" SET_NAME
Sekction_Set
1:1

AREA_ID
DOMANN :
SEA
PHASE
1:1
1M
x:‘l IGHT_SET_NAME
ault
TOOL_ID
TOOL_NAME
VERSION
vendor
cost
AR T R———

Figure 9. Selection_Set Redesign

The sixth area concerns a more extensive conceptual description of the data design.
Although a section on rcfercntial integrity was provided in the STEMdAB requirements
and design document, a conceptual discussion of the entities was not providec. A
conceptual discussion provides a better word picture of how cntities relate to one another
and how they affect one another upon update/deletion. The following presents a

suggested solution to this problem:

45

Conceptual Description of the Data Model. The conceptual
relationships between the different entitics in Figure 6 can be understood by considering
the optionalitcs and cardinalitics as follows:

1. The_Tool - Has a mandatory relationship with both the Selection_Set and the
SSC. This implies that eliminating a tool from the databasc would cause records in the
Selection_Set table to be deleted if the tool was a member ot -hat selection sct. The same
can be said for the connection with the SSC table. If a tool was delcted then
characteristic values evaluated for the tool would no longer make sense to the STEMdB
model. Eliminating a tool would not affect the integrity of the Weight_Set or The_Area
entities, however.

Therc can be many tools associated with many areas or domains, selection sets and
weight sets. Only one tool can be associated with many different SSC’s,

2. The_Area - Eliminating an area/domain would affect the integrity of the
The_Tool entity, only if the arca eliminated was the only area that a tool applied to. A
domain elimination also affects the integrity of the GSC tablc, since there is a one to one
mapping through the root_node relation, This would cause an entire description trec with
a GSC as its root node to disappear, which would resuit in all related SSC’s to disappear.

There can be many domains for many tools but there is exactly onc domain for one
root_node GSC.

3. General_Softwarc_Characteristic - The GSC has a mandatory rclationship with all
related entities except for its ‘child’ recursive relation. Therefore the integrities of all
rclated entitics, including itself, could be affected by an climination of an instantiation of
the GSC.

4. Specific_Software_Characteristic - This entity has mandatory rclationships with

The_Evaluator and The_Qualities. This makes scnse since these two cntitics can be

considered a part of all unique SSC’s.

5. Weight_set - Has a mandatory relationship with the GSC. Many weight sets can
be associated with many tools, SSC’s and GSC’s.

6. Selzction_Set - This entity does not have to exist with respect to a tool. There can
be many selection sets associated with many tools.

7. The_Quaiity - The_Quality values must exist for the SSC. Many different quality
records can be associated with one SSC. This makes sense in the context of an evaluation
since quality values of one characteristic are associated only with that characteristic.

8. The_Evaluator - The_Evaluator must exist for the. SSC.

Thic completes the conceptual discussion of the data model as well as the other data
model discussions. The next three sections present a discussion of functionality provided

by the three sub-tools, the Formulator, the Evaluator and the Selector.

Formulator Functionality. One improvement to the functionality of the
Formulator which could have significant impact on the STEMdB tool utilization, would
be to add an empirical weight set insert capability. Providing an empirically defined
default weight set, that has a solid statistical basis for a given CASE tool Software Area
of Interest (SAI), has the potential to make the STEMdB Selection process more
automated. It would become morc automated by allowing the user to choose an arca then
sit back and wait for the resulting tool list suggestions. The more automated a system is,
the simpler it is to operate and the more usage it will get provided its results are valid. In
order to get this statistical basis, an internal monitoring routine could be implemented to
record weight sct information identificd in a STEMdAB session. The systcm could also
provide an automatic reporting routine that the user would usc to send the raw data to the
STEMdAB developing organization. This reporting capability addresses the feedback
requirement that an evaluation and sclection systecm process must have to continuc to

improve [1:7]. Once this capability is added and good statistical bascs for certain SAI’s

47

are developed, the ncxt natural step would be 10 add a default weight attribute to the
General Software Characteristic table. By adding this attribute the initial setup of
searching the software_¢ har_weight table for default weights could be avoided. If these
empirically defined weights do turn out to be used the most often, then adding this
attribute reduces total processing time.

The Formulator documentation is ambiguous about the build process and the
hierarchy of characteristics. Specifically, it does not describe what types of
characteristics are and are not allowed to structurally follow at a lower level in the build
process. The STEMdB has five node types that can be assigned at any level in the build.
Incorrect hierarchical ordering of the types could nullify functionality that exists in a
node’s children. For instance, if a single item checklist node is the parent of a node that
is an evaluate children type, and if the single item check node is evaluated, then the
functionality of the parent is assigned a one and its children do not add or detract from
this functionality. This result is not consistent with the requirements that the
functionality of the parent be determined by its children. The Formulator should provide
build restrictions on structures that are illegal and these restrictions should be

documented.

Evaluator Functionality. More flexibility should be provided to allow for
multiple evaluations of functions/qualities. The STEMdB design concentrates on a final
evaluation result for a function/quality that is statistically arrived at outside of the scope
of the STEMdB. The Lawlis [24:315-316] design accomplishes this task inside of her
tool by incorporating a “Summary” package as part of the Knowledge Base. Part of the
functionality of her Knowledge Basc is to statistically average different cvaluations of an

implementation and store the results of this process in a Summary package. Both Lawlis

48

and the evaluation and selection team of [1] emphasize the need for multiple evaluators of
subjective areas.

The design limitation of twelve quality attributes associated with every characteristic
is too restrictive and should be lifted. This researcher could find no justification for
enforcing this limit, other than a user interface that was tightly coupled with the design.
This restriction limits the STEMdB’s capability for expansion. The Knowledge Base
discussed in Chapter IV will provide the evaluator with the qualities associated with the
STEMJB at any given time. The concept of the selector viewing these qualities can also

be addressed by calls to the Knowledge Base.

Selector Functionality. The first and most obvious area in the Selector
functionality that needs more work is the process of identifying and weighting important
tool characteristics. The ASSIST tool accomplishes this process by only processing the
features and criteria that the user identifies and assigns relative importance to. The
STEMdB tool assumes that all nodes will be visited. Those nodes that are not visited and
whose parents are not assigned a weight of zero, receive the system default weight and
are still used in the selection process of arriving at a score. This method places the
unnecessary restriction on the user of processing a minimum number of characteristics in
order to ensure that only his/her specific requirements are addressed. For instance, if an
SAI tree had five top levels of functionality, and the user only wanted the tool to identify
candidate tools based on exactly two of these areas, then the user would have to visit each
of the three undesirable nodes just to assign them a zero weight. The simplest solution 10
this problem is to provide the user with a resource that cquates to assigning zero weights

to all unprocessed nodes. This resource could also be provided at a higher level of

abstraction where the user can toggle it on or off. When on it would monitor all nodes

processed and then zero out all that had not been processed just prior to initiating the
scoring process.

Another area requiring more work is closely related to the one just discussed and has
to do with marking a characteristic as essential in the selection process. The Lawlis
design required that all nodes identified in the process be evaluated favorably for a tool to
be scored at all. The STEMdB requires that all nodes marked as essential by the
Formulator be evaluated favorably to be scored. It also provides the user the option of
marking each characteristic as essential but this option is provided outside of the process
of assigning weights. In effect for the user to tailor the system to his/her needs, she/he
must go through an additional process of marking essential characteristics while being
forced to accept system defined essential characteristics. The fact that a user identifies a
characteristic and assigns a weight to it, strongly correlates to that characteristics being
desirable and possibly essential. The STEMdB should provide a resource that when
toggled on, identifies all user visited and accepted characteristics as essential. In
addition, a resource to remove the Formulator defined ¢ssential constraints from the
process should be provided.

Since using a linear weighting approach to multiple criteria can result in decisions
that the user may not want (and in the STEMdB design the user may not know that
he/she has been provided with a decision that doesn’t meet uscr criteria), the designers
should state explicitly in the design documentation how these misconceptions and bad
decisions will be avoided. This problem with a linear weighted approach to multipie
criteria DSS systems is well documented.

Another area requiring re-work is the uscr interface presentation of data. Both too
much information and unnccessary information arc provided to the uscr. The concepts of
leveling of information and of allowing for diffcrent user expericnce levels are not

addressed in the STEMAB design. For instancc, the uscr is provided with a window that

50

shows the characteristic names structured within the form of an indented, numbered,
scrollable list. The novice user does not need to know how the characteristics are
structured and he/she doesn’t have to initially have access to the complete list of
characteristics. After working with the ASSIST prototype from the Lawlis dissertation
and after analyzing the STEMdB design the following conclusions were made.
Abstraction out of a multi-level tree view and into a default list view at any given level
will provide the novice user with as much information as needed. A pop-up menu
containing the remaining characteristics at a given level can be displayed by the selector
when additional characteristics at a level are desired. The Formulator-defined empirical
weight could be used to indicate which characteristics should be presented at which level.
A user experience level function can be designed to provide more information to the user
based on the experience level chosen.

Another problem discovered in the Selector processing results from an implicit
rather than explicit way of handling tool cut-off threshold processing. Although the
STEMdB design implicitly allows the user to assign a threshold level by allowing the
user to require that the root node be above a certain score, it docs not dv- -'s explicitly.
The design also made no mention of setting a default cutoff threshold for tne tool score
process. Both Lawlis and an IEEE group in [24; 1] specifically identify that the user
must be allowed to modify cutoff thresholds. Both references also advocate providing a
system default cutoff threshold. With this justification, the STEMdAB should provide a
system default cutoff threshold and it should explicitly give the user the capability to
change this default.

Another unnccessary functional restriction in the Selector results from presenting the
user with two disjoint scores, one for the functionality and onc for the quality. The
STEMdB could casily present a combined score to the uscr. Adding this capability forces

the tool ranking mechanism to be altered. A single combined top level ranking of scorcs

51

(based on user defined weights) should become the default ranking mechanism, while
existing ranking methods should be made available at another lower level of detail.

The next area that the designers of the STEMdB were negligent in addressing was
the concept of evaluations existing in different states of completeness within the database.
Although the concept of returning to marked areas to continue an evaluation was
addressed, the concept of allowing selections on these partially evaluated tools was not
addressed. Lawlis in [24] emphasized the importance of making sure that evaluations are
done based on the same criteria. If some GSC is not evaluated in one tool but is in
another, would the STEMdB tool still compare the two tools and score them? Since
partial evaluations will be allowed, there needs to be some mechanism for tracking when
a tool is completely evaluated within the context of an area. This mechanism must be
accessible to the Selection subsystem. The STEMdAB designers could design for two
levels of completeness in a tool evaluation: a degraded level and a complete level. With
software updates and improvements happening so rapidly, the degraded level could
represent a set of characteristics that is empirically proven to support most minimum
user selection critcria. This type of leveling would allow quick degraded evaluations of
new and upgraded tools to be accomplished in minimal time. This would also address the
issue of maintaining currency in the evaluation database. Another solution to this
problem is addressed in the design of ASSIST [24]. This design recognized that
cvaluation information could be incomplete betwecn different tools. Instcad of forcing
the user to accept a degraded selection suggestion, it allowed for incomplete evaluations
by summarizing this incomplete information in a sclection report. All candidate tools
were scored bascd on the same process, even if some were missing information on
non-cssential critcria. Users could then judge whether to accept the output or revise their
own inputs based on the reported missing information. These sclection reports should be

provided so that they supply the user with the context of how a decision was arrived at.

52

They should provide a list by tool of characteristic assessments that were missing, a list
of tools that did not make the system threshold cutoff, a list of tools that did make the
cutoffs, and a list of tools that were not considered because they did not have an essential
claracteristic [24:103). In [24:73-103], Lawlis provides a more thorough discussion of
how Selector or decision support logic should be defined.

Another area in Selector processing that was overlooked was providing the user with
the capability of choosing evaluation information based on evaluator “type”. By
providing a “type” attribute associated with an evaluator, a user can identify a group of
evaluator types whose information is most valued. For instance, a non-technical
purchaser on a limited budget desiring to purchase a personal computer would be more
interested in evaluations of other non-technical users, since technical users tend to have
more sophisticated requirements. Providing for selections based on evaluator type creates
another mechanism for narrowing down the candidate tools of a certain SAI. Providing
this mechanism will also help to address the area of design sensitivity to user

requirements.

Summary

This chapter provided a description and analysis of a CASE tool cvaluation and
selection tool. It compared the ongoing prototype effort of the STEMdB against goals
established in the literaturc. It used another prototype called the ASSIST as a basis for
comparison since both tools were developed towards the same goals, although the
ASSIST addressed these goals in a more abstract manncr.

Two significant design omissions or unnccessary restrictions were discovered in both
the design methodology and in the system’s ability to communicate with databascs. Lack
of a specific design methodology to follow and the Object Oricnted problem space

suggests that the design be approached with an Object Oricnted methodology. This

researcher also identified the need to use Ada as the implementation language. Ada
facilitates abstract interface designs as well as designs using good software engineering
principles and thus using Ada has the potential to make the system more maintainable,
upgradeable and portable.

Several present design re-work areas were identified by this researcher from the data
model and functional model perspectives. The initial design was erroneous in its design
of the tool_score relationship, and table optimizations could be made. Also the
functionality of the Formuiator, the Evaluator and the Selector could be improved by the

eliminating the deficiencies identified in this chapter.

54

IV. New Approaches to STEMdB Design

Overview

This chapter will present two top level designs that address the two new approaches
identified in the STEMdB analysis of Chapter III. It begins by showing how the object
oriented design of the ASSIST (Figure 1 in Chapter II) maps to the parts of the STEMdB
design (Figure 4 in Chapter III). Using the ASSIST framework in the context of a
STEMAdB system, it then presents a top level STEMdB object oriented design. The
emphasis in this top level design is placed on the structure and methods of interaction
with the data store. In particular, this top level design emphasizes the Knowledge Base
subsystem’s role in this interaction. The chapter then concludes by describing and
applying a new approach towards database interface design, the Structured Query
Language (SQL) Ada Module Extensions (SAME). This method will be used in
establishing the top level interface design for the abstract system interface that will allow

the STEMdB to communicate with SQL databases.

Top Level Design of an Object Oriented STEMdB

For the reasons stated in Chapter III the design of the STEMdB can be improved in
two ways, by redesigning the structure and dependencies to reflect a knowledge base
object oriented design and by abstracting out the interface to the databasc. A re-design
into an ASSIST-like object oriented framework is presented in Figure 10. The
differences between this design and the original ASSIST design result from the addition
of the Formulator subsystem and from the renaming of the Knowledge Acquisition
subsystem to “Evaluator” and the Decision Support subsystem to “Selector”. One other
difference results from the ASSIST maintaining the databasc inside of the Knowledge

Basc Subsystem. The new design consists of a data store, three procedural subsystems,

55

and two interface packages. Communications between the objects in this design are
shown by the directed arrows. Before proceeding with a more detailed description of this

design, the merits of the new design versus the old are presented.

User
Interface

Subsystem

< ém merciél
Database

Evaluator Selector

Subsystem Subsystem

Abstract System
Interface

Knowledge Base Subsystem

Formulator

Subsystem

Figurc 10. Object Oriented STEMdAB Design

56

A breakdown of the acronym of the original design, “stemDB”, shows how the
designers of this system placed more emphasis on the database, “DB”, than the Software
Tool Evaluation Model, the “stem”. Consulitations with the original designers also
confirmed this conclusion. To understand how the new design emphasizes a knowlcdge
base, and therefore the Tool Evaluation Model, versus the original database emphasis,
Figure 10 can be compared to Figure 4 and Figure 7 (both of these figures are repeated on
the next page for ease of reference). From Figure 7 and the design description of the
Front-End module, it could be inferred that there is a tight coupling between the Front-
End module and the Database engine. Further, since there is no discussion of
de-coupling the Front-End from the three subsystems in Figure 4, the design allows by
omission the possibility of a tight coupling between the three subsystems and the data
structures maintained in the Front-End. Tight coupling among separate modules in any
software design causes the design to be less maintainable and more prone to errors duc to
the dependencies between modules. Tight coupling also supports an environment where
system statc information can be de-localized and spread throughout the design. The
Knowledge Base object oriented approach of Figure 10 eliminates the intra-module
coupling by using well defined interfaces which provide methods and types to calling
modules. The methods or operations are suggested by the rectangies extending from the
subsystem box and the types arc suggested by the extended ovals. The arrows in the
figure represent communication between modules. For instance, since the Evaluator and
Selector have no knowledge of the information contained in the Database, both the
Softwarc Arca of Interest (SAI) identification and characteristic identification methods
must be requested of the Knowledge Base before either process can procecd. With this

comparison completed this chapter will now discuss the design in more detail.

hY

Formulator
Subsystem

Front End

Subsvstem

Evaluator
Subsystem

Selector

Subsystem

Figure 4. Original Design Components (repeated from Chap 3)

stemDB

SQL Commands
-

-

Front-End | CASE Tool Data

Database
Engine
(e.g.. Oracle)

Figurc 7. STEMdB Basic Components (repeated from Chap 3)

The processing of this éubsystcm and other subsystems will be described in the
following sections using terms that are more generic than the terms of the original
STEMdB design. Specifically, the term “semantic net” and “knowledge frame data” will
be substituted for the terms “description tree” and “node data”, respectively. They will
also be used interchangeable with the terms “structure” and “characteristic data”,
respectively. The justification behind this switch in terms is centered around designing at
a high level of abstraction. The use of the terms “tree” and “node” forced the
“implementation” design decision that the data would be organized in a tree structure too
early. When implementation decisions are bound to the design too early, they limit the
design and cause the system to be less robust and less maintainable by tempting designers
to tailor the design for a designated structure. Specifically, the original STEMdB design
was limited by binding the system data structure to a tree structure. One limitation that
resulted from this decision can be seer by realizing that the tree structure eliminated the
possibility for reuse of common characteristics by not allowing multiplc parents. By
climinating this possibility the design was not developed in a more general sense. Had it
been designed in the more general sense, then binding to a single or multiple parent
structure would ideally occur at or close to implementation time. By forcing this decision

at the end of the design, either a tree structure or a directed graph could be implemented.

Design Discussion of New Formulator. The Formulator Subsystem conceptually
2xhibits the béhavior as described in the requirements document (with the improved
behavior identificd in the analysis scction superseding weaker behaviors) and it achieves
this behavior using an object oriented methodology. Figure 11 provides a more detailed
view of the internal design of the new Formulator. It consists of a Formulator Build
processor which requires the resources provided by the four resousce packages shown.

Resources arc simply methods or operations and object types. The shaded packages are

resources tailored to the Formulator Build Process. Clear packages have some resources
unique to the Formulator Process, but also have resources that are common across all
three subsystem processes, the Evaluator, Selector, and Formulator. There is the
possibility that the Present State resource packages across all three systems (see also
Figures 12 and 13) could share resources but this would have to be addressed in a more
detailed design. This possibility becomes stronger when one considers the Evaluator and
Selector processors and their dedicated packages. For instance, both of these processes
will desire state information about characteristics that were visited and altered.

There is no implied ordering associated with the internal sub-processes other than
initial setup requirements which occur in the top two procedure boxes of the Formulator
and Selector, and the top three of the Evaluator.

To understand how this processor accomplishes its job, the following Top-level
Structured English describes the processing that the new Formulator must accomplish.
This section and all following processing sections specify in their comment areas (which
are preceded by two dashes) how the Knowledge Base (KB) subsystem interface aids in
their processing.

Initialize to Formulator_start_state;

-- Call KB routine “Initialize_KB_formulator” through Present State of Build
-- Resources initialization method.

Provide toggle capability to Set_user_lcvel;
-- Call KB methods “set_expert” or “‘sct_novice” through initialization resources.

Provide ability to open new or old Softwarc Arca of Interest (SAID);
-- Call KB methods “define_SAI” or “update_SAI".

Provide ability to mark a description_arca as rcleased/not-relcascd;
-- Call Build resources “release” or “imaturc_arca” which will then call the
-- KB routines.

60)

Formulator Build Process

Characteristic
Identification
and

Initialize .
State . Association
Identify Resources
SAI
for Build
) or
Rework
Create or

Controller ————%| Mo dify
SAI Structure

Present
State of
Build

Resources
Review, Insert/Update
Accept, General —
Reject or Characteristic
Continue Data

Build
Resources

Suppon
Resources

Figure 11. Formulator Internal Vicw

Provide capability for update of all cvaluations made prior to latest relcase of an
updated dcescription_area;
-- Request KB to check_and_report_and_update-if_possiblc on any cvaluations
-- using old description_arca.

Provide capability to insert semantic_nct_description_data and frame data (or
characteristic data);

-- Calls to the KB through Characteristic Identification and Association resources
and Build resources to request methods: get_and_put_frame_data, and
get_and_put_semantic_net_builders
(like create_link, climinate_link, rcusc_sub-scmantic_nct_structure,
climinatc_sub_semantic_net_structure).

61

Provide capability to maintain current_state of Formulator process;
-- Calls to KB to “update_present_statc_summary” through Present State of Build
-- resources.

Provide capability to traverse_forward, backward, or at the same_level in a
semantic_net for review/rework;
-- Calls to KB through Build resources to request: work_at_present_level,
-- work_at_next_level_down/up, show_all_not_processed/completed_frames
- go_to_not_processed/completed_frames.

Provide capability to get a printout of work accomplished;
-- Calls Support resources for method “print report”.

Provide ability to accept-partial/accept-complete/abort the session;

-- Calls KB through Present State resources to: Accept_session, Abort_session,
- Check_if_semantic_net_is_completely_defined

Design Discussion of New Evaluator . Both the Evaluator and the Sclector sections
follow the format of the Formulator section. The new Evaluator interal view is shown
in Figure 12. Its processes and interfaces or resources are enumerated in the figure. The
Evaluator Process conceptually exhibits the behavior as described in the requirecments
document (with the improved behavior identified in the analysis section superseding
weaker behaviors) and it achieves this behavior using an object oriented methodology.
To understand how this processor accomplishes its job, the following Top-level
Structured English describes the processing that the new Evaluator must accomplish.

Initialize to Evaluator_start_state;

-- Call KB routine “Initialize_KB_evaluator” through Present Statc of Evaluation
-- initialization method. Sct Evaluator level to novice
Request Evaluator and Tool information;

-- Usc Evaluation resourccs to call “Get_cvaluator_data” and ~Get_tool_data”
-- methods from KB.

Identify correct SAIL;
-- Calls to the KB through Characteristic Identification and Association resources
- requesting to provide mecthod “identify_SAI”.

Evaluator Update Process

Initialize Char.acleristic
State Get Identification
and
Evaludtor Association
andTool Resources
Data Idenufy

SAI

Controller

Identify
Software
Characteristics
andQualities

Present
Stateof

Evaluation
Resources

Review,

Revise, In put

Accept Tool
Evaluation
information

Suppon

Resources

Figurc 12. Evaluator Internal View

Provide for ability to toggle Evaluator_processing_level;
-- Novice level, verses Expert level, Request method “Define_how_to_proceed™
-- from KB through Evaluation Resources.

Provide characteristics for evaluation;
-- By requesting that KB
-- “Provide_Characteristics_at_Evaluator_processing_level” through
-- Characteristic Identification and Association resources

Direct user on how to evaluate;
-- Request KB provide method “how_to_evaluate_characteristic” through
-- Evaluation resources.

Store evaluation data;
-- Call method “Store_characteristic_info” from KB through Present State of
-- Evaluation process.

Provide ability to review/change session inputs on request;
-- Call KB to “provide_evaluation_process_summary” through Present State
-- Resources.

Provide capability to Accept, Abort or report_on session;

-- Call method “Commit_Database” or “Rollback_database” from KB through
- Evaluation resources or call Support Resources for “provide_rcport”.

Design Discussion of New Selector. The new Selector internal view is shown in
Figure 13. Its processes and interfaces or resources are enumerated in the figure. The
Selector Process conceptually exhibits the behavior as described in the requirements

document (with the improved behavior identified in the analysis section superseding

weaker behaviors) and it achieves this behavior using an object oricnted methodology.
To understand how this processor accomplishes its job, the following Top-level

Structured English describes the processing that the new Selector must accomplish.
Initialize to Sclector_start_state;
-- Call KB routine “Initialize_KB_selector” through Prescnt Statc of Choices
- initialization method. Set Selector level to novice

Identify correct SAI;
-- Calls to the KB through Characteristic Identification and Association resources
- requesting to provide method “identify_SAI”

Provide for ability to toggle Selector_processing_level;
-- Novice level verses Expert level, Request method “Define_how_to_proceed”
-- from KB through Present State of Choices Resourccs.

Provide characteristics for selection;
-- By requesting that KB
-- “Provide_Characteristics_at_Selector_processing_level™ through
-- Characteristic Identification and Association resources

Direct user on how to go through sclection process;
-- Request KB provide method “how_to_proceed” through Support resources.

64

Selector Decision Suppont Process

Initialize Characteri stic
State Identification
Identify and o
SAI Association
Resources
Identify
Soft ware

Characteristics

Controller Ass'g_"
Relative
Impontance Present
State of
Chaices
Narrow Resources
Massage, Score Choices
Review Tools with
Resuits, Constraints
Accept

\

Suppon
Resources

Manipulation
of

Results
Resources

Figurc 13. Selcctor Internal View

Store selection weights data;
-- Call method “Store_characteristic_wcight_info” from KB through Prcsent
- State of Sclection process.

Provide ability to score tools ;
-- Call KB t0 “*Scorc_tools” through Present Statc Resources.

Providc ability to review session inputs on request;

-- Call KB to “provide_sclection_process_summary” through Present State
-- Resources.

05

Provide ability to re-accomplish selected weights and criteria to achieve different
results;
-- Call KB to “reset_cutoff_threshold”, re-accomplish criteria or
-- re-define_essential_characteristic processing through Manipulation of
- Results Resources.

Provide capability to Accept, Abort or report_on session;
-- Call method “Commit_Database” or “Rollback_database” from KB through

-- Manipulation of Results resources or call Support Resources for
- “provide_report”.

Functionclity of Rest of OOD Design . With the system processors defined all that is
left to describe is the functionality of all remaining interfaces (see Figure 10). The usual
functions are provided by the User Interface resources and the SQL Interface resources.
The User Interface provides all resources necessary to provide and acquire information
to/from a STEMdB user. The SQL interface provides all resources necessary to store,
update and retrieve information from a commercial database. The Knowledge Base
interface provides all methods and types that a processor must have to operate with the
system data’s structure and content. It provides the functionality of creating structures in
the database to store system data and it provides resources to store and retrieve system
data from the database. It provides the resources to maintain a running summary of what
characteristics/structures were accessed and how they were modified. It provides the raw
scores (quality and functionality) of tools to the Selector (the Selector maintaining its
own cutoff threshold and top level weights accomplishes further processing on this data).
It provides the build resources to the Formulator and it provides the inscrt and delete
characteristic data/weights resources to the Selector and Evaluator. It provides all
characteristic viewing resources and all structurc traversal resources to all processors,
Specific viewing resources are implemented within cach processor under the Support

Resources Package.

