
Lfl

(N

DT

NU9

Z):J )ITRhUIN STK~I~ X Q_
Approved for pbi lm

Dbatrfutiou Unlimuf

-DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force~ Base, Ohio

921



AFIT/GCS/ENG/9 1D-04

ANALYSIS OF A DECISION SUPPORT SYSTEM
FOR CASE TOOL SELECTION AND

THE SPECIFICATION OF
AN ADA TO SQL ABSTRACT INTERFACE

THESIS

Tina M. DeAngelis
Captain, USAF

AFITI/GCS/rN(G/()11

Approval for public release; d istribution unli mi ted



AF1T/GCS/ENG/9 1D-04

ANALYSIS OF A DECISION SUPPORT SYSTEM

FOR CASE TOOL SELECTION

AND

THE SPECIFICAT ION OF

AN ADA TO SQL ABSTRACT INTERFACE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of '1'echnology

Air University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science (Conmputer Science)

Tina M. DeAngelis, B.S.E.E.

Captaini,USA F

September 1991

1\pIpovcd f1kw ptiblic i( clcac: disttio it m it~iiied



Acknowledgments

I would like to thank my advisor Lt Col Lawlis whose patience and guidance and

previous contributions to the field of Decision support tools helped to get this research

accomplished. I would also like to thank Major Roth whose expert assistance in the

database arena, helped me to accomplish a data analysis of the S'TEMdB tool. I would

next like to acknowledge and thank the people from Draper Labs, Jim Van Buren and

Rick Hildebrant for providing me with documents, prototypes and answers pertaining to

the STEMdB tool. I would next like to thank Gary Petersen of the STSC whose

profe.ssionalism helped to insure that I Jeceived the information I needed to get the

reseai.:h done. I would like to thank my readers Maj Howatt and Maj Gunsch for being

on my committee and for providing me with great feedback. I would also like to thank

my mother and sister whose continued encouragement kept me going. Finally, I would

like to praise God for helping to get me through this thesis effort.

Aacession For

NTIS GRA&I
DTIC TAB 13
Uzannounced 0
Justificstom

By.
Distribution/

Availability Codes

Avail and,'or
Dist Spooal



Table of Contents

Page

Acknowledgments........................................................................... ii
Table of Contents ........................................................................... iii
List of Figures..............................................................................v
List of Tables ................................................................................ vi
List of Acronyms ............................................................................ vii
Abstract...................................................................................... viii
I. Introduction..............................................................................1.

Overview .......................................................................... 1.
Background ......................................................................... 1I
Problem.............................................................................. 2
Reseach Objectives ................................................................ 3
Assumptions......................................................................... 4
Scope ................................................................................ 4
Approach ............................................................................ 5

11. Literature Review ....................................................................... 6
Introduction ......................................................................... 6
CASE Tools, Why Bother?9 ........................................ 6
CASE Categories.................................................................... 7
CASE Pitfalls ....................................................................... 7
CASE Tool Integration ............................................................. 8
Software Engineering Environments .............................................. 9
CASE Evaluation and Selection Guidelines....................................... 10
CASE Selection System Design.................................................... 11
Entity Relationship Diagrams...................................................... 12
HyperCard........................................................................... 15
Concisions ................................................... ... ** ... ***-*- 15

Ill. Description and Analysis of The STEMdB Prototype Design ...................... 16
Overview ............................................................................ 16
Description of STEMdB ....... .................................................... 16

Scope and Purpose of S'11-MdB .... ...................................... 16
Background of STEMdB ................................................... 16
Top Level Description of STFEMdB........................................ 19

Representative Requirements Listing.............................. 19
Implementation Design Description............................... 21

Detail Level Description of STEMdB ..................................... 22
STEMdB Data Model Description ................................ 23
STEMdB Interface Design Description .......................... 27
STEMdB Functional Design Description ........................ 27

Analysis ............................................................................. 28
Areas Well Designed ....................................................... 28
Areas That Require More Work ........................................... 29

New Approaches to Designing the STEMdB Tool.............. 30
Improvements to Be Made Within Context of Present
Design............................................................... 36

Summary ............................................................................ 53

iii



Page

IV. New Approaches to STEMdB Design ............................................................... 55
Overview ........................................................................................................ 55
Top Level Design of an Object Oriented STEMdB ....................................... 55

Design Discussion of New Formulator ............................................. 59
Design Discussion of New Evaluator ................................................ 62
Design Discussion of New Selector ................................................... 64
Functionality of Rest of OOD Design ................................................ 66

Top Level Design of an Abstract System Interface to an SQL Database ....... 67
Problems Addressed by the SAME ................................................... 67
Overview of How to Apply the SAME Method ................................ 68
STLMdB Abstract Interface Design Using SAME ................................ 75

Summary ....................................................................................................... 87
V. Conclusions and Recommendations ..................................................................... 89

Overview ........................................................................................................ 89
Summary of Research .................................................................................... 89
Conclusions ................................................................................................... 91
Recommendations ......................................................................................... 92
Summary ........................................................................................................ 93

Appendix A. Example STSC Listing of Software Characteristics and Qualities .......... 94
Appendix B. SAME Package Listings ........................................................................... 105
Appendix C. Abstract Interface Domain Primitive Types Code .............. 136
Appendix D. Abstract Interface Composite Methods Code ........................................... 153
References ....................................................................................................................... 195
V ita ................................................................................................................................. 197

iv



List of Figures

Figure Page

1. Decision Support System Top Level Design ..................................................... 13
2. STSC Test and Evaluation Process ..................................................................... 17
3. Example Tool Domain Evaluation Frameworl, .................................................. 18
4. Original Design Components ............................................................................. 21
5. STEMdB Requirements Table Relational Diagram ........................................... 23
6. Entity Relationship Diagram of STEM dB ........................................................ 25
7. STEM dB Basic Components ............................................................................ 28
8. Entity Relationship Diagram Revised ................................................................ 41
9. Selection_Set Redesign ....................................................................................... 45
10. Object Oriented STEM dB Design ..................................................................... 56
11. Form ulator Internal View .................................................................................. 61
12. Evaluator Internal View .................................................................................... 63
i3. Selector Internal View ....................................................................................... 65
14. SAM E Foundational Types ............................................................................... 71
15. Form ulator Altered Objects ................................................................................ 82
16. Evaluator Altered Objects .................................................................................. 83
17. Selector Altered Objects ..................................................................................... 84
18. Type Build Process. Formulator State Alterations ............................................. 86
19. Application Logic Calls to Abstract Interface ................................................... 87



List of Tables

Table Page

1. Functional Dependencies of STEMdB Sciema .................................................. 38
2. Map of Table 1 's Relationship to Attributes ........................................................ 40
3. SQL Statement to Ada Mappings ...................................................................... 75
4. Functions Provided by an Abstract Dynamic Interface ....................................... 78

Vi



List ofAcronyms

ACRONYM NAME

ASSISI Ada Software Selection assISTant

BCD Binary Code Decimal

BCNF/3NF Boyce-Codd normal form/Third normal form

CASE Computer Aided Software Engineering

DOD Department of Defense

DSS Decision Support System

GSC General Software Characteristic

GUI Graphical user interface

I-CASE Ideal software developmer.t environment

IPSE's Integrated Project Support Environments

KB Knowledge base

MPW C Macintosh Programers Workshop C

OOD Object Oriented Design

SADT Structured Analysis and Design

SAI Software Area of Interest
SAME Structured Query Language Ada Module Extensions

SD Structured Design

SEA Software trigineering Activity

SEE's Software Engineering Environments

SQL Structured Query Language

SQLDA SQL Description Area

SSC's Specific Software Characteristic's

STEM Software Tool Evaluation Model

STEMdB STEM Database

STSC Software Technology Support Center

T&E Test and Evaluation

TEG's T&E Guidelines

TEP T&E Procedure

vii



AFIT/GCS/ENG/91D-04

Abstract

,) Information overload has long been a problem in the fast moving technical field of

software development. Yet quality information is needed to make informed decisions

about buying software tools that help in software development. Computer Aided

Software Engineering (CASE) tools help to coordinate and control information in large

software developments. Many CASE tool purchases, however, are being based on ad

hoc tool evaluation and selection methods which depend on biased vendor information.

To capture specific knowledge about how to pick a tool for a given software development

effort, a historical database that identifies important tool characteristics needed to be

maintained by an unbiased organization and a mechanism (in the form of a decision

support system) for interpreting that database needed to be made available.

To address this deficiency, the Software Technology Support Center at Hill AFB in

Utah was developing a CASE tool selection support tool, the STEMdB. This research

accompliAies an analysis of this tool and suggests ways to make it more robust, portablc

and maintainable. It presents an object oriented approach to the design while addressing

the issue of portability by accomplishing an Ada to Structured Query Language (SQL)

abstract interface design. K

Vlll,,



ANALYSIS OF A DECISION SUPPORT SYSTEM
FOR CASE TOOL SELECTION

AND
THE SPECIFICATION OF

AN ADA TO SQL ABSTRACT INTERFACE

1. Introduction

Overview

This research was directed at comparing two known CASE tool evaluation and

selection prototypes to be able to influence the ongoing prototype effort towards

developing a more maintainable and upgradeable decision support tool. The first

prototype tool was developed based on object oriented methodology, the second ongoing

prototype is being developed using the functional decomposition method. The research

also provides a suggested abstract interface design that would be used by the system to

communicate with an Structured Query Language (SQL) database.

Background

When computers were first developed the engineering community had its hands full

trying to optimize computer hardware to reduce high costs. Computers were so

expensive and huge in the (lays of relay and vacuum tube technology, that engineers

would never have been able to visualize the 1990 desk top personal computer. With this

new, smaller more powerful technology, the costs of hardware became insignificant

compared to its counterpart, software.

Engineers were forced to standardize the development approach to hardware as a

result of those initial high costs. They neglected developing just such an approach for

software development, since it was considered more an art than a science from their

view-point. As a result, software was approached in an ad hoc way until the Structured

Design (SD) Methodology surfaced. Once this methodology surfaced and was

implemcnted more complicated, larger software efforts could be undertaken with more



success. But as these efforts got larger, the SD methodology alone was not enough to

ensure that software systems could be developed and implemented on time and within

budget. This lack of control of software cost (which is the critical cost driver in today's

systems) and software quality, resulted in what scholars of the 1980's referred to as the

software crisis [21:389].

This is where Computer Aided Software Engineering (CASE) tools entered into the

equation. Many in the software engineering community viewed these tools initially as a

solution to the crisis. However, full understanding of the necessity of having a well

understood software process model is a prerequisite to the purchasing of any CASE tool

[20:41-44; 27:9]. It is also beneficial to have a general understanding of different

software engineering environments and how CASE tools fit into these environments.

Once all this has been accomplished, software professionals can select a CASE tool, a

disjoint set of CASE tools, or an integrated development environment that supports

project needs. In order to make the best choice of development tools, a survey of

available tools and their capabilities must be requested and reviewed. Unfortunately, the

volume of data available on the different capabilities of tools is both subjective and

overwhelming. Efforts have been made in two complementary prototype tools, the

Software Tool Evaluation Model (STEM) 127:6-81 and the Ada Software Selection

assiSTant (ASSIST) 1241, to automate this selection process. It is at this point where this

thesis comes in.

Problem

There is no way of selecting CASE tcx~ls or, in the bigger scnse, software suppo)rt

enviro-ments, without extensive research of very subjective data. The human ability to

p.'x:ess data effectively is taxed beyond its capabilities when juggling more than about

seven plus or minus two pieces of information at one time. One CASE tool alone can



have close to 100 different capabilities that must be evaluated [18:C.2-C.5]. Since

humans are incapable of evaluating this much data, an automated evaluation system, that

would scale the selection problem down, needs to be developed. At the time of this

research, this researcher was not aware of any existing automation system that was able

to implement evaluation criteria, take into account users' selection requirements, and

propose solution tools.

The Software Technology Support Center (STSC) at Hill AFB, understood this

problem and was developing the STEM prototype [27). Although the developers of the

STEM had not completely implemented the selection part of the prototype at the time of

this research, what was there appeared to be tailored more to individual CASE tool

selection than CASE environment selections. With the trend in CASE tools heading

down the CASE environment path, the STEM may steer the CASE selection tool effort

towards an obsolete end requirement.

The ASSIST prototype, however, is set up as a theoretical environment evaluator

with the capability to look at sub-components of a total environment. Although targeted

for Ada tools and environments, its principles are applicable to CASE tools in general.

Research Objectives

The objective of this research was to provide an analysis of an ongoing Decision

Support System (DSS) design that would help guide the facilitators to develop a more

substantial tool to meet future maintainability and upgradeability requirements. The

potential for the STEM tool and its follow-on effort, the STEM Database (STEMdB)

tool, to become highly sought after and used tools depends on their portability and

flexibility. This research provides ways to achieve this portability and flexibility.

3



Assumptions

The initial research assumptions were:

- CASE tool decision support selection systems are badly needed in government
and industry, and will continue to be needed for some time.

- The ASSIST theoretical architecture would provide a good basis for
comparing the STEMdB tool's functionality.

- Providing both an object oriented approach and an abstract interface approach
to the developing organization would help to convince them to design the STEMdB using
these approaches versus using a functional design which was totally dependent on a
single database.

- The underlying structures of an ASSIST and the STEM data representation
could be made compatible.

- The SQL Ada Module Extensions (SAME) was designed using good software
engineering principles so it was a good Ada to SQL binding method to choose.

- A STEMdB developed with the end goal of supporting remote users would
force its design to be more robust, if it was designed using good software engineering
principles.

- Providing a top level interface design would help convince the developing
organization to approach the STEMdB design from a remote user requirements
perspective.

- Providing a top level object oriented design approach to the STEMdB would
help to convince the organization of it's merits and would help them to understand how to
work with the STEMdB as a DSS that depends on a Knowledge Base.

Scope

The research analysis only concentrated on the portions of the software development

life cycle domains that were targeted by the STSC. This researcher accomplished an

analysis of the STEMdB design from the data object and behavioral perspectives. This

researcher also accomplished a top level object oriented design of the STEMdB while

providing inforniation on how to work with a knowledge base. Finally, this researcher

accomplished a top level abstract interface design using the SAME method. The

applications that call the interface resources were not provided.

4



Approach

First an extensive literature search was accomplished to get a background on

decision support systems, CASE tool categorization, CASE evaluation and selection

criteria, database modeling, Ada to SQL bindings, and the Macintosh development

environment. In Chapter III all this knowledge is used to evaluate both a working

prototype and a proposed follow-on prototype effort. Chapter IV addresses solutions to

two related problems with the STEMdB design that were identified in the analysis. In

particular, it presents an object oriented design and an abstract interface design. Finally

Chapter V concludes with lessons learned.

5



II. Literature Review

Introduction

The following literature review was accomplished to learn about CASE tools,

Software engineering environments, CASE evaluation and selection processes, CASE

selection system design, Entity Relationship modeling and a Macintosh development

environment.

Specifically, the literature gave insight into reasons an organization would purchase

CASE tools, and identified different ways to categorize CASE tools. Some articles

discussed the pitfalls of CASE while others addressed the different levels of tool

integration. The Entity Relation diagramming, and the Decision Support tool studies

helped with analyzing the STEMdB design and suggesting improvements. The

Macintosh HyperCard development environment literature also provided insights into

how the ASSIST prototype accomplished its job and into how a commercial database,

Oracle, provided a programming interface to its database.

CASE Tools, Why Bother?

Brook's book, [12], as well as Batt and Sims in [10:1; 28:1] discussed different

aspects of the software crisis. Both Batt and Sims theses [10; 28] used the perceived

crisis as justification for studying CASE technology as a possible solution to the crisis.

Other literature also eluded to aspects of the software crisis as reason to study the

possible benefits of CASE in software development.

Software tool automation could facilitate consistency checking, automatic

documentation of design, configuration management of code, overall project tracking,

design generation, the enforcement of formalisms and structured methodologies 126:751,

and design accessibility (via tools that use relational database queries or Hypertext

6



[11:23]) according to general consensus. Hypertext was defined by Bigelow in [11:23]

as :

Hypertext is a medium-grained, entity-relationship model that lets
information be structured arbitrarily and keeps a complete version history of
both information and structure. [ 11:23]

CASE Categories

CASE tools were categorized by different authors in distinct ways. Tamanaha

viewed CASE tool categories as falling within some phase of the Waterfall software life

cycle model, as falling within a narrow discipline like documentation, or as falling into a

specific application domain like real-time systems [29:6]. She identifies five phases

associated with the Waterfall model: requirements/analysis, design, code, test and

maintenance.

Sim's took a much higher level approach than Tamanaha. He viewed CASE

tools as falling in four categories: Upper-CASE, Lower-CASE, Reverse

Engineering/maintenance-CASE and Project Management-CASE. The Upper-CASE

tools applied to the life cycle phases requirements through design; the Lower-CASE

applied to code through test; the Reverse Engineering/maintenance-CASE applied to the

end of the life cycle after test; the Project Management-CASE applied to all phases of the

life cycle [28:33-34]. Sim's also reported survey results which highlighted Upper-CASE

tools as being the most used, 75% usage in industry during 1988 versus less than 20%

usage in any other of his categories 128:72].

CASE Pitfalls

In both [22:25-29; 20:41-44] the reader was warned about potential pitfalls that

could occur while attempting to begin and to continue using CASE technology. Not

understanding an organization's softwarc process model was one pitfall that was

7



repeatedly acknowledged in different literature. Keuffel reinforces this by ending his

article with this quote about the software methods:

"CASE systems," DeMarco concluded, "have tended to be most helpful to
people who had the least trouble applying the method, even without
automated support." [22:29]

Another identified pitfall was the fact that vendors were producing volumes of subjective

material about the sanctity of their products [22:25]. Keuffel in [22:29] stated that

"current CASE tools either ignore many rules or enforce them too rigidly". le advocated

making tools "transparent" to the users 122:28] in order to support user friendliness.

CASE Tool Integration

Different levels of CASE tool integration were aiso a common topic in the literature.

According to Keuffel, the highest achievable level of integration was achievable through

"Groupware" [22:29]. Groupware is a real-time response CASE system that could

become a design group's intelligent whiteboard.

Batt, in [10:131, introduced the term I-CASE. He defined this term as, "I-CASE

toolkits incorporate all the best features of many CASE tools into a single package that is

intended to cover the entire SDLC" [10:131 (where SDLC stands for software

development life cycle). Batt stated that a true 1-CASE tool would incorporate over 1M

sub-tools and that no true I-CASE tool existed at that time. The term I-CASE can be

thought of conceptually as the ideal software development environment where all tools

inter-operate and share common data.

The term, Data Encyclopedia, was introduced and defined by Batt as "The heart of

an I-CASE toolkit." 110:131. In other environment contexts it was called the object

management system. The Data Encyclopedia's counterpart in the non-integrated CASE

world was the equivalent of the Data Dictionary. Batt indirectly addressed at least four

levels of CASE integration in his thesis. Those levels were: no integration, limitcd

8



integration in one CASE tool line, some integration outside of one product line and total

integiation. The integration literature, in general, agreed that higher levels of CASE

integration could be achieved from industry support of open CASE architectures and

CASE tool interface standards.

Software Engineering Environments

Wybolt in [30:57] provides a good overview of the requirements/attributes of

Integrated Project Support Environments (IPSE's). He lists the following as desirable

characteristics of an IPSE [30:57]:

" cover all phases of development and support
• support or connect with multiple disciplines like CAD or CAE
" cover many project activities such as planning, controlling

and documentation
" deal with multiple vendors and platforms
• adapt to existing organizational culture and work flows
" can be introduced incrementally
• can be serviced and supported
" are fast and inexpensive

Wybolt also clarifyed how a framework was the building block of IPSE's. He

defined the structure of a framework as having a common user interface, a set of tools, an

integrating agent, and an object management system. He defined the four styles of

integration that could be implemented within a framework as: presentation, control, data

and semantics. Presentation integration was provided through a common user interface;

data integration among tools was provided through a common repository; control

integration was provided through repositories with links between them; and semantic

integration was provided through modeling of the semantics of tools and their data along

with conflict reconciliation. [30:56-591

Finally, Wybolt clarified that "integration is a property of a relationship between two

or more tools" [30:591 not a property of an environment or tool.

9



CASE Evaluation and Selection Guidelines

The draft document in [ I] provided somi-e guidance on the process of evaluation and

selection of CASE tools that support the software project management, configuration

management, and software engineering domains. To clarify the difference between the

two processes, evaluation is "the process of measurement" and recording while selection

is "the process of applying thresholds and weights to evaluation results and arriving at

decisions" [1]. The IEEE document in [1] also emphasized the iterative nature of these

two processes and the necessity for feedback ,rom the selection process. Feedback was

to take the form of user criti, lues of any selection and evaluation system that was being

used. Without this feedback neither process could become a mature process. Criteria that

are measured both quantitatively and qualitatively are the common link between the two

processes. [1) defined users requirements as the only driving force towards deciding on

these criteria and suggested several possible classification schemes, including the E&V

Reference manual (2].

An evaluation process should address tool issues of multi-project support and

multi-function support. In other words it should provide for an evaluation which

measures tools that are abstract enough to address both the immediate project functional

needs of the user as well as any future new project requirements. It should be repeatable

for the objective criteria and it should accommodate documentation of multiple evaluator

inputs for the subjective criteria. I I

A selection process shouid allow for a narrowing down of information. The reasons

for steps taken during the selection process should be recorded. Since selection criteria

will be either numeric or binary, a way of weighing and combining both types must be

addressed. Traceability of the feedback loop to the evaluator process must be addressed.

If the evahtator process never receives feedback from the users or tool selectors, then the

evaluator works in a vacuum and the whole evaluation and selection process runs the risk

10



of being useless. Finally, a sensitivity analysis should be supported. Sensitivity must be

addressed so that selector or user is able to judge how valid his /her results were based on

the limitations of the system. [1]

The workshop notes in [3] discussed pre-selection proces-; strtegy considerations

that need to be considered prior to an organization entering into the CASE tool selection

process.

CASE Selection System Design

The Lawlis dissertation provides guidelines on how tc .!se the above evaluation and

selection techniques, as well as other design criteria to creawc an automated decision

support system for CASE tool selection.

The basic processing in her design began with the narrowing down of candidace

tools. She assessed three levels with respect to the user's needs: the scope/context of the

solution space, the tool category, and the application area. Once these were input her tool

requested the specific weights of applicable characteristics. Finally the ASSIST would

process the inputs and provide some suggested solutions.

The basic structure of systems that support this design would be composed of four

top level objects as is shown in Figure 1.

The Knowledge Acquisition object allows users to load and update data stored in

both the Knowledge Base and the Database. The user could access the Knowledge Base

and the Database indirectly through both this object and the Decision Logic object.

The Knowledge Base object provides the operations necessary to use the data. It

could accomplish these tasks because it maintained the design knowledge on how the

data was structured. In addition, it could control how a selector used that data.

According to 124:701 a critical part of the design of a DSS is the isolation of its

dynamic elements and operations to the Knowledge Base Subsystem. Specifically, the

I!



Knowledge Base Subsystem should define which software cb tracteristics are made

visible to the rest of the DSS. It should know the types and the allowable operations on

all characteristics and it should provide this knowledge to the rest of the system. Since

leveling of information is necessary to make a selection tool effective, the Knowledge

Base Subsystem should contain knowledge on levels of views and it should provide the

information on how to process these levels to the rest of the system. Finally a Knowledge

Base Subsystem should contain the knowledge of how to transform evaluation data into

ratings. By concentrating all of these volatile design areas, a DSS design maintains

robustness and ensures that most future revisions affect only the implementation part of

the DSS Knowledge Base object.

One concept of this design that was hard to comprehend was understanding the

difference between a Knowledge Base and a Database. It was discovered that the

differences between a database system and a knowledge base system could be

distinguished by the kind of data stored in each and the operations provided by each. For

example, a database system would provide the services of storage and retrieval of all

evaluation/selection data. A knowledge base system would provide for the interpretation

of that data.

The Decision Logic Object is the controller of the Decision Support System

processes. Essentially, it addressed requirements that were based on a user that was in

the process of selection.

Entity Relationship Diagrams

A quick explanation of an Entity Relationship diagram and how it relates to the table

relational design is provided next, so that readers will have the proper background to

understand the work accomplished in Chapter II1. Entities are objects that exist and

which have specific descriptive attributes that distinguish them from one another. For

12



;nstance a mother and a child are two entities which both have an attribute of social

security number, but the value of those attributes differs for each of them. A relationship

is a connection between two or more entities. For instance two relationships, has_child

and has-genetichild, between a mother and her five children would contain the names

of all five children in the first relationship and would contain the name of only one child

in the second relationship if the mother had adopted four of her five children.

User

Interface

Subsystem

Knowledge Decision

Acquisition Logic
Subsystem .,Subsystem

~Knowledge

~Base

Subsystem

Figure 1. Decision Support System Top Level Design124:291]

13



Entity Relationship models provide several different pieces of information. They

provide entity and relationship definitions in the form of named rectangles and named

diamonds, respectively. They display all important attributes (distihguishing key

attributes with bold capital letters), and they display the cardinality'and optionality (these

are explained in the next paragraph) between entities and relationships. They also

support the notion of abstraction by the concept of an aggregate. In simple terms an

aggregate is a means of showing a n-way relationship (where "n" is the number of related

entities). In structural terms an aggregate is a super entity that enc!bses two or more

related entities and acquires the key attributes of those related entities.

Cardinality and optionality are constraints that the design of an actual database

implementation would maintain [23:28]. Cardinality is just a mapping function between

two related entities. For instance, the cardinality could define that exactly one of each

entity relate to one of another (a one to one function) or it could define a one to many, a

many to many, or a many to one relationship. Optionality shows an existence

dependency between two entities over a relationship. If an entity has a mandatory

relationship with another entity, then the latter entity will need to be altered as a result of

a deletion in the former entity (in one to many/many to one, but not necessarily in many

to many). Conceptually, optionality can be understood by asking the question, what is

the minimum number of associations that must hold in a relationship between entities.

An existential dependency of one entity on another means that the dependent entity does

not make sense in the model if its required entity relationship no longer exists. Finally,

the graphical representation of optionality and cardinality takes the following form:

"o:13". Where a represents the optionality and it takes on values of either "0" or- I " and

1 represents the cardinality where it becomes a letter in the alphabet to represent **many"

or it becomes the number "I ". For instance, " :N" means an entity is mandatory and that

it has the cardinality of many" in a relationship with another entity.

14



HyperCard

In [2:11] it was stated that HyperCard could be used to "gather, organize, present,

search, and customize information". Design ideas based on HyperCard's data

representation were presented in [1]. HyperCard supports external function calls to

pre-compiled C and Pascal code. This tool was used to create a user's tutorial for each of

the three prototype tools in [7; 8; 9]. It was also used as a development environment for

[24] and as a database interface called Hyper*SQL within Oracle [25]. HyperCard

provides the user interface and test program capability which reduce the level of work

required for a prototype effort in the Macintosh environment.

Conclusions

CASE tools are needed to help in both large and small software projects. The larger

the communication gap in a project the more severe the problems become. CASE tools

as they become more mature, and as they integrate more, should achieve some positive

impact on these software problems by increasing project data accessibility.

There are multiple ways of viewing CASE tool membership categories. There are

also several ways of getting into trouble with CASE tools. Integration appears to be

where the future of CASE development is headed.

15



Ill. Description and Analysis of The STEMdB Prototype Design

Overview

This chapter provides the reader with an understanding of Software Tool Evaluation

Model Database (STEMdB) design efforts that were going on concurrently with this

research. It begins by providing a description of the the Software Technology Support

Center's (STSC's) development efforts and mission objectives. It discusses the

background work that the STSC had accomplished which lay the foundation for

development efforts towards the STEMdB. The chapter then provides the reader with the

objectives of the STEMdB within a defined scope. It then accomplishes a multi-level

description of the design followed by an analysis. The analysis results were based on the

knowledge gained from Chapter II. In particular, the analysis compares the STEMdB

design to the knowledge gleaned from [ I I and the ASSIST prototype.

Description of STEMdB

Scope and Purpose of STEMdB. Scope: To define an evaluation framework that

could be populated with evaluation information that would support the selection of CASE

tools. Specifically, to support selection of CASE tools that would meet support criteria

over multiple phases of the software development life cycle, different application

domains and different subsets of software engineering activities.

Purpose: According to 119:11. "The purpose of stemDB is to allow the systematic,

reliable, repeatable, and helpful selection of CASE tools for those in need of such

technology".

Background of STEMdB. In order to understand the background of the STEMdB

design at the time of this research, the historical work of the organization that was

16



developing the STEMdB had to be presented. The STSC located at Hill AFB in Utah

was the developing organization. Part of the mission of the STSC was to provide the Air

Force with "centralized support for the evaluation and selection of software tools,

methods and environments..." [18:1]. To accomplish this mission, the STSC defined an

iterating process which identified both software problems and requirements of the Air

Force, analyzed current software tools and technologies, and recommended possible

solution tools, methods, and environments [ 18:1 ].

According to [21:5] "the primary objective" for any process should be "to achieve a

controlled and measured process as the foundation for continued improvements".

Humphrey showed in [21:5] that the first step towards achieving a mature process at this

level would be to achieve repeatability. To achieve repeatability, the STSC implemented

their newly defined iterating process within the framework of a Test and Evaluation

(T&E) Process. This process was composed of area-specific T&E Guidelines (TEG's)

that were used to evaluate software characteristics. Given a too!, a software characteristic

and an area of interest or domain as inputs, the T&E Process would produce two outputs:

an evaluation result and a T&E Procedure (TEP). A TEP was the documentation of an

evaluator's actions taken while implementing a TEG. Figure 2 illustrates this process.

ITEP

Test and Evaluation

Process Software
Evaluation

Software Value
Characteristic

Figure 2. STSC Test and Evaluation Process

17



The culmination of these efforts, at the time of this research, was a series of

databases that categorized specific software characteristics within high-level functional

domains of software usage (i.e., Test, Documentation, Upper Case, Software Engineering

Environments (SEE's)). The STSC defined these high-level domains as tool domains

where "Tool domains categorize software tools by their major functional capabilities to

compare similar tools" [18: 7]. Figure 3 gives a clearer picture of how to visualize these

domains. The high-level domain equates to the Evaluation Framework node in the tree of

Figure 3. The rest of the nodes in the figure represent the software characteristics that

would be analyzed for a specific tool. Appendix A provides a representative STSC

listing of specific software characteristics and qualities for the Requirements Analysis

and Design (or Upper Case) Domain [18:66-75].

Evaluation

Framework

User Management

Functional Quality Operational Acquisition
Capabilities Attributes Constraints Concerns

Figure 3. Example Tool Domain Evaluation Framework 118: 12J

18



As the reader will soon realize, all of this work helped the STSC to define the

specific requirements that an automated system, the STEMdB, should be built to meet.

With this background in mind, the details of the STEMdB design can now be provided.

Top Level Description of STEMdB. In order to describe the functional operations of

the STEMdB, the structural and functional requirements will be presented next, followed

by an implementation design description.

Representative Requirements Listing. The list is a representative rather than

exhaustive list of key STEMdB requirements as recognized by this researcher. For more

details the reader is referred to [19].

1. Build STEMdB tool to work around a hierarchical organization of CASE tool

software characteristics.

2. Use linearly weighted combination of a tool's characteristics to arrive at a scalar

measure for tool scores [19:8].

3. Use the identifying concept of a Software Area of Interest (SAI) to categorize

tools. The SAI is defined by a high level domain, a target application or Software

Engineering Activity (SEA) within that domain and a life cycle phase. The STSC defines

a domain as being either *'Management, Development, Test, Review, or Product

Support". The STSC provides an example of an SEA in Management as being either

"Project Management" or "Configuration Management". Finally the STSC defines a life

cycle phase as consisting of one of the following: -Concept, Requirements, Preliminary

Design, Detailed Design, Implementation and Unit Test, Integration and Test, Acceptance

and Delivery, or Maintenance". 1 19.5]

How this all relates to the "high-level functional domains of software usage" is

defined by ihe part of the STEMdB called the Formulator ( a description of the

composition of the STEMdB is presented latcr in this chapter).

19



4. Compute a function related score for each characteristic in the data model using

the linearly weighted method. Perform a similar analysis for each of twelve quality

attributes associated with the characteristic. Allow the user to enter the weights used.

[19:9]

5. Use the framework of a General Software Characteristic (GSC) with

instantiations of this framework, Specific Software Characteristic's (SSC's) containing a

functional value, a TEP, quality values and evaluation information for specific tools. All

GSC's will be defined by the functional/non-functional tooi characteristic identification

work being accomplished at the STSC during the time of this research. A more detailed

definition of a GSC will follow in the implementation and detail level design

descriptions.

6. Allow five types of evaluation answers (Evaluate Children, Yes or No, Multiple

Choice, Single Item Checklist, and Text) within the characteristic framework [19:12].

7. Support three separate functional operations, Formulation, Evaluation and

Selection. Allow concurrent evaluation and selection operations, but force the

formulation stage to a stable state before allowing evaluations and selections to occur.

[19:10]

8. Use a commercial database that supports Structured Query Language (SQL) to

manipulate and store the characteristic data. Provide for a tool interface that will issue

SQL commands to the database and receive data from the database. The commercia!

database must be able to support up to 2000 tool evaluations with as many as I0WO

software characteristics. 119:10, 20-23]

9. Front end programming language chosen for implementation will be "'limited to

those that support SQL commands with a particular database" 119:75].

10. "Platform upon which the system will run is limited to those that can host both

the front end implementation language and the database" 119:75 1.

20



Implementation Design Description. Essentially the STEMdB is composed of

five systems: The commercial database, the Formulator, the Evaluator, the Selector and a

user interface front end. Figure 4 shows how such a system could be visualized. The

arrows indicate communication between components in the form of commands.

Front End ..Conwi iI
Subsystem Databa e

Formulator Evaluator Selector

Subsystem Subsystem Subsystem

Figure 4. Original Design Components

Conceptually, the data that describes a CASE tool's functionality within a domain

can be viewed as a description tree, where the functionality of the top node of that tree

describes the functionality of the tool. This concept is based on requirement 4, where the

functionality of a node is equal to the weighted sum of the functionality of its children.

Each node in the description tree will be a SSC which contains the evaluation data

associated with the functionality of that node.

21



The database subsystem would be chosen to provide both an SQL interface and the

full functionality of a standard database. A front end interface would be used to

communicate between the database and the other three subsystems.

The Formulator's principle function would be "to specify the various functional

areas that describe the performance of CASE tools and then to build a description tree for

each area" [19]. The Formulator subsystem must be able to build description trees out of

a framework of GSC's. The GSC's chosen for the framework will be identified as a

result of the work that is still ongoing at the STSC under the T&E Process. The method

that describes how to evaluate a description tree will be implicitly defined by the "type"

of evaluation answer that the Formulator encodes at each node in the tree. The

Formulator needs to be able to access the database to store SAI design's.

