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Energy Absorption of Graphite/Epoxy Plates
Using Hopkinson Bar Impact

PIYUSH K. DUTi A, DAVID HUI AND MAGNA R. ALTAMIRANO

INTRODUCTION duration of impact produced by the striker bar on the
Hopkinson bar apparatus persists for a few hundred

Most literature dealing with energy absorption in microseconds, and it takes a small but finite time for the
laminated composites describes the use of a dropweight effects of the impact force (stress wave) to enter the
or pendulum impact test apparatus. In these techniques, graphite epoxy test laminate at the opposite end of the
energy absorption is determined by subtracting the re- bar. Upon enteringthe laminate, aportion of the incident
sidual kinetic energy from the initial energy. Thus the stress wave is propagated into the transmitter bar and
effects of stress wave propagation, which is a source of another portion is reflected back into the incideit bar.
damage initiation, cannot be examined using these test- Incident, reflected, and transmitted stress waves are
ing techniques. Further, the laminate's energy absorp- measured by strain gauge instruments described else-
tion during the penetration process and the projectile's where (Dutta et al 1987).
velocity, contact force, and duration of impact are diffi- In the current study, the laminate specimens con-
cult to measure. Hopkinson bar testing eliminates these sisted of 30 plies of AS4/3502 graphite epoxy with the
restrictions and allows a thorough examination of the following stacking sequence:
projectile impact process.

The effort described in this report involved an ana- [(+ 45/02)21901± 45/02/± 45]s
lytical and experimental study of energy absorption
within graphite/epoxy plates impacted by a hemispheri- The indentor was driven into the laminate by the force
cal-nosed impactor attached to a split Hopkinson bar test of the incident bar's stress wave. Figure 1 shows a
apparatus. The work is novel in that the plate's energy schematic of the Hopkinson bar, the impactor, and the
absorption was accurately measured using the recorded laminate panel clamping assembly. Figure 2 is a photo-
incident, reflected, and transmitted stress waves. The graph of the setup. The transmitter bar is free to slide
Hopkinson bar test apparatus allowed accurate determi- forward or backward. As the striker hits the incident bar
nation of velocity, force, and energy absorption informa- and drives the indentor into the laminate plate, the plate
tion during the entire impact duration. Thus the setup bends and behaves like a spring-mass system. Plate
allowed "controlled" testing, capable of determining the bending was recorded from strain gauges mounted on
energy absorption of impacted composite specimens. the rear face of the laminate.
The only limitation was that the impactor was forced into The wave mechanics within this system was analyzed
the laminate at relatively !ow velocities, to determine the force-displacement relationship be-

tween the impactor and the composite laminate. Energy
absorbed during the process was also determined as a

MECHANICS OF function of time. The velocity, force, and energy ab-
WAVE PROPAGATION sorbed were calculated from incident, reflected, and

transmitted waveforms.
The theoretical wave mechanics involved in the im- An impact of bar I (the striker bar) into bar 2 (the

pact process are discussed based on elementary prin- incident bar) produces a compressive force at interface
ciples of unidirectional stress wave propagation. The A. According to elementary stress wave propagation
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IFigure 1. Schematic of the Hopkinson bar test setup.

theory (Kolsky 1963, Dutta et al. 1987), stress Y and The force of penetration at any time t can be calcu-
force P generated by the impact are lated more directly by considering the particle velocity

in the following equation:

= (p/g)CV (1)
V =dulpt- (4)

and (98) c
P = (A) (pig) (cV) (2) where u is the axial displacement of the bar and is given

where p is the density of the incident bar, g is the by
acceleration due to gravity, c is the speed of sound in the