66

Top Level Design of an Abstract System Interface to an SQL Database

Chapter III established that STEMdB portability and maintainability were hindered
by dependence on one commercial database and it identified the need to design the entire
STEMdB in Ada. To make the STEMdB independent of any database an abstract
interface needed to be created and incorporated. Hidden complications always seem to
arise when one tries to create an interface from one application to another, however. For
instance, in creating an interface between the two procedural languages Ada and C, a
binding designer must understand the design foundations of both languages and he/she
must create conversion routines to avoid conflicts that arise from design differences. One
example of a design difference between Ada and C is: C has null terminated character
strings and Ada does not. Creating a binding or interface between a procedural language
like Ada and a non-procedural or data oriented language like SQL complicates interface
designs even more. Extensive work has already been accomplished towards identifying
these complications, and a model complete with template resources was developed to
address this cxact type of interface development. This model and the methods associated
with it are called the SAME [17]. The SAME is a binding or interface between Ada and
SQL that allows both Ada and SQL to accomplish their jobs without compromising cach
other’s design foundations, while at the same time allowing Ada’s abstraction
mcchanisms to overcome some of SQL’s shortcomings. It allows for the safe treatment

of SQL null values and it makes extensive use of the Ada exception mechanism.

Problems Addressed by the SAME. Bcefore proceeding on with an overview of the
SAME method, it may help to understand the interfacing problems it was developed to
overcome. Graham in {17:17] identificd five problems specific to Ada to SQL. bindings

that his model the SAME addresses. Those five arcas werg:

67

1. Typing model differences between Ada and SQL - The major difference between
typing models is that Ada has an abstract typing capability while SQL does not. In fact,
SQL is in the opposite end of the spectrum when compared with a robust typing model
since it operates on a limited set of types.

2. Treatment of null values - Ada works only in a two valued logic world where
SQL uses three valued logic. For instance, SQL provides logical operations that expect
variables to be in the form of “true, false, or null”. Ada can only logically operate on
variables that are either true or false.

3. String Processing - SQL pads strings with blanks, and its character sets are
databasc implementation defined. Ada uses the predefined character set called ASCII for
package standard operations.

4. Decimal Fixed Point Arithmetic - The operations on decimals in both Ada and
SQL work differently. SQL implementations store decimals in a packed machine format,
Binary Code Decimal (BCD), which Ada docs not recognize.

5. Types defined outside of the SQL standard - Commonly used types such as the
Date type are important to model yet they are implemented in different ways. Graham
also identifies the need to be able to store enumerated types in SQL when SQL docs not
support an SQL enumeration type.

This research will usc the SAME model to overcome all problems identificd in this
listing. It will be presented as a top-level design, however, and solutions to some of these
problems may not be obvious until a more detailed level design is accomplished. With
this justification complete, an overview of the SAME mcthod and a STEMdAB interface

design using the SAME can be presented.

Overview of How 10 Apply the SAME Method. Graham builds the SAME method

from the bottom up. Hc builds his abstract interface based on primitives he calls abstract

domains. An abstract domain in the SAME model is identified by a unique name given
to a column name in a table. The common sense rule that designers must incorporate
when creating these abstract domains is: if two distinct columns represent the same type
of information and they can be compared to each other, then their abstract domains are
the same. Graham uses the example of one application having two distinct tables in
which each has a “city” attribute or column name. Since they both represent the same
abstract domain only one domain primitive is defined, and it is named “CITY”. [17:8-10]
Once these column name equivalents are identified they are associated with two
types, a null bearing and not null bearing, and all the methods that operate on those types.
This association is necessary to model SQL null values in Ada and to define specific
types that represent SQL attribute objects. In general, this association occurs as a two
step process. First the null bearing type for a given column_name is assigned the name,
“column_name_Type” and the not null bearing type for the same column_name is
assigned the name “column_name_Not_Null”. Then these names are used to create an
Ada derived type that is based on the SAME standard package that maps to the correct
type of SQL domain. An instantiation of a generic operations packagc along with these
derived types produces a Domain Primitive Abstract Type. Figure 14 shows these
building block abstract domains as “Domain Primitive Abstract Types”. This figure is
presented to clarify the foundation upon which the SAME typing model is built. The way
Graham builds this typing modecl is through the usc of “Ada Derived Types™. Using a
derived type in Ada creates a new base type. In Figure 14 the Concrete Types and the
Domain Primitive Abstract Types arc derived from their foundational types. A
foundational type in Figurc 14 is the type immediatcly below a given type (for instance,
SQL-Based Pre-Defined Types are the foundational type of Concrete Types). The
package called SQL_Standard defines “SQL Based Pre-Defincd Types™ as: Char,

Smallint, Int, Real, Double_Precision, Decimal, SQL_code_Type. Sql_Error, Not_Found

69

and Indicator_Type. It defines the majority of these types by placing databasc
implementation tailored constraints on Ada predefined types. As an example, Type
SQL_Standard.Int is defined in the following way: type Int is range bi..ti;. The place
holders “bi” and “ti” are the actual integer upper and lower limits defined by the database
implementation. These actual limits have to be inserted in place of “bi” and “ti” when
installing the SAME resources. The Concrete Types are then built on top of these SQL
Based Types by defining derived types and operations for each of the basic pre-defined
type equivalents. The following is a listing of packages that define these Concrete Types:
SQL_Char_Pkg, SQL_Smalllnt_Pkg, SQL_Int_Pkg, SQL_Real_Pkg,
SQL_Double_Precision_Pkg, SQL_Decimal_Pkg. Appendix B has a complete copy of
the SAME supplied package specification resources discussed in this research
[17:143-248). 1t is not the intention of this research to describe how to set up the SAME
environment but rather how to apply it. The reader is directed to [17] for details.

With all of this typing information understood (with the exception of Composite
Domain Types which will be explained within the next few paragraphs), it is now
important to present an example relative to the STEMdB of how 1o define a domain
primitive type. To set up the abstract domain primitive type for TOOL_ID the following
package would have to be created:
with SQL_Int_Pkg;
package Tool_id_primitive_domain is

type TOOL_ID_Not_Null is new SQL_Int_Pkg.SQL_Int_Not_Null;

type TOOL_ID_Type is new SQL_Int_Pkg.SQL_Int;

package TOOL_ID_Ops is ncw
SQL_Int_Pkg.SQL_Int_Ops(TOOL_ID_Type, TOOL_ID_Not_Null);

end Tool_id_primitive_domain;

..........................

..........................

Domain Primitive Abstract Types

Concrete Types

SQL Based Pre-Defined Types

Basic Ada Pre-Defined Types

Figure 14. SAME Foundational Types

All primitive abstract domain dependent operations arc defined by the instantiation
of the “SQL_*_Pkg.SQL_*_OPS(...)” generic packages (where “*” represents a wildcard
placeholder and in the above cxample it would take on the valuc “Int™), all other
operations are inherited from the derived type’s domain. These primitive dependent type
operations definc how to get a null type given a not_null type and vice versa . They also
define *“Assign” operations for the limited private types which define ali null bearing
types. For instance, TOOL_ID_Typc is a limited private typc which could not be
assigned if an assign operation was not defined for it. Usc of the limited private types to

define a null bearing type is necessary since a null bearing type is a two component

71

record that contains a not null bearing type and a Boolean that represents whether the
record’s contents are null or not. At any given time if the record’s state (as determined by
the null component) is not null then the contents of its value part component are valid,
otherwise the contents are invalid.

The goal of all of these building block types and operations is to support the creation
of the “Composite Domain Types” shown in Figure 14. These composite domain types
are simply combinations of domain primitive types that together represent some object in
an abstract interface. These composite types are usually defined by a record structure
containing the primitive types. The operations associated with that record structure, once
defined, complete the definition of an abstract interface to an “SQL implementation
module”.

It is important at this point to diverge and cxplain how an SQL implementation
module can be built. Since there were no known standard SQL module compilers
available at the time of this research, a substitute method for producing SQL module
resources had to be found. The substitute method chosen was to create databasc
supported SQL modules by implementing an SQL module using the embedded SQL calls
within a supported language framework. This would require creating another interface
between Ada and the databasc supported interface language in order to call modules in
that language. For exampic, the Oracle Database for the Macintosh supports cmbedded
SQL calls from within the framework of a C program [25]. Mcridian Ada for the
Macintosh supports pragma interface calls to Macintosh Programers
Workshop C (MPW C) object librarics. To implement an abstract interface between
Meridian Ada and Oracle on the Macintosh, MPW C resources would have to be built
using databasc supplicd ecmbedded SQL resources. These resources would then have o
be pre-compiled and compiled before the body of the Ada abstract interface would be

ablc to call them using a newly designed MPW (interface and an Ada Pragma Interface.

72

Since the goal of this research is to define an abstract interface for an Ada to SQL
binding, the details of the bodies of those abstract interfaces (which are implementation
issues not top level design issues) will not be described other than to describe an example
of their general structure and desired behavior.

It is now time to take another look at the definition of a SAME abstract interface or
binding, and the operations that make up that definition. Graham emphasizes that
application logic should never enter into the definition of an abstract interface’s
operations. He then states that application Jogic should be built at least one layer above

the abstract interface. This is sounc design «* vice since the design oi the interface has
the single goal of communicating with a database. Graham also emphasizes that the
database should te allowed to accomplish the operations that it is best suited for while the
body of the abstract interface’s main goal should be to work as a translator. In general,
the operations that are defined in the abstract interface mimic those that must be called to
manipulate a structure or table in a database. These operations can be single record based
and called by defining SQL procedure cell interfaccs or they can be “cursor based”.
[17:59]

Cursor based calls are the mechani..n that allows an application to work with
multiple record retricvals. A cursor is defined in SQL as a group of records (defined by
the cursor’s SQL statement) that can be opened, stepped through with a fetch operation,
and closed. A Cursor is defined by its cursor declaraetion which contains exactly one SQL
statcment. The Cursor becomes visible to the application only after it is opened, and it
can only be operated on within a running wpplication whilc it is opencd. A cursor can
only be stepped through in one direction, the only way to return to a previously fetched
record is to close and re-open the cursor. A database can have multiple cursors opencd at

the same timc and these cursors can be identified by their cursor names.

Graham identifies all possible basic database operations or SQL statements that may
need to be modeled in the abstract interface in [17:60]. Table 3 provides this list along
with an identifier column which classifies whether the type of statement is a
transaction (T), a cursor (C) or a non-cursor (NC). According to Date in [15:48-49]
transactions, cursors and non-cursors are the three classifications that all SQL
manipulative statements fall into. The “Ada Parameter Kinds” column lists two types of
parameters which the Abstract interface will use when making calls to an SQL module.
Graham defines the “row record” as an object of the Composite domain type and the
“individual parameters” as objects of Domain primitive types. He explains that the
individual parameters will be used mostly when an interface designer must model SQL
“having” or “where” clause information. Both of these clauses are used in SQL to qualify
the type of data desired. The “where” clause is used to eliminate rows in non-grouped
select statements, the “having” clause is used to eliminate rows in the “group by” select
statements [15:95].

The last area that needs to be addressed before presenting a design of the abstract
interface of the STEMdB using the SAME framework is how the body of the interface is
expected to behave. There are four behavioral requirements that this implementation
must meet. It must convert any inputs to an SQL module from Abstract domain primitive
types to SQL_Standard types, it must call the SQL module, it must convert all nccessary
outputs of an SQL module back to Abstract domain primitive types and it must perform
error checking using both SQL indicator parameters and the Sqlcode parameter.
Indicator paramcters in SQL arc used to indicate it a fetched ficld is null (the indicator is
a Boolean that is sct to truc when nothing matches the databasc call’s criteria). Sqlcode

parameters are used to indicate implementer defined database errors associated with

databasc operations. [17:62]

Table 3. SQL Statement to Ada Mappings

Type SQL Ada Parameter Mode
Statement Kinds
C close none
T commit none
C positioned none
delete
NC searched Individual in
delete Parameters
C fetch row record in, OUT
NC insert row record in
(values)
NC insert Individual in
(subquery) Parameters
C open Individual n
Parameters
T rollback none
NC select row record & in, OUT
Individual in
Parameters
C positioncd Individual in
update Parameters
NC searched Individual in
umatc Parametcrs
LEGEND
C = Cursor Operation

NC = Non-cursor Operation
T = Transaction Operation

STEMdB Abstract Interface Design Using SAME. Accomplishing the design of the
abstract interfacc was a three step process. The first step involved defining the
architecture of the domain primitive types, the sccond involved identifying basic databasc

operations that cach of the threce STEMdAB processes would need to accomplish its job,

75

and the third involved identifying the composite domain types, individual parameters and
associated operations that would support these higher level STEMdB operations.

During this process it became obvious that the STEMdB could not be feasibly
designed without utilizing the additional SQL methods and types associated with
dynamic SQL2. SQL2 is an extension standard that was being developed in 1989 to
address areas where the SQL standard was weak or lacking [17]. The STEMdB design
requirement that the user be allowed to randomly select anywhere from one to eleven
desired attributes to narrow down tool selection candidates [19:17] was the deciding
factor for studying a dynamic approach. This requirement would force a static SQL
design to provide one select operation for every possible combination of all cleven inputs.
This would mean that 2048 operations would have to be designed and supported. To
avoid this unnecessary coding, the dynamic SQL2 design addressed by Graham was used.
[17:117-125]

Graham presented two methods for approaching a dynamic design. Both methods
were based on the “<dynamic using description area structure> or SQLDA” [17:115].
This structure supports a buffered approach that many databases usc to dynamically
communicate with application programs. Graham asserted that the two methods differed
in their visibility of the SQLDA structure from an application program’s perspective.
The first method duplicated the SQLDA structure on the abstract interface side, and the
second method applied a functional approach which hid the dctails of the SQLDA on the
database module sidc. The overhcad associated with the “visible” method was
considered to be too much by Graham, so he advocated the functional method. His
arguments about duplication of data and multiple transformations slowing down an

interactive session were well founded and the functional approach was used in parts of

the STEMdB abstract interface design.

The functional approach to dynamic SQL2 required two additional resource
packages, SQL_Standard_Dynamic and SQL_Dynamic_Pkg, copics of which reside in
Appendix B. The assumptions made to simplify this approach were the same ones used
in Graham’s example in [17:124]: only one dynamic statement would be in use at any
given time and its contents would be available in an object called STMT of
SQL_Char_Not_Null type. There were two top level functionalities that needed to be
provided by a dynamic interface. First the interface had to allow for the set up of desired
statement instantiations and then it had to provide for operating on those instantiations
using parameter type knowledge.

Before proceeding with the overall design discussion, the actual process of using a
dynamic interface will be presented. This should help the reader to understand why
certain functions and procedures must be provided by the dynamic interface. The process
that had to be followed from an application standpoint using [17:124-125] as a guideline
was: prepare the STMT, allocate a name for both input and output SQLDA processing
while associating a maximum number of parametcers with each name, create the link
betwceen these names and the prepared STMT by calling a Describe function, provide a
get_parameter_count function that operates on a SQLDA name, and usc this function to
check if there arc any input parameters (this is all based on the Describe function using
the prepared statement as a template for building an SQLDA instantiation complete with
parameter types that are waiting to be filled with objects). If there arc inputs, step
through each input parameter and, using a get_parameter_type function, obtain the
parameter’s type. Then usc the type in a “casce” statement to pick the correct
set_parameter_valuc function to inscrt the dynamic SQLdata object into that parameter
(the dynamic SQLdata object is obtained from the uscr as a criterion that is desired to
hold truc for that parameter). Once all inputs arc processed begin output processing. Usc

the same get_paramcter_count function to discover how many output parameters there

77

are in the Output_SQLDA object. If there are zero outputs then it is not a select
operation, so execute it. If there are outputs, open a cursor that is associated with the
Input_SQLDA and process the cursor with asscciated Fetch , Get_parameter_type and
Get_SQLdata functions (which are selected based on the SQLType retrieveu, then close
the cursor. All of this processing can be accomplished if the dynamic abstract interface

provides the eleven procedures/functions identified in Table 4.

Table 4. Functions Provided by an Abstract Dynamic Interface

Prepare()

Allocate()

Describe_Input()

Describe_output()

Gct_Number_Erameters()

Get_parameter_type()

Set_parameter_value()

Get_paramter_value()

Open_Cursor()

Fetch()

Close()

With the discussion of dynamic interface considerations complete, the overall design
approach can now be presented. The design will be described in the context of three
layers, thc Primitive layer, the Database intelligent layer, and the Application intclligent

layer. A description of all of these layers will be provided as the design discussion

Progresses.

Instead of having each of the lowest level domain primitive abstract types as a
package, this researcher decided to group types into entity level packages. This helped to
reduce the number of domain primitive packages that would need to be “withed” or made
visible for both further abstract interface design and application program design. It also
encapsulated entity and relationship information. All non-trivial relationships attributes
were also grouped into their own domain abstract primitive type packages. Whenever
relationships had “foreign keys™ ,which are keys inheritcd from conaected entities, the
keys would already be defined in the connected entity’s domain primitive definition (i.e.,
they were not re-defined in the relationship domain). Any operation that worked on a
relationship domain would have to “with” all appropriatc connected entity domains along
with the relationship primitive domains. For instance, a formulator operation of linking a
domain with a GSC would require an update to the root_node table which would rcquire
an operation on the domain primitive types defined in the root_node. There are no
primitive types defined for the root_node relationship because all attributes are foreign
keys and they are alrcady defined in the connected entities domain primitive type
definitions. The update operation would have to have visibility to both The_Arca and the
GSC domain primitive types. The domain primitive type packages arc defined in
Appendix C. To clarify how cach attribute contributes to this package, cach attributc’s
information is consolidated in one arca which is separated from other attribute
information arcas by a blank linc. To implement these packages all gencric
“SQL_*_Pkg.SQL_*_OPS(...)” packages must be moved to the end of cach entity
package since they arc later declarative items (later declarative items are defined in the
Ada Languagce Reference Manual).

One morc design grouping of abstract domain primitive types was considered. By
looking at the highlighted cntitics and objects in Figures 15, 16 and 17 (Notc: When

possible, thesc figures reflect the design changes advocated in Chapter HI: for instance

79

the the linkST relation is replaced by the linkSAWT relation.) one realizes that
application programs responsible for altering the state of the highlighted entities and
relationships will be written for each of the three subsystems. Therefore, the Ada
package could be used to group the domain primitive abstract type packages that were
created from the highlighted entities and relationships into three disjoint packages. It was
decided that this design encapsulation would be better utilized in a layer of abstract
interface that is built on top of the primitive interface to the database (which is being
derived now). For clarification purposes this new blanket layer will be called the
“Database intelligent layer”. The Database intelligent layer design is discussed in
concept at the end of this section but is not addressed any further by the design since it is
more detail than the top level design of this chapter required. A top level interface design
in the sense of this chapter answers the question: “what is the minimum required to get
the interface to the database defined without bringing in application logic?”.

To streamline access to domain primitive types, the idea of placing composite
methods built on domain primitive types into the same entity packages that encapsulated
those types was considered. Trying to place compositc methods into packages that also
defined their foundation typcs meant that composite types (or records) and procedures
would have to be declared based on primitive types that were not fully detined. This
would be true because the instantiation of generic packages
“SQL_*_Pkg.SQL_¥_OPS(...)" is a "latcr_dcclarative_item” according to the Ada
language reference manual and it must be defined after all basic declaration items. Since
attempting this would violate the rules of Ada and would not work, this idca was aborted.

A better solution places the compuosite operations into cntity packages that mirrored
their foundational domain primitive type cntity packages. The basic behavior that all of

these packages would provide would be in the form of “inserting, updating, delcting,

scarching and retrieving” objects of attribute types and composite record types. In

addition to these composite operation packages which would be cntity specific, two
additional packages would be required, one to model dynamic interfaces and one to work
on database transactions. Neither of these two additional packages would provide
operations based on a single entity or relationship, yet operations they contained would
be necessary to complete a definition of the primitive layer. This justifyed encapsulating
these operations in their own packages. Specifications for all of these packages are
located in Appendix D.

Before continuing on with a description of the design, it is necessary to first define
the difference between logical packages and physical packages in the context of this
document. A physical package is what would actually be coded as an Ada package by an
implementer. A logical package allows information to be grouped so that the concepts
explained in this design are more easily understood. Physically, the logically grouped
packages would still remain separate and distinct packages. One other concept that needs
explaining is the idea of having “view packages”. Essentially a view package provides
all top level knowledge base operations and types to its respective subsystem (All view
packages taken together represent the Application intelligent layer.) . It operates similar
to thc way vicws operate in databasc applications. It gives the calling subsystem the
minimum information necded to get the job done while hiding the details of the
operations and types.

With the basic building blocks cstablished and an explanation of vicws and logically
grouped packages complete, the perspective of iow this all fits in with an object oriented
STEMAB design can now be presented. First, cach domain primitive type pachage and
compositc operation package that operates on the samc entity or relation is logically

grouped into one package that is defined by the entity’s name. Al logically grouped

cntitics conjoincd with the transactions and dynamic packages represent the Primitive

layer. This Primitive layer is the foundation upon which the Databasc intelligent layer is

built.
SET_NAME | EVAL_ID . QUAL_ID
Selection_Set The _Evaluator FIRST:NAME ThC_QlXﬂlly QUALITY_NAME
LAST_NAME 8 QUALITY_VALUE
L N date N
type
EVAL_ID QUAL_ID
$5C_ID SsC_1D
linkSAWT =
SET_NAME
TOOL_ID
AREA_ID |
WEIGHT_SET_NAME I 1M I
- 7
SSC 1D ' GSC_ID <
TOOL_ID GCs_ID CHARACT_NAME a
TOOL_NAME : l formu_? -
VERSION Vet K evalu_? ”
vendor . " General’ evalu_help 7]
cost 1 Software esseunl_flag ;
. pecific C . evalu_ method -
LN Software Ch““‘?"?!‘.‘aﬁ.k empical_weight Z
Cherscensue SR a
1:M
M C
N :"2'
g
i
LM e
.
P
TOOL_ID GSC_ID 6o
AREA_ID WEIGHT_SET NAME ="
function w eight =
SSC Ib qualsy_werght
WEIGHT SET_NAME
f unction _scoic [12h%
qua'ts _score
LN k
PARENT_GSC_1D
CHILD GSC 1D

M| AREA 1D

DOMAIN
SEA TOOL_ID
PHASTE GHC 1D 1.1

WESGHT _SET_NAME
function_score - - .
qualsy_score WEIGHT SET N AME
deflsuls

Wedght_ sct

tool 1N

sCore

Software Char Weight AREA 1D
Ges

o

no d

Figurc 15, Formulator Altered Objects

R2

SET_NAME s e R EVAL_ID | QuUAL_ID
The “Evaluitor J rirst NaMe The_Quality QUALITY_NAME
LAST_NAML) QUALITY_VALUE
L IN date
EVAL_ID QUAL_ID
5 SSC_1D
linkSAWT ssCIb -
SET_NAME
TOOL_ID
AREA_ID [
WEIGHT SET_NAME I 1M |
(%]
I GSC_ID)
TOOL_ID CHARACTNAME J§ 8
T00L_NAME | 1K i formu_? -
VERSION evalu_?)
veados a Genenal evalu_help g)
cost . Software essentil_flag =
.. evalu_mathod z
Characteristic enpincal_weight ®
3
1:M Q
£
£
OM 1~
=.
v
TOOL_ID GSC_ID o =
AREA_ID WEIG NT_SET_NAME . ="
function_w eight =
SSC_ID qualry_weight
WEIGHT_SET_NAME
functos _score N
qualgy_score

1M
PARENT_GSC_ID
CHILD_GSC _ID
The_Arca
11
1.M| AREA_ID
DOMAIN
SEA TOOL_ID]
PHASE GSC_1» IR
WEIGHT _SET_NAME
funcijop_score e e yenes N
quatuy_score WEIGHT SET NAME
default
tool N
score,

Software Char Weight ARFA_ID

/ €S 1D

Figure 16. Evaluator Altcred Objects

 QUAL_ID
QUALITY_NAME
| QUALITY_VALUE

L EVAL_ID
FIRST_NAME

' LAST.NAME
date
type

EVAL 1D QUAL_ID

The_Quhity

SSC_iDh $SC_ID
1M I 1M I
w»n
SSC_1D | GSC_ID =
TooL_ID GCS_ID CHARACI.NAME § 8
TOOLNAME | UK TOOL_ID I formu_? -
VERSION value evalu_? "
vendor The_Tool tep s Genenl evau_help :;
cost) Software essental_flag -
LN Speafic ' Cha - evalu_method ry
1M Sofiwate racteristic empincal_weight =
1M Chansctensic a8
' o
g
B
M 4
=
“
TOOL_ID GSC_1D 0:'
AREA_ID WEIGHT_SET_NAME A
function_weight ' =
SSC_ID qualgy_weigit
WEIGHT_SET NAME
function _score O:N
qualiy_score @
=M
PARENT_GSC_ID
CHILD _GSC 1D
—Q The_Area
1:1
M| AREA_ID
DOMAIN
SEA TOOL_1D
PHASE GSC_ID
WEIGNT, SET_NAME
function_scose " "
qualaty _score WEIGHT SET_NAME
default
ool 1N
@ 1T,

Soltware Char Wei gh‘ AREA_1D

GCS_ID
Aﬂ
node

Figurc 17. Sclector Altcred Objects

The Database intclligent layer can be separated into three distinct physical packages
(justification for this approach was introduccd carlicr in this scction) which cach

cncapsulate operations that work on entitics belonging to a group. The entity groupings

R4

are associated with the state altering behavior of the calling subsystems. Any entity that
can be physically altered by a calling subsystem has Database intelligent layer operations
defined in a package that is named after that subsystem. For instance, the Formulator can
alter the states of the General Software Characteristic, the linkGG, the root_node and
The_Area entities and relationships (see Figure 15), so the operations for these objects
are located in the Formulator Altered Grouping package which is contained within the
Database intelligent layer. Next level non-state altering operations for these entities are
co-located in the same package. Figure 18 shows how this composite build process
would be accomplished for Formulator State Altcration considerations (the Evaluator and
Selector considerations would be built using thc same method). Esscntially the single
overall desired behavior of the Database intelligent layer is to provide the database
application operations that use the resources provided within the Primitive layer. For
instance, to acquire all GSC_ID’s for a given SAI, the Databasc intclligent laycr would
know only how to open a cursor, step through a loop which calls a fetch_ges_ID
operation in the Primitive layer and closc that cursor when done. It would know when
the fetch operation is complete by using a Boolean check that is updated on cach fetch by
the Primitive layer.

The more sophisticated or complex interface logic occurs at the “view level” within
the Application intclligent layer. As noted carlier, the Application intelligent layer is
composced of three view packages: Formulator View, the Evaluator View, and the
Sclector View. The Database intcHigent layer intetrfaces would be visible to these
subsystem vicw intcrfaces which in tum would be visible to the subsystems (all through
the specifications or well defined interfaces, of course). The Databasc intelligent layer
mcthods in Figurc 1R, for cxample, would be callable by the view interfaces tailored

towards cach of the three exterior subsystems. Figure 19 illustrates how the view logic in

the Knowledge Base would call the abstract interface to accommodate requests made by

the other subsystems.

|
// \\
General) .
Software linkGG rool_node The_Area
Characteristic
- Logical Entity Packages Ll
. _

Figure 18. Type Build Process. Formulator Statc Alterations

With the big picture now complete, a word of caution is in order. The reader is
cautioned at this point that before any aticmpt is made to design applications for any
level abstract interface the issues of type conversions and visibility of an “Abstract
domain SQL base type” must be understood. Since writing the applications that usc these
SAME abstract interface types is outside of the scope of this rescarch, application

program type conversions will not be addressed further. The reader is referred to

[17:69-76] for a dctailcd discussion of these issucs.