The Evaluator must be able to access a specific SAI design in the database, to

understand how to evaluate its description tree based on the types associated at each GSC

node, and it must be able to store the evaluations as an instantiation of the SAI design for

a specific tool. Once the Evaluator subsystem evaluates a GSC, it should be able to store

the results in the SSC that maps to that GSC.

The Selector must be able to access tool specific instantiations of the SAI design. It

must be able to define weights for every SSC node in the design. It must be able to save

these weights in a weight set area of the database for the tool specific instantiation. It

must be able to understand how to score a tool and its individual characteristics given

both an SAI description tree and a weight set. It must be able to save sets of user defined

tool names.

Detail Level Description of STEMdB. The next three sections present a description

of the STEMdB design data semantics, subsystems communications, and subsystcm

processing.

22



STEMdB Data Model Description. One of the best ways to visualize a data

model is through a graphical illustration. Data models provide both "data and structural

information" [19:3]. The requirements document in [19:25] provided the table relational

diagram shown in Figure 5, but this illustration did not provide an immediate picture of

how the data was structured without extensive study.

Selection-Set Cj The-..Area __________

St-Namel Do ai ___ ______ ________

The-Too] hs hle

ToL~metheSEATree Formulation-Question
Verson SpecifIi c.SofL.-Char Evaluation-Q~uestion
Cost h'o EsnilFa
theSelectionSet the~efleralCher Evaluation-Metho
theAreas Vletepcfchr
the?~pecif icChars TEP theParent
the'roolScores theouallttes theChtldren

TooLc :4 theScores

theWeightSet - I The-.score The..QuaU~it
Function-.Score theWeightSet giCty.h!!fl3me
Quality-.Score theSpEcificChars QUA~llyValue

Wh-etht..e Quality-Score [ h-vlao

theScores V the~eneralCher Date
theWeights - Function-Weight LtheSpecificthers

Quality-..WeightJ

Figure 5. STEMdB Requirements Table Relational Diagram

To gain morc-insight into how the data was structured, the entity relationship (ER)

diagram in Figure 6 was developed from both general 1ool usage knowledge and fromn the

table relational diagram of Figure 5. An attempt was made to maintain the same naming

conventions used in 1 19:25-32] in order not to confuse those referring, back to this STSC

23



requirements document. To achieve better readability ar d understandability of the

design, however, the following changes were made:

1. Four relational table names were changed
- Specific_SoftChar and GeneralSoftChar tables were expanded to their full

names.
- The_Score table was renamed softwarechar_score
- The-Weight table was renamed softwarechar weight

2. The linking relationships were provided shorter names that all began with "link"

and ended in two capital letters that matched the first distinguishing letter of each linked

table. For instance linkAT connected the The_Tool table to the TheArea table. There

were two cases where this rule was broken. The first case involves all non-trivial

relationships (relationships that contained attributes in exc.-ss of the mandatory keys) of

linked entities. All non-trivial relationships were given a descriptive relationship name.

The other case involves the "rootnode" relationship. This relationship needed a more

descriptive name to identify it as linking an area to the top node of a description tree.

3. Finally, one linking relation was added between TheArea and The

GeneralSoftware_Characteristic tables. The root_node link was added to clarify the

relationship between the Area and a general software characteristic.

The way that an ER model is converted to the table relational form is

straightforward. In general all entities and relations become tables with their attributes

becoming table field names (or column names in other words). Distinguishing attributes

become key attributes in the tables. Each general characteristic, for example, would be

designated a row (or a record) in the GeneralSoftware_Characteristic table. To access

the attributes of a specific general characteristic, one would search for the unique key,

GCSID, that equals the desired GCS_ID key. Relation tables also inherit as key

attributes the key attributes of the entities that they connect. If aggregatior, exists then the

aggregate inherits attributes of its internal relationship and it becomes a table. For

instance, the Specific Software Characteristic aggregate table would have field names of:

24



SSCJ1D, OCSID. TOOLJD, value, and tep. The SSC-1D, value and tep were already

attributes of the Specific Software Characteristic relationship , it inherited the TOOLID3

key from the TheTool entity and it inherited the OCSID from the General Software

Characteristic entity.

SETNAME EALDy QUAL_11)

SeleccionSet IleEa Aao ISTJ4A E beQj"YQUAUTrY.Y4LU

I:N 
:do

SI T NAME EAIDQUAL -ID Ii
TOOLII) HOnST - SAL ID I inc IinkQS-11

SS 
C 

IDJ

I:MM.
VedrVep Soflwar -Ad.-hlp

peic I:N Characteristic '"-

TOOL ID

AR A _ DI h E N MMIi k s
GARSC IDcII

Figure . Entiy c WaIonip IaT-STanlo SE.

linkT ("hoh-tigh Sofw25



Description of Key Entities and Relationships of Figure 6. The entities in

the STEMdB data model are as follows:

1. The_Tool - Contains basic tool information as defined in the attributes of

Figure 6.

2. The_Area - Functional areas to which CASE tools will map. These areas map to

the high level tool domains discussed earlier.

3. General_SoftwareCharacteristic - Framework which the STEMdB tool is built

on. The following is an explanation of all non-self explanatory attributes:

formu.? - Is an explanation comment stored in the GSC by the designer of the
domain description tree. The comment explains why the designer chose to insert a
particular characteristic at a particular location in the tree.

evalu ? - Is the evaluation question that an evaluator must answer to evaluate
the characteristic.

evalu help - Explains the justification for addressing the evaluation question of
a characteristic.

essential flag - Maps back to the STSC "short tool list" concept. In [27] a short
tool list was the lisT of tools that met the minimum Air Force Requirements as determined
by the STSC. In the context of the STEMdB, the Formulator tool flags a characteristic
as essential when it must be evaluated favorably for the tool to be considered in a
selection.

evalu method - This is a Boolean variable that lets the evaluation tool know
whether or not This characteristic must be evaluated. When a characteristic contains the
type of "Text", for example, this attribute will have truth value of "false". All other
answer types will result in a truth value of "true".

4. Specific_Software_Characteristic (SSC) - This is the instantiation of the GSC

after it has been evaluated. The "value" attribute contains the functional results in a form

that is defined by the answer type in its corresponding GSC. The "tep" maps to the TEP

of Figure 2 and represents the same information.

5. Weightset - Contains the names of stored weight sets for specific high level tool

domains. The default attribute is a Boolean that determines if this weight set is a default

weight set.

26



6. SelectionSet - Contains the names of sets of tools that were considered and

stored by a selector.

7. The_Quality - This entity has a quality- name attribute that can be assigned one of

twelve quality names (see Appendix A). The QUALITY_VALUE associated with a

specific QUALITYNAME is an integer score (between 0 and 10) arrived at by an

evaluator based on a TEP.

8. TheEvaluator - Represents specific evaluator information about the person who

evaluated a SSC for a tool in a given functional domain.

The non-trivial relationships (non-trivial meaning that the relation tables contain

attributes in excess of the mandatory inherited key attributes) are as follows.

1. toolscore - Given a weight set and a tool this relation provides the overall

function and quality score of a tool within the context of a domain.

2. software_charscore - Given a weight set and a SSC this relation provides a

function and quality score for that particular SSC within the context of a domain.

3. software_char;.weight - Given a weight set and a GSC this relation provides the

specific function and quality weight for the GSC.

STEMdB Interface Design Description. There were two types of interfacing

that [191 described, the user interface and the functional tool subsystem interface to the

database subsystem. Although the user interface was not required to adhere to any

particular graphical user interface (GUI) standards, the design did specify that a GUI

would be used. The tool interface between database and STEMdB application was

defined in 119:211 as in Figure 7:

STEMdB Functional Design Description. A top level description of the

functional requirements was already provided earlier in the Implementation Design

27



Description section. The reader is referred to [ 19] for a detailed description of the

functional components of the design. A flavor for these details will be provided in the

analysis section of this chapter which follows.

stemDB
SOL Commands b

Database

Front-End CASE Tool Data Engine j
4 (e~g.,Oracle)

Figure 7. STEMdB Basic Components

Analysis

Areas Well Designed. In general the STEMdB effort had accomplished a lot of

good work towards creating the end product of the STEMdB tool. The developing

organization understood the need to learn more about the problem space and used

prototyping as a means to help firm up requirements. To accomplish this prototyping,

two prototyping efforts were launched. The first effort resulted in a Think Pascal

implementation that was developed in the MacApp development environment. This

effort produced the three working prototypes referenced in 18; 7; 9]. These prototypes

concentrated on modeling Formulator and Evaluator tool functionality more than the

Selector tool functionality. Another product of this prototype stage was the creation of

three Hypercard Tutorial stacks that were targeted towards training users of the

prototypes. The next stage prototypel 19:31 was an ongoing effort that was described in

29



the requirements document. Its purpose was to show how the STEMdB would work with

a database storage facility, and to show how the user would interface with a STEMdB

tool.

Much of the functionality described in the requirements document and the

prototyping efforts showed the developing organization's dual concerns for providing

both a useful tool and a user friendly tool. The following section identifies some of these

requirements.

The design addresses how to process data from multiple evaluators by merging

evaluation trees. The design also specifies that a Graphical User Interface will be used.

The design partially addresses the issue of helping the user by providing textual

information on the Formulator and Evaluator processing. The design identifies that a

database could contain incomplete information from both Formulator and Evaluator

processing. Incomplete information in this sense, however, is an added functionality of

these two tools, since a user is released from the requirement of having to complete a

session in one sitting. The design also addresses one aspect of maintainability from the

viewpoint of supporting a rapidly changing data model. Since identifying characteristics

of tools could change frequently (due to the ever-increasing improvements to software

design), the design will address how an old data model can be mapped onto a new design

[19:121. Although this mapping concept was identified in the requirements document as

necessary, no design was presented at the time of this research.

Areas That Require More Work. Even though the prototyping efforts produced

many valid design requirements, questions still remained about the design's

maintainability and upgradeability. This researcher identifies two top level areas that

require more work due to a lack of maintainability and upgradcability in design

considerations and unnecessary data and functional limitations. The first area identified

29



discusses new approaches to designing the STEMdB tool that support upgradeability and

maintainability requirements. The second area identified addresses improvements that

can be made within the context of the present tools data a unctional designs.

New Approaches to Designing the 5TEMdB Tool. This section is divided into

two new approaches for the present design. The first approach presents an argument for a

change in design methodology, the second approach presents an argument for setting a

higher goal for system maintainability and upgradeability. Both arguments complement

one another.

A Change in Design Methodology. The STEMdB was designed from a

functionally oriented approach. In the STEMdB requirements document the Front End

module was identified as providing all the functionality of the STEMdB tool. It

controlled the Formulator, Selector and Evaluator, while providing scoring, reporting,

interfacing, database initialization, and a user interface [19:22). Since the STEMdB was

designed with behavioral goals that map closely to the behavioral goals of the Lawlis

dissertation tool ASSIST, the STEMdB tool is a decision support tool. Lawlis states that

there is -a strong relationship among the object oriented concepts and knowledge

representation concepts of frames and semantic nets" 124:55J. She further states that if a

decision support tool -uses these knowledge representation concept-", it should naturally

follow that the tool be developed using object oriented concepts 124:55 1. The STEMdB

is developed based on the idea of frame based knowledge and semantic nets. The

description tree is a semantic net and each node contains a frame of knowledge.

Therefore, it should naturally follow that the STEMdB be developed using all objcct

oriented design approach instead of the present flnctional decomposition approach. In

addition, if the STEMdB is a txol that will be utilized over many years then

upgradeability and maintainability become an issue. In the functional decomposition

30



designs of past and present, maintainability and upgradeability are hampered by designs

whose state information is dispersed throughout the functional modules. Borland is one

example of a commercial company that has switched to object oriented programming in

all of their products and is reaping the rewards of this new methodology. In an October

1991 US News and World Report news release, Borland claimed that the Object

Oriented Design (OOD) methodology cut new upgrade release development time one

third to a half while also reducing lines of source code. In the article, Borland used their

old way of doing business, Structured Analysis and Design (SADT) and Functional

Decomposition, as a benchmark for these assertions. Changing the design approach

could reap similar rewards for the STEMdB when it comes time to maintain and upgrade

it. Besides, much of the work that has already gone into developing the STEMdB

prototype efforts can also be used in an object oriented approach.

The Lawlis dissertation lays the framework for an object oriented approach.

Chapter IV shows how the STSC design can be re-accomplished using this framework.

Improving System Maintainability and Upgradeability. According to the

design, the STEMdB was targeted for one :A;atform that supported one type of SQL

database. Furthermore, the STEMdB implementation language could not be Ada since

requirements nine and ten in the Design Description Section of this chapter explicitly

stated that the implementation language must be supported by a database provided

interface. At the time of this research there were no knowr, "QL commercial databases

that provided interfaces in the Ada language. By eliminating Ada as an implementation

language and by restricting the tool to operation in one specific environment, the

developing organization was not providing for long term maintainability or

upgradeability.

31



Ada provides many of the capabilities that support good software engineering

practices which, when properly implemented, can create a more maintainable application.

The language provides strong typing, the mechanisms for information hiding and the

ability to communicate with other implementation languages. It also provides the

capability to create abstract interfaces in software applications which can be used to

establish hardware independence. For instance, when a software application using an

abstract interface must be re-hosted on a different machine, the implementation part in the

body of the interface will need to be revised but the rest of the application logic and

structure will remain unaffected. Since Ada can communicate indirectly with SQL

databases through pragmas, it becomes a candidate implementation language for the

STEMdB. Further, since the Department of Defense (DOD) edict states that all DOD

software developments will be accomplished in Ada unless it is not cost effective [4], the

STEMdB must be developed in Ada. Using Ada to communicate with a database opens

up a further design decision as to how to approach this interface design. At the time of

this research much of the procedural program interfacing with databases used a de facto

standard of pre-compiler technology [ 14:3]. Pre-compiler technology was a method used

for embedding SQL statements within a procedural application program like Ada.

Chastek et al. warns against using this technology in the development of Ada applications

since it in effect creates a new language that "...no longer conforms with the Ada

Standard." [14:3]. A solution to creating an Ada to SQL binding, or an interface

independent of pre-compiler technology, was established by the work accomplished in

[14; 13; 17; 161. The model developed by Graham et al. 114; 13: 17; 16] is called the

Structured Query Language Ada Module Extensions (SAME) and will be discussed in

detail in Chapter IV. A solution design using the requirements of the STEMdB will also

be presented in that chapter.

32



Top Level Requirements Change. A significant area in the STEMdB

design that was not addressed by the requirements was the identification of end users of

the STEMdB tool itself. Due to the widespread need for this type of tool in both industry

and the government, and due to the limited resources of any DOD organization, the tool

should be developed with remote usage users and multiple platform configurations in

mind. Building on the concept of abstract interfacing and hardware independence,

extending the STEMdB requirements to support remote users and multiple platform

configurations becomes trivial. The requirements should reflect this as a design goal.

Given that this is a valid requirement, the following implications must be addressed by

the design:

1. With the many variables associated with CASE tool selection, the tool should be

built and tailored as a decision support system. It should be built so that a user who has

no previous knowledge of evaluation and selection processes can use it effectively.

Decision support systems do not have the expert knowledge that an expert system has,

but they do have some degree of domain knowledge which allows them to provide the

user with an informed decision. With this in mind and armed with the knowledge of

information proliferation from Chapter 1. any tool that helps reduce volumes of

information into some uscable form benefits all users. This can be understood by looking

at the only alternative to such a tool which would be a user inept at evaluation and

selection processes attempting to select an appropriate CASE tool. Such a user more than

likely would accomplish an ad hoc evaluation and selection with limited information that

may not meet his/her needs.

2. Incremental development would allow various phases to the tool to be developed

to meet the goal of remote usage with multiple platform configuration. The first phase

would involvc strictly in-house use at the STSC, the second phase would involve the

STSC sending personnel out to remote locations (locations other than the STSC) to both

33



test the remote database access and the remote application operation. Remote testing

could also involve a joint training session with the remote organization on how to operate

the STEMdB tool. The next phase would allow pilot remote organizations trained in the

correct usage of STEMdB to operate it remotely and supply feedback. These first three

phases would have to be repeated for all target platform configurations. The final phase

for any configuration would involve providing both the tool and tool training to any

organization that has a need and that has the remote interfaces, software and hardware to

support the tool.

One of the major problems associated with this type of approach is the complexity

that results from relationships between different hardware platforms, different user

interfaces, and different database interfaces. This complexity can be reduced by

designing the system around abstract interfaces to these areas. The STEMdB itself would

have to be configured by using "concrete interface" [17:6] modules in the implementation

part of an abstract interface. Concrete interface modules, according to Graham, are the

modules that are implementation dependent. The use of concrete interface modules along

with their enclosing abstract interfaces, would allow an application such as the STEMdB

to be portable across different configurations. As the need for more remote platform

support becomes necessary, the STSC would have the option of extending the STEMdB's

target platform domain to meet this need. In addition, the STSC could provide to the Ada

software development community a library of these interfaces. The Ada development

community would then have the capability of making their Ada applications more

portable across different configurations.

The one interface in this section that may not be feasibly abstracted is the user

interface. This may be the case if the STEMdB user interface is built using a

commercially developed user interface application. One example of where a

commercially developed user interface could not be feasibly abstracted out of an

34



application is a HyperCard program running on a Macintosh computer. This was

discovered by Lawlis while implementing her ASSIST prototype in Hypercard.

3. Other design changes resulting from remote usage would require that the

STEMdB:

a. Provide an initialization routine in the abstract application interface that

creates the tables that will mimic the database format of the STSC database.

b. Provide capability to download and import the data into a users local

database. This capability could initially be provided as a manual procedure. In this case,

users must understand how to import data based on their own database and the format of

the downloaded data (i.e. comma separated text, tab separated text ).

c. Add the capability for the tool to check downloaded data against a date flag.

By ensuring that upon "download date expiration" any further selection work will not be

allowed to proceed unless new information is downloaded, the STEMdB will help

maintain the data currency requirements. Due to consistency considerations that local

database information, additional capabilities will need to be provided for local database

currency updates. For instance, the local weight set data will be updated with any new

default weight set data in the currency update process. If steps are not taken to preserve

the original user defined weight set data, it could be overwritten in the update process.

Similarly, the remote tool will need to be sure not to upload any SelectionSet

information (since this information only makes sense when the remote user identifies tool

sets important to his/her organization) and it will I,tve to provide for restoring

softwarechar-wcights. Two constraints that must be checked on the newly uploaded

data would be that all restored linkST ToolID entries have matching tools in The-Tool

and that all restored GCSID's in softwarecharweight have matching GCSID's in the

General Software Characteristic table. These consistency checks are necessary since the

35



newly uploaded data may have added or deleted information that the earlier system used.

For instance, a tool could have been deleted from the database.

d. Finally, the remote tool should be able to check an application integrity

constraint that would guarantee that the remote application and the STSC database are

compatible. This would ensure that there were no structural revisions to the database

design after the STEMdB remote application was released.

Improvements to Be Made Within Context of Present Design. This section will

suggest improvements to the Data model, the Formulator functionality, the Evaluator

functionality, and the Selector functionality.

Data Model There were six areas that needed to be addressed further

within the Data Model.

The first area concerns the relational database design goals of Boyce-Codd normal

form~fhird normal form(BCNF/3NF), lossless join decompositions and dependency

preservation. According to [23:209] these design goals are principle criteria for good

relational database design. The overall minimal requirement in any database design is to

reduce update redundancies while preserving functional dependencies. Either normal

form accomplishes the goal of reducing update redundancies with BCNF also minimizing

those redundancies. The difference between BCNF and 3NF is that 3NF is a less

restrictive form (it can have some redundancy) that maintains functional dependency

preservation whereas the BCNF form is a more restrictive form that guarantees minimal

redundancy at the possible cost of dependency preservation. A definition of BCNF form

is provided in the following analysis sections. Since 3NF form was not needed in the

following analysis sections, its definition is not discussed. Dependency preservation

means that after a database scheme is decomposed into its sub schemes, each of the

problem space dependencies "can be tested in at least one relation in the decomposition"

36



[23:182]. According to [23:181], when accomplishing relational decomposition,

designers must ensure lossless decomposition/joins. This means that the designer

decomposes a scheme so that no functional dependencies are lost as a result of the

decomposition [23:184]. There was no indication in the STEMdB documentation of

requiring any of the design goals discussed in this paragraph.

Without knowledge of how the STEMdB relational data model was designed, more

confidence in the design had to be gained. To gain this confidence, a canonical cover

with dependencies defined in Table 1, was derived. A canonical cover is a minimal set of

functional dependencies that fully defines a schema with minimal repetition of

information. A canonical cover of dependencies must be able to completely derive all

original dependencies without adding any additional information. The form of each

component functional dependency in the cover is required to have a unique left hand side.

Table 1 lists one possible cover that fully defines the STEMdB Schema [5]. The syntax

T =* A is read "T implies A".

For better readability of candidate key results, and for functional dependency

processing derivation, it is desirable to represent keys in some abbreviated form. The

acronyms used in Table I represent the keys/attributes of Figure 6. In general, if a list of

attributes was defined by long words in Figure 6, for instance the softwarecharscore

non-key attributes, then the acronym used to describe this list was written with

distinguishing capital letters followed by an "_a". One example of an acronym

conversion follows: The software_charscore non-key attributes in long hand would be

written "functionscore, quality-score", but this new notation reduces to the following

notation: SCSa. When a key attribute was represented in shorthand, it was just

distinguished by an obvious set of capital letters. Table 2 maps the acronyms of Table I

to the keys/attributes they represent in Figure 6.

37



Table 1. Functional Dependencies of STEMdB Schema

GSC, T SSC..a, ParentGSC

WS, GSC = SCW_a

A = GSC

WS, T, GSC => SCS-a, TS_a

EVAL = date

WS = default

GSC = GSC a, A

T T a

QUAL = QUAL_a

The main result of the derivation of a canonical cover was the identification of a

STEMdB functional closure. Closure analysis identified {T, A, WS, EVAL, QUAL} or

{T, GSC, WS, EVAL, QUAL) as the candidate keys. Candidate keys provide the

minimum functional information a database schema must have to fully identify all

functional dependencies. This analysis shows that given an Area or GSC, a Weight Set, a

Tool and evaluator/quality information all other dependencies in the database can be

derived. The candidate key with the GSC in it will only work, however, if that GSC is a

root node in the present design.

Upon further analysis each relation scheme of the STENAdB, in the original Figure 6,

tur.is out to be in a BCNF form that is dependency preserving. This is true since all but

two relations were of the form of Super Key = attributes. To check for dependency

preservation, any relation that has functional dependencies beyond those of

Super key = attributes must have these dependencies preserved and accounted for in the

cover analysis. The two relations that had additional constraints were the roxot_node and

38



the linkGG. Additional constraints surface whenever there is a one to one or a one to

many relationship. The two additional functional dependencies resulting from the one to

one relationship between TheArea and the General Software Characteristic were

incorporated into Table I and were maintained in the design by the cardinality. The same

can be said for the child GSCID determining its Parent GCSID, which results from the

one to many relationship in linkGG. Since all relations that make up the STEMdB are in

dependency preserving BCNF form, the STEMdB Schema is in BCNF. These results

allowed this researcher to conclude that the schema now reflected the database design

goals established earlier.

During the course of this analysis a problem was discovered in the context of the

problem space, however. Ambiguities were resulting from the design using two binary

relationships to define the tool-score relationship. This relationship is truly a three way

relationship that depends on a root GSC node, a tool and a weight set. By designing it as

a binary relationship the integrity of the data was compromised. The best way to show

this is through a scenario that uses the structure of Figure 6.

1. Given a tool, TI, that maps to two evaluation domains, AI and A2 through two

root GSC nodes, GI and G2.

2. Given one weight set, WS 1, that maps to both G 1 and G2.

3. Provide the toolscore for TI using WSI.

As the reader can surmise there are actually two different domain dependent scores that

the tool can be assigned based on whether A I or A2 is selected. This ambiguity can be

eliminated from the design by specifying a GSC that defines which domain the score is

desired in. The original STSC design omitted the key attribute of GSCID. The redesign

in Figure 8 implements this correction by connecting the tox)lscore relation to the

Software Char Weight aggregate thus inheriting the GSCJID key from it.

39



Table 2. Map of Table I 's Relationship to Attributes

T TOOLID

A = AREAID

EVAL - EVALID

QUAL = QUALID

GSC = GSCID

T_a = TheTool non-key attributes

GSCa = General Software Characteristic non-key attributes

WS = WEIGHT_SET_NAME

SCW_a W softwarecharweight non-key attributes

SCSa = softwarecharscore non-key attributes

TS a - tool_score non-key attributes

EVAL a The_Evaluator non-key attributes

Parent_GSC = ParentGSCID

QUALa = The-Quality non-key attributes

The second area that needed to be addressed further within the Data Model concerns

table optimizations that can be made in the design. The original STSC design lacked any

reference to a relationship called rootnode between the The-Area and the

General_SoftwareCharactcristic entities. The design of Figure 5 references the

theSEATree as a link in the TheArea table and it references the keys of the The_Area

table as a key in the GeneralSoft_Characteristic table, yet the rest of the design never

references how these are connected. It appears as though the system designers were

incorp)rating an optimized design into the requirements doxument while omitting the

source design. According to Dr. Roth in 161, it is important to keep a record of the

40



original design prior to any implementation ophimizations. In order to re-host the design

on a different target architecture (on a distributed system for instance) at some future

date, this record along with a record of optimizations will help to prevent any reverse

engineering from being required.
SET NAME EVAL ID QUA];ID'

Selection-Set The-Evaluiator I RRSTN ANIE The.QuaI ity QUAlIYNM
LASTJJAME. QUALITY-VA LUE

1: :N daeI:N

QUAL -ID
SET -NAME linkST EVAL ID lnE S n lnQ

TOOL ID SSC_1D.lnE sii inQ

1:M I:M

TOOL II) SSCID GSC 1)

IDOLNAME L.M 3C-1 CHARACT..$AME

'Caor The .Toi I Geera

Charactenstic ev mto

AREA IDWEfIfhT SETNAME

SSC In fqmblyawtgIt

linkATWEIGHT -SETNAME

(,,acgmnscou oftwan

char

char ANENT (SC _D

L((: II)

1.1 ARrAI

D0161AN TOOL11) I-

Fiuc8 ntt eaiosi Aaga eie

(;%C 4n



By incorporating a rootnode linking relationship (as shown in both Figures 6 and

8) the connection between the GeneralSoftwareCharacteristi: and the TheArea tables

can be established and any previous optimization is eliminated. Since the basis for the

previous optimization was not stated, it's existence could not be justified. The one to one

nature of the new rootnode relationship implies that table optimization can be

accomplished by eliminating the rootnode relationship table and by adding keys to the

appropriate tables. Since The_Area requires exactly one root GSC node, the GSCID of

the root node can be linked to exactly one entry of the TheArea table by adding it as an

attribute. Since a GSC does not necessarily have to be linked to an entry in the TheArea

table, adding an AREAID key to the General Software Characteristic table would be a

waste of storage space for the design in this chapter. Consider, for instance, that only one

node of all GSC's for an area must have an AREAID attached to it. All other GSC's

have an implied association with that area through their linkage to the root node.

Therefore by adding the attribute of root_nodelD to the TheArea table and eliminating

the need for the rootnode relation, functional dependency between the two entities is

maintained while storage space is saved. The original design which associated an area

with every GSC was wasteful unless the developers had a design goal that was not

specified in the requirements document. By eliminating the linkGG table and placing a

parentGSC-ID key in the GSC table, another table optimization can be established.

This would be functionality correct since every GSC has exactly one parent, except for

the root node GSC which has a null parent.

Another interesting twist to the old design can be seen by concentrating on the

hierarchy of GSC's. Early in the research a STEMdB designer commented that the GSC

structure was more of a directed graph than a tree since it could have more than one

parent assigned to the same child. Allowing this type of design would save space with

common GSC's shared by different description trees. Since the original design had an

42



Area associated with every GSC node, there would have to be a way of coding multiple

Areas into each GSC node. Associating multiple areas with one GSC node would change

the cardinality of the original design to many to many and would require that another

relationship table be added to the original relational design of Figure 5. During this

research, the multiple parent concept was discarded by the STEMdB designers. The

complications associated with this type of design were determined to out-weigh any of

the benefits. From one perspective, this could be considered a good design tradeoff

decision since it does reduce the complexity of the design. From the big picture

perspective, this design decision may have placed unnecessary restrictions on the design

too early. Chapter V will present a more detailed argument against early restrictive

design decisions.

The third Data Model area requiring re-work concerns the naming conventions used

in [19:26-28). The relationships ToolScore, TheScore and TheWeight are not listed

in the linking relations section of the design document. These three relations are linking

relations as can be seen by their counterparts of Figure 6, therefore they should be

identified as such.

The fourth area has to do with optimization questions about the Specific Software

Characteristic table. The Specific Software Characteristic entity can be thought of

conceptually as consisting of itself, The-Evaluator and ThcQualiiy entities. The present

design requires table joins to be accomplished between the Specific Software

Characteristic and TheEvaluator and the Specific Software Characteristic and

TheQuality tables through the linking tables of each. Join operations are time expensive

when one considers that the underlying operation depends on searching for matching

attributes in the cross product of two table's entries. 'lb access all SSC data on any area,

the access time will be of order (Number of Specific Software Characteristics * Join time

required per characteristic fetch). This join time is functionally dependent on the size of

43



the Specific Software Characteristic table (maximum = 1000 entries), the Evaluator table,

the Quality table, their linking tables, and the efficiency of the search algorithm. If

memory space is not a limitation, the lag time associated with the present design can be

eliminated by placing all of the attributes/keys into one table, the Specific Software

Characteristic table. A drawback of this is the limitations that result from a fixed design

of the number of allowable entries of evaluators and quality values per characteristic.

The fifth area concerns the re-design of the conceptual relationships of the

Selection_Set and the Weight-Set.

SelectionSet Re-design. Presently the Selection_Set retains only a list

of tools that were evaluated under some domain and some weight set. To remind the

selector of the original context of the selection set, an automatic connection to both an

area and a weight set should be associated with all selection sets. To address this design

in the data model, a four way relationship link could be created connecting the

SelectionSet, The_Tool, TheArea and the Weight-Set. Figure 9 shows what this

would involve for the entities discussed. The linkSAWT relation would then replace the

linkST relation of Figure 8.

Weight-Set Re-design. For mo:' flexibility of the design, there should

be three levels of default weight sets: the automatic default that assigns all nodes within

the same level equal weights, an explicit Formulator system default that assigns weights

to nodes based on empirical evidence for a domain, and the user definable default. This

design could be implemented with an optional one to one relationship between the

TheArea and the Weight-Set tables or it could be implemented with access time

optimization by adding the attribute of system_default weiLht set name to The-Area

table. One other way of implementing this would be to add an "'cmpiricalwcight"

attribute to the GSC Table. This re-design would require that the Formulator be

44



re-designed to create and store the default weights. A further justification for this re-

design will be presented in the analysis section on Formulator functionality.

SlectionSet I SETNAME

1:M

AREA ID AWT
DOMA 

AWN

SEA
PHASE

Weiget 1:M

WEIGHTSETNAME TheTool
default

TOOL ID
TOOLNAM E
VERSION
vendor

cost

Figure 9. SelectionSet Redesign

The sixth area concerns a more extensive conceptual description of the data design.

Although a section on referential integrity was provided in the STEMdB requirements

and design document, a conceptual discussion of the entities was not provided. A

conceptual discussion provides a better word picture of how entities relate to one another

and how they affect one another upon update/deletion. The following presents a

suggested solution to this problem:

45



Conceptual Description of the Data Model. The conceptual

relationships between the different entities in Figure 6 can be understood by considering

the optionalites and cardinalities as follows:

1. TheTool - Has a mandatory relationship with both the SelectionSet and the

SSC. This implies that eliminating a tool from the database would cause records in the

SelectionSet table to be deleted if the tool was a member of .hat selection set. The same

can be said for the connection with the SSC table. If a tool was deleted then

characteristic values evaluated for the tool would no longer make sense to the STEMdB

model. Eliminating a tool would not affect the integrity of the Weight-Set or The_Area

entities, however.

There can be many tools associated with many areas or domains, selection sets and

weight sets. Only one tool can be associated with many different SSC's.

2. TheArea - Eliminating an area/domain would affect the integrity of the

TheTool entity, only if the area eliminated was the only area that a tool applied to. A

domain elimination also affects the integrity of the GSC table, since there is a one to one

mapping through the rootnode relation. This would cause an entire description tree with

a GSC as its root node to disappear, which would result in all related SSC's to disappear.

There can be many domains for many tools but there is exactly one domain for one

rootnode GSC.

3. GeneralSoftware_Characteristic - The GSC has a mandatory relationship with all

related entities except for its 'child' recursive relation. Therefore the integrities of all

related entities, including itself, could be affected by an elimination of an instantiation of

the GSC.

4. SpecificSoftwareCharacteristic - This entity has mandatory relationships with

TheEvaluator and TheQualities. This makes sense since these two entities can be

considcred a part of all unique SSC's.

46



5. Weight_set - Has a mandatory relationship with the GSC. Many weight sets can

be associated with many tools, SSC's and GSC's.

6. Selction_Set - This entity does not have to exist with respect to a tool. There can

be many selection sets associated with many tools.

7. TheQuaiity - The-Quality values must exist for the SSC. Many different quality

records can be associated with one SSC. This makes sense in the context of an evaluation

since quality values of one characteristic are associated only with that characteristic.

8. TheEvaluator - TheEvaluator must exist for the SSC.

ThL completes the conceptual discussion of the data model as well as the other data

model discussions. The next three sections present a discussion of functionality provided

by the three sub-tools, the Formulator, the Evaluator and the Selector.

Formulator Functionality. One improvement to the functionality of the

Formulator which could have significant impact on the STEMdB tool utilization, would

be to add an empirical weight set insert capability. Providing an empirically defined

default weight set, that has a solid statistical basis for a given CASE tool Software Area

of Interest (SAI), has the potential to make the STEMdB Selection process more

automated. It would become more automated by allowing the user to choose an area then

sit back and wait for the resulting tool list suggestions. The more automated a system is,

the simpler it is to operate and the more usage it will get provided its results are valid. In

order to get this statistical basis, an internal monitoring routine could be implemented to

record weight set information identified in a STEMdB session. The system could also

provide an automatic reporting routine that the user would use to send the raw data to the

STEMdB developing organization. This reporting capability addresses the feedback

requirement that an evaluation and selection system process must have to continue to

improve [1:71. Once this capability is added and good statistical bases for certain SAI's

47



are developed, the next natural step would be to add a default weight attribute to the

General Software Characteristic table. By adding this attribute the initial setup of

searching the software_ harweight table for default weights could be avoided. If these

empirically defined weights do turn out to be used the most often, then adding this

attribute reduces total processing time.

