: AD-A244 251 Lo B
MR @)

Report BCM-NS-CNS-91-002

A Study of Neuronal Properties, Synaptic Plasticity and Network Interactions
Using a Computer Reconstituted Neuronal Network Derived from Fundamental

Biophysical Principles
E’) TIC

r~'-':~

j JAN O 7 1332 %

David C. Tam 3 h.v 7
W B

Division of Neuroscience ,’._j

Baylor College of Medicine

1 Baylor Plaza

Houston, TX 77030

ﬁ;#s
Pibagi ;;

"13;

4

(713) 798-3134

E-mail address:
dtam@next-cns.neusc.becm.tmc.edu or
dtam@cephalo.neusc.bcm.tmc.edu

December 15, 1991

Semiannual Performance (Technical) Progress Report (June, 1991 - December, 1991)

Grant number: N00014-90-J-1353

'Y'
e Axum«-: has been approved

fu p zf‘ rzlease and sale; its
distzibs tica iy 1nmltod

Prepared for 91-19113
it ot K s Hm L

Biological Intelligence Program
800 North Quincy Street
Arlington, VA 22217-5000

Progress Summary

A standalone executable program of the neural simulator MacNeuron is
developed on the Macintosh Ilci and Quadra 900 computers. Two versions are
available: one runs on the Macintosh II series computer with the math coprocessor
installed, the other runs without the math coprocessor. The version with the math
The current

version (version 0.3 release) allows users to build a compartmental ne ‘on,

coprocessor executes faster than the one without the coprocessor.

simulate the generation of action potentials and record any variables for graphical
display. The variables include voltage, time and ionic concentration, etc. Each of
these variables can be plotted on the graphical charts.

A Tutorial Manual and a User's Guide Manual are written describing the
simulator, its run-time environment and a guide to use the neural simulator
program.

The current version of MacNeuron implemented the numerical algorithms
for driving the neural simulator. It also included the plotting routines for
displaying the simulation results. The current version uses a window-based user-
interface for building a network of neuron. The building process of the simulation
environment is provided by the menu-driven window user-interface environment.
An built-in text editor is provided within the simulation program for entering the

script-file in describing the run-time environment.

A patent has been filed on the neural network signal decoding technology.
The invention is "An Interspike Interval Decoding Neural Network." used to
decode the time interval between firing of neurons from a serial representation to a
parallel representation.

A new statistical multiple spike train analysis method has also been
developed. The novel technique uses a vectorial measure to detect correlation
between firing patterns of multiple neurons simultaneously. The new technique
enables detection of correlated firing pattern between any number of neurons, not

just limited by the conventional pair-wise correlation. o

1]

A new biological experimental setup is being set up currently to record from
multiple neurons simultaneously. The experimental results will be incorporated ~ |
with the simulation results to test the hypotheses. p‘_ A r2375'5-§
/-«vem;?.;.?:wes)
EAET R

Dist

A-1

S-\._ st
RIS

Specific Program Progress

Two major progresses are made in the neural simulation program. First, the
numerical stimulation algorithms of neurons composed of patches of membrane
(using the compartmental model) are implemented. The numerical integration
routines are main computational engine for solving the systems of differential
equations describing the biophysics of the ionic channels and receptors. Second, the
graphical plotting of the simulation results are implemented. Any variables
describing the simulation parameters can be plotted, thus providing visualization of
the simulation results.

(A) Numerical Simulation Environment

The numerical engine for driving the neural simulator is implemented. The
numerical integration algorithms used in this version is the conjugate gradient
Euler methods. The numerical algorithms are required to solve the system of
differential equations governing the dynamics of the ionic conductances, which is
the key components in the neural simulator. Since our programming design is
object-oriented, other numerical integration methods can be incorporated into our
simulation program easily. In fact, the user will be able to choose the specific
numerical methods at will when other numerical algorithms are implemented in
the program. This is the essential feature in our simulator that most other
simulators do not provide. Thus, it allows for flexibility for the user to choose
whether to maximize the speed or accuracy of the simulation runs. Starting and
stopping of simulation is done by a click of a "button”.

(B) Graphical Plotting Display of Simulation Results

In the current implementation, the user can choose any two variables pair in
the simulation and plot them graphically on a chart. Any variables used in the
simulation can be "observed", and subsequently plotted on a graph. This provides
flexibility to the user, so that the user can choose any variables, such as voltage, ionic
concentration, gating activation variables, conductance, time, etc. can be observed
during the simulation. To provide an intuitive approach to the user in selecting the
plotting variable, the user needs only to "drag" any variable from a window which
displays the list of parameter and "drop" that variable into the "observer" window
and the "plot" window for plotting. Plotting of the results is done by clicking the
"plot” button.

Thus, the current version of MacNeuron provides some basic building block
for constructing a neuron for simulation. The incorporation of voltage-dependent
conductance ionic gating channels on membranes for simulation and generation of
action potentials can be accomplished currently in the simulator. Voltage step
stimulation can also be accomplished for experimental manipulation.

Our future plan is to further improve the user-interface to provide more
intuitive approach to construct the simulation environment. Further efforts will be
put into incorporating the "macro" script-language into the simulator, so that all
iconic steps for constructing the simulation environment can be captured by the
macro script language automatically by the program, which can be saved into a file
for Iter use or modification.

Invention of Interspike Interval Decoding Neural Network

A neural network using pulse-coded signal for processing is developed to
decode interspike interval between the firing of action potentials in neurons. The
neural network uses time-delays and appropriate excitatory and inhibitory
connections for signal processing. With appropriate connections using a cascaded
time-delay (or time-shifting) scheme, the signals are able to propagate to different
neurons appropriately by the exact time interval for extracting the firing intervals.
This neural network represents the outputs in a two-dimensional topographical
map configuration, where the location of neurons which fire at the output layer
represents the firing interval being decoded. The network, thus, able to extract
serial-code into parallel-code. That is, it converts from serial representation of firing
interval to parallel representation of firing by the location of the activated neurons.

Invention of a New Statistical Method for Detecting Correlation of Firing between
any Large Nurnbers of Neurons

A novel statistical method is developed specifically for detecting the temporal
correlation among firing of neurons. The new techniques uses a vectorial measure
to represent the preceding and succeeding firing interval between any neurons. A
vector is used to represent this preceding and succeeding firing intervals, called
cross-intervals. Thus, this cross-interval vector represents the timing relationships
between the firings of any neurons. To compute the statistical average of the
population, the resultant vector, which is the vectorial sum of the population, can
be used to represent the present the timing relationship of all neurons relative to

the reference neuron. Thus, this vectorial measure is used to detect any
correlational relationship between any reference neuron and the rest of the
population.

Biological Experimental Preparation Setup

A new biological experimental setup is being set up currently to perform
experiments on biological neural preparation. The multi-electrode recording setup
will have at least 32 channels recording capability. The system is capable of
expanding to record from 256 channels simultaneously. Two types of electrodes will
be used. A 64-channel microelectrode photo-etched on transparent glass plate will
be used to record from neuronal cell culture. A neural network can be grown on
such electrode plate, which can then be recorded and stimulated simultaneously.
Since the electrode is also transparent, optical imaging recording can be done
simultaneously with the electrical recording. Such recording can be done in vitro
on cell culture or brain slice.

Another setup will also be used for recording in vivo. A multi-stranded
electrode bundle will be used to record from the cortices of animal implanted with
this electrode. Thus psychophysical experiments on learning and memory can be
done while recording from the activity of the neurons in the cortical network.

Patent Pending

Tam, D. C. (Dec., 1990) An Interspike Interval Decoding Neural Network. Serial
No. 07/630,463.

(1]

Publications by the Principal Investigator during 1990 and 1991

Tam, D. C. (1991) Signal processing in multi-threshold neurons. In: Single Neuron
Computation (T. McKenna, J. Davis, and S. F. Zornetzer, eds.) Academic
Press, San Diego. pp. 481-501.

Tam, D. C. (1991) Signal processing by multiplexing and demultiplexing in neurons.
In: Advances in Neural Information Processing Systems. (D. S. Touretzky,
ed.), Morgan Kaufmann Publishers, San Mateo, California. pp. 282-288.

Tam, D. C. (1991) A hybrid time-shifted neural network for analyzing biological
neuronal spike trains. Progress in Neural Networks (O. Omidvar, ed.)Vol. 2,
Ablex Publishing Corporation: Norwood, New Jersey. (in press)

Alkon, D. L., Vogl, T. P, Blackwell, K. T. and Tam, D. C. (1991) Memory function in
neural and artificial networks. In: Neural Network Models of Conditioning
and Action. (M. L. Commons, S. Grossberg, J. E. R. Staddon, eds.) pp. 1-11.
Lawrence Erlbaum Associates: Hillsdale, New Jersey.

Tam, D. C. (1990) Decoding of firing intervals in a temporal-coded spike train using
a topographically mapped neural network. Proceedings of the Internativnal
Joint Conference on Neural Networks, June, 1990. Vol. 3, pp. ll1-627-632.