Formulator

Subsystem

Summary

Evaluator
Subsystem

User
Interface

Subsystem

‘Commereiat:

Dgigl’xgg‘é LN

TR T Selector
Kt g i Subsystem

SQL hterface

Abstract Sysem
Interface

Evaluator View

7 A

Selector View

Formulator View

Knowledge Base S ubsystem

Figure 19. Application Logic Calls to Abstract Interface

The goal of this chapter was to emphasize how the STEMdB could be re-designed to

be more robust, maintainable, upgradeable and portable. It provided a top level overview

87

of how an object oriented approach to the STEMdB design could be accomplished.

Using an object oriented approach to this design helped to accomplish the goals of a more
robust and maintainable design. The chapter also provided a method for crcating an
abstract interface with a database and it presented a design of a STEMdB abstract
interface using that method. It established that database independence can be achieved
through abstract interface design. By achieving database independence the design is
made more portable. The only other issues that could hamper the design’s portability are
its dependence on a commercial user interface and its dependence on a commercial
database’s dynamic SQL capabilities. The designers of the STEMdB should try to isolate
the user interface and dynamic SQL operations so that the impacts of these dependencies

are minimal and localized.

88

V. Conclusions and Recommendations

Overview
This chapter provides a summary of the accomplishments in this research. It also
provides recommendations for re-accomplishing the STEMdB design and for further

work in the area of developing abstract interfaces to databases using Ada.

Summary of Research

This research began by surveying the literature for information on what a CASE tool
was and how to evaluate a CASE tool for a given domain. The E&V Guidebook, IEEE
working group studies and the Lawlis dissertation provided a solid background in these
areas. The Lawlis dissertation also provided an automated framework for supporting
decision support CASE tool selections. Using these resources, the goal of this research
was to analyze the prototype development effort, the STEMdB, and to provide
constructive ways that the prototype could be improved.

Initially, the only prototype tool information available was a working prototype
(along with its source code) without design documentation. This prototype was
developed on a Macintosh environment called MacApp, and it was implemented in Think
Pascal. Non-availability of this environment and unfamiliarity with Think Pascal made a
reverse engineering effort difficult . Documentation on resourccs “withed” from the
MacApp environment had to be acquired in order to understand the design. A
requirements and design document for the next phase prototype solved documentation
problems and a thorough analysis could be made given what this document did and didn’t
say and given the behavior of the initial prototype. To provide a basis for comparison,

the ASSIST prototype had to be used and understood.

89

The ASSIST prototype was developed on the Hypercard environment using the
Hypertalk language on the Macintosh. Documentation in the Lawlis dissertation
provided a lot of information about the tools behavior, but it did not provide enough
information on design. It provided object diagrams and a thorough description ot
resources provided as well as behavior exhibited, but knowledge about how all the
objects interacted in the form of a driver was lacking. To gain a better understanding of
the design Hypercard and Hypertalk were studied. The intricate and nested nature of
Hypercard scripts and cards made it very cumbersome to accomplish a top level reverse
engineering effort on the ASSIST prototype. The goal of this effort was to see how the
tool accomplished its behavior. This kirowledge would help in understanding the concept
of a Knowledge Base which was the foundation of the ASSIST design and which later
proved to be a good foundation for the STEMdB design. Once all of this information was
understood it was used to measure what the STEMdB’s limitations were given that it was
not using a Knowledge Base approach.

Once an analysis of the STEMdB was accomplished, it was discovered that a
significant improvement in tool portability could be achieved by accomplishing an
abstract interface between the tool and its database. A third background analysis had to
be accomplished in the form of application programs working with commecrcial databases
through an interface in order understand some of the details in this type of approach.
Oracle for thc Macintosh was an implementation that was available, $o it was studied to
acquire this background. Information in the form of the SAME documentation provided
domain knowlcdge on Ada to SQL bindings that made it possibic to specity a STEMdB

abstract intertace.

9

Conclusions

This research covered several different domains to accomplish the goal of analyzing
and suggesting improvements to the STEMdB prototype effort. The necessity for a DSS
tool for CASE tool selection will continue as long as CASE tools are used to aid in
software development efforts. CASE tool automation is essential to maintain control and
consistency over large software projects. The STEMdB provides a means to sift through
the information describing these CASE tools and to help the decision maker make an
informed decision. The STEMdB’s biggest drawback is that it is targeted towards being
operated only by its developing organization. Concentrating on only the developing
organization as an end user allowed the designers to make decisions that restricted the
design’s capabilities. The tool’s wide-spread need throughout the DOD should be taken
into account and the tool should be developed to support remote users. By incorporating
the design changes proposed in this research, the STEMdB can be made available to a
larger group of users, and can be made more robust, maintainable, and portable.

The design can be made more robust by encapsulating knowledge within the
Knowledge Base. Any design decision to alter the implementation of anything that is
provided as a method to the exterior three subsystems will affect only the body of the
package that defines that method The<ce bodies are encapsulated within the Knowledge
Base subsystem, so design changes like this wonld only require a re-compilation of the
Knowledge Base subsystem affected packages (assuming Ada becomes the language of
choice). The ability to change these implementations while not affecting the rest of the
system makes this design robust.

Given that the need for such a DSS will persist as lcag as CASE tools remain
popular, a DSS for CASE tool selection has the potential to be around for decades.
Whenever software tools have the potential to exist that long, they should be designed to

be as maintainable as possible. The existing design allows for tight coupling between the

91

three subsystems. By désigning the STEMAB as an object oriented system which isolates
the objects most likely tb change in a Knowledge Base subsystem this coupling can be
eliminated. Providing well-defined inicrfaces in the form of methods and types,
de-couples the design, which supports maintainability.

By designing an abltract interface to the database, the portability restrictions
(resulting from a tight coupling) placed on a design targeted for one specific SCL
database are lifted. This interface also allows the Ada applications to be designed while
the database module implemcmations for the abstract interface are being designed.

Using Ada as the ixpplememation language supports the concepts of abstraction,
information hiding, and strong typing. All of these concepts are necessary to accomplish
a design built from good software engincering principles. Systems built using good
software engineering principles have more predictable behavior and better

maintainability.

Recommendations

The following recommendations are mzade to apply the results of this rescarch and to
continue or: with the work of this research:

» The developing organization should re-design the STEMdB to make it more like a
DSS. They should use an object oriented approach which isolates e arcas likely to
change in the Knowledge Basc subsystcm part of the new design.

» The developing organization should incorporate the improvements to the present
design presented in Chapter 11 to make the design more robust, maintainable ard
portable.

» The deveioping organization should make the STEMAB a-. - sible 0 remote
users and more portable by localizing the user interface depender.cics @nd by designing

the STEMdB in Ada using an abstract interface to communicate with an SQL databasc.

92

|« Accomplish further research in the area of Ada to SQL bindings by implementing
the abstract interface specification in this research. This implementotion would require
Experience in both the SQL language, the SAME methodology, and the STEMdB
.application.

» Use the SAME description language to develop a DOD SAME compiler that
would automate the abstract interface process and allow three expert domain cngineers
:(The SQL implementation designer, the Abstract interface designer and the Application
program designer) to concentrate on their area of expertise. The description language,
SAMEDL, has already been defined for this approach. All that would be required is an

understanding of how to devclop an Ada compiler-like language.

Summary

The concept of the STEMdB is promising. The need for such a system exists and
will continue to exist as long as CASE tools are required to help manage the complicated
software development process. A sound, flexible design of a STEMdB system will serve

the needs of the Air Force and DOD for many years to come.

93

Appendix A. Fxample STSC Listing of Software Characteristics and Qualities

This appendix provides an example of the Softwars Technology Support Center’s
accomplishments towards identifying CASE tool software characteristics and quality
information in the Software Area of Interest of Requirements Analysis and Design. This

information comes directly from [18:66-76].

94

» Software Technology Support Censer

B.1 Functional

The following sections identify the functional capabilities of Upper CASE tools. The
organizational breakout is identical to the one presented in Section 2.2.2.1.

B.1.1 Information Capture ;

The information caprure functionality area deals with what types of information the
tool is capable of handling. This information can be captured in a number of different ways.
The imponan: idea is what type of information is captured, not bow it is captured. Table B-1,
Upper CASE Tool Information Types, lists the types of information that Upper CASE tools
capuure.

TN w
ot
-§

.« s
S

» System Function Cescriptions
+ Data Descriptions of Systém Functions Interfaces
¢ Data Descriptions of 3;stem Input/Output Device Interfaces
+ System Logical Behavior
* System Timing Behavior
* Hardware/Software Context
* Software Architectural Structure
* Software Process Definitions
. * Software Data Swrucarres
¢ Software Process Control
* Software Process Concurrency
* Software Inter-Process Data Communication
* Software Inter-Process Synchronization

Table B-1. Upper CASE Tool Information Types

95

.
Ny

Upper CASE Tool Characterisiics

B.1.2 Methodology Support

Methodology is the process the tool user follows to systematically develop correct
and complete work products. A number of methodologies exist for requirements analysis and
software design. The important ones that have been automated are listed in Table B-2, Upper
CASE Methodologies.

* Real-Time Structured Development « PAMELA

* Structured Analysis » ESML

* Structured Design . o ADARTS

o Hatley/Pirbhai Extensions u o PAISLey

» Object-Oriented Design e VDM

o Ada-Based Object-Oriented Design ¢ Petri Nets

» Object-Oriented Analysis * Statecharnts

 Entity Relationship Modeling » Axiomatic Specification

Table B-2. Upper CASE Methodologies
These methodologies require that various work products be created by the user.

Since different methodologies can require the same work products, the products are listed
scpaately in Table B-3, Upper CASE Tool Products.

9. .. , T

Software Technology Support Center

* Dan Flow Diagrams ¢ Ada Package Dependency Diagrams
* System Context Diagrams ¢ Structure Char.s

s Block Diagrams * Flow Charts

« Control Flow Diagrams * Screen and Report Diagrams

* Entity Relatonship Diagrams * User Tailored Diagrams

* State Transition Tables . * Object Oriented Diagrams

* Petri Net Diagrams + Object Hierarchy or Tree Diagrams
* Architecture Disgrams * Object Diagrams

* Object Interaction Diagrams

Table B-3. Upper CASE Tool Products

B.1.3 Model Analysis ‘

The model analysis functionality area captures the techniques the o0l uses to analyze
the inputs. These techniques can be static or dynamic. They are used 0 prove qualities about
the input requirements or specifications such as completeness or consistency. They are also
used to simulate the inputs at an early stage in the life cycle. The important techniques are
listed in Table B-4, Upper CASE Analysis Techniques.

« Consistency Checking « Behavior Analysis
« Completeness Checking * Scenario-Based Analysis
« Data Normalization Analysis "'« Exhaustive Model Analysis

* Man/machine Interface Analysis

Table B4. Upper CASE Analysis Techniques

97

Upper CASE Tool Characieristics

B.1.4 Requirements Tracing

mmqmemensmngfuncumamyuuupnmdwamibuuasmmdwhlhe
tracing of requirements between software life cycle phases. Requirements tracing is important
because it facilitates the management of inter life cycle dependencies. The important attributes
arclisted in Table B-5, Requirements Tracing Atxibutes.

+ Extraction of Requirements from System and Sofiware Documeatation
* Inputs From Electronically Scanned Hard-Copy

e Multiple Requirements Baselines

« Tracing of System Requirements 10 Software Requirements

* Tracing of System Design Specifications to Software Requirements
» Tracing of Requirements to Software Design

* Tracing of Requirements 1o Source Code

* Tracing of Requirements o Software and System Test

TableB-S. Requirements Tracing-Attribues

B.1.5 Data Repository)

. The.data repository functionality area captures the atmibutes associased with the
database the sool uses. Most tools use propricary damabases. The database model preseated
the user, the user interface 0 the database, and the extent to which the database can represeat

" .. software objects is critical 1o the database’s overall functionality. The important attributes are
listodin Table B-6, Upper CASE Daa Reposiaxy Functional Auibuscs

% e .) i' 98 1

wmemere—— AT T
SRR e

IF 7t)
197 yeE

Software Technology Support Center

* Data Repository » Contain Project Information
* Relational Database Type ¢ Contain Requirements Documents
¢+ Object Database Type - » Contain Design Specifications
* Support both Textand Graphics + Contain Source Code
1. Query Capability * Contain Test Descripdons & Procedures
s Access Control Capability Capacity Anificially Lirnited

+ Concurrent Access to Entties * Support Interactive Cross-Referencing

Table B-6. Upper CASE Data Repository Functional Anributes

B.1.6 Documentation

The dovumentation functionality area captures the attributes associated with the

documentation the tool produces. The important arttributes are listed in Table B-7, Upper
CASE Documnentation Functional Attributes.

i
» Support Graphics/Text Integration ¢ Automatic Generation of Documentation
» Completely Compile a Document » Rapid Draft Hard-Copy
¢ On-Line Templates

Interface 1o Other Document Generators

* 2167A Documentation Standard Desktop Publishing Interface

Table B-7. Upper CASE Documentation Functional Auributes
B.1.7 Data Import/Export

The data impor/export functionality area captures the attributes associated with how
casily the tool can exchange data with other tools including other tools in the tool vendor's tool

99

Upper CASE Tool Characterisiics

set. The important attributes are listed in Table B-8, Upper CASE Dama I/O Functional
Auributes.

* Between Toolkit Components
* With Other Tools
CAIS-A Interface Standards/Protocols Supported

Table B-8. Upper CASE Daia I/O Functional Attributes

B.1.8 Reusability Support

The reusability functionality area captures the attributes associated with how the tool
supports reuse. The one attribute in this area deals with support for library design
components.

B.2 Quality

The following sections define and discuss the Upper CASE implications of the twelve
quality artributes identified in the analysis phase.

B.2.1 Efficiency

Upper CASE tool efficiency is the amount of utilization of a resource on a problem,
using the Upper CASE tool. The three resources that need to be assessed are processor (time
to complete a task), memory (the secondary storage requirements to complete a task), and
communication (I/O and network considerations for multi-processor systems and/or multiuser
problems). For Upper CASE tools, efficiency is not absolutely expressed. Instead, it is
expressed in terms of acceptable, barely acceptable, or unacceptable. Several problems
coviring a range of sizes from small to large across each of the resources need to be assessed.
Wheu ine tool performs adequately for a specific problem with respect to a particular resource,
its efficiency is acceptable for that problem size and that resource. Barely acceptable

100

Sofiware Technology Suppori Cenier

performance occurs when the performance is acceptable but there is no room for performance
growth,

Efficiency as it applies to the products of Upper CASE tools is not important. This is
because the products of these tools are paper reports. That the tools may support efficiency
stwdies of their products (e.g., timing analysis of designs) is a marter of functionality and not
quality. :

B.2.2 Integrity

Integrity deals with either software security failures due to unauthorized access or the
corruption of the database. As a policy, the twol users should lose confidence in the integrity of
the dawabase if unauthorized access is allowed. Database corruption may be caused by such
actions as Jegal but partial and/or inconsistent operations and erroneous but allowed operations.

The integrity of the products of the tool is a non-issue. Accessibility to the products
is usually governed by the operating system of the developmental machine and never by the
tool itself. Once a product has been produced it is no longer part of the database and can no
longer be corrupted.

B.2.3 Reliability

Reliability concems software failures. Reliability is normally measured by direct
testing and analysis of error reports. With commercial software, direct testing is not feasible
and detailed error reports are not normally published. For Upper CASE tools, instead of
directly measuring reliability, indicators such as maturity, published error reports, size of
executable code, and errors uncovered during testing will be used.

Since the products of the Upper CASE tools are themselves intermediate products of
the entire software development process, their reliability cannot be tested.

.B.2.4 Survivability

Survivability deals with the ability of the software to perform even when portions of
the system have failed. This issue is not usually important in the evaluation of Upper CASE
tools because the greater issue of system availability is not critical in an office environment.

104

Upper CASE Tool Characteristics

However, if the tool uses different hardware resources (i.e., networked workstations with a
file server), the issue of how the tool handles hardware resource failure (i.e., file server
shutdown) must be addressed.

Survivability is not an issue for the tool products because they are reports,

B.2.5 Usability

Usability is the extent to which resources required to acquire, install, learn, operate,
prepare input for, and interpret output of the tool or the tool products are minimized. This
auribute is probably the most important and critical quality attribute that Upper CASE tools are
evaluated for. This is the quality attribute in which tool vendors differentiate themselves
through such quality criteria as user interfaces, user documentation, and training.

The usability of the products of the tool is not an important quality issue. The ability
to customize reports is addressed in the documentation portion of the functional capabilities of
the tool.

B.2.6 Correctness

Correctness is the extent to which software desiin and implementation conform to
speciﬁcaﬁons:and standards. The correctness of a tool is evaluated in other portions of the
evaluation framework, namely the functional capability area. The reliability quality atribute
addresses known errors.

The correctness of the tool products is important. The generated products should
conform to the specification captured by the tool.

B.2.7 Maintainability

Maintainability is the ease of effort for locating and fixing software failures within a
specified ime period. This attribute is not of importance to the tool user, instead the time and
ability for the vendor to deliver software maintenance is important. The tool user is not
concerned with the effort required to perform these actions. This time is addressed in the
vendor information portion of the evaluation framework (under management concems).

102

Software Technology Support Center

‘This auribute is of importance to the the user of the products of the tool, but not to the
tool user. The tool products should possess the quality attributes of maintainability.

B.2.8 Verifiability (aka testability)
Verifiability deals with the design characteristics that facilitate the testing of the tool or

the tool's products. The testing of the tool is important to the developers of the tool but not to
the tool user (except that a well tested tool will have higher reliability, etc.).

The ability to test the tool's products is important in determining the quality of the
tool. But for Upper CASE wols, testing is best addressed as a functional capability of the tool.

B.2.9 Expandability (aka flexibility)

Expandability is the ease in which current functions can be enhanced or new
functions added. Flexibility is defined as the case in which the software can be changed to
meet other new requirements, Within the scope of evaluating Upper CASE tools and Upper
CASE 1tool products, where the viewpoint is user implemented changes (not developer
implemented changes), these attributes are dealt with in the reusability quality auribute,

B.2.10 Interoperability

Interoperability is the ability of separate systems to exchange database objects and
their relationships without conversion. This is an important area, capuring if, how much, and
how well the Upper CASE tool implements data exchange standards. This area is addressed in
the Functional Capabilities portion of the evaluation framework. Itis not an important quality
attribute for either Upper CASE tools or their products.

B.2.11 Reusability

Reusability is the extent to which a component can be adapted for use in another
application. Within the scope of evaluating Upper CASE tools, reusability deals with how
easily the tool can be used for other projects.

The issue of reusability of the products of the CASE tool is dealt with in the
functional capabilities poetion of the evaluation framework.

103

Upper CASE Tool Characteristics

B.2.12 Transportability (aka Portability)

Transportability is the ability of a software item to be installed in a different
environment without change in functionality. Within the scope of evalvating Upper CASE
tools, it deals with how many platforms and operating systems the tool works with. This area
is addressed in the portion of the evaluation framework dealing with operational constraints.

This is a non-issue with Upper CASE tool products since, by their very nature, they
are reports not associated with any particular environment.

———n 1Y et

104

Appendix B. SAME Package Listings
This appendix provides a listing of all SAME Ada Package specifications and bodies

that were used in this research. The listings are directly out of Graham’s technical report

(CMU/SEI-89-TR-16) in [17:143-248].

105

SAME Standard Package Listings

C.1 Introduction

This appencix contains the source code of the SAME standard packages. This ccde will be
available in machine-readable form from the SE! for a imited time. Plezse read the
copyright notice in the next section. A copy of this nctice appears in each file of the
machine-readable distribution.

Every procedure and function declaration in these packages is followec by a pragma IN-
LINE which has been “commentad out.” The explanation for this is as folicws. Almest all of
the procedures and functions in these packages are extremely small. Many consis: of a
single If or return statement. There:are they are excellent candidates for procedure infininy
which will decrease their runtime cost by the overhead of a procedure czil. Experience in
using this code with varicus compilers has shown that this degree of inliring tends to uncov-
er compiler errers and produce inexplicable timings. The safest appreach, that of not using
inlining at all, has be chosen for the code as distributed. The installe: is urged to excerimer:
with the inlining of this codz. Some experiments have shown a tenfoid speedup due to inlin-
ing (whereas other expariments, on other compilers and machine architectures, showed
marginal sicwdown due to inlining). Recall that infining will usually mzke the resulting object
mecule larger. .

L]
r]

i
!

C.4 SQL_Standard Specification

package Sql Standard is
package Coazactas_Set Ienames oip;
subtype Character_Type is Charactsr Sec.cet)
type Char is arc-ay (positive zange)
of Charactar 2ype;
type Smallint is cange bs..ts;
type I3t is raage bi..ti:
type Real is digits d=;
type Double Precision is digite 4d;
== Cype Decizal is %0 be datezuin.d;
type Sqlcode_Type is range bec..tsc:
subtype $ql Rrzor is Sqlcode_Type
Tange Sqlcode 2ype’TIRST .. -1;
subtype Not l‘o\ad is Sqlcode_Type
Tamte 100. .200;
ssbtype Iadicator Type is %;

~— csp is an isplesentor-deZined package ancd cat is an

- izplemantoz-dediaed chasacrr type. bs, ts, bi, ti, dr, dd, bsec,
o and zac are implementar de?iaed integral values. t is iat or

- smalline coz-uoend.aq €0 +' izplemeator-defined <axast

- aumezic type> of iadicazox parameters.

sand sql_standard;

C.5 SQL_Communications_Pkg Specification

with SQL Char _Pkg; use SQL Ctas Pkg;
with SQI. Standazd; use SQL_! " Staadard;
package SQ.. Comminications | _2ks is

«~ This is an example of the package, Mmmmey.
~ This package may be tailored to the needs of a givea platiozm.

$SQL_Database_Rzzor : exgeption;
SQICOOR : SQLOSDR_TYVR

Jaramstarless function retuining an error massage of type
8QL_Chax_¥ot Null.

mmmummmpunmmmdu
the mest recest database esTor. It is produced by a
DEBMS specific functiom. .

i
i

functioa m_w_lno:_hm return SQL Char Wot Bull;

end SQL Cossmunications ¥kg;

C.6 SQL_Communications_Pkg Body .

-~ 30L_Comsmunicaticms Prg is a "platform-speciZic” paciage

~= within the AR

=~ this pasticular version of the package was developed for

== a platform consisting of the Verdixz (Versioa $5.41) Ada compiler
— and DICAES (Versiom 5.0) zuaning on a Vax Statica .

107

with syztam: use systam:

with SQL System: use SCI_Systas:

with ingres_C_suppors; use ingses g suppors;

- .i..aq:u_c_lngpo:: contains f3nctions Add Mull and St=2p Null

== which aze used to conver: betwesen ‘¢’ format st=isgs and

== Ada Jormat stsiags. I% is pot incloded in tSe SUE standard packages.
package body SCIL_Communications ?kg is

Zznction SCI_Catabase_2:zor_Message ratusa SCI_Chax Yot Null is
Message_3uifar : SCI Char Yot Nuil (1..MAXZRRLZIY);
lea : iazeger :w MAXZAALIN:

proceduse getersusg (Message : in Addsess;
Iéeages : in Address)’;

Fragma iztezface(C, guter=m=sg, "__-qlo::a.q");

begia
getasTmeg (xuuq._au::;:' Add=ess, Lea’idddczwsas):

== the assu=ption here is that no erzor will ocexr when
== zatTieviag the ersor asssage Izom the database

getzsn stxip aull(Message_3uifer);

end SQL _DataSase_2xvas_Message;
end SQL Communizacicns 2k’

C7 SQL_Exceptions Specification
pu:qu. QL m-ption-

- ?

-t e
E

¥ull Value Rrzar

end 3QL_exoeptions:

C.8 SQL_Boolean_Pkg Specification
. m !o-lun _Pxg

type)e.u-_m_uam— is (YALSE, UNKNIOWH, TRUR)

=eee Thres valued lLogis opazations -~

e ghres=val X three-val »> three-val ==

fungtien "aok” (Laft : Beeleas vith vahcn)
seturs Boelean | vd.:h Uaksown;

- pragua JLIAE (“pec”);

function “aad” (Tafs, Right : Beclean vith Unknewm)
setun Bocleas_vith Ualmown;

- pragma INLIAR ("and”);

functioa "ex” (Lef:, Right ; Booleas_with Unkacwn)
retuIn Boolean with Uaknown;

oo 108

C.2 Copyf'ight Notice

-
-
-
-
-
-—
-
-
-
-
-
-
-
-

-

o P S U U W S O U +
LSILA SR cnonan oy n o on an s Lo on o g LEL B an o 202 an o an o o o

The followiag copyzight must be included in this sofiwazs and
all software uUtiliziang tiis softwars.

Capyzaght (C) 1988 by tie Castnegie Mellon Uzivezsity, Pittabuxzgh, PA.
The SoiZtwase 2agiseezzng Iastitute (SZI) ia a Zederally Zundad
Seseas=: and davelomaent cantas established and opezated by Cacznegie
Nel.on Univezsisy (QMU). Sponsorsd by the U.S. Depastmeat of Defense
undes scatTact F19628-85-C~-0003, the SRI is supportad by the
sez7ices and defanse agenciss, with the U.S. Aic Porce as the
SXecCuTive CONTIACTiAg agens.

Perzission to 3se, copy, modify, or distIibuze this sofiwase and its
documantasion 23T any puspose aad without Zee

is besaby granted, provid

thac the above copyrisht sotice appeas in all copies and tlat both
stas cospvsighs notice and this pesmission notice appear in supporting
documenzation. gFusther, =he names Software Zagineering Iastiiits oOF
Caznegse Mallica Uniz7essaty aay not be used in adversisiag or publicaty
pezza:=ing to distridution of the software without specilic, wsitten
PTioT pezmission. O aakes 50 claias o Tepreseatations

abotz =he suitability of

th:is sodtwate for any puzpose. This sofiwazs is p:avidod "as is”
and ae wasTaavy, Tess o ixplied, is made by the 5ZI or O,

as %3 zhe accuracy

and Sznctionizg of the progzam and Telated progzam material, nor
skall zte fact of distsibution constitite aAnY suck warzanty. No
Tespocsibillity is assuwmed bv the 521 or CMC :na comnection herew:zth.

C.3 SQL_System Specitication '

- 3QL_!

System is a “phe:ox;-cpoeiae“ peckage

== withia the MR

package SQL_Svetea is

MOXCTCIN is the leagth of the longest charactsr string

which the DNMS will store.