The Formulator documentation is ambiguous about the build process and the

hierarchy of characteristics. Specifically, it does not describe what types of

characteristics are and are not allowed to structurally follow at a lower level in the build

process. The STEMdB has five node types that can be assigned at any level in the build.

Incorrect hierarchical ordering of the types could nullify functionality that exists in a

node's children. For instance, if a single item checklist node is the parent of a node that

is an evaluate children type, and if the single item check node is evaluated, then the

functionality of the parent is assigned a one and its children do not add or detract from

this functionality. This result is not consistent with the requirements that the

functionality of the parent be determined by its children. The Formulator should provide

build restrictions on structures that are illegal and these restrictions should be

documented.

Evaluator Functionality. More flexibility should be provided to allow for

multiple evaluations of functions/qualities. The STEMdB design concentrates on a final

evaluation result for a function/quality that is statistically arrived at outside of the scope

of the STEMdB. The Lawlis [24:315-316] design accomplishes this task inside of her

tool by incorporating a "Summary" package as part of the Knowledge Base. Part of the

functionality of her Knowledge Base is to statistically average different evaluations of an

implementation and store the results of this process in a Summary package. Both Lawlis

48



and the evaluation and selection team of [1] emphasize the need for multiple evaluators of

subjective areas.

The design limitation of twelve quality attributes associated with every characteristic

is too restrictive and should be lifted. This researcher could find no justification for

enforcing this limit, other than a user interface that was tightly coupled with the design.

This restriction limits the STEMdB's capability for expansion. The Knowledge Base

discussed in Chapter IV will provide the evaluator with the qualities associated with the

STEMdB at any given time. The concept of the selector viewing these qualities can also

be addressed by calls to the Knowledge Base.

Selector Functionality. The first and most obvious area in the Selector

functionality that needs more work is the process of identifying and weighting important

tool characteristics. The ASSIST tool accomplishes this process by only processing the

features and criteria that the user identifies and assigns relative importance to. The

STEMdB tool assumes that all nodes will be visited. Those nodes that are not visited and

whose parents are not assigned a weight of zero, receive the system default weight and

are still used in the selection process of arriving at a score. This method places the

unnecessary restriction on the user of processing a minimum number of characteristics in

order to ensure that only his/her specific requirements are addressed. For instance, if an

SAI tree had five top levels of functionality, and the user only wanted the tool to identify

candidate tools based on exactly two of these areas, then the user would have to visit each

of the three undesirable nodes just to assign them a zero weight. The simplest solution to

this problem is to provide the user with a resource that equates to assigning zero weights

to all unprocessed nodes. This resource could also be provided at a higher level of

abstraction where the user can toggle it on or off. When on it would monitor all nodes

49



processed and then zero out all that had not been processed just prior to initiating the

scoring process.

Another area requiring more work is closely related to the one just discussed and has

to do with marking a characteristic as essential in the selection process. The Lawlis

design required that all nodes identified in the process be evaluated favorably for a tool to

be scored at all. The STEMdB requires that all nodes marked as essential by the

Formulator be evaluated favorably to be scored. It also provides the user the option of

marking each characteristic as essential but this option is provided outside of the process

of assigning weights. In effect for the user to tailor the system to his/her needs, she/he

must go through an additional process of marking essential characteristics while being

forced to accept system defined essential characteristics. The fact that a user identifies a

characteristic and assigns a weight to it, strongly correlates to that characteristics being

desirable and possibly essential. The STEMdB should provide a resource that when

toggled on, identifies all user visited and accepted characteristics as essential. In

addition, a resource to remove the Formulator defined essential constraints from the

process should be provided.

Since using a linear weighting approach to multiple criteria can result in decisions

that the user may not want ( and in the STEMdB design the user may not know that

he/she has been provided with a decision that doesn't meet user criteria), the designers

should state explicitly in the design documentation how these misconceptions and bad

decisions will be avoided. This problem with a linear weighted approach to multiple

criteria DSS systems is well documented.

Another area requiring re-work is the user interface presentation of data. Both too

much information and unnecessary information are provided to the user. The concepts of

leveling of information and of allowing for different user experience levels are not

addressed in the STEMdB design. For instance, the user is provided with a window that

50



shows the characteristic names structured within the form of an indented, numbered,

scrollable list. The novice user does not need to know how the characteristics are

structured and he/she doesn't have to initially have access to the complete list of

characteristics. After working with the ASSIST prototype from the Lawlis dissertation

and after analyzing the STEMdB design the following conclusions were made.

Abstraction out of a multi-level tree view and into a default list view at any given level

will provide the novice user with as much information as needed. A pop-up menu

containing the remaining characteristics at a given level can be displayed by the selector

when additional characteristics at a level are desired. The Formulator-defined empirical

weight could be used to indicate which characteristics should be presented at which level.

A user experience level function can be designed to provide more information to the user

based on the experience level chosen.

Another problem discovered in the Selector processing results from an implicit

rather than explicit way of handling tool cut-off threshold processing. Although the

STEMdB design implicitly allows the user to assign a threshold level by allowing the

user to require that the root node be above a certain score, it does not dt ,*s explicitly.

The design also made no mention of setting a default cutoff threshold for we tool score

process. Both Lawlis and an IEEE group in [24; 11 specifically identify that the user

must be allowed to modify cutoff thresholds. Both references also advocate providing a

system default cutoff threshold. With this justification, the STEMdB should provide a

system default cutoff threshold and it should explicitly give the user the capability to

change this default.

Another unnecessary functional restriction in the Selector results from presenting the

user with two disjoint scores, one for the functionality and one for the quality. The

STEMdB could easily present a combined score to the user. Adding this capability forces

the tool ranking mechanism to be altered. A single combined top level ranking of scores

51



(based on user defined weights) should become the lefault ranking mechanism, while

existing ranking methods should be made available at another lower level of detail.

The next area that the designers of the STEMdB were negligent in addressing was

the concept of evaluations existing in different states of completeness within the database.

Although the concept of returning to marked areas to continue an evaluation was

addressed, the concept of allowing selections on these partially evaluated tools was not

addressed. Lawlis in [24] emphasized the importance of making sure that evaluations are

done based on the same criteria. If some GSC is not evaluated in one tool but is in

another, would the STEMdB tool still compare the two tools and score them? Since

partial evaluations will be allowed, there needs to be some mechanism for tracking when

a tool is completely evaluated within the context of an area. This rvcchanism must be

accessible to the Selection subsystem. The STEMdB designers could design for two

levels of completeness in a tool evaluation: a degraded level and a complete level. With

software updates and improvements happening so rapidly, the degraded level could

represent a set of characteristics that is empirically proven to support most minimum

user selection criteria. This type of leveling would allow quick degraded evaluations of

new and upgraded tools to be accomplished in minimal time. This would also address the

issue of maintaining currency in the evaluation database. Another solution to this

problem is addressed in the design of ASSIST [24]. This design recognized that

evaluation information could be incomplete between different tools. Instead of forcing

the user to accept a degraded selection suggestion, it allowed for incomplete evaluations

by summarizing this incomplete information in a selection report. All candidate tools

were scored based on the same process, even if some were missing information on

non-essential criteria. Users could then judge whether to accept the output or revise their

own inputs based on the reported missing information. These selection reports .hould be

provided so that they supply the user with the context of how a decision was arrived at.

52



They should provide a list by tool of characteristic assessments that were missing, a list

of tools that did not make the system threshold cutoff, a list of tools that did make the

cutoffs, and a list of tools that were not considered because they did not have an essential

cl.aracteristic [24:103]. In [24:73-103], Lawlis provides a more thorough discussion of

how Selector or decision support logic should be defined.

Another area in Selector processing that was overlooked was providing the user with

the capability of choosing evaluation information based on evaluator "type". By

providing a "type" attribute associated with an evaluator, a user can identify a group of

evaluator types whose information is most valued. For instance, a non-technical

purchaser on a limited budget desiring to purchase a personal computer would be more

interested in evaluations of other non-technical users, since technical users tend to have

more sophisticated requirements. Providing for selections based on evaluator type creates

another mechanism for narrowing down the candidate tools of a certain SAL. Providing

this mechanism will also help to address the area of design sensitivity to user

requirements.

Summary

This chapter provided a description and analysis of a CASE tool evaluation and

selection tool. It compared the ongoing prototype effort of the STEMdB against goals

established in the literature. It used another prototype called the ASSIST as a basis for

comparison since both tools were developed towards the same goals, although the

ASSIST addressed these goals in a more abstract manner.

Two significant design omissions or unnecessary restrictions were discovered in both

the design methodology and in the system's ability to communicate with databases. Lack

of a specific design methodology to follow and the Object Oriented problem space

suggests that the design be approached with an Object Oriented methodology. This

53



researcher also identified the need to use Ada as the implementation language. Ada

facilitates abstract interface designs as well as designs using good software engineering

principles and thus using Ada has the potential to make the system more maintainable,

upgradeable and portable.

Several present design re-work areas were identified by this researcher from the data

model and functional model perspectives. The initial design was erroneous in its design

of the tool_score relationship, and table optimizations could be made. Also the

functionality of the Formulator, the Evaluator and the Selector could be improved by the

eliminating the deficiencies identified in this chapter.

54



IV. New Approaches to STEMdB Design

Overview

This chapter will present two top level designs that address the two new approaches

identified in the STEMdB analysis of Chapter III. It begins by showing how the object

oriented design of the ASSIST (Figure 1 in Chapter II) maps to the parts of the STEMdB

design (Figure 4 in Chapter III). Using the ASSIST framework in the context of a

STEMdB system, it then presents a top level STEMdB object oriented design. The

emphasis in this top level design is placed on the structure and methods of interaction

with the data store. In particular, this top level design emphasizes the Knowledge Base

subsystem's role in this interaction. The chapter then concludes by describing and

applying a new approach towards database interface design, the Structured Query

Language (SQL) Ada Module Extensions (SAME). This method will be used in

establishing the top level interface design for the abstract system interface that will allow

the STEMdB to communicate with SQL databases.

Top Level Design of an Object Oriented STEMdB

For the reasons stated in Chapter III the design of the STEMdB can be improved in

two ways, by redesigning the structure and dependencies to reflect a knowledge base

object oriented design and by abstracting out the interface to the database. A re-design

into an ASSIST-like object oriented framework is presented in Figure 10. The

differences between this design and the original ASSIST design result fiom the addition

of the Formulator subsystem and from the renaming of the Knowledge Acquisition

subsystem to "Evaluator" and the Decision Support subsystem to "Selector". One other

difference results from the ASSIST maintaining the database inside of the Knowledge

Base Subsystem. The new design consists of a data store, three procedural subsystems,

55



and two interface packages. Communications between the objects in this design are

shown by the directed arrows. Before proceeding with a more detailed description of this

design, the merits of the new design versus the old are presented.

Evaluator Selector

Subsystem ySubsystem

Abst rx.t Sys tem
[' '" "1 ntcrfac-¢

Knowledgc Ba.w Subsystem

Formulator

Subsystem

Figure 10. Object Oricnted STEMdB Design

56



A breakdown of the acronym of the original design, "stemDB", shows how the

designers of this system placed more emphasis on the database, "DB", than the Software

Tool Evaluation Model, the "stem". Consultations with the original designers also

confirmed this conclusion. To understand how the new design emphasizes a knowledge

base, and therefore the Tool Evaluation Model, versus the original database emphasis,

Figure 10 can be compared to Figure 4 and Figure 7 (both of these figures are repeated on

the next page for ease of reference). From Figure 7 and the design description of the

Front-End module, it could be inferred that there is a tight coupling between the Front-

End module and the Database engine. Further, since there is no discussion of

de-coupling the Front-End from the three subsystems in Figure 4, the design allows by

omission the possibility of a tight coupling between the three subsystems and the data

structures maintained in the Front-End. Tight coupling among separate modules in any

software design causes the design to be less maintainable and more prone to errors due to

the dependencies between modules. Tight coupling also supports an environment where

system state information can be de-localized and spread throughout the design. The

Knowledge Base object oriented approach of Figure 10 eliminates the intra-module

coupling by using well defined interfaces which provide methods and types to calling

modules. The methods or operations are suggested by the rectangles extending from the

subsystem box and the types are suggested by the extended ovals. The arrows in the

figure represent communication between modules. For instance, since the Evaluator and

Selector have no knowledge of the information contained in the Database, both the

Software Area of Interest (SAI) identification and characteristic identification methods

must be requested of the Knowledge Base before either process can procced. With this

comparison completed this chapter will now discuss the design in more detail.

57



Front End Cmeca

Subsystem

Formulator Evaluator Selector

Subsystem Subsystem Subsystem

Figure 4. Original Design Components (repeated from Chap 3)

stemDB
SOL Commands

Database
Front-End CASE Tool Data Engine I

4 (ex2.. Oracle)

Figure 7. STEMdB Basic Components (repeated from Chap 3)

58



The processing of this subsystem and other subsystems will be described in the

following sections using terms that are more generic than the terms of the original

STEMdB design. Specifically, the term "semantic net" and "knowledge frame data" will

be substituted for the terms "description tree" and "node data", respectively. They will

also be used interchangeable with the terms "structure" and "characteristic data",

respectively. The justification behind this switch in terms is centered around designing at

a high level of abstraction. The use of the terms "tree" and "node" forced the

"implementation" design decision that the data would be organized in a tree structure too

early. When implementation decisions are bound to the design too early, they limit the

design and cause the system to be less robust and less maintainable by temptinig designers

to tailor the design for a designated structure. Specifically, the original STEMdB design

was limited by binding the system data structure to a tree structure. One limitation that

resulted from this decision can be seen by realizing that the tree structure eliminated the

possibility for reuse of common characteristics by not allowing multiple parents. By

eliminating this possibility the design was not developed in a more general sense. Had it

been designed in the more general sense, then binding to a single or multiple parent

structure would ideally occur at or close to implementation time. By forcing this decision

at the end of the design, either a tree structure or a directed graph could be implemented.

Design Discussion of New Formulator. The Formulator Subsystem conceptually

exhibits the behavior as described in the requirements document (with the improved

behavior identified in the analysis section superseding weaker behaviors) and it achieves

this behavior using an object oriented methodology. Figure I 1 provides a more detailed

view of the internal design of the new Formulator. It consists of a Formulator Build

processor which requires the resources provided by the four resource packages shown.

Resources arc simply methods or operations and object types. The shaded packages are

59



resources tailored to the Formulator Build Process. Clear packages have some resources

unique to the Formulator Process, but also have resources that are common across all

three subsystem processes, the Evaluator, Selector, and Formulator. There is the

possibility that the Present State resource packages across all three systems (see also

Figures 12 and 13) could share resources but this would have to be addressed in a more

detailed design. This possibility becomes stronger when one considers the Evaluator and

Sele'tor processors and their dedicated packages. For instance, both of these processes

will desire state information about characteristics that were visited and altered.

There is no implied ordering associated with the internal sub-processes other than

initial setup requirements which occur in the top two procedure boxes of the Formulator

and Selector, and the top three of the Evaluator.

To understand how this processor accomplishes its job, the following Top-level

Structured English describes the processing that the new Formulator must accomplish.

This section and all following processing sections specify in their comment areas (which

are preceded by two dashes) how the Knowledge Base (KB) subsystem interface aids in

their processing.

Initialize to Formulator_start state;
-- Call KB routine "InitializeKBformulator" through Present State of Build
-- Resources initialization method.

Provide toggle capability to Setuserlevel;
-- Call KB methods "set_expert" or "setnovice" through initialization resources.

Provide ability to open new or old Software Area of Interest (SAI);
-- Call KB methods "defineSAI" or "updateSAl".

Provide ability to mark a description-area as released/not-released;
-- Call Build resources "release" or "intature_area" which will then call the
-- KB routines.

60



Formulator Build Pwcess

Cl haracteri stic
Identification

Initialize and
Association

Identify ResourcesSSAI
for B u il d

1~ iiiId / uppor

Rework

Fi1 1 FCreate or
Controller Modify

uSAI Structure Pres en t
State of

P Review, Insert/Updateda a f daorAccep t, | General-- -" -' "

c ctor Characteristic
Conti nue Dt

-- Ccefiato nesources

'- adBid eoreIt eus mehos et ndoturcest, n

Figure nIL Formulator Internal View

Provide capability for update of all evaluations made prior to latest release of an
updated description-area;

-Request KB to check -and-rcport-and-upxlate-if-possible oil any evaluations
-- using old description-ara.

Provide capability to insert semantic-net-description-data and frame data (or
characteristic data);
--Calls to the KB through Characteristic Identification and Association reCsources
-- and Build resources to request mecthods: get-and-put_fi-rmedata, and
-- get-and put-semantic-net-builders

-- (like createjlink, eliminate_link, reuse_sub-semantic_net_stiucture.
-- eliminatesub_semantic-net-structure).

61



Provide capability to maintain currentstate of Formulator process;
-- Calls to KB to "update-present-state summary" through Present State of Build
-- resources.

Provide capability to traversejforward, backward, or at the same_level in a
semantic_.net for review/rework;
-- Calls to KB through Build resources to request: workat.present_level,
-- workatnext_level_down/up, show all-not-processed/completed-frames
-- go-to-notprocessed/completedframes.

Provide capability to get a printout of work accomplished;
-- Calls Support resources for method "print report".

Provide ability to accept-partial/accept-complete/abort the session;
-- Calls KB through Present State resources to: Accept-session, Abort_session,
-- Check_if semanticnetis._completely_defined

Design Discussion of New Evaluator. Both the Evaluator and the Selector sections

follow the format of the Formulator section. The new Evaluator internal view is shown

in Figure 12. Its processes and interfaces or resources are enumerated in the figure. The

Evaluator Process conceptually exhibits the behavior as described in the requirements

document (with the improved behavior identified in the analysis section superseding

weaker behaviors) and it achieves this behavior using an object oriented methodology.

To understand how this processor accomplishes its job, the following Top-level

Structured English describes the processing that the new Evaluator must accomplish.

Initialize to Evaluatorstartstate;
-- Call KB routine "InitializeKBevaluator" through Present State of Evaluation

initialization method. Set Evaluator level to novice

Request Evaluator and Tool information;
-- Use Evaluation resources to call "Get_evaluatordata" and "Gct_tool_data"
-- methods from KB.

Identify correct SAI;
-- Calls to the KB through Characteristic Identification and Association resources
-- requesting to provide method "identifySAI".

62



Evaluator Update Process

initiaizeGCaracteristic
StateIdentification

andr
Evaluator Ass ociation

and~oResources

Characteristics t oo
andQualities aus10i

Revise, In put

Figure 12. Evaluator Internal View

Provide for ability to toggle Eval uator...procssingjlevel;
-- Novice level, verses Expert level, Request method "Define-how-to.proceed"

-- from KB through Evaluation Resources.

Provide characteristics for evaluation;
-- By requesting that KB

"-ProvideCharacteristics-at_-Evaluator-processingjecvcl" through
-- Characteristic Identification and Association resources

63



Direct user on how to evaluate;
-- Request KB provide method "how to evaluate-characteristic" through
-- Evaluation resources.

Store evaluation data;
-- Call method "Store_characteristicinfo" from KB through Present State of
-- Evaluation process.

Provide ability to review/change session inputs on request;
-- Call KB to "providesevaluation-process-summary" through Present State
-- Resources.

Provide capability to Accept, Abort or report-on session;
-- Call method "CommitDatabase" or "Rollbackdatabase" from KB through
-- Evaluation resources or call Support Resources for "provide-report".

Design Discussion of New Selector. The new Selector internal view is shown in

Figure 13. Its processes and interfaces or resources are enumerated in the figure. The

Selector Process conceptually exhibits the behavior as described in the requirements

document (with the improved behavior identified in the analysis section superseding

weaker behaviors) and it achieves this behavior using an object oriented methodology.

To understand how this processor accomplishes its job, the following Top-level

Structured English describes the processing that the new Selector must accomplish.
Initialize to Selectorstartstate;

-- Call KB routine "InitializeKBselector" through Present State of Choices
-- initialization method. Set Selector level to novice

Identify correct SAI;
-- Calls to the KB through Characteristic Identification and Association resources
-- requesting to provide method "identifySAI"

Provide for ability to toggle Selector_processing_level;
-- Novice level verses Expert level, Request method "Definchow_toprocced"
-- from KB through Present State of Choices Resources.

Provide characteristics for selection;
-- By requesting that KB
-- "ProvideCharacteristicsatSelectorprocessinglevel" through
-- Characteristic Identification and Association resources

Direct user on how to go through selection process;
-- Request KB provide method "howjto-proceed" through Support resources.

64



Selector Decision Support Process

In itialize Characteri stic

St ate Identification

Identify and

SAI Association

Identify 
Resoures

Softoware

Reesources

e1 SCharacteristic e w

Contolle Assign

Relative 
--- '-

Importance Presen t

-. Saeo.eetStote pf

Provi e ablity to 
s orePool,

CtChSoies

Provid ablt o re i w s s i ni p o n re ue t

Massage, Score Choices

Review To ols with

Results, Constraints
Accept

o f Resources
SResults

I |
I~ ~ esourcesI 

I

Figure 13. Selector Internal View

Store selection weights data;
--Call method "Store characteristicweightinfo" from KB through Present

-- State of Selection process.

Provide ability to score tools ;
-- Call KB to "'Scoretools" through Present State Resources.

Provide ability to review session inputs on request;
--Call KB to "'provideselcctionlpr-xcsssummary" through Present State

-- Resource,-.

65



Provide ability to re-accomplish selected weights and criteria to achieve different
results;
-- Call KB to "resetcutoff_threshold", re-accomplish criteria or
-- re-defineessentialcharacteristic processing through Manipulation of
-- Results Resources.

Provide capability to Accept, Abort or reporton session;
-- Call method "CommitDatabase" or "Rollbackdatabase" from KB through
-- Manipulation of Results resources or call Support Resources for
-- "provide-report".

Functionoily of Rest of OOD Design. With the system processors defined all that is

left to describe is the functionality of all remaining interfaces (see Figure 10). The usual

functions are provided by the User Interface resources and the SQL Interface resources.

The User Interface provides all resources necessary to provide and acquire information

to/from a STEMdB user. The SQL interface provides all resources necessary to store,

update and retrieve information from a commercial database. The Knowledge Base

interface provides all methods and types that a processor must have to operate with the

system data's structure and content. It provides the functionality of creating structures in

the database to store system data and it provides resources to store and retrieve system

data from the database. It provides the resources to maintain a running summary of what

characteristics/structures were accessed and how they were modified. It provides the raw

scores (quality and functionality) of tools to the Selector (the Selector maintaining its

own cutoff threshold and top level weights accomplishes further processing on this data).

It provides the build resources to the Formulator and it provides the insert and delete

characteristic data/weights resources to the Selector and Evaluator. It provides all

characteristic viewing resources and all structure traversal resources to all processors.

Specific viewing resources are implemented within each processor under the Support

Resources Package.

66



Top Level Design of an Abstract System Interface to an SQL Database

Chapter III established that STEMdB portability and maintainability were hindered

by dependence on one commercial database and it identified the need to design the entire

STEMdB in Ada. To make the STEMdB independent of any database an abstract

interface needed to be created and incorporated. Hidden complications always seem to

arise when one tries to create an interface from one application to another, however. For

instance, in creating an interface between the two procedural languages Ada and C, a

binding designer must understand the design foundations of both languages and he/she

must create conversion routines to avoid conflicts that arise from design differences. One

example of a design difference between Ada and C is: C has null terminated character

strings and Ada does not. Creating a binding or interface between a procedural language

like Ada and a non-procedural or data oriented language like SQL complicates interface

designs even more. Extensive work has already been accomplished towards identifying

these complications, and a model complete with template resources was developed to

address this exact type of interface development. This model and the methods associated

with it are called the SAME [171. The SAME is a binding or interface between Ada and

SQL that allows both Ada and SQL to accomplish their jobs without compromising each

other's design foundations, while at the same time allowing Ada's abstraction

mechanisms to overcome some of SQL's shortcomings. It allows for the safe treatment

of SQL, null values and it makes extensive use of the Ada exception mechanism.

Problems Addressed by the SAME. Before proceeding on with an overview of the

SAME method, it may help to understand the interfacing problems it wa, developed to

overcome. Graham in 117:171 identified five problems specific to Ada to SQI. bindings

that his model the SAME addresses. Those five areas were:

67



1. Typing model differences between Ada and SQL - The major difference between

typing models is that Ada has an abstract typing capability while SQL does not. In fact,

SQL is in the opposite end of the spectrum when compared with a robust typing model

since it operates on a limited set of types.

2. Treatment of null values - Ada works only in a two valued logic world where

SQL uses three valued logic. For instance, SQL provides logical operations that expect

variables to be in the form of "true, false, or null". Ada can only logically operate on

variables that are either true or false.

3. String Processing - SQL pads strings with blanks, and its character sets are

database implementation defined. Ada uses the predefined character set called ASCII for

package standard operations.

4. Decimal Fixed Point Arithmetic - The operations on decimals in both Ada and

SQL work differently. SQL implementations store decimals in a packed machine format,

Binary Code Decimal (BCD), which Ada does not recognize.

5. Types defined outside of the SQL standard - Commonly used types such as the

Date type are important to model yet they are implemented in different ways. Graham

also identifies the need to be able to store enumerated types in SQL when SQL does not

support an SQL enumeration type.

This research Will use the SAME model to overcome all problems identified in this

listing. It will be presented as a top-level design, however, and solutions to some of these

problems may not be obvious until a more detailed level design is accomplished. With

this justification complete, an overview of the SAME method and a STEMdB interface

design using the SAME can be presented.

Overview of How to Apply the SAME Method. Graham builds the SAME nctlixl

from the bottom up. He builds his abstract interface based on primitives he calls abstract

68



domains. An abstract domain in the SAME model is identified by a unique name given

to a column name in a table. The common sense rule that designers must incorporate

when creating these abstract domains is: if two distinct columns represent the same type

of information and they can be compared to each other, then their abstract domains are

the same. Graham uses the example of one application having two distinct tables in

which each has a "city" attribute or column name. Since they both represent the same

abstract domain only one domain primitive is defined, and it is named "CITY". [17:8-10]

Once these column name equivalents are identified they are associated with two

types, a null bearing and not null bearing, and all the methods that operate on those types.

This association is necessary to model SQL null values in Ada and to define specific

types that represent SQL attribute objects. In general, this association occurs as a two

step process. First the null bearing type for a given columnname is assigned the name,

"columnnameType" and the not null bearing type for the same columnname is

assigned the name "columnname_NotNull". Then these names are used to create an

Ada derived type that is based on the SAME standard package that maps to the correct

type of SQL domain. An instantiation of a generic operations package along with these

derived types produces a Domain Primitive Abstract Type. Figure 14 shows these

building block abstract domains as "Domain Primitive Abstract Types". This figure is

presented to clarify the foundation upon which the SAME typing model is built. The way

Graham builds this typing model is through the use of "Ada Derived Types". Using a

derived type in Ada creates a new base type. In Figure 14 the Concrete Types and the

Domain Primitive Abstract Types are derived from their foundational types. A

foundational type in Figure 14 is the type immcdiatcly below a given type (for instance.

SQL-Based Pre-Defined Types arc the foundational type of Concrete Types). The

package called SQL Standard defines 'SQL Based Pre-Defined Types" as: Char,

Smallint, Int, Real, Double Precision, l)ecimal, SQL_coTpe. Sql _Error, NotFound

69



and IndicatorType. It defines the majority of these types by placing database

implementation tailored constraints on Ada predefined types. As an example, Type

SQLStandard.Int is defined in the following way: type Int is range bi..ti;. The place

holders "bi" and "ti" are the actual integer upper and lower limits defined by the database

implementation. These actual limits have to be inserted in place of "bi" and "ti" when

installing the SAME resources. The Concrete Types are then built on top of these SQL

Based Types by defining derived types and operations for each of the basic pre-defined

type equivalents. The following is a listing of packages that define these Concrete Types:

SQLChar_Pkg, SQL_.SmallIntPkg, SQLIntPkg, SQL_RealPkg,

SQLDouble_PrecisionPkg, SQL_Decimal_Pkg. Appendix B has a complete copy of

the SAME supplied package specification resources discussed in this research

[17:143-248]. It is not the intention of this research to describe how to set up the SAME

environment but rather how to apply it. The reader is directed to [171 for details.

With all of this typing information understood (with the exception of Composite

Domain Types which will be explained within the next few paragraphs), it is now

important to present an example relative to the STEMdB of how to define a domain

primitive type. To set up the abstract domain primitive type for TOOLID the following

package would have to be created:

with SQLlntPkg;

package Too]-id..primitive_domain is

type TOOLID Not_Null is new SQLIntPkg.SQLIntNot_NuIl;

type TOOLD_Type is new SQL_Int_Pkg.SQL_Int;

package TOOLIDOps is new

SQLIntPkg.SQLIlntOps(TOOLlD_Type, TOOLIDNot_Null);

end Txl_id-primitivedomain;

70



:7

: :: : C o m~ os te D o m ain -Ty-pes. ..-

Domain Primitive Abstract Types

Concrete Types

SQL Based Pre-Defined Types

Basic Ada Pre-Defined Types

Figure 14. SAME Foundational Types

All primitive abstract domain dependent operations are defined by the instantiation

of the "SQL*_Pkg.SQ1_*_OPS(...)" generic packages (where "*" represents a wildcard

placeholder and in the above example it would take on the value Int"), all other

operations are inherited from the derived types domain. These primitive dependent type

operations define how to get a null type given a not-null type and vice versa. They also

define "Assign" operations for the limited private types which define all null bearing

types. For instance, TOOLIDType is a limited private type which could not be

assigned if an assign operation was not defined for it. Use of the limited private types to

define a null bearing type is necessary since a null bearing type is a two comxonent

71



record that contains a not null bearing type and a Boolean that represents whether the

record's contents are null or not. At any given time if the record's state (as determined by

the null component) is not null then the contents of its value part component are valid,

otherwise the contents are invalid.

The goal of all of these building block types and operations is to support the creation

of the "Composite Domain Types" shown in Figure 14. These composite domain types

are simply combinations of domain primitive types that together represent some object in

an abstract interface. These composite types are usually defined by a record structure

containing the primitive types. The operations associated with that record structure, once

defined, complete the definition of an abstract interface to an -SQL implementation

module".

It is important at this point to diverge and explain how an SQL implementation

module can be built. Since there were no known standard SQL module compilers

available at the time of this research, a substitute method for producing SQL module

resources had to be found. The substitute method chosen was to create database

supported SQL modules by implementing an SQL module using the embedded SQL calls

within a supported language framework. This would require creating another interface

between Ada and the database supported interface language in order to call modules in

that language. For example, the Oracle Database for the Macintosh supports embedded

SQL calls from within the framework of a C program 1251. Meridian Ada for the

Macintosh supports pragma interface calls to Macintosh Programers

Workshop C (MPW C) object libraries. To implement an abstract interface between

Meridian Ada and Oracle on the Macintosh. MPW C resources would have to be built

using database supplied embedded SQL resources. These resources would then have to

be pre-compiled and compiled before the body of the Ada abstract interface would be

able to call them using a newly designcd MPW C interface and an Ada Prangma Interface.

72



Since the goal of this research is to define an abstract interface for an Ada to SQL

binding, the details of the bodies of those abstract interfaces (which are implementation

issues not top level design issues) will not be described other than to describe an example

of their general structure and desired behavior.

It is now time to take another look at the definition of a SAME abstract interface or

binding, and the operations that make up that definition. Graham emphasizes that

application logic should never enter into the definition of an abstract interface's

operations. He then states that application logic should be built at least one layer above

the abstract interface. This is sound design ,,' ice since the design oi the interface has

the single goal of communicating with a database. Graham also emphasizes that the

database should be allowed to accomplish the operations that it is best suited for while the

body of the abstract interface's main goal should be to work as a translator. In general,

the operations that are defined in the abstract interface mimic those that must be called to

manipulate a structure or table in a database. These operations can be single record based

and called by defining SQL procedure c,.ll interfaces or they can be "cursor based".

[17:591

Cursor based calls are the mechaniin that allows an application to work with

multiple record retrievals. A cursor is defined in SQL as a group of records (defined by

the cursor's SQL statement) that can be opened, stepped through with a fetch operation,

and closed. A Cursor is deflned by its cursor declaration which contains exactly one SQL

statement. The Cursor becomes visible to the application only after it is opened, and it

can on!y be operated on within a running application while it is opened. A cursor can

only be stepped through in one direction, the only way to return to a previously fetched

record is to close and re-open the cursor. A database can have multiple cursors opened at

the same time and these cursors can be identified by their cursor names.

73



Graham identifies all possible basic database operations or SQL statements that may

need to be modeled in the abstract interface in [17:60]. Table 3 provides this list along

with an identifier column which classifies whether the type of statement is a

transaction (T), a cursor (C) or a non-cursor (NC). According to Date in [15:48-49]

transactions, cursors and non-cursors are the three classifications that all SQL

manipulative statements fall into. The "Ada Parameter Kinds" column lists two types of

parameters which the Abstract interface will use when making calls to an SQL module.

Graham defines the "row record" as an object of the Composite domain type and the

"individual parameters" as objects of Domain primitive types. He explains that the

individual parameters will be used mostly when an interface designer must model SQL

"having" or "where" clause information. Both of these clauses are used in SQL to qualify

the type of data desired. The "where" clause is used to eliminate rows in non-grouped

select statements, the "having" clause is used to eliminate rows in the "group by" select

statements [15:95].

The last area that needs to be addressed before presenting a design of the abstract

interface of the STEMdB using the SAME framework is how the body of the interface is

expected to behave. There are four behavioral requirements that this implementation

must meet. It must convert any inputs to an SQL module from Abstract domain primitive

types to SQLStandard types, it must call the SQL module, it must convert all necessary

outputs of an SQL module back to Abstract domain primitive types and it must perform

error checking using both SQL indicator parameters and the Sqlcode parameter.

Indicator parameters in SQL are used to indicate if a fetched field is null (the indicator is

a Boolean that is set to true when nothing matches the database call's criteria). Sqlcodc

parameters are used to indicate implementer defined database errors associated with

database operations. 117:621

74



Table 3. SQL Statement to Ada Mappings

Type SQL Ada Parameter Mode

Statement Kinds

C close none

T commit none
C positioned none

delete
NC searched Individual in

delete Parameters

C fetch row record in, OUT
NC insert row record in

(values)
NC insert Individual in

(subquery) Parameters
C open Individual in

Parameters

T rollback none
NC select row record & in, OUT

Individual in
Parameters

C positioned Individual in
.update Parameters

NC searched Individual in
update Parameters

LEGEND
C = Cursor Operation
NC = Non-cursor Operation
T = Transaction Operation

STEMdB Abstract Inteiface Design Using SAME. Accomplishing the design of the

abstract interface was a three step process. The first step involved defining the

architecture of the domain primitive types, the second involved identifying basic database

operations that each of the three STEMdB processes would need to accomplish its job,

75



and the third involved identifying the composite domain types, individual parameters and

associated operations that would support these higher level STEMdB operations.

