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Abstract

5
Ever increasing operational and technical requirements have led to highly integrated flight, guidance and control, and weapons
delivery systems. The effective implementation of these functions makes the fusion and interpretation of sensor data and the
multifunctional use of sensor information inevitable.
Neural networks, consisting of parallel microcomputing elements, hold great promise for guidance, navigation and control

applications because of their ability to learn and acquire knowledge.
- S

™ The Lecture Senes will bring together a group of NATO nation speakers with outstanding experience in this new area of
technology. First they will review the fundamentals of neural networks to serve as background so that advances in this new,
rapidly evolving technological area can be both understood and appreciated. They will then discuss a number of related
applications of direct benefit to the attendees. ... ——

Thus Lecture Series, sponsored by the Guidance and Control Panel of AGARD, has been implemented by the Consultant and
Exchange Programme.

Abreégeé

Les exigences techniques et opérationnelles toujours plus nombreuses ont amené des systémes de commandes de vol, de
guidage et de pilotage et de lancement d'engins fortement intégrés. La mise en oeuvre effective de ces systémes passe
inévitablement par le fusionnement et le dépouillement des données des capteurs.

Les rése.. 1x neuroniques, qui consistent en des €léments micro-informatiques mise en paralléle, sont trés prometteurs pour des
applications dans le domaine du guidage, du pilotage et de la navigation, en raison de leur capacité d'apprentissage.

Ce cycle de conférences rassemble un groupe de conférenciers des pays membres de 'OTAN ayant une expérience
exceptionnelle dans ce nouveau domaine technologique. Les aspects fondamentaux des réseaux neuroniques seront abordés
dans un premier temps pour permettre une estimation des progrés réalisés dans ce domaine en pleine expansion. Un certain
nombre d’applications connexes, d’un intérét particulier pour les participants, seront ensuite discutés.

Ce cycle de conférences est présenté dans le cadre du programme des Consultants et des Echanges, sous I'égide du Panel
AGARD du Guidage et du Pilotage.

v
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INTRODUCTION

Albert J. Shapiro
GEC-Marconi Electronic Systems Corp.

INTRODUCTION

The objective of this Lecture Series is to present both the fundamentals of neural networks and a
number of related Guidance, Navigation and Control (GNC) applications. The lecturers come from
several of the participating AGARD countries, specifically Canada, France, Germany, the United
Kingdom, and the United States. We will have nine lectures and conclude with a round-table
discussion involving all participants,

PERSPECTIVE

The digital computer has impacted GNC from two aspects. It makes possible the implementation of
large embedded systems utilizing complex algorithms and control logic. It has also become the
primary engineering tool which makes possible the design and analysis of such systems.

Advances in computational speed have enabled the real-time implementation of algorithm-intensive GNC
solutions for both aircraft and missiles. Application of Kalman filtering in hybrid-inertial

navigation and optimized flight control applications in airframes with complex flexure patterns are
examples of practically successful design and hardware/software integration. Kalman filtering

allows for less precise sensors to be synergistically integrated through software to provide

improved overall system performance.

Airborne missions have become more complex and stressful to the pilot. Scenarios now require threat
avoidance, rapid replanning and reconfiguration of navigation modes in the presence of jamming of
navigation aids such as GPS, emission management in heavily defended areas, and continuous
evaluation of avionics system status in terms of fault detection and isolation and fault tolerant
reconfiguration The need for reducing the pilot’'s workload through relegation of more diagnostic

and decision- making functions to the computer has become a necessity.

The application of Artificial Intelligence or Expert Systems .. these applicatiors is a significant

step in this direction. In conventional problem-solving, d=terministic responses are produced for
anticipated circumstances but unanticipated situations znnot be property processed. On the other
hand, the Expert System approach has additional information built into its Knowledge Base,
approximating the resources of a skilled problem solver. The Inference Engine provides the
mechanism to attack the problem with these resources.

However,to quote Dr. Bowen from one of his previous AGARD- sponsored lectures, *An expert system,
nonetheless, is quite similar to a real-time control system; for example, both are command and event
driven, have feedback loops, require the same instrumentation packages, and access the same kind of
data from conventional data bases.*

Compare this to the prospect of the machine duplication of functions of the human brain in which,
somehow, a natural network of neurons, composed of interconnected living nerve cells, thinks, feels,
learns and remembers.,
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Scientists and engineers are primarily interested in models inspired by bra’s, function and not
necessarily the achievement of biological fidelity. The objectives of angineering research in

artificial neural networks (ANNSs) are to understand how the brain's *computations* are organized and
carried out and then to understand the class of neural network models that replicate this
‘computational power®.

The increasing interest in ANNs has been aided by both technological advances as well a deeper
understanding of how the brain works. A driving force is the need for a new breed of powerful
computers to solve a variety of problems that are proving to be very difficult for conventional

digital computers Coqnitive tasks such as pattern recognition under real-world conditions, pattern
matching, and combinztorial optimization are some examples. Tasks such as recognizing a familiar
face, learning to speak and understand a natural language, and retrieving contextually appropriate
information from memory are typically performed naturally by the brain, but are beyond the reach of
conventionally programmed computers as well as the rule-based expert systems.

Neurocomputing, that is, nonprogrammmed adaptive information processing systems - artificial neural
networks- is a fundamentally new and different information-processing paradigm - the first

alternative to algorithmic programming. It holds the potential for significant breakthroughs in the

field of GNC - systems which can learn and rapidly accommodate to a wide variety of internal and

external stimuli occurring in nonpredetermined combinations. For example, rapid reaction to

unforeseen combinations/types of threats and aerodynamic changes, and autonomous vehicles capable of
self guidance are but examples of such leaps in capability.

With the foregoing in mind, this Lecture Series has two major themes: a tutorial introduction to
ANNSs anJ applications of the overall technology of ANN to the Guidance and Control field.

| hope that these papers will be as informative to you as | am sure they will be to me.

REFERENCES

1. Quinlaven, R. P., "Knowledge-Based Concents And Artificial Intelligence Applications To
Guidance And Control*, AGARD Lecture Series No. 155.

2.  Bowen, B. A, “Real Time Expert Systems: A Status Report', AGARD Lecture Series No. 155.

3. Vemur, V., "Attificial Neural Netwarks: Theoretical Concepts®, The Computer Society Of The
IEEE.
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INTRODUCTION TO NEURAL COMPUTING AND CATEGORIES OF
NEURAL NETWORK APPLICATIONS TO GUIDANCE, NAVIGATION AND CONTROL

by
Liwe K. Krogmann
Bodenseewerk Geriitetechnik GmbH
Intelligent Systems Division
Nussdorfer Str. - D-7770 Uberiingen
FRG

1. introduction

“Future computer generation imitates man*. “Many small cells are stronger than one large celil*. Such headlines are to be found in
the media in connection with a new kind of information processing, the so-cailed “Artificial Neural Networks (ANN)". As the term suggests,
these networks are an attempt to imitate the biological paradigm, our brain, in structure and function.

In the course of evolution our central nervous system (brain and spinal cord) has developed into a gigantic information- processing
network to which the sensory paths from sense organs lead and from which the motor paths lead to the muscles. All stimuli are supplied to the
central nervous system where they are processed into perceptions, sensations etc. and trigger off our actions.

In our organism many organ systems work together. Only the central nervous system communicates as superior system with all
others by collecting their information and coordinating their functions.

Basically similar problems will be found in future technical equipment and systems. Based on the structure of the biological brain,
the creation of artificial neural networks (abbreviated ANN) is aimed to technically realize capabilities and characteristics such as self-
organisation, learning and associative memory. This is achieved by the particular structure of neural networks where a large number of simple
processor elements (PE) are interconnected with uni-directional signal channels 10 singie- or multi-layer networks. All processing slements are
working in paraliel as compared to one central, extremely efficient computer for sequential arithmetic and/or symbolic information processing.

For the solution of a problem with a conventional computer (e.g. personal computer (PC)) an aigorithm, a procedure or a set of
rules has to be developed and coded in software, |.e. a sequence of instructions, These instructions are then carried out sequentially by the
computer.

By contrast, ANNs are not pregrammed but trained and leam like their biological paradigm, the brain. This is done by changing
the Intensity of the connections between the processor slements and by generating or eliminating structural connections. Thus the
“knowledge" of an ANN Hes in the topology and in the intensity of its connections, 1.e. the strength of the connection weights between the PEs,

With their capabilities of self-organisatio: , lsaming (sdaptation) and association, ANNs can be used wherever it is difficult to
describe & probiem aigorithmically, the development of the operational software is very cost-ntensive or wherever unprecise, incomplete or
even contradictory input data must be considered. Owing to the paralie! information processing ANN are fault tolerant and thus very reliable.

Ever-incraasing requirements placed on more demanding and complex systems on the one hand and financial resources getting
increasingly scarce on the other force us 1o filter out key i.chnologles showing the potential for 2 high cost-henefit ratic to meet the Increased
requirements. In this respect Astificial Neural Networks i spresent a nsw technology In the fieid of signal und information processing for
Guidance and Control systems. This article is intended to give a short Introduction into ANN and their applicat’on in guidance and control.

2. General Structure of Guidance and Control Problems

G.8.C. problems extend over several hisrarchically structured levels and the communication functions between these levels as
shown In Fig. 1. The represented interconnection of the «iferent function levels (scenario, mission, trajectory, air vehicle state) can e
concsived of as a hlerarchically structured control system. The objects on which G.a.C. functions are performed on the mentioned levels
represent the control piants. Information processing by wh:sh actuation is generated on all levels from sensor information represonts the
controlier which s of primary concern here (Fig. 2).

The controlling fesdback chain typical of ali G.a.C. levels requires functions such as recognizing and assessing the situation;
defining action goals; generating optimum or favorable solutions; decision-making; planning and finally performing as well as monitoring of
actions. Hence, behavior levels of mental capabilities can be assigned to the function levels (Fig. 1).
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CASCADED G.a.C. LEVELS
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CONTROL
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e 3
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FIGURE 1

COMMON BASIC STRUCTURE OF G.a.C. LEVELS

SCENARIO SENSORS
:‘g?ngfg: $| MISSION  pmemmmep! FOR
AIR VEHICLE SITUATION
3

MISSION SITUATION

AIR VEHICLE STATUS

ACTUATOR STATE
ACTVITY | DECISION | PLAN

CONTROLLER/INFORMATION PROCESSING

FIGURE 2

For reasons of human limitations in more demanding dynamio scenarios and in the operation of complex, highly integrated
systems, there is the necessity for extended automation of these functions on higher leveis such as trajectory control as weli as mission
management and control. Furthermore, the implementation of intelligent functions on lower leveis such as the fusion and interpretation of
sensor data, multifunctional use of sensor information and smart/brilliant sensors become inevitable.

The technical implementation of the intelligent G.a.C. feedback chain functions leads to a signal processing structure which
contains conventional arithmetic, symbolic and sub-symbolic slements (Fig. 3). Whereas the symbolic element can be implemented utilizing
expert-system software techniques, the sub-symbotic slement represents the appiication of ANNs. In building ANNs the brain is utilized as
biological paradigm. in the foliowing its function and structure are 10 be briefly explained as far as this is important for understanding ANNs.
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Activity Chain Implementation Elements

’ SENSOR DATA

KNOWLEDGE BASE DATA-BASE
- World Model - Real-Time Sensor-info
- Domain Knowledge - Facts About Object
- Problem Solving
Knowledge

PROBLEM SOLVING BASED ON KNOWLEDGE, SENSOR DATA AND OBJECT TASK

¥

CONVENTIONAL CONTROL SYMBOLIC CONTROL SUB-SYMBOLIC GONTROL

- Algorithmic/Numerical - Symbolic Processing - Neuronal Network
Processing Processing

INTERPRETER/COMBINER OF CONVENTIONAL SYMBOLIC, SUB-SYMBOLIC ELEMENTS FOR
(NOT OPTIMAL BUT) FAVORABLE/SATISFACTORY SOLUTION

¥

SCHEDULER TO INTEGRATE SOLUTION ELEMENTS TO SULUTION/ACTION PLAN
AND EXECUTION OF SOLUTION STEPS

‘ COMMANDED ACTIONS

krag

FIGURE 3

3. The blological brain as paradigm
Function and structure

Two ditferent functions of the brain are to be looked at. First, there is the rational thinking with & function In conacious steps
performed in & particular serial sequence. The digital computers we use today with & sequential processing of instructions listed in programs

{computers in so-called von-Neumann architecture) were developed in the 1940s based on the investigation of sequentially conscious
thinking.