It sexrves ss the upper bound om SQL_Char Pkg
Wmmmmmwmm

mmmu.myp.ogueunuu.u—zw
ef 1.

muwmu.wozmunuu.m
bound of ¢

Mnund&mmwcmmmmo

MAXERRIZY : coastant integer := mag leagth; -— replace

end SQL_Systaem’

109

- Sor the SCL_Zatarval type

Lznczian "¢+" (R.qa: : SGI_Zaterval) setuzz STL_Ioterval;
funczion "-" (Right : SQI_ “satezval) zetumn __I-M'--t"l-l
function “abe” (Righs @ sc:. Iazsesval) secuz= SCL_Zatarval;
== Pragma DLR ("abs”):

== ths fSollowing funections implement tires valued

- azizhumetic

== 42 eizher izpu= %o any of these funczioms is aull

== the funczioa Setuzms the aull value; othexwise

== thay pesZaorz the indicatsd operation

== thase Zunciions rTaise 10 excevtions

Suactian "+ (Tefs, Auighz : SQL Ia:-m.) Setzya SQL Intazval;
Suaction 2lus(te’s sc.. Iatez7al; Righz : SCL | Date) zetu=a SQL_Dacte:
fuaction 2lus(lest : SCI_Daze; Right : S9T_ Zatezval) recuza sc:._n.r.-:
== prfagma INIIWNZ ("*"))

SuncTien "~ (Lef:, fuyhs : SQL_lacesmal) sezuza SQL_Iaterval;
Zunction Miaus (Lefs, Righs $CL_Daca) zecuzz SQL_Intezval:

Zunction Misus (Left : SQI_Date; Right : S3L_Tatarval) recuxm SQL_Cate;
~= pIagaa DLINZ (°-7);

- Su=nction "vT (lLeft : SQI_Iatezval; RighT ¢ iategeX) return SQI, Iaterval;

== pIagaa DLW (°*");
functien °/" (Left : $Q _Iaterwal; Right : iztegel) Tetura SCL Iaterval;
== pragma D2 (°/7);

== Logizal Cpesations --
== type X tyPe => 3oolean witk uakiows -~
these funczions izplapant tisee valued logic
i either izput is the aull value, the Zuaczicos
Tenusn She ti=th value UNXNOWN; otheswise they
pesZomn the izdicated cempas:ison.
these Iznctions -aise no axceptions
Zanction Zguals (Le2t, Right : SCL_Date) Zetuaa loolou_nt.‘r.__unbewn:
Zunction 2quals (Teft, Right : SQL_Intas7al) zetusa Boolean wztk Unknown;
— prTagaa JULIMZ (Zquals);
Sunctica Not_Zquals (left, Right : SCI_Date)
setuss Boolean wist :_Uaknown;
Zanction Not_Rquals (Tef:, Right : SGI..Z::A:NJ.)
setusa Boolean_with Uniknown;
— pragma MR (Met_Zquals);
functiom "<” (Tef:t, Righz : SQL Data) rewtuza Jooleas_with Onknown;
functien "<" (lefs, Righs : sq:.zaurnl) :-mm-a.snm~
— pragma DILIXE ("<%);
Sungtioa "™>" (Left, Right : SQL_Dats) nﬁalﬂhﬂdﬁhm
functioa ">* (left, Right : SQL _Intarval) retuss loohu vi:h Uaknowa;
— pragms DI (™>); '
Sanctios "<w” (Lef:, Right : SQL Date) rewtuzn Boolesn with Unknown;
fanctiem "<=” (Lef:, Right : $QL Interval) zetura Boclean with Unknown;
=~ pragms DI (“0s%);
fonction ">e" (Lef:, Right : SOL Dete) retuta Boolean with Unknown;
functioa ">=* (lLef:, Right : 3QL_ Interval) mloclou -u; Oaknowa ;
== pragms IOJXE (“>e");

== type s> beolean ~=
tmﬁ-uhﬂﬂdu:t@bau)mm .
function Is _Wall (Valve : $QL . mu-nn zetazn Booclean;
- pragma oo (3s_Wull):
function ¥ot nu(v..xu : SQL _Date) retuzn Boolean;
function Net) _Bull (Value : SQL_ , Interval) return Boolsan;
- pragaa P2 (Wot_MWull):
Sancties Is_Year Hca:h(vllm : SQI_Iatesval) return Boolean:
= pragaa e s_Year_Moath);
Szaction .._n.y_;:‘.-(v..xuo : $C_laterval) return Booleasn;

110

type SC:‘._D::-:;:»_?‘.-L:I ia (year, montd, day,

hour, aioute, second, S=action);
tyoe SCL_Jate Not Null is aew SQL_Cuar Noe Null;
type SQL_Jate(Tzom SQL_Du:nﬁ:n_i‘iald:

%o : s;‘.:._D.:nc:'ao_?iold:
Toacziosal : pzecisiocn) is linzced pIivace;
type $GL_Iaterral(izca H SQL_DA:.::'.ao‘_?‘.olé:
~eading : pzscision;
0 H SG:_DAsotiao_?.‘.-lé:

T=acticnal : precision) 18 tinized private;

faaction Null SQZ Date Zetu=: SGL_Date:
.- pzagha DIITMZ (Null_SCL_Dace);

2ynczian auu_sc:._::.:.:n‘. secura SQL Iazaz7al;
- pTagma DNLINZ (uu.'.:._scr._:.-.:-:-nl):

e these 2:aciions setusa the not-oull pozzicm of =he sull-pearing type
Sunction H‘.::au:_su‘.'._h“ (Value : SQL_Dats) Secisn scr.g.:-_s«__uu::
S:action Without Null 3ase (Value : SQL_Iater7al) Tecura SQL_Date Not_Null:
-+ pxagma DNLIMZ (ﬂ‘.:b.ouc_&!ug.'._auo);

-~ tLig Sznction setusas an cbject of the stasdasd.duration type, after
- copversiag %o it fzca the aput cbjecs of tiype SQL_Iatex7a.
fznctioa T _Duzasisa (Value @ sc:._taco:-nl) secuzn dusation:

-= pragz=a DMLINZ (73 Duzaszom)’

—= =%igs funezion setusas an sbject of the casendas.tize type, alter
~ coaverziag %3 it 2zom the izput objecz of type QL Date
fancsicn To_Tine (Value : SGL _Date) zetu:n sane;

- pragza MNLINT (To_Tize)

tlese procedizes pazse the iaput of type S3L_Date Mot Null, and assiga
the datetime and iatarvasl field values to the abjecss of syps
SCL_Date and SQL_lataz7al, usiag discsisizancs thac it decarnises sx®
the corzect ones for tie cbject. I£ these discrinioants difZer fZcm
u-mmuuumammzo:majm-mu-n
declated, & constraint_ecvor will be raised.
procedure ?arse_sad_Aseign_Base(laft: in out S$QL Date;
Right : SQL_Date Wot Wull);
procedure !mo_nd_h.ign_ﬂu‘(l’-‘ﬁ: in out m_r.ntmd.;
Righs :SQL _Date Net Wull);
— pragems DUINE (Parse_and Assigm);

—wmmmqum.muu, and

- muebjoaoztypom_'mmw-nnw.&a
— has the coxzect 5QL “intsrval® waluve specification foraat,

- mu»ay,mnm»z,xo»gaaza.m:m»:)
function Te_SQL_Iaterval (Value : dugarion) return $QL_lacexval;

~ pragms DILIXE (To_$Qb_laterval); .

-m-m-mwoqum.u-, and

=~ zetazns an cbject of type SOhL Dste whose not-mull portiom
~= has the corsect 3QL “datetims® yuslue specilicatica format
functioa To_SQL Dace (Value : time) return 3QL Date;

= pracas IMLINE {To_sQL Date)’ . .
- the assiga procedure assignos Right to Left .
procedars Aseign (Teft : in outr QL _Date; Righet : 3QL Date);

procedure Assign(Left : in out SQL Isterval; Righe : $QL_Intesval);

- pracas DILME (Assign)’

«= the following three fuanctiouns implemeat unazy “+°, "7, "abs"

11

« 0ot

——

fetuzra With Mull (SCL Rnumeration Not Null’'Value(
2o_Stsing(Value))):
ead iZ;
end Value;

and Scr._tmac:a::.an_?kq;

C.28 SQL_Database_Error_Pkg Specification

package SQL Datadase_2:Tor_2?Xg is
-= The Zollowing procecnTe must be present in every version of
== ST _Database_2:39r_2%5. I%’'s puzpose is o perlora standazd
== PI3cessing of unrexpected axcepticnal conditions. It should not
== atTampt eI=2T Tecove:.

praceduce 2:ocess Database Z-Tor:

end SCL_Catabase _2s=az_2Kk5:

C.29 SQL_Database Error_Pkg Body

| with Texz 10, SCL_Coemunicazicas Pkg, SOL_Sase_Types Phg;
use Texs .o, SCL ¢ Cosmunications _Pkg, 3C%_i 3ase _T/pes_2xg;
package body SG:. Dacabase_Z=T3:_Pkg is

PEoceduce Process_DacaSase_2:zor is
begia
== Preceduse r:eeou__buabm.!..—.o: is called ia Tespease
== %o an umazpectsd dstabase exceptien (aa eszox incideat).

=~ The procedure may be modified per -
== the sesds of the Abetract Istarface developer

== This is & aiaimal isplessataties.

= Get & descriptive etrec msssage from the DRSS
- (through the package K Commumications Fkg)
= and display it oa standasrd eutput.

pet_lise (Ts_Striag(SQL_Char Wet Wull (SQL Databese_Rrrec Massage))):
end Precess_Database_Rrzor:
end SQL_Database Rrsor Pkg;

C.30 SQL_Date_Pkg Specification

unm_m:

unmu.huru,mmwmm .
vitlmm:m u.mcn:m

mmuu!h'

type precision is range 0..10;

Ias_Null: Boclean := true:
Value: 33L_Znumezation Net Null:
and zescozd;

eand STL_Zawmezasiea 2kg;

C.27 SQL_Enumeration_Pkg Body

Wish SSL_Zxcepsions:
package body 335 Zaumacsation 2kg
3

-8
Null Value 23292 : exzcepticu Tenames SQL_Zzcseptioss.Null Value Pzzoxz;

Suastica Nuil SQIL Zounmeration Tetumn SQL_Zauvmezation ia
Null Zeldez : 53_Zaumezation;
bagiz
sezusm Nell Holdes:
end Null SQT 2:umeszasion;

Su=actien Wizhous Null (Value : ia SCL_Zzumesazica)
Sezusn SQL_2atmesation_Not_Null is
begiz
L2 Value,ls Null then
saise Null Value 2z=os;
aLse - -
etz Value.Value;
end L4,
and Wishous Null;

Somczion Witk Noll (Value : in S0 _Zaumeratioa Not_Null)
TeTTIN SCS_Raumezazian is
begisz '
Sstumn (Is Null x> Zalse,
* Value => Value):
end With Null;

prosedute Assign (Zefs : in out SQL_Eaumeration;
' Right : ia SGI_Roumeraticn) is .
bagin
Taf: = pighe;
and Assign;

function Equals (Lefs, Right : $QL_Eaumerzation)
sesura whu_w:za._umm is
begia .
iz Laft.Is _Rull oz else Right.ls Null thea
Tetuxza Uaknown;
61842 laf:.Value = Right .Valoe then
Ietuzy e
alae .
Tetusn Palse; : .
end 12;
and Zguals:

Zuaczion Hot Zquals (Lelft, Right : SQL_Eaumeratiom)
Tetzzn Bocleas With Unknown is
begin - -
42 Left.ls NHull ox else Right.ls Null thes
etz Unkaowa:

13

== thase functions TalLse 0O eXceptions
Suncsion Zquals (Teds, Reghe sc:._?.am:at.‘.on)
Tetim dogliean_withk Uaikaewn:
Saaezian Noz 2qvu.4 (Sels, Aight : SCL_2z=umesation)
Zetura 3o0lean _wish Unkzowsn;
== pIagma LR (Net_Iquals);
funczisga "<* (Le2:, Rigks : SQL Raumezasicn) Fetisn 3oolean wi .k _Unkzown:
funczion *>* (Tast, Right : SQL Znumeracion) TetuTm Zooleas with Unksown:
functicn "<x (Teft, Raghz : SCL_Zaumezasica) Setus= Boclean_with Unimown:
tion ">w” (e, Righkt sc:._z.nua-a‘.'-‘-en) Tetazz Joolean with Uniknown:
== tyoe => Scolean ~-
tion Ia Nool (Valuze : SQL_2numezation) retuza Booleasn;
-~ pragma INLIMZ (Zs_Well);
2 2ies Net _Mull (Valize @ SCL Eaumeratich) Iesusa doaless’
= pragma DTIME (Not Mull);
Zunctien "= (Zefs, Rizhe SQL_Znumaeracion) Istuin 3ccleax:
- pTagma IMLIMR ("="); .
Zuncsien "<” (Tefs, Rig2t @ SQL_2aczesacion) Teisa Rooleax;
~= pIag=a JCIR ("<");
Sunczien "> (Lefi, Rigks : SCL_2aumeration) zecusn 3ocoleax;
~= plagma TR (">");
funczion "<=" (lefs, Right : SCL_Zaumezazion) Setuxm 300leaz;
- pragms VLR ("<"'),
Zanezion ">e" (Lefs, Rizks @ SCL_Zavmerasien) Seeusm 3o00claaz;
“= pragma DEINZ ("dw");

the Sallowizg six funcilions mim:ic the
'?zed, ’‘Suce, ‘Izage, 'Pos, 'Val, azd ‘Value
arzzibusas of the SQL_2aumeration_Neos _Null Zype, passed
iz, 2sz she associazad S{L Zaumeratiea (aull) s¥pe
they all raise the Null Valus 2z=or excentica if a aull
valie is passed i
2zed raises nhe Constzaint 2rTor exception i2 the value
pPassed ia is equal to SCL Paumeratico Neot Null’'last
Suce raises the CasstTaist _Rozur exception il the valua
Passed in is equal to SCI_Enumaratios Not_Null'Tizst
Val z3ises the Const=aist RrTor exception iL the value passed
iz is not ia the Zange P/208(P/TIRSD) ..2/POS(P/IAST) Zor type ?
Value zaises tha Constzaint Zrzor exception iZ the sequence of
mnamwadhm.nuhﬂﬁomeﬁum
lizeral for the instantiated enumezation type
Zunction Pred (Value ! ia SQI_Enumsration) Zetuxa SCL_Enumeratios;
- pragas DUME (Pred)
function $uce (Valse : ia SQL Enumeration) rwtusa SQL_Entmeration;
— pragma INIIME (Suoc);
function Pos (Value : in SQL_Zoumaration) Feturn Izteger;

SRR EER NN

function Image (Valve : in SQL Brumezatiom) retuza SCL_ Chaz;
function Image (Value : in S@_lmo:aciu_lcc_!nn)

fanction Val (Valne : in moq-:) return SCL Zaumeraties;
‘o= pragas DNISNE (Val)!
function Value (Value : ia SCIL_Chas) retw=n 0L Paumarzatiosm;
Sanction Value (Value : in SQL c.:... Hot_MNall)

Tetra SCL) !:naon:.cu Not ! lln..'
-—— pragas oesxX2 (Valge):;

private

type SCL_Zaumesation is Fecozd

114

- pzagma INLINE ("<=");
funczica ">w" (Left, Right : SQL_Chaz) retura 30claan_with Uakaown;
== pragaa INLIVR (">=");

~= %ypd ®> boolesa -~
fanctiocn Is_Null(7alue : SQL_Char) retuza 300lean;
-~ pTagma Sowz (Sa Null) ;
Sunczion Yot ‘(u...(Va.l..u ¢ SQL_Char) zetum 3ocolean;
-~ pTagma TR (Not _Null);

~= These functlons of class type »> boclean

— equate UNKNOWN with TAL3Z. That is, they retuzm TROR
{ == only vhas the fusction Tetusns TAUZ. ONXNCHN and FAL3Z

- ars mapoved to PALSZ.

function "=" (Ze2t, Right : SQL_Char) Setuma 3oolean;

-= pragma DNLINR ("=");

functicn "<" (Left, Right : SQL_Char) fstusa 3colean;

-~= pzagaa MLINZ ("<");

Suncziea ">" (left, Righs @ SQL_C:J.:) setzta dcolean:

~= pragma NLINE (">"):

Suncticn “<=* (Lefi, Right : SQL_Chas) setuza 3cclean;

-= pragaa INLINE ("<a');

fancsiaon "de" (Lef=, Rizht : SQL_Char) Secura 30clsan;

== pragza DNLINE (">=');

-= the puspose of the fallowing genezic is to geaexats

== ceaversion fiuncticns between A type derived fzom

= 8@ _Cuaz Not_Null, which are effsctively Ada

=~ stTings and a type derived Zzom SQL Chas, which

== mimic the bahaviouz of SQL stIings.

== the subprogzaa forzals ace meant to defauls; that is,

== this genezic should be instantisted ia the scope

=~ of an dse clause for SQL_Chas PXg.

genexic

sype With Null Type is limited private;’

type Without Nul.. _2ype Ls azzay (positive range <)
of sql standard.Charactes, . _type;

with ‘:netiaa..m.t-h Null Base alue: 3CL_Char Mot !uu)
neun\lwu <t

with functicn Without _Yull Base (Value: Il.th Hall 'ryyo)
Setuz $QL_Char Mot Mull is ©;

with Sunctisn Without Wull Uspadded Base (Value: With) lul.l m.)
Fetumn QL _Char Not_Mull is <O
package SQL_Char Ops is .
Mu With ¥ull (Value : Without Wall Type)
Tetuza With ,_Wull Type:
-~ pragma THLINE (With Wull):
functics Without Null (vd.n- ¢ With Woll Type)
: Tetuza Witbout _Null Type: } .
"..,\ - pragma IDNILINR (Hx:h«z Rall); et
.) functien Witheut Null Uspacdded (Value : With Null up-) oo
. Tetura Withoue _Wull Type: o)
= pragma IMLINE (‘Iu.:hom; Wall Unpadded); . o, *
end SQL_Char Ops; B

”

private

type SQL_Char(length : SQL_Char Length) ia record |
Is_Null: Boolean :» tzue:
Unpadded Length: SQL_Unpadded Leagth;
Taxt: SQL_Char > Not_Null(l .. Tangth);

and Twecoz+d: . -

- end SQL_Char Pkg:

115

C.24 Subunit To_String

== asatming an ascii hoet chazacter set
-= that ias SQL_Standasd.lhasacses Type is Standazd.Chazacter
sepazase (SQL _Csaz_?kg)
Sanc=ion To S:::.ag (Value @ sq:._c-..:_noc_uuu)
Sesuzn Stuiag is
begia
Tetumn (Stoiag(Value)):
eand Ta_Stzing;

C.25 Subunit To_SQL_Char_Not_Null

~= asstming an ascii host chazactes set
== tbat is SQL_Standasd.Thazaczes_Type is Stand.a..d. Chazacser
sepazaza (S3 Coas - PXxg)
funczien To_ S Soaz_Not Wull (Value : Stoiag)
sezu=n 582 (‘...\. Noz \lull is
begia
Tesuza (SQ5_Chax Mot Null(Value)):
ead To_SQL ¢ C‘.:a. ot Nus "-

C.26 SQL_Enumeration__Pkg Specification

wish S§ Boe-ou ?kg, cse SQ... kelm ?kg,
wish SQ- C-a.. ?kg, use ST Cha... 2%3;
genezis
type SCL_Taumeratias Not Null is (<)
package S$QIL h\:nc:az-aa ?kq
is

=== 2088ibly Null Eoumszation —
type SCL_Inumeration is limited p:inu.

Mammhmmmmua.
—png:.nm mnumwuu),

== ¢his pair of functicas ocavert betwesn the

=~ gull-beazing and nea-null-beaxing types .

function Without Wull(Value : in SQL_! mﬁa)
Tetuza $QL] mua Not_Null;

-~ pracma DiiIxe Ol..hnf. lul.l),

-l&ehhl.niuolnnvuulzcumiqw:

~ value is oull

Zunctiocn With Null (Value : in sg:._uu—u:m_uce_mu)
Tetazn SQL_Bnusszation:

o= pragaa DOINE (Wish Null);

peoceduze Assign (
Le2t : ia out ICL Zaumeration; Right : in SQL _Eaumeration);
== pzagma IMLINE (Assign);

== Logical Cpezations —

== type X tyye => Boclean with unknown -
== these functiocns implemest thres valued logic
== if eithar input is the null value, the functions
== retura the tiT:h value UNKNOWN; otherwise they
-— pesfoma the indicatva comparison.

Sunezior To_Stxiag (Value SQL_Chaz)
Setira Striag;

functioa To_Ucpadded_Stz:iag (Value : SQL_Chax_Not_Null)
Seturn Striag;

2enctien To _Uspadded_Stxiag (Value : SQL_Clax)
Tetuza Stxiag;

== PTagme DNLINZ (To_Unpaddad _Stzing);

== this INLINZ vocks ‘e- 30TE functicns! |

Zunezzon T2 _SQL _Chaz_Not_Null (Value : Stxz=ag)
Tetuzn SQ.. cau Jot ‘lu.u.

Zuacsion To sc- Char (’h.uc ¢ Stziag)
P{ 11413 sc.. 2 H

== pragma pat 20T] (So_SQL_Chax);

fuaction Unpadded Lasgth (Value : SQL_Chax)
Tatuzn SQL_Unpadded Length;
== PTagma WLINZ (Uspadded Langsh);

procedure Asaizn(
ez : ouz SQ_ C.\.a:;
R_;:- : squ

)I

== PTagma NLINZ (Assigm):;

-~ SubstTiag(x.x,a) Zecums the substoing of x staztiag
- a3 position x (Selasive to 1) wash leangtsh a2,
== Zetutms acll value if x is aull
== Talses constTa:at_exzor i2 Stars < 1 or Leagth < 1 ox
== Staz: + Zengsh - 1 > x.leagth
Zuacszon Substsiag (Value : SQL_Ghaz;
Staz=, Lengzh : SQL__C'.‘.;:_I.cng‘;h)
Secusa SQL_Chas:
~= pTagas INLIMNE (Substring);

== "&" retuzmns null i2 eithar paraseter is null;

== otherwise perforas concatenstion in the usual way,
== Pp3esexving all blaaks.

== Say ralse constzaiat exzor implicitly if result is
== too lazge (i.s., q:uu:mnmmmqum
function "§" (Lefs, Right : SQL Char) .

== Logical Opezxations —

== type X type => Boolean with uaknown -~
themepmmnnamboolmmu

UNKHOMN {2 either parameter is null; otherwise,

the comparisoa is done in accordance with

ANSI X3.135-1986 paza 5.11 general rule 3; that Lc, IR
the shorter of the two string parameters is “
effectively padded with hlanks to be tha length of
mzammmawmmuuu -- C eee Th

than made
function Rquals (Leaft, Right : mms)mmﬂunm,
== pragma DUIME (Equals); P

function Not_Zquals (Left, Right : SQL Char) .
zeturn leehaa vi:h L _Unlmown; '
= Pragma DILIME (Mot_Equals);
fanctica "<" (Teft, Right : SQL _Char) return Boolean_with ,_Unknown;
== Pragma DAIME ("<");
fanction “>" (Lef:, Right : SQL_Char) retuma Boolean_with Uaknown;
== pragma INLIME (">"); .
fuaction "<=" (Laft, Right : SQL_Char) retura Boolean_with Unknown;

117

oPPER DC PLLE’ 21474836487

poOsScoN DG X‘Q3080000

NECCSH DG X’ 00000000’
- POSZCSN DC X’'F0000000/

ZERO o]+ 210’

oz » o] Y

SXTZ22 0C is’
THIYTHO DC Fr32

WOLVIA MP 0(0,2),0(0,3)
MULVZA MP 0(0,2),0(9,4)
pIvIsw ©D? 0(0,2),0(0,4)

ZXD ADAST?

C.22 SQL_Char_Pkg Specification

with S$QL_Systaam; use SQL_System’
wath Scr-_iool-a_ﬂ:q: use SQI._BoeJ.m_qu:
with SCL_Standazd;

package SQIL_Ctaz ?kg

is

subtype SCL_Chaz_length is nazusal
Tange 1 .. MAXCSEIRLZY:

subeype ST Ucpadded Leagsh is natasal
Zazge 0 .. MAXCTIRILZN:

type SQL Chax Vot _Null is new SCL_Standsrd.Chass
t7pe SCL Char(leag=h : SQL_Ctar length) is limited private;

fanction Null SQL Char petuxn SQL Char;
-pnpm (un.l.!. 105_Char) ;

~= the aext three functions ccavert betweea
== aull-bearing and nom sull-beacing-types
~= Without ¥ull Base and With Null Sase axe
=~ inverses (mod. aull values)) . -
= see also 3L Chaz Ops generic package balow
Ma'.-hlﬂlllmﬂsh. mm:mnu)
* nﬂnmm
—pmmmnwmb
--—'L:haulﬂllnunnd'&:wwhnﬂwm
- amvn.luc::s:nthnum
Men‘u:han!mh“(valu mm:):.emmm:uew-
——pnpmwlthﬂ:‘nulm), .
-w:.:.a.almo:p.aum.m-wunwma-
- th.ia’us .
functiom Without Iu.u.vapldd‘d Base (Value @ m_ch-:) :
mmmmm: . -
-;ugnm msmnuuwnm), L m
- axiom: Whﬂqﬁh(z)- . .
-— ummuwun(x)'m Do
. —boehtucumauoamwumuxuuﬂl .

