
AD-A244 253

JAN 07? 19921N 0Vertical Velocity Generated

D over

Non-homogeneous Rough Terrain,

Theory and Subgrid-Scale Parameterization

G.A. Dalu' 3 , T.J. Lee2 , M. Segal2 , R.A. Pielke2 , and A. Guerrini3

February 2, 1990

- n::;'ilii~g L.'c!ress: G.A. Dalu, Cooperative Institute for Research in the Atmosphere,

A'I.-'SU. Foothill Campus. Fort Collins, Colorado 80523

2 - D(parl ment of Atmospheric Science, Colorado State University, CSU, Fort Collins, Colorad,,

i- 1titute foi Atmos.pheric Physics, IFA-CNR. Rome

Abstract

A systematic evaluation of vertical vclocities associated with stratified atmospheric flows

over non-homogeneous terraiins apparently has not been reported in the literature. In this st udy

w, approach the problem numerically and analytically. Through a non-linear mcdel we evaluatc

the range of the parameters for validity of the linear theory. Through simple analytical theory 0.

%%c estimiate the role played by the relevant parameters. Z-F

Results indicate that, when the transition in surface roughness is gradual between a smooth

and a rough surface, the perturbation of the vertical velocity has the same horizontal scale as ".-.

the perturbing source. The nature of the perturbation depends on the product between the '

horizontal scale of the rough patch and the Scorer parameter of the ambient atmosphere; i.e.

very small values of this product (weakly stratified atmosphere) gives a wave trapped around

the top of the stress layer, while values of the order of unity give a non-hydrostatic gravity

%%ae which propagates away from the top of the stress layer. Values larger than unity yeld a

propagating hydrostatic wave.
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When the transition in surface roughness is abrupt, the wave is nonhydrostatic with a hor-

izontal and vertical wave number equal to the ambient Scorer parameter. When the product

between the horizontal width of the rough patch and the Scorer parameter is large, there is

no significant interference between the wave upstream and the wave downstream of the rough

patch; the two waves are of the same nature and armplitude, but opposite sign. When this prod-

uct is small, however, the wave upstream interferes destructively with the wave downstrear

i.e. the amplitude of the resulting wave is accordingly reduced.

When the surface roughness is periodic, resonant amplification occurs when the horizontal

wave number of the perturbation approaches the ambient Scorer parameter.

Since the depth of updraft well exceeds the height of the internal boundary layer, this process

can be important in triggering cumulus clouds and may have an impact on the dispersion of

pollutants.

1 Introduction

\VLin an air mass approaches a region where there is a substantial increase in surface roughne'.s.

vwe ( xpect a decrease of the air speed in the lower layer and the development of ascent associztted

"n the resultant horizontal convergence. Such situations are typical, for example, in coaial

urban areas when onshore flow occurs. However, it may also be of significance in inland urbanii

arcas. because of the contrast with surrounding agricultural rural areas or when there is a contrast

between prairie and wooded areas. The developed vertical velocities may trigger, under supportive

synoptic conditions, convective clouds. The features of the induced vertical velocity may also have

an importance in dispersing pollutants.

In this paper we approach the problem of the vertical velocity which arises because of horizon al

i~lioinogenities in the surface shearing stress in the atmospheric planetary boundary layer. This

study is an extension in more general terms of a previous paper (Dalu et al. 1988), where we report

on the waves generated by change in surface roughness.

Numerous studies have been carried out evaluating the impact of a sudden change in the surface

roughness on horizontal flow features in a neutrally stratified boundary layer, focusing mainly on

the modification of the flow within the surface layer. In addition, considerable attention has been

givcn to evaluate th. growth of thermal and aerodynamics internal boundary layers. Hunt and
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Simpson (1982) provide an excellent review of the studies reported by that time. Additional studies

reporting on the impact of a sudden change in the surface roughness on the horizontal flow are

given by Pedergrass and Arya (1984).

"verall, however, no systematic attention has been given in the evaluation of the features of

the vertical velocities generated in a stable stratified flow when the air crosses a change in the

surface roughness (CSR). Wagner (1966) reported on the structure of the vertical velocity induced

by a CSR as computed through a numerical model. However, he neglected to discuss the vertical

extensions of the updraft and its wave characteristics, because of his upper boundary condition: in

fact he required the vertical velocity to be zero and the flow to be in geostrophic balance at 1000

meters above the ground.

Claussen (1986) computed, using a model simulation, the vertical velocity due to a CSR. ]how-

ever, the computed vertical velocity was, in general, very sensitive to the horizontal grid resolution.

which should be reduced, in many occasions, to several hundred meters in order to appropriatcy

resolve the related vertical velocity.

Using a very coarse horizontal resolution, Vukovich and Dunn (1978) in their numerical model

simulation of the St. Louis urban area, suggested that the surface roughness has only a small effect

on the circulation for the wind speeds used in their study. Alestalo et al. (1985), using a hydro-tatic

two-dimensional model with a grid interval of 4 km simulated the airflow in the Baltic shore region of

Finland, and found a maximum for the vertical velocity of order of 1 cm s -'1 , due to the CSR. 'he,

attributed the reported increase of precipitation in that area, in the absence of thermal forcing. to

G,.o vertical velocity induced by the CSR. Pielke (1974) evaluated the magnitude of vertical velocitV

caused by a CSR over Florida using a 11 km horizontal resolution model. Although the magi.itudes

were small (- 0.1 cm s-1), it was concluded that shallow warm rain cloud over the southeast

coast of Florida could be due to this mechanism. Finally, Roeloffzen et a/. (1986) presented a

steady state model calculation of secondary flow patterns forced by a CSR. Adopting a neutrd

boundary layer and using a refined grid resolution, they suggest that frictional effects involved with

a CS!R at a coast line, can lead to a secnndary circulation on the mesoscale. They suggest that tli .

forcing is a factor in the observed coastal frontogenesis active in the early fall along the coast of

ti. Netherlands.
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The present study presents a systematic analytical and numerical evaluation of CSR impact

in a stably stratified air mass, for an one-layered atmosphere and in a two-layered atmosphere,

on the generation of vertical velocities and their characteristics as dependent on key parameters

including the wind speed, the thermal stratification of the lower atmosphere, and the magnitude

of the shearing stress.