On the other hand, there are the much more complex structuies o* unconscious thinking or unconscious intelligence. Here, a lot of
environment data a-e processed within the context of our sensory perowptior and characteristics extracted. The sensorimotor control of our
motions as well as three-dimensional thinking are largely unconscious. Thie structures of unconscious thinking provide the basis for the
enormous capacity of our memory. All of these functions performed uncor.eciousy are running paraliel in networks in which so-called neurons
interact due to a close interconnection and by means of electrochemical processes.

Qur brain Is organized as highly integrated system in functional units, which are interconnected via variable connections, with each
functional unit having about one thousand to one hundred thousand nerve osils. These each have ten to ten thousand equaliy variable, so-
called synaptic connections to other neurons. in total, our central nervous system roughly contsins the astronomical number of one hundred to
one thousand billion nerve cells. it is clear that this enormous information-processing system cannot be completely structured and
programmed prenatally even if genetic information Is taken into sccount. The brain has the capability to organize itself, learn and establish
associations.

To imitate biological Information processing models for different levels of organisation and of abstraction have to be considered,
First, there is the levet of the Individual neuron where it is a matter of representing the static and dynamic electrical characteristics as v.eil as
the adaptive behavior of the neuron. On the network level the interconnection of identical neurons to form networks is examined to describe
specific sensor- and motoricity-related functions such as filtering, projection operations, controlier functions in nonlinear, biological systems.
Networke on the mertal function leve! are the most complicated ones and comprise functions such as perception, solution of problems,
strategic proceeding etc. These are the networks on the highest level of biological information processing.

The Neuron

The nerve cell (the neuron) comprises the cell body (soma) which surrounds the ocell nucleus (Fig. 4). The cell body has a long
processus, the axon (or neurite) which ends in numerous ramifications which are attached 1o other oslis vig so-calied synaptic end heads thus
forming the synaptic connections between neurons. The synaptic connection Is to points where the cell body is expanded to so-called
dendrites.

3
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In the stationary slectro-chemical state the cell has a resting potential of about - 80 mV. ¥ a nerve oell is stimulated by another cell
via the synaptic connection, a short-time pole reversal of about 30 millivolts with a duration of 1 millisecond results (Fig. 5). This so-called
action or activation potential moves with up to 100 meters per second acroes the exon to neighboring ceils. The stimulus must exceed a
specific threshold so that this action potential is generated. The action potential immediately drops after its rise and the cell returns to the
resting state.

The degree of ceil stimulation, i.e. the denaity of information is determined by the frequency of the action potentials. The greater
the stimulus, the higher the sequence of impulses on the axon.

SIMPLIFIED BIOLOGICAL NEURON

FIGURE 4

What is very important for the learning and adaptive capabilities of biological neural networks is the so-called plasticity
characteristic of the synapses. This characteristic gives the neurons a memory such that their reaction to an impulse received depends on their
past history, i.e., for instance, how many impulses have already been transmitted by it before and in which sequence. in this process, the past
history is taken into acoount over minutes, hours, yes even over much longer periods of time (long-term memory).

Apart from the stimulating neurons there are also inhibitive neurons. These produce transmitters which increase the negative
charge in the interior and thus the resting potential of the receiving cell. These inhibitive neurons can blank out action potentials of stimulating
neurons, which are transmitting simultaneously, in the joint receiving neuron. Henocs, all potentials received via synaptic connections are
added on the receiving neuron; those from stimuiating neurons with a plus sign and those from inhibitive neurons with a minus sign. The sum
of all inputs triggers the neuron activation via a nonlinear activation function,

POTENTIAL
30 [aV)
EXCITATION PATTERN IN RESPONSE OF A 1 2 3 4
STIMULUS (ACTIVATION POTENTIAL) ¢ ' TN [maec)
FIGURE 5 |
RESTING
POTENTIAL
i THRESHOLD
-80 -~
ﬁsrmus

What is remarkable in this connection:

Today's digital computers have cycle times (time for processing a partial information) of 4 to 5 nanoseconds. The comparable cycle
time of & neuron (time for processing a stimulus up to readiness for recelving & new stimulus) is 4 to 5 milliseconds. Thus the digital computer
is a million times fastsr than the neuron. Despite this enormous difference in the time for processing a plece of information and for reacting to
a stimulus neural networks are in nany applications superior to digital computers with sequential processing of often extensive programs
regarding the execution time due to their parallel information proocessing.
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4, The Artificlal Meuron

On the basis of the biological neuron a simplified model of the artificial neuron is shown in Fig. 6. According to this figure, the
neuron acts like an integrator with fesdback which integrates the weighted presynaptic input signals and maps the postsynaptic activation x
onto the output signal by means of one of the nonlinear functions shown as examples. A threshold value b‘ Is aiso taken into account. Th
differential equation for the activation x, of the J-th neuron taking into consideration the leamed connecting’weights wy describes the short-
term behavior of the neurnn (ohort«nn‘rmmocy, STM) as a function of the input signals 8 i = 1,2...n, In this equation n‘n inhibitory inputs are
taken into account by the term hI (see fig. 6). Because activation is a nonnegative entity the condition x, > = 0 must be imposed.

The ability to learn and memorize something owing to the plasticitly property of the biologic neuron is in the case of the artificlal
neuron obtained by adaptation of the connecting weights. As a consequence, the short-term behavior of an element is made dependent on its
case-history (long-term memory, LTM).

MATH. MODEL OF THE NEURON

Mgty Inhibitory Inputs * *
- \l/

Presynaptic Paostsynaptic
Activity ] Output Signal

- -0 [ O el ——
5 S'n - e
.

ar
Activity (STM) Learning (LTM)

= B + [izn::'iisa] -] S em @ of (5 xjm)

FIGURE &

The differential equation for the adaptation of the connecting weights as shown in Fig. 8 describes the dynamic+ of leaming as a
function of the instantaneous values of the connecting weights (input weights), the activation and the input quantity. For controliing the

learning speed the function T (1) is also introduced. The connecting weight leading from the input i 1o the |-th neuron is called w".

Depending on the pariicular form of the x,- and w,-equations there are ditferent neural and network models (paradigms). A
partitioning into excitatory and inhibitory input signals IJ. M, not necessarily required if the former are considered to be positive and the

latter negative input signals and the activation xl can also assume negative vaiues.

A simplification of the neural model according to Fig. 8 considers the siationary activation status and is shown in Fig. 7. it was
introduced by McCulloch and Plits (1943). The resulting output signal is

l]-f(étlw”-b,) ("
i

instead of substracting the threshold b, from the sum of the weighted input signals, it can be interpreted as an additional weight

wjowlmueonmlnput'fwehmmo equation becomes

xl-é.'wl'+v.‘ﬁ’ @
i

Based on this equstion the artificial neuron can be represented as a basic processor element (PE) as shown in Fig.8. #t is
remarkabie that the summation of the weighted input signais is mathematioally identioal with the scalar pioduct of the input and weight vector.
Geometrically it is thus & measure for the MMMMW;MMIWWMNM!’MMMP&“
shown in the following equation:




1-6 :

n

5 '.w].-<!.w,)-H:Il'll!,ll-eo-(:.ﬂ,) ) ‘
I=1

Therefore the PE can be imagined to perform a vector pattern matching operation. Equation (3) can be looked at as the i
fundamental equation of all adaptive networks,

MC CULLOCH-PITS NEURON ARTIFICIAL NEURON
1
[ Sjetix}) s J
tan h (x}
—_— L or
J e 1/ {1 + exp(x))
[
l‘ = f S‘ WH -b‘ )
Local \)
Wi Memory -
L+ N
Sy f - § Sn
FIGURE 7 FIGURE 8

The PE according to Fig. 8 has two properties representing important preconditions for the arrangement in paraliel network
structures: Only local inputs and local w,, memory {l.e. no other information from a network is required); only one output signal is produced
which is propagated to other PEs or représents an output slement of a network.

Possibly there are a large number of potential noniinear output functions (threshold functions) The signum and sigmoid function,
hyperbolic tangent, binary step function, saturated ramp function are employed by the majority of PE types.

From a neurophysiological point of view the artificial neuron as described here is too simple. For the designer of advanced
adaptive systems this Is, however, no restriction. Utilizing important characteristio features of the biological pasadigm like Interconnection of &
large number of simpie PEs with paraliel processing and adaptible connection weights as well as nonlinear output functions ylelds the
possibllity for the design of processing units with unprecedented capabiiities.

8. Adapative Processing Elements

The Adaptive Linear Combiner (ALC) is known from adaptive signal processing. in Fig. 9 is 5= [xo "m""lk]T the input vector
andw, = ok "’1k"'“'|k] the weight vector of the ALC at time L The output quantity as the sum of the wolghmhnput quantities is

L
Yy 'Z Wi = o) = T “
t=0

The same relationship applies for a Finite impulse Response (FIR) mn;u A ["k LT 1]T is set there, X4 withi = 1,2...0-1)
being the filter input quantities delayed by one clock cycie sach (delay operatorz°').

| The weights are adapted by means of the LMS (lsast mean squares) aigorithm which minimizes the square of the deviation of the

: output quantity Y from the desired output quantity dk which Is considered to be known. For this deviation and its square the following

1 equations apply: ¥
]

o G s ® i

o2 =0l 257w +u n T e, o

o ————————————————————————————
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FIGURE 9

At each [teration in the adaptive process the gradient estimate becomes
OBl TR AL @

With this simple gradient estimate the LMS aigorithm is of stespest descent type by updating the weight vector according to

rn = Ty = Wy 90 ®

The steepest descent step size parameteriiregulates speed and stabiiity of adaptation. Adaptive signal processing based on the
ALC with LMS adaptation has been successtully applied in systems identification, adaptive nolse cancelling, adaptive prediction and others.

The Adaptive Linear Neuron (ADALINE) as the simplest nonlinear processing element is closaly related to the ALC, As shown in
Fig. 10 it utilizes the signum output function. Since the output signal from the summation is used for the error determination needed for
adaptation of the input weights, the LMS algorithm can be used here, as well,

The structure of the perceptron which is also shown in Fig. 10 is identical with that of the ADALINE. The only difference is that the
PERCEPTRON convergence algorithm uses the output signal L for error recognition for the weight adaptation. In both cases '210 introduced
to control the adaptation/learning rate.

Because of the nonlinear output function the ADALINE and PERCEPTRON become capabie of input signal classification. They are
capabie to recognize whether a particular input pattern belongs to a corresponding class or not. The classifying ability of the PERCEPTRON is
illustrated in Fig. 11. For this purpose a simple element with 2 inputs and 1 ouiput Is investigated. Assuming w, = const. after completion of
learning. The classification equation in thus case describes a straight line in the input signal plane (S, - 82 plans). This line separates the two
classes. f the PERCEPTRON has more than two Inputs the straight separating line changes into a plan (3 inputs) or to a hyperplane
(> 3 inputs). The PERCEPTRON adaptation algorithm converges when classes can be separated linearly. in practice, this is frequently not the
case of not known a priorl. Then, the arrangement of simple processor siements {s.g. PERCEPTRON) in muiti-layer networks is required.

Thus, the transition from the individual adaptive element to the arrangement of such elements to form artificial neural networks
becomes necessary.
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FIGURE 11
s Artificial Neural Nets (ANN)

Definition

According to a definition used in literature, the term artificlal neural net (ANN) means massively paraliel connected arrangements
of simple elements adaptive in general (but not necessarily) with hierarchically organized structure from which it is expected that they interact
with the objects of the real world in a similar way as the networks in biological systems do. ANN are accordingly structured from groups of
simple processor elements that are arranged in layers (Fig. 12). Each layer comprises a certain quantity of PEs that communicate via
connections with different adaptable weights. There are intra- and inter-layer connections.

For the structure of ANN, three basic elements are important: organized topology of interconnected celis \PEs), method of
encoding (leaming) information, method of recaliing information. They are dealt with briefly in the following.

Anfflcial Neural Network
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ANN, a nonlinear system

The ANN dynamics can be described by a set of nonlinear ditfersntial equations for an autonomous dissipative dynamic system.

. dx
X = ;tL - f] 041 XgenX) ]

with xs as real variable, i.0. neuron activation. Since the 11 do not explicitly depend on time, the system is said to be autonomous.
With dissipative systems, the flow in the phase-space characterized by the fieid of velocity vectors is

X0 = [% %y 1V =(t, £yt )" (10)
1 X2 %q 1%2h

contracting, l.e. dv/dt < 0

The volume contraction can be computed directly from the ditferential equations (9) without knowing the solution as follows

dv n R
—= jdxDIV(x) 1)
dt

A

with

9%,  d%, I, dt,

DN&): 4 =
Sx1 (9)(" ax1 axn

(12)

On account of dv/dt < 0 the volume eiement is mapped onto a subspace of the phase space asymptotically with the volume zero.
This subspace is & so-cailed attractor.