== the naxt six fuactions convert betwess Standard.Striang
-—— types, udu-..mc:u.: and SQL_Char Not_Null types
functica To_Stziag (Vlln. : SQL_Char Not lu..u)

Tetum String;

118

== t¥pe Digit is picked %0 be an insteger Sype withk a raage
- that will force the Ada compiler %o pick a

- pre~defined integex type ZIom package Standazd.
type Jigit is zangs ~(27%7)..(2%*7)-1;

== LZa followiag object is declarsd so that tie tiue size

-~ (ia ac=ual number of bits allocated) is assigned to the
- "size” abject, ratber tian tis aumber of bits used of

-— those which are allocatad. In other words, using ’‘size
- an the type Digiz yaelds 4 bits (at=bex bits used),

- whaTaas using the ’'size on "cbject” (of type Digit) yields
-~ 8 bits (ausber bits allocatad)

abdecz : Digis:

== size Lis the aumber of bhits used by eachk objec: of type Digis
== 4% is used ia the calculaction of MAX SIIZ (below)

size : constan: integer = object’size;

= MAX SIZZ is =he atmber of arZay positions neaded for the

- Max Decizal type below

== sizce each 3D digit can 2it isto 4 bits of storage, the

- Sotal auxber of bits can be calculated by MAX DIGITS * 4;
== zh:s resuls is divided Ly the number of bits that an cbjecs

- of type Digis will camprise, which yields the nuzmber of
- azzay posizions needed for the 3OO atmber

== tke Zesul: :s incTemected by one to acccmodate the siga
MAX SIZZ : coanstaat integes := ((4 * (MAX DIGITS)) / size) + L;

== Max Decinal is the azvay type defizition used by the

- sgr. Dec:izal Not Null type definition (below) to allocats saximum

- storage for its BCT value

type Max Deciaal is armay (1..M0X $222) of Digit; ’

=~ SCL Dacimal ¥ot ¥ull is the Ada BCD type. Ztheq:iaodot.ﬂ@

- Valte which resides in an cbject which reserves maximum |
bt space for BCD values, and a scale which indicates how '
- sany digits exist to the right of the decimal point in the
- I value

SYpe SQL_Decimal Net Wull (scale : decimal digits :» 0) is recerd
Value : Max Decimal;

end recozd;

gﬂ‘mm'&‘w (scale : decimal digits := Q) is recoxd
Value : Max | Decimal;

: decimal digits) is xecoxzd .
Is _Null : boolean :m tIue;)

119

CALAFTe-2

generic
type Witk Null Tvze(scale @ deciamal digits) is Limited private:
SYpPe Wissout Hu... Trpe(scale : decizal digizs) is limited privats:

in_scale T decimal _digizs :w 0;
24 “‘.‘*? : Sign_Chasacter = '=';
2izst_iazegral : NHumer:zc_StTing :iw

(1..decznal digits’last-ia_scale => '9’);
fizat 2racsiosal : Numeric_StIing :w
(1..ia_scale => '9/);
Sign Chazacter = .'¢';
mn-?.-'.-'.c_se:;nq i]
(1..decinal digits’last-:a_scale => ‘'9’);
last_fzaczional : Hu:u:;c_s:.:iaq i
..in_scale a> '9');
with Zuncsion Is_: 3“. ("t_:;"t: ¢ Without Null Type:
Lowezr, Upper : SQI. Docml_ﬁat_!lull.z)
Zetumn boolean is <;
with Z2unczion Is Iz 3ase (Rigat : With Null Tvoe:
-~ lower, Uppes : SCL_Dec:zal Not Null2)
Zetus boolean is <
with pzsceduze Assign wita check
(Le2, : in out Witlout Null Type:
Rigat : Without Null Type;
Lowes, Ugper : SQT,_Deczmal Not Nulll)
. is <
witl Ddroceduse Assign withk check
(L2t @ is ouz Wiz Null Type;
Raght : With Null Tyoe;
Lowez, Uppec : SQL_Decizal Not Null2)
is <
with Sunecszion 7o _SQL_Decizas Not_Null2 (Value : Without_Null Tyde)
Tetusn SQL | D«:..:al Not \lu..l.z is ©;
with Szncs=ioen To _SCL | Doc_-u.. Not Null2 (Value : Witsh Null Type)
Tecuza SQL | Docianl Not Null? is ©;
with Zunczioan %o _SQL | Doc..-u.l Not_NWull (Value : SCL_Decimal Not Null2)
Tetura Withoue lln.}. _Trpe " is <>,
with funczion To SQ!. Decizal’ (Value : SQL Decizal Neot_Null2)
Tetuza With sm . IYpe is O. '
package SQL Decimal (. Ops is
p:ecodn:. m&qa (Tegs

last_siga
last_iategzal

YT

et function Is_Ia(Right : With Mull Type)

~= pragma IMLIME (Is s _In);

functiocn With Wall (Vdno 3 Without Wull Type)
Tetum With ,_Wall Type;

- pragma m.mauu Wull)

functioca Withogt) Wall (Value : With Wull Type)
retura Without :_Full Type;

_ . - pragma mmaumn Hull Type); .
ond $QL_Deciamsl Ope:

. p:tvato
- The requi-emant hexe is to provide

== at’ lesat encugh space for the machine cwpreseatation of the
== $CL_Decizal Net Null operands.

. 120

—ie ot -

fuactica To_SCL_Oouble_2=ecisioca Not_Null (Right : SCL Dec:zal)
fetu=a SGL_Double_Precision Not Null:

- pragma "!:.."tz\.o sc- Double ?-r_unn Not_Rull);

Zunction To_sQl Souble ?-oc.c:.on {(Righe : SQ.._D.:.M.)
retuim S\..._acnblo_?:oc--nn.

== pragua INLI¥Z (To_SQ Double _Precisiom);

=~ The followizg functions conver: Iom Decimal to String:
Zunction To_Szx:iag aght : SQL_Decimal Not Null) retuzn szoisg:
Zzaction To_Stsiag (Right : SCL Decimal) zetusn stIiag;
-— pragms NLINZ(Zo_StTiag):;
Zuncticn To_SQL_Char Nes Null (Righs : SC._Decimal Not Null)
et sc:._mz_xez_nuu,-
2znction To_SQL_Chaz Not Null (Right : SCI_Decimal)
Testzsn SG’.. "‘_.A.. Not Ru..l .
-~ pragma :x:.:sz(° sc' Chn:_lef. Null);
2zncticn To_SQL Q:. (Raghe : SQL _Decimal) setzza SCL_Chas;
- pIagma oeavz (To_SC._Char);

= the foilowiag functions zetuza the leng=h of the stxing

- value Iscisied by the "To Stzing” Zzaction

Sunction Widsh (Righs : sq._Doc..:ul_Wec Null) zetusa i=seges;
«+ The Zollowing function Taises the Null Value Zzzoz excertion
- oa the au’l iapes

Sanction Widsh . (Rigks : SQL Decimal) --:.:: iateqer;

= prag=s INLINZ (Widek):

== The fallowing Zu=mctions izmplement scme of the Ada Asz=iSutes
== of the 3L type

== The puxber of I digits before the decimal point for the

== type of the gi7en oblecs:

Sznctiea Iatagral Digits (Right : SCL_Decizal Not Noll) secuzs decimal digits:
2unction Istegzal Digiss (Right : S _Decimal) zstuzn decimal digits:

- pIag=a m(moqa.l_bigtu):)

= The aumber 0f 3D digits aftar the decimal point fZor the

~~ type of the given cbject:

function Scale (Right : 3QL Decimal ¥ot Null) retuxn decimal digits;
fanction Scale (Right : SQL Decimal) retaxn decimal digits;

- pragma DCINE (Scale);

= The actual aumber of BCD digits befors the decimal point for
—lgimobjoezdngimtyp

function Pere (Right : 3L _Decimal Wot Null) return positive;
—muu«mwmmmw&uzﬂuumwm
fanctien Fere (Right : SCL Decimal) returs positive; .
-~ pragma INILIXR (Torxe); .

= The aumber ef 3D digits after the decimal point for a .
== given objee: of s given type: -
fanctica Af: (Right : $QL Decimal NWet Null) retura positive:
-‘nnzwmmaumluanhohzuﬂuuum
Zanction Af: (Right : SQL Decimal) return positive;
== pragma DILIXR (A2%); .

: ST _Decimal Wot_Wull) retm== boolean;
fuastion Machine Rousds (Right ; $OL Decimal) return boclean:
}

fanction Machine OverZliows (Right : $QL _Decimal Net Wull) return boolean;
fancticn Machine Overflows (Right : 5QL Decimal) return booleasn;
== pragaa :r..::zou.-_-.\a. OverZlows)’

121

zecusa SQL Decimal;
= pragma NLINZ("*");
Sunc=iea /" (Lefs : SCL_Decimal Not Null; Right : SQL_Iat_WHor Null)
sstum SCL_Decizal Vot Null;
Zanczion /" (Lelt : sqx. “Secimal; Righe : SQI_Iat_Not Null)
zetuma SCL Oecinal;
Sanczien /" (a2t : SQL_Deczmal:; Right : SQI_Iat)
setusa SQL_Decimal;
== p=agma INLINZ("/");

-= The following fuactions ceaver: to SQL_Decizal Not Null:

function To_SQL Decimal Not Null (Right : SQI_lat_Not Null)
zetuza SCL_Decizal Nor_Null:

= the 2allowzag fuaczion Taisue Caastazias 2r=ox

L i2 =he S;:._ﬂoubl._?:.cinxon_&loe_ﬂn.’.'. valie is too lazge
- S0 be TepIeseated in 3ICC Sormat

funczion T3 _SQL Decimal Not_Null (Right : SQL Jouble Precision NWor Null)
recuza SQL_Decizal Net Null;

== the f£3llowizg fuaczion saises CanstIaiat_2z=az

£ zhers are mors tban MAX JIGCITS aumbes of digits:

thaze ale Swo or moTe deciaal poiacs:

TRere are Two or moTe si5a designatiosas;

There exists & chasacter otler than ‘0/..'9 oz /.’

oF '#’,.'=", / * Zoz the sign

i2 the orzdes of the chazaczers is anytiing otier than
sizn des:ignation Zsllowed by the aucoer

sne=ian Ta _SQL _Jecizal Not_Null (Right : SUL_Chas Not Null)
secuzm SOI Doc.an.!. 10: Nell;

== pragaa INLZ JZ('.'e scr. Decazal _Not_Null):

-~

[]
[}
Rt

K

»

== The zallmu:.g fuaczions convers to SQL Deci=al;
fznczion Ta_SQL Decimal (Rigks : SQL_Iat Noc Null) retuza SQL Decimal;
Sunctisg To SQX. Deczaal (Rizzxz : SQL Iat) reczza SQL Decimal;
== tle ‘ol.cvz.aq two functions raise Comstzaiae RsTor
- i2 =he SQI._DcubLo_P:oc;'.niou_!lct_lu_J.'. valse is too lazge
- €0 be Tepresanted in 3D fozmat
tion To_SQL Decimal (Righs : SQL _Double Precision Mot MNull)

ot
functiom To_$QL _Iat Not Wull (Right : $OL_Decimal)
-— PTAgES nn.:xz(zo sqf Iat_Not Null);
functiom Zo_sQl Int mqhg H SQT. Decisal) return SQL_Iat;
== pragma I!I.nll(‘.'o_m-he) ;

== The Jollowing functions convert from Decimal to Float:

function To_$QL _Double Precisiocn_XNot_Null (Right : SQL Decimal Wot_Wull)
Tetura Sct. Double P:oc.sion ‘loe Mull;

122

—

t
H
.
|
!

= pragma DILIMZ (Is_Ia 3ase);

Sunczian Is _Null(Value : SQL Decimal) recuIa boolean:
== pIagua peTrdgtr 3 (Ts_Null):
funezica Not._‘h:.-('\hl.u : SQL_Decisaal) retuza boolean;
" pIagma INIM2 (Mot Null):

== The Zollow:zg unasy azithmetic opetatoss aSe provided:
Sunczian " (Righs : SQL_Dec:mal Not Null}

Sezuzn SQL_Decimal Not_Null;
Sovm

Suaczica "+ (Right : SQL Deciaal) zetusa SGI_Decimal;
Suzesion - (Reght : SQL_Decimal Vot Null)

Tetisn SQL Decimal Not Null;
Suncziopg "-" (Right : SQL_Decimal) zetuzm SQL _Decimal;
Zusczicn “abs® (Rizhs : SOL_: ,Jecizal Yot Null)

SezuIn SCL _Decamal Notv Null;
S=xczian "abs” (Right : SQL Decimal) setuz= SQL_Decimal:
=~ pTagma INLINZ ("abs");

== The Zollowizg binasy azitlmetic operatars are provided:

== Tke "+" and "-" functions Istusa 4 Tesull with a scale of
i Bax(lels.scale, Right.scile)
<~ 22 the opesation p:od.t:co. a result thac is too larye to
- be Tepresanted i3 an cbject that bas this scale, &
- Constzaint 2r=oz will be zaised
Zungzion "+ (...o--, Right : SCL Decizal Not_Null)

Sesuzn $UL_Decimal Not Null;
Lz=ncsion "+t (Lels, Rigat : SCL Deciaal) secu=a SQL_Decimal;
== PTagma INLINZ ("+");
Zzacsica "-" (Leff, Righs : SQL_Decizal Not Null)

Setumn $QL_Decimal Not Null;
fanction "= (Tef:, Rigaz ¢ SCL_Decimal) zetura SQL Decimal;
== pragms DILINZ("-");
== T=e "*" ganction zeturas a result vi:h the scale
- Left.scale + Right.scale
== 2£ the Tesult leluqouhomutodhmebjce'
-— m:mm.uu.,w_:.—uuuhm
fznction "*" (Lef:, Right : SQL_Decimal Wot_Null)

retarn SQL Decimal Not) Bull;
v (Tafs, D.'Lgbt SQL_Decimal) retura SQL Decimal;
“= The "/" functica returns & Tesult with as much scale as

.possible, given the sature of the result .
Z2 the result is too large te be represeated in the
" the underlying hardwars or in an cbject with so scale,

E

— The following mixed mede opezators are provided:

fungtion "~ (Left : 3QL Decimal Wot Nuall:; Right : mm:« lﬂl)
zeturn SQL Decimal Wot | IG-LI

fangtion "*» (Iab 8@ Dodnl. Right : m_ng_loe_nu) .

functien "** (Left : sgt._o.esm: Right : $QL_Int)

function "** (‘Iat" 80!- Iat Not I ¥all; Right : SQL I Doc.t.d. Ioe nu.)
feturn SQL Decimal Wot | “Wall;
funczien "~ (‘.’49 SQI. m Not _Wall; Right : 3QL Decimal)

return SQL Decimal;
Sunctiaq "*" (Lefs : SCL _Iat; Right : SQL_Decimal)

123

- values

fanctiocn Zero zatzzm SQL Doc-'_-u.]._!lcc_!iul.‘.:
Luanczion Jero Teturn SQI.:DQC:.:AAL;

== pragma INLINR (Jazs);

Zunctian One Zetusn SQL_Dec.zal Not Null:
f2anction Cae zetaza SQL_Decisal;

== pragma INIINR (Cne);

== The followiag Assigrment procedure is pzovided Zozr the
- SQL_Dec:asl Not Null sype:
- The -:l.o-ug Assigmoeaz proceduse ITaises Canstraiat 2szox

- i2 the valze of Righ= does not fall withia the :ango
- o2 lower..upper

proceduse Agsign_Wizh Check (Lef: : ia out SQL_Deciaal Not_Null;
Right : SQL | Doc.;nl Not Nu.L
Lowaez, Opooz : SQL | Decilal Noc_!lul.‘.Z):

== The 23llowiang Assign wizh chack proceduze will be usad
- in the genez:ic Assign produced in SQL_Decizal Cps
~= This Procedure Taises She Constzaint_2sz3r exception il
- She "Right” izput pasapeter 2a1ls ousszde the Tange
- desized by lawer..Uppes
proceduse Assign Witk Cueck

(Lefs : in out SCL Cecizal;

Righs : SQL Decizal:

Lowes, Upper : SCL_Deciza. Not Nulll);
== PTagm=a NLINZ (Assiga_wath check):

== The followiag csmpasison cperators are provided:

Sunction "m" (Lef%, Right : $QL_Deciaal Not Null) Tevura boolean;
functioa "m" (Lels, Right : SQL Decizal) zetuza booless:

=~ pragma JMIIMR("=");

function Zquals (Tefs, uqk : SQL Decizal) setiza Boolean With Uaknown;

: sqt._o.un;.uoe_nm) retuzr boolean;
function "<" (Left, Right : SQL Decimal) return boolean;
function "C” (Left, Right : $QL _Decimal) retusn Boolean With Uaknown;
= pragma MLIMR("<");
functiom ">* (Left, Right : SCL _Decimal ¥ot Xull) return roolean;
functios ">" (Lef:, Right : SQL Decimal) return boolean;
fanoticn ">* (Lafs, Right : SQL _Decisal) retura Roolean _Wi:h Unknown;
«= ptagma INLIXE(">");
functiom "<=" (Laf:, Right
functiom "<=" (Left, Right
functiom "<=" (Legs, Right
= pragma DILIME(“<w");

SQL Decimal Not_Null) retura ol.n:
3QL ! Dod-u.) retazn boslean;
SQL | Doci-d.) retusn Boolsan W..h Uaknown;

SQL_Decimal Wot_Null) retucn biolean; .a
$SQL_Decimal) return beolesen;

function ">=" (lLefs, Right]
3QL Decimal) retuzn Boolean N. -:: Unknown;

function ">e=" (Lafx,
~= pragma INLIME (">=");

" e »n

== the following functicos ars membership tests
- !hnluot:hebjocuumumu
- 4¢ it falls within the raage of Lower..Upper
functioa Is_In Base (Right : SQL Decimal Not_Wull;
Lower, Upper : $QL Decimal Mot Nul'2)
Teturn boolean;
functioa Is_Ia Base (Right : SQL Decisal:
Lowez, Upper : SQL_Decimal Mot Mull2)
zetura boolean; '

124

R R A Y

SUL_Double_2=acisiog Not_Null (Without Null Type’IAsT)):
end assign;

end SQL Double ?recisica Cps;

end SCL Double 2-ecisicn 2k

C.18 SQL_Decimal_Pkg Specification

with SCL Boolean_2?Xx5; use ST _Boolean ?kt,-,

witsh SQL Ilas ?k;-, use SQI Izt ?kg,

with SQL_Chaz ?kg; use.SQL_Chas= ?kg:

with SGL_Doublo- :oc‘.nion_.?-k;; use sc:.__oau.blc__?:.cision.?k;:
package SCL Dacizal 2kg is

== MAX DIGITS is implamsantation defised

== I% Zepresents the max:aum aumber of digits ttat can be
- stored ia the uadesly:ing bacdwaze’s sepresentation of
- a B ztu=ber

MRX DISITS ¢ constant i=segex :m 311;

subtype decoz=al d.g-.c is aasuzal sange 0..MRX DIGIT

srpe sc:_:.e;-_-..z_noe_u Z(scale : decimal digits := 0) is limited pzivata:
t7pe SCL _Decizal(scale : decizal digizs) Ts lizited private:

subtype Nudesiz Character is ChaTacter Sasge 07..'9";
T7pe Ncaezic S"-':.aq is azTay (deczzal digics -'uq- <} of Numezric Chasactes;
tyPe Sign &a.ac‘.: is ('+', ’=');

=~ the Zollowizg type is used for pusposes oI cTesting geaexzic

-— ‘assigs and is_is Zzactices....DO NCT USZ THIS T2 to

- €zeats the abstrac:t domains.....

t7pe S5QL Decimal Wot WMulll(scale : decamal digits := 0) is limited privats;
Zunction To_$Co Decimml Wot_MNull (Valse : SCI Decimal Not Null2)

fanction To Sc:. Decimal (Valla $QL_Decimal Wet Wull2)

setun sc:. boe.in}.
Zunctioa Te_SCZ Decimal Not_Nall2 (Value : 3GI_Decimal Not_Null)

== The follewing fumctions shift the valoe ef the cbject
- without chasging the scale. BR2fectively, the operation
- matipliss the value in the object by 10*"Scals.
—&zmwmwmum;w
- shi?t causes a loss of significant digits

¢ SQL Decimal Neot Null;
w.:w)mmm;mm
¢ $QL Decimal;

Scals : Latoq-:) zeturn sqx.__n.c.*.nl;

== Ths 20llowzag Zunctions return cbjects with the appsUp=iats

125

funczion Is_Null(Value : SCL_Iac) zetum Boolean:
~= pTagma DNIINZ (Is_Null):
function Yot _Null(Value : S5Q5_Iat) retuza 300lean:
-- pTagma LIE (Nor_N¥ull);

-~ These funcziocas of class ¥ > boolean

-~ oquate UNKNCWY with FALSZ. . .© is, they Jetam TROR
-~ only whan tShe Zunction Tetzims TROZ. ONKICWR and TALSZ
-~ aTe mapped So TALIZ.

funcsien "m* (left, Rigks : SGI_Iat) retuza doolean:

-- pTagma MIINE ("=");

function "<" (left, Right : $TL_Iat) getusa Boolean;

~~ pzagas DLIWE ("<");

fanctioa ">" (le2s, Risht : STI_Iat) recum Booclean;

-= pragas DLINE (">"):

Sunczion "<m* (TLeft, Right : SCL_Iat) retu=a Boolean;
-~ pragma MNLIMR ("<=”);

fanction “>w" (left, Rigat : SCI_Iat) retusa doolean;
~~ pragaa DLIME ("H>=");

~= this genesic is izstantiated oace Zor ever? abetIact

~~ domaia based on the SCL =¥pe Iat.

e~ the thZee subpzagTas fozmal parameters are msast to
defauls S5 the pragzams declazed above.

tzaz is, the package shoull be instantiated ia the
scope of a use clacse foz SQL_Iat 2ks5.

the Two actial t7pes Sogetter fora tie sbstIics
domaia.

the puspose of the genezic is to cTeate functions
weicz convesz bDetween tle Zwo actial types and a
psaceduze whizsk izplements & Tange constsaiaed
sssig=aens for the null-deazing type.

the bodies of thess subprogzams ars calls to
.cbp:og:mdmmmmduahunu
the geaecic. '

genezis
type With ¥ull type i{s limited private;

peivate

type SQL_Iat is recosd
Is_MNull: Boolean := true;
Value: $QIL_Iat Not Wull:

and recoxd:

ead SQL_Ist_Pkg:
126

camme V¥

== Taises consatIaiat ersor i2 aot

- (Fizar <= Right <= Zast)

proceduse Aanaqn_u:h_e.bock {
a2t : ia our SQL_Int; Right : SQL Iat;
Tisse, Lass : SQL_h:_th_Nuu):

— pragma DNIINZ (Assign_with check);

- %de followiag functions implemsnt three valued

.= aritlmaetic

== if eimher izpur to any of these Zuactions is sull

-~ the funczion Tsturms the null value; atlezwise

- they pezfazm the indicatad cpazstion

-~ these Zuacsions zaise 30 exceptions

fuaczien "+ (Right : SCL_Tat) Tetusn $QL_Iat;

~~ pragma INLIWZ ("+");

functien "~"(Right : SGL_Iat) zetuma SQL_I=T;

«~ pragma DNLINZ ("-"):

fanazion "abe” (Righe ¢ $QL_ZIat) retu=m $QL_Zas;

.o - pragas NLIZ ("abs”");
funcziaa "+" (Lefs, Right : SQL_Iaz) retusa SQL_Iat;
-~ pragaa INLI@ ("+");
#ingtion " (Lefs, Right : SGL Iat) Zewusa SQL_Xat!
=~ pIagma ML ("v7);
Zangzion "-"(lels, Righc : SQL_Iat) retuza SQL_Iat;
== pragua DLIXZ ("-");
Zanczzon /" (Left, Kight : SQL_Iat) remusn 5QL_Iak;
-~ prag=a INLINZ ("/"):
Suaction "mod" (Ledt, Right : SQL_Int) sestuzn SQL_Iat;
~= pTAgma NIINZ ("acd");
Zanazion "Tem" (less, Raghke : SQL_Iat) setzzm SQL_Int;
~= pragma LR (""ﬂl")
funcsion "vU" (Lefs i SQL_Iat; Right: Iateges) retuzra SQL_Iat;
=< pIagma m‘("""):

== simulation of 'IMAGZ sad 'VALCE that

~= Tetura/take SQL_Chax(_Not_Null] instead of stIing

Sancsion DG (hez H 80- Ias Mot _Wull) resuza $QL_Char Not) Nall;
s $QL Int) setura SQL Chaz;

function VALOUX (left : SQL Char Net WUlL) Tetura SCL_Iat ¥ot_MNull;
: SQL) retura 3QL_ZIat;

=~ Logicxr. "pesaticos —

~~ type I iLype => Boolean vith unknown --
these functicas implemsnt three valued logic
if either input is the mull value, the functions

return the tzroth value DMENOWN; otharwise they

perform the indicated compazison.
these functiocas raise 20 exceptions

) functiocn Rquals (Left, Right : SQL_lat) feturn Boolean_with Unknown;
e - pragma DILINRE (Rquals):
RS fonotics Not_Rquals (Left, Right : 3QL Iat)
Fetura i . 1.0& with Unkoown; .
= pragma DUIXE (Mot !q:au).

‘ fuongtion "<" (Tef:, Right : SQL Iat) returan Roclesn_with Unknown;
, ' == pragms IMLIXE ("<");
i) functiom ">" (Left, Right : SQL m) return Soolean with Unknown;
-~ pragma IHLINE (*>");
fuacticn "<m" (Left, Right : SQL Int) returm Beolaan 'ith ,_Unknown;
== pragma INIZXR ("<=");
Zuncticn ">m" (Lef:, Right : SQL_Iat) return Boolean_with Unknown;
== pragma DOAIW® (m>=");

== tLype => boolean =~

127

function “xor” (lLef:, Right : Boolean_with Unknown)
return Bonlean with Unknown is
begia
return (lef: and aot Right) or (not Lef: and Right):
end;

vw= thrse=-va. => bool or excepticn ~-=

2unction To_3colean (Lef: : Boolean with Unkaown) retuin 3colean is
regin

i2 Le2t = Unknown then zZaise zull value_erzor;

else zetuza (Left = Txue); -

end i2;

ead;

wes thrse=val s> bool ===
functian Is_TTue (Lef: : Boolean with Unknown) retu=a 3oolean is
begia

setumn (Left = Tzue);

and;
Sunczion Is Talae (left : kelm_vi:h_ﬂnkncvn) zetusn RBoolean is
begia
Tetusn (Laft = Talse);
end;
funcsion Is_Unknown (Left : Boolean_with OUnknown) zeturn Boolesn is
begia
zetuzn (Left = Unknown):
end;

end $QL_3ococlean 2kg;

C.10 SQL_Int_Pkg Specification

with SQL_Standazd;

with SQL_Boelean_Pkg: use $QL Boclean qu,

with SQL Char Pkg; use $QIL_Chax_Pkg;
package 3QL_Iat_Pkg
is

type 3QI_tat_not_sull is new SGL_Standard.Ist;

==== Possibly Null Isteger =—-
eyp.m:uuunmmm:

Mummmmmm.
-paq-nmm (lnum.m).

== this pair of functicnos cocavert between the

- gpull-bearing and sce-null-bearing types.

function Without Null Base(Valoe : $QL Int)
:-eu.:n‘ﬁheloelnu .

--pnq-lm m.mannuu).

—wxannmmumvmmuthm

- vu.ul.nm.u

function With Null Base(Value : m,m_r«.w)
:-wznmm . !