During this process it became obvious that the STEMdB could not be feasibly

designed without utilizing the additional SQL methods and types associated with

dynamic SQL2. SQL2 is an extension standard that was being developed in 1989 to

address areas where the SQL standard was weak or lacking 117]. The STEMdB design

requirement that the user be allowed to randomly select anywhere from one to eleven

desired attributes to narrow down tool selection candidates [ 19:17] was the deciding

factor for studying a dynamic approach. This requirement would force a static SQL

design to provide one select operation for every possible combination of all eleven inputs.

This would mean that 2048 operations would have to be designed and supported. To

avoid this unnecessary coding, the dynamic SQL2 design addressed by Graham was used.

[17:117-125]

Graham presented two methods for approaching a dynamic design. Both methods

were based on the "<dynamic using description area structure> or SQLDA" 117:115].

This structure supports a buffered approach that many databases use to dynamically

communicate with application programs. Graham asserted that the two methods differed

in their visibility of the SQLDA structure from an application program's perspective.

The first method duplicated the SQLDA structure on the abstract interface side, and the

second method applied a functional approach which hid the details of the SQLDA on the

database module side. The overhead associated with the "visible" method was

considered to be too much by Graham, so he advocated the functional method. His

arguments about duplication of data and multiple transformations slowing down an

interactive session were well founded and the functional approach was used in parts of

the STEMdB abstract interface design.

76



The functional approach to dynamic SQL2 required two additional resource

packages, SQLStandardDynamic and SQLDynamicPkg, copies of which reside in

Appendix B. The assumptions made to simplify this approach were the same ones used

in Graham's example in [17:124]: only one dynamic statement would be in use at any

given time and its contents would be available in an object called STMT of

SQL_CharNotNull type. There were two top level functionalities that needed to be

provided by a dynamic interface. First the interface had to allow for the set up of desired

statement instantiations and then it had to provide for operating on those instantiations

using parameter type knowledge.

Before proceeding with the overall design discussion, the actual process of using a

dynamic interface will be presented. This should help the reader to understand why

ccrtain functions and procedures must be provided by the dynamic interface. The process

that had to be followed from an application standpoint using [17:12-.-125] as a guideline

was: prepare the STMT, allocate a name for both input and output SQLDA processing

while associating a maximum number of parameters with each name, create the link

between these names and the prepared STMT by calling a Describe function, provide a

get.parametercount function that operates on a SQLDA name, and use this function to

check if there are any input parameters (this is all based on the Describe function using

the prepared statement as a template for building an SQLDA instantiation complete with

parameter types that are waiting to be filled with objects). If there are inputs, step

through each input parameter and, using a getparameterjtypc function, obtain the

parameter's type. Then use the type in a "'case" statement to pick the correct

set-parameter_value function to insert the dynamic SQLdata object into that parameter

(the dynamic SQLdata object is obtained from the user as a criterion that is dcsired to

hold true for that parameter). Once all inputs are processed begin output processing. Use

the same get-parameter_count function to discover how many output parameters there

77



are in the Output SQLDA object. If there are zero outputs then it is not a select

operation, so execute it. If there are outputs, open a cursor that is associated with the

InputSQLDA and process the cursor with associated Fetch , Get-parametertype and

GetSQLdata functions (which are selected based on the SQLType retrieveu, then close

the cursor. All of this processing can be accomplished if the dynamic abstract interface

provides the eleven procedures/functions identified in Table 4.

Table 4. Functions Provided by an Abstract Dynamic Interface

Prepareo

Allocateo

DescribeInputo

Describe_output0

Get Number parameters0

Getparameter_type0

Setparameter_value0

Get-paramter value0

OpenCursor0

Fetcho

Close()

With the discussion of dynamic interface considerations complete, the overall design

approach can now be presented. The design will be described in the context of three

layers, the Primitive layer, the Database intelligent layer, and the Application intelligent

layer. A description of all of these layers will be provided as the design discus.-,on

progresses.

78



Instead of having each of the lowest level domain primitive abstract types as a

package, this researcher decided to group types into entity level packages. This helped to

reduce the number of domain primitive packages that would need to be "withed" or made

visible for both further abstract interface design and application program design. It also

encapsulated entity and relationship information. All non-trivial relationships attributes

were also grouped into their own domain abstract primitive type packages. Whenever

relationships had "foreign keys" ,which are keys inherited from conlected entities, the

keys would already be defined in the connected entity's domain primiti le definition (i.e.,

they were not re-defined in the relationship domain). Any operation that worked on a

relationship domain would have to "with" all appropriate connected entity domains along

with the relationship primitive domains. For instance, a formulator operation of linking a

domain with a GSC would require an update to the rootnode table which would require

an operation on the domain primitive types defined in the rootnode. There are no

primitive types defined for the rootnode re!ationship because all attributes are foreign

keys and they are already defined in the connected entities domain primitive type

definitions. The update operation would have to have visibility to both TheArea and the

GSC domain primitive types. The domain primitive type packages are defined in

Appendix C. To clarify how each attribute contributes to this package, each attribute's

information is consolidated in one area which is separated from other attribute

information areas by a blank line. To implement these packages all generic

"SQL_*_Pkg.SQL_*_OPS(...)" packages must be moved to the end of each entity

package since they arc later declarative items (later declarative items are defined in the

Ada Language Reference Manual).

One more design grouping of abstract domain primitive types was considered. By

looking at the highlighted entities and objects in Figures 15, 16 and 17 (Note: When

possible, these figures reflect the design changes advocated in Chapter III: for instance

79



the the linkST relation is replaced by the linkSAWT relation.) one realizes that

application programs responsible for altering the state of the highlighted entities and

relationships will be written for each of the three subsystems. Therefore, the Ada

package could be used to group the domain primitive abstract type packages that were

created from the highlighted entities and relationships into three disjoint packages. It was

decided that this design encapsulation would be better utilized in a layer of abstract

interface that is built on top of the primitive interface to the database (which is being

derived now). For clarification purposes this new blanket layer will be called the

"Database intelligent layer". The Database intelligent layer design is discussed in

concept at the end of this section but is not addressed any further by the design since it is

more detail than the top level design of this chapter required. A top level interface design

in the sense of this chapter answers the question: "what is the minimum required to get

the interface to the database defined without bringing in application logic?".

To streamline access to domain primitive types, the idea of placing composite

methods built on domain primitive types into the same entity packages that encapsulated

those types was considered. Trying to place composite methods into packages that also

defined their foundation types meant that composite types (or records) and procedures

would have to be declared based on primitive types that were not fully defined. This

would be true because the instantiation of generic packages

'SQL*Pkg.SQL_*_OPS(...)" is a "laterdcclarativeitcni" according to the Ada

language reference manual and it must be defined after all basic declaration items. Since

attempting this would violate the rules of Ada and would not work, this idea was aborted.

A better solution places the composite operations into entity packages that mirrored

their foundational domain primitive type entity packages. The basic behavior that all of

these packages would provide would be in the form of "inserting, updating, deleting,

searching and retrieving" objects of attribute types and composite record types. In

X0



addition to these composite operation packages which would be entity specific, two

additional packages would be required, one to model dynamic interfaces and one to work

on database transactions. Neither of these two additional packages would provide

operations based on a single entity or relationship, yet operations they contained would

be necessary to complete a definition of the primitive layer. This justifyed encapsulating

these operations in their own packages. Specifications for all of these packages are

located in Appendix D.

Before continuing on with a description of the design, it is necessary to first define

the difference between logical packages and physical packages in the context of this

document. A physical package is what would actually be coded as an Ada package by an

implementer. A logical package allows information to be grouped so that the concepts

explained in this design are more easily understood. Physically, the logically grouped

packages would still remain separate and distinct packages. One other concept that needs

explaining is the idea of having "view packages". Essentially a view package provides

all top level knowledge base operations and types to its respective subsystem (All view

packages taken together represent the Application intelligent layer.). It operates similar

to the way views operate in database applications. It gives the calling subsystem the

minimum information needed to get the job done while hiding the details of the

operations and types.

With the basic building blocks established and an explanation of views and logically

grouped packages complete, the perspective of how this all fits in with aIn object oriented

STEMdB design can now be presented. First, each domain primitive type package and

composite operation package that operates on the same entity or relation is logically

grouped into one package that is defined by the entity's name. All logically grouped

entities conjoined with the transactions and dynamic packages represent the Primitive

81



layer. This Primitive layer is the foundation upon which the Database intelligent layer is

built.

SET-NAME EVAL ID QUALI

Selection.Set TeEautr FIRST.NAMF. nhe.Qtwty IQUAUTY-NAMF
LAST.NANIEQUAUTY-VALUE

I L -Nd ate I-N

EVA L _I1) QUAL -I D

lIDkSAWT SS-I Iin kES sscI Io in kQS
SET NAME -

TOOLID
AREAID
WEIGIIT SETNAME I I:M

SSCII) GSC-1 P
TOLDGCS -O CIIARACT-AME

TOOL NAME] ':K TOOIID 3 . .?

vedr 1TT I tep Geeal:eahs-help

"'o-?

Softwarecu~ e...taglwwig

HkC 21) tcinss

WEIGG HTT NAME.AM

fucin., igh t

link(4FGII WFIIT S4. F. TN A

I~' 
>(c fa 

S CG

charlas ChrPlgiI ARIA II7)

_________ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ CHL ___________________________ c ID

'AMU Sali

AREA _11d

SEigureL 15.hruarAtre)bet

PHASE sC 11



SET-NAME EVALI II QUAL II

Selection-Set1 EV8 d r!RST NAME1 The QwilIt y QUAUTY-NAMif

I-N d.1c I:N

EVAL. ID t:QVAL If)

IznkSAWT j *kE$ S i ii
S ET N AME

TOOL, If)
AREA ID
WEIGihT SET NAME IN IN

SSCID GCIDAT-NM
TOOL 11) GCS -D CIR~YM

100J4X 1K fmlLJ?

General evau elp

:N Softwarecs~ILfa
I:N IN$4n WW*M rctcisic eumincli-WeilIi

TOOLIDGSC-ID
AREA IDWEIG JIT SET NAME

WEIGHT SET.NAME L

.1o fiwxc

mig~an htrWiht~ Fa

cO I C

Figueasore16 EvltrAlreObcs

I.M A EA 11



SET-NAME TeEA_0QtIAI,_ID
*SeIfoca, set -Eauao FIRST NAMr Ih wit QUALITY.NANIE

LAST-NAME reQxl QUAUITY-ALUE
I:L date I.N

EVAL ID QlUA!. ID

~~SASY1-H scnSSCID)InQ

SET NAME -

TOOL ID
ARtEA II)
W EIGH T SET_ NAME I:N I:M 1

SSC I) 3GSC ID
TOOL ID SSCID CIIARACITJ4AME
TOOL-NAME 1:K TOOLJD -?

W51o The_ Too I tell Sofii~amecso.fo i

Sormate mincatweight

Crciiooweight

TOOL E IDC G5C
AREA-IDWI~h WET G NAMEE-NM

rw ~ cio-str moo Co

Sorwar Chr0gi AREA II

__________________________P Ac R NGSC_0

L C~~itlllGC D

The-Afe C God

Fiue1.SeetrAtee bet

The DatEAaeitlietlyrcn esprtit hc dsic hsclpcae
~jsiDctOAN rtiaprahwsntuderirinhis ecn)wihch
encpslatSoEAinsta woorko niie eogngt rup h nit ruig

PIIASKGSC84



are associated with the state altering behavior of the calling subsystems. Any entity that

can be physically altered by a calling subsystem has Database intelligent layer operations

defined in a package that is named after that subsystem. For instance, the Formulator can

alter the states of the General Software Characteristic, the linkGG, the root-node and

TheArea entities and relationships (see Figure 15), so the operations for these objects

are located in the Formulator Altered Grouping package which is contained within the

Database intelligent layer. Next level non-state altering operations for these entities are

co-located in the same package. Figure 18 shows how this composite build process

would be accomplished for Formulator State Alteration considerations (the Evaluator and

Selector considerations would be built using the same method). Essentially the single

overall desired behavior of the Database intelligent layer is to provide the database

application operations that use the resources provided within the Primitive layer. For

instance, to acquire all GSCID's for a given SAL, the Database intelligent layer would

know only how to open a cursor, step through a loop which calls a fetchgcsID

operation in the Primitive layer and close that cursor when done. It would know when

the fetch operation is complete by using a Boolean check that is updated on each fetch by

the Primitive layer.

The more sophisticated or complex interface logic occurs at the -view level" within

the Application intelligent layer. As noted earlier, the Application intelligent layer is

composed of three view packages: Formulator View, the Evaluator View, and the

Selector View. The Database intelligent layer interfaces would be visible to these

subsystem view interfaces which in um would be visible to the subsystems (all through

the specifications or well defined interfaces, of course). The Database intelligent layer

methods in Figure IS, for example, would be callable by the view interfaces tailored

towards each of the three exterior subsystems. Figure 19 illustrates how the view logic in

95



the Knowledge Base would call the abstract interface to accommodate requests made by

the other subsystems.

~Formulator

I"--"" Altered
Grouping

General
<= Software linkGG root-node _

cgi ietystic

Logical Entity Packages 0-

Figure 18. Type Build Process. Formulator State Alterations

With the big picture now complete, a word of caution is in order. The reader is

cautioned at this point that before any attempt is made to design applications for any

level abstract interface the issues of type conversions and visibility of an **Abstract

domain SQL base type" must be understoxl. Since writing the applications that use these

SAME abstract interface types is outside of the scope of this research, application

program type conversions will not be addressed further. The reader is referred to

117:69-761 for a detailed discussion of these issues.

x6



User
Interface

Subsystem

Evaluator" Selector

nSubsystem ue I

Figure 9. Applcation ogicSCLtoArc Interface

Abstra ct Sysi' m
, Interfac

Sumarye

The goal of this chapter was to emphasize how the STEMdB could be re-dcsigncd to

be more robust, maintainable, upgradeable and portable. It provided a top level overview

87



of how an object oriented approach to the STEMdB design could be accomplished.

Using an object oriented approach to this design helped to accomplish the goals of a more

robust and maintainable design. The chapter also provided a method for creating an

abstract interface with a database and it presented a design of a STEMdB abstract

interface using that method. It established that database independence can be achieved

through abstract interface design. By achieving database independence the design is

made more portable. The only other issues that could hamper the design's portability are

its dependence on a commercial user interface and its dependence on a commercial

database's dynamic SQL capabilities. The designers of the STEMdB should try to isolate

the user interface and dynamic SQL operations so that the impacts of these dependencies

are minimal and localized.

88



V. Conclusions and Recommendations

Overview

This chapter provides a summary of the accomplishments in this research. It also

provides recommendations for re-accomplishing the STEMdB design and for further

work in the area of developing abstract interfaces to databases using Ada.

Summary of Research

This research began by surveying the literature for information on what a CASE tool

was and how to evaluate a CASE tool for a given domain. The E&V Guidebook, IEEE

working group studies and the Lawlis dissertation provided a solid background in these

areas. The Lawlis dissertation also provided an automated framework for supporting

decision support CASE tool selections. Using these resources, the goal of this research

was to analyze the prototype development effort, the STEMdB, and to provide

constructive ways that the prototype could be improved.

Initially, the only prototype tool information available was a working prototype

(along with its source code) without design documentation. This prototype was

developed on a Macintosh environment called MacApp, and it was implemented in Think

Pascal. Non-availability of this environment and unfamiliarity with Think Pascal made a

reverse engineering effort difficult. Documentation on resources "withed" from the

MacApp environment had to be acquired in order to understand the design. A

requirements and design document for the next phase prototype solved documentation

problems and a thorough analysis could be made given what this document did and didn't

say and given the behavior of the initial prototype. To provide a basis for comparison,

the ASSIST prototype had to be used and understood.

89



The ASSIST prototype was developed on the Hypercard environment using the

Hypertalk language on the Macintosh. Documentation in the Lawlis dissertation

provided a lot of information about the tools behavior, but it did not provide enough

information on design. It provided object diagrams and a thorough description of

resources provided as well as behavior exhibited, but knowledge about how all the

objects interacted in the form of a driver was lacking. To gain a better understanding of

the design Hypercard and Hypertalk were studied. The intricalte and nested nature of

Hypercard scripts and cards made it very cumbersome to accomplish a top level reverse

engineering effort on the ASSIST prototype. The goal of this effort was to see how the

tool accomplished its behavior. This kiowledge would help in understanding the concept

of a Knowledge Base which was the foundation of the ASSIST design and which later

proved to be a good foundation for the STEMdB design. Once all of this information was

understood it was used to measure what the STEMdB's limitations were given that it was

not using a Knowledge Base approach.

Once an analysis of the STEMdB was accomplished, it was discovered that a

significant improvement in tool portability could be achieved by accomplishing an

abstract interface between the tool and its database. A third background analysis had to

be accomplished in the form of application programs working with commercial databases

through an interface in order understand some of the details in this type of approach.

Oracle for the Macintosh was an implementation that was available, so it was studied to

acquire this background. Information in the form of the SAME documentation provided

domain knowledge on Ada to SQL bindings that made it possible to specify a STEMdB

abstract interlace.



Conclusions

This research covered several different domains to accomplish the goal of analyzing

and suggesting improvements to the STEMdB prototype effort. The necessity for a DSS

tool for CASE tool selection will continue as long as CASE tools are used to aid in

software development efforts. CASE tool automation is essential to maintain control and

consistency over large software projects. The STEMdB provides a means to sift through

the information describing these CASE tools and to help the decision maker make an

informed decision. The STEMdB's biggest drawback is that it is targeted towards being

operated only by its developing organization. Concentrating on only the developing

organization as an ead user allowed the designers to make decisions that restricted the

design's capabilities. "Ilie tool's wide-spread need throughout the DOD should be taken

into account and the tool should be developed to support remote users. By incorporating

the design changes proposed in this research, the STEMdB can be made available to a

larger group of users, and can be made more robust, maintainable, and portable.

The design can be made more robust by encapsulating knowledge within the

Knowledge Base. Any design decision to alter the implementation of anything that is

provided as a method to the exterior three subsystems will affect only the body of the

package that defines that method These bodies are encapsulated within the Knowledge

Base subsystem, so design charges like this wotild only require a re-compilation of the

Knowledge Base subsystem affected packages (assuming Ada becomes the language of

choice). The ability to change these implementations while not affecting the rest of the

system makes this design robust,

Given that the need for such a DSS will persist as loaig as CASE tools remain

popular, a DSS for CASE tool selection has the potential to be around for decades.

Whenever software tools have the potential to exist that long, they should be designed to

be as maintainable as possible. The existing design allows for tight coupling between the

91



three subsystems. By designing the STEMdB as an object oriented system which isolates

the objects most likely tb change in a Knowledge Base subsystem this coupling can be

eliminated. Providing well-defined interfaces in the form of methods and types,

de-couples the design, which supports maintainability.

By designing an ab'tract interface to the database, the portability restrictions

(resulting from a tight coupling) placed on a design targeted for one specific SQL

database are lifted. This interface also allows the Ada applications to be designed while

the database module implementations for the abstract interface are being designed.

Using Ada as the implementation language supports the concepts of abstraction,

information hiding, and strong typing. All of these concepts are necessary to accomplish

a design built from good software engineering principles. Systems built using good

software engineering principles have more predictable behavior and better

maintainability.

Recommendations

The following recommendations are made to apply the results of this research and to

continue on with the work of this research:

* The developing organization should re-design the STEMdB to make it more like a

DSS. They should use an object oriented approach which isolates the areas likely to

change in the Knowledge Base subsystem part of the new design.

• The developing organization should incorporatc the improvements to the present

design presented in Chapter III to make the desigit more robust, maintainable ar.d

portable.

- The developing organization should make the STEMdB a, 1 ;ible to remote

users and more portable by localizing the user interface dcpcnder2:ics ind by dc,,igning

the STEMdB in Ada using an abstract interface to communicate with an SQL database.

92



I • Accomplish further research in the area of Ada to SQL bindings by implementing

the abstract interface specification in this research. This implementition would require

bxperience in both the SQL language, the SAM]h methodology, and the STEMdB

application.

Use the SAME description language to develop a DOD SAME compiler that

would automate the abstract interface process and allow three expert domain engineers

(The SQL implementation designer, the Abstract interface designer and the Application

program designer) to concentrate on their area of expertise. The description language,

SAMEDL, has already been defined for this approach. All that would be required is an

understanding of how to develop an Ada compiler-like language.

Summary

The concept of the STEMdB is promising. The need for such a system exists and

will continue to exist as long as CASE tools are required to help manage the complicated

software development process. A sound, flexible design of a STEMdB system will serve

the needs of the Air Force and DOD for many years to come.

93



Appendix A. Example STSC Listing of Softvare Characteristics and Qualities

This ippendix provides an example of the Software Technology Support Center's

accomplishments towards identifying CASE tool software characteristics and quality

information in the Software Area of Interest of Requirements Analysis and Design. This

information comes directly from [18:66-76].

94



Software Technology Support Center

B.1 Functional

The following secions identify the functional capabilities of Upper CASE tools. The
organizational bakout is identical to the one presented in Section 2.2.2.1.

B.1.1 Information Capture

The information capture functionality area deals with what types of information the

tool is capable of handling. This information can be captured in a number of different ways.
The important idea is what type of information is captured, not how it is captured. Table B-1,
Upper CASE Tool Information Types, lists the types of information that Upper CASE tools

capture

0 System Function L-scriptions

* Data Descriptions of System Functions Interfaces

• Data Descriptions of --stcem Input/Output Device Interfaces

• System Logical Behavior

* System Tming Behavior

* HardwamlSoftware Cotu=

* Software Architecnzl Srictur

• Software Process DefInitons

* Sftware Dam Sthcum

* Sottware Process Control

4 : ::Software Prcess Concimumy

" Software Inter-Process Data Communication

* Software Intmr-Pocess Synchrdization

Table B-I. Upper CASE Tool Information Types

95



Upper CASE Tool Characterda

B.I.2 Methodology Support

Methodology is the process the tool user follows to systematically develop correct

and complete work products. A number of methodologies exist for requirements analysis and

software design. The imporant ones that have been automated are listed in Table B-2, Upper

CASE Methodologies.

SReal-Time Smctured Development - PAMELA

* Smcud Analysis * ESML

- StmcuedDesign • ADARTS

* Hadey/Pirbhai Extensions • PAISLey

• Obect-Orented Design * VDM

* Ada-Based Object-Oriented Design • Peu-i Nets

* Object-Oriented Analysis & Statechans

* Entity Relationship Modeling • Axiomatic Specification

Table B-2. Upper CASE Methodologies

These methodologies require that various work products be created by the user.

Since different methodologies can require the same work products, the products am listed
separately in Table B-3. Upper CASE Tool Products.

96...



Softwart Technology Support Censer

* Dam Flow Diagrams * Ada Package Dcpendency Diagrams

0 System Context Diagrams * Structur Chans

* Block Diagrams • Flow Charts

& Control Flow Diagrams • Screen and Report Diagrams

0 Entity Relationship Diagrams • User Tailored Diagrams

• Stae Transition Tables * Object Oriented Diagrams

0 Petri Net Diagrams * Object Hierarchy or Tree Diagrams

* ArchitectureDiagams • Object Diagrarts

* Obje Interaction Diagrams

Table B-3. Upper CASE Tool Products

B.I.3 Model Analysis

The model analysis functionality a captures the techniques the tool uses to analyze
the inputs. These techniques can be static or dynamic. They are used to pmve qualities about
the input requirements or spe ions such as completeness or Consistency. They am also
used to simulate the inputs at an early stage in the ife cycle. The important techniques are
list in Table B-4. Upper CASE Analysis Techniques.

0 Consistency Checking * Behavior Analysis

0 Completeness Checking • Scenario-Based Analysis

• Dam Niormalation Analysis . Exhaustive Model Analysis
• Man/mnacbhi Interface Analysis

Table B-4. Upper CASE Analysis Tech4

97



Upper CASE Toot Characaenniu

3.1.4 Requirements Tracing

The requirements racing fiunctnality ame capuffes die anibutes associated with the
racing of requirements beween software fife cycle phases. Requhments racing is' inp tn
because it facilitates the management of inter life cycle dependencies. The inipoant attributes
ate flaed in Table B-S. Requirement Tracing Amibures.

" Extraction of Requirments ftom Sysgem and Sofiwue Docuenation

" Input From Electronically Scanned Had-Copy

" Multple Requiement Baselines

" Tracing of System Requiremt io Software Requirements

" Tracing of Sysem Design Specifications to Software Requirmnts

" Tracing of Requirements to Software Design

" Tracing of Requitements to Sao=e Qode

" Tracing of Requirements to Software and System Test

Tabl B-S. Requims TacingAmibms

3.1.5 Data Repoasitory

The daut rposimey functiauality are caprere the anxibutes associated with the
*dease w ol, ue. Most tools; we propoemy databases. he dmabas mod presemd to
* the newd the er infhm to the daaae, and the extent to which the dambos can represent

sfwmobjects iticlwdeo musaal horionality. e I minpmxm we
lured un Table B-6, Upper CASE Dan Reposiuy Functional Amtibuhs



Sofinwe Technology Support Center

- Data Repository • Contain Project Ionmaon

* Relational Database Type * Contain Requiements Documents

* Objec Database Type • Contain Design Specifications

• Support both Text and Graphics • Contain Source Code

* Query Capability • Contain Test Descriptions & Procedures

• Access Control Capability * Capacity Artificially Lie

* Concurrent Access to Entities Support Interwtive Cross-Referencing

Table B-6. Upper CASE Dta Repository Functional Atributes

B.1.6 Documentation

The do;;umentation functionality area captures the attributes associated with the
documentation the tool produces. The important attributes are listed in Table B-7, Upper
CASE Documentation Functional Attribute.,

# Support GraphicsiText Integration * Automatic Generation of Documentation

* Completely Compile a Document - Rapid Draft H-ardCopy

* On-Line Templates * Inteface to Other Document Generators

* 2167A Documentation Standard a Desktop Publishing Interface

Table B-7. Upper CASE Documentation Functional Attributes

B.I.7 Data Import/Export

The data import/export functionality area captures the attributes associated with how
easily the tool can exchange data with other tools including other tools in the tool vendor's tool

99



Upper CASE Tool Charactcrizcs

set. The important attributes are listed in Table B-8, Upper CASE Data 1/0 Functional

Attributes.

" Between Toolkit Components

• With OtherTools

* CAIS-A Interface Standandsfrotocols Supported

Table B-S. Upper CASE Data /0 Functional Attibutes

B.1.8 Reusability Support

The reusability functionality area captures the attributes associated with how the tool
supports reuse. The one attribute in this area deals with support for library design

components.

B.2 Quality

The following sections define and discuss the Upper CASE implications of the twelve

quality attributes identified in the analysis phase.

B.2.1 Efficiency

Upper CASE tool efficiency is the amount of utilization of a resomce on a problem,

using the Upper CASE tooL The three resources that need to be assessed arm processor (time

to complete a task), memory (the secondary storage requirements to complete a task), and

communication (1/0 and network considerations for multi-processor systems and/or mulduser

problems). For Upper CASE tools, efficiency is not absolutely expressed. Instead, it is

expressed in terms of acceptable, barely acceptable, or unacceptable. Several problems
covcring a range of sizes from small to large across each of the resources need to be assessed.

When. we tool performs adequately for a specific problem with respect to a particular resource,
its efficiency is acceptable for that problem size and that resource. Barely acceptable

100



.SoJ .e TeC•,•g. S.POr. CCn.

performance occurs when the performance is acceptable but there is no room for performance

growth.

Efficiency as it applies to the products of Upper CASE tools is not important. This is

because the products of these tools are paper rports. That the tools may support efficiency

studies of their products (e.g., timing analysis of designs) is a mater of functionality and not

quality.

B.2.2 Integrity

Integrity deals with either software security failures due to unauthorized access or the

corruption of the database. As a policy, the tool users should lose confidence in the integrity of

the database if unauthorized access is allowed. Database corruption may be caused by such

actions as legal but partial and/or inconsistent operations and erroneous but allowed operations.

The integrity of the products of the tool is a non-issue. Accessibility to the products

is usually governed by the operating system of the developmental machine and never by the

tool itself. Once a product has been produced it is no longer pan of the database and can no

longer be corrupted.

B.2.3 Reliability

Reliability concerns software failures. Reliability is normally measured by direct

testing and analysis of error reports. With commercial software, direct testing is not feasible

and detailed error reports are not normally published. For Upper CASE tools, instead of

directly measuring reliability, indicators such as maturity, published error reports, size of

executable code, and errors uncovered during testing will be used.

Since the products of the Upper CASE tools are themselves intermediate products of

the entire software development process, their reliability cannot be tested.

B.2.4 Survivability

Survivability deals with the ability of the software to perform even when p, rions of

the system have failed. This issue is not usually important in the evaluation of Upper CASE

tools because the greater issue of system availability is not critical in an office environment.

101



Upper CASE Tool Characterisdcs

However, if the tool uses different hardware resources (i.e., networked workstations with a
file server), the issue of how the tool handles hardware resource failure (i.e., file server
shutdown) must be addressed.

Survivability is not an issue for the tool products because they are reports.

B.2.5 Usability

Usability is the extent to which resources required to acquire, install learn, operate,
prepare input for, and interpret output of the tool or the tool products are minimized. This
attribute is probably the most important and critical quality attribute that Upper CASE tools are

evaluated for. This is the quality attribute in which tool vendors differentiate themselves

through such quality criteria as user interfaces, user documentation, and training.

The usability of the products of the tool is not an important quality issue. The ability
to customize reports is addressed in the documentation portion of the functional capabilities of

the tooL

B.2.6 Correctness

Correctness is the extent to which software design and implementation conform to

specificaions and standards. The correctness of a tool is evaluated in other portions of the

evaluation framework, namely the functional capability area. The reliability quality attribute
addresses known errors.

The correctness of the tool products is important. The generated products should
conform to the specification captured by the tooL

B.2.7 Maintainability

Maintainability is the ease of effort for locating and fixing software failures within a
specified time period. This attribute is not of importance to the tool user, instead the time and

ability for the vendor to deliver software maintenance is important. The tool user is not
concerned with the effort required to perform these actions. This time is addressed in the
vendor information portion of the evaluation framework (under management concerns).

102



Software Tecusololy Support Center

This atibute is of importance to the the user of the products of the tool, but not zo the

tool user. The tool products should possess the quality attributes of mainminability.

B.2.8 Verifiability (aka testability)

Verifiability deals with the design characteristics that facilitate the testing of the tool or

the tool's products. The testing of the tool is important to the developers of the tool but not to

the tool user (except that a well tested tool will have higher reliability, etc.).

The ability to test the tool's products is important in determining the quality of the

tool. But for Upper CASE tools, testing is best addressed as a functional capability of the tool.

B.2.9 Expandability (aka flexibility)

Expandability is the case in which current functions can be enhanced or new

functions added. Flexibility is defined as the ease in which the software can be changed to

meet other new requirements. Within the scope of evaluating Upper CASE tools and Upper

CASE tool products, where the viewpoint is user implemented changcs (not developer

implemented changes), these attibutes are dealt with in the reusability quality antribute.

D.2.10 Interoperability

Interoperability is the ability of separate systems to exchange database objects and

their relationships without conversion. This is an important area, capturing if, how much, and

how well the Upper CASE tool implements data exchange standards. This area is addressed in

the Functional Capabilities portion of the evaluation framework. It is not an important quality

aribute'for either Upper CASE tools or their product.

D.2.11 Reusability

Reusability is the extent to which a component can be adapted for use in another

application. Within the scope of evaluating Upper CASE tools, reusability deals with how

easily the tool can be used for other projects.

The issue of reusability of the products of the CASE tool is dealt with in the

functional capabilities portion of the evaluation framework.

1.03



Upper CASE Tool Characterisics

B.2.12 Transportability (aka Portability)

Tnsportability is the ability of a software item to be installed in a differemn
environment without change in functionality. Within the scope of evaluating Upper CASE
tools, it deals with how many platforms and operating systems the tool works with. This area
is addressed in the portion of the evaluation framework dealing with operational constns.

This is a non-issue with Upper CASE tool products since, by their very nature, they
are reports not associated with any particular environment.

104



Appendix B. SAME Package Listings

This appendix provides a listing of all SAME Ada Package specifications and bodies

that were used in this research. The listings are directly out of Graham's technical report

(CMU/SEI-89-TR- 16) in [17:143-248].

105



° ..*.*.* ......

.°.

SAME Standard Package Listings

C.1 Introduction
This appendix contains the source codiof the SAME slandard packages. This code will be
available in machine-readable form from the SE for a limited time. Please read the
copyright notice in the next section. A copy of this notice appears in each file of the
machine-readable distribution.

Every procedure and function declaration in these packages is followed by a pragma IN-
LINE which has been "commented out." The explanation for this is as follows. Almost all of
the procedures and functions in these packages are extremely small. Many consis. of a
single If or return statement. There;ore they are excellent candidates for procedure inlinlr.i
which will decrease their runtime cost by the overhead of a procedure caiL Experience in
using this code with various compilers has shown that this degree of inliring tends to uncov-
er compiler errors and produce inexplicable timings. The safest apprcach, that of not using
Inlining at all, has be chosen for the code as distributed. The installe; is urged to experimerr
with the in~ning of this coda. Some experiments have shown a tenfold speedup due to irslin-
Ing (whereas other experiments, on other compilers and machine arcitectures, showed
marginal slowdown due to irlining). Recall that inlining will usually make the resulting object
module larger.