Tam, D. C. (1990) Temporal-spatial coding transformation: Conversion of
frequency-code to place-code via a time-delayed neural network. Proceedings
of the International Joint Conference on Neural Networks (H. Caudill, eds.),
Jan., 1990. Vol. 1, pp. I-130-133.

Abstracts

Tam, D. C. and Kenyon, G. T. (1991) A vectorial statistical method for detecting
correlated firing patterns in neurons. Biophysical Society Abstract. (in press)

Kenyon, G. T. and Tam, D. C.(1991) An object-oriented paradigm for simulating
physiological processes in extended biological structures. Biophysical Society
Abstract. (in press)

Tam, D. C. and Kenyon, G. T. (1991) A novel vectorial measure for detecting
temporally correlated firing patterns in multiple spike trains. Society for
Neuroscience Abstract. Vol. 17, p. 125.

Boney, D. G., Feinswog, L.], Hutson, R. K., Kenyon, G. T. and Tam, D. C. (1991) An
object-oriented paradigm for simulating inter-connected neural systems.
Society for Neuroscience Abstract. Vol. 17, p. 126.

Tam, D. C. (1991) A vectorial statistical method for analyzing stochastic firing
patterns in large numbers of neurons in parallel. The Second Keck
Symposium on Computational Biology (in press)

Feinswog, L. J.,, Hutson, R. K,, Kenyon, G. T. and Tam, D. C. (1991) An object-
oriented paradigm for simulating neurophysiological processes. The Second
Keck Symposium on Computational Biology (in press)

Tam, D. C. (1990) Functional significance of bi-threshold firing of neurons. Society
for Neuroscience Abstract. Vol. 16, p. 1091.

Tam, D. C. (1990) Hebbian synapse and its relation to cross-correlation function in
associative conditioning learning. Eighth Annual Conference on Biomedical
Engineering Research in Houston. p. 5.

Tam, D. C. (1990) Visual-motor integration: What role does cerebellar cortical
neurons participate in movement control in monkeys? Eighth Annual
Conference on Biomedical Engineering Research in Houston. p. 39.

f—‘.—_—

MacNeuron (versiom 0.2.3) User's Cuide J

1. Startup MacNeuron program
The MacNeuron (version 0.2.3) program's icon looks like this:

!

MacNewonv0.2.3

Start executing (launching) the MacNeuron (version 0.2.3) program by selecting

i

MacNeuron v0.0.3

the program icon:

Launch the MacNeuron application program as usual in the Macintosh

environment by double-clicving on the icon or selecting the "Open..." menu-item
from the "File" menu.
2. Main MacNeuron Window
‘ When the program first starts looks like the following :
= File Edit Objects Macros Font Size Style Windows
(N Untitted =———-1)=

)

Show][Hide][mew..][Dupticate][Detete |

The program will startup with a "New" window called "Untitled". This is the
main window of the application. The name of this main window will change
when the file is saved, just like any other standard Macintosh program.

2.1. Resizing the Main MacNeuron Window Partitions

This main window contains two parts (or partitions). When the resize box at
the lower right corner of the window is enlarged, the second half (partition) of the
window will show up. The window will appear as follows:

oL

w File Edit Objects Macros Font Size Style Windows

e Untitled ==———————0]|

[show J[nide J[wew..][oupticate J[Detete |

Alternatively, one can hold-down the mouse button at the window-partition
divider (the shaded thick line between the two partitions) and "drag" the divider up
or down to change the size of the partition. Initially, the partition divider is at the
bottom of the window, but it can be dragged up to show the lower window partition.

2.2. Neuronal Network Description. User-Interface Window Partitions

The upper partition of this main window lists all the objects (neurons,
conductances, compartments, networks, etc..) currently in the simulation. The
upper portion of the window also provides a palette of tools for performing useful
operations on the listed items. For instance, selecting a particular neuron from the
list and then clicking the show button will cause the window for that neuron to be
displayed. There are also tools for hiding, deleting and duplicating any of the objects
in the list. Procedures for building the simulation will be described later in User’s
Guide.

2.3. Neuronal Simulation Language Description. Text-Window Partitions

The lower partition of the main window is the text window where the
simulation language is specified. A text-based language, called "macro”, can be used
to specify the simulation without recourse to the iconic user-interface. This allows
the simulation to be built in a "batch-mode" or hands-off modality.

This window is also a text-editor, where the macro language description can
be entered directly into the MacNeuron program. It is not necessary to exit the
MacNeuron application to write the description.

The details of the macro language syntax for specifying the run-time
environment will be given later in the User's Guide.

3. Main Menu Description

P
3.1. ¥ Apple Menu Description

File Edit Objects Macros Font Size Style Windows
About MacNeuron... Untitled e"eee—————03)

Pulling-down the @ Menu will show the "About MacNeuron..." as the first
item.

The "About MacNeuron..." will display the program logo as well as the
available memory space for the program to run at the bottom of the logo window.

MasNauren

Leveloped al:
Computational NeuroScience Lab
Division of Neuroscience
Baylor College of Medicine
Houston, TX 77030
(713)798-3134, (713)798-4979
cnslab@next-cns.neuscbem tme.edu

The MacNearan Taam:
David G. Boney, R. Kent Hutson, David C. Tam

(®)Copyrighted 1990
Copyright pemissionis granted fornon-commetical use only

providedthisnoticeisincluded inall subsequent copies
andcredits be given whenthis matenalis used orreferenced.

587612 bytes (5?73K) available.

T

3.1.1. Memory Space Available and Allocaticn

To find out how much memory is available at anytime while inside the
simulator environment, select the "About MacNeuron..." from the Apple Menu as
shown above. The memory available depends on the complexity of the neuronal
network specified and other run-time user-interface environments.

To increase or decrease the size of the memory allocation, quit the program.
Select the MacNeuron program icon under Finder, and select the "Get Info" menu-
item from the File Menu. An Info window similar to the one below will be
displayed.

Iinfo

Locked []
MacNeuron v0.2.3

Kind : application
Size: 388,536 bytes used, 380K on disk

Where : CNS_Development, ZFP 580 (SCS!
#0)

Created: Mon, Jun 24, 1991, 7:15 PM
Modified: Wed, Jun 26, 1991, 12:16 AM
Yersion: MacNeuron, Division of
Neuroscience, Baylor College of

version0.2.3

Suggested Memory Size (K): 1024

Application Memory Size (K): (4096

Change the size of the MacNeuron program by selecting the Application Memory
Size (K) box and edit the changes in Kilobytes.

3.2. File Merw Description

|- Edit Objects Macros Font Size Style Windows
Untitled eSSSD)0mF—)

................................... ‘ New...J[DuplicaieJ (Delete J

Sape RN
Save Rs...
Reprr! o Saped

w

it

Page Setup...

25’ Print...

The File Menu has its usual standard Macintosh-menu items for file
operations such as opening and closing files, saving and printing files, creating new
files, quitting the application, etc.

When the program is first launched, a new file is created automatically for
the user and appears as the "Untitled" main MacNeuron description window. This
would also be the consequence of clicking the "New" menu-item in the File Menu.

To close this main window, select the "Close" menu-item or click on the close-
box of the window at the upper-left corner of the window as usual. A warning
dialog-box will be displayed is you have not saved the file before to make sure that
you don't loose any valuable work.

Save changes to “Untitled” before
closing?

Yes

[No] [cancel)

Select the appropriate button or press the Return-key of the keyboard to select
the highlighted button, which is "Yes" in this case.

3.3. Edit Menu Description

d Objects Macros Font Size Style Windows
ingds *#2 luntitled =0

Cut %H j [Duph’catej UeIete]

Copy 36C
Paste *U
Clear

Select AN XA

Show Clipboard

The Edit Menu has its usual standard Macintosh-menu items for editing.
The Cut, Copy, Paste and Clear menu items can be used with the text window for
editing the simulation macro description language (which is a lower sub-window in
the main window).

3.4. Objects Menu Description
-t

w File Edit mUJEMEE Macros Font Size Style Windows

ew TOEE—— 0
3::2}5;;;) .) (owpticate][petete)

Show

Objects in the MacNeuron program are the implementations of the
components of a neuron or a network. The currently available objects in MacNeuron
include brain, network, neuron, voltage compartment, conductance, axial conductance,
membrane conductance, leakage conductance, capacitance, electrode, active conductance,
HH gate (Hodgkin-Huxley), compartment link, neuron link, network link, etc. as well as
objects for displaying data.

A list of the available objects will be displayed in a dialog box when the
"New..." menu item from the Objects Menu is selected.

Make a new C_DataDisplay:

C.DataDisplay
Neuron

Network

Brain

Compartment Link
Neuron Link

Net Link

Conductance

Axial Conductance
Leak Membrane Conductance
Capacitance
Electrode

Voltage Compartment

The other menu items, such as Duplicate, Delete, Show and Hide are dimmed
initially since no object exists until a new objects is created first.

3.4.1. Creating New Objects from the Objects Menu

To create new objects, select the desired object in the above dialog box, and
click the "OK" button. Alternatively, you can double-click on the selected object
without clicking on the "OK" button to create that new object. To abort the creation
of a new objects, click the "Cancel" button.