There are two kinds of attractors: periodical attractors as asymptotically stable iimit cycles and asymtotically stable fix points as
attractors which are primarily of interest to stable ANN. These asymptotic solutions (fix points for t = = >co ) do not depend on the initial
conditions. Moreover, the type of behaviour of & general non linear system, whether stable, unstable, oscillatory or chaotic, depends critically
on the input applied to it. For ANN, those nonlinear structures are tharefore suitable that achieve asymptotic stable fix points (attractors) for a
large range of input patterns l.e. large input signal space (input vector space). In these fix points, the knowledge contained in the input
patterns can be stored, or the input signals can be classified. This is accompiished by modification of f, during the learning (training) process
of the ANN.Upon completion of learning the w, are fixad. in the recall mode the system acts as a .hon’hrm memory (STM) dynamic system;
i.e. a content addressable memory (CAM). on this brief representation of non-inear system behaviour, the network operation can be
summarized as delineated in Fig. 13.
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Applying the direct method of Lyapunov, different theorems can be utilized to prove stability for ANN with fesdback connections. A
general design principle for absolutely stable information processing and memory storage by nonlinear feedback networks is the Cohen-
Grosshurg theorem with the j-th PE activation dynamics as shown in Fig. 14. For this class of nonlinear feedback systems two important cases
for the PE's activation dynamics can be discerned: the co-calied additive and shunting short-term memory equations as shown in fig. 15.
These equations respresent the basis for the design and analysis of a number of specialized networks as applied for particular problems. An
example for a stabie network structure belonging to the Cohen-Grossberg class is one with self-exciting recurrent connections and neighbour-
inhibiting ones, the so-calied compaetitive systems as shown in fig. 16,

STABILITY THEOREMS
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FIGURE 14
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FIGURE 15

Furthermore, ANN are realized in structures which show only feedforward connections. Thess are inherently stable if they comprise
stabie singile eslements which is achisvable by a corresponding output function.
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STABILITY THEOREMS, CONT'D

COMPETETIVE SYSTEMS

+ NETWORK STRUCTURES WITH SELFEXCITING RECURRENT GONNECTIONS AND
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FIGURE 16 e

In addition to giobal stability, convergence of a network plays an important role. The stability probiem occurs in the recalil phass of
ANN with feedback connections. The convergence concerns the iminimization of the error between the desired and the computed ANN output

signal. For this reason, the convergence is of importance in supervised leaming and must be specially verified for each corresponding ANN
model and the appropriate learning strategy.

it shall be mentioned that there are ANN applications whizh demand periodical attractors. The corresponding ANN are trained for
stable limit cycle oscillations.

Learning, Seif-Organisation (Encoding)

Contrary to the conventional proceeding in which the scolution of a problem must be available in form of an algorithm, the way to
solve a definite task is self-organized and learned in the case an ANN is used. The ANNs with hard-wired encoding are an exception to this. in

their case, the knowledge of the problem and its solution Is practically implemented by prenatal determination of the topolagy as well as the
strength of the connections by the designing expert.

In the case of seif-organization, the neural net forms an internal cognitive model of the task and thus replaces the mathematical
description. This is done by generating the suitable meshing and weights. The problem here is the determination of the modification strategy
which leads directly to the problem of learning.

As mentioned aiready, in case of a massively parallel net (Fig. 12) the knowledge lies with the way of linking the slements (PE) as
well as with the strength of the linkings (interconnection weights). if learning is understood as a modification of the knowledge, the network
interconnections can be changed in three ways: generation of new interconnections, loss of existing interconnections and change of existing
interconnection weights. From adaptive signal processing, parameter and structure-adaptive filter structures are known. Regarding ANNs the
procedure is that so far only the weight factors of given ANN structures are modified. By the Interconnection weight zero, an Interconnection
can be Interrupted (acts like & structural change) or conversely its efficiency can be increased by Increasing the weight factor.

As shown in Fig. 17, supervised and unsupervised leaming (encoding) can be discerned. The supervised learning by error
backcoupling has already been explained in chapter 5 when dealing with simple adaptive processing elements. For multi-layer nets, the
method of error backcoupling fails. Here, the so-calied back propagation aigorithm must be used for the supervised learning since for the PEs
on hidden layers the desired output cannot be classified. In the sxampie as treated in chapter @ a back propagation ANN is consldered in more
detail. The reinforced learning as mentioned In Fig. 17 is looked at again in chapter 8 when dealing with the neuro control problem.

1 no predefined training data are available or If their generation is too time and cost consuming, seif-organizing nets must be
utilized that learn unsupervisedly. Based on local information and Intemal ANN control, the net self-organizes the presented data and
discovers its emergent collective properties. Unsupervised Hebbian leaming (Donald Hebb, 1949) is important to many ANN designs. From
Fig. 18 it becomes evident that the Hebbian leaming rule computes a corelation between the presynaptic signal (c|) and the pomynlpgc
activation (x,) where a positive correlation {x > 0) is causing a weight Increase. Also & passive decay term (- olw, l) is often added in the i
equation. In'each case, only local information is required as compared to error backcoupling or error back propn&.ﬂon, i.e. the presynap!
signal on the input path, the postsynaptic activation of the PE and possibly the actual interconneciion welight vaiue. in many cases, the output
signal s, (x)) is used instead of the postsynaptic activation, For the class of Cohen-Grossberg structures as mentioned before, the so-called
passive ldo’:ly and gated decay unsupervised leaming equation for the long-term memory weight adaptation can be utilized (Fig. 19).
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Different lsarning pazadigms are making use of the sc-called competitive learning. in its simplest version, competitive learning
works in combination with recall as shown in Fig. 20 (off-line, unsupervisud). The weight vector w, that matches best with the input vector will
yield the highest activation of the associated PE. This is called the winning PE and only its input weight vector (g‘) - and none of the others - is
adjusted in proportion fo its euclidean diatance d. from the input vector (g). in an extension the output layer PEs ‘can compete with sach other
Intra-layer by sending positive feedback signais o iteelf (recurrent seif-excitation) and negative signals to all its neighbours (lateral neighbour
inhibition). This type of connection was already shown in Fig. 18 when mentioning competitive systems.
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COHEN-GROSSBERG THEOREM
STM AND LTM DESIGN EQUATIONS
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FIGURE 19

NNET; UNSUPERVISED LEANRING EXAMPLE

;';N'm”ff -RTNDOM ~LTM LEARNING (UNSUPERV,)
Y SMA TRAINING d
u i
VALUES VECTOR U
I+ e o d;
INPUT TRAINING
FEATURE VECTOR ¥, (n)
i
L V won | we
COMPUTE EUCLIDEAN L
DISTAN = TO ALL

WEIGH. (ECTORS 1 DIM. KFM - NNET

OUTPUT VECTOR
L

SELECT 2
df: mgn Hy-w; Nl

L
CORRECT Aw |~ d;

T INPUT VECTOR

FIGURE 20

Important Seif-organizing ANN models

a) Self-organizing Feature Map (SOFM)

The so-called seif-organizing feature map introduced by Kohonen consists of a one- or two-dimensional arrangement of the PEs,
The structure is completely meshed and processes real-valued input signais, The PEs simply form the sum of their weighted inputs. The

modification of the interconnection weights is made according to the previously mentioned method of competitive leaming (Fig. 20). However,
in addition to the weight vector of the winner PE .mmmma.wummmﬂmmmmmmmonunlmun
modified in this case. This area is reduced with incredsing training time.

In Fig. 21 a portion of & one-dimensional SOFM network with a two-dimensional input-{feature) space is shown (left). When an
input vector is presented the winning network node (PE) is identified corresponding fo the minimum euciidean distance between input and
weight vector of that node (see also Fig. 20). The weight vector of the winner (closest 10 input veotor) and those of its neighbours, regardiess of
their values, are updated to leam the ourrent input by moving closer to its position (Fig. 21, right).
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if the training vectors form individual boundaries in the feature space, the weight vectors will have adapted themseives after a
sufficient quantity of leaming steps in auch & way that they represent corresponding clasess. L.e. topologioally closs processing eloments
comrespond to physically adja~ent groups of input vectors (clasees) that is, GOFM's can compute the probability density function (PDF) of input
vectors and represent it implicitety by their own density.

Learning of SOFM is unsupervised but learning phase and appiication phase are separated from sach other. Thus, problems can
arise duting the application phase, in the case of a slow change of the input data or the ocourrence of data not leemned by the net.

SELFORGANIZING FEATURE MAP (SOFM)

Output

v

., InputX
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1-dim SOFM with 2-dim Feature Space Weight (Node) - Response upon Presentation
of an Input
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of Nodes — L]

U ST W

FIGURE 21

b) A. tive Resonance Theory (ART)

fo mimic cognitive functions autonomous selt-organizing systems require means that are capable of learning, memory and
recognition in an unpredictable worid v h no teacher available. Corresponding computational units must continue to learn in & stable fashion
where this new learning must notfoic  1selective forgetting of past acquired knowledge.

Grossberg and Carpenter (1987) designed the so-called ART network (Adaptive Resonance Theory) in order to solve the dilemma
between stability of the lsarned knowledge and the piasticity i.e. the capability of continued learning. ART networks are stable enough to
preserve significant post-acquired knowledge but nevertheless remain adaptabie snough to incorporate new information whenever it rnight
appear. The basic idea which lead to the ART was the cisscvery that & 3Hayer net (Fig. 22) with competitive learning can perform any mapping
from input (feature) space R™ 1o output (category, ciass) space R". The ART-net can be imagined as & two-layer structure retulting from
folding back the three-level network on itself as shown in Fig. 22. Thus the simpie ART module includes a bottom-up competitive learing
stage in combination with & top-down outstar system, both representing adaptive filters with associated LTM weights.

The main function of the ART is that the top-down atientive feedback encodes leamed expectations (leamed bottom-up) in
response to arbitrary temporal sequences of spatial input patterns in real time. A large enough mismaich at level F1 quickly resets the F,, code
before new learning can occur by triggering the orienting signal (Fig. 22). The F, code is reset if the degree of match is smaller than a
predetermined vigilance parameter. In this basic configuration of the ART, stored rns can be permanently updated on the one hand and
on the other hand, sdditional pattern classes in the net can be generated if the input pattern has no similarity to existing pattern ciasses.

The diffsrent methods of leaming and sei-organisation possess particular important characteristics (Fig. 23) which have to be
considersd when selecting the appropriate network for a given application. in Fig. 23 ARTMAP is a new architecture using multiple ARTs in a
network hierarchy with supervised associstive leaming. Also the Vector Associative Map (VAM)Network is a new design for fast unsupervised
realtime error-based leaming. it might play an important role in sensory motor conirol type problems. in its key features it s complementary to
the ART net.
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ANN Recall Operation

!n the preceding chapter, the gathering and storage of information and knowledge in an ANN was treated with some detail. The
recall coniarns the retrieval of information stored in ANN; Le. the STM function. The recall procedure s in ganeral given by the soiution of an
activation equation in connection with a partioular output function as shown in general form in Fig. 8. Similarty as for leaming, there are some
basic recall paradigme, from which for Cohen-Grossberg structures the additive and the shunting STM equations were given in Fig. 15.

Basic functions of trained ANN

As siready mentioned ANNs are actually content addressable memories (CAM) whioh either recall stored information or encode
new Input information seif-contained or supervised by & teacher. Applying ANNs the following basic functions can be performiad (see also

Fig. 13):




o

-l

Auto-association:
Hetero-association:
Classification:

With & nolsy or incomplete Input pattern (vector), the undisturbed compiete input pattern is generated as output.
input pattern and associated output pattern are differc it.
Each input pattern Is assigned to one of several classes which are defined by the output pattern,

In all three cases, the siorage of assaciative mappings is concemed. There are many applications where system elements must be

ANN Summary

described by such stimulus-response type mappings Including such as linear, nonlinear, logical or binary ones.

While Fig. 13 shows the operational processes, the main features are resummarized in the following: Artificial neural nets

- are computers that learn how to solve problems

problem solving is based on sampie data and learning mechanisms

they do not require expert knowledge representation, logical inferencing schemes, statistical algorithms or
specialist/analyst to develop and code a solution

they are trained to identify seif-containedly the key features and associations enabling them to distinguish ditferent
patterns

can learn on-line real-time or can be trained off-line by a sample data set
do require an appropriate architecture with sutficient capacity and paradigmatic learning/tialning scheme

they consist of three major elements: organized topology of interconnected processing elements, method of encoding
Information, method of recailing information.