.106

106



CA4 SOL-Standard Specification
package sqIstandard is

package Cbsactor e:St "names e-p
subtype chaac.Cype isCaatr e.ct
type C~a is &ATa (posit...1e range :Z)

Of Cb&XActec?_-Pe;
type Snalat s La :nq. ba..t
tro~ Z= is can". ba.. ti;
type Realt is digits 4;-
type Double-fteciia La d-4git# 4fd:

-type Decimal La to be date-La-..L;
type Sqlcede Tpo La sangs bac..tac:
subtype isL Lo aSq-10od.!ype

can"e sqtcodae.ype' M~ST . - -1;
Rubtype 'Ioc. round is Scqlcodayp.

rackje iZoo..400;
**I-ype Zadicatoz' Type is Z;

- a" is an implanator-dein*4 package and cat is an
-- L maeto-dagiaed cbhazaar ir type. be, ta, bi, ti, dr, 44, bee,
-and zac are inPlamenzo 4.!; nod i~ntegal values. t is let or
- &Lliat cac-apoadizq to *., implemnta-d*~.Ziued <exaot

numzza type> of indi4cazo= Vazametors.

end aqc.et-andad;

C.5 SQLCommunications Pkg Specification
with SQIL Chax 2kg; was SQX~p~az-_kq;
with SQ. _Standazd: use. SQL S tazdazd;
Package CQLn.Po ar.tiam& kq La

- ML..La as a eznaqle of the package, peovidJ~inn.a -44;-lnctianaUty.
- MISa package my be ta"Oraed to then A*e*" of a given platsom.

S=-Patabaa.Ro eneptioma;

-lwzamatez.lea fmtJLL= e~tab an emox mOSOMe of two
SOL~ not 3o.1

M e e~rmeeeege La the deseipt~Ae stziag asescated With
Us t=eoft zeoeat dazabeme e~ox. It La pzodeed by a

- U xpeal*4a tumation.

9GaUttIA So ~U Sati 4.U%&aZeg atu Sfh~tU:

* ,~.C.6 SQLCommunicationsykg Body
- so Commni'tki~1 I" "s a aplatfm-pa.i akg
- with"n the sum
- tUi paxtiauLax version Of the p&Ckage Was deveOped" fo

* -- a platfon emaciating of the Vegdie (Vagmion 5.41) Ad& ogle*
- A"d Z= (Voai.. 5.0) umaing ona VAX Station



vitJ& armam: u"n sysrAw:
irz.th SQL Syucam. a"n SQL Sysem

- Lnqenaaspp con~taiLns tmuc.Lonm A"d Null Ad Stz~n ull
- whiLch &=a Sud to cmvsz- betweena, forat - t-aw

-A"a 90& atziaqw. Zt isa" io ncl~uded in the S30sandadarkgs

Lonq raouy SQisna~aaqL

PoC~due q~te==sq (Measaq* in Add=aa:
Lda~ch in Address),

begiA
g~t&==am (X _aq ulgahx' Add--as, Lan'Add-aaa);

- the &ssat~on hae is that no ezmor will. oc when
- Cac.~.eviag the orz-a meaning. fr-o the database.

end L erLaLn 3g

C.7 SOL Exceptions Specification

-" SQ~L~nes-

C. SQL Boolean ykg Specification
"Okba" S=LUPwxalk

tip. Ses0e wlt" in OrA=( , MOM , 2=);

- have-w". X thre.-W. 020 thse-VaL-
tmmSiLf OinO 0Zat 361":ihGkm

st~b z .Lebeuem 11th

£uncr~os -or* Matt~, Riot t 3..i4eAL MI.Unown)
Z~tau~ D.ol..A with Unknown

109



C.2 Copyright Notice

..... g. owinq=%a% be included in tLis so _wa&ea_

-- -, soft a t-itizing this soft-ware.

-- Cop:-ht (C) Igoe5 by t-h* Ca-e' Meilon U=.7eZsZ:tY. P-zAbugh' PA.
-T!he Software zngzaeec-qn nust..uze (S2.) is a ledecal±y 2ftded
-- ese&=zh ad daelmozz~ center established and operated by carnzegie

Me-"a..n O..wemsity (CU) . Sponsored by the U.S. Depactment o., Defense
-underc roatact- rl.9629-65-C-;OO3, the SZ: is suported by the
-- sg7..c6s and defense aqmnc-iss, with the U.S. "- face* as the
- Zacut..Y contract=. agent-.

Iex.isian to use, copy, =an04Ltt, or distribute thi~s softwace and its
-- doc=azzation for any purose and vwthaut fee
-is hazany 9gaunted, pwov4dd
-that. the above Coputi-q!% noztlce sper in &.1 copies and that both

th:at Cnpytih:. notic, and this Pezsaa maotice aPe&= in suacoting
-- doanation. Frt-hez, thle names Software UzngieeriaqZgstiLz-te or
-- Cariegie* )ieiLon UnnLsszy ay not be used in &dvettzii or publicity

pe=-tanq to dis=:buzion of the software wzthouz oecilic. wri-tten
-ZO prir euission. OWC mares no cla-Is Or :eopeseatatzons
-- aboct the suitabiIlty of

tI-k-s softvace f or any pv--oae. %Th4s softwa=* is provided *a& is"
-- and no warranzy, azpzesa or implied, is mad* by the s2Z or OC,
-- as ton the accuracy
-and frtoigof the progr-an and related prog-rasmaaterial, nor

8"-"al the f&ct- of disurbuzrion coast-tuts any such waSno.l
-- espoasibil-Ity is asse4d by the Si:- or OW inConnection hexewi-th.

C.3 SQL System Specification

- smQL sya is a Oplatfocu-spaiaL." Package
- witbl.2 the Sam

packowe S=Lytn1

* . - ~ La thet lengh of the 1ingest ahezactev striaq
* . - ~Which tbe DUan umI "Ore.

It exsae ". th-FIa onda GL.QhAzpkq
subtype. SQL P&zLength and SQL vpdddienth.

-SQL M.ax Length, i& a subtype of Neatural witK a lower boun

* . SUL aedded langth ise & subtype of Natural With a loome
-bound ofO0.

* aetant itaege. :w ftz length; -ZeplAce

- )a'9= is the Aim length of the esrag mesesge
- stainq astumsed L-af Dam specifia eZTst mwase restin.

whzma : .neent integet :- eg le49th; replace

end SQL Syst en:

109



for th?.e SQ :~a.type
hmnati.on (Right sQL :atevaJ) zracux- SCQL Ztza

t.acJ"Oa (Right SCI :Ate- v 1) =Ou_ SCL Znt-ar.;
5fca.O "&be"R.q Sz. v :cva~l) zu.4c- scL zatir.l;

- ZaqMA nrIL' ("a'):

-tha lollov±zq f~cti.one imi&.wnt threal&ued

'tS ithe ±lt o Any of these f=2c:_inS is nlfl

th fun5jction et~ the :%'. val~ue; actiazvia
- th.P pezfa= the imdicazod opeation

-these tzizat±.*es rais.e eceptina
f5mction 1+0 R Lb : SQ1. Znzarva.) =at= SQL _Ztarval;
&5=Otioa 72u(Let SGQL n.m-aj.; Right: Sr.LDato) zatu= sg;_ Oat.

Sntn2l'um(Left QLOt; ~h SCQL LZt~zv.±) return n;_ Data;
- paga ~I~Z("+,)1

~AU~ Lie, ~~t SL oat) .t SQL IZntarvia
ftn-u4 a (Left SGQL Dara; Right SQtL ztavva) rmtu= SQL Cat.:

- P-agaa --C.-Z V"-1;
&4ato *V*.f SQL t :a&ra; Right: iztear.) return WSQL z~teria;

- p--S=a mr-I ("');
5&nctio Ri/ (et SL tra: .: izaq:):tu= SeLZra±:

-lonzia Opaions
-type X typ m> Zoolsaan with rkeo-

-- the. fuizam.ona izelxin: ZILhee via-le.d logi~c
%I!% -,-P .teipIs the ULI valuie, the 1=c--4.o

- at---a the V.t a.ls UMIOWfl; othervw.se they
P=-5@= the -4-cca-ad conaz.mon.

thee. -'=azios raise no .zcmeptzooz

-ftatio Zq&.Ls Rigt :SQZ ata) =et= ZooXeam with -Unknwn,
54DCZ±.S Zqua.L ('at, Right. SQL Zataxra.L) xet-c Bale" v--th unknown:

-pcagm mm= (ZqmaLa);
ftation sat Zquas. (Left, Right GPte

retam Boolean with Unknown;
-ftmaias Not ZquaLa (Left, Right Sntaza1)

return Bolan with Uknown;
- p~a 39at-qualm);
iua ~ ~ ~Rt±t :c L~,5h SQLDate) rate= bolee with Unsknow;

tamtie O*( (left, light :SQL Zatezwa.l) met 5..Uaa wih unknown;

- pca"ZM (""):
luanm *)" (Z*&-, Right :SQL.ate) zretme boe m@i" w chalnown

t actim ->-m Let, Rght : smQL Dae) z tum D.a3*e wth Unkon;

Lfamatiom *'o RL~t ight SQ Znt.zvi) zet tm Sooenwiath uknown:

- Pap90 MM ("cm');

ftSacties *>-* (Left, light :SQL Zntea) zet ta Base&idnth Unown;

ty" s> b..efte
£inatioa Z Wnu(vain.: SQL oate) Catiz 299lees;
ftmatim Z&a va.06 L

Waall : SL aterimil rotc Soelean;
-L ( Nmu);

Sunttas Nat luLL(Vain. SQL _Data) "eul Boolean:
tuafatris Not Uu.(Vain. : SQL ZXntezvia) zet== Boolean;
- prapa MM (Not-Pau);
Oation ZA Year )ao?.h (Viaso Sc znevia) Stin Bolean:

* -prama. mc:.Ta Me ooth):;
S~agtaaa avy:£. (ain :SQL ZntarLVai) return Boolean:

110



typo SQL 2&Ztttm*- ?_,aid ise (yearC. month, day,
hour. ainute, seccad, 1--act..inL

type SQL _at* Sac 411 is new SLCa-ot - 4U

typo So- zszot.?:; SCL Qatetim Yield:
To sQL Oatat s eY:.ed;

Tact.Ona m a:.L*.03) 1.a 2zd pz;iv~s;

tyjpo S ;:za 70 ScL atatims 71old.

procilaa) us ' ted przvae;

t*aCtio0 Null. SQ, Uato =Gt=- SGAL Oats:

-- ?=ago& M1Ln1z (4u-" SQ;.O0tO);

:!U%_Q NMI!' SQ. _:tr7.2. -- C4 SQL L3-_rv&!;.

-pzaqa =Irz=

these~rc~.oS:t the nOC-M~U.1 POZZi4fl 01 the nu1-bee.i~ type

ftactl.a WithutIs.2 4%as (Valae SQL Dats) :et..-- SQL Date Not, u.ll:

Swtout ftil,3aae (alue :SQLZztazc7L*) rot-=2 SQL DateSot mall';

F=9- --rA.ZN 'JWothZ4 11 _lae) ;

- '44aftunct-an ou :.t-ni a o ,c at t-t vtad ~tio y?*, alter

-- vv--a to I.t fta the Zopet Ob~ect of type sQL ejazm7.1

tzalo ToDOqa:zon (VALl..e :SQ. Zznerral) ucumv durati.on;

-- a-- m3 a -M4 (To~a.0)

Z-t...a l-nct4.oa returns an n-b~ec- of the clnda.tm type, a.ter

- aumort±3nq to it the*0=I input object of ZVOn SgQLDate

f30Ot.L0U T@ ?iMNe V SGAL DOte) -GW4=~ t=O;
-- p rama MULZ ( e ?e;

-thes. procedu--em pase the inpu of type ZL u&ts Not~iU Mal-nd- o

- thm dazetias mad lazavvaL fie" va.La** to the zobjcazz ofyxpe

- QL Dateaa ut =_;te*rv.L, using d4-czanacs that Lt decoainesa xe

- the cocreft 0008 far tho object. it the". 4iatitiatsdm-a ri

th *ASvpp-sdLAth asrat 4&-a-e the object when it ws

- tela" ae ause4 asth o Villsaot daimA g

PCOmedum Psrmzaftcdjesi...3e(Laft: in oa" SOLDate;
5htqt ; SQLPz lote well);

PWmCmdum Solo= Aend ~ & (L5 3 eflt: in eut SGL ZAt~rxtmi

-44 fhn unction accepts inpat of t"pe @t ad&Xd. hem, and

* - zt.= as object at type soL ZsteEvL aboee not-null Poction

* - as tho GQ=ct soL statoevw value s ach.Licatiot tomat,

- (1w a> day', 7taflm a> 2, To o> gract4u, 1rs&C!0 a> 3)

t"0eCLOm To SQLzatem'a (Value : davation) L ~kAet=I

*%-Ain tmastim aosapto input a1typ " tandaud.time, and

- Zaims an object of type SQL ?&to "boee at-oul portion

- ad the o"et SOl -datetiJ.- Val. apec fiatiOMAs gonalt

*00stAJ To SOL. Date (VLue : timm) raut SUL pace,

- 1'~' mm (T.o SQ& ae

-the ameigm Procedure aaeiW' Riot to Tot

PgDOednt. JA.iga (Left Laz out SOL. Date; 23i4t SOL Date);

peoceodur, )Aesign(Left : L& out S%_AOtotYSJ. Aiqbt : SQ. Ztsvft.);

- P'qm nLmS Guign);

- the toloLLwinq three t1utLous Iapmt wm"7 "&be.



Zut133 withb Nul(SOL nmati.on Not SCUJ.VaIue(

end if;
and VaLue;

end 3Q. Ruat..o&o-lk;

C.28 SQL DatabaseErrorPkg Specification
packsae SQLDatmaba.. ?rkq is

-- e fol-ow--g poceft--m sut be pzesent in every yezsiou of
W. VAta&beAOe -Z kq. It'le puxzPoe is to Perfeza standa-r

P-- paessia of uQ.inOCed& ezcptio&naL coud-t-ioos. It shoul.d Doc
&-- ampt e=C =*cove.

and SQgL atabaeeZ--=2kc;

C.29 SQLDatabaseErrorPkg Body
with TA- 0 SQLCM..aucaiowa Vkq, SM Aave y.Sg 1;
use ?.0~, S=_Pmwmigacine Ph., SQ d.? Pe kg;
packageo body SQLOT maeZ ~ :k ise

pzocedure Process DAtAba.. irr-or is

- 1:eoed=z ,o.atabe eZez- "~ nailed is zeepense
-to an smapecued dstbe..eiatI in (&a ewe iat).

Cm ~ePCOedue my be .. dU". paz.
%bte needa e" the ietam utegaeee d6veipe

-Gt a dood"VLwe omm meas ft the Man

*ho" ta Pa hm

Ga SqLz DetabfeaeZzzmgI'kg;.

C-30 SQLDateyPkg Specifcation

with SQL cutee "W; Use SmL Ueeleealkg;

packageSLDt h

type PMeCtIOOG ise range 0.-10;

112



Ulus: SCI Zjiwa.zation Sot mu.ll:
and -*card,

end Q tez:oakg

C.27 SQLEnumeration Pkg Body
wth SQL iee.aa
P&CJaq% -- dY SC! Z=tz'aakq

N V.L ~ a:emaw%4. renafes Valu -z~tos.)U4jL.or,

Nu2.4i 1e4.: : SQeRnaataoa

vc~a L.4. u= then. aSQ ~aea-a

and
and W1zoutt N4u";

hna-'on Wzh Ifu. (V.4g.: La in ~~e~.~No

.tu (N~i'a> ga~a.,
Value U>Vlu)

and WJth mu='

Pav..due Assign . : in out SaL.Zmanat4.on
* Right : i S=L Asxmwtios) is

*Lott .a RLIt;

* . ha=otLmQ IqMUa (L.-ft U~qbt : S0Za oc
xs,-u sce"~ W.th vakaiown La

* £.S ~Lftt.ls Nu.1 a= &I". RL9"b.Zs Null thian
S etIAL-1wu

" c u =. . ~ . ~ g n V ~ u ~

end L-9;
and zqu&a;..

~uclcNot Zqmals MetS', Might SQLPzmAent4-)
.tma 3 "o1A WLzh twa ia

i13



thee funca :a.. no exceut.ann

ze.u= 300oan wth Unknown:

f*4ucl.* an (left, R-;ht SQL Lao.:a:-Gn) ~cum 30016&2 vtk Oak--own
tuact- a -- of~et, R..p : SQL ,jina-on) zezz-u 3oloaa vz-th kmwn

*44.4. 1 no ~ t 7~~ SQ_ ZrMezGa_Zn) Zot= Zoolemaa vit! Unknown;

-ty'O* W> @&e&4 -

tunatton :& N- (Valu~e :SQZ Rzm%=eat-aa) rat---= Roolaa:
-prama (-

.fnuan out Sull (74,12e SCL Partit~m) zecr- 20010n

- Fp-aima -_r ("6:2U"L
taeufa *< (Left, R±: SQZ,_Liezzuliau) zarz-.= Scale&=.
- p-as.a mm "<)

t~Ucz.-u '>0 (left, RSht ~ SQ R~mrazo) u= 3001ea=;
- pragus =,- (>
Stacu-oa 0<" L~,L; SQ: - egum&=.ou3 rmu a 3.1.
- pxaqa -Ir-
ftnet-'aa *>ml ('-at.5~ I SCL Zrauzazzon) -at-* sce&=;a.

-the !a21.wILmq si~x !zmcon& am.mec the
- 'Prod, 'Suc, ago, 'Pon, IV&!, and IV&!=*e
- atz~zb*:.. .5 the SQLZ.3laueza?.in NC- Nu".. tifps, Passed
- , 9=. Zho.. assoc4.aed SQL !~~t.o (nu.L1) ve

they aI'lal. teN1 al;Z-r&=pzni -u=

- Vau..ie in pasned in
- Prod -aisms %he Canogwaiu a:Z-o= 6=.rt4ou 10 the Value
- passed ina is equal to ScQLZmameatio No ull'last

-Suac 4.e %he Coaimt-ftaug asep%.t om i the value
- passed ina is eq"sL to SOL"mezatam Not NUZ1l' Fiust
- Val z&Lises the CanarrJ-ait Z= psceion i. the viLue passed
- ina is no-z 4. the =-q F'WS(?'7=4). ..P'?OS(?'LA) !oZ type 2

-Value zaliss the Ceauaut Zo-G eepotitaa 4. the sequmme of
- ohaxaatanu passed is dos not have the wyntax ot a enzat-4am
- lizeeal gov the ±nstautliated eoumeaat~oa t
Sunction Pzed4 (TAlu L~a 5azniinexataom) ge~SQLpnmmat4oa

Suaauion Snag (Value in SQL 2mueaation) ZuW= 5QL Rn~bezatios;
- pzawaf mm (SSCU);
haaft Pas (Value : in SCL Famexatn) vett zatoeg;

-pzqAa Z= (Pas) ;
Zfoulje. rage ('Valueo :in SCL tnmportit.) zetuca SQZ :a;-,
gtuons Zmag. (alue : in SQL Znmoxesiu NotMull)

zetm SGLq%&chezaouu;
-pzmqm nm= (Zsepe);

function Val MVaiue : i Inteqe) retum ScL ZXastlocm;

guncUion Value (Value : lia SQL -Cax) rs SQL.!Almfezat Jou:

Set=-zcl SQL Zat~o Not Mau:
-A9 Mm--= C Value);

type SCQL Znummzua.l'en is recor-d

114



-.Lou >a " (Loft, L.qht SqLhax) cecu= Boolean with -Unk own;

-typi s> beolesa --

ant.a :8 . ?u.U. ('alue SQ: C.1%") return 3001444
-pzagpa :rL:NZ (:A MIii) ;

SJ4aL-oU an ot NII(VAIUGe scg. uas) "tu- Boo.lean;
-CC.A zpha-.a (Nf~Zot-Nall');

-These futi.os of cassd tVOm M> boolein
-equate MMCiWN with mLzz. Tat is, they ram TRUZ

onywhen the funcmion =Ulz. wnmcwfe andFAZs
ar aped to ?mLzz.

ftna"Con "-" (Left, R-Ight :SQL -Cac) -- tm= 3001a:

- pzagma If1(<)
"an3 > (Ledt, Bight :SQL- Chas) raur Boolean:

-psaqsa r<11(>);
t~nuct"CA"i (Lft, Right :SQL-tCh&-) ret= B.ooea;

*<mo4')" (Left, Right SQLC!ha) return scolea
-- ?rag= ~L1g("e

-the puzpees of the S Jllw-ig geaer-s is to generate
-- conversion fuzations between a typ det-Tved fzom

- SQ.~.a*~4otau",wb..h are of!&ctively >.A
-- stiags and & type der---ed 5~SOL Czarp which
-- inic the behaviour of SQL at:.na.

-thh &* pCog=AM f*=AiS are Meanlt to detMI; thAti,
- th-is generic should be iaztanti.atad Ln the so"e

at @ an use Clause !at SQL%_Cazjkq.

typeWithut uli ypeis anlay (positive Zan"9 <)
At qZ.,tandaxd. Cbhaautetye

wit'L Zutetio..with NaiLL- 5...(VaUe: SGL-Px mbSZ NoluJl)
zetui~i!V.LW I - -is <0; ..

With, tanctJa without *a=use (v. alue: Nlmth IM4-ype)
zmu SQ& char NIQ Null is 0

With Iuaeutist Wihu Ru Uada e (Value: With ull Typet)
raztmm mti u.s m~ NUL La <>;

P.Akaq. Sw-Chax p.s is

* .~~~XtUi With N~ ye

* *:~ -PX&9. ZIL (With Null);
tunct~a. Without (ulValue Witbh MuLl Type)

"tam without Wall p:

s*urties Witheut Null llapded (Value : Wtlh11.; 2.!?n")
matum Witheut Null 'type;

-psa~m == (ith.ou Vq4p'ddd)
a"d Sat C&42Op.:

type 3~zc!M.SZ Leqth :SQL ch&ar Length) is cord
LemuLl: Boolean :0 true:
Vnpadded Length: SQL tYnpadded._L4*qth;
Tat: SQL qc Not Hai-, (I .. Length):

end recog~dp

end SQL Cbar 1pkg:

115



C.24 Subunit To-String
-- assuing an scii. ha- chaaclt.: got
-thaz is S~ tn~~ haa j.is Standard.-ChAacter

aepaaze CS P kq)
-ftct-' n ToeSt--zz (Valus SQL _C~x NotN u 1)

:stu= (stn (izg a)

end T*-St=.-:;

C.25 Subunit ToSQLCharNotNull
-- sss-i.: an aadL hosz chbac-ot.: set

:o s;:. ca No sul (Value 1. St-iq)

:eu SQL. -a e*%. Null (valu));
end To SQLta He u=,;

C.26 SQLEnumerationPkg Specification
wit Z leZa-*n lk* use 9QL Ic =P~q

With SQZLCha. ?)Ykq; use SLc.a ~;
qene::.:

- ?.aebly Null znma~tJ.o
type SLZueai~a s limited p~ivate;

ftuactio NlllS _ZaIMISCUAMSo =etUm SOL tnmAtic
- ~ Wl -z~ ~ U2smL-u ztio);

-this paix of tanction wcuen between the
- ull-beaenI~ and aam-nuZll-beezing types.

tuietiou Without lull (value :a in OAnatio.)
zetum SOL ZIatia"not lull;

-With lull gASAGO lhu value 1enQ it the input
- value is -Il - -

-functioen With lull (Value : nLa v a.a~n*ot man)
zeta= SmuL aticm:

pzoaedure assign
Laf :J out SQL UUMWat_4n; 14q~ La i SM ymazstie);

- p==a & (Assin);

- Logicel Opecations-
- type X ty~: W> Boolean with u~e

-those tiutions imlemnt thzve vaued logic
-if either input is the skull value, the hunctitons

- ztu= the "Insh vaue MNQWN: cthezwimue they
- =0= the indictj.4 @CoMi5OLAC.

116



t5Imaiot To St~±zq (Value sQL cbar)
-~S.& itz-.3q;

f*4acioa** To UjpaddSt.-=q (Value SQ a.IoKu)
cetua =q

~t%..o-n To vpadded St.-.nq (Value SQL Chaz)

-- t'± 4 '- works to= 30--a 9-nOOcs!1
94a"nTo 5Q. -Mm Not muall (Value :St-.=;)

2J=ctora To sc.Char (Va&.uo St.~..o)

£fanali Uamadde4_Laq~.h (value SQ. e,,,-)

&2st- SQL Voadded teng%4;

-praq-& =-rUz (npadded Lenq-t);

Lat outQ c.z
X-gt SQL - MA-

-- Sue::~ (z* ew) .:.s -- * .ubesziai 01 z eat--izq
&Z aPosi.tion k (=*!&=Toe to 1) W-z length 2.

-- zC-.=S naull value Lf a is null
raises Qonaxeft ez~g U! staz -C 2 or Lenth~ c I or
-- Sta+ LOAS~h- 2I > 3c.LO%-gt%

9=c--"* Suszzq (value SQL e:;
Sta=%, Leng7. SQL _hax Length)

=Stu-- SQL QLMa:
- px~a ~~IZ(Suewig):

C8 :uue null . U either pezamtec is null;
-atherwis., paclors ... cateaatioa in the usual way,

* - pcee.zring all blank&.
-mAy zea m a-.n ezurIPUG-4ly it ZSaUlt LAI

- to large (i.. rae than SQL Pmlr Lenqth'Laat

*&aur (Lfgt:SQL pme

* :." -Lgical Opa~tim
- v Xp tye "~ Booeanwith Uskatu

-the copCM opeatme ret;rn the boole&a value

- the ahorter of the two stvIng paitece ise
- .eatJively padded vith blanks to be the langth of

- the leagex st=Uqn end a standard Ad& oomaAlso is
- thea mad
tMlastie Ijuals (Zeft, Riht '.SOLPaz) sainIelmsmaWithpakshmovf;

Ltunti... not Xquals a-eft, Right S QL-&
Zeturn Boolean with Unknown;

tunction ( (Left, Right SQL P=r) return Boolean with Vanown;.
- PL~uga =a-=("")
£U=c-40a -~(lat, Right SQL _s) zaturnioenwihUhon
- Praga Mmmm4 v~>");

*-ati C (" (Left, Right .39kCha) retzu Roolea wth 0oknown.

117



UPZZ cc PIU' 21.47413648'
VOic_-u DC xIc0oooooo'
x2CC_-V VC X'DOOOOOOO'
1QSZc~W OC X1700O0OOO
U.RO DC ?t'
Om DC 7'2'
sx cc 116,
zr.!.WA DC T, 32,

3@ 0(0,2),0(0,3)

DMVSE DP 0O(0,2),0(0,4)
mmD ADAS?

C.22 SQLChar Pkg Specification
witla SQCLZsze~m; use SQXLSP.:inm;
Wit!.8LolaLq use SQL SZaoLea.-Pkq
Wzt!L SQL St~xa-a.:

packaqe Q .a k

s.ubtyp* SQL UnpadA~d Length ise nat=zaL
z"O 0 %QCIM

type SrQLCa:-.lot %lull is new SCL Standax4cd .a.:

type SQ z~a~:sQL C%&rLeaqth) is limited private;

trIca Mul SQLChar beturn SQL phm;

- praga MI~ NllnMa~

- tbw ex zthree -ftnap~me osnt between
- au'll-bearinaq and am m.U-beariagtypem
- without VLU ieee an Wlth~ wall sas. A"
- invres (Mad. auml values)
- se,* &I". SQL =%&r Cps guenti package below
haaetion withbul iaa.z(Value : S= zmmNxt Maul)

- ptagma ZU (with YoUL2So");
- Wii VL afsawithout Nuil lame an -4-4uliS-4~ MJa"

*.. - Auu val.ue ema an the Dau input
9=LuacOU Without Null ian. (aLue S: a)tz SOL.~a Not Null:

-Wihu pzag.a ==pWithouta.l M")
- the iput

gumat.em itu wu apd~diaaeeme S?
rettuz SOL Curs Net Neul.

- pruasa In= (Withowt Na. Uapadde I&"),-
- auion: umpadded tLaqtU(x)

- Without NullUnpde MV6 e. Wz ILst
-both, tomaujas rais a ae i em Lis null

-the next six Lumatica Coafart between It&anaXd.Stxiag
-types. and the SQLS& &,cad SQL Omarl ot NU types

function ?o-stciag (VAlUe :sgQLh ac tNUU)
retun Stxl;



- t*pe Digit is picked to be An inte.er ty.-pe wth a range
that w_'l. rce the Ad& ompler to pick a

* - pre-defined integer type from pack.age Stanidard.

ty-p Ligt is :ange -(2-7) .. (2**7)-l;

t-- e followig object .s declared so that the true -ze
-- (ia actual oAbez oI bz.ta allocated) is aaz~gned to the

*sze" ob3ecz, rather then the nizsbe: of bats used of
thos.e wt.ch age a.llocated. Zn o.ther words, Using 'sa.=

-- an the type Digit -. e.lda 4 bits (nt.ber bits used),
whe.as uinq "the 'size an "object" (of type Dig-%) yields

-- 8 at (number bits allocated)

oboec- Diq:

-- Iz La the w- ber of b:..s used by eah obJ:ct of type Digit
-- is L used ia the caI.Iaaon of ..4X $':S (below)

a* : conta.n integer :- ob~ect' s.:.;

IN= .cxS-2 is the aumbe:: of azzay peaitions aseded !or the
-a ~aDeczai type below
*-- sce each 30 digit can lit into 4 bit& of storage, the

-- total -umber of bite can be calculated by M DZG:':3 4;
a- result is divided by the ntmber of bits that an object
of type Dig : w4 1 com:ise, wbich yi.lds the nu-ber of
=_a.ray positzons needed for the BC= ai-ez

-- the rsul% La ine zed by e to accemodate the sign

--xS-= : constant ,,teer :- ((4 *O....:.S)) / size) + 1;

"- b)az Decimal is the ar.ay type def " ton used by the
S91t Deca~al Not Hui type defintion (below) toallocato Uaazii

- storage fox itsR= value

type =a .Decimal La array (..axs:z) o Digit;

- I Deosimusl Not Null. is the "da 2= type. Zt is comprised 09 & 30D
- value wb1ch ;esides in an object wich ese €e.t aeuinam
- apme for 30 values, and a *s&le wbich indicates how
- man dt. i eit to the ziqht of the decimal point in the
- 3= value

eSQ.ecime Neg Du"a. (seale d*.4aedi€tto :- 0) is
Value Max DOMal

ad Recogd:

•J SQL ,..2 ._ 4J .. (scale decimal digits.m 0) is te oed
Value Maz Decimal;

40d swcood;

type SQL...Dejmal (scale deCimal digits) is tozd
I , Nu 2 boIlea, :a t-ue;
Value aSQ Decima xotl ll(scale);

and gooed:

e04 SUL IDecimal Phkg;

• ... . '.
:: :.:.: ' T:.. 119•



t~pa With' Mull T%-e (scale decimat di'qzts) iAe l..aited private,
type Woa i" yp(a.e:decxasi. 4.qizs) is '-mited pxz.v&te:
La scatle doca&m±digits :m 0;

=at-ignsignj .Aactsr

(I.. dec~aal d-9its' last-in -scale => '9');

(1. ..t2scma U> '9');

Laart iat egn-al Nwuer4cStiLng :m
(1. .dec-..'-digital Last-La -scale w> '9');

Lastg~at~oaa.~ .ic St-ing :28
(t..n sct. > '9');

with ~itzaon &Ze Aa (-igbt without Ifull. ap
Lower, Upper SQL DO.c~nsL Nct %1-11'1)

* :etuzz boolean. is <

with -_4G Tzuio e-:=-Us. (7-1 gt with Nl y.
tLzw.:, Opp&= SLDe . otNlZ

.a boaleaza is Q
wit!% ?=zced=% s i~hcej

(L.@. : in out without Null Ty.;I
R- Wir:Vthouz HuLL 77ps;

Lowes, Upp. sQZ eim±NtNL

with pccdu. AAs~gn w-th-chech

(Left Lah Cut

Law%=, appar :SQ; Decimal ect .. "I'2

with !*zazion To -Q D4-Ha Mull-, (Value :wLthoutN
zatu= SQL DecinaL N NNuL3 'aiis .4>;

with _n4.on a ToscL b~ocima uct vuSLu (value : imtu Null ?yp)
reazz SQL Do.ial Nat;Nu.Li2I& is ;

w:ith fuction So SQL eczmat Not Null (Value . SQL Dec aa.t Not NuI.2)
Zt= Withomt Null Type is <>;

With, fanatics To MQL ecimal, (Value: ;Q a Deczam not NuI.=)
"tu= Wit ll Type is 0:

packaq. SQL Decinal"C is L
pxocaedz. )Asiga (7.09t : in, oft withutyll Typ..

Rigbt :Wthout vullm yp);
pwocedurs )a~itn (zeft inL oft With wall TyP-.

24 ght With .NuLl Type);

fanatics Zz X I(Right Without Wull y)
* . zatum ;00lee0;

;*. lunation s ZA~a(Rigt :With Null TVpe)

* gu~faacs With 1uU2 (Vaue.: Without WllTpe
Z~atin With UuiLJ ypwo

fanati. Without Null (Value : With Numll Type)
3rtu Withoutm NullTp;

-xq pzaL M WIthout Null Type);

- The requinrmmat hex* is to ptevide
- at last enough space 9ot the machine :urpcementatioa of the
- SQLpec4--l Not Mull opexands.

120



114DCtiooD To ' Q. _OgbI* P-ecaoa HqC NIu±_. R.2.ht SCL Deczal)
zetu= -Q Doubloecisonlot L11;

- rga N l-z~ Q oh..?zc.icot Hl.Lj
ftnaction 201SQ. oUbls_?Zsciaion (RUght :SQL OeCz.ua.)

atuj S=-ouble:ecaon:
- praga =L'3 (To _SQL Dauble Preciaan);

- Mhe fol-ovi;a lunat-ans coneret Iz-o Docima~l to String:
&4ncu~ou To St:.nM (R..;ht S"LO&alI ot-u.l) retur az q
&-t-rcjon oL3 (R±;ht :SQL De'm) zeOtU 6=±zg;

&f*Acj4Ao THUL~& o I'J (iht : SCQL DOcimal2. lo N=U..)
zGeMZM SQL Ch~e oz Nu.ll;

L4nctioa oSLch ahl (Right :S=LDeCI3a4)
"e-- SQL Chwr Hot Null;

-prag=a "---r (To SQLaC Nerot Null);
ftnation Tel .'_Cher (R..ht :SOL D&CL -. ) ~euuSQ. 'Cha:

-the foi.2.ov~aq ftnczions retun the length of the aza
value :.tu.=.d by the "To Stzizq" :!=C.ou

func,.On Wl4f.!L Mioz : SQL Dczal Not Mull) zaturn -!-Zags=
M Te follov--Z; functon raises the Null' Va.~.e Z_-o: .zcect..on

- o the nal= z.opc-
ftnct-'on Width .C±h SQL *Ciaa&) zatu= Lnzoer;

- The talwi uctionz i£plemnt acme of the 1A Aunz-ibutes
- of the X= type

Ma Te nunbe: of I3* dl4vlta before the deci=al poiat for the
-type of1 the gz~ven ob:*C:

* ac~onZnnqa. 19?..(24St : SQL D'a& 'Not Null.) raun declea.I diiza;
* . fnction ZeaD9t (3±gt : 29QLD 'm) cstu= d~ci=aItdAit&s;

* - TMe nuber of 30 digits after the decils point fog the
-type of the given object:

fumtios Scala. (Rght :SQL DeCinALI Not *t."'1) ret- deciuaIdivgits;
* Lumatie Scale (2Aqba : SQL Pecia) :t= dGC~maaLqLgta;

- pxog- x~m (Saa,")";

- The actual numec of Z0 d499ts before the dciml point Sac
- a given object of a given typo:

aumctieee Two 4gh : SML Decimal Xot Null) be~poLt~tve:
- The LollevWAg functLa S&L~e the Run~ Va3ln. Zaow an the =all Input
nation 10Oe (240t :SQLPeCA Ug.) XlgL poultive:

Mw~ ~ of So dqi*At after the decimal. point toe a
- giem object of a gives type:

SM"Wcthi Aft (light : SQL Decimal lot mani) zeas positive.*
Ow fo Lllowing fcm4at. raises tae Mull Valnefto ano the null Lnput.

function Aft (Rioht : S"L Decimal) retuau positive;

fucti.oa Machine, Una (14ghtM SQ DeciMal; t ltu) e booleen;
inact~on Nacin. Rounds (24, QL.ei.a)emh ootn
- pxaw& ~(abn ons

function MachineoOwexglosr (Right : SQL Decims.l lot Wall) retuzu boelean;
1funaction MaI"-% yg..v (Rioht : SQL De.1.aa~l) zetue, boolan

-pragma IL (Mac"24e Ovaztlows);

121



-- prasa =lLMIz("I");
tuncL-"a/ (Loft S-l N~~..ot -su.J .Lghc. SQL TazWoaCHu..)