Once the new object is created or "Newed", a new window associated with that
new object will pop up. In the above example, since the brain object is selected for
creation, the brain window will pop up as the front window. The detailed
descriptions and utilities of this new object window will be discussed later in this
User's Guide.

3.5. Macros Menu Description
= File Edit Ubjectsl-'ont Size Style Windows

LDE Check Syntax %K | e

e O om))

Macros are groups of commands specified by the user in the simulation macro

description language. The simulation description language—MacNeuron Script—is a
Pascal-like language that allows a hands-off specification of the simulation bypassing
the iconic user-interface. Such a feature is very useful for constructing large
simulations intended to run in a batch or background mode. Details of the language
syntax will be given later in the User's Guide.

If the text of MacNeuron Script is entered in the text-editor window at the lower
partition of the main window, selecting the "Check Syntax" menu item from the
Macros Menu will check the syntax of the MacNeuron Script entered by the user. If
there are any syntax errors, the appropriate error message will be displayed in a
warning dialog box. The location of the offending error will be highlighted in the
text-editor window to allow for easy recognition by the user.

Once the syntax has been checked, and there are no syntax errors, the macros
defined in the MacNeuron Script will be displayed as extra menu items appended to
the end of the Macros Menu lists. Macros are basically groups of commands that the
user specifies in the MacNeuron Script so that those groups of commands can be

executed as a menu command available in the menu-item list. The user can
therefore create his/her own menu-item list on-the-fly within the MacNeuron user
environment.

For instance, if the user groups a set of commands that specify the description
of all the compartments of a Purkinje neuron into a single macros command called
"Create Purkinje Cell", then a Purkinje cell can be created with just a mouse click
from the Macros Menu. Thus, multiple Purkinje cells can be created easily by
"pulling down" the Macros Menu and selecting the "Create Purkinje Cell' menu item
that was defined by the user in the MacNeuron Script in the text-editor window.

3.6. Font Menu Description

= File Edit Objects Macros_WSize Style Windows
=== Untitl Avant Garde BiE
llesel. .
[Show][Hide J(New...] Ol Bookmaean
Chicago

352 75N

Helvetica

I Tirmes ftalic

Monaco

New Century Schlbk
New York Bt
Palatino
ZypPoi
Times
Venice
Zapf Chancery
008 +:WXOOVA L)

L

The Font selected by this menu will alter the font used in the text-editor sub-
window of the main MacNeuron window. The available fonts are the fonts that are
installed in the System file of your Macintosh disk. The actual font-type displayed
in the Font Menu above is generated by a utility program called Suitcase™ installed
in the System, otherwise the system-font will be used to display the various fonts
available. Geneva is the default font.

3.7. Size Menu Description
< File Edit Objects Macros FontmmgIe Windows

s()==———————— Untitied %J?o E——
[Show]L HideJ(New... J[Duplicate te
18
24

The Size selected by this menu will alter the font size used in the text-editor
sub-window of the main MacNeuron window. The default font size is 9 points.

3.8. Style Menu Description

= File Edit Objects Macros Font Size (NN Windows
(== Untitled v Plain Text 3P

[ShowMJ [wiee [mew.] (pupticate]

figlic &1
Underline 38U
0lultilliinie]
Shadom
Condensed
Extended

[Del¢

The Style selected by this menu will alter the font style used in the text-editor
sub-window of the main MacNeuron window. Plain-Text is the default style.

3.9. Windows Menu Description

e

w File Edit Objects Macros Font Size Style

S[J=————=——— Untitled E’ Hiprkbeneh
fnstant

([show J[wide][mew..][oupticate J[etete]

Log Window
ther documente...

Objects
Rrrange

10

The Windows Menu lists all the available windows, and allows all of them to
be selected as the active window (the front window).

3.9.1. Main Window Menu-Item

The "Untitled" window is the main MacNeuron window if it has not been
saved before. If an existing file is opened, the name of that file is displayed in that
menu-item location. Selecting it will make that window active (it will appear as the
front window).

3.9.2. Log Window Menu-Item

The Log Window is a text display window where the program keeps a log of the
history of the simulation. The user can also select specific parameters to be output
into this Log Window. Selecting it will make that window active (it will appear as the
front window).

If the program is run in unattended batch-mode, the specified simulation
textual output and any error messages will be displayed in this Log Window. If there
are critical errors that require user's intervention (such as File-Not-Found) while
running in batch-mode, the program will wait for a "time-out" period. If no user's
action is taken after the time-out, a default value (such as a default file-name) will
be used. This will allow for unattended continued simulation over-night without
creating halting the program waiting for the user's response.

3.9.3. Object Window Menu-Item

The Object Window is a window where the contents (and the parameters) of an
object are displayed. Selecting it will make that window active (it will appear as the
frent window). For instance, if the object is a neuron, then the contents of that
neuron, i.e,, its parameters will be displayed in this object window.

4. Main MacNeuron User-Interface Description Window

-,

w File Edit Objects Macros Font Size Style Windows
[Untitled ==F—————"]

[Hide J[New..j[ouplicate][Delete J 0 items

11

The main MacNeuron user-interface description window (the upper partition
of the Main window) contains five buttons, These five buttons are the same as the
menu items listed under the Object Menu (see Object Menu Description above).
Their use is interchangeable. That is, the buttons function the same as the menu
items in the Object Menu.

4.1. Show Button

When the "Show" button is pressed, it will show the object that is selected in a
separate Object Window. Since, at this point, no objects are created yet, there is
nothing to show. The "0 items" is indicated at the upper-right of the window to
 show the number of object-items created so far.

Once objects are created, they will be listed in the shaded region of the
window. Select the object by clicking on the item in the list, and click the "Show"
button. The Object Window associated with that selected object will pop up (open).
The contents of that object (i.e., its parameters) will be displayed in the Object
Window.

4.2. Hide Button

When the "Hide" button is pressed, it will hide (close) the Object Window.
Which Object Window will be closed depends upon the selected objects in the object
list displayed in this window.

4.3. New... Button

=

w File Edit Objects Macros Font Size Style Windows
e Untitled =0m—m———— =]

(Show)[Hide jm Duph'cate] Delete] 0 items

When the "New..." button is pressed, a list of the available objects will be
displayed in a dialog box. Select the object to be created as described above (see the
Creating New Objects from the Objects Menu Section).

12

Make a new C_DataDisplay :

C_DataDisplay
Neuron

Network

Brain

Compartment Link
Neuron Link

Net Link

Conductance

Axial Conductance
Leak Membrane Conductance
Capacitance
Electrode

Voltage Compartment

| Cancel

4.4. Duplicate Button

When the "Duplicate" button is pressed, the selected objects in the object list
displayed in this window will be duplicated.

4.5. Delete Button

When the "Delete" button is pressed, the selected objects in the object list
displayed in this window will be deleted.

13

5. Brain Object Window
= File Edit Objects Macros Font Size Style Windows

O = Untitled =E
S(==———————— brain gmg

4K i annel

[}

|. Sh
t{: ,

list of networks =8
[empty]

|

The Brain Object window is a window where the contents (and parameters) of
the brain are displayed. Selecting it will make that window active (it will appear as
the front window). For instance, since in this case the object is a brain, the content of
that brain, i.e., its parameters, will be displayed in this object window. The ritle of
this Brain Object window will be called by the name of the object, i.e., the brain by
default. The name of the Brain Object can be changed, as it will be discussed later.

\ 14

5.1. List of Network Objects Window

= File Edit Objects Macros Font Size Style Windows

Untitled |
Rat Brain ' Cancel
list of networks Q
[empty]
— 0]
{29

There are usually two sets of items to be displayed in a Brain Object window.
The first set of items is the "list of other objects under its hierarchy”. In this
example, the brain is composed of a list of nerworks. Similarly, a network is composed
of a list of neurons. A neuron is composed of a list of compartments, etc. Thus, the
anatomical structure of a brain, a network, a neuron, etc., can be specified
hierarchically.

In this example, since the brain has just been created, the list of networks is not
specified yet. So "[empty]" is indicated in the "list of networks" sub-window.

Note that the "list of networks" sub-window is highlighted (i.e., a thick dark
square outlines the window. This is the item which is currently selected. You can
change the selected item by pressing the "tab” key in the keyboard to "tab over" to
the next field as in any Macintosh application environment. The next item is the
"brain name" which will be highlighted.

Alternatively, you can use the mouse to move the pointer over the "brain
name” box and edit the text as usual. The "brain name" box will be selected (or
highlighted), and the text can be changed accordingly.

In the example shown above, the name is changed into "Rat Brain". Press the
"OK" button to confirm the changes or press the "Cancel" button to cancel and revert
the changes. When the "OK" button is press, the new name "Rat Brain" will be

15

reflected in the title bar of the current "Brain" window as the new "Rat Brain"
window. This new brain name is also reflected in the item list of the main window,
which is still called "Unritled" presently (half-hidden behind the "Rat Brain" window
in the above example).

