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Abstract

A systematic evaluation of vertical vclocities associated with stratified atmospheric flows
over non-homogeneous terraiis appatent!y has not been reported in the literature. In this study
we approach the problem numerically and analytically. Through a non-linear mcdel we evaluate
the range of the parameters for validity of the linear theory. Through simple analytical theory
we estimate the role played by the relevant parameters.

Results indicate that, when the transition in surface roughness is gradual between a smooth
and a rough surface, the perturbation of the vertical velocity has the same horizontal scale as
the perturbing source. The nature of the perturbation depends on the product between the
horizontal scale of the rough patch and the Scorer parameter of the ambient atmosphere: i.c.
very small values of this product (weakly stratified atmosphere) gives a wave trapped around

the top of the stress layer, while values of the order of unity give a non-hydrostatic gravity

wave which propagates away from the top of the stress layer. Values larger than unity veld a

propagating hydrostatic wave.
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» When the transition in surface roughness is abrupt, the wave is nonhydrostatic with a hor-
izontal and vertical wave number equal to the ambient Scorer parameter. When the product
between the horizontal width of the rough patch and the Scorer parameter is large, there is
no significant interference between the wave upstream and the wave downstream of the rough
patch; the two waves are of the same nature and an.plitude, but opposite sign. When this prod-
uct is small, however, the wave upstream interferes destructively with the wave downstrear |
i.e. the amplitude of the resulting wave is accordingly reduced.

When the surface roughness is periodic, resonant amplification occurs when the horizontal
wave number of the perturbaticn approaches the ambient Scorer parameter.

Since the depth of updraft well exceeds the height of the internal boundary layer, this process
can be important in triggering cumulius clouds and may have an impact on the dispersion of

pollutants.

1 Introduction

Wlon an air mass approaches a regior where there is a substantial increase in surface roughness,
we expect a decrease of the air speed in the lower layer and the development of ascent associated
with the resultant horizontal convergence. Such situations are typical, for example, in coaxtal
urban areas when onshore flow occurs. However, it may also be of significance in inland urbun
arcas. because of the contrast with surrounding agricultural rural areas or when there is a contrast
between prairie and wooded areas. The developed vertical velocities may trigger, under supportive
svnoptic conditions, convective clouds. The features of the induced vertical velocity may also have
an importance in dispersing pollutants.

In this paper we approach the problem of the vertica! velocity which arises because of horizontal
inliomogenities in the surface shearing stress in the atmospheric planetary boundary layer. This
study is an extension in more general terms of a previous paper (Dalu et al. 1988), where we report
on the waves generated by change in surface roughness.

Numerous studies have been carried out evaluating the impact of a sudden change in the surface
roughness on horizontal flow features in a neutrally stratified boundary layer, focusing mainly on
the modification of the flow within the surface layer. In addition, considerable attention has been

given to evaluate the growth of thermal and aerodynamics internal boundary layers. Hunt and
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Simpson (1982) provide an excellent review of the studies reported by that time. Additional studies
reporting on the impact of a sudden change in the surface roughness on the horizontal flow are
given by Pedergrass and Arya (1984).

“verall, however, no systematic attention has been given in the evaluation of the features of
the vertical velocities generated in a stable stratified flow when the air crosses a change in the
surface roughness (CSR). Wagner (1966) reported on the structure of the vertical velocity induced
by a CSR as computed through a numerical model. However, he neglected to discuss the vertical
extensions of the updraft and its wave characteristics, because of his upper boundary condition: in
fact he required the vertical velocity to be zero and the flow to be in geostrophic balance at 1000
meters above the ground.

Claussen (1986) computed, using a model simulation, the vertical velocity due to a CSR. How-
ever, the computed vertical velocity was, in general, very sensitive to the horizontal grid resolution.
which should be reduced, in many occasions, to several hundred meters in order to appropriate!y
resolve the related vertical velocity.

Using a very coarse horizontal resolution, Vukovich and Dunn (1978) in their numerical modecl
simulation of the St. Louis urban area, suggested that the surface roughness has only a small effect
on the circulation for the wind speeds used in their study. Alestalo et al. (1985), using a hydro-tatic
two-dimensional model with a grid interval of 4 km simulated the airflow in the Baltic shore region of
Finland, and found a maximum for the vertical velocity of order of 1 cm s~1, due to the CSR. They
attributed the reported increase of precipitation in that area, in the absence of thermal forcing. to
t..o vertical velocity induced by the CSR. Pielke (1974) evaluated the magnitude of vertical velociiy
caused by a CSR over Florida using a 11 km horizontal resolution model. Although the magi.itudes
were small (= 0.1 ecm s7!), it was concluded that shallow warm rain cloud over the southcast
coast of Florida could be due to this mechanism. Finally, Roelofizen et al. (1986) presented a
stcady state model calculation of secondary flow patterns forced by a CSR. Adopting a neutral
boundary laver and using a refined grid resolution, they suggest that frictional effects involved with
a CSP at a coast line, can lead to a secondary circulation on the mesoscale. They suggest that this
forcing is a factor in the observed coastal frontogenesis active in the early fall along the coast of

the Netherlands.
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The present study presents a systematic analytical and numerical evaluation of CSR impact
in a stably stratified air mass, for an one-lavered atmosphere and in a two-layered atmosphere,
on the generation of vertical velocities and their characteristics as dependent on key parameters
including the wind speed, the thermal stratification of the lower atmosphere, and the magnitude
of the shearing stress.

The results of this study are confirmed by the general mesoscale features observed during the
Amazon Boundary Layer Experiment ABLE 2B (Garstang et al, 1990). However, the present
theory should be extented to include the diabatic sources, in order to explain the ABLE 2B results

in a more quantitive way.

2 Waves Generated by a CSR as Simulated by a Numerical Model

Here we present some results concerning the vertical velocity induced by a sudden change in terrain
surface roughness, as simulated by a numerical model. For the simulation we use the non-hydrostatic
version on an f-plane of the CSU Regional Atmospheric Meteorological Model RAMS (Tremback
e et al, 19....777). The ambient flow is perpendicular to the CSR, and the atmosphere is stable

stratified. We assuine a sudden change of roughness z, = 1 m, and a flow intensity of U = 5 m s™!