(c SLot e..aj Right : Iu±t f Nll

'Un u "I"a (Lett SQL 0*c-ua Rigt SQLJt M

zm== SQL Oecz.ma1;

fuSL ecaaa. ~ooNn (R.ght SQ t4o!u)

- - e S= Double reciszzon Hat I" ;&a.as is too laxg.
toa be fp..t4~n3 ozmai

S&4au SQ Ocia. le n (Riht SQ oI.Pc.auWealL
Uac= S sc D*C-ma± Hot nll;

- 5 * WZ.; S~3~t aa..Canataizt 2--*=
-- IS there. ae =a- than. MX ?:c:?s Aub.z a! digits;

-- 5!%S* axe two or a*- 4ec-maJ Po~as

- £5:oee *=A.t& & -h-.acter etbas than 0' .. ' 19' or 0 .

th e azdaz of the abaea~ . an*__- other thana
84a; de.~giat.au !o*=owed by the auaez

Th~e go12.ow:xgS.nco ccoverm- to SQL Doc=al;
f~n---GUT*_QL0ec-.mal (R±;qhz SQL Zat Not 4u.11) rot-~ SQL Oecimall;

gunact-. T SLOez4a (:R.;-- SQL tnt) rat- SQL 0e6m&L.
- the Se2.Leowa two tunct3.ena Ca~ae Coae.ca.Lnt &---c
- il the SQL DoumblSe :ci.*~.onNot NW_'. val3a is too lacla
- to be copasaented in 30m fozat
Sunotios?. a'SQL Decimal Cush= : SOL Doable 1:xecliioa Not Wall)

WeruMC SQL DeciuaL:
tUm~a TO-SOL DeciaL (Riqkt :SMQL uhle.1z.isioe) return SQZ.Decia.L:

- he Sollowia two tanctioue raise Cometa.±iat Irzom
- Us them e am*n~ than )XDQ 01=6. A @5 ; digits:
- Us the". a two as smet d:ci4-l points;

- -s that. ag% tWo at Race Sign deaiqaCM-tj.;
- It thema estst a canacteg othet, than 'Q..9'a

* - a ', -', ' fewo the aign
- i the egdem of the isgata Lanything ethet than

* - sign daeIqmat4on tau*..ad by the aamew
fanatics a Sa?. Decim. (Light SOL 01Ch at Wa ll) rtem SOL Decimal;

taton To _SQLDeCimaL (RIght : SQl Cha") rte SOL Decimal;

-M- folowing fanatic"a amat 5gm Decial to Zateare

tQ~aJAM O SO at Net U.J2. (Rigbt :SOL Decimal Nat Nll)
Za SQL xtt NNull

fanatic* To SQL %at Not mall MOMght SQL ecima)
Wetama SQL_%at Not Null;

- II 9U" lZ (Tae SQL t at ot WLI) ;
fanatics To _SQL Ea.t (Right :SQL-Decisal) ttm SQLjtat;

-~g 1 ZM (To -SQL xat) ;

MaTe flelowing -fuctions convect fxom Decimal to Pleat:
funtin o- Double Precisaion Not Null (Right SQLDecimal Not Null)

"t=SQL _Double pzeciion iet imll;

122



-- ~~~ ~~ U-0 i-=zC. n3.);

IscL-oZa (Va.lue SQL ec.zmal) :eczz boolean:

£.q~nNot x Va.lae&-4 SQL-Decin.l) zoc-* booa&=;
- ~'~ ZNIL= (Not3HU1.);

fo £llow' -q unaxy a.=.t~unetic operatorsl a:. provided:
fr.LC?..oa *~ (~ih SQL Doczza.!. 40t-Nu.U.)

-V== SQL- Deim Not mull;
"&cazon (74 -- =q~ SOL 0ecca -IJ Nu;

-at*4-- SCL 0ec-a.L gIot NU..LL;
ncoa " -* C .qb SQL -Dociast) xet= Q Dc=.eL

~~tz-con "abs' :3;t SL~ca Not )hul.l)
Zotj4 SOL Deca '.ot HI,
£~C.Oo"an' ( ':~ S 0Dc~.aa±) zeu= SGL Oscia±:l

-p~a.9 --ILZ.(aos*);

The ;!*Uovz~q b -~j opra s axis provided:

-- "be"+" ad ~ =Ct..on' return a =*suit with a scale of
-- max (10.1. scale, 14.qbt. acil)

- : the oa .ou produces & reult thaz is too lan to
- be rozzosented a a ob3ect that has. tb~e scale, &

t~c...on " (I.-it, Rgt,: SQL 7 ecixal-Noz-Nu")
=*zu SOL Docl-- got q.ul,.

~nc~n "*(:-Aft, Zi;%b: SQL Dec±ial) :e~nSQL-P.ciaL
?= pas- zlILNZ("4);

""(Lett, Riq -z SQL Dec "al-Not Nu.l.)
Set-rm SQL-Pecimal Not Null;
-&ci="-" (Left, RI'W- SQL Decimal.) zetarm SQL Dtclamal:

=0 *a*" Euac--ioa gaturs a result with tbe scale
-L.eft.cale + Right.scalte '

*ZZ - h resul in ~ too lax" to be z~pciseated ina an object
-that has thisa scale, Coutmalat Z--mo will be raised

&mation mwn (L.Ett, pight :Q gDecoiaL NotNul)
Zta= SQ;L Deolas Not Null:

tamat'im a. (Loft, URit 7SQ.Desulml) zetza SQLDPia~l;
m e */ function zotuas & Seolt, With as wma goals as

- peie, Vivest the mature of the xammlt
Z* th reul is to UT to be mepaeeted in the

* .* - the udexlyinq headware or ia an object witIL so scala,
*~o - t an attmt Ls made to divide by aez=, the

*. * ,Costra.Lt Zgog excptLon wi.ll be raised

* ~zeta=1 SOL Decimal Not ullj.
zi~h% S~t SQL DecimalSO

Th foloi si* o"oeamew zvidd
**=%ASts.' (%.ft : CUPcialNt n; 219Mt : SQLJLotNt Null)

" - az DecialNotNau;
Suaojm(%,af.t : SWQPeahamL; light :SQL aeN tNull)

seeaSOL Decimal; &t J

a-cie ' ceft : S0..pecimal; Right : sQ1Zat)
e~tm SQL Decimasi

Lumoie.~ (eft : SOL a~oNull; R4ht :SgL De1 a N6t Null)
"%U= SQL Decimal Not Null;

tucu~' (.'Aft ;S Znt Not Null; Right : SOL Decimal)
Z'tuma SQL Docimal;

9U40c?4O Go (Left : SQL Znt; Righbt :SQL Decima)

123



fution Zer xazzmu SQL Docial Nat HIU1.:
214C.on Zero =at-- SQL OCZAJ.

4unatioa 0ne =*turn SQL Dec-mal1 Sact 'lull;
fnat"Ca Cain zat== SQL O:z.a.;

?rpag- '1LIZ (COO);

-- I. aoLat. Aai~m pzocedurs ia prav-dad for the
- SQZJDCC aLot ul - %?p.:
Th f. lolown maalqact Pocendurz a.s Coc.Cait-Z--

"- %he Va*ilue of Right does not !A=~ vti -m the range
at ol owe:. .Uppar

Procedure )aalquj Wl _h Cick (L.egt : ina ow-t SQ.Zcaalm Hot )I" Nu;
alght : SLOc.. e ~.L
Lower, Upper Q~t.Lo~..)

Th f. ollowimq Aaiiw.hcheck procedure v.L.L be used
-- L the gee=-- Aa.n p-roduced La SQL-Cecisal Ops

-' he poceduze =&is*&. the Coast-maint 2Zz=*r &Xcepczo: L.L
- he "R.-.;ht" izpu:- pazamtezLll.oua the range
-- degized by :.ew. .Cpp.:

pcocodt~ ai~ eh ic
(Laft in out SQL CPocia.l;
Riqht : SQL Docimal:
Lowr, vaor., 5QlDe W.-ot -Nul!-2);

Ma Te !oal.owing capia Operators are 21COw.drt

Luact.-.oa (.1t, Right :SQL Docimaj. Nat NMI-,) :sauuxa booloaa;
tft @4 "U" (Left, RLghz SQL ODec±i.&) ze4- bae

16tictot ZqUala (Leift, 14qkhz S"QL*jMj rac_- Reatlso an With aaknown;
PXqm = = qUa");

tuion. Not XquaL.. a'aft, Right: sQL OeciamJ.) return Boolean With okm*:
-P"9a =M (Not_&qm&L,) ;

hot~ee (LeCt, light :SQL Daia Not Null) Catur boaleaa
*uactie ( (Left, Right si- s a--
iuaatm 0<0 (Lesgt, Right SgLpoaiual) x.ta &..lmaawith Umk.ua:

"oai >* (Le-ft, Right Sak Desama vat lull) ztc boalen
913110tO *:I- (Left, 24igt :SL 0".i..) V~tuL hoee..;
tacU.. 0>0 Met, Right :SQLPDcIma) Sol= 3041108A Wish GUMMw;

* . Suasties 0400 (Zaft, Right S Q& DecimalNet WILLI) OLSM ... :
Suactimw w-C* (Left, Rigt : SQla Cecima) setwm heel...;
gumlat~on *Cm C"e&, Right :SQL DecimUl martm BooeanW.*.k Unknown;

f unction, 0,>m (Let, light SQL Decia.j. ac otnu) zetwa bleelam;

LUa~t4 -.- CLeft, Ri4ht SQkpaac&ml) xetUM ReeleaW.- .

-the flSlowiAn functions am. aewhesship tat&
M te, value of the ebjqiet La toot" to eo it

- iS it S&I. withla the Zn" og Lomg. .Uppw
huaaft sl-m 34"Z..Ra (Right :Sak Docimal Not Null;

Lower, Upper SLeeia xl all )

fanatic. Za..Za &e (Right :SQ decimaL.

x~t~ ooe.a~Low"s, Upper SQL0.eciaal"NoctLL2-)

124



end &&sigqn;

and SQL _Doubl*e ?:.czsio- Om;

end 0.Due :cao2

C.1 8 SQLDecimalPkg Specification
with SCL Dooleam 7kg; uae SCQL Iooleoan-kq;
with SQL Zat 2kg; use SQL 2kg:

- -Y

MI)X D:G=2 s i z.lamnnm:clon deined
11. Zx :p:eew-A the axz numnber of digrts, thaz can be
-- ataed .. the andez-1y~aq hardware'sa =eo:.aentati.ca of
- a R= ==bez

aubrtyp. dec=. .dgV.A i& mna~-al ==go 0. .)lX OCS;

t*.Pe SQ; Dec-,ljNot24u. (scale "ocas,1--'dig'a :- 0) -a ..LinLed p:~.vam.;
t-ro SG;_D*C.! .(aC&!s decial dLIp.) ia U'td Priwate;

su~btype isn~:~rc L Cha-i&c~i -ang '0,
X&:pe N -cS.L.mgisa&ay (do--a-dil-IL-a range 0) of Wtme:Lc-&%-ac--ez:

- te tllw-ig y."isused fo poxpo.eof c=.atiiag generic
- aae4- and is in on .. O WNO? USZ 'S T2Z to
- create the esun6act doains..
type SQLPec!-Ia Nat In=. (scaLe& deca.u ditLA := 0) ia Limited ps~ivate;

Imuc' o ToSG Psim Welt 11.13. (Value :SQL.Pecissl Wet A&1.12)
getum SrL Deskua Nat Nall2;

hanaue, To-=Q Pedifta (Talus, : sat Decia Xot.. WI,=

tumoU.o To -SQL Decimal Not No=1 (Value: SOL Decimal vot Null)

zeturn SQL Decimak Dot Nulli;
imictin T SQ Deima. et Dm112 (alue, SOL Decimal)
tn-~ S=_Psutml 3o IuLl2;

- PzM.Ma n=(To SOL DecIMal.vo W4 D112) ;

- this tsuctiin rat=:Ms a noll I alu of the saL Decimal tp

functims Dull SQLG~ DecLE&l zetat SQk Decimal;
- Pza9a" (al Q Dcml

- Mbe following funetioms shi-ft the value of the object
- without chaagimg the scale. &I-ectively, the operatioa
- istiplLes the value ina the object by l01"Soa.e
- The fellowing aieaa saLe. Cmtzaint sczu it the Ilft

absi-t causes a loss of eiaiiiant digiLts
function Shift (Value SO SDeia Nat Mull;

Scale Ltegez) seam CosQ Decimal NatDyou;
Luactis Shift (Value SOL.cism;

scale : itages) setiu SQL DPecimal;
-Psagma xkL=(Sbhi-t):-

T he tollow--ag gonct-ions secucs objects wi41h the appW"Lte

125



*unct-ion IsNull r/a..tte ScQL XtI Zetu= 200144n:
__ pra9MA :F- (--& Iui,.
hnuc-"Oa Not NutiJaluo SQL Zat) retr aoolean;

- hoso tunatzoos of class tvr > booleau
-equate MM~CW with 7== . .r is,. they return TM

a&!-.-7 whou the ftc ron:cz.= MCZ. M=~CIW aad Y2LS
-- are mapped to Fx.L .

LJC4oo -* (Left, LUqht: S;;_Zat) :Catr Soolean;
-- pzag= =IL-IK ("a,;
func-.on "< (Left. ALw: : SCL Int) return Soole"n
-- p=&aMa MM~I ("<);

tsazz-0A *>^ (Left, L.,,hz SQL IntC) return 8oole0";
- pzagma =CLIZ = i
ftaica *<a (Loft, 3z.h: SQL tXat) rotu= Boolean;

fractionf *)Ow (Left, R~hz SQL Let) :return 2oo01.a;

-th"e genetric ie izaata.aed ocec !or *vez- abar--act
-- dGMeZ. based GA the SQL. ZIP* tat.

-the 1_1=66 subpzoqt-as Loa.L. paainecec ace meant to
-dwestat to the* Program declared aboite.

-- that& is, the packcage *'. I j be instantiated in the
s- cope a! a se clause !or SQL tat lb.

-the two actal t-"&e togethet fava the absutact

the puzposeoL t!-he genetric 4-8 to create Lsactiooe
-whiLch convet between t!:e two actual types and a
-Pt-*oedut.o wkzMbh i.p~loazna a range constrained
- aeeie~zear o the nsiL-bea~ing type.

-the bodieso of thee. aubpogwasi ace call~s to
subprogams declared above and pasood as dofaults to

genetniecC

type WtbU3. Vu__type to lUmited psiuat.:
type Withm aquItype is Sag. -<;
With f=M.U4o Wih x"ll Sane (Value : SQZ.Iatxc elul)

atum Witu ftJ. ?pe" "~ <-:
with hfuties Wthaput 1.11 *a"e (Vae : ft Va11 2top)

watum SOL tat Set luul ise -00;

*iwt Loo pe:g SQL ;ntt Owz. Vaiss

Sunatime With W&U (Value Withm Wa.l t 1p,

ZU*aLLOU Wtbam UUL (Value :Wfth NLulype

"etam Withamt klul tyne;
-pzagee IXZ (Witbw uU.~);

*pceceduee aseip (Laft in eut With wnU W.Ype;
104ght -is Witk ouU tyg')

a"d SQL tt Ope

typo S"L;at "a reorgd
Zo WaLL:. Sealean :0 true;
Value: $=-%att Not Nll;

and record;

end SQL Xtt 1kg;

126



- aimoa comazzAjlt *=or L- no~t

-- (rizat <m Right <. Lest)
pcodi. Aaac.qa .tt chock(

:At I out SQL nat: Right SQL ant;
rFast, Lat QLZat-Not Uu.U.).

-the Slonqf~mcmion L-m emnt. thres Valued

-- i~the: izput. to any oL these !za-mins is nufll
-- th --Setu=* the nUll 'va.u.; Otherwise
-they p.az the inditcated apaeation.

-- theme -lumc4on zaits. no excepti.on*e
ftaio *" (Righz Sg'L-.nt) Cot= z LZmt:

- pzagp& -"-- (*+")
ftJaion "-(Rgh 81.Zzt) -Stu= sQL :-za

ahMiu &e-(A Clg: SQ;lZAt) vetu= ScQL Z
P-- aga ("&be") ;

t "+"(7*t, Right SQ n)rav== SQL - at;
-- pa& =-M ("+");

ftma "(.eot Right SCL Zat) reruu-r SCL Zat:
-- pragna MlLt ("'") ;
ftmazio4 "(et Right SQLZn) u3 SQL -zat:

-- P~agM '-IL--' ("-*);
9=ut:.oa '/" (7ft. Right SQL _Znt) :etu= SQL -ZAt;

914mction "=ad" (Lott, Rigq:- SQL Z:) ve:zx- SQ gIzt:

-- pCSMA ("nod"):

9Mtia"ww" ('-*it :SQLZ._nt; Right: Zntaqv:) return SQL Znt;

- ailatlon of IZA a nd "IRLOZ that
- SCMMg/take SgX (Not Null) 4gtead .* gmt-Iaq

ftaat4on lBs= (Loft S=_QL t Z o NuL-) zezu= SQL-'--a Not Null:
functiton M3B (Le~ft, :sQLZat) tum SQL5"c;
£UflctLto V2Oz (Zeft 2SCL PAX: Not NOWL zetu=a SOL ;fZnt Null;
funct4. an VA= (Zeft :SGL pmc) retuc SQL Zant;

-t~Ye L tjp Ua> 3"leenwith unknown
- the". functioam ilmet thz.. ,,"U" login
- AX ath" ap" Is the =21 vaue#O the Stmatee

* ~- gtm the tuth valm. UM0W Othanwi.. tba2
- peciosm the Ladioated Gamaxisofl.
- thes. Lunatioem rat". no eaaeptioaa
tunation Squ&a (Left, Riqht : SQtl"a) vatuca Boolea-with, Unknown;

PUP pa~m c (quals);
juamatice Not 4quS1e (Left, Right SOLrt)

xetwm . ea with Unknown;
-pzagma ZK= (et Sqmala);

fmat1.m 0< (Left, Rltgim SQL.;t) retum Sooleeaawith Unknown;

Sunctiun 07" (Left, Rih : O a)xtmSoenwt Unkow;
- pm"Ma znm (p.);
£ac.ion *-m (zeft, mogt :SQL rat) zetacm SoleA with Unkown,

-Puggm nIL (*"Wm);
* function *>a" (7Zeft, Riht :SQL n) ZetU= Boole=n with unknown;

-type W> boolww -

127



iuact.Ioe *xcr" (Loft, Right : RoeL... th Unknown)
"~tur 2onaa-%tOnknowu is

begin
rat'=~ (Let*l and not Right) Or (not Left and Rigqht);

and.

-- Uh-ev. > boel or emceptin -

unanj~on !-o eleAn ('.Oft ree.wihnao turn Bool~ean is
begin
i L~ft a Unknoawn t!%ea raise -uL alue azoc:

also return (Laft
end i:
and,

-- thxa-v.l a> beal -

StMaetie ZA ?rnaUe (Lett Boolean with-Cnaw ) reur Booleanis
begin

rezux (Lei1t uru)
end;
92ZCOa FS-alafe (Left : Bolean -With -Unknown) Z.tU.= 1eal... ia

return (Legt u Fai&e);
end:
iwienlen :&-unknown (Leit : zol... with unknown) z"turn Boolean is

Coe= (Lett a Unkndwn);
and;

end SQL Zoele1Aza kq;

C.1 0 SQL-Intykg Specification
with SQL Stazdaxd
with SOL Boolean Pkq:- use SaL Rel... lk;
with& SQZ%_Chz Ph;: a"e SQ&_Pm ; _k;
packagre SQL .at 1Pkg

type SQZnt at pull is new SOL ptandasd-lt;

-Possibly Mull. Ztege
type SQL.Zm La lim~ited private;

* . urtin vuL SQL Zc reuc SOLnt:
-ptagma =L (UtuSaL Int):

-thin pRiz 69 nitLons inouvext between the
aull-boaxiag an m-unlL-beaxing tps

foution Witho" t u zW..WVaue S SOL;at)
ratuca S=atU~xg iuZ

- psgm MM jxtot Rt ame):
- With Ntul U. gaL...Nulae IrrX i tbe Laput

V alue Lsa nu
atiou With NoUll3 za(Value SXZ.a tNLl)
zetuga SOL Zat;

- rgm = LM , Wt u~e

- this procedure implement& range chekinLg
- Mmte: it ise &at meant to' be sod diectl1y
- bY eppI Ication pzogseomeas

-aso the generic package sQL..ntO."

128



-- p=aA DL f.,l ("o:')"

,1nc.Lc "=or' (Left, Rigqht Deolean-with Unknown)
rtu. Boolean wi.th Uknown;

-- pragia LIU."M ("zar");

tho-& -> bool or exception
uaI*tn- an To Boolean (Le.ft : Boolean with .nknown) rtu= Boolean;

pcaq m-rL (:oBoolea,);

t--..."-va± M> xbl --

function Z T.L-4 (Le.t :ool.nwith un wnm) return Boolean;
-- psage I (a, .. ) ;
fun.czio Z- also (Le.t Bolen with Unknown) metu,, Boolea,

%=cctI c.s nn o~wn (Left :Boolean with Unknown) return Zooloan
- pragna n1..l (Zn Unk-own);

end SQ. Booleoap-kq;

C.9 SQL_BooleanPkg Body
With SQL.Zzceopt*on;
packaq body SQLbool*n'P q is

Nu."Va.u.Z.=, : ea=. ptn rea- SQL _z.ptons. HIu.l Va. _Z--::

-".- "not" (l.f : 1oe.n w..h..nkno~wn)
zat=- Boolean wi.th Un own i

b.cqi=

on... Lo.ft is
when true W> return false;
when S&L"a.> ratuca t-u.:
when unknown W> . Unknown;

end : ;

na.tion . ".4" (Laft, Right : Bool.a ith U known)
return Do.-, with UkoLwn isa

AX •..at - FlaLm) or e (Riot a Val")

.. ....... e., (Left a Unknow ) o&L (Right a o*- i)
zma Unknos;

ead if;

~ end:

mactim woz Mat, Right Boan b * .known)
retac xbas.witlk Unknown in

Lf (Laft True) or also (Right a T!u) then
3etumn T=O;

. ,, (left a unknown) or el (Right "Unknown) thn
vatum Unknown;

end i_;
end;

129



Nor.±.o -o Yeat -4oanth (Va...ue SQL tntezal) retur Boolean;
-- pzaga W&=~I HalouY~ Mth) ;

tunczzza NacOt ay_ ?me (Value :SQL tntezr.l) return Bodlean;
-pcai;= =-ILZ (NIot Day :im);

-the procedue C'jmc-ut =etu-As the cuz-runt system oatetla., using
-- the precision of the -,-put ?xzable

pSO*edue (-je=nr (Value : . out SQL Date):
- paga mrIm (C---at);

-the procedure Zzmend :e~nthe value at the Right input object with
-the dar-atia quifier41 of the Left object, 1.! a valid4 datat.me
-- value is gsenezated by the extension proce

procedue Uztend (Value in out SQL Oat.);
?=S= pMarA MIL (Zzt etnd);

-thisa qAez4is ~ iataaantad once for evexy abstract
-- SQ:. nar doai±n. and once fox overy abstract SQZ bntarra.l
-- maza. based on the type SQL _Date Not NouILI.
the two Subuzoam om. -taee- aeme to

-- default to the proqrana declared above.
-that is, the package should be insaatated in the

scope at a use clsase fox SQLDate Pk;.
-the two actual tyoes toqethat Lota the abst~aat

-the pupose of the genecic is to a--oato tuian
-- Which convext betwe the two actual types

-the bodies of these SubZ09-ams axe calls to
subprnorams declared abarve and passed as default& to

-- the 14Dnatic.

t-jp W~h Rll ~peis U-4--ed pzl.Vate;
tyjpe Wihu -2'Type is =ay (positive range <>)

of SQL ..Staadazd.r-.eactsx type:
with pxoceduve Paz** and A&Sigu Rase

(et in out i- Full Type Right : QLDteUtNl)L0;
Withfuncion ithot N l-AS.(value : With vull Type

XQUigh Withoute Nuot Nulype)

-rce= Pas andase nd iseft:i.) .4Tya
hnat~~~~~togta Without Null(ale Wtuf p)

z~tuo Witout 'ACL (tpe; Tye
Ca -z~ wilZo Ml qitu Nl;.

ead SQL DaeOp.;

type Uuh-ul aa me iited piae
t" ik~tII oewa yeis limited pwvae

With.tune" flu.(Left :With Null Date -Type; Ri~ght a= SQL tezval)
zatu=n With Null* DaeTpe. >

wit -Iatin Pls(eft 7SQL InoteXTi; 249-- it YOUl Dagte Type)
xvtuza With Null Date Twoe is < *-

With, function Kinus (Left : With Null Date %ype; kUiqht t SGL ZntssvAL)
zetuu With Null Date 7ipe .

With. fimction mimue (Left, Right :With Wull Date Type)
return SQLZtntxvaI. La 0>;

Pek"SQL Date Inten-val Op. is
Ltlo .4 (LeZ : with -Null Date -T ype; Right :Withk Nul ZaevuIType)

return With Null Date Tpe -
fUtO +(Lert :With -Null -Intesyal -Type; Right :With Null Date -Type)
vetu= with Null Date Type;

130



tuact.Lon (~ Lft Wil%! Vull Date ?yP*; Right WithU.I'l' Ztlwra2.ype
return VLth Null Date-'MO

return WL~ )Itu ZlzyaI~k~PG
and SQLDate-Znt&Z-7a _OPG:

private

wipe SOLYews number is range 1600. .9999:
type scz_ant number is range 1. 1.2;
type SQL _day iske r ange 1. .31;

type SQL hnumber is range -.2~3;
type SQL ainto ni.~ i=La ngs 0. .59:
type SczL second nuabftr is Cang. 0. .59:
type SQL fractz.u oumbar L israng. 0.. (2*931) -1;
typesQ so.ntzavlnumber -I* range -C2**32) .. (2wW31-1;

type SQL Daa r Sol% Dattierld
To : SQL _Date.t -ie Lld;

Tractional2 :Psecia-Gn)
is record

za NU Boolean --ta;e

uont~ SQ ant numbe:

day Sz;_day nu~mber;
hour Scl iQurouzaex;
ULSUZO SQL .&nuze..numbes:
second SQL eond-number;
1fractioa SGL £at-n ~z

and record;

type SQL Zatarvma. (Ts-Of SQl,_Datstima-rield;

To SQL Datati4.a.yil.d:
?:actional Precision)

is reaoed
Is Vull t bacleasn Tr ue;
za?.&Ca tAL : bool"Aa Tr !ue

* yes. SQL interval aumber:

day. SQL tarval nuber;
siaa SQL iterv,lmnubez
00combda S" interval. aber;

b an~a SLnevJ bz
ad WOeesAd

mi S=_La DP kg;

C.31 INGRESDate-Pkg Specification
with SQL Sta d4
Vwit SQLSyTmu: Use SOL Sy9tow
with Calendar: wme CaJ...daz
with SQL Desam Tkg: soe SQLloo-sa 1kg:*
with SQL _az1kq: se SQL _PMajk9;
package =GR DatePkg

is

type XW==Z Data Mat ftll is new SQL_5hwz ot NUU:
Posibly Nuill Dettmm

131



* Package SQL Base_'ypesykg
with S OLCa k.SL ant 1kq, SQL-Snm llit kg. SQLReal 1kq,

SQL DOuble ?=mci~iau 1kq, SQLD Lja&l1kg,SQ adr;
package SQL-3an. /pei.1kg is

package Chzac. arset ranamez SQL-Standazd.f"5- actex Set;

tVP SQIL-Zat-Not-Mul is now SQL Lt lkq.SQkXnt Not Null :
type SQL : Type0 Is.Ano SQLZmnlk . SQLXnt;
*package 9QL Zzlt Op. IS flow SQL-lot 1kq. SQL Lot -OpO

SQL =at ?ype, SQL Zt - ot - ull) ;
!subtype ZQL Lo:Subtype _1SQL1ncPkg.SQi-Znt;
subtype SQL ;:za.P ul Subtype is SQL Zr Pk9 .SQL_ lot o Null;

type SQZSmaaLmto Mat Hu I Is new SQL amm 11 4 t 1kq. SQL SmeJ±lt NtNul
typeoQ mlJ~ Type IS niaw SQLSm LntkgSQs±4t
package sQzL Sma&i.at Op& Is now SLSal..:?g Q m~e p

SOL Saa~l.LlntType, SOL Smalliat Not Hall);
subtpe SQL SmalIl1iet Subtype IS SQL Sa.Ul.t Pkg. SQL _Smliet;
subtype SQL -SMWL~intNot-NullSubtype 13

SQL Smal.int 1kg. SQL Smal-lint No: Null:

type SQL Real Not-Null Is now SQL Real 1kg.SQLR1Not-WU~l;
typo SOL IReaL -:1pe is now SQL -R&a.L 13C.SQLReal;
package SLRatO.is noew iQLReal1kg.SQL-Real Op.

SQL Real _Type, SQ% RealNot Null),
Subtype SQLR"1,_Subtype is SQXL Real1kg. SQLkRal:

subtpe SL Ra.. et Nll ubtype IS SQL Rea &1Pkg.SQL RealN Nt-Null:

typo SQL Doublo.e Pec.Lson-Not mull Is
now SQL Zoubl. 1rec.~a Len kg. SQL Duble ftemision Not Null;

typo SQL _Double 1razeias _yp t
noiw sQL Double 1:ecis~onlgkg. SQL ouble le-cioc:n

package sQL Deble - recimLozn Op. is
flew SQL _Double Pz.0eloinPkg.SQL Double 1:ccasoc _Op.

SQL Double Pvclii.. Type,
* SQL DCQPObl lrecaau-NaW Null);

subtype saL~ul -zc o Subtype Is
SQL ouble 1zeci~los 1kg .SQL Doub . easo

* typ S=_Paubz T pecii Not Nuew ubtyr IS 4SQ
pekg QL axczim Op. *aelSLl.~gSQ w p

%subype QL'a Ntlull csubty Pk s QL xkgsQLChblo mll

* - type SQL elaal Not ull Is nw SkQLz fkeciMal Chm.SQ Decia N l; ul
type AML M.-a Type is nw SL Dec k#S&PSL eiml
pekige IoLecelP IS M new SqaL:P De OmL ?kg.SO 0ema p

subyp SQL Demalut Tye Q DcmlNu ul
* sbtye SL Dciml ubtypebtn Is SOL Deh alkg. S~ei

stype SL ecimal ot w ull snStpemal PIsQ DamlNa ul

S. . QL Deciml TypeSQL Decim.LLNt u 7l;

SQL -SQL Dcane TNuell;g

132



Package SQL_.Standard r'narndc
With SQL_ Standagd, SOL Dcml1g
Use SQL-A Stned, SQLDo imaLL1kg,
package SQL S~.adaxdkDynaa~c Is

type Zx .Puroo ~pe Is knplementauon defined:
tyeUtended Bttagbaft p.S Is implemernatione dned;

type sQL Dynamic patatnmsa"aa Is range impiomentation defined,

Ilaybo Null _Zodie : Constant lndicstozrTyp. :- 1;
-- value of 5QLXULJA= ig nulls allowed

subtype Null Indication Is Zndicatozxyp. range
zadJioatoz Type' Wizat ..- i.;

-- value of indicator if value. ia nujl

-types to describe column names
sQL -Columu ame -Length : constant :- 18; - set in SQL2 stadard
subtype s pounNamLaangebTyp. Is .

positive range 1.. SQL Colusi Na Lngth;
subtype soLnuff Type IS Cbaz(S-QLCol-NameLengthTyp.):

-- Those constants capture the encoding of SQL Typos as ntegers
so La iven by SQ=2

Not pecified constant SQL -Dynamic-Datatypes Baa. 0:
Dynafm _Cha : constant SQLDynamicDatatypesBaa. :a 2.;
Dynamic -Nimec ;constant SQL Pyamic Dazatypes-?aa. : 2:
Dynaaic Decimal :constant SQL _DynamicDatatypea Bse 3:
Dynamic Zat : constant SQL Dynamic Datatyp.. Baa.s: 4;
Dynamic-Saalliat : constant SQLDynAmic -Dataeypoa Ba.. :w 5;
Dysamicjloat: constant SQL Dynamc Datstypea Raose 6;
Dynamic _Rsal :constant SQL _Dynamic _Datatyposasa.: 7;
Dynamc Double Precision constant SQL Dynamic Datatype. Base 2 ;

subtype SQL DynamicDstatypes is sQL _Dynamic _Datatyp.. BZaa
range Net Specified. .. Dynamic Doulo-rciazon;

-ean.type. for copoents oi SQL Dynamic larmser
type Char Access isass ar
type D0047"l A..... Is access SOL Decimal Not Nll;
type zatco. I04s isacess; zat;
ty" smlli, at Ades, is Mcac Uma~uiAt;
type somal.. ADZ is ess *&al;
typo Double Pecis.iem am.s Is access DublPrecliion

tye 0 Dynamic lasmter (SCLTYIZ :SO%! Dyuaic Datatype. :uot Specified)

ewse so?.Typs bs
when Not Specified =>

nlun;
when Dynamic Phar -

* CawValue : Cut Aces";
SwhnO Dmmicecim3. I Dynamic lhmsric

SDesina Value Decimal Acess;
* ..*.. When Dynamic InC -

* 1st Value : Int Moeas;
when Dramiciamlliat a>

* * * allift Value :SaLLLit Access;
whnDnmia Rteal. U>

3..l Value : Real Access;
When Dynmic Double Precision I Dynamic fYloat n

Double Procisim; Value : Double 1rzz.ion MAces;
end Case:

end record;

*type SQL1 5$C~mpm*typo Is record

133



SQZMMZLASZ Im"GaO@x-7nW
Sg"M : ZDj a" TWO

8QD~6Z SZ-Type;

Mo beord;

an g7(Zt range <0) of sMVax -twincft2YP;

type s=&~ (So=~ :14t) 18 -MCC!i

SOLYR : SQLVWZ-ype (I QL)
end i ecor

-j-

and 3SadtDyuniai

134



Pacage SOL'DnardqcPkg

U55 SQL -"&&aeTypes 1w;package 20L DYU-fti; 1kq 1s

Positive, range I. .SQZ tandav.onmaS .Msubtyp SmmqL)6Type is SLCa, .P imCal ut~mL~gh
- Th discriaji..at 4.5 AGW ansaftsCation typeyeSOL Dynami oDat.cypea is

Dynamc bm, VYnA&c Decimal,
Orwasic...lat. DyVj - ma~t
AYAftic-Rea, VYftam.a Double -pxec"iA4.. 8 )

- ... types acsse n1ul b mz±ng twoes in it .etype QmxrAccess IS acceSs SL r_1.as-YP-k
tyeDecimal Access ISOOS aces SQ '.c :..p.

type Suallint Access is accesSQL Suali4at ye
type Re"lA=*e** La acess SQL Real %447e;type 0006e1-0 PrcsiovaA.ce. is acces SQL DPouble Ptec4.sioM 'TYPe.

type SQL yas c~ az m~ .g (SOLTYPZ :SQZL Dy nmaic Detatyp ajs :M vc t Sp clj1IS recod , o
case SQL-.YPq is

when Not Specitied M>
null;

When Dynamcc m>a
CLaX Qau Cha M5 ccess;

when Dynaic Decimal Z>
Decimal v..i... Decimal~ Aco.0

When bya Mmi M > -
zat Xala at Acose&-

when Dynmic 23.4--t a>
Sme.~u~it Vain. SWILaujt Aonwhen Dynamic a w> -C "
2441 Value : eal Access
D o u l e P o i p c i i . a

ton M I'ems:ou-TP isrw

AM SDynamic Vagamt,
SQZaai,,SQkColem NaMe Leagth -

SZUSOZM2 Type;f

MLsy U t at N tu range0)@ QaZC cm.Tye
typ 204n (S=z : SgM ZtNtNl)iscood.