bar, V is the particle velocity in bar 2, and A is the cross-
sectional area. T '! stress wave propagates along bar 2 to u = 1L a(t)dt (5)
the opposite end where it encounters a discontinuity of P_ c
its impedance (a product of density and stress wave(g) t=o
velocity, pc) at interface B. In the experimental setup,
the impactor and leminate respond to this incoming Under the incident stress wave ai(t), the penetrator
stress pulse. As a result of the discontinuity, a portion of end of bar 2 will be subjected to a displacement ui given
the stress pulse energy (E,) is reflected (ER) and a portion by
is transmitted (ET) through the spring-mass system.
Most of the remaining energy goes into the formation of
plastic deformation of the plate. Some energy is also lost 1 Yi (t) dt (6)
in overcoming frictional forces in various joints and uf = -- (
through noise and vibration of the entire system. Nett= 0
energy lost in the impact can be calculated by subtracting
the energy of the transmitted and reflected waves from Due to the change of impedance, a portion of the stress
that of the incident wave: wave is reflected, which produces a corresponding dis-

placement of the indentor in the opposite direction; this
EA = El - ER - ET (3) displacement ur is

The procedure for computing energy from the stress vs
time waveform is given in Appendix A.
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Figure 2. Photograph ofdie setup showing
the hemispherical indemtor.



material in the in-plane radial direction. Since the deflec-
tion was measured to be less than 20% of the laminate

14 r f or (t) dt (7) thickness, the membrane energy (Em) was neglected.
( )Cg o Although Hertzian contact law was established for

local static indentation of two elastic bodies, it is com-
monly applied to impact situations where permanent

The resultant displacement ut is given by plastic deformations occur (Goldsmith 1960). The Hert-
zian contact energy of a spherical indentor with radius R
impacting a flat plate is (Greszczuk 1982)

ut(t) = 1 ft (t) - (y, (t)] Lit (8)
(t c I Ec (p 5/3)(4/5) (31t / 16) 2/ 3

t=0

Force on the penetrator [F(t)] is the algebraic sum of [(k, + k2)/(R/2)112] 21 3  (12)
the incident force Aci(t) and the reflected force Aar(t):

where

F(t) = A [i (t)+ Or(t) dt (9) k I =(1v)/(tEs) (13)

t=0 k2 rV1 v2) 1(nEz) (14)

From eq 8 and 9, the force-displacement curve for the
indentation can be plotted. The area under the curve will where Es and v, are the Young's modulus and Poisson's
yield the energy absorbed as a function of time through- ratioof the steel indentor, respectively,E z is the laminate's
out the impact. modulus in the thickness direction, andvris the laminate's

Energy absorbed by the graphite epoxy plate can be Poisson's ratio.
computed from the following energy balance equation Assuming point contact between the indentor and
(Greszczuk 1982, Shivakumar et al. 1984): plate, the deflection can be computed from the in-plane

stress a (Roark and Young 1975):
EA =Ec+ Eb+ Em+ Ed+ Ef (10)

where EC = the energy expended in Hertzian contact oh2 /6 = [P/(4 n)] (I + v)

indentation,
Eb = the energy due to plate bending, (ln [a/(.325h)]} (15)
Em = the energy due to the stretching of the

middle plate surface, Further, deflection y at the center of the circular plate due
Ed = the energy due to permanent plate damage, to a concentrated load P is

and
Ef = the energy due to friction, heating, etc. y- (Pa'ln~) (3/4) [ (I -V2) /(Eh 3)] (16)

All of these energies are recoverable, except the
damage and frictional energy. Plate damage may include Measured strain can be converted to stress by multi-
any or all of the following modes of failure: matrix plying the strain by the in-plane Young's modulus, so a
cracking, delamination, fiber breakage, and spalling. is a known quantity. Eliminating the applied loadP from

The bending energy of a circular plate clamped along the above two equations, the deflection can be obtained
its edge under a concentrated load P is (Roark and Young in the form
1975, Greszczuk 1982)

a 2a (-v)
Eb = (p 2 ) (3a2/2) (i v) (4n Erh2)- (11) (2hE) In [a,(O.325h)]

where a is the radius of the circular plate, h is the Upon stress wave arrival, the indentor accelerates
thickness of the plate, and Er and Vr are the Young's into the plate and creates a compressive stress wave that
modulus and Poisson's ratio, respectively, of the plate propagates through the thickness. Stress wave velocity

4



V1 u. V 2

Forcel I  
Velocity

A,,Pll O. R, , -'OT'UT A2,P2 C2  Z5 \<Vl ' "

OR, U R

: Time\ /

I I

1 I Force

Figure 3. Stress pulse reflections and trans-
missions through the interface. Figure 4. Interface velocity and force.

in the thickness direction of the plate is approximately at velocity V1 while the indentor continues to move into
(McMaster 1963) the plate with a velocity V1 (see Fig. 3).