Thelr strengths and weaknesses are summarized as follows:

Strength:

unique solutions based on w.ser data examples
no need to know aigorithms
less/no software needed, more hardware-processing power required

provides solutions to problems such as: pattern matching and recognition, data compression, near-optimal solutions to
optimization problems, non-linear system modelling and control, function approximation etc,

inherent paraliel processing structure yields faster solutions to a number of computation-intensive problems
internal generation of complex decision areas by means of non-linear combination of input vector components
robust parformance in view of noisy and disturbed input signals

Iinherently fault-tolerant

ANN weaknesses are that they are not applicable to all processing problems and do require training and test data examples - with
a few exceptions,

A comparison of ANN with conventional digital computers is summarized in table 1. This leads directly to some remarks regarding

the utilization of ANNs.
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General remarks for ANN application

Concerning the potentiat application it can be said that in many problems with only small or aimost no knowledge existing on the
object concerned, or where the parameters and states of this object can nelther be described mathematically nor by rules and facts in a
somehow reliable manner, the development of sequential algorithms for conventionsi processors is extremely difficult. The necessary
expenditure of cost and time for the algorithm and software development, verification and validation is correspondingly high.

Contrary to the sequential conventional information processing, the processing of information utilizing neural nets offers in generai
considerable advantages for all applications which are characterized by iimited knowledge on the object. In contrast with the programmed

sequential computing, ANN can be applied successfully for the solution of problems with Inexact and incomplete or sven contradictory input
data.

The ability of neural nets to learn by examples (training patterns) or even unsupervised Is of particular importance, It Is not
necessary to program a task-specific function or information, If representative example data are available in sufficient number and by training

of the net with thess data, dus to its generalization property the net can tolerate input data which are superimposed by noise and
disturbances, for the recognition of the irnut patterns.

By the use of non-linear processing elements in the network, multi-level nets can form complex decision areas in the feature

space. This corresponds mathematically to & non-inear mapping of the Input vector space onto that of the output vector. This allows also the
modelling of non-linear systems.

G.a.C. Applications of Artificial Intelligence
and Neural Computing
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7. Categories for ANN application

it has already been mentioned (chapter 2) that G.a.C. problems extend over several hisrarchically structured levels. In order to
perform G.a.C. functions on these levels, the implementation of a controlling feedback chain typical of all G.a.C. levels is required. Any
technica! apparatus which implements the fesdback chain in & real-time autonomous system requires the solution of perception problems as
associated with the sensors and cognition problems (e.g. recognition, hypothesis testing) as far as the remaining functions are concerned.
Very often in such systems, exploratory, goal-oriented actions will be performed resulting in a perception-cognition-action-recognition cycle.

it has bean shown (Fig. 3) that for the implementation of such quasi mental functions elements of artificial Intelligence are
required. In addition to more conventional expert system techniques ANN will gain an increasing imporiance within this scope. Therefore, as
shown in Fig. 24, the application potential for ANN covers many areas, extending from relatively simple applications in intelligent sensory and
actuator systems to highly complex mission and scenario management problems.
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Areas which represent potential categories for sucoessful ANN application and which are recurring in many G.a.C. systems are the
following:

. pattern recognition, signal classification
associative memories

. ssif-organization, leaming

- knowledge acquisition, adaptive expert systems

. adaptive signal processing

- control, stabllization, guldance

. decision finding

- optimization procedures

. integration and fusion of muitiple sensor data

. robotics, sensory-notor control

it falis beyond the scope of this paper to treat these categories here in more detail. On account of the importance for G.a.C., some
further considerations conceming neuro-control should, however, be made.

8. Neuro Control

The application of ANN for control, stabilization and guidance of objects can be considersd as a further step in the evolution of
control techniques to face up to the chalienges within the scope of more complex systems which require more adaptation and self-
organization capabilities. Thereby, the main problem It concerned with the real-time control of objects which are nonlinear and nolsy and
where the dynamics of which is time-varying, only incomplete or even unknown at all.

As common to all ANN, a characteristic feature of the neuro controliers is that they are not programmed but trained either
supervised off-line or unsupervised on-line.

As a generalized example the structure of a fault-tolerant, adaptive/learning neuro control system especially suitable for
applications on the lower levels of the G.a.C. systems hisrarchy (missiles, manned/unmanned air vehicles, robotics, mobile robots etc.) is
shown in Fig. 25. As can be seen by this example, neuro-control systems can include subsystems for pattern recognition in sensor data, failure
detection and identification, dynamic modelling etc. which are realized as ANN, however, are only of secondary importance for the actual
neuro-control problem,

Learning mechanisms based on error backooupling as shown in Fig. 10 are less suitabis for many neuro-control applications since
they 1equire & reference signal for supervised leaming for the outputs of sach single ANN slement (PE). These reference signals are often not
available from the natural environment.

NEURO-CONTROL

FIGURE 25

PERFORMANCE CRITERIA/
ENVIRONMENT
ADAPTIVE ANN
gl'.alliugNT MULTIPLE SENSOR
DATA FUSION FOR
(ACE) TARGETING
REINFORCEMENT
i ANN T ~——
p——e| STATECLASSI. | ﬁggROL CONTROL BLANT STATE
; FICATION :
; " || (ASE) ACTION
NEURO-CONTROLLER
ANN/ALGOR. ANN ANN
BEST AVALABLE FAILURE MULTIPLE/RED.
=1 SENSOR DATA FOR DETECTION SENSOR DATA
STATE DETERMINATION IDENTIFICATION :: m




1-19

The unsupervised Hebbian learning Is often siso not applicable to neuro-control. As already mentioned and shown in Fig. 18 it
takes information for the adaptation of the connection weights from the network itself (PE activation x,, PE input s‘). For many ANN
applications this is a very favourable characteristic since no communication with the outside worid is rcqulro& for leaming. However, this can
be a serious disadvantage for neuro-control applications if & particular performance criterion must be met which is referenced to the
environment.

The reinforcement learning paradigm (Fig. 26) takes this circumstance into account. Thereby, the :einforcement (r, ) is a measure
for the change of a behaviour or performance criteria and thus considers the success or failure of a control action. The eligibility (e,) of a
synaptical pathway is a function of the product resulting from the signal on this pathway and the output of the corresponding PE looked at for
a particular delayed pericd of time. Thus, the eligibility is a measure of up to which extent the input signal on a synaptic connection has aiso
led to a large output signal. The sligibility should decay {for example exponentially, Fig. 26) unless another high value of the eligibility resuits
from the simuitaneous occurance of an input signal and the resulting PE activation. The reinforcement learning is formally similar to the
Hebbian learning if the PE aciivation (xl) and the PE input (:‘) are replaced by reinforcement (r) and eligibility (e).

There a,2 a number of neuro-control paradigms applicabie to the design of the actual neuro-controlier. The interested reader must
refer to the avaifable literature.

As a frontend problem of neuro-control relevant data and facts from similar and/or dissimilar sensor information are to be
obtained. Therefore in two examples ANN designs for multiple redundant sensor data failure detection and identification as well as for target
identification are briefly presented in the following chapter.
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9. Example

As a first example the fauit tolerant measurement of the proprio-specific motion state of an air vehicle shall be looked at here. For
this purpose, a number of redundant sensors for the angulu. rate (e.g. gyros) as well as for the linear acceleration (accelerometers) are utilized.
In order to meet the reliability and fault tolerance requirements with a minimum number of sensors, the arrangement of the sensors is skewed
such that each sensor monitors several axes of the air vehicie. The probiem now is to detect faults and performance degradation and to
localize the possibly defective sensor among the redundantly available ones.

The block diagram of the signal processing slements required for this purpose is shown in Fig. 27. The measurement vector m
comprises the sensor outputs and is a function of the real physical motion state. Moreover, the amaneable measurement contains
contributions due to step, ramp- or stochastic type failures, represented by the failure vector € .

In a first ANN slement, so-calied validation or feature vectors 1T = {v., v, ..V,.] are determined by a projection of the
measurement vector ). in the case of a specified fixed sensor geometry a hard-wired A}QN%HQ. 97, loft network part) can be used where the
connection weights represent the projection mapping P.




The second ANN element performs the fault detection and localization which corresponds to a classification. The output signals
calculated by the network and accumulated in the classification vector y gives information which sensor is ocfective L.e. which class the
present input feature vector is belonging to. Correspondingly, only one of the output (u, in Fig. 27) has & high activation (~ 1) while the output
of the others is small. in the foliowing two network models are considered for the ci ication task ANN-module.
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mal Linear ative

lf the determination of the feature vector (v) is the result of & mathematically exact modelling of the relation betwean
characteristics and classes, an OLAM can be used. The process of encoding (leaming) the input information is then reduced to the aprhél

caiculation of the optimal weight matrix W which mappes the input vector v onto the classification vector y. The optimal weight matrix

yielding the least mean square correlation between input (v, } and output vector (l_lk) pairs (k = 1,2..m) is computed from the pseudo-inverse
of the matrix X as shown in fig, 27. Here, X = {v,,¥,..v_} Y = @1. gzgm) Grevilie’s recursive aigorithm can be utilized for example to

computs the pseudo-inverse of X. The recalling s sty the multiplicatian of ¢ by the optimal weight matrix W.

With OLAM, the total ANN for the faun Jdatection and localization is hardwired as shown in Fig. 27. It is a three layer network. The
number of input PE corresponds to the number of aensor signals, the number of PE in the hidden layer to the dimension of the feature vectors

and the number of PE in the output layer to the number of defects or failures to be localized.

Backprupagation network

it has already been mentioned that for the case of linearly unseparable classes multilayered nets must be used for classification.
The network model most widely used for this kind of appiication is the back propagation network, its function and the associated equations

are briefty reviewed here (Fig. 28).

Input and output variables are scaled. The PE of the input layer mersly memorize the present input signal. Each input layer PE is
connected with all PEs in the hidden layer, The latter multiply the input signals as well as the bias with the associated weight factors

» = 2 W+ W, (13)
i
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The output signal of the j-th hidden PE Is the sigmoid function of its activation x]

;- G'(xl) (14)
with

B = 1/ (146 (15)

The same functions are performed by each PE of the output layer while these are aiso completely interconnected with the PEs of
the hidden layer. There are no intra-layer connections. Therefore the back propagation ANN is a feed forward structure in which each elemont
of a follow-up layer receives inputs from all slements of the preceeding layer.

The leaming is performed by adapting the connection weights in such a way that the sum of the squares of the error between
network output variables (u) and the desired output variabies (d) of a set of training data is minimized.

Lot us assume that there are M input/output vector pairs !(m); y(m) for the training. Initially, the weights are set to sme!l random
values. After the processing of the m-th training data pair, the weights are adapted as follows:

W™ W™ Ay (16)
where aw™ for the weights between hidden and output faysr becomes
a wkj("’) =p6 (;k) 0,y () , (17)
and for the weights between input and hidden layer
] N ]
aw'™ =g 69166 @M, w V™ (18)
k=1

!
In this, 7 Is again a measure for the learning rate, 6'(x) is the derivative of the output function and v is the I-th input signal,
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As shown by equation (18} the error between actual and desired output is backpropagated from output to hidden-layer PEs.

Furthermore, there is & weight transport from output to hidden-layer.

The total network for fauit detection and localization (see also Fig. 27) is shown in Fig. 20. As can be seen, the backpropagation

ANN s preceeding by the network for the generation of teature vacturs already introduced in Fig. 27.
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The backpropagation part has been trained with training data !(m)' g(m) In approx. 2,000 supervised learning steps. Tests with test
data sets showed very good resuits also with very noisy feature vectors.

The optimization of the number of PEs in the hidden layer generally Is a probiem of the backpropagation net. The PEs of the input
and output layer are determined by the dimensions of the feature and ciassification vectors.

Neural target classification

For the classification of different targets in infrared (IR) images, a classifier has been designed on the basis of a backpropagation
ANN and compared with the results obtained with a polynomial classifier. The superiority of the neural classifier becomes evident from Fig. 30
where the detection rate is plotied against the faise alarrn rate for both classifiers. it shall be mentioned here finally that the design and the
training of the neural classifier requires far less expense as compared to the development of the conventional one.
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10. Implementation of neural nets
The following includes a brief summary concerning the possbilities available today for the realization or implementation of ANN:

- Software realizations for existing computers (super computers, massive parallel computers, conventional computers)
which are in principle not designed for ANN implementations. Thereby, a mapping of the ANN is made by virtuaiization on
systems and structures in which no or not all connections and processing elements of ANN are indeed physically existing,
l.e. they appear as memory areas and/or program structures.