1

and U7 = 10 m s~1. We show the results after a few hours of simulation, i.e. when the system

1 are shown in

evolves to an almost steady state. Results for an ambient flow of I’ = 5 m s~
Fig.i and for an ambient flow of U = 10 m s7! in Fig.2. The results in Fig.1 and in Fig.2 show
that substantial vertical velocities can be induced by a sudden change of surface roughness and
that the perturbation is of a wave nature (since the atmosphere is stratified) with a wave length
and intensity which doubles for a doubling of the wind intensity. This response suggests a linear
hehavior.

The non-linear behavior is apparently confined to within the stress layer, which in the numericai
rmodel is parameterized according a turbulent kinectic energy TRE scheme (Deadorf, 1980). As
a cosequense, the depth of the stress layer and the shear velocity do not respond linearly to the
variations of the flow intensity.

However, from the simulations completed with the nonlinear model, we found that for AUJU <

2 with the largest perturbation near the surface, i.e. the relative perturbation of the horizontal




velocity is less than 20% (similar results have been found by Claussen, 1987). Thus we deduce
that the response in the atmosphere above the stiess layer is linear and that the non-linearities are
confined to the turbulence within the stress layer.

We proceed in investigating the nature of the perturbation through linear analytical theory, in
order to find simple relations between the behavior shown in Fig.1 and in Fig.2 and the ambient
parameters. In the following theoretical study, we assume the depth and the intensity of the stress,

which can be obtained through observations or turbulence theory.

3 The Governing Equation for the Linear Problem

If we assume that the process is stationary, two-dimensional and Boussinesq, then the primitive
equations in linear form can be reduced to a Scorer type equation for the vertical velocity in

non-homogeneous form:

= (3.1)

(I_Cz__—kg-) Wy, + (1%~ K)w = % = uz
The linearization is justified by fact that the non-linear numerical simulations have shown that the
perturbations are small in comparison to the intensity of the ambient wind, see section (2). For
a derivation of equation (3.1), see Eliassen (1977). The hat denotes the Fourier transform of the
variable, k is the horizontal wave number, k, = f/U is the inertial wave number, ( f i< the Coriolis

parameter, U is the ambient flow perpendicular to the change in surface roughness, and (/; is it-

sliear), 7 is the resulting shear stress, u* is the shear velocity, and [ is the Scorer parameter (Scorer.

1953):
N U ab
T2 — - Z Wi 2= — 3.2
l 02 U with N 3 (3.2)

where N is the Brunt-Véijséila frequency and b is the buoyancy of the environmer.. Equation (3.1)

can rewritten as:

-2

b,. + V3(k)E = GA(k) 22 = G (k) =2 (3.3)
pU
, 12 - k2 k?
with v¥(k) = k’k2 s and G*(k) - ey




In the wave number region where v?(k) < 0, the waves are trapped around the perturbing source

within an e—folding vertical distance equal to u!. The vertical wave number py, for the trapped

waves is:
[12 _ k2
o(k) = [iv(k)] = IHV ] when 0< |k| <k, orwhen I<Jk|< oo (3.4)

In the wave number region where v2(k) > 0, the waves propagate away from the perturbing source
with a vertical wave number equal to g;. The vertical wave number g, for the propagating waves
is:

2 _ k2
I‘l(k) = l/(k) =k ;2_—_16-2— when &, < Ikl <. {3.5)

3.1 The Stress and the Shear Velocity

For simplicity, we assume that the stress has the same direction and opposes the ambient flow.
Furthermore, since the stress is assumed to decay linearly with altitude within the stress layer (this
simple choice is suggested by the results of the numerical simulations; i.e. see section (2)):

r(z,2) =71, He(h-2)" ==

F(z) (3.6

where 7, is the surface shear stress, F(z) is its horizontal distribution, and He is the Heaviside
function. We study the atmospheric response
to a periodic horizontal distribution of the stress:

Tz = k) T8z —h)x

case (1) 7..(z,z)= W cos(az) = 7,.(k,z) = %, ——Q—é(k - a) (3.7)
to a bell shape horizontal distribution of the stress:
.. 7,6(z = h) a? . N r.6(z—h)ra N
case (11) T..(z,2)= e prarpe = Fp.(k,2) = —Ez——Texp(—-ak), (3.8)
and to a top hat horizontal distribution of the stress:
- o6(z = h)sin(k
case  (11i) T(z,2) = ————-—To&(;z h) [He(z + a) — He(z — a)) = T..(k,2) = T (h2 )sm(k n).(3.9)

Here & is the Dirac function. The tilde denotes the cosine Fourier transform:

F(k) = /Ox dz F(z)cos(kz)




The relation between the stress 7, the wind intensity U, the surface drag Cp, and the shear
velocity u” is given by (Panofsky and Dutton, 1984):
T CpU with Cp= (i)z =0 (—-i—> (3.10)
v pU v (Inz/z,)?
Here x is the von Karmann constant and z, is the surface roughness. The order of magnitude of

the depth of the stress layer is (Blackadar and Tenneks, 1968):

u® lu* N
h=~03— sothat [h=0.3 =03Cp— (3.11)
f f f

These simple formulas give a shear velocity and a stress layer which grow almost linearly with the

wind intensity, with a depth almost a constant fraction of the inverse of the Scorer parameter.
However, results from the non-linear model (section 2) show that the the shear velocity and

the stress layer grow almost linearly with the wind intensity when the wind is weak; their growth

is slower than linear at a higher wind speed. The quantification of this result is rather sensitive to

the turbulence scheme used.

4  Atmospheric Response to a Roughness Changes

The atmospheric response to a general surface roughness change is given by:

N {
w(r.z)=Io + I+ I,y = -27% / dkGo(k)w,, (k, 2)F(k) + / dkG1(k)wy, (k, z)E(k)
0 ko

2
To 1

+/de,,(k)w,.o(k,z)F(k)} with © = —— = ul_ (4.1)
1

-
=

pL' Lh

Where w is the amplitude of the perturbation of the vertical velority. Here

IG?(k) Ik IG*(k) _ Ik

= = = 2
b - e o W=y T e Y

Go(k) = -
The w, (k,z) waves are trapped around the top of the stress layer:

wolk.z) = {He(z = hYexp(—po(z = h)) + [He(z) — He(z — h)]exp(~po(h - z))




—He(z)exp(~po(z + h))} cos(kz) (1.3)

In eq. (4.3) the first and the second term give waves which are trapped over and below the top of
the stress layer, respectively. Since these waves have their maximun amplitude at the top of the
stress layer, they may have a role in triggering cumulus convection, even if their amplitude decays
exponentially with distance; the third term is the wave reflected from the ground, (see Appendix).