Note that the appearance of the layout arrangement of the selectable items
such as the "list of networks" sub-window and the "brain name" box can be rearranged
by the user. Holding down the command-key (or the "apple-clover" key) of the
Macintosh keyboard while pressing the mouse button over the selected item will
change the cursor into a four-arrow sign (+}), indicating that the user can now
move that item to a new location within the window. This four-arrow sign will
also appear when the cursor is placed above the name field of the "list of networks"
sub-window without holding down the command key.

For instance, the layout of the "Rat Brain" window can be re-arranged to look
like the following by the user:

l&———————————= Rat Broin ==——FF—————="0|
4K {ancel

brain name[Rat Brain

list of networks
[empty]

16

5.1.1. Pop-up Menu in the List of Networks Window

Rat Brain

fangel

list of networks

Duplicate
Delete

Sort by name

Sort by handle

When the tool icon (™) at the upper-left corner of the List of Objects sub-

N

window is pressed, a pop-up menu will appear as described below.

5.1.2. Show Menu-Item from the Pop-up Menu

The Show Menu-Item shows the selected network from the list of networks
created so far. A Network Object window will pop-up displaying the contents
(parameters) of the network.

Alternatively, the selected item (from the lists of networks) can be double-
clicked to show the Nerwork Object window.
5.1.3. New Menu Item from the Pop-up Menu

The New Menu Item creates a new network and numbers it sequentially with
an integer number in parenthesis. The new network will be displayed in the shaded
region of the list of networks window.

5.1.4. Duplicate Menu Item from the Pop-up Menu

The Duplicate Menu Item clones a new network and numbers the newly
cloned network sequentially with an integer number in parenthesis. The new
network will be displayed in the shaded region of the list of networks window.

17

5.1.5. Delete Menu Item from the Pop-up Menu

The Delete Menu Item removes a selected existing network from the list of
networks displayed in the shaded region of the list of networks window.
5.1.6. Select All Menu Item from the Pop-up Menu

The Select All Menu Item selects all the existing networks from the list of
networks displayed in the shaded region of the list of networks window.
5.1.7. Sort by name Menu Item from the Pop-up Menu

The Sort by name Menu Item re-orders the existing networks in alphabetical
order using the name of the network displayed in the shaded region of the list of
networks window.

5.1.8. Sort by handle Menu Item from the Pop-up Menu

The Sort by handle Menu Item re-orders the existing networks in internal
order managed by the computer of the network (called the handle to the network).

6. Cerebellar Cortical Network Example

We will use the pre-built Cerebellar Cortical Network file as an example.

18

[J==————== cerebellar Cortical Network ==Fic=—=0=

[Show)LHide][New...]ﬁuplicatej[Delete j 26 items

Left Cerebellar Cortical Network (1)
neuron (1,1)

compartment (1,1,1)

compartment (2,1,1)

axial conductance (1,1,1:2,1,1)
[neuron 2,1)
compartment (1,2,1)
compartment (2,2,1)
axial conductance (1,2,1:2,2,1)
axial conductance (1,1,1:1,2,1)
neuron link (1,1:2,1)

Right Cerebellar Network (2)
neuron (1,2)

compartment (1,1,2)
compartment (2,1,2)

axial conductance (1,1,2:2,1,2)
neuron (2,2)

compar tment (1,2,2)
compartment (2,2,2)

axial conductance (1,2,2:2,2,2)
neuron link (1,2:2,2)

?

axial conductance (1,1,2:1,2,2)

axial conductance (1,1,1:1,1,2)

neuron link (1,1:1,2)

network synapse (1 :2) {
|

7. Network Object Window

The Network Object window is a window where the contents (and parameters)
of the network are displayed. Selecting it will make that window active (it will
appear as the front window). For instance, since in this case the object is a network,
the content of that network, i.e., its parameters will be displayed in this object
window. The title of this Network Object window will be the name of the object, i.e.,
the network (1) by default. The name of the Nerwork Object can be changed, as it will
be discussed later.

Since the simulated neural network is constructed hierarchically, we will use
family-tree terminology to refer to the hierarchical structure, such as parent object,
sibling links, etc.

19

In this example, the parent object of this newly created network is the Rar
Brain. The name of this network can be changed to another name, say Cerebellar
Cortical Network.

Left Cerebellar Cortical Network (1) E0E

parent bram Rat Brain

5

network links

' (1]
network synapse (1:2)

h'nked networks
: (1]

neuron a,n
dneuron (2,1)

network name[Left Cerebellar Cortical Network

=1

@il

20

7.1. Network Links Sub-Window

This shows the list of network synapses to which the current network is
connected. The numeric indices in parentheses refer to the network and the
network synapse by their number (i.e., their name for identity). It shows that Left
Cerebellar Network (1) is connected to the Right Cerebellar Network (2) by specifying
Network Synapse (1:2).

7.2. Linked Networks Sub-Window

This shows the list of connected networks. It is connected to the Right
Cerebellar Network (2).

7.3. Sibling Links Sub-Window

This shows the list of sibling networks that it is connected to. Its sibling link
is Network Synapse (1:2).

7.4. List of Neurons Sub-Window

This shows the list of neurons that it is connected to. It has two neurons:
Neuron (1,1) and Neuron (2,1).

21

8. Neuron Object Window

neuron (1,1)

parent network|lLeft Cerebellar Cortical Network (1)

synaptic links

[2)

neuron link (1,1:2,1) >
neuron link (1,1:1,2)

h‘nked neurons
{1]

neuron (2,1)

(2]

dcompartment (1,1,1)
jcompartment (2,1,1)

e

8.1. Synaptic Links Sub-Window

This shows the list of neurons to which the current neuron is connected. The
numeric indices in parentheses refer to the unique neuron and network
identification numbers. It shows that neuron (1) in the Left Cerebellar Network (1) is

22

connected to the neuron (2) in the Left Cerebellar Network (1) as specified by Neuron
Link (1,1:2:1).
8.2. Linked Neurons Sub-Window

This shows the list of connected neurons. It is connected to Neuron (2).

8.3. Sibling Links Sub-Window

This shows the list of sibling neuron to which it is connected. Its sibling link
is Neuron Link (1,1:2,1).
8.4. List of Compartments Sub-Window

This shows the list of compartments to which it is connected. It has two
neurons: Compartment (1,1,1) and Compartment (2,1,1). That is, Compartment (1) in
Neuron (1) in Left Cerebellar Network (1) and Compartment (2) in Neuron (1) in Left
Cerebellar Network (1).

23

9. Compartment Object Window

E[J== compartment (1,1,1) =0JE
H ¢ fanced
parent neuronjneuron (1,1) >
compartment links
(3]
axial conductance (1,1,1:2,1,1) K>
axial conductance (1,1,1:1,2,1)
axial 9.9!*29211'19.*.-’..5.1.._1._:.1..-.1.,..'...::.2:.?.,.=.:.=.:{}
D&
linked compartments
(1}
t(2,1,1) |
&
)
sibling links
[}
axial conductance
potential; 0.000000000e+0 mv [
2

9.1. Compartment Links Sub-Window

This shows the list of axial conductances to which the current compartment is
connected. The numeric indices in parentheses refer to the axial conductance by
their number (i.e., their name for identity).

9.2. Linked Compartments Sub-Window

This shows the list of connected compartments. It is connected to the
Compartments (2) in Neuron (1) in Left Cerebellar Network (1).

24

9.3. Sibling Links Sub-Window

This shows the list of sibling axial conductances to which it is connected.

9.4. Potential Box

This shows potential of the compartment in mV.

10. Axial Conductance Object Window

£ adial conductance (1,1,1:2,1,1) EE

compartment (1,1,1)
compartment (2,1,1)

2.0

parallel links
[empty]

| Make Synaptic Links? |

diameter | 000000000e+0 i
length! 1 000000000 +0 in 4
5 [

Axial conductance object includes the conductance, as well as the connection
between adjacent patches of compartmental membranes.

25

10.1. Linked Compartments Sub-Window

This shows the list of connected compartments.

10.2. Parallel Links Sub-Window

This shows the list of sibling axial conductance to which it is connected.

10.3. Parent Links Sub-Window

This shows the list of parent axial conductance to which the current
compartment is connected.

10.4. Make Synaptic Links Button
It asks if synaptic links will be added.

26

parallel links
[empty]

parent links
[empty]

o
] e

Neuron link object is the connection between adjacent neurons.

11.1. Linked Neurons Sub-Window

This shows the list of connected neurons.

11.2. Compartment Links Sub-Window

This shows the list of compartments to which it is connected.

11.3. Parallel Links Sub-Window

This shows the list of parallel links to which the current neuron is connected.

11.4. Parent Links Sub-Window

This shows the list of parent links to which the current neuron is connected.

11.5. Make Synaptic Links Button
It asks if synaptic links will be added.

12. Moving Objects to and from Other Objects

Parameter values and objects can be moved to and from other objects easily.
All it needs is to hold down the option-key in the keyboard while pressing the

mouse key over the selected item. An arrow icon () will show up with an
outline of the selected item showing. That selected item can be "dragged”, i.e,, you
can hold down the mouse and move it to the window of another object. "Drop in"
the selected item into the appropriate window or an editable box will make the
corresponding changes. If a parameter value is dragged and dropped into another
parameter box, that value will be become the new value. If an object is dragged and
dropped into another object link, then these objects will become connected.