The results of this study are confirmed by the general mesoscale features observed during the

Amazon Boundary Layer Experiment ABLE 2B (Garstang et al, 1990). However, the present

theory should be extented to include the diabatic sources, in order to explain the ABLE 2B results

in a more quantitive way.

2 Waves Generated by a CSR as Simulated by a Numerical Model

Here we present some results concerning the vertical velocity induced by a sudden change in terrain

surface roughness, as simulated by a numerical model. For the simulation we use the non-hydrostatic

version on an f-plane of the CSU Regional Atmospheric Meteorological Model RAMS (Tremback

cm et al, 19 .... ???). The ambient flow is perpendicular to the CSR, and the atmosphere is stable

stratified. We assume a sudden change of roughness z. = 1 m, and a flow intensity of U = 5 m s-1

aiid U = 10 m s- 1. We show the results after a few hours of simulation, i.e. w-hen the system

evolves to an almost steady state. Results for an ambient flow of U = 5 m S-I are shown in

Fiz.i and for an ambient flow of U = 10 m s-1 in Fig.2. The results in Fig.1 and in Fig.2 show

that substantial vertical velocities can be induced by a sudden change of surface roughness and

that the perturbation is of a wave nature (since the atmosphere is stratified) with a wave length

and intensity which doubles for a doubling of the wind intensity. This response suggests a linear

behavior.

The non-linear behavior is apparently confined to within the stress layer, which in the numerica,

rnodcl is parameterized according a turbulent kinectic energy TKE scheme (Deadorf, 19S0). As

a cosequense, the depth of the stress layer and the shear velocity do not respond linearly to the

variations of the flow intensity.

Htowever, fro, the simulations completed with the nonlinear model, we found that for AU/U <

.'2 with the largest perturbation near the surface, i.e. the relative perturbation of the horizontal
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velocity is less than 20% (similar results have been found by Claussen, 1987). Thus we deduce

that the response in the atmosphere above the stiess layer is linear and that the non-linearities are

confined to the turbulence within the stress layer.

We proceed in investigating the nature of the perturbation through linear analytical theory, in

order to find simple relations between the behavior shown in Fig.1 and in Fig.2 and the ambient

parameters. In the following theoretical study, we assume the depth and the intensity of the stress,

which can be obtained through observations or turbulence theory.

3 The Governing Equation for the Linear Problem

If wve assume that the process is stationary, two-dimensional and Boussinesq, then the primitive

equations in linear form can be reduced to a Scorer type equation for the vertical velocity in

non-homogeneous form:

k 2 - k 2, *.
( - i,' + (I2 _ k2)tb = . - ." (3.1)

V _pU U

The linearization is justified by fact that the non-linear numerical simulations have shown that the

perturbations are small in comparison to the intensity of the ambient wind, see section (2). For

a derivation of equation (3.1), see Eliassen (1977). The hat denotes the Fourier transform of the

variable, k is the horizontal wave number, k, = f/U is the inertial wave number, (f i- the Coriolis

parameter, U is the ambient flow perpendicular to the change in surface roughness, and U. is i!'!

shear), r is the resulting shear stress, u is the shear velocity, and I is the Scorer parameter (Scorer.

1953):

-
2  U with N 2 - (3.2)

U2  U Oz

where N is the Brunt-Viisi.la frequency and b is the buoyancy of the environmer. Equation (3.1)

cai rewritten as:

IwZz + v2 (k) G = pkU -- = G2(k) UG_ (3.3)
- "kU

with v2(k) = k 2  and G 2 (k) k2

k 2  
k2 k °
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In the wave number region where v2(k) < 0, the waves are trapped around the perturbing source

within an e-folding vertical distance equal to pj. The vertical wave number p, for the trapped

waves is:

I,,(k) = Ii '(k)f = Iki j2 -k 2  when 0<IkI<k, or when l<Ikl< o (3.4)
k - k

In the wave number legion where v2(k) > 0, the waves propagate away from the perturbing source

with a vertical wave number equal to p1. The vertical wave number pi for the propagating waves

is:
12 k2

l(k) = v(k) -=- k V k2 when k0 < Ikl < 1. (3.5)

3.1 The Stress and the Shear Velocity

For simplicity, we assume that the stress has the same direction and opposes the ambient flow.

Furthermore, since the stress is assumed to decay linearly with altitude within the stress layer (this

simple choice is suggested by the results of the numerical simulations; i.e. see section (2)):

r(x,z) = r He(h - z) h F(x) (3.6)

%%-here r. is the surface shear stress, F(x) is its horizontal distribution, and He is the Heaviside

function. We study the atmospheric response

to a periodic horizontal distribution of the stress:

case (i) r.(z) = (z 2- h)cos(z) * z) = r0,(z - h) .(k - a)7)h h2  2

to a bell shape horizontal distribution of the stress:

case (1i) rz,(,r,z) = rb(z - h) a2 r2t(z - h) r a
h2  a2 + 2 h2 2exp(-ak); (3.S)

and to a top hat horizontal distribution of the stress:

S(iii) rz(xz)= -o(z - h) [Hc(x + a) - He(x - a)1= * f,(k,z)= ro,(z-h)sin(ka).(3.9)

h2 h 2  k

Here is the Dirac function. The tilde denotes the cosine Fourier transform:

F(k) = fd F(x)cos(kz)
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The relation between the stress r, the wind intensity U, the surface drag CD, and the shear

velocity u" is given by (Panofsky and Dutton, 1984):

*U * .2__@2_=__K

-= o CDU with CD= =0 K (3.10)
U pU k(lnz/zo)2

Here x is the von Karmann constant and z. is the surface roughness. The order of magnitude of

the depth of the stress layer is (Blackadar and Tenneks, 1968):

u. 1U N (.1h : 0.3 - so that ih ;.- 0.3 -= 0.3 CD - (3.11)

f f f

These simple formulas give a shear velocity and a stress layer which grow almost linearly with the

wind intensity, with a depth almost a constant fraction of the inverse of the Scorer parameter.