The w,, (k, z) waves propagate away from the top of the stress layer:

wy,(k,z) = {He(z — h)sin(ui1(z - h) + kz) + [He(z) — He(z — h)]sin(p1(h — 2) + kz)

—He(z)sin(p1(z 4 k) + kz)} (4.4)

In eq. (4.4) the first term is the wave which propagates upward, the second term is the wave which

propagates downward, and the third term is the wave reflected from the ground, (see Appendix).
We assume the following val» fr environment parameters (when the atmosphere is stratified):

N=10"2sec' ,U=10m s, u"=20em s~!,and f = 10~4 s~!, then we have l = 10-3 m~!,

k. =10"*m~!, h = 300 m; and N = = 0.0 when the environment is non-stratified.

4.1 Resonant amplification due to periodicity, (case (1))
Wlhien the surface roughness is periodic (eq. (3.7)) the vertical velocity is given by:
w(z,z) = ©{Go(a)u, (a,2z) +Gi(a)uw,,(a,z)} (4.5)

la la

Ji—an@oay M OO =rommrmay WY

Where Go(a) =

with wo(a,z) = — {He(z — h)exp(—po(z — h)) + [He(z) — He(z — h)]exp(~po(h - 2))

—He(z)exp(~po(z + h))} cos(az) (1.7)

and with  w, (a,z) = {He(z — h)sin(py(z — h) + az) + [He(z) ~ He(z - h)]sin(uy(h - =) + a1)

~He(z)sin(py(z + h) + az)} (4.8




1?2 — o2 R

and m=oy =
2 _ o2 2 _ k2
k2 -a a? — k2

Ho = @

The amplitude G,(a) of the trapped wave and the amplitude G,(a) of the propagating wave are
amplified by resonance when a = {, i.e. Go(a — I) = o and G;(a — I) —» oo. When the wave
number a of the rough patch distribution approaches the ambient Scorer parameter I, the maximum
enhancement of the vertical velocity occurs. .

There is a resonance also at a = k,, but this resonance is canceled by infinitely rapid oscillations

pi1(a — 1) — oo, or by infinitely strong trapping, p,(a — ) — oc.

4.2 Vertical velocity excited by a bell shaped stress, (case (i1))

In this section we study the vertical velocity induced by a rough patch, in relation to its horizontal
extension. The bell shape distribution is ideal for this kind of analysis, as shown by Queney (1947)
and by Smith (1979) for the vertical velocity induced by a bell shape mountain. For a bell-shaped

distributed stress case (ii), from eq. (4.1) the vertical velocity is given by:

ko
w(z,z)=1, + L+ 1, = {/0 kG o(k)w, (k,z) a exp(—ak)

i oo
+/k dkG(k)w,, (k,z) a exp(—ak) +/l dkG,(k)yw, (k,z) a exp(—ak)} (4.9)

Fig.3a shows the atmospheric response to a bell shape horizontal distribution of the stress with
« =8 km, (la = 8). Fig.4a shows the atmospheric response to a bell shape horizontal distribution
of the stress with a = 1 km, (la = 1). The general features, for standard values of wind velocity
and atmospheric stratification, are that the vertical wave number equals the Scorer parameter [,
the horizontal extension of the perturbation is of the order of the width a, and the propagating
wave domirates the trapped wave.

et us examine in more detail the atmospheric response for different widths a.
Some useful approximations
(a) - When k,a = 1 or larger, I,, >> I + I,,, and the wave is trapped

Due to the exponential decay of the Fourier transform of the bell function for increasing values

of the wave number, when the rough patch is very very large (i.e. when the horizontal scalc is




comparable to the size of the inertial wave), the contributions of the second and third integrals are

negligible in comparison to the contribution of the first integral:

w(z,z)= I, = u'z/ dkGo(k)w,, (k,2) a exp(—ak)
0

— (a+2—-h)?- (a+h—-2)? -2
= O {He( h)[(a+z—h)2 ]2+[He(z — He(z h)][a+h—z)2+z2]2
(a+z+h)? - . _ _k
~He(z )[(a+z+h)2+.r2] } with p, =k and G,(k) = i (4.10)

Which is a trapped wave. The vertical velocity monotonically decreases with altitude above the
stress layer, and its structure does not depend explicitly on stabilty parameters (although h may
depend on them), as in the Ekman solution.
(b) - Whenla >> 1 (but koa < 1), I >> I,, + I,,, and the wave is hydrostatic

The trapped wave contribution is negligible in comparison to the contribution of the propagating

hvdrmstatic wave:

w(z,z) = I = 12'/ dkGy(k)wy, (k,z) a exp(—ak)
0

[0_2*'—7] {He(z — h)[asin(A(z = h)) + zcos(A(z — h))] 4+ [He(z) - He(z — h)]

lasin(A(h — 2)) + zcos(A(h — 2))]— He(z)[asin(A(z + h)) + z cos(A(z + h))]} (4.11)

with puy =10, Gyk)=1 and A=./1?-k2

Wlhen the atmosphere is stratified and the rough patch is large (with no abrupt roughness tran-
sitions), the vertical velocity has a hydrnstatic wave structure with a vertical wave number equal
to the Scorer parameter (corrected because of inertia) and a horizontal scale comparable with the
width of the rough patch. Fig.3b shows the hydrostatic waves for la = 8, (eq. (4.4)), and how well
this form approximates the full solution, (eq. (4.9)), shown in Fig.3a.