During the duration of the stress wave, three condi-
cz = [EzI(plg) 12f (v)] (18) tions are possible. First, when V2<Vl,the indentoraccel-

erates into the plate (positive contact force) with a force
vs time relationship as shown in Figure 4. Second, when

f(v)= (l-v)/[(l + v)(I -2v)]) 1 2  (19) V2 _ V1 , both the indentor and the plate move in the
incident direction with no change in contact force. Third,

where Ez is Young's modulus in the thickness direction when V2 > V , loss of contact occurs between the in-
and v is Poisson's ratio (for n = 0.31,ftv) = 1.17732). dentor and plate, and a tensile force develops in the

For a quasi-isotropic graphite epoxy laminate, where incident bar. Both the indentor and the plate move for-
Er = 51.16 GPa (7.42 Msi), Ez = 11.86 GPa (1.72 Msi), ward monotonically even though loss of contact occurs.
and p = 1522.4 kg m- 3 (0.055 lb-mass in.- 3), wave speed
Cz = 3.043 km s- (0.1198 x 106 in. s- 1). This wave will
propagate with speed cz as a compressive wave and will DISCUSSION OF RESULTS
eventually reflect off the rear (free) surface as a tensile
wave with the same velocity. When the wave arrives at Figure 5 is a graph of energy absorption vs displace-
the rear surface, the plate moves away from the indentor ment. The energy absorption of the plate (curve A) is

Energy
(Joule) (in - lbf)
9.04 80

- Z B (System)

6.78 60- 6.78 -- 60 A (Plate) --

4.52 40-

2.26 -- 20-

0 4 8 12 16 20 24 28 32x 10 - (in-)

I I I I I I I I I I I I I I I I
0 0.1 0.2 0.3 0.41 0.51 0.61 0.71 0.81 (mm) Figure 5. Impact energy absorp-

Displacement tion results.
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Figure 6. Results offorce, velocity, and strain history measurements.

computed from the force vs displacement of the indentor. minish but, because of the gap between the
Energy absorbed in the system, consisting of the plate plate and the indentor, the indentor experi-
and clamping fixture shown in curve B, is computed ences a tensile force. (Note a reversal of the
from the incident, reflected, and transmitted waves, force direction.)
Appropriate formulae are given in Appendix A. The • The final stage (t4 < t < t5 ) is the vibration
small difference between these two energy absorptions stage, during which the plate exerts an oscil-
is the energy loss in the fixture (Ep). lating force on the indentor where contact

Indentor force vs time (curve Cof Figure 6) follows may be lost and regained many times.
the model of Figure 4. There are five stages involved in Figure 7 shows the cumulative energy absorption vs
the penetration process: time. Energy absorbed increases rapidly with time in the

• In the initial loading stage (0 < t < t,), the first two stages and very slowly in the third stage. During
indentor accelerates into the plate, as can be the plate separation stage, a portion of the energy returns
seen from the increasing slope of the velocity to the incident bar as the indentor accelerates into the free
trace (curve D). space in front of it. This energy is subtracted from the

• The second stage (ti< t < t2 ) is the initial cumulativeenergy, so the energy curve dips at this stage.
unloading stage where the indentor force de- Energy absorbed in the final stage is constant and is the
creases rapidly and the corresponding veloc- energy required to cause plate damage.
ity increases at a slower rate. The drop in the Figure 6 also shows data from two strain gauges
indentor force is attributed to damage either in mounted at two positions on th,; rear surface. Strain
the contact region or near the rear surface due gauge I is mounted at the plate center and gauge 2 near
to a reflected tensile wave. The latter may the comer. The strain gauge data show that plate bending
cause the plate tomove away fromthe indentor, continually increases but remains small during the first
thus reducing the contact force (which will be four stages of impact. The increase becomes more pro-
more evident in the next stage). nounced in the final vibration stage and results in strain

* The third stage is the constant velocity stage gauge failure near t = t5 .
(t2 < t < t3) in which there is very little contact Figure 8 shows the laminate's energy absorption EA
force. Referring to eq 9, note that at this stage vs the maximum velocity of the indentor. The data
01(t) = OR(t), indicating that there is no inter- follow the relationship
facial contact force.