SSQL Zat X. Null-

end $=_Dynamic 1kg;

135



Appendix C. Abstract Interface Domain Primitive Types Code

The following listing provides the abstract interface code for the Domain Primitive

Types that was developed and discussed in Chapter IV. For ease of understanding, the

information is organized in a form that is not compilable. To clarify how each attribute

contributes to this package, each attribute's information is consolidated in one area which

is separated from other attribute information areas by a blank line. To implement these

packages all generic "SQL_*..Pkg.SQL_*_OPS(...)" packages must be moved to the end

of each entity package since they are later declarative items. Each Primitive Type

Package begins on a new page.

136



Package The-Area..primitive domain-types

with SQL,-nt.Ykg,
SQL...Char.Ykg;

package The...Area..primiive-domain-types is

type AREA_-ID -NotNull is new
SQL.n mtPkg.SQ-L,.nt-Not.Nu1I;

type AREAJIDType is new
.SQL.jtPkg.SQL,-nt;

package AREA-ID Ops is new
SQL.jntPkg.SQL-ntOps
(AREAJIDType, AREAIDNotNull);

type DOMAINNN Base is new
SQL tChar_-Pkg.SQL _Char_NotNull;
subtype DOMAIN Not Null is

DOMAIN?{NBase
(1..256);

type DOMAIN Base is new
SQLChaRkg.SQL.Char

subtype DOMAIN Type is
DOMAIN Base
(DOMAINf Not Null'Length);

package DOMAINOps is new
SQL_Char_-Pkg.SQL._CharOps
(DOMAIN-Base, DOMAINNotNull);

type SEANN Base is new
SQLChi?_Pkg.SQLChar_-Not_-Null;
subtype SEA Not Null is

SEANBase
(l..256);

type SEA Base is new
SQLjChar_-Pkg.SQL Char

subtype SEA,_Type is
SEA Base
(SEA Not Null'Length);

package SEA Ops is ncw
SQL_-CharPkg.SQL,_Char-.Ops
(SEA-Base, SEANotNull)

137



type PHASENNBase is new
SQLChar-Pkg.SQL,_CharNotNull;
subtype PHASENotNull is

PHASENBase
(L..256);

type PHASE-Base is new
SQLCharPkg.SQL_,,Char

subtype PHASE-Type is
PHASE Base
(PHASENot_Null'Length);

package PHASEOps is new
SQ._Char Pkg.SQL ,Char Ops
(PHASEBfase, PHASENotNull);

end TheArea..primitive doniainjtypes;

1 38



Package G eneral -Software_Cha ra cteristicyprimitive domain types

with SQILntPkg,
SQLChar-Pkg,
SQL...Enumerationj'kg,

package GeneralSoftware_-Characteristic-primitivejioniainjtypes is

type GSC_-ID -Not Null is new
SQL m-ItPkg.SQL- -nt.NotLNuII;

type GSCJDType is new
SQL mItPkg.SQLjnt;

package GSCID Ops is new
SQL mntPkg?.SQLjntLOps
(GSClDType, GSCJIDNotNull)

type CHARACT_-NAMENN Base is new
SQ1,Char Pkg.QLChrNotNull;
subtype CHARACT NAME Not Null is

CHARACT_-NAMEITNJ~se
(l..256);

type CHARACTNAMEBase is new
SQL CharPFkg.SQLChar,
subtype CHA RACTNAME Type is

CHARACTNAME Base
(CHARACT_-NAME NotNuI'Length);

package CHARAC'ILNAME Ops is new
SQL har....Pkg.SQL _Char Ops
(CHARACTNAMEBase, CHARACT _NAMENotNull);

type formu_?NN Base is new
SQLtChar_-Pkg.SQL_ CharNotNull;
subtype formu ?_NotNull is

fonmuj?NBase
(l..256);

139



type formu_? Base is new
SQLChar kg.SQL_ Char

subtype formu-? Type is
formu_? B~ase
(formu !'NotNull'Lcngth);

package formu_-? Ops is new
SQL...Charj'i~g.SQL Char .. Ops
(formu..?_Base, formu_? NotNull)

type evalu_?NN Base is new
SQL...CharyPkg.SQL._CharNotNull;
subtype evalu.? Not Null is

evalu_?NNBise
(1..256);

type evalu_? Base is new
SQL CiiarPkg.SQL_ Char

subtype evalu? Type is
evalu_?_'Base
(evalu .?_-Not_-Null'Length);

package evalu_? Obps is 1.%1w
SQL._CharjPkg.SQL ChaL Ops
(evalu..?_Base, evalu_? NotNull)

type evalujielpNN -Base is new
SQI.LCharYkg.SQL._Char _Not_Null;
subtype evalu-hclp_ Not Null is

evalu-helpNN Base
(1..256);

type evalu...helpBase is new
SQLCharPkg.SQL..Char,

subtype evalu..help Type is
evalu -helpBase
(evalu .help Not Null'Lngth);

package evalujbiipOps is new
SQL..CharLPkg.SQL,_CharLOps
(evalujicipBase, evalu-.helpNot Null)

type essential-flagNot Null is (ls...Falsc, Is-true):
package essential-flagPkg is new

SQL,,Enu merat ionPkg
(csscntialjflag-Not Null);

type essential-flag Type is new
essential-flag kg.SQL, Enumertion Pkg;

type evalu_methodNot Null is (is-..False, Is true);
package cvalu-mnichodPkg is new

SQL..-EnumerationPkg
(evalu_method...Not Null);

type cvalu-methodl Type~ is new
evalti-mcthodPkg!.SQLjinuncrationPkg;

140



type empirical weight Not Null is new
SQlnt-Pkg.SQLjntNot-Null;

type empirical weightTyj~e is new
SQLjntPkg.SQL~lnt;

package empirical weight Ops is new
SQLjnt-Pkg.SQLjnL Ops
(err -irica1 weight_Type, empirical-wcight NotNull)

end GeneralSoftwareChaacteristicprimitive-domain-types;

141



Package Thte Tool~primitive-domain types

with SQL_nt..Pkg,
SQLChar-.Pkg,
SQL_.DecimalPkg;

package The....ool-pri mitive...donain-types is

type TOOLID NotNull is new
SQInt....Pkg.SqLjnt Not-.Null;
typeTOOLDTpe is new

SQLjntjkg.SQLjnt;
package TOOLID Ops is new

SQLInt Pkg.SQLjnt-Ops
(TOOLJfDType, TOOLID Not Nul);

type TOOLNAMENN Base is new
SQI.j-harYkg.SQIE_Char _Not_Null;
subtype TOOL-NAME Not Null is

TOOLNAMEN-Base
(1..256);

type TOOL-NAME Base is new
SQLCharPkg7SQL_ Char

subtype TOOLNAME Type is
TOOLNAME Base
(TOOLNAME -Not_-Null'Length);

package TOOLNAME Ops is new
SQL,-har-kg.SQL....Char..Ops
(TOOL._NAMEBase, TOOLNAMENotNull)

version-.scale: constant decimal..sigits:= 2;
type VERSIONNN Base is new

SQL DecimalPkg.SQL._DecimalNot-Null;
snbtype VERSIONNotNull is

VERSIONTNBa-se
(scale => version -scale);

type VERSION -Base is new
SQLDecimalPkg.SQL..Decimal;
subtype VERSION-Type is

VERSIONBase
(scale => version scale);

package VERSION-.Ops is new
SQL_Decimal_-Pkg.SQLDecimalOps
(VERSION Base,
VERSIONNBase,
in-scale => version-scale);

142



type vendorNN Base is new
SQLCharPkg.SQL_-CharNotNull:
subtype vendor Not Null is

vendorTN Base
(1..256);

type vendor Base is new
SQLCharPkg.SQLChar,

subtype vendor Type is
vendorBase
(vendor NotNull'Length);

package vendorOps is new
SQL_CharPkg.SQLCharOps
(vendorBase, vendorNotNull);

costscale: constant decimaldigits:= 2;
type costNN Base is new

SQLDecimalPkg.SQLDecimalNotNull;
subtype cost Not Null is

costNTN Base
(scale => costscale);

type cost Base is new
SQLDecimalPkg.SQL._Decimal;
subtype costType is

cost Base
(scale => cost-scale);

package costOps is new
SQLDecimalPkg.SQLDecimalOps
(costBase,
costNN Base,
inscale => cost_scale);

end T'he_Tool-primitive-domain-types;

143



Package The_Evaluatorprimitive-domain_types

with SQLInt_Pkg,
SQLChar.Pkg,
SQLDate.Pkg;

package TheEvaluator-primitive domain types is

type EVALID Not Null is new
SQLIjnt_.Pkg.SqL Int NoLNull;

type EVALIDType is new
SQLIjntPkg.SQLInt;

package EVALIDOps is new
SQLIntPkg.SQLInt-Ops
(EVALID_Type, EVALIDNotNull);

type FIRSTNAMENN Base is new
SQLChar_Pkg.SQECharNotNull;
subtype FIRSTNAME Not Null is

FIRSTNAMENN_Base
(1..256);

type FIRST-NAME Base is new
SQLChar._Pkg.SQL_Char;

subtype FIRSTNAME Type is
FIRSTNAME Base
(FIRSTNAME NotNull'Length);

package FIRSTNAMEOps is new
SQLCharPkg.SQLChar_-Ops
(FIRSTNAMEBase, FIRSTNAMENotNull);

type LASTNAMENN Base is new
SQL_CharPkg.SQL_CharNotNull;
subtype LASTNAME Not Null is

LASTNAMENN_Base
(1..256);

type LAST_NAME Base is new
SQL_CharPkg-SQL_Char;
subtype LASTNAME Type is

LASTNAME iase
(LASTNAME Not Null'Length);

package LAST'INAME Ops is new
SQLCharPkg.SQLChar._Ops
(LAST_NAMEBase, LAST_NAME_NotNull);

144



type dateNNBase is new
SQ....Date.Ykg.SQLDate_Not_Null;
subtype date NotNull is

datefNBase (1.. 10);
type date_-Base is new

SQL...DatcP'M-g.S QLDatc
(From =>year, To=>Day, Fractional =>0);

package date-Ops is new
SQL...DateyPkg.SQLDate-Ops
(date-Type, dateNNBase);

type typeNNBase is new
SQL-Chr.Pkg.SQL._CharNotNull;
subtype type Not Null is

typeNI~se
(l..256);,

type type._Base is new
SQL_CharPkg.SQLChar

subtype type_ Type is
typeBase
(type__NotNull'Length);

package type Ops is new
SQL..ChTrj'kg.SQL-Char-Ops
(type_B3ase, typeNot Null );

end TheEvaluator primitive domainjtypes;

145



Package Thie Qualityrimitive-domain types

with SQL.,_ntPkg,
SQLCharYkg;

package Thbe-.Quality...primitive-domain-types is

type QUALID NotNull is new
SOL InT Pklg.SQ-Int Not Null;

type QUAkLID_-Type is new
SQL-Int-.Pkg.SQI.,-nt;

package QUAL-ID Ops is new
SQL,.-nt-Pkg.SQ),LntOps
(QUALI_Type, QUAL- D-Not-NulI);

type QUALITY_-NAMENNBase is new
SQL-Charjkg.SQ_ CfarNotNull;
subtype QUALITY-NAME Not Null is

QUALITYNAMENNIfse
(1..256);

type QUALITY -NAMEBase is new
SQL _CharPkg.SQL_ Char
subtype QUTALITYNAME Typ is

QUALITYNAME Base
(QUALITYYNAMIT NotNull'Length);

package QUALITYNA ME_ 0 ps is new
SQ...Charj'kg.SQL _Cliaw.Ops
(QUALITYNAMEBase, QUALITYNAMENotNull)

type QUALITYVALUENN Base is new
SQL. Char-Pkg.SQLChrNot_Null;
subtype QUALITY-VALUENotNull is

QUALITYVALUEN Base
(1..256);

type QUALITY-VALUEBase is new
SQL_CharPkg.SQL_:Char,

subtype QUALITY_-VALUEType is
QUALITYVALUE-Base
(QUALITY-VALUE_-Not_-NulI'Lcngth):,

package QUALITY_VALUE Ops is new
SQLChar-Pkg.SQL Char....ps
(QUALITYVALUEBase, QUALITYVALUENotNull);

end The...Quality-primitive domain-types;

146



Package TheSpecific Software CIaracteristicyprimitive-domain types

with SQLIntPkg,
SQL....CharPkg;

package The.Specific-Software Characteristic-primitive domain-types is

type SSCID Not Null is new
SQIjnt - kg.SQLjntLNotNull;

type SSC-DType is new
SQL Tnt_Pkg.SQL~jnt;

package SSCID Ops is new
SQIjnt.Ykj.S QLjntLOps
(SSCJD?_Type, SSCiD_Not_Null)

type valueNNBase is new
SQL-CharYkg.SQLChar_-NotNull;
subtype value Not Null is

valueNNBase
(1..256);

type value Base is new
SQL_CharPkg.SQLChar

subtype value Typ is
value Base
(valueNotNulI'Length);

package value Ops is new
SQL..Char..Pkg.SQL,_ChajOps
(valueBase, valueNotNull)

type tepNNBase is new
SQ...Charj'kg.SQLCharNotNull;
subtype tepNot Null is

tepNN Base
(1..256);

type tepjBase is new
SQL _CharPkg.SQL_,Char
subtype tepType is

tepBase
(tep NotNuJI'Length);

package tep Ops is new
SQL.....Char.Ykg.SQL ChaL Ops
(tep_ Base, tep_Not_Null );

end The...Specific SoftwareCharacter-istic-primitivc-donainjtypcs;

147



Package Weight Setprimitive domaintypes

with SQLCharPkg,
SQLEnumerationPkg;

package WeightSet-primitive domain_types is

type WEIGHT_SET_NAMENNBase is new
SQLCharPkg.SQLCharNotNull;
subtype WEIGHTSETNAME Not Null is

WEIGHT_SETNAMENN_Bise
(1..256);

type WEIGHTSETNAMEBase is new
SQLChar_Pkg.SQL_Char

subtype WEIGHTSETNAME_Type is
WEIGHTSETNAME Base
(WEIGHTSETNAMEt NotNull'Length);

package WEIGHT_SET_NAMEOp., is new
SQLCharPkg.SQLChar_- Ops
(WEIGHTSETNAMEBase, WEIGHTSETNAMENotNull);

type defaultNot Null is (Is-False, Is-true);
package defaultPkg is new

SQL_Enumeration Pkg
(defaultNotNull);

type default Type is new
defaultPkg.SQLEnumerationPkg;

end Weight_Set-primitivedomain_types;

148



Package SelectionSet yrimitive-domain-types

with SQL-Char.Ykg;
package SelectionSet-primitive domain-types is

type SETNAMENN Base is new
SQL'harYkg.SQI.LCharNotNull;
subtype SET -NAME Not Null is

SETNAME?{NBise
(1..256);

type SET_-NAME Base is new
SQL CharPkg.SQLChar

subtype SET -NAME Tyei
SET_-NAME-Base
(SET -NAMENot Null'Length);

package SET_-NAME 0p is ne
SQL...Charj'kg.SQL ..Char-Ops,
(SETNAME Base, SETNAME-Not-Null);

end Selection-Set-primitive domain-types;

149



Package software_char-score_primitive-donwintypes

with SQLDecimal Pkg;
package software_char.score-primitive domain_types is

softwarecharfunctionscorescale: constant decimal-digits:= 2;
type software_char_functionscoreNNBase is new

SQL_DecimalPkg.SQLDecimalNotNull;
subtype softwarecharfunctionscore Not Null is

softwarecharfunctionscoreNTN_Base
(scale => softwarechar_function_scorescale);

type softwarecharfunctionscore Base is new
SQLDecimalPkg.SQL_Decimal;
subtype softwarecharfunction_scoreType is

software_char_function_score Base
(scale => softwarecharfunction_scorescale);

package softwarechar_function_scoreOps is new
SQLDecimalPkg.SQLDecimalOps
(softwarechar_function_score Base,
softwarecharfunctionscoreNN Base,
inscale => software_charfuncti-on_score_scale);

softwarechar-quality-scorescale: constant decimal-digits:= 2;
type softwarechar..quality-scoreNNBase is new

SQLjDecimalPkg.SQLDecimal_Not-Null;
subtype software-char ..qualityscoreNot Null is

software_char-quality-scoreNN_Base
(scale => softwareschar-qualityscorescale);

type softwarechar.quality__scoreBase is new
SQLDecimalPkg.SQLDecimal;
subtype software-char.quality-scoreType is

software_char-quality-scoreBase
(scale => software. char-quality-score-scale);

package softwarecharquality-scoreOps is new
SQL_DccimalPkg.SQL_Dccimal Ops
(software char_qualityscoreBase,
softwarecharquality-scoreNN_Base,
inscale => softwarechariquality-score scale);

end softwarecharscorecprimitive domainjtypes;

150



Package tool scoreprimitive domain types

with SQLDecimal Pkg;
package tool-score-primitive domain types is

tool function_score_scale: constant decimal..digits:= 2;
type tool-function-scoreNNBase is new

SQL DecimalPkg.SQLDecimal_Not..Null;
subtype tool function-sc-oreNotNull is

tool unction-scoreNBase
tol(scale => tool -functionF-score-sc ale);

type tolfunction-score Base is new
SQLDecimalPkg.SL _Decimal;
subtype toolfunction-score Type is

tool -function scoreBase
(scale => tool function-score-scale);

package. tool-function-score_Ops is new
SQL_Decimal_Pkg.SQLDecimalOps
(tool_function_scoreBase,
tool -function-scoreNN Base,
in-scale => tool functioni-score-scale);

tool-quality..score-scale: constant decimal-digits:= 2;
type tool-quality .scoreNN Base is new

SQL DecimalPkg.SQL_-DecimalNot.Null;
subtype tool...quality-scoreNotNull is

tool-quality-scorcNBEase
(scale => tool-qualityscorc-scale);

type tool quality score-Base is new
SQL_Decimal_Pkg.SQLDcinmal;
subtype tool-quality-score Type is

tool-quality-scoreBase
(scale => tool~quagity.score...scale);

package tool-quality-score-Ops is new
SQL_Dccimal-Pkg.SQLDecimalOps
(tool-quality-score Base,
tool-quality-scoreN_ Base,
in_scale => toolquality score scale);

end tool-score-pri initive-doinainjypes;

151



Package software_char Weightprimitive-domain types

with SQLJnt - kg;
package software-char.weight.4,rimitive domainjtypes is

type function-.weight Not Null is new
SQL,-It_-Pkg.SQL-n..Not-NulI;

type function-weight Type is new
SQ~jnt - kg.SQLjnt;

package function weight Ops is new
SQLj-nt kg.SQ-jnt-Ops
(function-weightType, function-weight-Not Null )

type quality-weightNotNull is new
SQLmIt_Pkg.SQLjnt-Not-Null;

type quality..weight Type is new
SQ1,-nt - kg.SQlnt;

package quality-weight-Ops is new
SQL-IntPkg.SQL,-nL Ops
(quality-weightType, qualityweightNotNull)

end software-char-weight-primitive domain-types;

152



Appendix D. Abstract Interface Composite Methods Code

The following listing provides the abstract interface Lomposite methods code that

was developed and discussed in Chapter IV. The code in this appendix is compilable as

long as the SAME packages have already been installed on the users system. The code

defines the abstract interface by providing the specifications to that interface, the bodies

to these specifications can be implemented using the behavioral description provided in

Chapter IV as a guideline. These packages represent the second piece to the logical entity

descriptions defined in Chapter IV. Recall that a logical entity represented both the

domain primitive type and the methods that operated on that type. The domain primitive

types are presented in Appendix C, the methods that operate on those types are presented

here.

Simplifying assumptions were:

° A Formulator released SAI structure would not be altered after an evaluator or

selector process used that structure. The final system will have to insert abstract interface

code that would support this type of system requirement.

° Dynamic SQL statements require a package shell which contained a description of

the parameters that are dynamic. This package is required for accessing The-Area,

softwarechar score, TheTool, Specific Software Characteristic, and The-Quality

combined attributes. This package operates across several domain primitive types to

accomplish the STEMdB requirement that the tool selection process allow the user to

constrain anywhere from one to several of the attributes located in these domains.

153



Package Tool-narrowing

with SQLBase-TypesyPkg,
SQILDynamic-Pkg
TheArea..primitive domain-types,
software-char-score..prmitive-domainjtypes,
TheTool.-primitive domainjtypes,
Specific Software Characteristic-primitive domain types,
The_-Quality..piimitive -domain-types,
T'he_Evaluator primitivedomainjtypes;

use SQL....ase..Typesykg,
SQ..Dynamicy:kg
TheAreaprimitive-domain-types,
software-char .score.primitive domain-types,
TheTooLprimitive-domain-types,
Specific Sofware Characteristic-primitive domain-types,
The..Quality...primitive domainjtypes,
TheEvaluatorj-primitive...domainjtypes;

Package Tool-narrowing is

Prepare(STMT: SQL._Char-not-null);
Allocate(foilSQLDA..name: SQI.,Char-not_null;

Max: SQL,_mt-notnull );

Describcjnput(for..SQLDA-in-area: SQLChar-not-null);

Describe....output(for...SQLDA-out-area: SQL,,Char-not_null);

GetNumber-parameters(for-.givcn-SQLDA: SQL,_.Char...not - ull;
num: out SQL-Int..yotnull);

Get...parameterjtype(parametcr-number: SQLjInt-not-null;
for...given...SQLDA: SQL,_Char -notnull;
parameterjtype: out SQL...DynanicDara-types):

Set-paramcter-yalue(paranieter.nunmber: SQL Int -not -null;
for..given ..$QLDA: SQL_:Char not..null;
SQLDATA: in SQLj-harjtypc);

Get-paranlcr-value(paramctcr number: SQLJ nt - ot -nullI;
frorn-givenTSQLDA: SQLChar-not-null;
SQLDATA: out SQLCharjype);

OpenCursor(forSOLDk..namc: SQI.,Char.not..null):

Fetch(placcjnSQLDA -name: out SQLShar-not-null:
value-fetchcd: out b(Xolcaf);

154



Close-cursor;

end ToolnaiTowing;

155



Package DatabaseTransactions

Package DatabaseTransactions is

--Required initialization routine

Procedure CreateTables;

--Transactions

Procedure Commit;

Proceudure Rollback;

end Database_Transactions;

156



Package TheAreaCompositeOPS

with SQLBase_Types_Pkg,
TheArea-primitive domain-types;

use SQL,_Base_Types,_Pkg,
TheArea-primitive domain-type;

Package The_AreaCompositeOPS is

Type arearecordLtype is record
AREA_ID: AREAIDNotNull;
DOMAIN: DOMAINNotNull;
SEA: SEANotNull,
PHASE: PHASENotNull;

end record;

--insert operation
Procedure insertdomain-sea.phase(areajrecord: arearecordjtype);

--all gouped inserts must have non-null fields in a record so abstract interface operates
--on them as a record.

--update operations
Procedure updateAra(area_record: arearecordtype;

withthisAREAID: AREAIDNot_Null;
notfound: out boolean);

Procedure updateDomain(arearecord: area.recordtype;
with_this_Domain: DOMAIN_NotNull;
notfound" out boolean);

Procedure updateSEA(area record: arearecordtype;
withthisSEA: SEANotNull;
notfound: out boolcan);

157



Procedure updatePhase(arearecord: arearecord-type;
withthis_Phase: PHASENot_Null;
not-found: out boolean);

--search operation
Function searchdomainseaphase(arearecord: arearecordtype) return boolean;

--delete operation
Procedure deletedomain-sea-phase(areajrecord: arearecord-type;

deleted: out boolean);
--retrieve operation

Function UniquelD return AREAIDNotNull;

Procedure getarea-record(for -area: AREAIDNotNull;
area-record: in out area_rccordtype;
exists: out boolean);

end TheAreaCompositeOPS;

158



Package root-nodeCompositeOPS

with SQL_Base_Types_Pkg,
TheArea-primitive domain-types,
General_SoftwareCtaracteristic-prinmitive domain-types;

use SQLBaseTypesPkg,
TheAreaprimitive domainjypes,
General_SoftwareCharacteristic-primitive domain-types;

Package rootnode_CompositeOPS is

Type rootnoderecord_type is record
AREA_ID: AREA ID NotNull;
GSC: GSCIDNot..Null;

end record;

--insert operations
--implemented by insert values

Procedure insertGCSidAreajid(rootnode: rootnoderecord type);

--update operations
--implemented by searched update

Procedure update_Arca(this_root_node: in rootnoderecordjtype;
withthisAREAID: AREA ID NotNull;
not_found: out boolean);

Procedure updateGSC(thisrootnode: in rootnodc_record-type;
withthisGSCID: GSC ID NotNull;
not_found: out boolean);

--search operation
--implemented by select,fetch, check

Function searchGCS id.Areajid(root_node: rootnode_record-type)
return boolean;

159



--delete operations
--implemented by searched delete

Procedure delete GCS id Area.id(rootnode: root_noderecordtype;
isdeleted: boolean);

--retrieve operations
--implemented by cursor/select

Package get-gsc-forarea is
Procedure Open(forthis_AREA_ID: AREAID_Not_Null)
Procedure Fetch(this_GSC ID record: in out rootnoderecordjtype,

isfetched: boolean)
Procedure close;

end get..gsc_for_area ;

Package get area for gsc is
Procedure Open(for_thisGSCID: GSC_IDNoLNull)
Procedure Fetch(thisAREAID_record: in out rootnoderecordjtype,

isfetched: boolean)
Procedure close;

end getarea_for.gsc;

end rootnodeCompositeOPS;

160



Package G eneral SoftwreCharacteristicCompositeOPS

with SQLBase7ypes..kg,
GeneralSoftwareCharacteristic..primitive-domainjtypes,
TheArea..primitive-domain-types;

use SQLBase-Types...kg,
GeneralSoftwareCharacteristic-primitive domainjtypes,
ThbeArea-primiti~vc-domain-types;

Package General_SoftwareCharacttristic_-CompositeOPS is

Type GSC-record-type is record
GSC: GSCIDNot-Null;
CHARACT _NAMENotNull;
formu_?jfype;
evalu_-?_-Not-Null;
evalu...help-.Type;
essenTialflagffype;
evalu-methocLType;
empirical-weight-Type;

end record;

--insert operations
Procedure insert-gsc-record(GSC~j-ecord: GSC-record-type);

--Update operations
--The null value is allowed to be input for all non-key attributes except evaluation

--question since this question is mandatory for the Evaluator subsytem to prompt the
--user for input

--Implemented by searched update

Procedure update-gsc-icl(for...given_GSC: (3SCID_NotNull;
GSCID: GSC_ID_NotNull;
not-found: out boolean);

161



Procedure update...gsc...name(for..given_GSC: GSC_-ID_-No..Null;
name: CHARACTNAMENotNull;
not-found: out boolean);

Procedure update-formulation-comment(forgieS.C: GSCIDNotNull;
comment.7formu-?..Type;
not~found: out boolean);

Procedure update evaluation-question(for..givenGSC: GSCIDNot-Null;
question: eval_?_Not-.Null;
not_found: ou bolean);

Procedure update-evaluationjelp(for.given...SC: GSCII)_NotNull;
eval -help: evalu-help..Type;
not-found: out boolean);

Procedure update essentialjlag(fo..given..GSC: GSCID_Not_Null;
essential: essential -flag.....ype;
not~found: out boolean);

Procedure update evaluation method(for..givenGSC: GSCIH)_Not..Null;
eval-method: evalu -method-Type;
not-found: out boolean);

Procedure update empiricalweight(for .. ivenGSC: GSCID_Not Null;
weight: empirical-weight-Type;
not-found: out boolean);

--search operations

--delete operations
-- all database delete operations work on row records. To delete elements in a row
--the update operation can be used with a null value.