- Electronical Iniplementations which are specifically designed for the layout of the ANN signal processing (bus-related
processors, co/attached processors, special Integrated circuits). Also analog devices are promising for high-speed ANN
implementations.

- Electro-optical or purely optical realizations. These will probably gain great importance in future.

11, Final Remarks

Concerning the artiticial neural nets, there is at present a big euphoria. if we lock at it soberly, however, it cannot be neglected that
there is a whole variety of unsettlod questions requiring intensive research. in consideration of the obtained knowledge state and if we are
aware of the stifl unsett!.sd quesuons, ANN can be used profitably for particular tasks already today.

The biological rarve, system is the living example for the fact that strongly meshed systems of an extremely high order can adopt
steble states. Moreove:, without supervised control, these biological systems are abie to act purposively and task oriented. By an extensive
comprehension of the biological pz.radigm, the brain, we must try and strive to recognize the regularities which might be of decisive use to us
for the stabilization and self-crganization of highly integrated complex dynamic systems.
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SUMMARY

Building intelligent systems that can model
human behavior has captured the attention of
the world for years. So, it is not surprising that
a technology inspired by the mind and brain
such as neural networks has generated great
interest. This chapter will provide an evolution-
ary introduction to neural networks by begin-
ning with the key elements and terminology of
neural networks and then developing the topol-
ogies, learning laws and recall dynamics from
this infrastructure. The perspective taken in this
paper is largely that of an engineer, emphasiz-
ing the application potential of neural networks
and drawing comparisons with other tech-
niques that have similar motivations. Mathe-
matics will be relied upon in many of the
discussions to make points as precise as possi-
ble.

1. OVERVIEW OF PAPER

This paper begins with a review of what
neural networks are and why they are so
appealing. A typical neural network is immedi-
ately introduced to illustrate several of the key
features, Then, the fundamental elements of a
neural network such as input and output pat-
terns, the processing element, connections, and
threshold operations are described, followed by
descriptions of neural network topologies,
learning algorithms, and recall dynamics. Next,
ataxonomy of neural networks is presented that
uses two of their key characteristics: learning
and recall. Finally, a comparison of neural net-
works and similar non-neural information pro-
cessing methods is presented.

2. WHAT ARE NEURAL NETWORKS

AND WHAT ARE THEY GOOD FOR?

Neural networks are information process-
ing systems. In general, neural networks can be
thought of as “black box” devices that accept
inputs and produce outputs. Some of the opera-
tions that neural networks perform include:

» classification - an input pattern is passed to
the network and the network produces a
representative class as output.

* pattern matching - an input pattern is passed
to the network and the network produces
the corresponding output pattern.

« pattern completion - an incomplete pattern
is passed to the network and the network
produces an output pattern that has the
wmissing portions of the input pattern filled
in.

* noise removal - a noise-corrupted input pat-
tern is presented to the network and the net-
work removes some (or all) of the noise and
produces a cleaner version of the input pat-
tern as output.

¢ optimization - an input pattern representing
the initial values for a specific optimization
problem are presented to the network and
the network produces a set of variables that
represent a solution to the problem.

» control - an input pattern represents the cur-
rent state of a controller and the desired
response for the controller and the output is
the proper command sequence that will cre-
ate the desired response.

Neural networks consist of layers of pro-
cessing elements and weighted connections.
Each layer in a neural network consists of a col-
lection of processing elements (PEs). Each PE
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collects the values from all of its input connec-
tions, performs a predefined mathematical
operation (typically a dot-product followed by
a threshold), and produces a single output
value.

Figure 1 illustrates a typical neural network
with three layers denoted Fy, Fy, and F5. The
bottom layer, Fx, accepts inputs into PEs x1,
X3, X3. A collection of weighted connections
(sometimes called “weights” or “connections’)
connect the Fx PEs to the Fy PEs. The Fy PEs,
y; and y,, are the hidden layer. Similarly, the
Fy PEs are connected to the Fz PEs which form
the output layer. The weight names serve as
both a label and a value. As an example, in Fig-
ure 1 the connection from the Fy PE x; to the
Fy PE y; is the connection weight wy, (the

connection from x; to y,). By adjusting the
connection weights, information is stored in the
network. The value of the connection weights
are often determined by a neural network learn-
ing procedure (although sometimes they are
predefined and hardwired into the network).By
performing the update operations for each of
the PEs the neural network recalls information.

There are two important features illustrated
by the neural network shown in Figure 1 that
apply to all neural networks:

* Local Operations. Each PE acts indepen-
dently of all others. A PE’s output relies
only on its constantly available inputs from
the abutting connections. The information
provided by the adjoining connections is all
a PE needs to process. Information from
other PEs where an explicit connection
does not exist is not necessary.

* Distributed Representation. The large num-
ber of connections provides a large amount
of redundancy and facilitates a distributed
representation. A large number of connec-
tions must be eliminated for a significant
amount of information to be destroyed.

The first feature allows neural networks to
operate efficiently in parallel. The last feature
provides neural networks with inherent fault-
tolerance and generalization qualities that are
very difficult to attain from typical computing
systems. In addition to these features, neural
networks can learn arbitrary nonlinear map-
pings given the proper topology, nonlinear pro-
cessing elements from nonlinear threshold
operations, 2nd appropriate learning rules. The
ability to learn nonlinear mappings simply by
presenting instances of input and output pat-
terns is a powerful attribute shared by few sys-
tems.

There are three primary situations where
neural networks are useful:

» Situations where only a few decisions are
required from a massive amount of data
(e.g. speech and image processing).




» Situations where nonlinear mappings must
be automatically acquired (e.g. loan evalu-
ations and robotic control).

» Situations where a near-optimal solution to

a combinatorial optimization problem is

required very quickly (e.g. airline schedul-

ing and telecommunication message rout-
ing).

To summarize, the foundations of neural
networks consist of an understanding of the
nomenclature and a firm comprehension of the
rudimentary mathematical concepts used to
describe and analyze neural network process-
ing. In a broad sense, neural networks consist
of three principle elements:

» Topology. A neural network’s organization
into interconnected layers.

* Learning. The adjustment of weights to
store information.

* Recall. Retrieving information stored in the
weights.

Sections 4, 5, and 6 describes each of these
elements, respectively. Prior to these discus-
sions, Section 3 will address the fundamental
components used to create a neural network:
connections, processing elements, and thresh-
old functions.
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3. DISSECTING NEURAL NETWORKS

A convenient neural network analogy is the
directed graph, where the edges and nodes cor-
respond to weights and PEs, respectively. In
addition to connections and processing ele-
ments, threshold functions and input/output
patterns are also basic elements in the design,
implementation and use of neural networks.
After a description of the terminology used to
describe neural networks, each of these ele-
ments will be examined in turn.

3.1. Terminology

Unfortunately, neural network terminology
remains varied, with a standard yet to be
adopted (although there is an effort to create
one, cf. Eberhart, 1990). To illustrate some of
the terminology introduced here, please refer to
Figure 2.

Input and output vectors (patterns) are
denoted by subscripted capital letiers from the
beginning of the alphabet. The input m patterns
are denoted as Ay = (ayq, agg, ..., agp)i k=1, 2,
..., m, and the output patterns as By = (b, bk,
ey bkp); k=1,2,..,m.

The PEs in a layer will be denoted by the
same subscripted variable. The collection of

PEs in a layer form a vector and these vectors
will be denoted by capital letters from the end

Figure 2: Two-layer Feedforward Neurai Network & Weight Matrix
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(bk1 ’ bk2 ’ bk3 ’
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of the alphabet. In most cases three layers of
PEs will suffice. The input layer of PEs is
denoted as Fx = (X}, X3, ..., Xp), Where each x;
receives input from the corresponding input
pattern component ay;. The next layer of PEs
will be the Fy PEs, then the Fy PEs (if either
layer is necessary). The dimensionality of these
layers depends on its use. Using the network in
Figure 2 as an example, the second layer of the
network is the output layer, hence the number
of Fy PEs must match the dimensionality of
output patterns, In this instance, the output
layer is denoted as Fy = (y1, y2, - yp), where
each y;is correlated with the j’th element of By.

Connection weights are stored in weight
matrices. Weight matrices will be denoted by
capital letters toward the middle of the alpha-
bet, such as U, V, and W. Referring to the exam-
ple in Figure 2, this two layer neural network
requires one weight matrix to fully connect the
layer of n Fx PEs to the layer of p Fy PEs. The
matrix shown in Figure 2 describes the full set
of connection weights between Fx and Fy,
where the weight w;; is the connection weight
from the i’th Fx PE, x;, to the j’th Fy PE, Yjr

3.2. Input and Output Patterns

Neural networks can not operate unless
they have data. Some neural networks require
only single pattermns and others require pattern
pairs. Note that the dimensionality of the input
pattern is not necessarily the same as the output
pattern. When a network only works with sin-
gle patterns, it is an autoassociative network.
When a network works with pattern pairs it is
heteroassociative.

One of the key issues when applying neural
networks is determining what the patterns
should represent. For example, in speech rec-
ognition there are many different types of fea-
tures that can be employed (Lippmann, 1989),
including: linear predictive coding coefficients,
Fourier spectra, histograms of threshold cross-
ings, cross-correlation values. The proper
selection and representation of these features

can greatly affect the performance of the net-
work.

In some instances the representation of the
features as a pattern vector is constrained by the
type of processing the neural network can per-
form. Some networks can only process binary
data, such as the Hopfield network (Hopfield,
1982; Amari, 1972), Binary Adaptive Reso-
nance Theo y (Carpenter & Grossberg, 1987a),
and the Brain- State-in-a-Box (Anderson, et al.,
1977). Others can process real-valued data such
as backpropagation (Werbos, 1974; Parker,
1982; Rumelhart, Hinton, & Williams, 1986)
and Learning Vector Quantization (Kohonen,
1984). Creating the best possible set of features
and properly representing those features is the
first step toward success in any neural network
application (Anderson, 1990).

3.3. Connections

A neural network is equivalent to a directed
graph (digraph). A digraph has edges (connec-
tions) between nodes (PEs) that allow informa-
tion to flow in only one direction (the direction
denoted by the arrow). Information flows
through the digraph along the edges and is col-
lected at the nodes. Within the digraph repre-
sentation, connections determine the direction
of information flow. As an example, in Figure 2
the information flows from the Fyx layer
through the connections, W, to the Fy layer.
Neural networks extend the digraph representa-
tion to include a weight with each edge (con-
nection) that modulates the amount of output
signal passed from one node (PE) down the
connection to the adjacent node. For simplicity,
tae dual role of connections will be employed.
A connection both defines the information flow
through the network and it modulates the
amount of information passing between to PEs.

The connection weights are adjusted during
a learning process that captures information.
Conriection weights that are positive valued are
excitatory connections. Those that with nega-
tive values are inhibitory connections. A con-




nection weight that has a zero value is the same
as not having a connection present. By only
allowing a subset of all the possible connec-
tions to have non-zero values, sparse connec-
tivity between PEs can be simulated.

It is often desirable for a PE to have an
internal bias value (threshold value). Panel (a)
of Figure 3 shows the PE yj with three connec-
tions from Fy {wy;, wy;, W3J] and a bias val-
ue, 9 Itis convenient to consxder this bias value
as an extra connection, w;, émanating from the
Fx PE xg, with the added constraint that xg is
always equal to 1 as shown in panel (b). This
mathematically equivalent representation sim-
plifies many discussions. Throughout the paper
this method of representing the bias (threshold)
values will be eraployed.

3.4. Processing Elements

The processing element (PE) is the portion
of the neural network where all the computing
is performed. Figure 3 illustrates the most com-
mon type of PE. A PE can have one input con-
nection, as is the case when the PE is an input
layer PE and it receives only one value from the
corresponding component of the input pattern,
or it can have several weighted connections, as
is the case of the Fy PEs shown in Figure 2
where there is a connection from every Fx PE
to each Fy PE. Each PE collects the informa-
tion that has been sent down its abutting con-
nections and produces a single output value.
There are two important qualities that a PE
must possess:

* Local Operations. Described earlier in §1.

* Single Output Value. Each PE produces a
single output value that is propagated
through the connections from the emitting
PE to other receiving PEs or it will be out-
put from the network.