(c) - Whenla = O(1), I,, << I 4 I,,, and the wave s non-hydrostatic

10




When the atmosphere is stratified, but the rough patch is small, the inertial effect is negligible:

!
w(z,z2)= I, +1,, = tb{/ dkGi(k)w,, (k, z) a exp(~ka)
0

o0
+/ #Gdﬂthﬂaemb%Q} (4.12)
i
The propagating wave is non-hydrostatic, with a wave number equal to the Scorer parameter:

Iy =vla exp(—la)-g— {He(z = h)[sin(I(z = k)) Jo(l(z — z+ h)) + cos(I(z — h)) H,(I(z — z + R))]
+[He{z) — He(z — Rh)][sin(I(h — 2)) Jo(i(z + z — h)) + cos(I(h — 2)) H,(I(z + z — h))]

—He(z)[sin(l(z + h)) J,(I(z — z — h)) + cos(I(z + h)) H,(I(z - z — h))]}

i
VI2 k2

The near field contribution of the trapped wave comes from large wave numbers and could be

with puy=1-k and Gy(k)=

written in terms of the incomplete 1' functions, but a good simple approximation is:

_ a(a+z-h) ala+h - 2)
= @ exp(— - z) - z—h
L. = @ expl—ta) { He(z - WS T o [Hel) - He(a - ) 20225
ala+z+4+h)

—He(z) } with g, =k and G,k)=1

[(e + 24 h)?+ 27
The perturbation is confined in space, in a region above the rough patch at an altitude equal to
the depth of the stress layer.

Since the far field contribution of the trapped wave comes from wave numbers close to the

Scorer parameter, the trapped wave contribution is:

[.,=-ula exp(—-la)g— No(lz){He(z — h)exp(=l(z — h)) + [He(z) — He(z ~ h)]exp(=I(ft — =))

l
—He(z)exp(=l(z+ h)) with u, =1 and Go(k)z_\/k'z__l?}
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The far field contribution of the trapped wave decays exponentially with the distance from the top
of the stress layer, therefore interferes with the propagating wave only at z = h, where the trapped
wave cancels the propagating wave upstream and strengthens the propagating wave downstream
(the Neumann function is even, while the Struve function is odd, with the same asymptotic absolute
value), producing a wake of secondary cells downstream at the level of the top of the stress layer.

Jo, H, and N, are the zero order Bessel, Struve and Neumann functions, respectively, with the
usual convention that even function of negative argument equals the function of the absolute value
of the argument, and that an odd function of negative argument equals the negative of the function
of the absolute value of the argument.

Summarising, when the atmosphere is stratified and the rough patch is small, the vertical
velocity has a wave structure with a horizor;tal and a vertical wave number equal to the Scorer
parameter, with an exponeutially decreasing amplitude for a decreasing width of the rough patch.

Fig.4b shows the non-hydrostatic wave for la = 1 and how well approximates the full solution,
{eq. (1.9)), shown in Fig.4a.

(d) - When la << 1 (but exp(=koa) = 1), I,, >> I, + I, and the flow is irrotational

When the stratification is weak, [ is small, and the contribution of the first and the second
intecrals in eq. (4.9) can be neglected, only the third integral contibutes. Through the use of
knowledge that the vertical scale of the perturbation equals the depth of stress laver. we simply

llél\'(‘ﬁ

2
u* ala+ z - h) ala+ h-2)
rroyxl, = ——{He(z-h - He(z)— He(z-h
Rl = {“( Mavz g TR Hel = Wl
ala+ z + h) } , _ u’
— - g Ozk j k = 413)
He(z)[(a+z+h)2+12] with u and wG,(k) T (

The vertical velocity monotonically decreases with altitude above the stress layer. Fig.3c shows the
trapped waves for ! = 0.0 and a = 8 km, (eq. (4.13)). The trapped wave (non-stratified atmosphere)
<hown in Fig.3c considerably differs from the propagating wave (stratified atmosphere) shown in

Fie.3a.b.
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4.3 Vertical velocity excited by a top hat stress, case (ii1)

In this section we study the vertical velocity induced by a rough patch of finite horizontal extension,
with very sharp transitions between the smooth and the rough region and viceversa ((iii) in eq.
3.9), this is equivalent to problem solved by Lira (1943) for the flow over a step function mountain.

From eq. (4.1) the vertical velocity is given by:

w(z,z) = 3} {/Ok dkFo(k)Go(k)+/k: dkFy(K)Gy (k) + /lm dkFo(k)Go(k)} (4.14)
where
k) = sinLka)w“o(k‘z) _ sin(k(z + a))Q-ksin(k(z =) (et — By exp( (s — )
+[He(z) — He(z — h)]exp(~p,(h — z)) — He(z)exp(~po(z + h))} (4.15)
Filk) = Sin(kka)wm(k,z) - 2% (He(z — h)cos(u(z — h) + k(z — 1)) — cos(ps(z — h) + k(z + a))]

+({He(z) — He(z — h)][cos(p1(h — 2) + k(z — a)) = cos(uy(h — 2) + k(z + a))]

—He(z)[cos(pui(z + h) + k(z — a)) — cos(p1(z + h) + k(z + a))]} (4.16)

Froni eq. (4.15) and eq. (4.16) we see that the wave at the upstream transition and at the
downstream transition are of the same nature, but with an opposite sign. Furthermore, when
2la = O(1), the wave at the upstream transition (from smooth to rough, z = -a) interferes
destructively with the wave at the downstream transition (from rough to smooth, z = a); and
when 2la << 1 the perburbation becomes negligible, because destructive interference.

The resulting vertical velocity, above the abrupt transition between the smooth and the rough

surface (Fig.5a), is given by:

T ko !
wz,z)= I, + I + I,, = %ri {/O dkF!(K)Go(k) +/k dkF!(K)Gy (k)

+ /‘°o dkF;(k)Go(k)} (4.17)
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where

sin(k(z + a))

Fi(k) = ok

{He(z - h)exp(—p,(z — h)) + [He(z) — He(z — h)exp(—po.(h — 2))
—He(z)exp(—po(z + h))} (4.18)
Fl(k) = _§l—k {He(z — h)cos(uy(z — h) + k(z + a)) + [He(2) — He(z — h)]cos(pr(h — 2) + k(z + a))

—He(z)cos(uy(z + h) + k(z + a))} (4.19)

From Fig.6a, we deduce that, when the transition between the smooth and the rough surface
is abrupt, the wave is non-hydrostatic with a horizontal and a vertical wave number equal to the
Scorer parameter. Since the horizontal scale of the inertial wave is much larger thzn the inverse of
the Scorer parameter, inertia is negligible.