Procedure delete-gsc..record(for..given_GSC: GSC_ID_NotNuiI;
is-deleted: out bxolean);

--retrieve operations
Function UniquelD return GSCIDNot-Nuil;

Procedure get-OSC-record-forGSC (for...given_GSC: (3SCIDNotNull;
GSC -record: in out GSC...ycord-type,
exists' boolean);

162



Package getGSCrecordfor_Area is
Procedure Open(for.givenArea: Area IDNotNull)
Procedure Fetch(GSCrecord: in out GSCrecord-type,

isfetched: boolean)
Procedure close;

endgetGSCrecord for Area;

end GeneralSoftwareCharacteristicCompositeOPS;

163



Package LinkGGCompositeOPS

with SQL.,Basejypesjkg,
General_SoftwareCharacteristic..primitive dorainjtypes,
TheArea-primitive domain..jypcs;

use SQ.L.BasejTypesj'kg,
GeneralSoftwareCharacteristic-primitive dornainjtypes,
TheArea-primitive domain..types;

Package LinkGGComposite-OPS is

Type linkGG -record-type is record
parent: GSC_ID_-NotNull;
child: GSC_ID_Type;

end record;

--insert operations
Procedure insert-linkGG-record(linkGG_record: in out linkGG -record - ype);

--Can't have a child without a parent but can have a parent that is childless
Procedure insertshil~gsc(given.yecord: in out linkGG-recordjtype;

insert-child: GSCID_NotNull);

--update operations
Procedure update-parent..gsc(given-record: in out linkGG-record-type;

update-parent: GSC_-ID_-Not..Null;
not-found: out boolean);

Procedure updatech ild...gsc(givenjrecord: in out I in kGGjcecordjtype;
update -child: GSC - D -ype;
not-found: out bxlcan);

--search operations
Procedure search-child-.gsc(givenjrecord: in out IinkGG-rccordjtype;

exists: out boolean);

164



--delete operations
Procedure deletejink(given-record: linkOG_recordjtype;

is-deleted: out boolean);
--retrieve

Procedure get-arent0ffor_area: AREAID_Not _Null;
for-child: GSCIDNotNull;
the...parent-record: in out linkGG-recordjtype);

Package Get -children is
Procedure Open(parent: GSCID_Not_Null;

AreaID: AreaIDNotjNull);
Procedure Fetch(record_ ofchild: in out linkGG_recordjtype,

isifetched: out boolean);
Procedure close;

end Get-children;

end LinkGG-Composite-OPS;

165



Package TheToolCompositeOPS

with SQLBase_Types_Pkg,
The_Tool_primitivedomaintypes;

use SQLBaseTypesPkg,

TheTool-primitive domain-types;

Package TheToolCompositeOPS is

Type Toolrecordjtype is record
TOOL_ID: TOOLIDNot_Null;
TOOL_.,NAME: TOOLNAMENotNull;
VERSION: VERSIONNotNull;
vendor: vendorType;
cost: costType

end record;

--insert operations
--implemented by insert values

Procedure inserttoolrecord(tool-record: Toolrecord_type);

--update operations
--implemented by searched update

Procedure updateToolID(for__thisTOOLID:TOOLIDNotNull;
with_this_Tool_Id: TOOLIDNotNull;
notfound: out boolean);

Procedure updateToolName(for this_TOOLID:TOOLIDNotNull;
with_this_ToolName: TOOLNAMENot_NuII;
not-found: out boolean);

Procedure updateVersion(for.thisTOOL_ID:TOOLID_Not_Null;
withthis_Version: VERSION NotNull;
notfound: out boolean);

Procedure update_vendor(for_thisTOOLID:TOOLIDNotNull;
withthisvendor: vendorType;
not_found: out boolean);

Procedure updatescost(forthisTOOLID:TOOLIDNotNull:
with_this_cost: costType
notfound: out boolean);

--search operation
--implemented by select,fetch, check

Function search_tx)l_record(tool_record: Toolrecordtype)
return boolean;

--delete operations
--implemented by searched delete

166



Procedure delete_tool_record(forjthis_TOOLID:TOOLIDNot_Null;
is_deleted: out boolean);

--retrieve operations

Function UniquelD return TOOLIDNotNull;
--implemented by cursor/select

Procedure ToolrecordforjID(forthis_TOOLID:TOOLIDNotNul;
thisToolrecord: in out Tool_recordtype,
exists: out boolean)

end The_Tool_CompositeOPS;

167



Package linkATCompositeOPS

with SQL_.BasejypesPkg,
TheTooLprimitivedomain..types,
TheArea..primitive _domainjtypes;

with SQL.,Base-..TypesPkg,
The_Toolprimitive domain-types,
TheArea..primitive domainjtypes;

Package linkATComposite-OPS is

Type linkAT recordjtype is record
AREAID: AREA_-ID_-NotNull;
TOOLI.D: TOOLIDNotNull;

end record;

--insert operations
--implemented by insert values

Procedure insertLinkATjecord(linkAT-record: linkAT-record-type)

--Update operations
--implemented by searched update

Procedure update...Arca(linkAT-record: linkAT-record-type;
with-this_AREA_ID: AREA_ID_Not_Null;
not-found: out boolean);

Procedure updateffool(Tool_-ID: TOOLIDNot Null;
with thisTOOCL_: TOOL1-_IDNotNull;
not-found: out boolcan);

--search operation
--implemented by select~fctch, check

Function search-linkAT-record(linkATjrccord: linkAT-recordjtype)
return boolean;

168



--delete operations
--implemented by searched delete

Procedure delere_linkATrecord(linkAT record: linkATrecord-type;
is. deleted: out boolean);

--retrieve operations
--implemented by cursor/select

Package getjtools for area is
Procedure Open(forthisAREAID: AREA_ID_NotNuIl)
Procedure Fetch(thisTOOLID record: in out linkAT_record_typc,

isfetched: out boolean)
Procedure close;

end get_tools for area ;

Package get areasfor_tool is
Procedure Ouen(for_thisTOOL_ID: TOOI _IDNotNull)
Procedure Fetch(th AREAID_record: in out linkATrecord-type,

isfetched: out beolean)
Procedure close;

end get areasfortool;

end linkATConipositeOPS;

169



Package TheEvaluator CompositeOPS

with SQLBase_Types_Pkg,
The_Evaluator_primitive-domainjtypes;

use SQL._Base_Types_Pkg,
TheEvaluator_primitive_domaintypes;

Package TheEvaluator._Composite_OPS is

Type Evaluatorrecord-type is record
EVALID: EVALIDNot_Null;
FIRSTNAME: FIRSTNAMENotNull;
LASTNAME: LASTNAMENot_Null;
date: date-Type;
type: type-Type

end record;

--insert operations
--implemented by insert values

Procedure inse,'tEvaluatorrecord(Evaluatorrecord: Evaluatorrecord_type);

--update operations
--implemented by searched update

Procedure updateEVALID(forjthisEVALID:EVAL ID Not_Null;
with_thisEvaluatorId: EVALIDNotNull;
notfound: out boolean);

Procedure updateFIRSTNAME(forthis_EVALID:EVAL ID Not_Null;
withthisFirstName: FIRSTNAMENot_Null;
not-found: out boolean);

Procedure updatcLAST_NAME(for_this_EVAL_ID:EVAL ID NotNull;
withthisLASTNAME: LAST_NAME_NotNull;
not_found: out boolean);

Procedure update-date(for_thisEVAL_ID:EVALIDNotNull;
with_this_date: dateType
not-found: out boolean);

Procedure updatctype(forthisEVALID:EVALIDNot_Null;
with-this-type: type-Type
notfound: out boolean);

--search operation
--implemented by select,fetch, check

Function searchEvaluatorjecord(Evaluatorrecord: Evaluator_recordtype)
return boolean;

--delete operations
--implemented by searched delete

170



Procedure deleteEvaluator.record(forthis_EVAL_ID:EVALIDNot_Null;
is_deleted: out boo!ean);

--retrieve operations
Function UniquelD return EVALIDNotNull;

--implemented by cursor/select
Procedure Evaluatorrecord forID(for.thisEVAL_ID:EVALIDNotNull;

thisEvaluator_record:
in out Evaluator_recordjtype,
exists: out boolean)

end TheEvaluatorCompositeOPS;

171



Package linkES CompositeOPS

with SQL_.Base3ypesPkg,
TheEvaluatorl_primitive-domainjtypes,
TheSpecific..Software Characteristic-.priniitive domainjtypes;

use SQLBase...Typesj'kg,
TheEvaluator_primitivejlornainjtypes,
The_Specific..SoftwareCharacteristic-priniitive domain-types;

Package linkES-CompositeOPS is

Type linkES-record-type is record
EVALID: EVAL_-IDNotNull;
SSCID: SSCIDNoT Null;

end record;

--insert operations
--implemented by insert values

Procedure insertLinkES_record(linkES_record: linkESjrecord .type)

--update operations
--implemented by searched update

Procedure updateEvalID(linkES record: linkES record type;
with-thisE VALID: EVALID_-Not_Null;
notjfound: out boolean);

Procedure update-SSC_ID(linkES..record: linkES-recordjtypc;
with-this_SSCJID: SSCIDNot-Null;
not-found: out boolean);

--search operation
--implemented by selcct,fctch, check

Function searchi-linkES-rccord(linkES-irecord: linkES-rccord-typc)
return boolcan,

172



--delete operations
--implemented by searched delete

Procedure deletelinkESrecord(linkESrecord: linkESrecord-type;
isdeleted: out boolean);

--retrieve operations
--implemented by cursor/select

Package get-ssc-ids-.forevalID is
Procedure Open(for_this_EVAL_ID: EVALIDNot_Null);
Procedure Fetch(this_SSCIDrecord: in out linkES_record_type,

isfetched: out boolean);
Procedure close;

end getssc ids for evalID

Package getsevalidsforsscid is
Procedure Open(forthisSSC_ID: SSCIDNotNull);
Procedure Fetch(this_EVAL IDrecord: in out linkESrecord-type,

isfetched: out boolean);
Procedure close;

end get eval-ids forsscjid;

end linkESComposite-OPS;

173



Package TheQualityCompositeOPS

with SQLBase_TypesPkg,
TheQuality-primitive-domainjtypes;

use SQLBase_TypesPkg,

TheQualityprimitive dornain-types;

Package TheQualityCompositeOPS is

Type Quality-jecord type is record
QUALID: QUALIDNotNull;
QUALITYNAME: QUALITYNAMENotNull;
QUALITYVALUE: QUALITYVALUENotNull;

end record;

--insert operations
--implemented by insert values

Procedure insertQuality-record(Quality-record: Quality-recordtype);

--update operations
--implemented by searched update

Procedure updateQUALID(lor thisQUALID:QUALIDNotNull;
with-thisQuality-ld: QUAL IDNotNull;
notfound: out boolean);

Procedure updateQUALITYNAME(for-thisQUALID:QUAL IDNotNull;
withthisQUALITYNAME:
QUALITYNAMENot_Null;
notfound: out boolean);

Procedure updateQUALITY_VALUE
(for thisQUALID:QUAL-IDNotNull;
with_thisQUALITYVALUE:
QUALITYVALUENotNull;
notfound: out boolean);

174



--search operation
--implemented by select,fetch, check

Function search-Quality-record(for this-QUALID: QUALID_NotNu 11;
return boolean;

--delete operations
--implemented by searched delete

Procedure delete-Quality-r.ecord(Quality..record: Qual ity-ecord..type
is-deleted: out boolean);

--retrieve operations
Function UniquelD return QUAL IDNotNull;

--implemented by select/cursor select
Procedure Quality-ecord~forjID(for this-..QUALID: QUALIDNot Null;

th is-Quality-re,.ord:
in out Qualityjrecordjtype,
exists: out boolean);

end The-Quality-ompositeOPS';

175



Package linkQSComposite_OPS

with SQLase.....TypesPkg,
The_-Quality-primitive domainjtypes,
TheSpecific-Software Characteristic..primirive dornain-types;

use SQIBase_.TypesYkg,
TheQuality..primitive -domnain-types,
TheSpecific-Software Characteristic..prirnitive domain-types;

Package linkQS...CompositeOPS is

Type linkQSjecordjtypc is record
QUAL-ID: QUALIDNotNull;
SSC_ID: SSCIDNotNull;

end record;

--insert operations
--implemented by insert values

Procedure insert.LinkQS..jecord(l inkQS-record: linkQS-recordjtype)

--update operations
--implemented by searched update

Procedure updateQUALjlD(forjhisQUALID: QUALID_-Not -Null;
with thisQULD QU IDNotNull;
not-found: out boolean);

Procedure updatc_SSC_ID(forthisQUALj- D: QUAL -D_-Not-Null;
with thisSSCID: SSCIDNotNull;
not-TOUnd: out boolean):.

176



--search operation
--implemented by select,fetch, check

Function search-linkQS-record(lin kQS-record: I in kQS-record-type)
return boolean;

--delete operations
--implemented by searched delete

Procedure delete-linkQSjrecord(forjthis-QUALjID: QUAL_ID_NotNull;
is-deleted: boolean);

--retrieve operations
--implemented by cursor/select

Package getSSC IDs_for...QUALJID is
Procedure Open(forjthis-QUALj- D: QUALIDNotLNuI I);
Procedure Fetch(this_SSC_ID_record: in out linkQS...record-type,

is fetched: out boolean);
Procedure close;

end getSSCJDs~frQUALJlD;

Package get-QUAL_-IDs for_SSC_ID) is
Procedure Open(for-this_SSC_ID: SSC_ID_Not_Null);
Procedure Fetch(thisQUAL._ID_record: in out linkQS...rcord-type,

is-fetched: out boolean);
Procedure close;

end get..QUAL_IDs_for_SSCJlD;

end linkQSCorpositeOPS;

177



Package The Specific__SoftwareCharacteristic CornpositeOPS

with SQL.,Basejrypesi'kg,
TheSpecific SoftwareCharacteristic..prirnitive domiainjtypes,
General-SoftwareCharacteristic..primitive domain-types,
The _TooLprimitive...dornainjtypes;

use SQLBaseT.ypesykg,
The_-Specific...Software -Characteristic-primitive domain..types
General_Software_Characteristic-.pri mitive-domainjtypes,
TheTool-primitive domain-types;

Package The..Specific SoftwareCharacteristicCompositeOPS is

Type SSC-recordjtype is record
TOOLID: TOOL_ID_Not_Null;
GSCID: GSC_ID_-Not_Null;
SSCID: SSCIDNotNull;
value: value...Type;
tep: tep...ype

end record;

--insert operations
--implemented by insert values

Procedure insert_ SSC-record(SSC_.ecord: SSC record type)

--update operations
--implemented by searched update

Procedure update Tool_ID(forjhis_SSC_ID:SSCIDNotNul;
with-thisToolId: TOOLI DNotNull1:
notjound: out boolcan);

Procedure updateGSCID(forj- hisSSCID:SSCIDNotNuI;
with-thisG-SCID: GjSC _1)_NoLNuII;
not found: out boolean);

Procedure updateSSCID~forj-hisSSCID:SSCIDNotNull;
with-thisSSCID: SSCIDNot-NllI;
not__tfound: out boolean);

Procedure update..yalu(for_this_SSCJD:SSC_-IDNotNul;
with-this-value: valuc9'ype;
not__lfound: out boolcan);

Procedure update-tcp(br-thisSSCID:SSCIDNotNull;
with-this-tep: tcp-Type
not__found: out boolcan);

--search operation
--implemented by sclect,fetch, check

Function search_SSC_recordI(SSCrecord: SSC-record_type)
return lboolean:

I178



--delete operations
--implemented by searched delete

Procedure delete_SSCrecord(forjthisSSCID:SSC_ID Not_Null;
is_deleted: out boolean);

--retrieve operations
Function UniquelD return SSCIDNotNull;

--implemented by cursor/select
Procedure SSCrecord forID(for thisSSCID:SSCIDNotNull;

thisSSC_record: in out SSCrecordtype,
exists: out boolean)

Function UniquelD return SSCIDNotNuIl;

end TheSpecificSoftwareCharacteristicCompositcOPS;

179



Package Weight Set CompositeOPS

with SQLBase_Typeskg,
WeightSet-primitive domain-types;

use SQLBasee-TypesPkg,

WeightSet-primitive-domain-types;

Package WeightSetCompositeOPS is

Type Weight -set recordtype is record
WEIGHT_SETNAME: WEIGHTSETNAMENot_Null;
default: default-Type;

end record;

--insert operations
--implemented by insert values

Procedure insertWeight-set-record(Weight-setrecord: Wcight-set-record-type);

--update operations
--implemented by searched update

Procedure updateWEIGHTSETNAME
(for this_WEIGHTSET_NAME: WEIGHTSETNAMENot_NuII;
with_this-Weight_setld: WEIGHTSETNAMENot_Null;
notfound: out boolean);

Procedure updatedefault
(forthisWEIGHT_SET_NAME: WEIGHTSETNAMENotNull;
with_thisdefault: default_Type;
notfound: out boolean);

--search operation
--implemented by select,fetch, check

Function searchWeight-setrecord
(Weightsetrecord: Weight set_record-type) return boolcan;

IX()



--delete operations
--implemented by searched delete

Procedure deleteWeight-setrecord
(Weightsetrecord: Weightset_record-type
isdeleted: out boolean);

--retrieve operations
--implemented by cursor/select

Procedure Weightsetrecord_for_name
(forjthisWEIGHTSETNAME: WEIGHT_SET_NAME_Not_Null;
this_Weight setrecord: in out Weight setrecordjtype,
exists: out boolean);

end WeightSetCompositeOPS;

191



Package SelectionSetCompositeOPS

with SQL_Base_Types_Pkg,
SelectionSet_primitive domain-types;

use SQLBase_Types_Pkg,

SelectionSet.primitive domain-types;

Package Selection_Set_CompositeOPS is

Type SelectionSet recordtype is record
SETNAME: SETNAMENotNuIl;

end record;

--insert operations
--implemented by insert values

Procedure inserLSelectionSetrecord(SelectionSetrecord:
SelectionSet recordtype);

--update operations
--implemented by searched update

Procedure updateSETNAME(Selection_Set_record:
SelectionSet record_type;
withthis_Selection_SetName:
SETNAMENotNull;
not-found: out boolean);

--search operation
--implemented by select,fetch, check

Function search_SelectionSet_record(Selection_Sct_record:
SelectionSet-record-type) return boolean;

12



--delete operations
--implemented by searched delete

Procedure deleteSelection_Set record(SelectionSetrecord:
SelectionSet_rccordtype
isdeleted: out boolean);

--retrieve operations
--implemented by cursor/select

Procedure SelectionSetrecord for name
(for-thisSETNAME: SETNAMENotNull;
thisSelectionSetrecord:
in out SelectionSetrecordtype,
exists: out boolean);

end SelectionSetCompositeOPS;

183



Package linkSAWTCompositeOPS

with SQL._BasejlTypesPkg,
Selection_Set_primitive..domainjtypes,
Weight...Set-primitive domain-types,
The_Toolprimitive domainjtypes,
TheArea...primitive domainjtypes;

use SQL....BaseT1ypesPkg,
Selection_Set-pnimitive...domainjtypes,
Weight..Set..primitive domain-types,
The _Toolprimitive-domain jypes,
TheArea-primitive domainjtypes;

Package linkSAWT-.Composite..OPS is

Type linkSAWT-record~type is record
SETNAME: SETNAMENot.Null;
AREAID: AREAIDNot_Null;
TOOL_ID: TOOLID _Not_-Null;
WEIGHTSETNAME: WEIGHTSETNAMENotNull;

end record;

--insert operations
--implemented by insert values

Procedure insertLinkSAWT-record
(linkSAWT1_record: linkSAWT-recordjtypc);

--update operations
--implemented by searched update

Procedure SETNAME(IinkSAWT record: linkSAWT record type;
with-thisS §ETNAME: SET_-NAME_-Not-NulI;
notjfound: out boolean);

Procedure update-Area(l inkSAWT record: I inkSAWT record type;
with-this _AREA_-ID: AREA-DNotNull;
notjfound: out boolcan);

Procedure update9'ool(inkSAWT-record: linkSAWT...recordjtype;
with_this_TOOLID: TOOLJ,_D_Not_Null;
not-found: out boolcan);

Procedure update-WEIGHTSETNAME
(linkSAWT record: linkSAWTjrecord type;
with-thisIWEIGHT_-SET_-NAME:
WEIGHT _SET_NAME_NotNull;
notjfound: out boolcan);

--search operation
--implcmented by select,fctch, check

184



Function searchlinkSAWTjrecord(linkSAWTrecord: linkSAWTrecordLtype)
return boolean;

--delete operations
--implemented by searched delete

Procedure deletelinkSAWTrecord(linkSAWTrecord: linkSAWTrecordtype;
isdeleted: out boolean);

--retrieve operations
--implemented by cursor/select

Package getjtools forSET_NAME is
Procedure Open(for_this_SETNAME: SET_NAMENotNull);
Procedure Fetch(linkSAWTrecord: in out linkSAWT_recordjtype,

isfetched: out boolean);
Procedure close;

end gettools forSETNAME;

Package getSETNAMES_for_tool is
Procedure Open(for_thisTOOLID: TOOLIDNotNuII);
Procedure Fetch(linkSAWTrecord: in out linkSAWTrecordtype,,

is_fetched: out boolean);
Procedure close;

end get_SET_NAMES_fortool;

end linkSAWT CompositeOPS;

185



Package software-chiar-scoreComposite OPS

with SQLBaseTypesyPkg,
software-char-score..prmitive -domain-.types,
Weight...Set-primitive domainjtypes,
TheSpecific-SoftwareCharacteristic..primitive domainjtypes;

use SQL...BasejTypesj'kg,
software-char_score..primitive domain-types,
Weight...Set-primitive domain-types,
TheSpecific SoftwareCharacterisic..primitive domain-types;

Package software-char-score_Composite-OPS is

Type software-char-score record type is record
SSCID: SSCIDN1otNul1;
WEIGHT_SET__NAME: WEIGHTSETNAME_NotNull;
function__score: function-scorejype;
quality-.score: quality-.,.scoreType;

end record;

--insert operations
--implemented by insert values

Procedure insert-software-char-score-record
(software-char_scorejrecord: software_char _score-record-type)

1 86



--update operations
--implemented by searched update

Procedure SSC_ID
(SSCID: SSCIDNotNull;
WEIGHTSET_NAME: WEIGHTSETNAMENotNull
with-this SSC_ID: SSC_IDNotNull;
notfound: out boolean);

Procedure updatefunctionscore
(SSCID: SSCID_NotNul;
WEIGHTSETNAME: WEIGHTSETNAMENot_Null
with_this junctionscore: functionscoreType;
notfound: out boolean);

Procedure update-quality-score(SSC_ID: SSC_ID_NotNult;
WEIGHTSETNAME: WEIGHT_SET_NAMENot_Null
withthis-quaiityscore: qualityscoreType;
notfound: out boolean);

Procedure updateWEIGHTSETNAME
(SSC_ID: SSC_ID_NotNull;
WEIGHTSETNAME: WEIGHT_SET_NAMENot_Null
with this WEIGHTSETNAME:
WEIGHT_SET_NAME_NotNull;
notfound: out boolean);

--search operation
--implemented by select,fetch, cleck

Function searchsoftwarecharscore-record
(SSC_ID: SSC ID NotNull;
WEIGHTSETNAME: WEIGHTSETNAME_NotNull)
return boolean;

187



--delete operations
--implemented by searched delete

Procedure deletesoftwarechar_score jecord
(SSCD: SSCIDNotNull;
WEIGHTSETNAME: WEIGHTSETNAMENotNull;
is_deleted: out boolean);

--retrieve operations
--implemented by select/cursor select

Procedure get_scores
(SSC_ID: SSC ID Not-Null;
WEIGHTSETNAME: WEIGHTSETNAMENoLNull;
softwarechar_sLore_record:
in out software-char.score_recordjtype;
is-fetched: out boolean);

end software_charscore_CompositeOPS;

188



Package tool-score-composite OPS

with SQLBasejTypesjkg,
tool__score..primitive -domain - ypesi
The_Toolprimitive...domainjtypes,
Weight...Set-primitive domain-types,
General_.SoftwareCharacteristic-primitive domainjtypes;

use SQL.BasejTypesjkg,
tool_s$core..primitive domain..types,
The _Toolprimitive domainjypes,
Weight-.Set-primitive domain types,
General_SoftwareC~haracterisi...primitive domain..types;

Package tool_scoreComposite.OPS is

Type tool_score~record_type is record
GSCID: GSC_ID _Not_Null;
TOOL._ID: TOOLID_NotNull;
WEIGHT SET-NAME: WIGHT-SET-NAME Not-Null;
function_score: function--score-.Type;
quality-.score: qualityscore..Type;

end record;

--insert operations
--implemented by insert values

Procedure insert-tool. scorejrecord
(tool_ score_record: tool-score-record-type)

189



--update operations
--implemented by searched update

Procedure updateGSC_[D( GSCID: GSCIDNotNull;
TOOLID: TOOL ID NotNulI;
WEJGHT_SET_NAME:
WEIGHT_SETNAMENotNull;
withthis_GSr _ID: GSC_IDNot_NuIl;
notfound: out boolean);

Procedure updateTOOLjD(GSC_ID: GSC_IDNotNull;
TOOLID: TOOL, ID Not_- Null;
WEIGHTSETNAME:
WEIGHTSETNAMENotNull;
withthis_TOOLID: TOOL_ID_NotNull;
notfound: out boolean);

Procedure updatefunctionscore
(GSC_ID: GSC_ID_Not_Null;
TOOLID: TOOLIDNot_Null;
WEIGHTSETNAME:
WEIGHTSETNAME_NotNull;
withthis_functionscore: functionscoreType;
not_found: out boolean);

Procedure update-qualityscore
(GSCID: GSC_ID_Not_Null;
TOOL_ID: TOOL _ID NotNull;
WEIGHTSETNAME:
WEIGHT_SET_NAME_Not_Null;
with_this-quality-score: quality-scoreType;
notJound: out boolean);

Procedure update_WEIGHT_SETNAME
(GSC ID: GSC_ID_Not_Null;
TOOL_ID,: 'OOLIDNotNull;
WEIGHTSETNAME:
WEIGHTSETNAMENotNull;
withthisWEIGHT_SETNAME:
WEIGHT_SETNAMENotNulI;
'ot_found: out boolean);

--search operati(.,
--implemented by sclcct,fetch, check

Function searchtoolscore_record
(tool-scorejrecord: tool_:scorz-record-type)
return boolean;

--delete operations
--implemented by searched delete

190



Procedure delete_toolscore_record
(GSC_ID: GSC_IDNotNull;
TOOLID: TOOLIDNotNull;
WEIGHT_SET_NAME:
WEIGHTSETNAMENotNull;
isdeleted: out boolean);

--retrieve operations
--implemented by select/cursor select

Procedure get_scores
(GSC-ID: GSCIDNot_Null;
TOOL_ID: TOOL_IDNotNull;
WEIGHTSETNAME:
WEIGHT_SET_NAMENotNull;
toolscore_.record:
in out toolscorerecordjtype;
isfetched: out boolean);

end to.1_scoreCompos/teOPS;

191



Package software_chtar iveight Composite OPS

with SQL...Baseffypesj.kg,
software-char-weight-primitive domainjypes,
GeneralSoftwareCharacteristic..primitive domainjtypes
Weight-Se...primitive -domain-types;

use SQL...BaseTypesjkg,
software_char weight-primitive domainjtypes,
General_SoftwareCharacteristic..primnitive domainjypes
WeighLSetprimitive domainjtypes;

Package software-charjveighLComposite..OPS is

Type software char weight record~type is record
GSCID: GSCID_NotNull;
WEIGHTI_SET _NAME: WEIGHTSETNAMENotNull;
function..weight: function-weigh.LType;
quality..yeight: qualityweighLTfype;

end record;

--insert operations
--implemented by insert values

Procedure insert_softwarp_char weight..record
(software char-weigh Lrecord: software-char weigh-recordjtype)

--Update operations
--implemented by searched update

Procedure GSCJD)
(GSCjD: GSCIDNotNull;
WEIGHT_-SET_-NAME: WEIGHTSET-NAMENotNull;
with_thisGSCID: GSC_IDNotNull;
outjfound: out boolean);

Procedure update functionweight
(GSCJD: GSCID_Not_Null;
WEIGHTSETNAME: WEIGHT _SET _NAME_NotNull:
with th isjunction..weight: function-weightLTypc;
notj'ound: out boolean);

192



Procedure update_qualityweight
(GSCID: GSC_ID_NotNull;
WEIGHT_SET_NAME: WEIGHTSETNAMENot_N-l1;
withthis-qualityweight: quality_weightType;
not_found: out boolean);

Procedure update_WEIGHTSETNAME
(GSCjD: GSC ID Not_Null;
WEIGHTSETNAME: WEIGHTSETNAMENot_Null;
withthis_WEIGHTSETNAME:
WEIGHTSETNAMENotNull;
notjound: out boolean);

--search operation
--implemented by select,fetch, check

Function searchsoftwarecharweight record
(GSCID: GSCID_Not_NuI1;
WEIGHTSETNAME: WEIGHT_SET_NAME_NotNull)
return boolean;

--delete operations
--implemented by searched delete

Procedure delete_softwarecharweight-record
(GSCjD: GSC_ID_Not_Null;
WEIGHTSETNAME: WEIGHTSETNAMENotNull;
isdeleted: out boolean);

--retrieve operations
--implemented by select/cursor select

Procedure getweights
(GSC_ID: GjSCID_NotNull;
WEIGHTSETNAME: WEIGHTSETNAMENotNull;
softwarecharweight-record:
in out software_charweight-recordtype;
is..fetched: out boolean);

193



Package get-we.ight..SetsjforGSCII) is
Procedure Open(GSCjD: GSCIDNotLNulI);
Procedure Fetch(software char...weight-record:

in out software-char weight...recordjtype;
is_fetched: out boolean);

Procedure close;
end getweighk_Sets forOSCJD;

Package getLGSC IDS foL Weight-..Set is
Procedure Open

(for _this_WeighLSet: WEIGHTSET _NAME:
WEIGHT _SET_NAMENotNull);

Procedure Fetch(software char...weight~record:
in out software_charl_wigh-recordjtype;
is -fetched: out boolean);

Procedure close;
end get GSCIDS_for _WeightS.et;

end software _char _wcighLCompositeOPS;"-

194



References

1. Draft Recommended Practice for the Evaluation and Selection of CASE Tools,
Computer Society of the IEEE, January 1991.

2. E&V Guidebook, Ada Joint Program Office, February 1991.

3. Notes from CASE Managment Workshop, Carnegie Mellon University, June 1991.

4. Congressional Mandate for Ada, Software Technology Support Center
CrossTalk, Hill AFB Utah, May 1991, Public Law 101-511, signed by the
President, November 1990.

5. CSCE 645 Database Couse Notes, 1991.

6. Consultation with Air Force Institute of Technology Database Instructor, Dr.
Mark A. Roth, September 1991.

7. Alderucci, D., Evaluator, version 1.0, Charles Stark Draper Laboratoriy, Inc,
February 1991.

8. Alderucci, D., Formualor, version 1.0, Charles Stark Draper Laboratoriy, Inc,
February 1991.

9. Alderucci, D., Selector, version 1.0, Charles Stark Draper Laboratoriy, Inc,
February 1991.

10. Batt, G.T. CASE Technology and the Systems Developement Life Cycle: a
proposed integration of CASE tools with DoD STD-2167A. Master's thesis,
Naval Post Graduate School, 1989 (AD-A207 844).

11. Bigelow, J. "Hypertext and CASE." IEEE Software: 23-27 (March 1988).

12. Brooks, F.P. The Mythical Man-Month. Reading, MA: Addison-Wesley
Publishing Company 1982.

13. Chastek, G.J., M.H. Graham, and G. Zelesnik "The SQL Ada Module Description
Language SAMeDL." Technical Report. CMU/SEI-90-TR-26. Software
Engineering Institute, November 1990.

14. Chastek, G.J., M.H. Graham, and G. Zelesnik "Rational for SQL Ada Module
Description Language SAMeDL." Technical Report. CMU/SEI-91-TR-4.
Software Engineering Institute, March 1991.

15. Date, C.J. A Guide to THE SQL STANDARD. Addison-Wesley Publishing
Company 1987.

16. Engle, C., R. Firth, M.H. Graham, and W.G. Wood "Interfacing Ada and SQL ."
Te!chnical Report. CMU/SEI-87-TR-48. Software Engineering Institute,
December 1987.

17. Graham, M.H. "Guidelines for the Use of SAME." Technical Report.
CMU/SEI-89-TR-16. Software Engineering Institute, May 1989.

195



18. Hanrahan, B., J.V. Buren, C. Rieping, T. Fujita-Yuhas, J. Grotzky, G. Jones, J.
Petersen, and G. Peterson "Requirements Analysis & Design Tool Report."
Technical Report. Software Technology Support Center, Hill Air Force Base UT,
1991.

19. Hildebrant, R.R. "Requirements, Design, and Usage of stemDB, a Software Test
and Evaluation Database." Technical Report. Charles Stark Draper Laboratoriy,
Inc, Cambridge MA, March 1991.

20. Hughes, C.T. and J.D.C. "The Stages of CASE Usage." Datamation: 41-44
(February 1990).

21. Humphrey, W.S. Managing the Software Process. Addison-Wesley Publishing
Company 1990.

22. Keuffel, W. "CASE for the rest of us." Computer Language: 25-29 (1991).

23. Korth, H.F. and A. Silberschatz Database System Concepts, McGraw-Hill, Inc.
(1991), pp. 24-213.

24. Lawlis, P.K. Supporting Selection Decisions Based on The Technical Evaluation
of Ada Environments and Their Components. Ph.D. dissertation, Arizona State
University, August 1989.

25. Oracle for Macintosh, Reference, Version 1.2. Oracle Corporation, 1990.

26. Osterweil, L. "Software Environment Research, Directions for the Next Five
Years." IEEE Computer: 35-43 (1981).

27. Petersen, G., G. Daich, D. Dyer, and S. Atkinson" Interim Report on
Requirements Analysis and Design Tools." Technical Report. Software
Technology Support Center, Hill Air Force Base UT, November 1990.

28. Sims, M.L. A Review of the suitability of Available Computer Aided Software
Engineering (CASE) Tools for the Small Software Development Environment.
Master's thesis, AFIT/CI/CIA-89-077. University of South Florida, 1988.

29. Tamanaha, D.Y. "The Application of CASE in Large Aerospace Projects." 1989
IEEE Aerospace Applications Conference digest: 1- 18 (1989).

30. Wybolt, N. "'Perspectives on CASE Tool Integration." In Software Engineering
Notes. ACM Press, pp. 56-60, 1991.

196



Vita

Captain Tina M. DeAngelis was born on 26 February 1964 in Watertown,

Massachusetts. After graduating from high school she attended Purdue University in

West Lafayette, Indiana. She received a three year ROTC scholarship and after receiving

both her bachelors degree in Electrical Engineering and her Air Force Commission was

assigned to Material Management (MM), Hill AFB, Utah. She started her job at Hill as a

member of a team that was responsible for developing a new Navigation and Weapon

Delivery System computer software and hardware for the F4 Phantom. Her duties

included being involved in the flight testing of the ongoing development effort. Just

before leaving Hill for AFIT, she was reassigned to another computer hardware and

software development effort (the VHSIC Core Avionics Processor program (VCAP)) for

the F-16A/B Falcon flight computer. She entered the School of Engineering, Air Force

Institute of Technology in May of 1990. Her current address is Space Systems Division,

L. A. California.

Permanent address: 49 Hazel St

Watertown, Ma 02172

197



iiiiiForm Approved

REPORT DOCUMENTATION PAGE OM No. 0704.0188

Pu tic 'e0C rt n q :urc en 'o r 11i ,:CO ," -C Ql'4 atOfl , t" Z e :.r ,.i e e .o n g tn e tim e 'o r fe vew nf ' .', r.c Icf $ ,ea : ,. . x ,:ng aat3 so ur -es,
gatherng sa d ilant tnilng the data ee-ceo - ainQ ei nqar r e e 3: I~ec cn ]t .ntor et l na .mments re'.ardirq u:Wden etm ae ;r i ;t ef JweMt Ot this

collection 3t nf~rmatlon. a'ctLdun suggest- ':-u 'or reucng :h, uro" .' 'otn -sedaam rte' .cei, ~,gre aorj'e or nS'-ra ien ,ieratlon$ ' o, a't t2 5 ferson

OaV.sirqln~v. Suite '204,. .urqgton. is i2:2 4302 ,'cioteOff,-e,' '.ln e'.'t! t i,'d iudge, A '.ashngtnn, :C 2050J

1. AGENCY USE ONLY (Leave oiank) 2.REPORT DATE 3. REPORT TYPE AND DATES COVERED
I December 1991 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ANALYSIS OF A DECISION SUPPORT SYSTEM FOR CASE TOOL
SELECTION AND THE SPECIFICATION OF AN ADA TO SQL
ABSTRACT INTERFACE

6. AUTHOR(S)
Tina M. DeAngelis, Capt, USAF

17. PERFORMING ORGANIZATION 4AME(S) AND ACORESS(ES) .. 3ERFORMING ORGANJIZAT:ON
I REPORT NUMBER

Air Force Institute of Technology, WPAFB OH -45433-6583
AFIT/GCS/ENG/91D-04

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING
I AGENCY REPORT NUMBER

Software Technology Support Center (STSC)
Ogden ALC/TISAC
Hill AFB, Utah 84056

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION ( AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution unlimitted

13. ABSTRACT (Maximum 200 words)

Information overload has long been a problem in the fast moving technical field of software development. Yet
quality information is needed to make informed decisions about buying software tools that help in software
development. Computer Aided Software Engineering (CASE) tools help to coordinate and control information
in large software developments. Many CASE tool purchases, howe~er, are being based on ad hoc tool evaluation
and selection methods which depend on biased vendor information. To capture specific knowledge about. how to
pick a tool for a given software development effort. a historical database that identifies important tool character-
istics needed to be maintained by an unbiased organization and a mechanism (in the form of a decision support,
system) for interpreting that database needed to be made available.

To address this deficiency, the Software Technology Support Center at Hill AFB in Utah was developing a CASE
tool selection support tool, the STEMdB. This research accomplishes an analysis of this tool and suggests ways
to make it more robust, portable and maintainable. It presents an object oriented approach to the de-ign while
addressing the issue of portability by accomplishing an Ada to Structured Quer. Language (SQL) abstract
interface.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada interface. SQL interface. Decision Support System, CASE tool selection. SQL. 206

Ada, Ada to SQL binding 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATiON OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIEI) UI;NCLASSIFIED UI,

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Cricrubed by ANji SO 139.18
198 t0