However, results from the non-linear model (section 2) show that the the shear velocity and

the stress layer grow almost linearly with the wind intensity when the wind is weak; their growth

is slower than linear at a higher wind speed. The quantification of this result is rather sensitive to

the turbulence scheme used.

4 Atmospheric Response to a Roughness Changes

The atmospheric response to a general surface roughness change is given by:

U-(X. Z) + 1o + 12 = 2o - P.{ dkGo(k)wo(k, z)F(k) + J dkGj (k)u,, (k, z)F(k)7r
ko

+ dkGo(k)wo(k, z)F(k) with t = -_ - lh (.1)
I I pU 1h U 1h

Where ir is thn amplitude of the perturbation of the vertical velority. Here

Go(k) IG 2(k) _k and Gi(k)- IG(k) _k (4.2)

.o(k) -/(k - k2 )(12 - k2) p I (k) \/(k2 - k)(I2 - k2)

The U,,o(k, z) waves are trapped around the top of the stress layer:

u'(k. z) {Hc(- - h)exp(-p,(z - h)) + [He(z) - He(z - h)]exp(- 0,,(h - z))

7 m* m mm m J - . . .



-JHe(z)exp(-p.(z +h))} cos(kx) (4.3)

In eq. (4.3) the first and the second term give waves which are trapped over and below the top of

the stress layer, respectively. Since these waves have their maximun amplitude at the top of the

stress layer, they may have a role in triggering cumulus convection, even if their amplitude decay s

exponentially with distance; the third term is the wave reflected from the ground, (see Appendix).

The w,, (k, z) waves propagate away from the top of the stress layer:

U!,(k, z) = {He(z - h) sin(pM1(z - h) + kzz) + IHe(z) - He(z - h)] sin(p1 (h - z) + kx)

-He(z) sin(p1 (z + h) + kx)} (4.4)

In eq. (4.4) the first term is the wave which propagates upward, the second term is the wave which

propagates downward, and the third term is the wave reflected from the ground, (see Appendix).

We assume the following vai 'r environment parameters (when the atmosphere is stratified):
N= 10-2 sec-1, U = 10i Ms-1, ti = 20 cm s-1, and f = 10-4 s-', then we have!1 = 10' 772 1 ,

k =10-- m-1 , h = 300 mn; and N = I = 0.0 when the environment is non-stratified.

4.1 Resonant amplification due to periodicity, (case (2))

Wlicn tbe surface roughness is periodic (eq. (3.7)) the vertical velocity is given by:

w(x,z) = i G(~~(,z G~~~(.z}(4.5)

Where G0 (a) = 22 2 and GI(a) = 2 2 2(4.6)

with w0,(a,z) = fHe(z - h)exp(-po(z - h)) + (He(z) - He(z - h)]exp(-P,(h - z))

-He(z)exp(-po(z +h))1 cos(ox) (i

In wth 1 1 .(a, z) = He(z - h) sin(pi (z - hi) + ax) + [Ile(z) - H e(z - h)] sin(p1 (h - z) + ax)

-Hc(z)sin(p1 (z + h) + ))(.)



I=o a2 and II = or 12_ko2
ko= k~a 2  an -iik2

The amplitude G(a) of the trapped wave and the amplitude GI(a) of the propagating wave are

amplified by resonance when a = 1, i.e. G,(a I 1) - oo and GI(a 1 1) - oo. When the wave

number a of the rough patch distribution approaches the ambient Scorer parameter 1, the maximum

enhancement of the vertical velocity occurs.

There is a resonance also at a = ko, but this resonance is canceled by infinitely rapid oscillations

(a - 1) - o, or by infinitely strong trapping, po(a -- 1) - oc.

4.2 Vertical velocity excited by a bell shaped stress, (case (ii))

In this section we study the vertical velocity induced by a rough patch, in relation to its horizontal

extension. The bell shape distribution is ideal for this kind of analysis, as shown by Queney (1947)

and by Smith (1979) for the vertical velocity induced by a bell shape mountain. For a bell-shaped

distributed stress case (ii), from eq. (4.1) the vertical velocity is given by:

w(z =/) o +I+ + ' = P {jdkG (k)w (kz) a exp(-ak)

+] dkG1 (k)w, (k, z) a exp(-ak) + 1 dkGo(k)wo(k, Z) a exp(-ak) (4.9)

Fig.3a shows the atmospheric response to a bell shape horizontal distribution of the stress with

a = 8 kmn. (la = 8). Fig.4a shows the atmospheric response to a bell shape horizontal distribution

of the stress with a = 1 kin, (la = 1). The general features, for standard values of wind velocity

and atmospheric stratification, are that the vertical wave number equals the Scorer parameter 1.

the horizontal extension of the perturbation is of the order of the width a, and the propagating

wave dominates the trapped wave.

Let us examine in more detail the atmospheric response for different widths a.

Some useful approximations

(a) - If'hc- koa I or larger, I,, >> I, + I,,, and the wave is trapped

Due to the exponential decay of the Fourier transform of the bell function for increasing values

of the wave number, when the rough patch is very very large (i.e. when the horizontal scalc is
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comparable to the size of the inertia] wave), the contributions of the second and third integrals are

negligible in comparison to the contribution of the first integral:

w(z, z) ".Z Io, = I-V dkGo(k)w.°(k, z) a exp(-ak)

ID=(a + z - h)' -
k e(z-h) [(a + z - h)2 + 2 + [He(z) - He(z - h)] [(a + h - z) 2 + X2]2

k t (a+z~h) 2 -z 2 ] [(} h-z) 1

-H (a- + z + h)- r" with =o : kad Go(k) = k. (4.10)

[+ z + h) 2 + X2]2 IJZ

Which is a trapped wave. The vertical velocity monotonically decreases with altitude above the

stress layer, and its structure does not depend explicitly on stabilty parameters (although h may

depend on them), as in the Ekman solution.