Some useful approximations
(a) Wave in a stratified atmosphere, I,, << I 4+ I,

The contribution of the first integral in eq. (4.17) is negligible:
2 § 0o ,
w(ir.zy=h+1,, = ?u {/ dkF{(k)G:1(k) +/ dkFo(k)GD(k)} =L+, (4.20)
0 ]
The propagating wave is non-hydrostatic, with structure similar to a lee mountain wave:

I = ;; {He(z - h)[sin(l(z = h)) H,(l(z + a — z 4+ h)) — cos({(z — h)) J,(I(x + a — z + }h))]
+ [He(z)~ He(z = h)][sin(l(h = 2)) Ho(I(z + a + z = h)) = cos(I(h - 2)) J,(I(z + a + z — h))]

—He(2)[sin(l(z+ h)) H,(I(z + a — z = h)) — cos({(z + h)) Jo(l(z + a — z = h))]}

Gik) 1
p,:l—k and k = 12—k2‘

The near field contribution of the trapped wave is:

-1Zta ‘1§+Z—He(z)tan']

z-h

I, = ”; {He(z — h)tan

NN
+ [+
he al I~
——

+ [He(z) — He(z — h)]tan

14




with g, =k and G,(k)=1

The trapped wave contribution is confined above the smooth-rough transition zone, within an h
distance from the top of the stress layer.

In the far field, the trapped wave contribution is:

I, = % sign(z +a) Jo(I(z + a)) {He(z — k) exp(=I(z — h))

+ [He(z) — He(z — h))]exp(~I(h = z)) — He(z)exp(—I(z + h))}

Since the far field contribution comes from wave numbers close to the Scorer parameter. we have

assumed:

GJ(k) 1
PRy

The trapped wave, in the far field, decays exponentially with the distance from the top of the

uo =1 and

stress layver, therefore interferés with the propagating wave only when z = h, where the trapped
wave cancels the propagating wave upstream and strengthens the propagating wave downstream,
producing a wake of secondary cells downstream at the level of the top of the stress laver.

Fig.5b shows how well (4.20) approximates the upstream transition shown in Fig.5a.
() Trapped wave in a non-stratified atmosphere, I, >> I,, + I

When the atmosphere is non-stratified, most of the contribution comes from the third intergral
in eq. (4.17) and a good approximation of at the abrupt transition between the smooth and the

rough surface is:

2

(r. VT < ¥ - -1zt - _ 1 2ta
w(z,2) w1, = o {He(z hytan 222 4 [He(2) - He(z - b)) tan
z+a v’
- -1 it =k 1G, (k) = 2 1.21
He(z)tan . +h} with g, and wG,(k) U ( )

Fig.5c. shows the trapped wave.
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4.4 Waves in a two layers atmosphere

The wave emerging from the stress layer is matched with the wave in the free atmosphere using
the boundary value Green function defined in the Appendix.
(a) Wave in the free atmosphere, generated in a non-stratified stress layer
When the stress layer is non-stratified, I’ = 0, and ! # 0 in the free atmosphere, the vertical
velocity is:
2

u.
FUHC(‘ - h)

w(z,2) =

{hh[sin(l(z +a)) —sin({(z — h))) = (z + a — 2+ R)[(1 + hl) cos(I(z + a)) — cos(I(z — h))]
(z4+a-z+h)?

+h(z+a)(:+a)2+(z—h)2—2h(z-h)}

[(z +a)? + (z = h)?]?

2

1‘_._ z) — - -lf_tg__ -11+a]} 4.22
+7rU{[He(‘) He(z h)][tan P tan T h (4.22)

Fig.6 shows the trasmitted wave,
(b) Ware ducted within the surface layer

When the stress laver has a Scorer parameter I/, with I/ >> { =~ 0, where [ is the Scorer
parameter of the free atmosphere, the wave is ducted between the ground and the top of the stress

laver. The vertical velocity is:

V| &

:-Q/
&2

w(zr.:

_ 1T+a _ _ -<12ta . _lz-{-a}
{He(z h)tan —-—-z_h+[He(z) He(z — h)]tan r— He(z)tan s

&

+%”6(= — h) exp(=1(z ~ h)) f: [sin(2ml'h) Ho(I'(z + a — 2mh))
m=0
= cos(2ml'h) Jo(I'(z + a — 2mh)) = sin(2(m + 1)'k) Ho('(z + a — 2(m + 1))

+ cos(2(m+ 1)l'h) J,(I'(z + a — 2(m + 1)h))
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+% [He(z) - He(z — b)) fj [sin(M'((2m + D)k — 2)) H,(I'(z + a 4+ 2z = (2m + 1)h))

m=0

~cos(I'((2m + 1)h - 2)) J,(I'(z + a + z = (2m + 1)h))
—cos(I'((2m + 1)h - 2)) J,(I'(z + a + z = (2m + 1)h))

+cos(l'(z + (2m + 1)h)) Jo(I'(z + a — 2 = (2m + 1)h))] (4.23)

The trapped wave contributes only near the smooth-rough transition, because its amplitude de-
cays very rapidly with the number «. reflections m. The wave is fully reflected from the ground.
penetrates in the non-stratified free atmosphere a I'~! distance, and then bounces back towards
the ground. Summarising when the stratification in the stress layer is much larger than the one in
the above free atmosphere, the wave is ducted between the ground and the top of the stress layer.

Fig.7 shows the wave ducted within the stress layer.

5 Subgrid-Scale Parameterization

In section 4.1 we have shown that resonant amplification can occur when the distribution of the
surface stress is periodic. However it is more realistic to assume that the flow encounters a sudden

change of surface roughuess. followed by smooth patches alternated with rough patches:

P4

—Q:—h—)i(—l)"ﬂe(:t—na) (5.1}

TZZ(Iv Z) = 706(,1

n=0

Fig.8 shows the resulting vertical velocity for differen' value of the product la, obtained using eq.
(4.20). Results shown in Fig.8 contradicts the resonance expected for a periodic surface stress
(section 4.1). In fact when la = O(1) destructive interference starts to take place between the
vertical velocity induced by the different patches.