—pmm (With 1 Wall ,_Base);

this procedure implements range checking

acte: it is not mesnt to'be used directly
by spplication programmess

see ths generic package SGL_Iat _Ops

R

128

~= pragma INLINE (“oz");

Zunction "xor® (lLef:, Right : Boolean_with Unknown)
retuzn Boolean with Unknown:

== pragma DILINZ ("xoz");

~~e thzse-val «> bool or exseptioa -—
Zunctaion To_BooJ.ua (L2t : Boolsan_with Unkaown) retuza 300lsan;
~~ pragaa DNLINZ (Ts_Boolsan);

=== thzee~val #> bool -

Suncsion Is_txue (le2t ioolom_wit.h_ﬂnbm) zeturan Boolean:
== Pragaa DILINZ (Is_Tzue);

funczion Is_False (Left : Boolesn with Unknown) restura Roolean:
== pragma DIILIE (Is_False):

Zunction Is _Unknown (Lefs : Boolean with Unknown) return Boolean:
== pragma DNLIZ (Is_Unkzown);

end SQT_Roolean Pkg;

C.9 SQL_Boolean_Pkg Body

Witk SQL_Zxceptions:
package body SQL Bcolean ?kg is

Null Value_Zz=32 : excepticn Fenames SQL_Exceptions.Null Valoe 2:zoz:

Suaczion "not" (Lef:t : 3oclean_with Unkaown)
Tetusza noclnu_thh_ﬂnkam is
begin
case Left is
whea tIue => Tetura 2Zalse;
whan false 3> return tI3e; .
when uwaknown s> retu=a unknown;
and case;
end;

funatica "..d” (Tef:, Right : Boolean_with Unknown)
zeturn Boolean with Uaknown is
begin

12 (lef: = False) or else (Right » Yalse) than
Teturn False; .
elaif (Laft = Unknown) or ealse (Right = Unknown) then

retuzss Unknown;
alse

retuzn True;
end i2;
end;

function "or" (lLefs, Right : Boolean with Unknown)
. zetura Boolean with Unknown is

begin

i2 (Laft = True) or else (Right & True) thea
Tetuzn True;

alsif (Leaft = Uoknown) or else (Right = Unknown) then
retura Unknown; ' .

else
setuzn False;

end iZ2;

end;

129

~= pragma '.’.‘n‘..'!ﬂ(:-_bly__".'im);

fancsion Not_Yeas Moath(Value : SQL_Iater7al) zeturn Boolean;
-= plagna DNIINR (Mot_Year Moath);

Zuncsian Not Day oine(Value : SQL _Iatarral) return Boolean;
-~ pragaa bots %o, 3 (Not_Day_Zinm);

== %3e procedurs CusTsat Tstusas the curTent systam Datetime, using

== the precision of the imput vazs:iable

pIoceduse Cuszent (Value : i3 out SQL_Data):

== pragma INLINE (Czzzant);

=~ tie praceduse Zxtaad retuns the valie of the Right imput object vi:h
== %he datetize iflex of the Latt cbjec=z, if a valid datatise

== wvalue is gesezated by %ie extansion process

proceduze Zxzend (Value : ia ous SQL_Date) ;

=~ pragma INLINZE (2xzaend) ;

-~ this generic is instantiatad once for evary abatTact
== S{S_3ate domain, and once fox every abatzact SQL_Iaterval
- ém, based on the tyve SQL | Dats_Not Null.

-~ %Ze two subprogzam formal =a.ano:a:- ate meant to

- d--au.' o tte progmams declared abave.

== thaz is, the package should be instantiated in the

- scope of a Use clause Zor SQL Dace _?kg.

== the two ac:ual types .oq-f'_‘m: forn cSe abstract

== demaza,

== tle purpose of the geneziz is to create functions

=~ which conver: between the two actual types

== the bodies of these subpsogTams are calla %o

== subpzagzams declarsd above and passed as defaults to
- <he geaneric.

. ' genezic

N type With Null Tupe is lismised private;

s . type Wi shoue Null Type is azzay (positive Zange <)
H .

of SQL studa.:d. Casactezr_type;
wish ;:ocodum Pazse_and_lssign Base
(Sef% : in out With rm.u. rypo Righs : SQL_Date | uot Null) is ©;
with Zunezion Without Nu.u. . Base(Value : With) Nall rgpo)
retura $QL Date | Not unu is ©; .
package SCL Date Opa is *
p:oc.dn:. PaTse _and Assign (Left : With ¥ull Type;

Right : WitSout uuu. !ypo),
—mmam‘mdhdgn): . ..
funation Witheut Null (Value : With _¥ull Type) P L.

Zaturx Ii:hnnlmeypo . . T
—-mmmmmuun); -
ead SQL Date _Ops; . X .

generic Lo ..
type With Rull Date _TYPe is limited p:iﬂtn. . e
type With) ln.u Iatnml Jype is limited private; . -
;- _with functioca Plus (Zeff : uh_luunu-yp- uthzm:-unu)'
P seturn With Wall Date_Type is -
AR : with Zunctica Plus (Tef: : m_heuml l.i.ght with | ln.u D.eo !’p.)
a Fetura With ¥ull Date_Type is <O
with function Misus (Lefs : uuln.un.uryp. ugutMIM)
zetura With Null Date Type is ©; e e O
with function Misus (Left, M.qu With Bull Date ‘rypo) s . e e
Zsturn SQL_Iatarval is <) -
package SQL Date tat-svnl ., Ops is N o
faaction "+" (Lelt : With Null Date Type; Right : With Wull Iaterval Type)
. Tetura With Wall | Date ' ‘L‘:{po
functien “+" (Lelt : \ﬂ.th Null _Iaterval Type; Right : With Null Date _Type)
Tetuzn With _Null Date ‘b,{po

130

- grw "

functian - (Le2: : Wizh Null Date_2ype; Right : Wich Null Intarval Type)

Tetura With Null Date_Iype:
Zunction "~ (Ia.., Right : With Null Date Type)
return Wizh Null Iacesval Type:

and $QL_Date_Inter7al Ops:

private
tyPe SCL_year nuzber is
typs Scz_unt."a_nuab‘: is
type $CL_day_oumbes ia
tYpe SCL_hour_aumber ia

type scz. ninu‘:o sumcer is
TP sc:. -ocand aumbas is
type sq:. .:ac:zon sumbez is
trpe SCL Latam. nunbc: is

type 3CL_Date (Fsom

sange
sange
sange
Tange
Zange
Tange
zange
zange

1600..5999;

1...2;

1..3%;

0..23;

0..39;

0..59;

0..(2%*31)~-1;
=(2°*31) .. (2%*31)~1;

: SQL_Datetime Tield;

To : SCL_Datetime_Field:
Tzacticnal : precisica)
is zecord

Is_Null : Boolean = tIue;

year : SQL _yu:_au-bc::

moath H SQL_sonth_n\-bo::

day 1 SIL_day_pumbesr;

hous H Su_hw__nmbcz:

maute H scz_muzo_nu-bu':

second

SCL_second_number;

2zaction @ sc:.:z:acziﬂn-mabc::

end zecord;

type SCL_Iaterval(Tscm

: SQL Dlt.:im_‘l'i-ld:

sading : prescisicn;
20 ¢ " SQL_Datetime ! Tield:
fraczional : yne&-&m)
is zecoxrd
Is_Null t boolean := Tzue;
Is_Year Mosth : booleas := Tzue;
yeazs : 3QL_intarval ausber;
months : $QL_intsrval sumbax;
days : 5Q5,_intarval _sumber;
ainutes s SQL_intarvel oumbesx:
. seconds ¢ 3QL Lauz'nl_amba::
fraction : SQL , intszrval ausber:

end secord;

end 3QL_Date_Pkg:

C.31 INGRES_Date_Pkg Specification

with SQL_Standard;
with SCIL_Systam: use SQL_Systam:
with Calandax; use Calesdar;

with 3QL_Boolean Pky; nae $QL_Boolean Dkq,

dt&lq&ms!xg,mmchu

pecksge n:us Date_Pkg
is

xg;

type nmsn.uxaemxunnsqx.chunaemu
et ,uli.bly Null Datetime:«-o- .

_ .Package SQL Base Types_PKg
¢’ with SQL _Char ?kg, SGL_Iat_Pkg, SQL_Smallint 2kg, SQL_Resl Pkg,
SQL_| Dou.bl.- ?:oc:.a.xan _Pkg, SQL_! Decimal _Pkg, SQL_! s:ud.u:d,
package SQL_; un. Tvpes_Pkg is

packasge Charactar_Set Tenames SQL_Standard.Chazacter Set;

type SQL_Iat_Not_MNull is new SQL Iat Pky.SQL_Int_Not NWull;
type scx. zat_ .p-_;_m SQL_Iat r):q SQL_lat;
‘package scr. Zac_Ope is new sqx. Iac_Pkg. sqr. Iat_Ops(
sqz. -at_ZType, SQL_ Iat_| TNoe . _Null)
subtypo SQL_.:- Subtype s is " SQL_ Ttac qu $QL_Iac;
* subtype SQL_cac_Net_Null_Subtype ls SQL_Iat_Pkg.SQL_Iat_Wot_Null;

type 3Q%_Smalliac Mot Mull Is new SQL _Smallint_Pkg.S5QL Smallint Wot Wull;
type sa:. Smalliat "*zp. is new sSQL_ Smalline Pk.q SQL Smallint;
package sm’. Saallint . Ops Iis new scr. Smallsize _Pkg. sor. Smallint Ope(
SQL_Smallint_Type, SQL_Ssallint Not_Nall);
subtype SQL_Smalliat Subtype IS SQL_Smallint Pkg.SQL Smalline;
subtype sox. s-..:.’.u: Not_Null Snbcypo Is
SQL Smallint Pkg SQL_Smallint N¥ot Null:

type SQL Real Not Null IS new SQL Real Pky.SQL Real ¥ot Noll;

type SQL Real Type iS neW SQL Real Pkg.SQL_Real;

package sc:. Real Ops is New sq:. Real _Pkg. sqr. Real Ops(
SQL_Real_Type, SQL_Real Not Null):

subtype SGX._R.A. Subtype is SQI. Real qu SCL_Real;

subtype SQL_Real Not_Null_Subtype is SQL_Real_Pkg.SQL_Real_Not_Null:

type SQL_Double_Rrecision Not Nuil is
new SQL Double Precision_Rkg.SCL Double Precision Not_ Null;
type SQL Double Precisios_Type is
new SQI. Double _Precision_Pkg.SQL Double Precisiom;
package sQrL ! Double P:ochioa Ops is
e, new sqr. Double _Precision_Pkg.SQL_Double Precisiocn Opot

SOL Double_Precisica Type,

3 sq:. Dcnblo ?:-c.ua.au Not_Null);

r subtype sQL | Double P:oc&lien Snbtypo s

1 SQL_Double_Precisica_Pky.SGL_Double_Precisicn;
subtype SCL_Double_Precisicn Not _Mull Subtype Is

. K SQL Double_Precision_Pkg.SQL Double_Precisica_Wot Wull;

J _ type 30L_Cher_Not_Null I8 New $QL_Char nqmcu:m-uu

type Q% _Decimel tnu.s mmmrqmmnam
: is new SQ_Decimal Pkg.SGL Decimal; oo,
is n mmwrkgmwo;-(. o

Package SQL_Standard Dynamic
withy sQL_ Staandacd, SQL Decimal Pkg:
use SQL_ Sunda:d. SQL | Docua.l _Pkg;
package SQI. Szandaxd Dynna.c is

typs Exteaded_Cursor_ Type Is implementation defined;
type l;tudod Statemant Type is implememation defined;
type SQL Dyu-s.c Datatypes_Base s range implementation defined;

Maybe Mull Indic : constant Indicstor_Type := 1;
=~ value of SQLNULLABIR if aulls allowed
subtype Null Indicatiocn Is Indicatozr_ZType range
Indicator_Type'First .. -1;
-~ value of indicator if walue is gull

== types to describe coluan names
SQL Column Mame Length : constant := 18; -~ set i.n SQL2 standard
subtypc SQL cuun Name_Length Type Is -
pooitin l'lﬂg. 1..5QL Column Name I.cnqt_&
subtype SQLNAME Type i czu:(sqz. Colum Name_Length Type):

== These constants capture the encoding of SQL Types as intagers
-~ as givea by SQL2.

Not_Specified : constant SQL_Dynamic Datatypes_Base :=
Dynamic_Char : constant SQL Dynamic_Datatypes_Base :=
Dynamic Numeric : constant SQL_Dynamic Datatypes_Base :=
Dynamic_Decimal : constant SQL_Dynamic_Datatypes_BRBase :=
Dynamic_iat : constant SQL_Dynamic_Datatypes_Base :=
Dynamic_Smallint : constant SQL _Dynamic_Datatypes_Base :=
Dynamic_Float: constant SQL Dynamic Datatypes_Base :=
Dynamic Real : constant SQL Dynamic Datatypes_Base

o e
[}

Dynamic Double Precision : constant SOL Dynamic Datatypes_Base

subtype $QL ,_Dynamic | Daueypou is SQL Dynamic Datatypes Base
range Net Spocithd. .- Dynamic_Double_Precision;

== agosss eypu foxr ocqoaoat. of sQL , Dynamic Parameter

typoctn:mouhmm:
WWMbMMDMIalm

type Mh Precisien_Access i 8cCeSS Dauble Precisica;

1;
4;
LY

7;

’

type QL Dyu-i.c Parsmeter (SQLTYPE :SQL Dynnic Datatypes:=liot_Specified)

is record
case SQLType ls
wh-nn::t_lpodﬂ.od =>

when Dysamic Char =>

chn:v.lu ¢ Chaz_Accass:
mmmu T Dynamic Numeric =>

D-d.-lv:luo Doc_i.-.lkeou,
wh.nnyn-tc Int =>

Zat Value : Int_Access;

M Valge : Rasl_Acocess;
Dyln-.tc fPouble P:oc.uiea | Dynamic Float =>
Pouble !:oc.uioa Valus : Double Precision_Acoess;
ond case:
snd record;

type SQLVAR Composeat_Type s record

SQLDATA : SQL_Dynamic_Parameter:;
SQLNULLARLE : Iadicatox_ Type;
SQLIND : Iadicatorx_ZType;
SQLIAMEL : $GL_Column_Mame_Length Type;
MLIME : mm-

end record;

SQLVAR Type Is
typ.umy (Iot range <) of SQLVar_Componeat_Type;

tvnm(mzm)bueoﬁ
SQID : Int;
SQLVAR : SQLVAR Type (1 .. SQuN);
end record; .

ond m_lw_bgndcf

v

taen

“

’

3

» t

.
u
'
I

* .
.
-
-~
. "
- PR
~e
-
.. o
-
- L
-
W ? - 3
N - - -
-
- - - .
- »
he .
.
- B

Package SQL Dynamic_Pkg
with 3QL_Base_ypes pkq, SQL_Standard Dynamic;
use Sdr._ha._'l‘ypo._qu;

— These next definitions deal with names of columng
subtype 3QL_Columo Name 3 Is

» Zype :
positive range 1..301 Standard Dynsmic.SQr Colomn Meme :

subtype SQLIANE_Type is SQL_Char Mot Wull (SOL._Colume Name Taogth type) s
== The discriminsnt ia now an eaumacation type
type $QL_Dynamic_Datatypes Is

(lot_Spoci:.Lod.

M_C!u:, Dyna-u‘.e_bocinu,

Pyoamic Iat, Dynamic_Smallint, .

Synamic _Real, Dynuic_boublo__?zochion};

fype Char_Acceas is access SQL_Char_Type; -
fYPe Decimal Access IS sccess SOL Decimal Type;:
type Int_Access is access SQL_Int Type;

type Smallint Access is access sqL_Mliac_i'ypo;

type Real Access is access SQL_Real Type;
type Dcubln__?:ociaian__lcc.o. is access SQ&_Deublo_P:ocilieu_‘rypo:

typol SQL Dynamic Parameter (SQLTYPR :SQL_DM:_D;u:ypo- i= Not_Specified
s record
Cass SQLIype is
when Not_Specified -
aull; B
when nm_c:nz =>
Char Valua : c:nx__lcc-n;
when Dysamic Dacimal =>
Docinx_vuuo : Doc.i.nu_lcuu:
when Dynamic Int =>

type SLVAR Type Is ' C
. aray (m“ht_m_luu fange <) of mvc_w_m.;

fyPe 30LDA (SQLN : $0L_at Mot wall) ls record
" SQID i SQL Zot Wot Nuii; B
SULVAR : SQLVAR Type (1 ., sgrw);
ond tecond;
ond 3QL Dynsmic_Pkg;

. \r-“w

-

se '.u,' "—

PRR 4

-t

Appendix C. Abstract Interface Domain Primitive Types Code

The following listing provides the abstract interface code for the Domain Primitive
Types that was developed and discussed in Chapter IV. For ease of understanding, the
information is organized in a form that is not compilable. To clarify how each attribute
contributes to this package, each attribute’s information is consolidated in one area which
is separated from other attribute information arcas by a blank line. To implement these
packages all generic “SQL_*_Pkg.SQL_*_OPS(...)” packages must be moved to the end
of each entity package since they are later declarative items. Each Primitive Type

Package begins on a new page.

136

Package The_Area_primitive_domain_types

with SQL_Int_Pkg,
SQL_Char_Pkg;
packagc The_Area_primitive_domain_types is

type AREA_ID_Not_Null is new
SQL_Int_Pkg. SQL Int_Not_Null;

type AREA_ID_Type is new

" SQL_Int_Pkg.SQL_Int;

package AREA_ID_Ops is new
SQL_Int_Pkg.SQL_Int_Ops
(AREA_ID_Type, AREA_ID Not_Null);

type DOMAINNN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype DOMAIN_Not Null is
DOMAINNN Base
(1..256);
type DOMAIN_Base is new
SQL_Char_Pkg.SQL_Char;
subtype DOMAIN_Type is
DOMAIN Base
(DOMAIN Not_Null'Length);
package DOMAIN_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(DOMAIN_Base, DOMAIN_Not_Null);

type SEANN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype SEA_Not_Null is
SEANN_Base
(1..256);
type SEA_Base is new
SQL_Char_Pkg.SQL_Char;
subtype SEA_Type is
SEA_Base
(SEA_Not_Null'Lcngth);
package SEA_Ops is new
SQL_Char. Pkg SQL_Char_Ops
(SEA_Base, SEA_Not_Null);

137

type PHASENN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype PHASE Not_Null is
PHASENN_Base
(1..256);
type PHASE_Base is new
SQL_Char_Pkg.SQL_Char;
subtype PHASE Type is
PHASE_Base
(PHASE_Not_Null'Length);

package PHASE Ops is new

SQL_Char_Pkg.SQL_Char_Ops
(PHASE_Base, PHASE Not_Null);

end The_Area_primitive_domain_types;

Package General_Software_Characteristic_primitive_domain_types

with SQL_Int_Pkg,
SQL_Char_Pkg,
SQL_Enumeration_Pkg,
package General_Software_Characteristic_primitive_domain_types is

type GSC_ID_Not_Null is new
SQL_Int_Pkg. SQL Int_Not_Null;

type GSC_ID_Type is new
SQL_Int_Pkg.SQL_Int;

package GSC_ID_Ops is new
SQL_Int_Pkg.SQL_Int_Ops
(GSC_ID_Type, GSC_ID_Not_Nulil);

type CHARACT_NAMENN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Nuil;
subtype CHARACT_NAME Not _ Null is
CHARACT_NAMENN Base
(1..256);
type CHARACT_NAME Base is new
SQL_Char_Pkg.SQL_Char,
subtype CHARACT_NAME Type is
CHARACT_NAME Base
(CHARACT_NAME_ Not_Null'Length);
package CHARACT_NAME_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(CHARACT_NAME_Base, CHARACT_NAME_Neot_Null);

type formu_?NN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype formu_? Not_Null is
formu_7NN_Base
(1..256);

139

type formu_?_Base is new
SQL_Char_Pkg.SQL_Char;
subtype formu_?_Type is
formu_?_Base
(formu_?_Not_Null'Length);
package formu_?_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(formu_?_Base, formu_?_Not_Null);

type evalu_?NN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype evalu_?_Not_Null is
evalu_?NN Base
(1..256);
type evalu_?_Base is new
SQL_Char_Pkg.SQL_Char;
subtype evalu_? Type is
evalu_? Base
(evalu_?_Not_Null'Length);
package evalu_?_Ops is 1.ew
SQL_Char_Pkg.SQL_Char_Ops
(evalu_?_Base, evalu_? Not_Null);

type evalu_helpNN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype evalu_help Not_Null is
evalu_helpNN_Base
(1..256);
type cvalu_help_Base is new
SQL_Char_Pkg.SQL_Char;
subtype cvalu_help_Type is
cvalu_help_Base
(evalu_help_Not_Null'Length);
package evalu_help_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(evalu_help_Base, evalu_help_Not_Null).

type essential_flag_Not_Null is (Is_Falsc, Is_truc):

package essential_flag_Pkg is new
SQL_Enumcration_Pkg
(essential_flag_Not | Null)

type cssential_flag_Type is ncw
essential_flag_Pkg.SQL_Enumeration_Pkg;

type evalu_method_Not_Null is (Is_Falsc, Is_truc);
package evalu_mcthod_Pkg is ncw
SQL_Enumeration_Pkg
(cvalu_mecthod_Not _Null);
type cvalu _method_ |Type is new
evalu_method_ Pkg.SQL_Enumeration_Pkg:

140

type empirical_weight Not Null is new
SQL_Int_Pkg.SQL_Int_Not_Null;

type empirical_weight_Tyge is new
SQL_Int_Pkg.SQL_Int;

package empirical_weight_Ops is new
SQL_Int_Pkg.SQL_Int_Ops
(emnirical_weight_Type, empirical_wcight_Not_Nuli);

end General_Software_Characteristic_primitive_domain_types;

141

Package The_Tool_primitive_domain_types

with SQL_Int_Pkg,
SQL_Char_Pkg,
SQL_Decimal_Pkg;
package The_Tool_primitive_domain_types is

type TOOL_ID_Not_Null is new
SQL_Int_Pkg. SQL Int_Not_Null;

type TOOL_ID_Type is new
SQL_Int_Pkg.SQL_Int;

package TOOL_ID_Ops is new
SQL_Int_Pkg.SQL_Int_Ops
(TOOL_ID_Type, TOOL_ID_Not_Null);

type TOOL_NAMENN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype TOOL_NAME Not_Null is
TOOL_NAMENN _Base
(1..256);
type TOOL_NAME_Base is new
SQL_Char_Pkg.SQL_Char;
subtype TOOL_NAME _Type is
TOOL_NAME Base
(TOOL_NAME_Not_Null'Length);
package TOOL_NAME_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(TOOL_NAME_Base, TOOL_NAME_Not_Null);

version_scale; constant decimal_digits:= 2;
type VERSIONNN_Base is new
SQL_Decimal_Pkg.SQL_Decimal_Not_Null;
subtype VERSION Not Null is
VERSIONNN Base
(scale => version_scale);
type VERSION_Base is new
SQL_Decimal_Pkg.SQL_Decimal;
subtype VERSION_Type is
VERSION_Base
(scale => version_scale);
package VERSION_Ops is new
SQL_Decimal_Pkg.SQL_Decimal_Ops
(VERSION Base,
VERSIONNN_Base,
in_scale => version_scale);

142

type vendorNN_Base is new
SQL_Char_Pkg.SQL _Char_Not_Null
subtype vendor_Not_Null is
vendorNN_Base
(1..256);
type vendor_Base is new
SQL_Char_Pkg.SQL_Char;
subtype vendor_Type is
vendor_Base
(vendor_Not_Null'Length);
package vendor_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(vendor_Base, vendor_Not_Null);

cost_scale: constant decimal_digits:= 2;
type costNN_Base is new
SQL_Decimal_Pkg.SQL_Decimal_Not_Null;
subtype cost_Not_Null is
costNN_Base
(scale => cost_scale);
type cost_Base is new
SQL_Decimal_Pkg.SQL_Decimal;
subtype cost_Type is
cost_Base
(scale => cost_scale);
package cost_Ops is new
SQL_Decimal_Pkg.SQL_Decimal_Ops
(cost_Base,
costNN_Base,
in_scale => cost_scale);

end The_Tool_primitive_domain_types;

143

Package The_Evaluator_primitive_domain_types

with SQL_Int_Pkg,
SQL_Char_Pkg,
SQL_Date_Pkg;
package The_Evaluator_primitive_domain_types is

type EVAL_ID Not Null is new
SQL_Int_Pkg. SQL Int_Not_Null;

type EVAL_ID_Type is new
SQL_Int_Pkg.SQL_Int;

package EVAL_ID_Ops is new
SQL_Int_Pkg.SQL_Int_Ops
(EVAL_ID Type, EVAL_ID_Not_Null);

type FIRST_NAMENN Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype FIRST_NAME_Not_Null is
FIRST_NAMENN_Ease
(1..256);
type FIRST_NAME Base is new
SQL_Char_Pkg.SQL_Char;
subtype FIRST_NAME_Type is
FIRST_NAME Base
(FIRST_NAME_Not_Null'Length);
package FIRST_NAME_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(FIRST_NAME_Base, FIRST_NAME_Not_Null);

type LAST_NAMENN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype LAST_NAME Not _ Null is
LAST_NAMENN_Base
(1..256);
type LAST_NAME_Base is ncw
SQL_Char_Pkg.SQL_Char;
subtype LAST_NAME Type is
LAST_NAME Base
(LAST_ NAME Not_Null'Length);
package LAST_NAME Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(LAST_NAME Base, LAST_NAME_Not_Null);

144

type dateNN_Base is new
SQL_Date_Pkg.SQL_Datc_Not_Null;
subtype date_Not_Null is
dateNN_Base (1..10);
type date_Base is new
QQL Datc Pl\gS L_Datc

(From =>year, To=>Day, Fractional =>0);

package date_Ops is new
SQL_Date_Pkg.SQL_Date_Ops
(date_Type, dateNNBase);

type typeNN_Base is new
SQL._Char_Pkg.SQL_Char_Not_Null;
subtype type_Not_Null is
typeNN_Base
(1..256);
type type_Base is new
SQL_Char_Pkg. SQL_Char;
subtype type_Type is
type_Base
(type_Not_Null'Length);
package type_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(type_Base, type_Not_Null);

end The_Evaluator_primitive_domain_types;

145

Package The_Quality_primitive_domain_types

with SQL_Int_Pkg,
SQL_Char_Pkg;
package The_Quality_primitive_domain_types is

type QUAL_ID_Not_Null is new
SQL_Int_Pkg.SQL_Int_Not_Null;

type QUAL_ID_Type is new
SQL_Int_Pkg.SQL_Int;

package QUAL_ID_Ops is new
SQL_Int_Pkg.SQL_Int_Ops
(QUAL_ID_Type, QUAL_ID_Not_Null);

type QUALITY_NAMENN _ Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype QUALITY_NAME_ Not_ Nuli i is
QUALITY_NAMENN_Base
(1..256);
type QUALITY_NAME Base is new
SQL_Char_Pkg.SQL_Char;
subtype QUALITY_NAME Type is
QUALITY_NAME_Base
(QUALITY_NAME Not_Null'Length);
package QUALITY_NAME Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(QUALITY_NAME Base, QUALITY_NAME_Not_NuH);

type QUALITY_VALUENN Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype QUALITY_VALUE_Not Null is
QUALITY_VALUENN_Base
(1..256);
type QUALITY_VALUE Base is ncw
SQL_Char_Pkg.SQL_Char;
subtype QUALITY_VALUE Type is
QUALITY_VALUE_Base
(QUALITY_VALUE_Not_Null'Length):
package QUALITY_VALUE_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(QUALITY_VALUE_Base, QUALITY_VALUE_Not_Null);

end The_Quality_primitive_domain_types;