" In the fourth stage (t3 < t < 4 ), the effects of EA= n Vm (20)
stage 3 become more pronounced, and sepa-
ration between the indentor and plate is pos- wi.ere exponent m is found to be 2.55 for room tempera-
sible. Similar loss of contact behavior has ture (21 C) and 4.53 for low temperature (-30"C). The
been reported by Wu and Springer(1988)and value of the constant n for 21°C is 3.75 x 10-5 and for
Sun and Chen (1985). At this stage, the ap- -30 0 C is 1.01 x 10--9.

plied incident stress amplitude begins to di- These data are currently considered a precursor to a

6
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Figure 7. Bar stresses and energy absorption history.

Energy

(Joule) (in. - lbf)

9.04 80 1

* 21 0C Data
o -30C Data o

4.52 40 2

/ (70*Fl

2.26 20 -

foo/-30oc
0 .. (-22°F)

0 -- 0 -' o ''
S I I I

100 140 180 220 260 (in. s - 1)

I I I I I I I 1 1
2.54 3.55 4.57 5.58 6.60 (m s- 1 )

Particle Velocity

Figure 8. Influence of temperature and velocity on energy absorption.

detailed analysis oftemperature's influence on the dam- impact velocity more damage occurs at lower tempera-
age mechanisms associated with composite plate im- tures and more energy is absorbed. The experimental
pact. It is well known that low temperature reduces the data in Figure 8 clearly show this trend after a transition
fracture toughness of most materials, but no extensive velocity of about 4.8 m s-I (190 in. s-1). Above this
data are available for composites. In research performed velocity, more energy is absorbed by specimens held at
by Nishijima and Okada (1982), cloth-reinforced ep- low temperature. Below this transition velocity, the low
oxide resin composites were subjected toCharpy impact temperature has an opposite effect, as discussed next.
tests at room and liquid nitrogen temperatures. These Greszczuk (1982) and Shivakumar et al. (1985) have
tests demonstrated that a reduction in temperature causes shown that in the low velocity range, among non-
a reduction in impact strength. Therefore, for a given recoverable energies, the Hertzian contact force is the
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most dominating energy absorption mechanism. From Ez Ef Em (T) (23)
eq 12thisenergy isafunctionof(k +k2)2 /3 . Substituting v f(T) Em (T) + vm Ef
vs = 0.3 and Es = 206.9 GPa (30 x 166 psi) for a steel
indentorintoeq 13,k I =0.9.67x 10-9 . Referring toeq 14, where vm and vf are the matrix and fiber volume ratios,
k2 contains the term Es (the Young's modulus of the and Em and Ef are the matrix and fiber modulus of
composite plate in the thickness direction), which is elasticity. (7) indicates the prevailing temperature of the
influenced at low temperature by the change in elastic matrix. Solving for Ez and setting vr = 0.31, k2 is de-
modulus Em of the resin matrix. The empirical relation termined via eq 14. Figure 9 shows a plot of (k, + k2) 2/3

established by Dutta (1989) for matrix stiffening with vs temperature. It is clear from this graph that as the
lower temperature is temperature is reduced the value of Ec (the Hertzian

contact energy, which is a direct function of (k I + k2)2 3)
Em (T)=Em(TO)- 2.9 103 (T - To) (21) decreases. The experimental results in Figure 8 confirm

this.
where To is the room temperature and T is the low In a separate ballistic experiment involving the pen-
temperature in 'C. Applying the above relationship to etration of identically configured 30-ply graphite epoxy
the rule-of-mixtures equation (Tsai and Hahn 1980) laminates by 12.7 mm (0.5 in.) spheres, Mayer and