In a subgrid parameterization of the effect of surface roughness in numerical models, we can
say that if the rough patches are small in comparison to the inverse of the Scorer parameter.
the perturbations interfere distructively and therefore need not be explicitly resolved, but can be
averaged beforehand. If the horizontal scale of the rough patches is equal or larger than tue inverse
of the ambient Scorer parameter, the vertical velocity perturbation needs to be resolved explicitly

or parameterized through the the use of the theory presented in this paper.
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6 Conclusions

We have shown that a horizontal change in surface roughness can induce substantial vertical velocity.
The vertical velocity can be in the form of a propagating waves, which can penctrate deeply into
the atmosphere. The vertical velocity can be in the form of trapped waves as well. In this case
the perturbation can be physically relevant, since the maximum is placed at the top of the stress
layer, i.e. in the region where it is inportant to have positive vertical velocities in order to trigger
cumulus convection. The nature of this perturbations depends on the enviromental parameter and
the horizontal destribution of the surface roughness. In general the vertical wave number is closely
related to the ambient Scorer parameter. The horizontal scale of the perturbation equals the scale
of the surface roughness when the transition is smooth. For abrupt changes in surface roughness
the horizontal scale of the perturbation equals the inverse of the ambient Scorer parameter.
When the horizontal distribution of the rough patches is periodic, resonance ampiification can
occur when their wave number approaches the value of the ambient Scorer parameter.
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7 Appendix

The forced solution of eq. (3.1) is:

k,
. o[ sinh(ualk) (2 = ) cos(ke) ( GHkNa(h.2)
u/orced(ro z) = ; {o/dk/Q dz ;:_,(k) ( plj )

+ /'dk]dz,sin(m(k) (z = 2')) cos(kz) GA(k)F.:(k, 2')
ko 1]

“o(k) PU
T o [ sinh(po(k) (z = 2))cos(kz) [ GX(K)#u(k. ') )
+/dk6/dz s (- e )} (7.1)
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However the first and the third term do not satisfy to the trapped wave condition, and the second
term does not satisfy to the radiation condition (Sommerfelf, 1912-48). In order to have meaningful
solutions, which satisfy to the physical and to the boundary constraints, we have to add a number
of free modes.

Using Green function theory, we seek for the solutions, §,(k,z — z’) and §(k,z — 2’), to the
governing equation (3.1) for a point source forcing 6(z’, z*). If §o(k,z—2") and §1(k, z — 2’) satisfyv to
the boundary condition, and §,(k, z - 2) satisfies to the trapped wave condition, while §,(k, z ~ =')

satisfies to the radiation condition, the total solution for a given forcing is:

uforced(-r 2 {/dk/dz/go(k z2—-2 )( Gz(k);zbzr(k < ))

! 2 2 201\e (1 o
+ [ ak [arinih,s - o SEEbE) /dk/nga(k,‘—J(—G—(—"—)p%;i‘—'—‘—)) (7.2)

7.1 Propagating waves and radiation condition

The Green function (the response to a point source §(z',2’)) for the upward propagating wave,

which satisfy to the radiation condition, is:

in{ z -2z 2) (= = ') sin(k
dup(kz — ') = gﬂe(z_zr)sm\#l(k)(~ 2')) cos(kz) + cos(u (k) ( ))sin(kr) (7.3)
T m(k)
2 sin(uy(k) (z - 2') + kz)
= —He(z -2
pielz=7) (k)
The second term in eq. (7.3) is the added free mode.
Remark For verification, we derive the boundary value Green function, Gpc(k, 2):
. ) 0 . , 2 -
Goc(k.z) = = lim { —gup(k. 2 - 2') = —cos(g (k)z + kz) (v.4)
2’ =0 02 7'=0 T
which 1s the Green function for radiative wave in the mountain problem.
The downward propagating wave is:
2 i K(Z-2)+k .
Gam(hoz = 2') = 2{He(z)  He(z - 2 ntatk) (2 = 2) + kz) (7.5)
T m(k)
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and the wave reflected form the ground is:

sin(pi(k) (z + 2') + k)
#1(k)

The resulting Green function in the propagating wave region is:

Greg(k, 2= 2"y = %He(z)

gl(kaz - z,) = gup(koz - 2’) + gdoum(kyz - zl) - grcl(kvz - zl)

7.2 Trapped waves

The Green function for the upward trapped wave is:

sinh(p,(k) (2 — 2)) — cosh(po(k) (z - 2'))
(k)

Guplk,z = 2") = %He(z - 2') cos(kr)

exp(—po(k) (z - 2'))
ﬂo(k)

The second term in eq. (7.8) is the added free mode.

= —%He(z - 2') cos(kz)

Remark For verification, we derive the boundary value Green function, §,.(k, z):

. .0 "o 2 '
Gk, z) = -zl'lino é-sgup(k,z -2y = ;r—exp(—uo(k) (z — 2'))cos(kz)

which is the Green function for the trapped wave in the mountain problem.
The downward trapped wave is:

exp(—p (k) (z' = 2))
polk)

Gaounlh,z = ) = ~ 2[He(2) - He(z - 2) cos(kz)

and the wave reflected form the ground is:

exp(—po(k) (z + 2))
Ko(k)

Gres(k,z = 2') = —%HC’(Z) cos(kz)

The resulting Green function in the trapped wave region is:

go(k~ z - z’) = gup(k'z - Z') + gdowﬂ(kvz - ‘7’) - gre](sz - z’)

20
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List of Figures

Figure 1. Contours of vertical velccity induced by a sudden change of surface roughness as simu-
lated by a non-linear numerical model.

(U=5ms~tandl=10"3m™1)

Figure 2. Contours of vertical velocity induced by a sudden change of surface roughness as simu-
lated by a nen-linear numerical model.

(U'=10ms ! and I = 1073 m™1)

Figure 3a. Vertical velocity induced by a bell shaped surface stress in a stratified atmosphere.
(¢ =8km,U=10m s Yand [ =103 m™")

Figure 3b. Approximate solution.

(¢ =8km.U=10ms'andl=10"3m"1)

Figure 3c. Approximate solution in a non-stratified atmosphere.

(a=8km,U=10ms 'andl=00m™1)

Figure 4a. Vertical velocity induced by a bell shaped surface stress in a stratified atmosphere.
(a=1km, U =10m s 'and =103 m")
Figure 4b. Approximate solution.

(a=1km, U=10ms 'andl=10"3m™1)

Figure 5a. Vertical velocity induced by sudden change of surface stress in a stratified atmosphere.
(I"'=10ms !and!=10"3m™1)

Figure 5b. Approximate solution in a stratified atmosphere.