(b) - When la >> 1 (but koa < 1), 11 >> I,, + Io, and the wave is hydrostatic

The trapped wave contribution is negligible in comparison to the contribution of the propagating

hyd: -,tatic w;a c:

'(X Z) I, = 11, dkGj(k)wm1(k,z) a exp(-ak)

a

[a2 + x21 {He(z - h) [a sin(A(z - h)) + x cos(A(z - h))] + [He(z) - He(z - h)]

[asin(A(h - z)) + zcos(A(h - z))) - He(z) [asin(A(z + h)) + xcos(\(z + h))]} (4.11)

with p =1; GI(k)= 1 and A =: \ - k

When the atmosphere is stratified and the rough patch is large (with no abrupt roughness tran-

sitions), the vertical velocity has a hydrostatic wave structure with a vertical wave number equal

to the Scorer parameter (corrected because of inertia) and a horizontal scale comparable with the

width of the rough patch. Fig.3b shows the hydrostatic waves for la = 8, (eq. (4.4)), and how well

this form approximates the full solution, (eq. (4.9)), shown in Fig.3a.

(c) - When la = 0(1), I,, << I, + Io2, and the wave is non-hydrostatic
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When the atmosphere is stratified, but the rough patch is small, the inertial effect is negligible:

w(x, z) I,01 + I,, = fv { dkGl(k)w,1 (k, z) a exp(-ka)

+ jdkG0 (k)wo(k, z) a exp(-ka) (4.12)

The propagating wave is non-hydrostatic, with a wave number equal to the Scorer parameter:

I, = ii" la exp(-la)- {He(z - h) [sin(I(z - h)) J0 (l( z - z + h)) + cos(l(z - h)) H(I(x - z + h))]

+ [He(z) - He(z - h)] [sin(/(h - z)) J,(I(x + z - h)) + cos(I(h - z)) Ho(l(x + z - h))]

-lH(z) [sin(l(z + h)) J,(l(z - z - h)) + cos(/(z + h)) Ho(l(z - z - h))])

with p1=l-k and G(k)= I -

The near field contribution of the trapped wave comes from large wave numbers and could be

written in terms of the incomplete 1 functions, but a good simple approximation is:

I = e exp(-la) He(z- h)r a(a + z- h) a(a + h - z)
+ [H(s) - He(z - h)2 +(a + h - z) 2 + x2

~i' exp(-Ia) L a ( + I)2+ + zx La ]h_)}

a(a +zt+ h) = k and Go(k) 1

The perturbation is confined in space, in a region above the rough patch at an altitude equal to

the depth of the stress layer.

Since the far field contribution of the trapped wave comes from wave numbers close to the

Scorer parameter, the trapped wave contribution is:
7r

=- la exp(-Ia)- No(Ix) {lH(z - h)exp(-I(z - h)) + [He(z) - He(z - h)]exp(-I(h - z))
2

-Hle(z)exp(-l(z + h)) with u'o I and G(k) = }
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The far field contribution of the trapped wave decays exponentially with the distance from the top

of the stress layer, therefore interferes with the propagating wave only at z ; h, where the trapped

wave cancels the propagating wave upstream and strengthens the propagating wave downstream

(the Neumann function is even, while the Struve function is odd, with the same asymptotic absolute

value), producing a wake of secondary cells downstream at the level of the top of the stress layer.

Jo, 11 and N, are the zero order Bessel, Struve and Neumann functions, respectively, with the

usual convention that even function of negative argument equals the function of the absolute value

of the argument, and that an odd function of negative argument equals the negative of the function

of the absolute value of the argument.

Summarising, when the atmosphere is stratified and the rough patch is small, the vertical

velocity has a wave structure with a horizontal and a vertical wave number equal to the Scorer

parameter, with an exponentially decreasing amplitude for a decreasing width of the rough patch.

Fig.4b shows the non-hydrostatic wave for la = 1 and how well approximates the full solution,

(eq. (4.9)), shown in Fig.4a.

(d) - Wlhen la << 1 (but exp(-koa) 1), >> I> , + I., and the flow is irrotatio,'al

When the stratification is weak, 1 is small, and the contribution of the first and the second

intoi rals in eq. (4.9) can be neglected, only the third integral coitibutes. Through the use of

knowledge that the vertical scale of the perturbation equals the depth of stress layer, we simply

u a(a+z-h) a(a+h- z)
1's)I2 = {Hc(z -h) [(aHezh--z)2 -r-h)]]

[(a + Zh) 2 + x] [(a + h)-He)2z+hx]

a(a +z+ h) with k and t'G 0 (k) = - (4.13)-He(z( + z + h) 2 + Z2] I Ul" "

Ti e vertical velocity monotonically decreases with altitude above the stress layer. Fig.3c shows the

tr;pped waves for I = 0.0 and a = 8 km, (eq. (4.13)). The trapped wave (non-stratified atmosphrce)

!iwri in Fig.3c considerably differs from the propagating wave (stratified atmosphere) showni in
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4.3 Vertical velocity excited by a top hat stress, case (iii)

In this section we study the vertical velocity induced by a rough patch of finite horizontal extension,

with very sharp transitions between the smooth and the rough region and viceversa ((iii) in eq.

3.9), this is equivalent to problem solved by Lira (1943) for the flow over a step function mountain.

From eq. (4.1) the vertical velocity is given by:

w(X, z) = 2 {k- dkFo(k)G(k) + I dkF,(k)G,(k) + dkF(k)Go(k) (4.14)
7r 0

where

F0tk) = sin(ka)w.o(k,z ) = sin(k(x + a)) - sin(k(z - a)) {He(z - h)exp(-o(z - h))
k 2k

+ [He(z) - He(z - h)]exp(-io(h - z)) - Re(z)exp(-puo(z + h))} (4.15)

sin(ka)1
F, ik) = k ( , {He(z - h)[cos(p(z - h) + k( - .)) - cos([,(z - h) + k(z + a))]

+ [He(z) - He(z - h)] [cos(pi(h - z) + k(x - a)) - cos(u,(h - z) + k(x + a))]

-H(z)[cos(p,,(z + h) + k(z - a)) - cos(p,(z + h) + k(x + a))]} (4.16)

From eq. (4.15) and eq. (4.16) we see that the wave at the upstream transition and at the

dowistream transition are of the same nature, but with an opposite sign. Furthermore, when

21a = 0(1), the wave at the upstream transition (from smooth to rough, z = -a) interferes

destructively with the wave at the downstream transition (from rough to smooth, x = a); and

when 21a << 1 the perburbation becomes negligible, because destructive interference.