13. Neuronal Simulation Language Description Macro

The neuronal simulation language can be used to describe the morphology
(and parameters) of the neuron and neural network, as well as describe the flow of
control of the run-time environment of the simulation. Special macros are groups
of commands specified by the user to execute the described commands and
procedures for the execution and construction of the neural simulation. The macros
are specified in the text-editor window, and the corresponding macros commands
appear as menu-items appended to the Macros Menu. Thus, the macros can be

executed by the user easily with a single menu command.

13. Neuronal Simulation Language

The macros language can be written in the text-editor (the lower partition of
the main window). It can be saved into a file for future references.

The language is very similar to the existing Pascal programming language
with most of the Pascal syntax for creating variables, and for control such as "for-
loops”, "repeat-loops" and "while-loops". Data types of integers, reals and booleans are
defined as in Pascal. Subroutines that help modularize groups of commands are
also available in the language, and are implemented as procedures and functions.
Such functions and procedures can be used as "libraries" for building neurons from
its components, and for specifying similar structures by calling these procedures
repetitively with one change in the parameter-list, so that similar neurons can be
built with different parameters specified by a procedure call.

In addition to the standard Pascal facility, the macros are constructed like a
procedure as shown in the following example:

macro make_neuron_macro_command "make_1l0_neuron_macro";
var

cerebellar_neuron: object;

i: integer;

begin
for i:= 1 to 10 do
begin
cerebellar_neuron:= new(neuron); {create 10 neurons}
cerebellar neuron.name:= "Cerebellar Neuron";
end;
end;

macro make_brain_macro_command "make_rat_brain_macro";

var
rat_brain: object;

begin
rat_brain:= new(brain); {create a brain}
rat_brain.name:= "Rat Brain";

end;

macro make_networ_macro_command "make_network_macro";
var
left_cerebellar_network: object;
begin
left_cerebellar_network:= new(brain); {create a network}
left_cerebellar_ network.name:= "Left Cerebellar Network";
end:

29

In the above example the first macro creates 10 cerebellar neurons, which will
appear when the "Check Syntax" menu-item is executed. The macro is executed by
pulling down the Macro Menu and selecting the "make_10_neuron_macro" menu-
item.

When the "make_rat_brain_macro" is executed, the second macro creates a
brain and calls it "Rat Brain".

When the "make_network_macro" is executed, the third macro creates a
network and calls it "Left Cerebellar Network",

30

Apusei © do User s @ wd

14. Example 2

The fileHodgkin-Huxley Model simulates a compartmental neuron with
voltage-activated conductances. A list of all the objects in the simulation appears
below.

[EJ==———=—— Hodgkin-Huxley Model

I[show | Hide][mew..][upticate |[Detete]

Yexample

State Var (ime = 1.0e-1)
compartment (1)

capacitance (1:9) {1}

leak membrane conductance (1 :8) {2}
active membrane conductance (1 :8) {3}
active membrane conductance (1:8) {4}
Default Global Params 1

HH m gate [1]1 (1 :8) {3}

HH h gate [2] (1 :0) {3}

HH n gate (1] (1 :2) {4}

compartment (2)

capacitance (2:9) {1}

leak membrane conductance (2:8) {2}
active membrane conductance (2:8) {3}
HH m gate [1]1(2:8) {3}

HH h gate [2] (2:8) {3}

active membrane conductance (2:8) {4}
HH n gate [1](2:8) {4}

axial conductance (2:1:) {5,5}

[
tii |

HH 'm’ activation HH Rate Function Parameters
HH 'm' inactivation HH Rate Function Parameters
HH °h' activation HH Rate Function Parameters
HH 'h' inactivation HH Rate Function Parameters
HH 'n‘ activation HH Rate Function Parameters
HH 'n’ inactivation HH Rate Function Parameters
ConjugateGr adientimplicitEulerDriver
Observer
fLinear Graph
voltage (volts) vs. time (sec)
State Var (voltage = -6.2e-2)
State Var (conductance = 89e-12)
State Var (gate activation = 4.1e-2)
State Var (gate activation = 6.8e-1)
State Var (conductance = S5.0e-10)
State Var (gate activation = 29e-1)
State Var (voltage = -6.2¢-2)
State Var (conductance = 8.9e-12)
State Var (gate activation = 4.1e-2)
State Var (gate activation = 6.8e-1)
State Var (conductance = 5.0e-10)
State Var (gate activation = 29e-1)
yran (O

2
3
4
ba)
é
7

15. Active Conductance Window

]

[T}
i

linked compartments

(1]

active membrane conductance (1:8) {3}

compartment (1)

&

max conductance! 1.885709876e-7

i1/Q

specific resistance: 8.330000000e~3

........

imY

iKQ-cm"2

..

gates

(2]

HH m gate [1](1:0) {3}
HH h gate [2] (1 :8) {3}

<

Active Conductance includes a several new features that allow the user to

simulated voltage gated activity.

15.1. Linked Compartments Sub-Window

Like the passive conductance windows described earlier, active conductances
contain a sub-window which lists the compartments that it joins. In this case, there
is only one compartment, and therefore the conductance is to ground by default.

15.2. Max Conductance and Specific Resistance Sub-Windows

The max conductance sub-window displays the maximum value of the
conductance. This value is not directly editable but is computed from the specific

membrane resistance. and the surface area adjacent membrane.

32

s

15.3. Reversal Potential Sub-Window

The reversal potential gives the potential difference across the conductance
for which no current will flow.
15.4. Conductance State Var Sub-Window

The conductance state var is a dynamical variable which records the current
value of the conductance.
15.5. Gate List Sub-Window

The Gate List implements the active properties of conductance. They are
described below.
16. HH Gate Window

The HH Gate Window describes a voltage activated gate. They are currently
implemented in three varieties, m, h, and n, following the convention of Hodgkin
and Huxley.

HH m gate [1]1 (1

Jactivation state var|State Var (gate activation = 4.1e-2)
Jmuttipticity| 3.000000000e+0 '

Jactive conductanceiactive membrane conductance (1 :9) {3}

Jactivation rate! 194937847401 11/ms
inactivation rate; 4.462637338e+0 i1/ms
Jactivation (09): 4.185392464e-2 H

decay time: 2 147039952e-1 ims

1-> rate paramsiHH ‘m’ activation HH Rate Furction Parameters 2

16.1. Activation State Var Sub-Window

The activation state var is a dynamical variable which records the current
value of the gate activation.

33

16.2.Multiplicity Sub-Window

The multiplicity sub-window specifies the power or weight of the gate in
determining the total conductance through the channel. It is typically an integer
and may be thought of as the number of identical (and independent) voltage
activated gates in series.

16.3.Active Conductance Sub-Window

Reference to the active conductance object.

16.4.Activation Rates Sub-Windows
Gate activation is governed by an equation of the form:
dm/dt = a(l-m) - Bm

where the activation (inactivation) rate is given by a (B). These are also displayed in
terms of the steady-state gate activation and the inverse instantaneous time
constant.

16.5.Activation Rate Function Parameters Sub-Windows
The instantaneous activation rate, q, is governed by an equation of the form:
a(V) = (A + BV)/(C + exp[(V+D)/F]

where the parameters A-F are stored in separate parameters objects.

17. HH Rate Function Parameters Window

Gates in the model can have their own local parameters which can be shared
by other gates by clicking on the “make default” button. This automatically causes
all gates of the right type to use these parameters by default.

1A|-2.500000000e+0 J1/ms

{Bi-1.000000000e~ 1 11 /(ms * mV)

{ci-1.000000000e+0

{0i'3’S00000000e+ 1 imV

{FE1.060600000e+1 fmv
.................................... =

18. Integration Driver Window

The integration driver advances the simulation through time.

ConjugateGradientImplicitEulerD: S

stop time: 1 .000000000e+2 ims
data interval time: 2 000000000e-1 ims
max & errori 1 000000000e-8 :

max ¥ iterationsi3

jterations|2

1 save stat

35

18.1 stop, stop, and interval time Sub-Windows

The start, stop, and interval time sub-windows control the duration and time
resolution of the simulation.
18.2 max % error, max # iterations, and # iterations Sub-Windows

The max % error sub-window controls the number of conjugate gradient
iterations per integration time step. Such iterations are performed until either the
largest % change from the previous iteration is less than max % error or max
number iterations has been exceeded. The # iterations window gives the actual
number of iterations performed for that time step.

18.3 Init and Start Integration Command-Buttons

The Init Integration button initialized the integration. The integration must
be initialize before the start button is clicked or an error message results. The Start
Integration button begins the integration, which proceeds until the exit conditions
are satisfied.

18.4 Save and Restore State Command-Buttons

The Save and Restore buttons save and restore the current or saved values of

all dynamical variables.

18.5 Step Command-Button

Step advances the simulation one time step.

19. Graphical Display

The current version of the application has been enhanced with graphical
capabilities as the following example shows.