(U'=10ms Yandl=10"3m™!)

Figure 5¢. Approximate solution in a non-stratified atmosphere.

(U =10ms ' and = 0.0m™ 1)

Figure 6. Waves in a stratified free atmosphere, generated in a non-stratified stress layer.
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(U=10ms ', 1=10"3mand ' =0.0m™})

Figure 7. Waves ducted within a stratified stress layer, capped by a weakly stratified free atmo-

sphere.

(U=10ms ', 1=00mand I'=10"3m™")
Figure 8. Vertical velocity induced by sudden change of surface stress followed by smooth patches

alternated with rough patches.

(a =0.5,1,2,4,8km, U =10ms~'and I =10"3m™?)
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pg.---- and #.. .. refere to the integrals tables by Gradshteyn and Ryzhik

8 Derivation of the Approximations
Bell shape stress
(a) - When koa = 1 or larger, I,, >> I, + I,,, and the wave is trapped

The contributions of the second and third integrals are negligible in comparison to the coutri-

bution of the first integral contribution:

w(z,2) ~ w/ dkGo(k)w,, (K, z) @ exp(—ak)
0

_a 2(a+z-h)? 1
—w—{ He(z - h -
uko{ e(z )[(a+z—h)2+z2]2 [(a+z—h)2+~’r2]}+
2 — Rh)? — 2 k
= T H(z—h)( hY -2 | with p, =k and Go(k)= -
k, (a+z-h2+27) &

Which is a trapped wave.

pe 4()0 # 3 944 12 KRRk Rk xRk Rk bk kbR k Rk h bk k kb dk Rk kR kKK ¥

(b) - Whenla >> 1 (butkja< 1), I >> 1, + I,,. and the wave is hydrostatic
The third integral does not contributes, because the exponentia! decay of the Fourier transform

of the bell...

w(z,z2) = w /m dkG,(k)uw,, (k,z) a exp(—ak) = I
0
I, = @ a He(z - h)/ dksin(A(z — h) + kz)exp(—ak) +
1]

—————He(z - h)[asin(A(z = h)) + zcos(A(z - h))] +

#u

[a z?]

with =1, Gi(k)=1 and X= /12 - k?
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pg 477 #:3.893J.tt**tt#***#*‘******##tt##ti#*#**##*t*#‘tt#*##‘#*#**#*##tt

(c) - Whenla = O(1), I,, << I) + I,,, and the wave is non-hydrostatic

{
wiz,2)x Iy +1,, = {/0 kG (k)w,, (k, z) a exp(—ka) +fdeo(k)w“o(k,z) a exp(—ka)}

L I Iy I I I

I !
L = ﬁ‘/ dkG(k)w,, (k,2) a exp(—ka) = w a exp(—la)/ dkG(k)w,, (k,2)
0 0

! -z
& a exp(~la)He(z — h) [sin(l(z - h))/o dkms(':(/;___g h))

sin(k(z - z + h))] .

!
+ cos(l(z - h))/O dk N/

=« la exp(—la)He(z — h)g [sin(i(z = h)) Jo(l(z = z = i.,) + cos(i(z = h)) Ho(l(z — z+ R))] 4 - --
l

with uy =1l-k and Gi(k) = ﬁ;

A I I I I I Il T I I I T

I, = a~/ dkG,(k)u,,(k, 2) a exp(—ka)
{
in the near field, large wave numbers.... J,, can be written in terms of incomplete I' functions:

I,, =t¢la {He(:— h) [%F(O,I(a+: -h+iz))+ -21-F(0,l(a+ z—h- iI))} + e
. l
with p,=k; and Gy(k) = z

Pg 489 # 3941A$t‘t#‘t#tt‘tt##‘.‘#t*t#t#“ttttt#t#“tttt‘tt#*#“*#tt‘#‘#t
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which, through the use of the average value theorem, I,, can be written as....

L, = B a exp(—la)He(z — h)/m dk exp(~k(a + z — h))cos(kz) + - --
0

a(la+ z-h)

1 o=k ok =1
[(a+z—h)2+:r2]+ with pu and G,(k)

= wHe(z — h)

in the far field, wave numbers close to { ......

cos(kz)

QO
I,,=wa exp(—l(a+z—h))[ dk._lcm+...
= —dla 12‘1\1,(1;\ He(z— h) expl—I(a+ 2 —h))+ ---

l

po=l and Go(k)':—-l;-:-l—z

pg 419 # 3.753.1 # 3.753.2 # 3.753.3 # 3.753.4

PE ATT # 3.803.2 #HEA Rk d A A KXRKXRERRRRRRRRRRRRRARRERERRRRRRRES
g . .

(d; - When la << 1 (but exp(-k,a) = 1), I, >> I,, + I, and the flow is irrotational

\We assume ! = 0.0. then....

ko [
wirz =1+ 1, = 11'/ dkGy(k)wy, (k. ) @ exp(—ak) + u/ dkG (k). (k. z) a exp(—ak)
0 k

Most of the contribution of I} comes for k = k,, but this contribution is canceled by very rapid
oscillations, I; = 0.0.
The far field the contribution of the trapped wave I,, comes for k = k,, but this contribution

1s canceled by very strong trapping. Therefore......

L, = @ / ¥ dkGo(k)w, (k. z) a exp(—ak)
ky D ko

{He(z - h) [%I'(O,(a +z-h+1ir)k)+ %I‘(O,(a z—h—idz)k))| +---
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o2
with po = k; @6G,(k) = "U El?{ and ki = /(2)k,

pg 489 # 3 941 4 ARERFRREEREAERERRRRRR AR SRR RR R B XX RERRRER R Rh e R h R Rk kR Rk

The T's are incomplete I' functions. However, through the use of the average value theorem and
since the vertical scale of the perturbation equals the depth of stress layer and because the near

field the contribution of the trapped wave comes for k£ >> k,, then

«?

Loy = 5 a He(z - h)/o dk cos(kz) exp(~(a + z — B)k) + -+ -

2 2

u® ala+ z—-h) ) _ u"
= — - - 3 ozk o k =

% He{ h)[(a-f-z- ) + 22] + with u and wGo(k) U

pg 4‘—7 # 3 893 2 EXEERE RN EERRRE AR SRR R R R R AR R A F Xk Rk Rk bk ke bk kE kR kk
4 . .