The resulting vertical velocity, above the abrupt transition between the smooth and the rough

surface (Fig.5a), is given by:

w(z) + 01 + I,,,1 = 2f1, kodkF'(k)Go(k) + dkF(k)G(k)

+ F dkF'(k)Go(k)} (4.17)
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where

F'(k) 2 sin(k(z + a)) {He(z - h)exp(-tio(z - h)) + [He(z) - He(z - h)]exp(-po(h - z))
2k

-He(z)exp(-,u0 (z + h))} (4.18)

1
F'(k) = -- k {He(z - h)cos(pl(z - h) + k(x + a)) + [He(z) - He(z - h)1cos(pI(h - z) + k(x + a))

-He(z)cos(p(z + h) + k(x + a))) (4.19)

From Fig.6a, we deduce that, when the transition between the smooth and the rough surface

is abrupt, the wave is non-hydrostatic with a horizontal and a vertical wave number equal to the

Scorer parameter. Since the horizontal scale of the inertial wave is much larger than the inverse of

the Scorer parameter, inertia is negligible.

Some useful approximations

(a) lW'avc in a stratified atmosphere, I,, << I, + I,

The contribution of the first integral in eq. (4.17) is negligible:

u.(X.z) ; I, + i2= LW {jdk'(k)Gi(k) + dkF'(k)Go(k)} I +10 (4.20)
7rI OII=

Ti. propagating wave is non-hydrostatic, with structure similar to a lee mountain wave:

1= - {Hc(z - h) [sin(I(z - h)) H(I(x + a - z + h)) - cos(l(z - h)) J0 (1(x + a - z + h))]
2

+ [11(z) - IIHc(z - h)] [sin(l(h - z)) H0 (I(x + a 4- z - h)) - cos(l(h - z)) Jo(l(z + a 4 z - h))]

-I c(z) [sin(I(z + h)) H,(l(x + a - z - h)) - cos(I(z + h)) J0 (l(x + a - z - h)@

G 1 (k) 1
Pi1 = =-k and k

The near field contribution of the trapped wave is:

,f'{ - + a + _He(z)ta _ _ +
4, - [He(z)- He(z-h) ] tan- ' - H(z)tan-

r z -h h Z z+h
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with juo = k and Go(k)=1

The trapped wave contribution is confined above the smooth-rough transition zone, within an h

distance from the top of the stress layer.

In the far field, the trapped wave contribution is:

102 = - sign(x + a) Jo(l(.- + a)) {He(z - h) exp(-l(z - h))

+ [He(z) - He(z - h))]exp(-(h - z)) - HE(z)exp(-(z + h))}

Since the far field contribution comes from wave numbers close to the Scorer parameter. we have

assumed:

po = l and G(k) l
k 0 1 2

The trapped wave, in the far field, decays exponentially with the distance from the top of the

stress layer, therefore interferes with the propagating wave only when z h, where the trapped

wave cancels the propagating wave upstream and strengthens the propagating wave downstream,

producing a wake of secondary cells downstream at the level of the top of the stress layer.

Fig.5b shows how well (4.20) approximates the upstream transition shown in Fig.5a.

(I,) TrTmpped wave in a non-stratified atmosphere, 102 >> Io + I,

When the atmosphere is non-stratified, most of the contribution comes from the third intergral

in eq. (4.17) and a good approximation of at the abrupt transition between the smooth and the

rough surface is:

2 
x

W(X, Z) 2 = u { He(z - h) tan- -+ + [He(z) - He(z - h)] tan-'

aHe(z)tan_1 x + with uo = k and fviGo(k) = . (4.21)z+h

Fig.5c. shows the trapped wave.

15



4.4 Waves in a two layers atmosphere

The wave emerging from the stress layer is matched with the wave in the free atmosphere using

the boundary value Green function defined in the Appendix.

(a) Wave in the free atmosphere, generated in a non-stratified stress layer

When the stress layer is non-stratified, ' = 0, and 1 $ 0 in the free atmosphere, the vertical

velocity is:

W(X, z) -- He(z - h)
7rU

{ h h[sin(1(x + a)) - sin((z - h))] - (z + a - z + h)[(1 + hl) cos(l(x + a)) - cos(l(z - h))]
(z+a- z+h)2

+h(x+a)( + a)2 + (z - h)2 - 2h(z- h)

[(x + a)2 + (z - h)]

u .2 1_z_+ a z + a
- - tan (4.22)

iUt~ h-z hjz(+ h

Fig.6 shows the trasmitted wave.

(b) l'arc ducted within the surface layer

When the stress layer has a Scorer parameter ', with 1' >> I ; 0, where I is the Scorer

parameter of the free atmosphere, the wave is ducted between the ground and the top of the stress

layer. The vertical velocity is:

x + a x + a
O(.z) - ne(z-h) tan-' + [He(z) - H e(z - h)] ta n - h' _- - He(z) tan- +7"z - h h zz

0

+-jHe(z - h) exp(-l(z - h)) 1 [sin(2ml'h) Ho(l'(x + a - 2mh))
m'n=O

- cos(2ml'h) Jo(l'(x + a - 2mh)) - sin(2(m + 1)l'h) Ho(l'(x + a - 2(m + 1)h)

+ cos(2(m + 1)l'h) J0 (l'(z + a - 2(m + 1)h)]

16



00

+' [He(z) - He(z - h)] 1: [sin(l'((2m + 1)h - z)) H1(l'(z + a + z - (2m + 1)h))
2 M=0

- cos(l'((2m + 1)h - z)) Jo(l'(z + a + z - (2m + 1)h))

- cos(l'((2m + 1)h - z)) Jo(I'(x + a + z - (2m + 1)h))

+ cos(/'(z + (2m + 1)h)) J0 (l'(x + a - z - (2m + 1)h))] (4.23)

The trapped wave contributes only near the smooth-rough transition, because its amplitude de-

cays very rapidly with the number ( reflections m. The wave is fully reflected from the ground.

penetrates in the non-stratified free atmosphere a ' 1 distance, and then bounces back towards

the ground. Summarising when the stratification in the stress layer is much larger than the one in

the above free atmosphere, the wave is ducted between the ground and the top of the stress layer.