146

Package The_Specific_Software_Characteristic_primitive_domain_types

with SQL_Int_Pkg,
SQL_Char_Pkg;
package The_Specific_Software_Characteristic_primitive_domain_types is

type SSC_ID_Not_Null is new
SQL_Int_Pkeg. SQL Int_Not_Null;

type SSC_ID_Type is new
SQL_Int_Pkg.SQL_Int;

package SSC_ID_Ops is new
SQL_Int_Pkg.SQL_Int_Ops
(SSC_ID_Type, SSC_ID_Not_Null);

type valueNN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype value_Not_Null is
valueNN_Base
1. 256),
type value Base is new
SQL_Char_Pkg.SQL_Char;
subtype value_Type is
value_Base
(value_Not_Null'Length);
package value_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(value_Base, value_Not_Null);

type tepNN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype tep_Not_Null is
tepNN_Base
(1. 256)
type tep_Base is new
SQL_Char_Pkg. SQL_Char;
subtype tep_Type is
tep_Base
(tep_Not_Null'Length);
package tep_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(tep_Base, tep_Not_Null);

end The_Specific_Software_Characteristic_primitive_domain_types;

147

e S — S— S F—.
:

Package Weight_Set_primitive_domain_types

with SQL_Char_Pkg,
SQL_Enumeration_Pkg;
package Weight_Set_primitive_domain_types is

type WEIGHT_SET_NAMENN_Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype WEIGHT_SET_NAME Not_Null is
WEIGHT_SET_NAMENN _Base
(1..256);
type WEIGHT_SET_NAME_Base is new
SQL_Char_Pkg.SQL_Char;
subtype WEIGHT_SET_NAME Type is
WEIGHT_SET_NAME Base
(WEIGHT_SET_NAME_Not_Null'Length);
package WEIGHT_SET_NAME_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(WEIGHT_SET_NAME_Base, WEIGHT_SET_NAME_Not_Null);

type default_Not Null is (Is_False, Is_true);

package default_Pkg is new
SQL_Enumeration_Pkg
(default_Not_Null);

type default_Type is new
default_Pkg.SQL_Enumeration_Pkg;

end Weight_Set_primitive_domain_types;

148

Package Selection_Set_primitive_domain_types

with SQL_Char_Pkg;
package Selection_Set_primitive_domain_types is

type SET_NAMENN _Base is new
SQL_Char_Pkg.SQL_Char_Not_Null;
subtype SET_NAME Not_ Null is
SET_NAMENN_Base
(1..256);
type SET_NAME_Base is new
SQL_Char_Pkg.SQL_Char;
subtype SET_NAME _Type is
SET_NAME _ Base
(SET_NAME_Not_Null'Length);
package SET_NAME_Ops is new
SQL_Char_Pkg.SQL_Char_Ops
(SET_NAME _Base, SET_NAME _Not_Null);

end Selection_Set_primitive_domain_types;

149

Package software_char_score_primitive_domain_types

with SQL_Decimal_Pkg;
package software_char_score_primitive_domain_types is

software_char_function_score_scale: constant decimal_digits:= 2;
type software_char_function_scoreNN_Base is new
SQL_Decimal_Pkg.SQL_Decimal_Not_Null;
subtype software_char_function_score_Not_Null is
software_char_function_scoreNN_Base
(scale => software_char_function_score_scale);
type software_char_function_score_Base is new
SQL_Decimal_Pkg.SQL_Decimal;
subtype software_char_function score_Type is
software_char_function_score_Base
(scale => software_char_function_score_scale);
package software_char_function_score_Ops is new
SQL_Decimal_Pkg.SQL_Decimal_Ops
(software_char_function_score_Base,
software_char_function_scoreNN_Base,
in_scale => software_char_function_score_scale);

software_char_quality_score_scale: constant decimal_digits:= 2;
type software_char_quality_scoreNN_Base is new
SQL_Decimal _Pkg.SQL_Decimal_Not_Null;
subtype software_char_quality_. score_Not_Null is
softwarc_char_quality_scorcNN_Base
(scale => software_char qualny_scorc_scalc);
type software_char_quality_scorec_Base is new
SQL_Decimal_Pkg.SQL_Decimal;
subtype software_char_quality_scorc_Type is
softwarc_char_quality_scorc_Base
(scale => software _char_quality_score_scalc);
package software_char_quality_scorc_Ops is ncw
SQL_Dccimal_Pkg.SQL_Decimal_Ops
(software_char_quality_scorc_Base,
softwarc_char_quality_scorceNN_Base,
in_scale => softwarc_char_quality_scorc_scalc);
end software_char_score_primitive_domain_typcs;

150

Package tool_score_primitive_domain_types

with SQL_Decimal_Pkg;
package tool_score_primitive_domain_types is

tool_function_score_scale: constant decimal_digits:= 2;
type tool_function_scoreNN_Base is new
SQL_Decimal_Pkg.SQL_Decimal_Not_Null;
subtype tool_function_score_Not_Null is
tool_function_scoreNN_Base
_ (scale => tool_function_score_scale);
type tool_function_score_Base is new
SQL_Decimal_Pkg.SQL_Decimal;
subtype tool_function_score_Type is
tool_function_score_Base
(scale => tool_function_score_scale);
package tool_function_score_Ops is new
SQL_Decimal_Pkg.SQL_Decimal_Ops
(tool_function_score_Base,
tool_function_scoreNN_Base,
in_scale => tool_function_score_scale);

tool_quality_score_scale: constant decimal_digits:= 2;
type tool_quality_scoreNN_Base is new
SQL_Decimal_Pkg.SQL_Decimal_Not_Null;
subtype tool_quality_score_Not Null is
tool_quality_scorcNN_Base
(scalc => tool_quallty_scorc scale);
type tool_quality_score_Base is new
SQL_Dccimal_Pkg.SQL_Decimal;
subtype tool_quality_scorc_Type is
tool_quality_score_Base
(scale => tool quahty_scorc scale);
package tool_quality_score_Ops is ncw
SQL_Deccimal_Pkg.SQL_Decimal_Ops
(tool_quality_scorc_Base,
tool_quality_scorcNN_Base,
in_scale => tool_quamy_scorc scale);

cnd tool_score_primitive_domain_types;

151

Package software_char_weight_primitive_domain_types

with SQL_Int_Pkg;
package software_char_weight_primitive_domain_types is

type function_weight_Not_Null is new
SQL_Int_Pkg.SQL_Int_Not_Null;

type function_weight_Type is new
SQL_Int_Pkg.SQL_Int;

package function_weight Ops is new
SQL_Int_Pkg.SQL_Int_Ops
(function_weight_Type, function_weight_Not_Null);

type quality_weight Not_Null is new
SQL_Int_Pkg.SQL_Int_Not_Null;

type quality_weight Type is new
SQL_Int_Pkg.SQL_Int;

package quality_weight_Ops is new
SQL_Int_Pkg.SQL_Int_Ops
(quality_weight_Type, quality_weight Not_Null);

end software_char_weight_primitive_domain_types;

152

Appendix D. Abstract Interface Composite Methods Code

The following listing provides the abstract interface composite methods code that
was developed and discussed in Chapter IV. The code in this appendix is compilable as
long as the SAME packages have already been installed on the users system. The code
defines the abstract interface by providing the specifications to that interface, the bodies
to these specifications can be implemented using the behavioral description provided in
Chapter IV as a guideline. These packages represent the second piece to the logical entity
descriptions defined in Chapter IV. Recall that a logical entity represented both the
domain primitive type and the methods that operated on that type. The domain primitive
types are presented in Appendix C, the methods that operate on those types are presented
here.

Simplifying assumptions were:

A Formulator released SAI structure would not be altered after an evaluator or
selector process used that structure. The final system will have to insert abstract interface
code that would support this type of systecm requircment.

» Dynamic SQL statements requirc a package shell which contained a description of
the parameters that arc dynamic. This package is required for accessing The_Arca,
software_char_score, The_Tool, Specific Software Characteristic, and The_Quality
combined attributes. This package operates across several domain primitive types to
accomplish the STEMdAB requirement that the tool sclection process allow the user to

constrain anywhere from one to scveral of the attributes located in these domains.

153

o

Package Tool_narrowing

with SQL_Base_Types_Pkg,
SQL_Dynamic_Pkg
The_Area_primitive_domain_types,
software_char_score_primitive_domain_types,
The_Tool_primitive_domain_types,
Specific Software Characteristic_primitive_domain_typcs,
The_Quality_primitive_domain_types,
The_Evaluator_primitive_domain_types;

use SQL_Base_Types_Pkg,
SQL_Dynamic_Pkg
The_Area_primitive_domain_types,
software_char_score_primitive_domain_types,
The_Tool_primitive_domain_types,
Specific Sofware Characteristic_primitive_domain_types,
The_Quality_primitive_domain_types,
The_Evaluator_primitive_domain_types;

Package Tool_narrowing is
Prepare(STMT: SQL_Char_not_null);
Allocate(for_SQLDA_name: SQL_Char_not_null;
Max: SQL_int_not_null);
Describe_Input(for_SQLDA_in_area: SQL_Char_not_null);
Describe_output(for_SQLDA _out_arca: SQL_Char_not_null);

Get_Number_parameters(for_given_SQLDA: SQL_Char_not_null;
num: out SQL_Int_not_null);

Get_parameter_type(parameter_number: SQL_Int_not_null;
for_given_SQLDA: SQL_Char_not_null;
paramcter_type: out SQL_Dynamic_Data_types):

Set_paramcter_value(parameter_number: SQL_Int_not_null;
for_given_SQLDA: SQL_Char_not_null;
SQLDATA: in SQL_Char_typc);

Get_parameter_value(parameter_number: SQL_Int_not_null;
from_given_SQLDA: SQL_Char_not_null;
SQLDATA: out SQL_Char_typc);

Open_Cursor(for_SOLDA _namc: SQL_Char_not_null):

Fetch(place_in_SQLDA_name: out SQL_Char_not_null:
valuc_fetched: out boolean);

154

Close_cursor;

end Tool_naitowing;

155

Package Database_Transactions

Package Database_Transactions is
--Required initialization routine
Procedure CreateTables;
--Transactions
Procedure Commit;
Proceudure Rollback;

end Database_Transactions;

156

Package The_Area_Composite_OPS

with SQL_Base_Types_Pkg,
The_Area_primitive_domain_types;

use SQL_Base_Types_Pkg,
The_Area_primitive_domain_type;

Package The_Area_Composite_OPS is

Type area_record_type is record
AREA_ID: AREA_ID_Not_Null;
DOMAIN: DOMAIN_Not_Null;
SEA: SEA_Not_Null,

PHASE: PHASE_Not_Null;
end record;

--insert operation
Procedure insert_domain_sea_phase(area_record: area_record_type);

--all gouped inserts must have non-null fields in a record so abstract interface operates
--on them as a record.

--update operations

Procedure update_Arca(area_record: area_record_type;
with_this_AREA_ID: AREA_ID_Not_Nulil;
not_found: out boolean);

Procedure update_Domain(area_record: area_record_type;
with_this_Domain: DOMAIN_Not_Null;
not_found- out boolean);

Procedure update_SEA(area_record: area_record_typc;
with_this_SEA: SEA_Not_Null;
not_found: out boolcan);

157

Procedure update_Phase(area_record: area_record_type;
with_this_Phase: PHASE_Not_Null;
not_found: out boolean);

--search operation
Function search_domainseaphase(area_record: area_record_type) return boolean;

--delete operation
Procedure delete_domain_sea_phase(area_record: area_record_type;

deleted: out boolean);
--retrieve operation

Function UniquelD return AREA_ID_Not_Null;
Procedure get_area_record(for_area: AREA_ID_Not_Null;
area_record: in out area_rccord_type;

exists: out boolean);

end The_Area_Composite_OPS;

158

Package root_node_Composite_OPS

with SQL_Base_Types_Pkg,
The_Area_primitive_domain_types,
General_Software_Characteristic_primitive_domain_types;

use SQL_Base_Types_Pkg,
The_Area_primitive_domain_types,
General_Software_Characteristic_primitive_domain_types;

Package root_node_Composite_OPS is

Type root_node_record_type is record
AREA_ID: AREA_ID_Not_Null;
GSC: GSC_ID_Not_Null;

end record;

--insert operations
--implemented by insert values
Procedure insert_GCS_id_Area_id(root_node: root_node_record_type);

--update operations
--implemented by searched update
Procedure update_Area(this_root_node: in root_node_record_type;
with_this_ AREA_ID: AREA_ID_Not_Nuli;
not_found: out boolean);
Procedure update_GSC(this_root_node: in root_nodc_record_type;
with_this_GSC_ID: GSC_ID_Not_Null;
not_found: out boolcan);

--search operation
--implemented by select,fetch, check
Function search_GCS_id_Area_id(root_node: root_nodc_record_type)
retum boolean;

--delete operations
--implemented by searched delete
Procedure delete_GCS_id_Area_id(root_node: root_node_record_type;
is_deleted: boolean);
--retrieve operations
--implemented by cursor/select
Package get_gsc_for_area is
Procedure Open(for_this_AREA_ID: AREA_ID_Not_Null)
Procedure Fetch(this_GSC_ID_record: in out root_node_record_type,
is_fetched: boolean)
Procedure close;
end get_gsc_for_area ;

Package get_area_for_gsc is
Procedure Open(for_this_GSC_ID: GSC_ID_Not_Null)
Procedure Fetch(this_ AREA_ID_record: in out root_node_record_type,
is_fetched: boolean)
Procedure close;
end get_area_for_gsc ;

end root_node_Composite_OPS;

160

Package General_Software_Characteristic_Composite_OPS

with SQL_Base_Types_Pkg,
General_Software_Characteristic_primitive_domain_types,
The_Area_primitive_domain_types;

use SQL_Base_Types_Pkg,
General_Software_Characteristic_primitive_domain_types,
The_Area_primitivc_domain_types;

Package General_Software_Characturistic_Composite_OPS is

Type GSC_record_type is record
GSC: GSC_ID_Not_Null;
CHARACT_NAME_Not_Null;
formu_?_Type;
evalu_?_Not_Null;
evalu_help_Type;
essential_flag_Type;
evalu_method_Type;
empirical_weight_Type;

end record;

--insert operations
Procedure insert_gsc_record(GSC_record: GSC_record_type);

--update operations
--The null value is allowed to be input for all non-key attributes cxcept evaluation
--question since this question is mandatory for the Evaluator subsytem to prompt the
--user for input
--Implemented by scarched update
Procedure updatc_gsc_id(for_given_GSC: GSC_ID_Not_Null;
GSC_ID: GSC_ID_Not_Null;
not_found: out boolcan);

161

Procedure update_gsc_name(for_given_GSC: GSC_ID_Not_Null;

name: CHARACT_NAME_Not_Null;
not_found: out boolean);

Procedure update_formulation_comment(for_given_GSC: GSC_ID_Not_Null;

comment: formu_?_Type;
not_found: out boolean);

Procedure update_evaluation_question(for_given_GSC: GSC_ID_Not_Null;
question: eval_?_Not_Null;
not_found: out boolean);

Procedure update_evaluation_help(for_given_GSC: GSC_ID_Not_Null;

eval_help: evalu_help_Type;
not_found: out boolean);

Procedure update_essential_flag(for_given_GSC: GSC_ID_Not_Null;

essential: essential_flag__Type;
not_found: out boolean);

Procedure update_evaluation_method(for_given_GSC: GSC_ID_Not_Null;
cval_method: evalu_method_Type;
not_found: out boolean);

Procedure update_empirical_weight(for_given_GSC: GSC_ID_Not_Null;

weight: empirical_weight_Type;
not_found: out boolean);

--search operations

--delete operations
-- all databasc delete operations work on row records. To delete elements in a row
--the update operation can be used with a null value.
Procedure delete_gsc_record(for_given_GSC: GSC_ID_Not_Null;
is_deleted: out boolean);
--retrieve operations
Function UniquelD return GSC_ID_Not_Null;

Procedure get_GSC_record_for_GSC (for_given_GSC: GSC_ID_Not_Null;
GSC_record: in out GSC_record_type,
cxists: boolean);

Package get_GSC_record_for_Area is
Procedure Open(for_given_Area: Area_ID_Not_Null)
Procedure Fetch(GSC_record: in out GSC_record_type,
is_fetched: boolean)
Procedure close;
endget_GSC_record_for_Area;

end General_Software_Characteristic_Composite_OPS;

163

Package LinkGG_Composite_OPS

with SQL_Base_Types_Pkg,
General_Software_Characteristic_primitive_domain_typcs,
The_Area_primitive_domain_types;

use SQL_Base_Types_Pkg,
General_Software_Characteristic_primitive_domain_types,
The_Area_primitive_domain_types;

Package LinkGG_Composite_OPS is

Type linkGG_record_type is record
parent: GSC_ID_Not_Null;
child: GSC_ID_Type;

end record;

--insert operations
Procedure insert_linkGG_record(linkGG_record: in out linkGG_record_type);
--Can’t have a child without a parent but can have a parent that is childless
Procedure insert_child_gsc(given_record: in out linkGG_record_type;
insert_child: GSC_ID_Not_Null);

--update operations
Procedure update_parent_gsc(given_record: in out linkGG_record_type;
update_parent: GSC_ID_Not_Null;
not_found: out boolcan);
Procedure update_child_gsc(given_record: in out linkGG_rccord_type;
update_child: GSC_ID_Type;
not_found: out boolcany);

--search operations

Procedure search_child_gsc(given_record: in out linkGG_record_type;
exists: out boolcan);

164

--delete operations
Procedure delete_link(given_record: linkGG_record_type;
is_deleted: out boolean),
--retrieve
Procedure get_Parent_Of(for_area: AREA_ID_Not_Null;
for_child: GSC_ID_Not_Null;
the_parent_record: in out linkGG_record_type);
Package Get_children is
Procedure Open(parent: GSC_ID_Not_Null;
Area_ID: Area_ID_Not_Null);
Procedure Fetch(record_of_child: in out linkGG_record_type,
is_fetched: out boolean);
Procedure close;
end Get_children;

end LinkGG_Composite_OPS;

165

Package The_Tool_Composite_OPS

with SQL_Base_Types_Pkg,
The_Tool_primitive_domain_types;

use SQL_Base_Types_Pkg,
The_Tool_primitive_domain_types;

Package The_Tool_Composite_OPS is

Type Tool_record_type is record
TOOL_ID: TOOL_ID_Not_Null;
TOOL_NAME: TOOL_NAME_Not_Null;
VERSION: VERSION_Not_Null;
vendor: vendor_Type;
cost: cost_Type

end record;

--insert operations
--implemented by insert values
Procedure insert_tool_record(tool_record: Tool_record_type);

--update operations
--implemented by searched update

Procedure update_Tool_ID(for_this_ TOOL_ID: TOOL_ID_Not_Null;
with_this_Tool_Id: TOOL_ID_Not_Null;
not_found: out boolean);

Procedure update_ToolName(for_this_TOOL_ID:TOOL _ID_Not_Null;
with_this_ToolName: TOOL_NAME_Not_Null;
not_found: out boolcan);

Procedurc update_Version(for_this_TOOL_ID:TOOL_ID_Not_Null;
with_this_Version: VERSION_Not_Null;
not_found: out boolean);

Procedure update_vendor(for_this_TOOL_ID:TOOL_ID_Not_Null;
with_this_vendor: vendor_Type ;
not_found: out boolean);

Procedure update_cost(for_this_TOOL_ID:TOOL_ID_Not_Null;
with_this_cost: cost_Type ;
not_found: out boolean);

--scarch opcration
--implemented by sclect,fetch, check
Function scarch_tool_rccord(tool_record: Tool_record_type)
rcturn boolean;

--delete operations
--implemented by scarched delete

166

Procedure delete_tool_record(for_this_TOOL_ID:TOOL_ID_Not_Null;
is_deleted: out boolean);
--retrieve operations
Function UniquelID return TOOL_ID_Not_Null;
--implemented by cursor/select
Procedure Tool_record_for_ID(for_this_TOOL_ID:TOOL_ID_Not_Null;
this_Tool_record: in out Tool_record_type,
exists: out boolean)

end The_Tool_Composite_OPS;

167

Package linkAT _Composite_OPS

with SQL_Base_Types_Pkg,
The_Tool_primitive_domain_types,
The_Area_primitive_domain_types;

with SQL_Base_Types_Pkg,
The_Tool_primitive_domain_types,
The_Area_primitive_domain_types;

Package linkAT_Composite_OPS is

Type linkAT_record_type is record
AREA_ID: AREA_ID_Not_Null;
TOOL_ID: TOOL_ID_Not_Null;

end record;

--insert operations
--implemented by insert values
Procedure insert_LinkAT_record(linkAT _record: link AT _record_type);

--update operations
--implemented by searched update
Procedure update_Arca(linkAT_record: linkAT_record_type ;
with_this_AREA_ID: AREA_ID_Not_Null;
not_found: out boolean);
Procedure update_Tool(Tool_ID: TOOL_ID_Not_Nuli;
with_this_TOOL_ID: TOOL_ID_Not_Null;
not_found: out boolcan);

--scarch operation
--implemented by sclect fetch, check
Function scarch_link AT_rccord(linkAT_rccord: linkAT _record_type)
rctum boolean;

--delete operations
--implemented by searched delete
Procedure delets_link AT _record(linkAT_record: linkAT_record_type;
is. deleted: out boolean);
--retrieve operations
--implemented by cursor/sclect
Package get_tools_for_area is
Procedure Open(for_this_AREA_ID: AREA_ID_Not_Null)
Procedure Fetch(this_TOOL_ID_record: in out link AT _record_type,
is_fetched: out boolean)
Procedure close;
end get_tools_for_area ;

Package get_areas_for_tool is
Procedure Qoen{for_this_TOOL_ID: TOOI _ID_Not_Null)
Procedure Fewch(th™ AREA_ID_record: in out linkAT_record_type,
is_fetched: out beolean)
Procedure close;
end get_areas_for_tool ;

end linkAT_Composite_OPS;

Package The_Evaluator_Composite_OPS

with SQL_Base_Types_Pkg,
The_Evaluator_primitive_domain_types;

use SQL_Base_Types_Pkg,
The_Evaluator_primitive_domain_types;

Package The_Evaluator_Composite_OPS is

Type Evaluator_record_type is record
EVAL_ID: EVAL_ID_Not_Null;
FIRST_NAME: FIRST_NAME_Not_Null;
LAST_NAME: LAST_NAME_Not_Null;
date: date_Type;
type: type_Type

end record;

--insert operations
--implemented by inser: values
Procedure inse't_Evaluator_record(Evaluator_record: Evaluator_rccord_type);

--update operations
--implemented by searched update

Procedure update_EVAL_ID(for_this_EVAL_ID:EVAL_ID_Not_Null;
with_this_Evaluator_Id: EVAL_ID_Not_Null;
not_found: out boolean);

Procedure update_FIRST_NAME(for_this_EVAL_ID:EVAL_ID_Not_Null;
with_this_First_Name: FIRST_NAME_Not_Null;
not_found: out boolean);

Procedure updatc_LAST_NAME(for_this_EVAL_ID:EVAL_ID_Not_Null;
with_this_LLAST_NAME: LAST_NAME_Not_Null;
not_found: out boolean);

Procedure update_date(for_this_EVAL_ID:EVAL_ID_Not_Null;
with_this_date: date_Typc ;
not_found: out boolecan);

Procedure updatc_type(for_this_EVAL_ID:EVAL_ID_Not_Null;
with_this_type: type_Type ;
not_found: out boolean);

--search operation
--implemented by select,fetch, check
Function search_Evaluator_rccord(Evaluator_record: Evaluator_rccord_type)
retum boolean;

--dclete operations
--implemented by scarched delete

170

Procedure delete_Evaluator_record(for_this_EVAL_ID:EVAL_ID_Not_Null;
is_dcleted: out boolcan);
--retrieve operations
Function UniquelD return EVAL_ID_Not_Nulil;
--implemented by cursor/select
Procedure Evaluator_record_for_ID(for_this_EVAL_ID:EVAL_ID_Not_Null;
this_Evaluator_record:
in out Evaluator_record_type,
exists: out boolean)

end The_Evaluator_Composite_OPS;

171

Package linkES_Composite_OPS

with SQL_Base_Types_Pkg,
The_Evaluator_primitive_domain_types,
The_Specific_Software_Characteristic_primitive_domain_types;

use SQL_Base_Types_Pkg,
The_Evaluator_primitive_domain_types,
The_Specific_Software_Characteristic_primitive_domain_types;

Package linkES_Composite_OPS is

Type linkES_record_type is record
EVAL_ID: EVAL_ID_Not_Null;
SSC_ID: SSC_ID_Not_Nul};

end record;

--insert operations
--implemented by insert values
Procedure insert_LinkES_record(linkES_record: linkES_record_type);

--update operations
--implemented by searched update
Procedure update_Eval_ID(linkES_record: linkES_rccord_type ;
with_this_EVAL_ID: EVAL_ID_Not_Null;
not_found: out boolean);
Procedure update_SSC_ID(linkES_record: linkES_record_type ;
with_this_SSC_ID: SSC_ID_Not_Null;
not_found: out boolean);

--search operation
--implemented by selcct,fetch, check

Function search_linkES_record(linkES _rccord: linkES_record_type)
return boolcan;

172

--delete operations
--implemented by searched delete
Procedure delete_linkES_record(linkES_record: linkES_record_type;
is_deleted: out boolean);
--retrieve operations
--implemented by cursor/select
Package get_ssc_ids_for_eval _ID is
Procedure Open(for_this_EVAL_ID: EVAL_ID_Not_Null);
Procedure Fetch(this_SSC_ID_record: in out linkES_record_type,
is_fetched: out boolean);
Procedure close;
end get_ssc_ids_for_eval_ID ;

Package get_cval_ids_for_ssc_id is
Procedure Open(for_this_SSC_ID: SSC_ID_Not_Null);
Procedure Fetch(this_EVAL_ID_record: in out linkES_rccord_type,
is_fetched: out boolean);
Procedure close;
end get_eval_ids_for_ssc_id;

end linkES_Composite_OPS;

173

Package The_Quality Composite_ OPS

with SQL_Basc_Types_Pkg,
The_Quality_primitive_domain_types;

use SQL_Base_Types_Pkg,
The_Quality_primitive_domain_types;

Package The_Quality_Composite_OPS is

Type Quality_record_type is record
QUAL_ID: QUAL_ID_Not_Null;
QUALITY_NAME: QUALITY_NAME_Not_Nuli;
QUALITY_VALUE: QUALITY_VALUE_Not_Null;
end record;

--insert operations
--implemented by insert values
Procedure insert_Quality_record(Quality_record: Quality_record_type);

--update operations
--implemented by scarched update
Procedurc update_QUAL_ID(tor_this_ QUAL_ID:QUAL_ID_Not_Null;
with_this_Quality_Id: QUAL_ID_Not_Null;
not_found: out boolean);

Procedure updatec_QUALITY_NAMEC(for_this_QUAL_ID:QUAL_ID_Not_Null;
with_this_QUALITY_NAME:
QUALITY_NAME_Not_Null;
not_found: out boolean);