These two qualities allow neural networks to
operate in parallel. The value of the PE and its
label use the same symbol. As an example, the
output PE label y; in Figure 3 represents both

the PEs placement in the network and its value.

There are several mechanisms for comput-
ing the output of a processing element. The out-
put value of the PE shown in Figure 3(b), y;, is
a function of the outputs of the preceding layer,
Fx=X (xl, X3, ..., Xp) and the weights from
Fx oy, W (wlf! » Wjs «-er Wpj ). Mathemati-

cally, the output o
and its weights,

yjisa functlon of its inputs

y; = F(X,W). (1)
34.1. Linear Combination

The most common computation performed
by a PE is a linear combination (dot-product) of
the input values, X, with the abutting connec-
tion weights, W, followed by a threshold oper-
ation (cf. Simpson, 1990a; Hecht-Nielsen,
1990; Maren, Harston & Pap, 1990). Using the
PE in Figure 3(b) as an example, the output y;
is computed using the equation

=f (Z X,-W.-,-) =f(XeW) @)

where W; = (wl W2;, ..., Wpj) and f is one of the
thresholé functxons descnbcd in §3.4. of this
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chapter. The dot product update has a very
appealing quality that is intrinsic to its compu-
tation. Using the relationship AW, =

cos(A, WMALI IWjl, it is seen that the larger
tlie dot product (assuming fixed length Ay and
Wj) the more similar the two vectors are.
Hence, the dot product can be viewed as a sim-
ilarity measure.

3.4.2. Mean-Variance Connections

In some instances PEs will have two con-
nections interconnecting PEs instead of just
one as shown in Figure 4. One use of these dual
connections is to allow one set of the abutting
connections represent the mean of a class and
the other the variance of the class (Lee & Kil,
1989; Robinson, Niranjan, & Fallside, 1988).
In this case, the output value of the PE depends
on the inputs and both sets of connections, i.e.
¥j = F(X,V;,W;), where the mean connections
are represented by Wj = (wyj, Woj, ..., Wp;) and
the variance connections Vj = (vy;, V2j, ..., Vp;)
for the PE y;. Using this sci]leme, the output of
yj is calculating the difference between the
input, X, and the mean, W;, divided by the vari-
ance, Vj, squaring the resulting quantity, and
passing this value through a Gaussian threshold
function to produce the final output value as

follows
n w..-—-x.2
-(E()) o

i=1 ¥

where the Gaussian threshold function is

2
80x) = exp(-) )

The Gaussian threshold function is described in
greater detail in §3.5.5.

3.4.3. Min-Max Connections

Another less common use of dual connec-
tions is to assign one of the abutting vectors,
say Vj, to become the minimum bound for the
class and the other vector, Wj, to becomes the
maximum bound for the same class. By mea-

Figure 4: Dual Connections

suring the amount of the input pattern that falls
within the bounds, a min-max activation value
is produced (Simpson, 1990b). Figure § illus-
trates this noticn using a graph representation
for the min and the ma:. points. The ordinate of
the graph rep-esents the value of each element
of the min and max vectors and the abscissa of
the graph represents the dimensionality of the
classification space. The input pattern, X, is
compared with the bounds of the class. The
amount of disagreement between the classes
bounds, *. ; and Wj, and input pattern, X, is
shown ‘it the shaded regions. The measure of
these zhaded regions produces an activation
value y .

A fuzzy set, A, is defined as a set of ordered
pairs, A = {x, mu(x)}. A direct analogy with
fuzzy sets is found when the min-max class is
the collection of points defining some set and
the classification function is the membership
function. When cast in this framework, each
class in a fuzzy min-max network is actually a
fuzzy set. The classification value produced
from the fuzzy min-max PEs represents the
degree to which an input pattern (object) fits
within each of the classes (fuzzy sets). Refer-
ring once again to Figure 5 and utilizing this
fuzzy logic scheme, the max bound, W, is the
maximum point allowed in class j and the min
bound, V;, is the minimum point allowed in
class j. Measuring the degree to which X falls
between V; and W; can be done by measuring




Figure 5: Min-Max Classification
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dimension

the relative amount of X that falls outside class
j- Rescaling the n-dimensional space to lie
within the unit cube allows the use of the fuzzy
supersethood and subsethood measures to pro-
duce classification values. (Kosko, 1986a). The
activation value of y; (the degree to which X
belongs to the class J) is defined as the degree
to which X is a superset of W; times the degree
to which V; is a subset of X, yielding the output
value

y; = (1 supersethood (X, W)))

X (1 - subsethood(X, V) 5

Itis easy to show that y; is bound to the closed
interval from0 to 1. When y;=1,X lies com-
pletely within the min-max bounds. When y; =
0, X falls completely outside of the min- max
bounds. When 0 < y; < 1, the value describes
the degree to which JX is contained by the min-
max bounds.

3.5. Threshold Functions

Threshold functions, also referred to as
activation functions, squashing functions, or
signal functions, map a PE’s (possibly) infinite
domain to a prespecified range. Although the
number of threshold functions possible is quite
varied, there are five that are regularly
employed by the majority of neural networks:
(1) linear, (2) step, (3) ramp, (4) sigmoid, and
(5) Gaussian. With the exception of the linear
threshold function, all of these introduce a non-
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linearity in the network dynamics by bounding
a PE’s output values to a fixed range.

3.5.1. Linear Threshold Function

The linear threshold function (see Figure
6(a)), produces a linearly modulated output
from the input x as described by the equation

fx) = ax (6)

where x ranges over the real numbers and o is
a positive scalar. If a = 1, it is equivalent to
removing the threshold function completely.

3.5.2. Step Threshold Function

The step threshold function, (see Figure
6(b)), produces only two values,  and . If the
input to the threshold function, x, equals or
exceeds the threshold value, 0, then the step
threshold function produces the value B, other-
wise it produces the value -, where B and 6 are
positive scalars. Mathematically this function
is described as

) = (Bif (x<0) @
SAR ST T

Typically the step threshold function produces
a binary value in response to the sign of the
input, emitting +1 if x is positive and O if it is
not. By making the assignments B=1, =0, and
0=0, the step threshold function becomes the
binary step function

fx) = (1 if (x20) ®

0 otherwise

which is common to neural networks such as
the Hopfield neural network (Amari, 1972,
Hopfield, 1982) and the Bidirectional Associa-
tive Memory (Kosko, 1988). One small varia-
tion of equation (8) is the bipolar threshold
function

_ 1if (x20)
fx) = (=1) otherwise

&)

which replaces the 0 output value with a-1. In




punish-reward systems such as the Associative
Reward-Penalty (Barto, 1985), the negative
value is used to ensure changes, where a 0 will
not.

Figure 6: Threshold Functions
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3.5.3. Ramp Threshold Function

The ramp threshold function, (see Figure
6(c)), is a combination of the linear and step
threshold functions. The ramp threshold func-
tion places an upper and lower bound on the
values that the threshold function produces and
allows a linear response between the bounds.
These saturation points are symmetric around
the origin and are discontinuous at the points of
saturation. The ramp threshold function is
defined as

Yif (x29)
fo) = {x if (1<)
-y if (x<-y)
where yis the saturation value for the function

and the points x =y and x = -y are where the dis-
continuities in f exist.

3.5.4. Sigmoid Threshold Function

The sigmoid threshold function, (see Figure
6(d)), is a continuous version of the ramp
threshold function. The sigmoid (S-shaped)
function is a bounded, monotonic, non-
decreasing function that provides a graded,
nonlinear response within a prespecified range.

(10)

The most common sigmoid function is the
logistic function

1
xX) = ——
&) 1+e™
where a>0 (usually o = 1), which provides an
output value from 0 to 1. This function is famil-
iar to statistics (as the Gaussian distribution
function), chemistry (describing catalytic reac-
tions), and sociology (describing human popu-
lation growth). Note that a relationship
between equation (11) and equation (8) exists.
When o = o0 in equation (11), the slope of the
sigmoid function between 0 and 1 becomes
infinitely steep and, in effect, becomes the step
function described by equation (8).

Two alternatives to the logistic sigmoid
function are the hyperbolic tangent

(11)




flx) = tanh(x) (12)

which ranges from -1 to 1, and the augmented
ratio of squares

2 2.4 .
) = ([x /(1+x%] 1f (x>0) (13)
0 otherwise
which ranges from 0 to 1.

3.5.5. Gauvssian Threshold Function

The Gaussian threshold function, (see Fig-
ure 6(e)), is a radial function (symmetric about
the origin) that requires a variance value, v >0,
to shape the Gaussian function. In some net-
works the Gaussian function is used in conjunc-
tion with a dual set of connections as described
earlier by equation (3) and in other instances
(Specht, 1990) the variance is predefined. In the
latter instance, the threshold function is

2
fa = exp(=-) (14)

where x is the mean and v is the predefined
variance.

4. NEURAL NETWORK TOPOLOGIES

The building blocks for neural networks are
in place. Neural network topologies now
evolve from the patterns, PEs, connections, and
threshold functions described in §3. Neural net-
works consist of layer(s) of PEs interconnected
by weighted connections. The arrangement of
the PEs, connections and patterns into a neural
network is referred to as a topology. After intro-
ducing some terminolo;y six common neural
network topologies will be described.

4.1. Terminology
4.1.1. Layers

Neural networks are organized into layers
of PEs. PEs within a layer ar¢ similar in two
respects: (1) the connections that feed the layer
of PEs is from the same source, eg. the Fy layer
of PEs in Figure 2 all receive their inputs from
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the input pattern and the layer of Fy PEs all
receive their inputs from the Fx PEs; and (2)
the PEs in each layer utilize the same type of
update dynamics, eg. all the PEs will use the
same type of connections and the same type of
threshold function.

4.1.2, Intralayer vs. Interlayer Connections

There are two types of connections that a
neural network employs: intralayer connec-
tions and interlayer connections. Intralayer
connections are connections between PEs in
the same layer. Interlayer connections are con-
nections between PEs in different layers. It is
possible to have neural networks that consist of
one, or both, types of connections.

4.1.3. Feedforward vs. Feedback Networks

When a neural network has connections
that feed information in only one direction,
from input to output, without any feedback
pathways in the network, it is a feedforward
neural network. The network is a feedback net-
work if the network has any feedback paths,
where feedback is defined as any path through
the network that would allow the same PE to be
visited twice.

4.2. Instars, Outstars & the Adaline

The two simplest neural networks are the
instar and the outstar (Grossberg, 1982). The
instar (see Figure 7(a)), is the minimal pattern
encoding network. A simple example of an
encoding procedure for the instar would take
the pattern, Ay = (ayg, a9, ..., ap), normalize it,
and use the values as the weights, Wj =(w i
W2js ..., Wp;), as shown by the equation

Ay:
v, = —2 (15)

n
2 Qi
i=1
foralli=1,2,..,n,
The dual of the instar is the outstar, (see

Figure 7(b)). The outstar is the minimal pattern
recal! sieural network. An output pattern is gen-

[ —
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Figure 7: Instar & Outstar

a2 , 83 ,°°9 akn)=Ak

erated from the outstar using the equation

foralli=1,2, ..., p, where the weights are
determined using equation (15) or one of the
learning algorithms described in §5.

The ADALINE, ADAptive LInear NEuron,
(Widrow & Hoff, 1960) has the same topology
as the instar (see Figure 7(a)), but the weights,
V;, are adjusted using the Least-Mean-Square
(LMS) algorithm (see §5.7.1.). In the frame-
work of adaptive signal processing, a similar
topology with the same functionality is referred
to a finite impulse response (FIR) filter (Wid-

row & Stearns, 1985). Applications of the FIR
filter to noise cancellation, echo cancellation,

adaptive antennas, and control are numerous
(Widrow & Wintcr, 1988).

4.3. Single-layer Networks: Autoassociation,
Optimization, and Contrast Enhancement

Beyond the instar/outstar neural networks
are the single layer intraconnected neural net-
works. Figure 8 shows the topology of a one-
layer neural network which consists of n Fy
PEs. The connections from each Fx PE to every
other Fx PE and itself, yielding a connection
matrix with n entries. The single-layer neural
network accepts an n-dimensional input pattern
in one of three ways:

* PE Initiaiizaiion Only. The input pattern is
used to initialize the Fx PEs and the input
pattern does not influence the processing
thereafter.

* PE Initialization and Constant Bias. The
input pattern is used to initialize the Fx PEs
and the input remains as a constant valued
input bias throughout processing.

« Constant Bias Only. The PEs are initialized
to all zeroes and the input pattern acts as a
constant valued bias throughout process-
ing.