Fig.7 shows the wave ducted within the stress layer.

5 Subgrid-Scale Parameterization

It section 4.1 we have shown that resonant amplification can occur when the distribution of the

surface stress is periodic. However it is more realistic to assume that the flow encounters a suddeni

change of surface roughness. followed by smooth patches alternated with rough patches:
h) (z h

'r,..(X(Z)h Z(-)'He(x n a)(5]
t=O

Fig.8 shows the resulting vertical velocity for differen, value of the product la, obtained using eq.

(4.20). Results shown in Fig.8 contradicts the resonance expected for a periodic surface stress

(sction 4.1). In fact when la = 0(1) destructive interference starts to take place between thl:

vertical velocity induced by the different patches.

In a subgrid parameterization of the effect of surface roughness in numerical models, we call

say that if the rough patches are small in comparison to the inverse of the Scorer parameter.

the perturbations interfere distructively and therefore need not be explicitly resolved, but can be

averaged beforehand. If the horizontal scale of the rough patches is equal or larger than tiLe inverse

of the ambient Scorer parameter, the vertical velocity perturbation needs to be resolved explicitly

or parameterized through the the use of the theory presented in this paper.

17



6 Conclusions

We have shown that a horizontal change in surface roughness can induce substantial vertical velocity.

The vertical velocity can be in the form of a propagating waves, which can penetrate deeply into

the atmosphere. The vertical velocity can be in the form of trapped waves as well. In this case

the perturbation can be physically relevant, since the maximum is placed at the top of the stress

layer, i.e. in the region where it is inportant to have positive vertical velocities in order to trigger

cumulus convection. The nature of this perturbations depends on the enviromental parameter and

the horizontal destribution of the surface roughness. In general the vertical wave number is closely

related to the ambient Scorer parameter. The horizontal scale of the perturbation equals the scale

of the surface roughness whe'n the transition is smooth. For abrupt changes in surface roughness

the horizontal scale of the perturbation equals the inverse of the ambient Scorer parameter.

When the horizontal distribution of the rough patches is periodic, resonance amplification can

occur when their wave number approaches the value of the ambient Scorer parameter.
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7 Appendix

The forced solution of eq. (3.1) is:

Wforcd~ , )= ( k d ' i-h pk (z - z')) cos(kx) ( __________(k,_z _

U'o7ced(r) = tdk z
0

+jdkjdzsin(I1(k) (z- z'))cos(kx)G 2 (k)f,:(k,z')
+ d 'o(k) pU

ko 0

+ / dk / dz'sinh(po(k) (z - z'))cos(kx) G2(k)f,,(k, z') (7.1)
1 -pkp11 0
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Hovever the first and the third term do not satisfy to the trapped wave condition, and the second

term does not satisfy to the radiation condition (Sommerfelf, 1912-48). In order to have meaningful

solutions, which satisfy to the physical and to the boundary constraints, we have to add a number

of free modes.

Using Green function theory, we seek for the solutions, §7o(k,z - z') and §1(k,z - z'), to the

governing equation (3.1) for a point source forcing b(z', z'). If &0(k, z- z') and §1(k, :- z') satisfy to

the boundary condition, and ,(k, z - z') satisfies to the trapped wave condition, while §1 (k, z - z')

satisfies to the radiation condition, the total solution for a given forcing is:

Wf orcd(,Z) = dz§ (k, z - z') (k) kz')
0 0

z,)__2_k)___(kz_ G 2 (k) f~z(k. z')

+Jdk dz'§i(kz- ) ) A') (k, z - z') pU (7.2)
ko 0 1 0

7.1 Propagating waves and radiation condition

The Green function (the response to a point source (z',z')) for the upward propagating wave,

which satisfy to the radiation condition, is:

rip(k, z2- z') = H( sin( 1l(k) (z - z'))cos(kx) + cos(pi(k) (z - z'))sin(kx)

z')sin(p l (k) (z - z') + kz)

1 pi(k)

The second term in eq. (7.3) is the added free mode.

Remark For verification, we derive the boundary value Green function, §BC (k, z):

lc(kz) =-lim (- §-p(k,z - :')) = 2cos(pl(k)z + kx) (7.4)Z'.., 0 ~TZ z'=O 7

u'ich is the Green function for radiative wave in the mountain problem.

'I he downward propagating wave is:

d,,,,(k, z - z') = 2 [He(z) - He(z - z')] sin(pl(k ) (z' - z) + kx) (7.5)
19(k)
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and the wave reflected form the ground is:

2 He(z)sin(pI(k) (z + z') + kx) (7.6)
gr) ,r k(k)(7.)

The resulting Green function in the propagating wave region is:

I(k, z - z') = ,,p(k,,z - z') + §do,,,(k, z - z') - §,,f(k,z - z') (7.7)

7.2 Trapped waves

The Green function for the upward trapped wave is:

§.p(k, z - z') = 2He(z - z')sinh(p °(k) (z - z')) - cosh(ji 0 (k) (z - z')) cos(kx) (7.8)
-Hr - z) p(k)

= 2He(z -z,)exp(-po(k) (z - z')) cos(kz)
r -p(k)

The second term in eq. (7.8) is the added free mode.

Remark For verification, we derive the boundary value Green function, §Bc(k, z):

92
B0 l(k, z) = -lim ,,p(k,z - z') = 2exp(-po(k) (z - z'))cos(kz) (7.9

Z'-O dz'

uhich is thc Green function for the trapped wave in the mountain problem.