Altamirano* observed energy absorption Ea in the form

E = E Em (22)
Vf Em + Vm Ef

* Personal communication (1990) from A. Mayer, Air Force
yields Wright Laboratories, Dayton, Ohio.
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Figure I]. Energy loss as a function of impact
velocity as obtained from Sjoblom et al. (1988) 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

data. (q1 Impact Enegy ) = f (V) (J

Ea = C0 V 1.489 (24) Low temperatures influence the energy absorption
characteristics and control the damage mechanisms.

where V is the impact velocity and C0 is a constant. Existence of a transition velocity was observed; above
Experimental velocities ranged from 500 to 1500 m s~i this velocity energy absorption from an impact is higher
(1600-4900 ft s-1). Comparing the exponents of V from than at room temperature. At low temperature, reduced
the three series of experiments-1.489 from the ballistic impact strength causes a larger volume of damage.
tests, 2.55 from the Hopkinson bar room-temperature Below the transition velocity (at low temperatures) the
tests, and 4.53 from the Hopkinson bar low-temperature laminate absorbs less energy, which can be approxi-
tests-it is clear that the damage mechanisms and energy mated by Hertzian contact theory.
partitioning are different at higher velocities than under When comparing data generated via the Hopkinson
Hopkinson bar low-velocity impact. The lower value of bar apparatus to data obtained via high velocity ballistic
the exponent suggests a failure mechanism that progres- impact, the failure mechanism is seen to be a function of
sively requires less energy as the velocity is increased. impact velocity. As the impact velocity increases, the
This trend was also validated by Sjoblom et al. (1988) fracture requires less energy.
(Fig. 10). The solid line in this figure shows that energy
loss is a function of V2 A reconstruction of the energy
loss vs velocity (Fig. 11) clearly shows a decrease in the LITERATURE CITED
energy absorption rate at higher velocities.
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APPENDIX A: WAVE PROPAGATION IN A HOPKINSON BAR APPARATUS

The incident, reflected, and transmitted energy are denoted by El, ER, and ET respectively. The
governing equations for stress o(t), velocity V(t), and displacement u(t) are

O(t) =(p) (cig) V (t) (Al)

V (t) = duld, (A2)
t

u(t)=(c/E) f a(t)dt (A3)
[=0

where E = Young's modulus,
t = time,

p = density,
V(t) = velocity,

c = the wave speed in the material, and
g = the acceleration due to gravity.

Further, the energy of the wave in a one-dimensional bar is

E = Ac oa2(t)dt (A4)Ef

t=0

where A is the cross-sectional area of the circular Hopkinson bar. Displacement of the indentor u,(t)
can be obtained from the incident, reflected, and transmitted stresses (al(t), OR(t), and OT(t),
respectively):

Ul (t) = (cIE) f [1 1(t) - OR (t) - OT(t)] dt (A5)

t=0

The force on the indentor is

F(t) = (A) [a,(t) + OR (t)] (A6)

Energy produced by the indentor (E ) can be computed from an integration of the product of force and
displacement over the duration of the wave:

t

Ep = (AcIE) f ([Of (t) + CR (t)] - [01 (t) - OR (t) - OT(t)]) dt (A7)

t=0

The energy of the incident, reflected, and transmitted waves can then be computed from

I

(E 1 ,ER , ET) = (AcIE) f [o 1 (t)2 , OR(t)2 ' OT(t)2] dt (A8)

1=0

11



The total energy absorbed within the system (i.e. that absorbed during damage generation and minor

losses within the fixture) is

EA = E, - (ER., ET). (M9)

which can be rewritten as

EA =(Ac JE) J, (aI (t) 2 
- [C;R (t) 2 + OT (t)2] cit (AlO)

The H-opkinson bars used in this test series were steel with the following parameters:

A = 1140MM2 (1.7675 in.2 )
c =5017 m s-' (197531 in. s-1 )
E = 193.05 GPa (28 x 106 psi)

so that Ac/E 0.02963 m3 GPa-1 s-I (0.012467 in.5 lb'- S-1).

12
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