Procedure update_QUALITY_VALUE
(for_this_QUAL_ID:QUAL_ID_Not_Null;
with_this_QUALITY_VALUE:
QUALITY_VALUE_Not_Null;
not_found: out boolcan);

174

--search operation
--implemented by select,fetch, check
Function search_Quality_record(for_this_QUAL_ID:QUAL_ID_Not_Null;
return boolean;

--delete operations
--implemented by searched delete
Procedure delete_Quality_record(Quality_record: Quality_record_type
is_deleted: out boolean);
--retrieve operations
Function UniquelD return QUAL_ID_Not_Null;
--implemented by select/cursor select
Procedure Quality_record_for_ID(for_this_ QUAL_ID:QUAL_ID_MNot_Null;
this_Quality_re.ord:
in out Quality_record_type,
exists: out boolean);

end The_Quality_Composite_OPS;

Package linkQS_Composite_OPS

with SQL_Base_Types_Pkg,
The_Quality_primitive_domain_types,
The_Specitic_Software_Characteristic_primitive_domain_types;

use SQL_Base_Types_Pkg,
The_Quality_primitive_domain_types,
The_Specific_Software_Characteristic_primitive_domain_types;

Package 1inkQS_Composite_OPS is

Type linkQS_record_type is record
QUAL_ID: QUAL_ID_Not_Null;
SSC_ID: SSC_ID_Not_Null;

end record;

--insert operations
--implemented by insert values
Procedure insert_LinkQS_record(linkQS _record: 1linkQS_record_type);

--update operations
--implemented by searched update
Procedure update_QUAL_ID(for_this_QUAL_ID: QUAL_ID_Not_Null;
with_this_QUAL_ID: QUAL_ID_Not_Null;
not_found: out boolean);
Procedurc update_SSC_ID(for_this_QUAL_ID: QUAL_ID_Not_Null;
with_this_SSC_ID: SSC_ID_Not_Null;
not_found: out boolean):

--search operation
--implemented by select,fetch, check
Function search_linkQS_record(linkQS_record: linkQS_record_type)
return boolean;
--delete operations
--implemented by searched delete
Procedure delete_linkQS_record(for_this_ QUAL_ID: QUAL_ID_Not_Nulj;
is_deleted: boolean);
--retrieve operations
--implemented by cursor/select
Package get_SSC_IDs_for_QUAL_ID is
Procedure Open(for_this_QUAL_ID: QUAL_ID_Not_Null);
Procedure Fetch(this_SSC_ID_record: in out linkQS_record_type,
is_fetched: out boolean);
Procedure close;
end get_SSC_IDs_for_QUAL_ID;

Package get_ QUAL_IDs_for_SSC_ID is
Procedure Open(for_this_SSC_ID: SSC_ID_Not_Null);
Procedure Fetch(this_QUAL_ID_record: in out linkQS_record_type,
is_fetched: out boolean);
Procedure close;
end get_QUAL_IDs_for_SSC_ID;

end 1inkQS_Composite_OPS;

177

Package The_Specific_Software_Characteristic_Composite_OPS

with SQL_Base_Types_Pkg,
The_Specific_Software_Characteristic_primitive_domain_types,
General_Software_Characteristic_primitive_domain_types,
The_Tool_primitive_domain_typcs;

use SQL_Base_Types_Pkg,
The_Specific_Software_Characteristic_primitive_domain_types
General_Software_Characteristic_primitive_domain_types,
The_Tool_primitive_domain_types;

Package The_Specific_Software_Characteristic_Composite_OPS is

Type SSC_record_type is record
TOOL_ID: TOOL _ID_Not_Null;
GSC_ID: GSC_ID_Not_Null;
SSC_ID: SSC_ID_Not_Null;
value: value_Type;
tep: tep_Type

end record;

--insert operations
--implemented by insert valucs
Procedure insert_ SSC_record(SSC_record: SSC_record_type);

--update operations
--implemented by searched updatc
Proccdure update_Tool_ID(for_this_SSC_ID:SSC_ID_Not_Null;

with_this_Tool_Id: TOOL_ID_Not_Nuil;

not_found: out boolcan);

Procedure update_GSC_ID(for_this_SSC_ID:SSC_ID_Not_Null;
with_this_GSC_ID: GSC_ID_Not_Null;
not_found: out boolcan);

Procedurc updatc_SSC_ID(for_this_SSC_ID:SSC_ID_Not_Null;
with_this_SSC_ID: SSC_ID_Not_Null;
not_tound: out boolcan);

Procedure update_valuc(for_this_SSC_ID:SSC_ID_Not_Nuli;
with_this_valuc: valuc_Typc ;
not_tound: out boolcan);

Procedure update_tep(for_this_SSC_ID:SSC_ID_Not_Null;
with_this_tep: tep_Type
not_found: out boolean);

--scarch operation
--implemented by sclect,fetch, cheek
Function search_SSC_rccord(SSC_rccord: SSC_record_type)
rcturn boolean;

178

--delete operations
--implemented by searched delete
Procedure delete_SSC_record(for_this_SSC_ID:SSC_ID_Not_Null;
is_deleted: out boolean);
--retricve operations
Function UniquelD return SSC_ID_Not_Null;
--implemented by cursor/select
Procedure SSC_record_for_ID(for_this_SSC_ID:SSC_ID_Not_Null;
this_SSC_rccord: in out SSC_record_type,
exists: out boolean)
Function UniquelD return SSC_ID_Not_Null;

end The_Specific_Software_Characteristic_Compositc_OPS;

179

Package Weight_Set_ Composite_OPS

with SQL_Base_Types_Pkg,
Weight_Set_primitive_domain_types;

use SQL_Basc_Types_Pkg,
Weight_Set_primitive_domain_types;

Package Weight_Set_Composite_OPS is

Type Weight_set_record_type is record
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
default: default_Type;

end record;

--insert operations
--implemented by insert values
Procedure insert_Weight_set_record(Weight_set_rccord: Weight_sct_record_type);

--update operations
--implemented by searched update
Procedure update_ WEIGHT_SET_NAME
(for_this_ WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
with_this_Weight_set_Id: WEIGHT_SET_NAME_Not_Null;
not_found: out boolean);
Procedurc update_default
(for_this_WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
with_this_dcfault: default_Type;
not_found: out boolean);
--search opcration
--implemented by select,fetch, check
Function scarch_Weight_set_rccord
(Weight_set_rccord: Weight_set_record_type) return boolcan;

--delete operations
--implemented by scarched delete
Procedure delete_Weight_set_record
(Weight_set_record: Weight_set_record_type
is_deleted: out boolean);
--retrieve operations
--implemented by cursor/select
Procedure Weight_set_record_for_name
(for_this_ WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
this_Weight_set_rccord: in out Weight_set_record_type,
exists: out boolean);

end Weight_Set_Composite_OPS;

Package Selection_Set_Composite_OPS

with SQL_Base_Types_Pkg,
Selection_Set_primitive_domain_types;

use SQL_Base_Types_Pkg,
Selection_Set_primitive_domain_types;

Package Selection_Set_Composite_OPS is

Type Selection_Set_record_type is record
SET_NAME: SET_NAME_Not_Null;
end record;

--insert operations
--implemented by insert values
Procedure insert_Selection_Set_record(Selection_Set_record:
Selection_Set_record_type);

--update operations
--implemented by searched update
Procedure update_SET_NAME(Selection_Set_record:
Selection_Set_record_type;
with_this_Sclection_Sct_Name:
SET_NAME_Not_Null;

not_found: out boolcan);
--search operation

--implemented by sclect fetch, check
Function search_Sclection_Sct_record(Sclection_Sct_record:
Sclection_Set_rccord_type) return boolcan;

182

--delete operations
--implemented by searched delete
Procedure delete_Selection_Set_record(Selection_Set_record:
Selection_Set_rccord_type
is_deleted: out boolean);
--retrieve operations
--implemented by cursot/select
Procedure Selection_Set_record_for_name
(for_this_SET_NAME: SET_NAME_Not_Null;
this_Selection_Set_record:
in out Selection_Set_record_type,
exists: out boolean);

end Selection_Set_Composite_OPS;

183

Package linkSAWT_Composite_OPS

with SQL_Base_Types_Pkg,
Selection_Set_primitive_domain_types,
Weight_Set_primitive_domain_types,
The_Tool_primitive_domain_types,
The_Area_primitive_domain_types;

use SQL_Base_Types_Pkg,
Selection_Set_primitive_domain_types,
Weight_Set_primitive_domain_types,
The_Tool_primitive_domain_types,
The_Area_primitive_domain_types;

Package linkSAWT_Composite_OPS is

Type linkSAWT_record_type is record

SET_NAME: SET_NAME_Not_Null;

AREA_ID: AREA_ID_Not_Null;

TOOL_ID: TOOL_ID_Not_Nuli;
. WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
end record;

--insert operations
--implemented by insert values
Procedure insert_LinkSAWT _rccord
(linkSAWT _record: linkSAWT _record_type);

--update operations
--implemented by searched update

Procedure SET_NAME(linkSAWT _record: linkSAWT _record_type ;
with_this_SET_NAME: SET_NAME_Not_Null;
not_found: out boolean);

Procedure update_Area(linkSAWT _record: linkSAWT _rccord_type ;
with_this_AREA_ID: AREA_ID_Not_Null;
not_found: out boolcan);

Procedure update_Tool(linkSAWT _record: linkSAWT _record_type ;
with_this_TOOL_ID: TOOL_ID_Not_Null;
not_found: out boolcan);

Procedure update_WEIGHT_SET_NAME

(linkSAWT_rccord: linkSAWT _record_type ;
with_this_WEIGHT_SET_NAME:

WEIGHT _SET_NAME_Not_Null;
not_found: out boolcan);

--search operation
--implemented by select,fetch, check

184

Function search_linkSAWT _record(linkSAWT_record: linkSAWT_record_type)
return boolean;

--delete operations
--implemented by searched delete
Procedure delete_linkSAWT _record(linkSAWT _record: linkSAWT _record_type;
is_deleted: out boolean);
--retrieve operations
--implemented by cursor/select
Package get_tools_for_SET_NAME is
Procedure Open(for_this_ SET_NAME: SET_NAME_Not_Null);
Procedure Fetch(linkSAWT_record: in out linkSAWT_record_type,
is_fetched: out boolean);
Procedure close;
end get_tools_for SET NAME ;

Package get_SET_NAMES_{or_tool is
Procedure Open(for_this_TOOL_ID: TOOL_ID_Not_Null);
Procedure Fetch(linkSAWT_record: in out linkSAWT _record_type,,
is_fetched: out boolean);
Procedure close;
end get_SET_NAMES_for_tool;

end linkSAWT_Composite_OPS;

185

Package software_char_score_Composite_OPS

with SQL_Base_Types_Pkg,
software_char_score_primitive_domain_types,
Weight_Set_primitive_domain_types,
The_Specific_Software_Characteristic_primitive_domain_types;

use SQL_Base_Types_Pkg,
software_char_score_primitive_domain_types,
Weight_Set_primitive_domain_types,
The_Specific_Software_Characteristic_primitive_domain_types;

Package software_char_score_Composite_OPS is

Type software_char_score_record_type is record
SSC_ID: SSC_ID_Not_Nuil;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
function_score: function_score_Type;
quality_score: quality_score_Type;
end record,;

--insert operations
--implemented by insert values
Procedure insert_software_char_score_record
(software_char_score_record: software_char_score_record_type);

186

--update operations
--implemented by searched update
Procedure SSC_ID
(SSC_ID: SSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null
with_this_SSC_ID: SSC_ID_Not_Null;
not_found: out boolean);
Procedure update_function_score
(SSC_ID: SSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null
with_this_function_score: function_score_Type;
not_found: out boolean);
Procedure update_quality_score
(SSC_ID: SSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Noi_Null
with_this_quality_score: quality_score_Type;
not_found: out boolean);
Procedure update_ WEIGHT_SET_NAME
(SSC_ID: SSC_ID_Not_Nul};
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Nuli
with_this_ WEIGHT_SET_NAME:
WEIGHT_SET_NAME_Not_Null;
not_found: out boolean);

--search operation
--implemented by select,fetch, check
Function search_software_char_score_record
(SSC_ID: SSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null)
return boolean;

187

--delete operations
--implemented by scarched delete
Procedure delete_software_char_score _record
(SSC_ID: SSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
is_deleted: out boolean);
--retrieve operations
--implemented by select/cursor select
Procedure get_scores
(SSC_ID: SSC_ID_Not_Nuli;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
software_char_score_record:
in out software_char_score_record_type;
is_fetched: out boolean);

end software_char_score_Composite_OPS;

188

Package tool_score_Composite_OPS

with SQL_Base_Types_Pkg,
tool_score_primitive_domain_types,
The_Tool_primitive_domain_types,
Weight_Set_primitive_domain_types,
General_Software_Characteristic_primitive_domain_types;

use SQL_Base_Types_Pkg,
tool_score_primitive_domain_types,
The_Tool_primitive_domain_types,
Weight_Set_primitive_domain_types,
General_Software_Characteristic_primitive_domain_types;

Package tool_score_Composite_OPS is

Type tool_score_record_type is record
GSC_ID: GSC_ID_Not_Null;
TOOL_ID: TOOL_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
function_score: function_score_Type;
quality_score: quality_score_Type;
end record;

--insert operations
--implemented by insert values
Procedure insert_toc!. score_record
(tooi_ score_record: tool_score_record_type);

189

--update operations
--implemented by searchcd update

Procedure update_ GSC_ID(GSC_ID: GSC_ID_Not_Null;
TOOL_ID: TOOL_ID_Not_Null;
WEJGHT_SET_NAME:
WEIGHT_SET_NAME_Not_Null;
with_this_GS”_ID: GSC_ID_Not_Null;
not_found: out boolecan);

Procedure update_TOOL_ID(GSC_ID: GSC_ID_Not_Null;
TOOL_iID: TOOL,_ID_Not_Nuil;
WEIGHT_SET_NAME:
WEIGHT_SET_NAME_Not_Null;
with_this_TOOL_ID: TOOL_ID_Not_Null;
not_found: out boolean);

Procedure update_function_score

(GSC_ID: GSC_ID_Not_Null,

TOOL_ID: TOOL_ID_Not_Null;
WEIGHT_SET_MAME:
WEIGHT_SET_NAME_Not_Null;
with_this_function_score: function_score_Type;
not_found: out boolean);

Procedure update_quality_score

(GSC_ID: GSC_ID_Not_Null;

TOOL_ID: TOOL_ID_Not_Null;
WEIGHT_SET_NAME:
WEIGHT_SET_NAME_Not_Mull;
with_this_quality_score: quality_score_Type;
not_fournd: out boolean);

Proccdure update_WEIGHT_SET_NAME

(GSC_ID: GSC_ID_Not_Null;
TOOL_ID:; TOOL_ID_Not_Null;
WEIGHT_SET_NAME:
WEIGHT_SET_NAME_Not_Null;
with_this_ WEIGHT_SET_NAME:
WEIGHT_SET_NAME_Not_Null;
20t_found: out bovlcan);

--search operatic
--implemented by sclect,fetch, check
Function scarch_tool_scorc_record
(tool_score_record: tool_scorz_record _type)
rcturm boolcan;

--delete operations
--implemented by scarched delete

190

Procedure delete_tool_score_record
(GSC_ID: GSC_ID_Not_Null;
TOOL_ID: TOOL_ID_Not_Null;
WEIGHT_SET_NAME:
WEIGHT_SET_NAME_Not_Null;
is_deleted: out boolean);
--retrieve operations
--implemented by select/cursor select
Procedure get_scores
(GSC_ID: GSC_ID_Not_Null;
TOOL_ID: TOOL_ID_Not_Null;
WEIGHT_SET_NAME:
WEIGHT_SET_NAME_Not_Null;
tool_score_record:
in out tool_score_record_typc;
is_fetched: out boolean);

end todl_score_Composite_OPS;

191

Package software_char_weight_Composite_OPS

with SQL_Base_Types_Pkg,
software_char_weight_primitive_domain_types,
General_Software_Characteristic_primitive_domain_types
Weight_Set_primitive_domain_types;

use SQL_Base_Types_Pkg,
software_char_weight_primitive_domain_types,
General_Software_Characteristic_primitive_domain_types
Weight_Set_primitive_domain_types;

Package software_char_weight_Composite_OPS is

Type software_char_weight_record_type is record
GSC_ID: GSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Nulil;
function_weight: function_weight_Type;
quality_weight: quality_weight_Type;
end record;

--insert operations
--implemented by insert values
Procedure insert_software_char_weight_record
(software_char_weight_record: software_char_weight_record_type);

--update operations
--implemented by searched update

Procedure GSC_ID
(GSC_ID: GSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
with_this_GSC_ID: GSC_ID_Not_Null;
out_found: out boolean);

Procedure update_function_weight
(GSC_ID: GSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
with_this_function_weight: function_weight_Typc;
not_found: out boolean);

192

Procedure update_quality_weight
(GSC_ID: GSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_N"1I;
with_this_quality_weight: quality_weight_Type;
not_found: out boolean);

Procedure update_ WEIGHT_SET_NAME
(GSC_ID: GSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
with_this_ WEIGHT_SET_NAME:
WEIGHT_SET_NAME_Not_Null;
not_found: out boolean);

--search operation
--implemented by select,fetch, check
Function search_software_char_weight_record
(GSC_ID: GSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null)
return boolean;

--delete operations
--implemented by searched delete
Procedure delete_software_char_weight_record
(GSC_ID: GSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
is_deleted: out boolean);
--retrieve operations
--implemented by select/cursor select
Procedure get_weights
(GSC_ID: GSC_ID_Not_Null;
WEIGHT_SET_NAME: WEIGHT_SET_NAME_Not_Null;
software_char_weight_record:
in out softwarec_char_weight_record_type;
is_fctched: out boolcan);

193

Package get_weight_Sets_for_GSC_ID is
Procedure Open(GSC_ID: GSC_ID_Not_Null);
Procedure Fetch(software_char_weight_record:
in out software_char_weight_record_type;
is_fetched: out boolean);
Procedure close;
end get_weight_Sets_for_GSC_ID;

Package get_GSC_IDS_for_Weight_Set is
Procedure Open
(for_this_Weight_Set: WEIGHT_SET_NAME:
WEIGHT_SET_NAME_Not_Null);
Procedure Fetch(software_char_weight_record:
in out software_char_weight_record_type;
is_fetched: out boolcan);
Procedure close;
end get_GSC_IDS_for_Weight_Sct ;

end software_char_weight_Composite_OPS;

194

10.

11.
12,

13'

14.

15,

16.

17,

References

Draft Recommended Practice for the Evaluation and Selection of CASE Tools,
Computer Society of the IEEE, January 1991.

E&V Guidebook, Ada Joint Program Office, February 1991.
Notes from CASE Managment Workshop, Carnegie Mellon University, June 1991.

Congressional Mandate for Ada, Software Technology Support Center
CrossTalk, Hill AFB Utah, May 1991, Public Law 101-511, signed by the
President, November 1990 .

CSCE 645 Database Couse Notes, 1991.

Consultation with Air Force Institute of Technology Database Instructor, Dr.
Mark A. Roth, September 1991,

Alderucci, D., Evaluator, version 1.0, Charles Stark Draper Laboratoriy, Inc,
February 1991.

Alderucci, D., Formualor, version 1.0, Charles Stark Draper Laboratoriy, Inc,
February 1991.

Alderucci, D., Selector, version 1.0, Charles Stark Draper Laboratoriy, Inc,
February 1991.

Batt, G.T. CASE Technology and the Systems Developement Life Cycle: a
proposed integration of CASE tools with DoD STD-2167A. Master’s thesis,
Naval Post Graduate School, 1989 (AD-A207 844).

Bigelow, J. “Hypertext and CASE.” IEEE Software: 23-27 (March 1988).

Brooks, F.P. The Mythical Man-Month. Reading, MA: Addison-Wesley
Publishing Company 1982.

Chastek, G.J., M.H. Graham, and G. Zelesnik “The SQL Ada Module Description
Language SAMeDL.” Technical Report. CMU/SEI-90-TR-26. Software
Engineering Institute, November 1990.

Chastek, G.J., M.H. Graham, and G. Zelesnik “Rational for SQL Ada Module
Description Language SAMeDL.” Technical Report. CMU/SEI-91-TR-4.
Software Engineering Institute, March 1991.

Date, C.J. A Guide to THE SQL STANDARD. Addison-Weslcy Publishing
Company 1987.

Engle, C., R. Firth, M.H. Graham, and W.G. Wood “Interfacing Ada and SQL .”
Technical Report. CMU/SEI-87-TR-48. Softwarc Engineering Institute,
December 1987.

Graham, M.H. “Guidelines for the Use of SAME.” Technical Report.
CMU/SEI-89-TR-16. Software Enginecring Institute, May 1989.

195

18.

19.

20.

21.

22.
23.

25,
26‘

27.

28.

29.

30.

Hanrahan, B., J.V. Buren, C. Rieping, T. Fujita-Yuhas, J. Grotzky, G. Jones, J.
Petersen, and G. Peterson “Requirements Analysis & Design Tool Report.”
Technical Report. Software Technology Support Center, Hill Air Force Base UT,
1991.

Hildebrant, R.R. “Requirements, Design, and Usage of stemDB, a Software Test
and Evaluation Database.” Technical Report. Charles Stark Draper Laboratoriy,
Inc, Cambridge MA, March 1991.

Hughes, C.T. and J.D.C. “The Stages of CASE Usage.” Datamation: 41-44
(February 1990).

Humphrey, W.S. Managing the Software Process. Addison-Wesley Publishing
Ccmpany 1990.

Keuffel, W. “CASE for the rest of us.” Computer Language: 25-29 (1991).

Korth, H.F. and A. Silberschatz Database System Concepts, McGraw-Hill, Inc.
(1991), pp. 24-213.

Lawlis, P.K. Supporting Selection Decisions Based on The Technical Evaluation
of Ada Environments and Their Components. Ph.D. dissertation, Arizona State
University, August 1989.

Oracle for Macintosh, Reference, Version 1.2. Oracle Corporation, 1990,

Osterweil, L. “Software Environment Research, Directions for the Next Five
Years.” IEEE Computer: 35-43 (1981).

Petersen, G., G. Daich, D. Dyer, and S. Atkinson ** Interim Report on
Requirements Analysis and Design Tools.” Technical Report. Software
Technology Support Center, Hill Air Force Basc UT, November 1990.

Sims, M.L. A Review of the suitability of Available Computer Aided Software
Engineering (CASE) Tools for the Small Software Development Environment.
Master’s thesis, AFIT/CI/CIA-89-077. University of South Florida, 1988.

Tamanaha, D.Y. “The Application of CASE in Large Acrospace Projects.” 7989
IEEE Aerospace Applications Conference digesr. 1-18 (1989).

Wybolt, N. “Perspectives on CASE Tool Integration.” In Sofrware Engineering
Notes. ACM Press, pp. 56-60, 1991.

Vita

Captain Tina M. DeAngelis was born on 26 February 1964 in Watertown,
Massachusetts. After graduating from high school she attended Purdue University in
West Lafayette, Indiana. She received a three year ROTC scholarship and after receiving
both her bachelors degree in Electrical Engineering and her Air Force Commission was
assigned to Material Management (MM), Hill AFB, Utah. She started her job at Hill as a
member of a team that was responsible for developing a new Navigation and Weapon
Delivery System computer software and hardware for the F4 Phantom. Her duties
included being involved in the flight testing of the ongoing development effort. Just
before leaving Hill for AFIT, she was reassigned to another computer hardware and
software development effort (the VHSIC Core Avionics Processor program (VCAP)) for
the F-16A/B Falcon flight computer. She entered the School of Engineering, Air Force
Institute of Technology in May of 1990. Her current address is Space Systems Division,

L. A. Califomia.

Permanent address: 49 Hazel St

Watertown, Ma 02172

197

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0128

Public 7e0CITNG SUFGEN *OF iy CCHACLEA 27 “TOMMANUON 1§ PIUMATEA *3 veraqe ~Iuf SRY "8SPOMSE, .RULLCING the Lime *Of reviewir 3 M3rJclions, ,earrinl 2x 5ung Jatd soures,
gathering 3na Mmaintaimng the data neeced :~d CCmMpieting ang raviewing (~e L3hec* ¢n ot nformat g1 Seng comments regardirg s Jurden estimate of sng Sther Jseect of this
coliection 5t tIrmation, actuding sug3est £ =8 ‘Of reQUCING s Surden ¢ V3SMIPQIoN -e3dQuariers Serces, CireetCraTe for nisrrat on Joeralions 4nd Reogs 1219 atferson
Davis HIgh way, Suite *204, tnngten, +3 22232 4302 30a 10 the Dffi e of Management ina Judger 2acer~ore Reguation Prepact 13703-0133), Wasmingtze, 2C 23503

1. AGENCY USE ONLY (Leave arank) | 2. REPORT DATE 3. REPORT TYPE AND OATES COVERED

December 1991 Master’s Thesis

4, TITLE AND SUBTITLE S. FUNDING NUMBERS

ANALYSIS OF A DECISION SUPPORT SYSTEM FOR CASE TOOL
SELECTION AND THE SPECIFICATION OF AN ADA TO SQL
ABSTRACT INTERFACE

6. AUTHGR(S)
Tina M. DeAngelis, Capt, USAT

7. PERFORMING CRGANIZATION NAME(S) AND ACORESS(ES) 3. ERFCRMING JQRGANIZATION

Air Force Institute of Technology, WPAFB OH 15433-6583 REPORT NUMBER
T e o TR S AFIT/GCS/ENG/91D-04

9. SPONSCRING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING. MCONITORING

AGENCY REPGRT NUMBER
Software Technology Support Center (STSC)
Ogden ALC/TISAC
i Hill AFB, Utah 84056

11. SUPPLEMENTARY MNOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution unlimitted

13. ABSTRACT (Maximum 200 wcords)

Information overload has long been a problem in the fast moving technical field of software development. Yet
quality information is needed to make informed decisions about buying software tools that help in software
development. Computer Aided Software Engineering (CASE) tools help to coordinate and control information
in large software developments. Many CASE tool purchases, however, are being based on ad hoc tool evaluation
and selection methods which depend on biased vendor information. To capture specific knowledge about how to
pick a tool for a given software development effort. a historical database that identifies important tool character-
istics needed to be maintained by an unbiased organization and a mechanism (in the form of a decision support
system) for interpreting that database needed to be made available.

To address this deficiency, the Software Technology Support Center at Hill AFB in Utah was developing a CASE
tool selection support tool, the STEMdB. This research accomplishes an analysis of this tool and suggests ways
to make it more robust, portable and maintainable. It presents an object oriented approach to the de-ign while
addressing the issue of portability by accomplishing an Ada to Structured Query Language (SQL) abstract

interface.
14. SUBJECT TERMS 15. NUMBER OF PAGES
Ada intetface. SQL interface. Decision Support System, CASE tool selection. SQL. 206
Ada, Ada to SQL binding 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280.5500 Standard Form 298 (Rev 2-89)

Srascribed by ANSI St4 23918
298.102