Th downward trapped wave is:

gdo,,(k, z - z') = [H(z) - He(z - z')] exp(- p °,(k) (z' - z)) cos(kx) (7.10)r po( k)

and the wave reflected form the ground is:

(k,Z - z') =-2 He(z) exp(-p.(k) (z + z')) cos(kx) (7.11)
) = H )(k)

The resulting Green function in the trapped wave region is:

Oo(k,z - z') = §.p(k, z - z') + don. (k,z - z') - §r f(k,,Z - z') (7.12)
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List of Figures

Figure 1. Contours of vertical veklccity induced by a sudden change of surface roughness as simu-

lated by a non-linear numerical model.

(U = 5m s- 1 and 1 = 10' m 1 )

Figure 2. Contours of vertical velocity induced by a sudden change of surface roughness as simu-

lated by a non-linear numerical model.

(U = 10 M s-1 and I= 10' rn- ')

Figure 3a. Vertical velocity induced by a bell shaped surface stress in a stratified atmosphere.

((, =8km, U= 10n s-1 and 1= 10' m ')

Figure 3b. Approximate solution.

(a = 8km. U = 10 m s-1 and 1= 10- 3 n- 1 )

Figure 3c. Approximate solution in a non-stratified atmosphere.

(a = 8 kn, U = 10n s- 1 and I = 0.0 m -1)

Figure 4a. Vertical velocity induced by a bell shaped surface stress in a stratified atmosphere.

(I a = 1 km U = 10 n s- 1 and I= 10- 3 m - 1)

I igu re 4b. Approximate solution.

ta = 1 km. U = 10m s 1 andI= 10-3 1n- 1)

Figure 5a. Vertical velocity induced by sudden change of surface stress in a stratified atmosphere.

(U, = 10m s-1 and 1 = 10- 3 m')

Figure 5b. Approximate solution in a stratified atmosphere.

(U = 10 m s- and 1 = 10- 3 m - )

Figure 5c. Approximate solution in a non-stratified atmosphere.

(U = 10"s -1 and I=0.0rm- 1)

Fig ure 6. Waves in a stratified free atmosphere, generated in a non-stratified stress layer.

24



(U = lO s -1 , I = 10- 3 m- and P=0.0m-1 )

Figure 7. Waves ducted within a stratified stress layer, capped by a weakly stratified free atmo-

sphere.

(U = 10 M s-l , I = 0.0 m- 1 and 1' = 10- 3 m - 1)

Figure 8. Vertical velocity induced by sudden change of surface stress followed by smooth patches

alternated with rough patches.

(a = 0.5,1,2,4,8 km, U = 10 m s- 1 and I = 10' m- ')
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pg.... and #..refere to the integrals tables by Gradshteyn and Ryzhik

8 Derivation of the Approximations

Bell shape stress

(a) - Wiheni k~a -I or larger, I,0, > >1I + 1027 anid the wave is trapped

The contributions of the second and third integrals are negligible in comparison to the coitri-

hut ion of the first integral contribution:

W(z' Z) ;: 'ffl10j dkG,(k)tw,,(k, z) a exp(-ak)

=iija He(z h) 2(a+-h ) 2  1( +h2z2}

Fl e~z - h) (a + zh)'-x 2 '~ with Po, = k and G,(k) k+k,, [(J[ a + z -+ 2]2 k,

Which is a trapped wave.

pg 490 # 3.94.4.12 *~*** *****************

(b) - 117a ?i la > 1 (but k~a < 1), 1, > > 01 + I,,,. and the wave is hydroqtatz'c

The third integral does not contributes, because the exponential decay of the Fourier transform

of the bell ..

W(X' Z) 2 ,o dkGi (k)u!,,(k, z) a exp(-ak) =I,

11 =tv aJHe(z -h)jdk sin((z -h) + k)exp(-ak) +.

a
t ia2 + x

2j He(z -h) [asin(A(z-h)zosAzh))] + - -

with u = 1; G 1(k) =1 and A = P1--k.2
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pg 477 # 3.893.1 *********************************************************

(c) - When la = 0(1), I,, << 1 + ',2, and the wave is non-hydrostaticIz
uw(z, z) I, + 102 = tD dkai(k)w1 (k, z) a exp(-ka) + dkGa(k)wo(k, z) a exp(-ka)

11 = Ji dkG(k)w,, (k,z) a exp(-ka) z: z a exp(-/a)0 dkGi(k)wu (k,z)

zi- a exp(-la)Hc(z - h) [sin(l(z - h))jd IAcos(_ -  h))

+ cos(I(z - h))i sin(k(zj- z + h))]

77

=i" la exp(-la)He(z - h)- [sin(/(z - h)) Jo(l(x - z ,,) + cos(l(z - h)) lto(l(x- z + h))) .

with pl =1-k and GI(k)-

'02 = tlJ dkGo(k)wo(k,z) a exp(-ka)

in the near field, large wave numbers.... '02 can be written in terms of incomplete F functions:

I, = zii la {Hc(z- h) [Ir(Ol(a + z- h + i))+ Ir(o,1(a+ z- h - ix))] +

with p = k; and G.(k) =

pg 4S9 # 3.941.4 *****************************************************
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which, through the use of the average value theorem, I, can be written as....

'02 = w a exp(-Ia)He(z - h) dkexp(-k(a + z - h))cos(kz) + ...

[( a + z - h)-)+z 2 ] + ' ' " with po=k and Go(k)= 1

in the far field, wave numbers close to I ......

'02 = fl a exp(-(a + z - h))0 dk -!kx) + ...

= - l Ia -A' 0(I :z He(- - h) exp(-l(a + z - h)) +.-
2

po = 1 and Go(k) 1
2

pg 419 # 3.753.1 # 3.753.2 # 3.753.3 # 3.753.4

pg 477 # 3.893.2 **************************************************

(dI - lfhen la << I (but exp(--koa) -z 1), I, >> I,, + I,, and the flow is irrotational

We assume I = 0.0. then....

Xr.) 
1

, + '02 = i " dkGj(k)w,,(kz) a exp(-ak) + tik dkGo(k)wO,,(k.z) a exp(-ak)

Most of the contribution of I, comes for k ;: ko, but this contribution is canceled by very rapid

oscillations, Ih 0.0.

The far field the contribution of the trapped wave I.2 comes for k : k., but this contribution

is canceled by very strong trapping. Therefore ......