One-layer neural networks are used for pat-
tern completion, noise removal, optimization,
and contrast enhancement. The first two opera-
tions are performed by autoassociatively
encoding patterns and typically using the input

Figure 8: One-layer Neural Network




pattern for PE initialization only. The optimiza-
tion networks are dynamical systems that stabi-
lize to a state that represents a solution to an
optimization problem and typically uses the
inputs for both PE initialization and as constant
biasec. Contrast enhancement networks use the
input patterns for PE initialization only and can
operate in such a way that eventually only one
PE remains active. Each of these one-layer neu-
ral networks are described in greater detail in
the following paragraphs.

4.3.1. Pattern Completion

Pattern completion in a single-layer neural
network is performed by presenting a partial
pattern initially, and relying upon the neural
network to complete the remaining portions.
As an example, assume a single layer neural
network has stored images of human faces. If
half of a face is presented to the neural network
as the initial state of the network, the neural
network would complete the missing half of the

face and output a complete face.
4.3.2. Noise Removal

Noise removal is similar to pattern comple-
tion in that a complete, noise-free, response is
desired from a pattern corrupted by noise. Fun-
damentally there is no difference between noise
removal and pattern completion. The differ-
ence tends to be entirely operational. Using the
previous image storage example, if a blurry or
splotchy image is presented to the neural net-
work, the output would be a crisp clear image.
Single-layer neural networks designed for pat-
tern completion and noise cancellation include
the Discrete Hopfield network (Hopfield,
1982), the Brain-State-in-a-Box (Anderson, et
al,, 1977), and the Optimal Linear Associative
Memory (Kohonen, 1984).

4.3.3. Neural Optimization

One of the most prevalent uses of neural
networks is optimization (Hopfield & Tank,

Figure 9: Local and Global Contrast Enhancement

‘— on-center values
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1985; Tank & Hopfield, 1986). Optimization is
a technique for solving a problem by casting it
into a mathematical equation that, when either
maximized or minimized, solves a problem.
Typical examples of problems approached
using an optimization technique include sched-
uling, routing, and resource allocation. The
neural optimization approach casts the optimi-
zation problem into the form of an energy func-
tion that describes the dynamics of a neural
system. If the neural network dynamics are
such that the network will always seek a stable
state when the energy function is at a minimum,
then the network will automatically find a solu-
tion, The inputs to the neural network are the
initial state of the neural network and the final
PE values represent the parameters of a solu-
tion.

4.3.4. Contrast Enhancement

Contrast enhancement in single-layer neu-
ral networks is achieved using on-center/off-
surround connection values. The on-center
connections are positive self-connections, i.e.
wii=a(a>0)foralli=1,2,..,n, that allow
a pattern’s activation value to grow by feeding
back upon themselves. The off-surround con-
nections are negative neighbor connections, i.e.
wij=-B (B >0) for all i not equal to j, that com-
pete with the on-center connections. The com-
petition between the positive, on-center, and
the negative, off-surround, activation values
are referred to as competitive dynamics. Con-
trast enhancement neural networks take one of
two forms: locally connected and globally con-
nected. If the connections between the Fx PEs
are only connected to a few of the neighboring
PEs (see Figure 9(a)), the result is a local com-
petition that can result in several large activa-
tion values. If the off-surround connections are
fully interconnected across the Fx layer (see
Figure 9(b)), the competition will yield a single
winner.

4.4. Two-layer Networks: Heteroassociation
and Classification

Two-layer neural networks consist of a
layer of n Fy PEs fully interconnected to a layer
of p Fy PEs as shown in Figure 10. The connec-
tions from the Fy to Fy PEs form the n-by-p
weight matrix W where w;; represents the

Figure 10: Examples of Two-layer
Neural Networks
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weight for the connection from i’th Fx PE, x;,
to the j’th Fy PE, y;. There are three common
types of two-layer neural networks: feedfor-
ward pattern matchers, feedback pattern match-
ers, and feedforward pattern classifiers.

4.4.1. Feedforward Pattern Matching

A two-layer feedforward pattern matching
neural network maps the input patterns, Ay, to
the corresponding output patterns, B, k=1, 2,
..., m. The network shown in Figure 10(a) illus-
trates the topology of this feedforward network.
The two-layer feedforward neural network
accepts the input pattern Ay and produces an
output pattern, Y = (yy, ¥2, ..., Yp), that is the
network’s best estimate of the proper output
given Ay as the input. An optimal mapping
between the inputs and the outputs is one that
produces the correct response By when Ay is
presented to the network, k = 1, 2, ..., m. Most
two-layer networks are concerned with finding
the optimal linear mapping between the pattern
pairs (Ag,By) (cf. Widrow & Winter, 1988;
Kohonen, 1984), but there are other two-layer
feedforward networks that also work with non-
linear mappings by extending the input patterns
to include multiplicative combinations of the
original inputs (Pao, 1989; Maren, Harsten &
Pap, 1990).

4.4.2. Feedback Pattern Matching

A two-layer feedback pattern matching
neural network, shown in Figure 10(b), accepts
inputs from either layer of the network, either
the Fx and Fy layers, and produces the output
for the other layer (Kosko, 1988; Simpson,
1990).

4.4.3. Feedforward Pattern Classification

A two-layer pattern classification neural net-
work, shown in Figure 10(c), maps an input
pattern, Ay, to one of p classes. By representing
each class as a separate Fy PE, the pattern clas-
sification task is then reduced to selecting the
Fy PE that best responds to the input pattern.
Most two-layer pattern classification systems
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utilize the competitive dynamics of global on-
center/off-surround connections to perform the
classification.

4.5. Multi-layer Networks: Heteroassocia-
tion and Function Approximation

A multi-layer neural network has more than
two layers, possibly many more. A general
description of a multi-layer neural network is
shown in Figure 11, where there is an input
layer of PEs, Fx, L hidden layers of Fy PEs
(Y1, Yg, ..., Y1), and a final output layer, F.
The Fy layers are called hidden layers because
there are no direct connections between the
input/output patterns to these PEs, rather they
are always accessed through another set of PEs
such as the input and output PEs. Although Fig-
ure 11 shows connections only from one layer
to the next, it is possible to have connections
that skip over layers, that connect the input PEs
to the output PEs, or that connect PEs together
within the same layer. The added benefit of
these PEs is not fully understood, but many
applications such as prediction and classifica-
tion are employing these types of topologies.

Multi-layer neural networks are used for
pattern classification, pattern matching and
function approximation. By adding a continu-
ously differentiable threshold function, such as
a Gaussian or sigmoid function, it is possible to
learn practically any nonlinear mapping to any
desired degree of accuracy (White, 1989). The
mechanism that allows such complex map-
pings to be acquired is not fully understood for
each type of multi-layer neural network, but in
general the network partitions the input space
into regions and a mapping from the partitioned
regions to the next space is performed by the
next set of connections to the next layer of PEs,
eventually producing an output response. This
capability allows some very complex decision
regions to be performed for classification and
pattern matching problems, as well as applica-
tions that require function approximation.

There are several issues that must be
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Figure 11: General Mulit-layer
Neural Network

COMPUTED OUTPUTS

addressed when working with multi-layer neu-
ral networks. How many layers is enough for a
given problem? How many PEs are needed in
each hidden layer? How much data is needed to
produce a sufficient mapping from the input
layer to the output layer? Some of these issues
have been successfully dealt with. As an exam-
ple, there have been several researchers that
have proven that three layers is sufficient to
perform any nonlinear mapping (with the
exception of a few remote pathological cases)
to any desired degree of accuracy with only one
layer of hidden PEs (see White, 1989 for a
review of this work). Although this is a very
important result, it still does not indicate what
the proper number of hidden layer PEs is, or if
the same solution can be obtained with more
layers but fewer hidden PEs and connections
overall.

There are several ways that multi-layer
neural networks can have their connection
weights adjusted to learn mappings. The most
popular technique is the backpropagation algo-
rithm (Werbos, 1974; Parker, 1982; Rumelhart,
Hinton & Williams, 1986) and its many vari-
ants (see Simpson, 1990a for a list). Other
multi-layer networks include the Neocognitron
(Fukushima, 1988), the Probabilistic Neural

Network (Specht, 1990), the Boltzmann
Machine (Ackley, Hinton & Sejnowski, 1985),
and the Cauchy Machine (Szu, 1986).

4.6. Randomly Connected Networks

Randomly connected neural networks are
networks that have connection weights that are
randomly assigned within a specific range.
Some randomly connected networks have
binary valued connections. Realizing that, a
connection weight equal to zero is equivalent to
no connection being present, binary valued ran-
dom connections create sparsely connected
networks. Randomly connected networks are
used in three different ways:

« Initial weights - The initial connection val-
ues for the network prior to training are pre-
set to random values within a predefined
range. This technique is used extensively in
error-correction learning systems (see §5.5
- §5.6. below).

Pattern preprocessing - A set of fixed ran-
dom binary valued connections are placed
between the first two layers of a multi-layer
neural network as a pattern preprocessor.
The use of such random connections can be
used to increase the dimensionality of the
space that is being used for mappings in an
effort to improve the pattern mapping capa-
bility. This approach was pioneered with
the early Perceptron (Rosenblatt, 1962) and
has been used recently in the Sparse Dis-
tributed Memory (Kanerva, 1988).

Intelligence from randomness - Early stud-
ies in neural networks spent a great deal of
effort analyzing randomly connected
binary valued systems. The model of the
brain as a randomly connected network of
neurons prompted this research. These
fixed weight, non-adaptive systems have
been studied extensively by Amari (1971)
and Rozonoer (1969).
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5. NEURAL NETWORK LEARNING

Perhaps the most appealing quality of neu-
ral networks is their ability learn. Learning, in
this context, is defined as a change in connec-
tion weight values that results in the capture of
information that can later be recalled. There are
several different procedures available for
changing the values of connection weights.
After an introduction to some terminology,
eight different learning methods will be
described. For continuity of discussion, the
learning algorithms will be described in point-
wise notation (as opposed to vector notation).
In addition, the learning algorithms will be
described using discrete time equations (as
opposed to continuous time). The use of dis-
crete-time equations makes them more accessi-
ble to digital computer simulations.

5.1, Terminology
5.1.1. Supervised vs. Unsupervised Learning

All learning methods can be classified into
two categories, supervised learning and unsu-
pervised learning. Supervised learning is a pro-
cess that incorporates an external teacher and/
or global information. The supervised learning
algorithms that will be discussed in the follow-
ing sections include error correction learning,
reinforcement learning, stochastic learning,
and hardwired systems. Examples of super-
vised learning include; deciding when to turn
off the learning, deciding how long and how
often to present each association for training,
and supplying performance (error) informa-
tion. Supervised learning is further classified
into two subcategories; structural learning and
temporal learning. Structural learning is con-
cerned with finding the best possible input-out-
putrelationship for each individual pattern pair.
Examples of structural learning include pattern
matching and pattern classification. The major-
ity of the learning algorithms discussed below
focus on structural learning. Temporal learning
is concerned with capturing a sequence of pat-
terns necessary to achieve some final outcome.
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In temporal learning the current response of the
network is dependant on previous inputs and
responses. In structural learning, there is no
such dependance. Examples of temporal learn-
ing include prediction and control. The rein-
forcement learning algorithm discussed below
is an example of a temporal learning procedure.

Unsupervised learning, also referred to as
self-organization, is a process that incorporates
no external teacher ar relies upon only local
information during tk. ; entire learning process.
Supervised learning organizes presented data
and discovers its emergent collective proper-
ties. Examples of unsupervised learning that
will be discussed in the following sections
includes Hebbian learning, principle compo-
nent learning, differential Hebbian learning,
min-max learning, and competitive learning.

5.1.2. Off-line vs. On-line Learning

Most learning techniques utilize off-line
learning. When the entire pattern set is used to
condition the connections prior to the use of the
network, it is called off-line learning. As an
example, the backpropagation training algo-
rithm (see §5.7.2.) is used to adjust connections
in multi-layer neural network, but it requires
thousands of cycles through all the pattern pairs
until the desired performance of the network
has been achieved. Once the network is per-
forming adequately, the weights are frozen and
the resulting network is used in recall mode
thereafter. Off-line learning systems have the
intrinsic requirement that all the patterns have
to be resident for training. Such a requirement
does not make it possible to have new patterns
automatically incorporated into the network as
they occur, rather these new patterns must be
added to the entire set of patterns and a retrain-
ing of the neural network must be done again.