Step function stress

(a) Ware in a stratified atmosphere, I,, << I1 + I,

2w ! (1. e (1.
w(z.)x i+, = 2 {/0 dkr,(k)c,(k)/l dkFo(k)Go(k)}

Kz =z + b))
N/

w2 . I sin(
h=SHe(z—h) [sm(l(z - h))/0 dk

- cos(l(z - h))/l eSSz 2 % "”] .
0

ViR
I = %He(: - R)[sin(i(z ~ h)) Ho(l(z + a = z + h)) — cos(I(z = b)) Jo(l(z + a = 2 + h))} + - -

G,(k 1
uy =1—+& and 1()=

k N/

in the near field. large wave numbers... I,, can be written in terms of I' functions....

I, = ; {He(z - h) [%z((: — k) +i(z + ROI(=1,1((z = h) + i(z + Rh)))
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_%z[(z — h)—i(z + R)(=1,0((z = h) + i(z + h))] 4
I, = ;r—He(z-— h)
{ Ez((z ~ k) +i(z + R)D(=1,1((z = h) + i(z + h)))
=5ll(z = k) = i(z + RL(-1,1((z = h) + i(z + h))]} + -

l
with p, =k; and G,(k) = %

pe 480 # 3,044, 0 FAEAERERKARRRRRREERAS AR RERRRRAER SRR IR R RS
g 43 . .z

which can be approximate to......

_E 3 ~1Z+a
1, _nHe(z h)tan P

Ho =k and Golk)=1

pg 489 # 39411 FER KRR ERE AR E AR R R R AR R R A AR KRR Rk kR kg Rk k%

in the far field, wave numbers close to / ......

&2 o sin(k(z + a))
fo = Gz =) [ dbenplokz - )7 ¢

= % sign(z + a) Jo(I(z + a))He(z — h)exp(i(z = h))---

Go(k) - l

and p,=1 and E T

pe 419 # 3.733.1 # 3.753.2 # 3.753.3 # 3.753.4
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(b) Trapped wave in a non-stratified atmosphere, I, >> I,, + I

w(z,2) ~ I, = 27“’ /0 dkF! ()G, (k)

o2

= ;U %He(z— h)[)wdkwexp(—k(z—h))+

2

u® a4+
7l_UHe(z h)tan .

a
h

-2

u

U

with p, =k and wG,(k)=

PE 489 # 3.041.1 FHHRRKRERA KRR KRRRRKEERRRRRARR SRS E LR AR Rt
e . .

Waves in a two layers atmosphere
(a) Wave in the free atmosphere, generated in a non-stratified stress layer
Matching of the solution emerging from the stress layer into the free atmosphere we have a

trasmitted mode and a trapped mode:

w(z,z)= I + I,

5“‘1’“’) cos(ur(z — h) + kz)[1 — exp(-2hk)] + ---

u’ !
=" He(- h)/ dk
[’ 0

T

‘:;{ He(z _ h) '/loo dkslnika) COS(kI)EXP(I‘o(Z - h)) [1 - exp(—Qhk)] +---

I,, =
I expand the exponential in the reflected mode (emerging from the stress layer) ...............
[1 - exp(=2hk)] = [1 - 1 + 2hk — 2(hk)? + ] = 2nk (1 - RE+ -0

furthermore........ we have:

sin(k(a+z-2+h)+1(z-h))-sin(k(a-—z+2-h)-1l(z-h))
2k

sin(ka)
k

cos(ui(z — h) + kz) =
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sin(ka)

cos(kz) = %[sin(k(a + z)) — sin(k(a - z))

in the two above eq.s the second term is the downstream mode, which we neglect.. then the

trasmitted mode at the upstream transition is:

u*’

T oxl

]
I h He(z—h)/ dk(1 = hk)sin(k(a + 2 — z + h) +1(z = h)) + - --
0

then the trapped mode at the upstream transition is:

2

I, =" h He(z - h)/w dk(1 = hk)sin(k(a + z)exp(k(z — b)) + - -
v 474 0

o2

u——,He(z —h)

hitle = 7l

{) hsin(l(z + a)) = sin({(z = k)] = (z + @ = z + R)[(1 + hl) cos(I(z + a)) — cos(I(z — h)))
l (t+a-2+h)?

+h(z+a)(:t+a)2+(z—h)2—2h(z—h)}

[(z +a)? + (2 — h)?]?

po 427 # Jgg Stand. hiath Tables LR 22 S R RS 2SS 2 2SR R D)

pe Ny # 3 893 1 EEXRRAKERERRRE SRR RERE R SRR KRR R R KRR R R

a5 . .

pg 400 # 3 911 11 XX RARRRR KRR R R AR R R AR R Rk kA kkrphr R kR e RE R
= . .

(b) Ware ducted within the surface layer

1°* - The trapped mode in the stress layer is trapped in the free atmosphere as well.

3"? . The modes ducted within the stress layer are shifted by 2k at each reflection: the mode
reflected by the ground is shifted by 2k at each reflection, the mode returning from the top of the

stress layer is shifted by 2h at each reflection.....

[H(2) - He(z = WiIGoun = & 2(He(2) - He(z - h)
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sin({((2m + 1)h - z))A‘ dksin(k(.r -—\(/(gni.;;zl)h - 2)))

cos(k(z — ((2m 4 1)k - 2)))
ViIZ - k2

{
— cos(I((2m + 1)h — z)) /0 dk

(He(z) - He(z - h)| I3, = -%%[He(z) — He(z - h)]

sin(I((2m + 1)h + z))/o‘ i Sin(k(z —\(/(;ni-;zl)h +2))

cos(k(z — ((2m + 1)h + 2)))

{
— cos(I((2m + 1)k + z))/0 dk

Viz - k2
_ _ G(k) _ 1
m=0,1,2,3--- uy=0l-k and : —\/1_2——_15"

2" . The propagating mode in the stress layer (3"¢), computed at z=h, is matched with trapped

in the free atmosphere:

Matching of the modes emerging from the stress layer with the trapped mode in the frec

atmaosphere:

He(z = h){Ifoun(z = k) + I7y(z = h)] exp(~I(z = h))

m=01,23 p, =1
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