19.1 Observer Window

Events in the application can be observed through an “Observer” window,
which allows the user to organize his “Graphs” and “Data pairs”. Currently, the
observer can only be driven by updates to the global time, but this is expected to
change in future implementations.

-9

..

Observer

19.2 Data Pairs and State Vars

X VarisbleiState Var (time = 1 .0e-1) ot

Y VariableiState Var (voltage = -6.2e-2)
¥ Labelitime (sec)

Y Labelivoltage (volts)

Symbol Typefrone |
Line TypeiD

x data points; 0.000000000e+0
y data points; 0.000000000e+0

&[m]

<2=['

37

State Uar [uoltage = -4 Oe-2 l

state value|—4 000000000e-2 |

Simulation Objecticompartment (1)
saved valuei-6.197168907e-2

Dynamical variables (State Vars) are added to Data Pairs to construct
coordinate pairs that can then be graphed. As show above, dynamical variables may
also be edited directly by the user. Here, the membrane voltage has been forcibly
depolarized by approximately 20.0 mV.

19.3 Linear Graph Window

Axis labels and title can be specified by the user by editing in the appropriate
windows. Linear Graph uses default values for the other plot parameters unless
overridden by the user.

38

Linear Graph

1Y mini 0.000000000e+0
1Y maxi 0.000000000e+0

1X major increments{ 0.000000000e+0
1% minor incrementsi 0.000000000e+0
¥ ma jor increments: 0.000000000e+0
Y minor increments} 0.000000000e+0
X 1abelitime (sec)

1Y labelivoltage (volts)

{Titleivoltage vs time

s

19.4 Plot Window

Clicking Plot in the Linear Graph produces a plot of the data pair record. This
forced depolarization is evident from the plot.

39

L

...

E0=—————= New Window =———————-p5}

voltage vs time

0.05

A

)
\
\

0.00

voltage (volts)

-0.05
\

017 0.18
time (sec)

40

MaoeNevrom
(version 0.3)

Tutorial

0 The MacNeuron Tutorial

0. 1 What is MacNeuron?

MacNeuron is a tool for simulating custom designed neural systems.

0. 2 About this Tutorial

This tutonal provides a sclf contained introduction to the MacNeuron application. Each ex-
amplc utilizes a step by step approach, allowing you to follow along on your own Macintosh com-
puter. After completing this tutorial, you should feel confident enough to begin experimenting with
MacNeuron on your own. Also consult the MacNeuron Reference Manual for a comprehensive
review of all the features built in to the MacNeuron application.

note: MacNeuron is still very much in development and many features that will ultimately be part of the application
bave not yet been incorporated or are stll getting the ‘bugs’ worked out . To avoid rewriting this tutorial with each
revised version of MacNeuron, this tutorial has been written, as much as possible, with the ‘final’ version in mind.
Occasionally, this creates discrepancies between what is written in the tutorial and what is actually appearing on the
screen. Where such discrepancies occur, temporary text, such as this, may be inserted to clear up possible confusion.
In such cases, the tutorial should be read as a guide to the final form that MacNeuron is expected 1o take.

1 Example I: Running the MacNeuron Application

1. 1 Getting Started
The MacNeuron icon (version 0.3) looks like this:

MacNeuron (v0.3)
Click on the MacNeuron icon to select it:
MacNeuron (v0.3)

Start MacNeuron by double clicking on the MacNeuron icon. (Alternatively, you can select
the MacNeuron icon and then choose "Open..." from the File menu).

1.2 Main MacNeuron Window

MacNeuron will start up with a New window called Untitled. This is the main window of
the application. The name of this main window will change when the file is saved, just like any
other standard Macintosh program.

1.3 Resizing the Main MacNeuron Window Partitions

This main window contains two parts (or partitions). When the resize box at the lower
right corner of the window is enlarged, the second half (lower partition) of the window will show

up:

: =275 Untitled :

Hide J [New] .(-Duph‘eato

By holding down the mouse button at the window-partition divider (the shaded thick line
between the two partitions) and "draging” the divider up or down, the relative partition sizes can be
adjusted. Note that the cursor changes from a pointer to a cross-hair when it is on the window
partition divider.

1.4 Simulation List (Upper Partition)

The upper partition of this main window consists of nested lists containing all the objects
(neurons, conductances, compartments, networks, drivers, graphs, etc...) currently in the simula-
tion. The upper portion of the window also provides a palette of tools for performing useful opera-
tions on the listed items. For instance, selecting a particular neuron from the list and then clicking
the show button will cause the window for that neuron to be displayed. There are also tools for
hiding, deleting and duplicating any of the objects in the list. Examples of these operations are
provided later in the tutorial.

1.5 Simulation Language (Lower Partition)

The lower partition of the main window is a text window where circuits may be specified
using a high level language, called "macro”, which provides the same functionality as the iconic
user interface, but offers a powerful altemnative for performing large numbers of similar operations.

1.6 What ‘s Next?

We arc now ready to go the next cxample. To close the Untitled window, click in the close
box in the upper left corner. It is not necessary to close the Untitled window in order to proceed,
but doing so will reduce unnecessary clutter on your screen.

2 Example II: Simuiating a Previously Constructed Neural Circuit

2.1 Opening Existing Files

At the top of the screen is the menu bar. To open an existing file, pull down the File menu
from the menu bar and select “Open..."

B AT AL B B A
R

Macros 3 onl"

Saua
sapve fis .,
Reperl 1o Saped

Page Setup..
Print...

A standard dialog box will appear asking you to select a file. Open the file called Hodgkin-
Huxley Model (n would be a good idea copy this file ﬁrst)

JState Var (time = 0.0e+0)
Jcompartment (1)
dcapacitance (1:2) {1}
{leak membr ane conductance (1 :#) {2}
active membrane conductance (1 :9) {3}
dactive membrane conductance (1 :9) {4}
JDefault Global Params 1
gHH m gate [1] (1:2) (3}

h gate [2] (1:8) {3}

n gate [1](1:0) {4}
Jeompartment (2)
Jcapacitance (2:0) {1}
Jleak membrane conductance (2:8) {2}
Jactive membrane conductance (2 :9) {3}
JHH m gate [1](2:0) (3}

Bih asda [A) L. a0 L)

Hodgkin-Huxley Model is a two compartment circuit representing a short axonal segment
containing active membrane conductances. The main window contains a single object called
“Smulation Root'™. As we will see, everything in the simulation “grows out” of the Simulation

Root, which therefore acts as a landmark from which any other object in the simulation can be
found.

The simulation list currently contains all the objects in the simulation. Usually, the Simulation Root is the first ob-
ject in the list.

2.2 Simulation Root Window

Double click on the Simulation Root to open its window (alternatively, select the Simula-
tion Root by clicking on it once and then click “Show™ in the main window’s command pane):

...................

m {antel

name %.:‘.,;:ﬁ;imé;;i*‘{}
4rootineuron (0) .
4 Integration Driver ConjugateGradientimplicitEulerDriver

{ TimeState Var (time = 0.0e+0)

|deita time{ § 000000000 +0

aramoters

(71

H§Default Global Params 1 -~
ZIHH ‘'m’ activation HH Rate Function Parameters 2 °
HHH 'm’ inactivation HH Rate Function Parameters
34HH 'h’ activation HH Rate Function Parameters 4

33HH ‘h' inactivation HH Rate Function Parameters 5
38HH ‘n’ activation HH Rate Function Parameters 6 |

s
LS
~ ‘

S 1]

You will have to manipulate the various panes inside the simu.ation root window in order to achieve the configura-
tion shown. Currently, the default window organization is not ideal. This will be the case with essentially all the
windows appearing in the tutorial.

The simulation root points to all the main object categories, or hierarchies, which make up
the stmulation:

...........................

Integr ation Driver iConjugateGradientimplicitEulerDriver . The object which implements the particu-

lar numerical integration algorithm chosen to drive the simulation. The currently selected dnver
uses conjugate gradient descent to solve a matrix of coupled linear equations resulting from an
implicit integration time step.

lmparameters : Objects in this list contain parameters which can be shared by multiple simulation
objects. This allows the same parameters, such as those characterizing voltage dependent conduc-
tance channels, to be used by more than one voltage-activated gate.

’E“se""s List of objects which contain other objects for recording and ploting simulation
data.

2.2 Root Neuron Window

Select Show from the root neuron’s pull down

menu to activate its window:

E synaptic links
i [empty]

..

S|mulat|on Root

gateGradient implicitE:
Change... | $6e40)
New... Joesd ‘m

Neuron (0) contains two compartments and has
no synaptic links. Since neuron (0) is the root physiological object, the network which contains it

(parent network) is the simulation root. Click on the
text “compartment (1)” (in the list of compartments
sub-window) to highlightit:

2.2 Compartment Window

Activate the window for compartment (1) by
double clicking on its text or by selecting Show from
the tools pull down menu (You may also wish to close

cooamanm

ariment (1

|- "Z==_ camp

{parent neuronjneuron (0)

-

o

{¥1eak membrane conductance (1:2) {2}

{§active membrane conductance (1 :8) {3}
{{active membrane conductance (1:9) {4}
dJaxial conductance (2:1:) {S;5}

e e

;2
-

p_otential state variState Var (voltage =

-62¢-2)

[

during the simulation:

2.3 Observers

Return to the Simulation Root and acuvate the
Observer located in the Observers sub-window:

The Observer watches the specified Data Pairs
and ensures that new values are recorded as the simula-
tion progresses. The Observer also keeps track of the
different graphs employed to display the data.