'02 = fk dkGo(k)wo(k, z) a exp(-ak)

U H(z-h) (0,(a + z -h + x)kl) + Fr(0,(a +z - h - ix)k) +..
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with 1Lo = k; tJGo(k) = U 1 and k, = (2)ko

pg 489 # 3.941.4 ********************************************************

The Fs are incomplete r functions. However, through the use of the average value theorem and

since the vertical scale of the perturbation equals the depth of stress layer and because the near

field the contribution of the trapped wave comes for k >> ko, then .......

UU.

1', - a- He(z - h) foodk cos(k) exp(- (a + z - h)k) + -..

=-H(zh) a(a+z-h) wh u=k andI - [(a+z-h)2+ ]+ X) a

pg 477 # 3.893.2 *********************************************************

Step function stress

(a) Wave in a stratified atmosphere, I,, << I, + I02

W(X' Z) 2. 11 +Jf" dkF'(kG'k 0dkF,,k)G,,k'1

11 +'0~= - 1J~Jo~J '

1 = 2He(z - h) sin(l(z - h)) I n - kh

t~ 1 Vos( k( z +h)

- cos((z - h)) Idk s( - zd +h) +.-.

-He(z - h) [sin(/(z - h)) Ho(l(x + a - z + h)) - cos(I(z - h)) Jo(I(x + a - z + h))j +
2

G1(k)

pk=l-k and k -

in the near field, large wave numbers... '02 can be written in terms of r functions....

'l {He(z - h) [1((: - h) + i(x + h))r(-1,l((z - h) + i(x + h)))
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2 [(z - h)- i(z + h)]r(-1,1((z - h) + i(z + h))] + ...

7r = e(z - h)

{1~((z - h) + i(z + h))F(-i, i((z - h) + i(x + h)))

2 1z- h) - i(z + h))(-1, i((z - h) + i(z + h)]+ -

with o = k; and Go(k) = -

pg 4S9 # 3.94-4.2 *************************************************

which can be approximate to ......

Io2 =- We(z - h)tan- 1 2 + a

p 0 = k and Gojk) =I

Pg 4S9 # 3.941.1 *

in thc far field, wave numbers close to I ......

I,2 = .i-Ie(z - h) dkexp(-k(z - h))sin(k(x +1a ) ) --.

i,
=- 2sign(x + a) Jo((r + a))He(z - h)exp(l(z - h))...

and p, = 1 and G(k) I
k v- 1-2

pg 419 # 3.753.1 # 3.753.2 # 3.753.3 # 3.753.4
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(b) Trapped wave in a non-stratified atmosphere, I,, > >1I, + I,

W(X,~~ Z) 1000' dkF,,(k)G,0 (k)

u*2 2 Hez-h) 0 sin(k(xT + a)) ep-~ )
-2U 4f.0- d k ep-~ ,

- He(z -h) tan -x++ -

7rU .2

with Io=k and tv-G 0,(k) = 7J

p- 489 # 3.941 .1

Waves in a two layers atmosphere

(a) Wave in the free atmosphere, generated in a non-stratified stress layer

Matching of the solution emerging from the stress laver into the free atmosphere we have a

trasnilicd mode and a trapped mode:

W(X, Z) ;Z I, +'0

U.2k coska) (- - h) + kx) [I - exp(-2hk)] + --

and ................

V .2(00 si n(ka)
L2 - e2  - h) dk cos(kz)exp(pM0(z - h))1[1 - exp(-2hk)] + --

I expand the exponential in the reflected mode (emerging from the stress layer)........

furthermore ....we have:

sin(ka ) o(,(-h)+kx) = sin(k(a + z- z+h) +l(z -h)) -sin(k(a- x+ z -h) -l(z -h))
k 2k
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and ................

sin(ka)cos(kx) = -[sin(k(a + x)) - sin(k(a - x)]k 2

in the two above eq.s the second term is the downstream mode, which we neglect.. then the

trasmitted mode at the upstream transition is:
u .2 10

1= - h He(z - h) dk(1 - hk)sin(k(a + x - z + h) + I(z - h)) +...

then the trapped mode at the upstream transition is:
u.2 0

0

1o2 =- h He(z- h) dk(1 - hk)sin(k(a + x)exp(k(z - h)) +...

a n d ..........................

I + I2 = -- He(z - h)
ir U!

fh[sin(l(x + a)) - sin(l(z - h))] - (z + a - z + h)[(1 + hl) cos(l(z + a)) - cos(l(z - h))]
(z + a - z + h) 2

+h(x + a) + a ) ' + (z - h)2 - 2h(z - h) }

g 127 #. :3S9 Stand. Math. Tables *

,; .;7 # 3.893.1 **********************************************

pg 490 # 3.944.11 **********************************************

(b) I'a c ducted within the surface layer

P'3 - The trapped mode in the stress layer is trapped in the free atmosphere as well.

3 1 - The modes ducted within the stress layer are shifted by 2h at each reflection: the mode

reflected by the ground is shifted by 2h at each reflection, the mode returning from the top of the

stress layer is shifted by 2h at each reflection .....

[H# 'z) - He(z - h)]I'd, = 2[He(z) - He(z - h)]
2
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sin(l((2m + )h - z)) Idksin(k(x - ((2m + 1)h - z)))
IJo

cos(/((2m + 1)h - z))JIdkCoS(k(x - ((2m +J1)h - z)))]

[Hc(z) - He(z - h)]] = -- [He(z) - -h)]

sin(l((2m +1+z))IA s in ( k ( x - ((2m + 1)h + z)))

+1)h++)h

- cos(/((2m + 1)h + z))dkcos((x ((2m_ + ) h + z)))

m =0,1,2,3... pl = l -k and Gl(k) _ 1

2 ' - The propagating mode in the stress layer ( 3""), computed at z=h, is matched with trapped

in the free atmosphere:

Matching of the modes emerging from the stress layer with the trapped mode in the fre,

t niosphvre-

Hc(z - h)[I,,(z = h) + =(z h)] exp(-I(z - h))

= 0, 1, 2, 3... 1
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