2.4 Graphs

A% list of compartments
Show
New g

Duplicate

the neuron (0) window as it will no longer

. be needed).

Compartment (1) displays its par-

E ent neuron, in this case the root neuron,
= neuron (0), a list of links to other com-

partments (or to “ground” as indicated by

- a ‘g’ symbol) and the electrical potential.
. Keep this window available since we will
observe the potential in this compartment

= === (0bserver

tancel |
Number of gnphshl = e

B raphs
1]

Linear Graph

B Data Pairs
[1]

voltage (volts) vs. time

]

277 Linear Graph

===
Many of the graphical capabilities ultimately to be included oo =
in MacNeuron are still being developed. What is described UK _Lancel
here represents an intermediate stage. Some of the windows Data Pairs i
employed represent temporary ‘patches’ and therefore pos- (1]

sess minimal functionality. Such windows will be replaced {fivoltage (volts) vs. time (sec)

in the next version of MacNeuron.

Activate Linear Graph found in the Graph

2rovssessene

sub-window (You may also want to close the Ob- {Use Default Limits? :True :
server window as it will not be needed for the fol- {Use Default Grids?
lowing). X min; 0.000000000e+0

X maxi 0.000000000e+0
Y min{ 0.000000000e+0

Linear Graph contains a list of those Daa ¥ M2x:0.000000000¢+0 i
Pairs to be ploted, as well parameters for specify- R major increments: 0'000000000”%;
ing the range of data to be included, intervals be- A A A A AN AR

; . , Y major increments: 0.000000000e+0
tween major and minor tic marks, axis labels, etc... ¥ minor increments: 0 Bo00000O0IE

There is also an option for generating reasonable {X 1abe)time (sec)

default values for these parameters. Y labelivoltage (volts)

o o Titlelvoltage vs time
Save this window as it will be needed 0§ =+ F———

plot the results of the simulation. -

2.5 Drivers

Return to the simulation root and activate the Conjugate Gradient Implicit Euler Driver lo-
cated in the integration driver sub-window:

The integration driver contains sub-windows for specifying the end points of the integra-
tion, the length of each integration time step, the maximum percentage error (needs to be set very
low due to the inherent stiffness of the circuit), the maximum number of iterations (number of
conjugate-gradient descents) per time step and the actual number of iterations used during the pre-

vious time step.

cfannal

... Cy

{ 0.000000000e+0 ims
stop time: 1.000000000e+1 ims
data interval time: 2 000000000e-1
max % error: 1 000000000e~8

Jmax ® jterations:3
® iterations|1

Init Integration

There are also several command buttons. A particular state, such as the equilibrium state,

TGK

start time

art Inte

can be saved and then later restored using the buttons “save state” and “restore state”. The “ir.it in-
tegration” button initializes the integration (used only after everything in the simulation is in place)
and the simulation may be performed either in step mode or all at once, using the “step” and “start
integration” buttons, respectively.

2.6 Running

To establish a baseline, hit the “init integration” and “start integration” buttons in the inte-
gration driver window (Hodgkin-Huxley Model should have started out in steady state but you
can hit the “restore state” bution in the integration driver window to be sure). The cursor will
change to a stop watch while the simulation is running.

At the moment, the cursor does not change shape while the simulation is running and nothing on your screen re-
sponds to mouse clicks during this ime. Additionally, the integration algorithms have not yet been optimized and
therefore integrations may take a little while, depending on which computer you are using (the above baseline cali-
bration takes a few seconds on a llci).

Activate the widow for compartment (1) (use the Window menu if it has become buried).

Alas, the window menu is yet correctly implemented, so you will have to move things out of the way in order to
find what you're looking for.

10

Since we are at steady state, it is necessary to change the potential from the steady state
value (in this case by hand) in order to get something going. Select the potential sub-window and
change the voltage to -40.0 mV.

To facilitate development, State Var objects have been temporarily introduced into MacNeuron. Open a State Var
just like any other window and edit its value in the usual way. A very important point to remember is that all State
Var objects use MKS units, so 40.0 mV must be written as 0.040. State Var objects will be removed in the

next version of MacNeuron.

You can now close of the compartment (1) widow.

Activate the integration driver window, change the start and stop times to 10.0 and
50.0 msec, respectively, and restart the integration.

2.7 Ploting

Activate the Linear Graph window and hit the “Plot” button. A plot of the voltage in com-
partment (1) vs time should appear:

voltage vs time

L

@ 0.00
e}
=
=
1 V]
on
e
E
-0.05 }/
>
|7

000 0.01 002 003 004 005
time {sec)

Currendy, “Plot” uses a temporary window with almost no functionality. One pathological feature of this window is
that the grow box is hidden. Clicking where you expect the grow bow to be brings it into view. This window does

11

not close in the usual way either. as clicking in the close box does nothing. As mentioned previously, this window
is merely a temporary patch while more sophisticated plotting windows are being developed.

2.8 What’s Next?

Select “Close” from the File menu. MacNeuron will prompt you to save your changes,
including the results of the simulation, and then all windows associated with Hodgkin-Huxley
Model should disappear.

MacNeuon does not currently save simulation data, so there is no reason to save any of yvur changes to Hodgkin-
Huxley Model. This will be fixed in the next version of MacNeuron.

Now that we have seen a bit of how MacNeuron works, we are ready to leamn how to
build neural circuits from scratch.

3 Example III: Building Neural Circuits

3.1 New Files

Select “New...” from the File menu in the MacNeuron menu bar at the top of the screen.
A new main window, called “Untitled”, will appear on the screen (if you have just launched Mac-
window will come up automatically). Choose Save from the
File menu and save this file as Example III.

”

Neuron, or do so now, the “Unuitl

3.2 Mak]ng a Simulation Root T ———— O ——

. . . M taDi :
The first object in any simula- ake 2 new C_DataDisplay
. . . . Membr ane Conductance
tion is the Simulation Root. Click on Leak Membrane Conductance
“New...” in the main window’s com- Active Membrane Conductance
. . Capacitance
mand pane. This causes the following Electrode
dialog box to appear: Yoltage Compartment
Global Parameters
HH Gate
HH m Gate
Only a Simulation Root can be HH h Gate
. . P HH n Gate
made at @ns point, so this is the only Default Global Parameters
object which appears. Generic HH Rate Function Parameters

ICurrently. the user is presented a list containing all possible objects.

To make a Simulation Root, either select “Simudation Root” and hit “OK” (“Retun” ac-
complishes the same thing) or double click on “Simulation Root”.

ISimulation Root may be also called Global Parameters.

3.3 Making a Root Neuron

Select “New...” from the pull down menu in the Root sub-widow:

== Simulation Root

Select “newron “ from the “Make a new” dia-
log box and click “OK”.

T T T I e

name Simulation Root

3.4 Making a Compartment

Show
Change... ||

Select “Show” from the pull down menu in the ~ }inte
Neuron Root sub-widow containing neuron (0) to T

activate its.window.

Select “New” from the “tools” pull down
menu in the list of compartments sub-widow (in the neu-
ron (0).window):

Select “Voltage Compartment” from the “Make a
new” dialog box and click “OK™.

3.5 Making Compartment Links

In the list of compartments sub-widow, double
click on the text “compartment (1)” or select “Show”
from the “tools” pull down menu while
“compartment (1)” is selected.

Select “New” from the “tools” pull down menu
in the compartment links sub-widow (in the compart-
ment (). window):

Duplicate
Delete

Select “Capacitance” from the “Make a new”

Select All dialog box and click “OK™ .

Make a new “Leak Membrane
Conductance” and two new “Active

way. There should now be four items in
the compartment links sub-widow.

3.6 Setting the Leak Membrane
Conductance

Membrane Conductance (1:¢) {2}” in the
compartment links sub-widow (in the
compartment (1). window):

jpotential state var|State Var (voltage = 0.0e+0)

comp

Membrane Conductances” in the same W :
{parent neuronineuron (0

1capacitance (1:8) {1}

1q1eak membrane conductance (1:8) {2}
13active membrane conductance (1:9) {3}
i§active membrane conductance (1 :9) {4}

Double click on the text “Leak }

leak membrane conductance (1:9) (2} - |

K i angel

: B inked compartments

membrane conductance| 0.000000000¢+0

specific resistance: 1 000000000e+1

reversal potential: 0.000000000e+0

23— e e e e

S

Change the specific resistance 10 3.0 kQ-cm?2 and click “OK™':

specific resistance[2 000000000e+0 1KQ-em"2

Change the reversal potential 10 -50.0 mV and click “OK™:

reversal potential-5.000000000e+1 _|mv

Close the Leak Membrane Conductance window.

AR

14

15

3.7 Setting the Active Membrane Conductance: Na* channel

Doubie click on the text “Active Membrane Conductance (1:¢) {3} in the compartment
links sub-widow (in the compartment (1).window):

~active membrane conductance (1:8) {3} =0
K : fanced i | .

: aned compartments
(1

max conductance| 0.000000000e+0 J1/0Q
specific resistance: 1 000000000e+1 iKQ-em™2
reversa) potential§_.Q_2900000000;+0 imy

conductanceState Var (conductance = 0.0e+0)

Change the specific resistance to 0.0083... kQ-cm*2 and click “OK™:

specific resistance| 8 332333333¢-3 JKQ-cm"2

Change the reversal potential to 55.0 mV and click “OK™:

reversal potential| 5 500000000+ 1 Jmv

Change the conductance to 8.7e-12 1/Q and click “OK™:

conductance|State Var (conductance = 8.7e-12)

Select “New” from the “rools” pull down menu in the gates sub-widow:
Select “HH m Gate” {rom the “Make a new” dialog box and click “OK™.

Make a new “HH h Gate” as well. There should now be two items in the gates sub-

widow.

3.8 Setting the HH m Gate

Double click on the text “HH m Gate [1] (1:9)
{3}” in the gates sub-widow (in the Active Membrane
Conductance (1:¢) {3} window):

Gate activation is governed by an equation of the
form:

dm/dt = a(l-m) - bm

gates
(2]

m gate [1](1:8) (3}
h gate [2] (1 :9) {3}

where the activation (inactivation) rate is given by a (). These are also displayed in terms of the

steady-state gate activation and the inverse instantaneous time constant.

Select “New” from the “-> rate params” sub-window:

Select “HH ‘m’ Gate Activation Rate Function Parameters” from the “Make a new” dia-

log box and click “OK™.

Do the same for the “<- rate params” sub-window, to make a “HH ‘m’ Gate Inactivation

Rate Function Parameters” object.

3.9 Setting the HH ‘m’

Gate Activation Rate Func-

tion Parameters 8K f ancel

Double click on the text

I TZ==== HHi m gate [1] {1:0) {3} =1

it

“HH ‘m’ Gate Activation Rate
Function Parameters” in the >
rate params” sub-widow (in the
HH m Gate [1] (1:8) {3} win-
dow):

The instantaneous activa-
tion rate, a, is governed by an
equation of the form:

activation state variState Var (gate activation = 00e+0) 7

multipticity | 3. 000000000e+0

active conductanceiactive membrane conductance (1 :98) {3}

activation rate; 0.000000000¢+0
inactivation rate; 0.000000000e+0
activation (00)i 0.000000000e+0 H
decay time: 0.000000000¢+0 ims
-> rate params

i1/ms

i1/ms

¢ rate par Show

ST 1771 Chenge...[:

16

a(V) = (A + BV)AC + exp[(V+D)/F]

Set the parameters A, B, C, D, and F

as shown:

The command button “make default”
causes this parameter object (and thus these

parameters) to be used by all existing HH m

Gates which do not currently have a parame-
ters object assigned to their “-> rate params”

sub-widow. The “make global” command

button makes these parameters universal for
all HH m Gates regardless of whether or not

[HH 'm’ activation HH Rate F

A
B

D

T Ty Y T vy e ey

make default § §

g R ancel

make globall

~3.500000000e+0

i1/ms

-1.000000000¢-1

1/(ms * m'v'i

F

other parameters have been previously assigned to them. Hitting “restore defaults” causes the

original parameter values (hard coded into MacNeuron) to be restored.

Close the HH ‘m’ Gate Activation Rate Function Parameters window.

" HH 'm’ inactivation HH Rate

gk i fancal

restore defaults

A 4 000000000e+0 i1/ms

B! 0.000000000e+0

Hf in 38310 w0

¢ 3.10 Setting the HH ‘m’ Gate Inacti-

vation Rate Function Parameters

Following 3.9, set the HH ‘m’ Gate

R Inactivation Rate Function Parameters as
.§ shown

Close the HH ‘m’ Gate Inactivation

s * 'R Rate Function Parameters window.
i1/(ms *mV) F

| 3.11 Setting the HH h Gate

Follow the steps analogous to those
configure the
HH h Gate [1] (1:0) {3}.

3.12 Setting the HH ‘h’ Gate Activation Rate Function Parameters

Set the HH ‘h’ Gate Activation Rate Function Parameters as shown:

17

 HH'W actmatlon HH Rate Fo:

w K {ancol Bl

| make default make global
| restore defaults

A ..?..:QQQQOOOOOe- ,,,,, i1/ms

B 0.000000000e+0 H /(s * mv)

C: 0.000000000e+0 :
{D: 6.000000000e+1 mv

F[2.000000000e+1 _ Ny

3.13 Setting the HH ‘h’ Gate Inactivation Rate Function Parameters

Set the HH 'k’ Gate Acnvanon Rate Function Parameiers as shown:

HH h mactluatlon HH Rate

_; 1/(ms * mV)

mY

3.14 Setting the Active Membrane Conductance: K* channel

As 1n 3.7, configure the “Active Membrane Conductance (1:¢) {4}” as follows:

18

B inked compartments

max conductance 0.000000000e+0

specific resistance! 2 777777700e-2

reversal potentiali-7 200000000¢+1
conductanceiState Var (conductance = 5.0e-10)

[HH nogate (1] 01 oy

3.15 Setting the HH ‘n’ Gate Activation Rate Function Parameters
Set the HH ‘n’ Gate Activation Rate Function Parameters as shown:
Z1Z HH 'n’ activation HH Rate Fu E

il make default

T T s

restore defaults'

i1/(ms * mY) :

....... 20000t tensarees isecansasesnies

imy

. active membrane conductance (1:9) {4) éf_ff—;

18

3.16 Setting the HH ‘n’ Gate Inactivation Rate Function Parameters

Set the HH ‘n’ Gate Inactivation Rate Function Parameters as shown:

1"~ HH 'n' inactivation HH Rate - -}

f restore defaults §

Al 1.250000000e-1 11 /ms =k
B: 0.000000000e+0 o (s #mv)i |
Ci 0.000000000e+0 H Y

L

3.17 Duplicating Compartments

We have now built one complete Hodgkin-
Huxley compartment, containing a capacitance, a

leak membrane resistance, a voltage-gated Na*
channel, and a voltage-gated K* channel. To con-
struct a short length of axonal fiber, we string to-

gether iwo such channels.

Does this mean, you ask in despair, that we
have to go through the labor of building another
compartment? Fortunately, this is not necessary,
because MacNeuron has sophisticated built in
mechanisms for duplicating objects with complex
internal structure. To see this, activatethe root neu-

ron window (neuron (0)) and select the compart-
ment (1) object located in the list of compartments
sub-window. An identical compartment can be
added to the neuron simply by choosing

“duplicate” from the tools pull down menu:
Select All

Automatically, a new compartment, identical to the first, is created and added to the root
neuron. All of the internal structure of the original is reproduced as well. This is a general feature
of MacNeuron: Whenever a complex object is duplicated, whether it is a compartment, a neuron,
or a network, the entire hierarchy of internal structure is reproduced.

3.18 Chaining Compartments Together with Axial Conductances

All we have left to do join the two compart. ents together.

Activate the window for
compartment (1) and select New |
from the compartment links pull
down menu. When the Make a new

ke e——— -

e amalconductance (1:0) {} =

E linked compartments

dialog box appears, choose Axial
Conductance and click OK .

Activate the Axial Conduc-
tance window”

axial conductance; 7. 852981634¢e-3

As it stands, the Axial Con-)
ductance connects compartment (1) d"’metfri 1.000000000e+0 ik
tength: 1.000000000e+0 in

to ground. In order to join the other Tasmie R o
) smic resistance: 1 000000000e+2
end of the axial conductance to the P~: : : = -

N B

g e

second compartment, we use a
drop in technique.

3.19 Moving Objects to and from Other Objects

Parameter values and objects can be moved to and from other objects easily. All it needs is
to hold down the option-key while pressing the mouse button over the selected item. An arrow
icon (‘@) will appears along with an outline of the selected item. The selected item can then be
"dragged", i.e., you can hold down the mouse and move it to the window of another object.
"Drop in" the selected item into the appropriate sub-window or editable box and the corresponding
changes will be made. If a parameter value is dragged and dropped into another parameter box,
that value will be become the new value. Likewise, an object is added to another objects list simply
by dropping it in the appropriate sub-window.

Drag compartment (2) from the root neuron window over to the Axal Conductance win-
dow and drop it in the linked compartments sub-window. The title of the window should change

~dé

to reflect the fact that the Axial }

Conductance now joins compart-
ment (1) with compartment (2),
and the compartment (2) object
should now appear in the linked

compartments sub-window.

{§§< i faneed

h'nked compartments

G e axial conductance (1:2:) {5;5} :;__

axial conductancei 7.853981634e-3 i1/Q
diameter 1.000000000e+0 M

lengthi 1 .000000000e+0 in

plasmic resistancei 1.000000000e+2