Not all neural networks perform off-line
learning. There are some networks that can add
new information “on the fly” non-destructively.
If a new pattern needs to be incorporated into
the network’s connections, it can be done
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immediately without any loss of prior stored
information. The advantage of off-line learning
networks is they usually provide superior solu-
tions to difficult problems such as nonlinear
classification, but on-line learning allows thi
neural network to learn in-situ. A challenge in
the future of neural network computing is the
development of learning techniques that pro-
vide high-performance on-line leaming with-
out extreme costs.

5.2. Hebbian Correlations

The simplest form of adjusting connection
weight values in a neural network is based upon
the correlation of PE activation values. The
motivation for correlation-based adjustments
has been attributed to Hebb (1949) who
hypothesized that the change in a synapses effi-
cacy (its ability to fire, or as we are simulating
it in our neural networks, the connection
weight) is prompted by a neuron’s ability to
produce an output signal. If a neuron, A, was
active, and A’s activity caused a connected neu-
ron, B, to fire, then the efficacy of the synaptic
connection between A and B should be
increased.

5.2.1. Untounded PE Values and Weights

This form of learning, now commonly
referred to as Hebbian leaming, has been math-
ematically characterized as the correlation
weight adjustment

WiEW = Wil say by (17)
where:i=1,2,...,mj=1,2,..,p; x;is the value
of the i’th PE in the Fx layer of a two layer net-
work; y; is the value of the i"th Fy PE; and the
connection weight between the two PEs is w;,
In general, the values of the PEs can range over
the real numbers and the weights are unbound.
When the PE values and connection values are
unbound, these two layer neural networks are
amenable to linear systems theory. Neural net-
works like the Linear Associative Memory
(Anderson, 1970; Kohonen, 1972) employ this

type of learning and analyze the capabilities of
these networks using linear systems theory as a
guide. The number of patterns that a network
trained using equation (17) with unbounded
weights and connections is limited to the
dimensionality of the input patterns (cf. Simp-
son, 1990a).

5.2.2. Bounded PE Values & Unbounded
Weights

Recently, implementations that restrict the
values of the PEs and/or the weights of equa-
tion (17) have been employed. These networks,
called Hopfield Networks because John Hop-
field had excited people about their potential
(Hopfield, 1982), restrict the PE values to either
binary {0,1} or bipolar {-1,+1} values. Equa-
tion (17) is used for these types of correlations.

These discrete-valued networks typically
involve some form of feedback recall, resulting
in the need to show that every input will pro-
duce a stable response (output). By limiting the
PE values during processing, nonlinearities are
introduced in the system, eliminating some of
the linear systems theory analyses that had pre-
viously been performed. By adding feedback
into the recall process, a discrete valued, non-
linear, dynamical system is formed. The single
layer versions of this learning rule are
described as Hopfield nets (Hopfield, 1982)
and the two-layer versions as the Bidirectional
Associative Memory (Kosko, 1988). Some of
the earlier analysis of these networks was per-
formed by Amari (1972 & 1977) who used the
theory of statistical neurodynamics to show
these networks were stable. Later Hopfield
(1982) had found an alternative method to
prove stability. Also, the number of patterns
that neural networks of this form can store is
limited (McEleice, et al., 1987).

5.2.3. Bounded PE Values and Weights

Sometimes both the PE values and the
weights are bounded. There are two forms of
such systems. The first form is simply a running
average of the amount of correlation between
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two PEs. The equation

1
Wi+ =z (agby+ (k=1) wih) (18
describes the average correlation during the
presentation of the k’th pattern pair (Ay, By),
where: Ay = (ay1, a9, ..., 8ky); By = (byyp, byo,
bkp); and k is current pahern number and k
=1, 2, ..., m. The same information that was
stored using equation (17) is stored using equa-
tion (18), the connection weights are simply
bound to the unit-interval in the latter case.

The other example of a correlation neural
network learning equation with bounded PE
values and bounded weights is the sparse

encoding equation defined as
Wi =1 1if wi =1 (19)
0 otherwise

This equation assigns a binary value to a con-
nection if the PEs on each end of the connection
have both had the value of 1 over the course of
learning. The learning equation is-€quivalent to
performing the logic operation

Id
where M and U are the intersection and union
operations, respectively.

Neural networks that have utilized this
form of learning include the Leammatrix
(Steinbuch & Piske, 1963) and the Willshaw
Associative Memory (Willshaw, 1980). This
learning equation has a great deal of potential.
By sparsely encoding information in a binary
vector (say for example only 32 components
out of 1 million were set to 1, the others were
set to 0), it is possible to store a tremendous
amount of information in the network. The
problem lies in creating the code necessary to
perform such dense storage (cf. Hecht-Nielsen,
1990).

5.3. Principle Component Learning
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There are some neural networks that have
learning algorithms designed to produce, as a
set of weights, the principle components of the
input data patterns. The principle components
of a set of data are found by forming the cova-
riance (or correlation) matrix of a set of pat-
terns and then finding the minimal set of
orthogonal vectors that span the space of the
covariance matrix. Once the basis set has been
found, it is possible to reconstruct any vector in
the space with a linear combination of the basis
vectors. The value of each scalar in the linear
combination represents the “importance” of
that basis vectors (Lawley & Maxwell, 1963).
Itis possible to think of the basis vectors as fea-
ture vectors and the combination of ihese fea-
ture vectors is used to construct patterns.
Hence, the purpose of a principle component
network is to decompose an input pattern into
values the represent the relative importance of
the features underlying the patterns.

The first work with principle component
learning was done by Oja (1982). Oja reasoned
that Hebbian learning with a feedback term that
automatically constrained the weights could
extract the principle components from the input
data. The equation Oja uses is

Wi = Wil 4 by (s - Boyw) 2D

where: a; is the i’th component of the k’th
input pattern Ay, i=1,2, ..., n; by;is the j’th
component of the k’th output pattern By, j = 1,
2,...p;k=1,2,..,m; and o and P are positive
constants.

A variant of the work by Oja has been
developed by Sanger (1989) and is described
by the equation

i
ud
Wi = WY (akibkj ~by Y, )';.W,-;.)(22)
h=1

where the variables are similar to those of equa-
tion (21) with the exception of the non-zero,
time-decreasing learning parameter ¥, Equa-
tions (21) and (22) are very similar, the key dif-




ference is equation (22) includes more
information in the feedback term and uses a
decaying learning rate. There have been many
analyses and applications of principle compo-
nent networks. For a review of this work, see
Oja (1989).

5.4. Differential Hebbian Learning

Hebbian learning has been extended to cap-
ture the temporal changes that occur in pattern
sequences. This learning law, entitled Differen-
tial Hebbian Learning, has been independently
derived by Klopf (1986) in the discrete time
form and by Kosko (1986b) in the continuous
time form. The general form, some variants,
and some similar learning laws are outlined in
the following sections. There are several other
combinations that have been explored beyond
those that are presented in this section. A more
thorough examination of these Hebbian learn-
ing rles and others can be found in Bario
(1984) and Tesauro (1986).

5.4.1. Basic Differential Hebbian Learning

Differential Hebbian Leamning correlates
the changes in PE activation values with the
equation

wile+1) = w0 + Ax(e- DAy()  (23)

where: Ax;(t) = x;(t) - x;(t-1) is the amount of
change in the i’th Fx PE at time t; and ij(t—l)
= yj(t-l) - yj(t-2) is the amount of change in the

j'thFy PE attimet 1.
5.4.2. Drive-Reinforcement Learning

Klopf (1986) uses the more general case of
this equation that captures changes in Fx PEs
over that last k time steps and modulates each

change by the corresponding weight value for
the connection. Klopf’s equation is

Wit +1) = w () + Ay,
k
X Y olt—h)|ws~h)|Axt-h) (24)
h=1

where: a(t-h) is a decreasing function of time

that regulates the amount of change; and w;;(t)
is the connection value from the x; to y; at time
t. Klopf refers to the pre-synaptic changes,
Axi(t-h), h =1, 2, ..., k, as drives and the post-
synaptic change, Ayj(t), as the reinforcement,
hence the name drive-reinforcement learning.

5.4.3. Covariatice Correlation

Sejnowski (1977) has proposed the covari-
ance correlation of PE activation values in the
equation

Wi = Wit il (ay=X) (by=¥)] @5)
where the bracketed terms represent the covari-
ance, the difference between the expected
(average) value of the PE activation values and
the input and output pattern values. The param-
eter 0 <y < 1 is the learning rate. The overbar
on the PE values represents the average value
of the PE.

Sutton & Barto (1981) have proposed a similar
type of covariance learning rule, suggesting the
correlation of the expected value of xi with the
variance of y; as expressed by the equation
ld — —
W:'}ew = W:'} + lx; (bkj "Yj)
5.5. Competitive Learning

(26)

Competitive learning, introduced by Gross-
berg (1970) and Malsburg (1973) and exten-
sively studied by Amari & Takeuchi (1978),
Amari (1983) and Grossberg (1982) is a
method of automatically creating classes for a
set of input patterns. Competitive learning is a
two-step procedure that couples the recall pro-
cess with the learning process in a two-layer
neural network (see Figure 12). In Figure 12
each Fx PE represents a component of the input
pattern and each Fy PE represents a class (see
also §4.3.4.).

Step 1: Determine winning Fy PE. An input
pattern, Ay, is passed through the connections
from the input layer, Fx, to the output layer, Fy,
in a feedforward fashion using the dot product
update equation




”n
yj = Z a,“-wij (27)
i=1

where: x; is the i’th PE in the input layer Fy, i
=1,2, ..., n; yjis the j'th PE in the output layer
Fy,j=1,2,..., p; and wj; i3 the value of the con-
nection weight between x; and y;. Each set of
connections that abut a Fy PE, say y;, as a ref-
erence vector W, = (wlj, Wjs vers w,,j) represent-
ing the class j. ﬂc reference vector, W, that is
closest to the input, A, should provide the
highest activation value. If the input patterns
Ay, k=1,2,...,m,and the reference vectors Wi,
j=1,2,...,p, are normalized to Euclidean unit
length, then the following relationship holds

n
0< (yj =A,oW;= Zak‘-wij)s 1 (28)
i=1

where the more similar Ay is to W, the closer
the dot product is to unity (see §3.4.1.). The dot
product values, y;, ave used as the initial values
for winner-take-all competitive interaciions
(see §4.3.4.). The re.»ilt of these interactions is
identical to searching the Fy PEs and finding
the PE with the largest dot product vaiue. Using
the equation

1if (yj>y,‘) for all (j=k)

) (29)
0 otherwise

yi =

The Fy PE with the highest dot product value is
called the winning PE. The reference vector
associated with the winning PE is the winning
reference vector.

Step 2: Adjust winning Fy PE’s connection val-
ues. In competitive leaming with winner-take-
all dynamics like those described above, there
is only one set of connection weights adjusted -
the connection weights of the winning refer-
ence vector. The equation that automatically
adjusts the winning reference vector and no
others is

new old

wii = wy +a)y;(a—w; (30)
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Figure 12: Competitive Learning
Neural Network

Each Fy PE represents a class
P ————

A A

(81 » 8k2 , Bk , o ’akn)=Ak

where oi(t) is a positive, monotonically
decreasing function of time. The result of this
operation is the motion of the reference vector
toward the input vector. Over several preseata-
tions of the data vectors (on the order of 10,000
or more), the reference vectors will become the
centroids of data clusters (Kohonen, 1986).

There have been several variations of this
algorithm (cf. Simpson, 1990a), but one of the
most important is the conscience mechanism
(DeSieno, 1988). By adding a conscience to
each Fy PE that only allows an Fy PE to
become a winner if it has won an equiprobable
number of times. The equiprobable winning
constraint improves both the quality of solution
and the learning time. Neural networks that
employ competitive learning include Learning
Vector Quantization (Kohonen, 1984), Self-
Organizing Feature Maps (Kohonen, 1984),
Adaptive Resonance Theory I (Carpenter &
Grossberg, 1987a), and Adaptive Resonance
Theory II (Carpenter & Grossbery,, 1987b).

5.6. Min-Max Learning

Min-max classifier systems utilize a pair of
vectors for each class (see §3.4.3.). For the




class j, represented by the PE y; and defined by
the abutting vectors V; (the min vector) and W;
(the max vector). Learning in a min-max neurai
system is done using the equation

Vi = min(ay, vj°) 31)
for the min vector and
Wi = max(ay, ') (32)

for the max vector. If the min and max vectors
are constrained to lie between 0 and 1 along
each dimension, it is possible to think of each
reference vector as a fuzzy set (Simpson,
1990b). Within this framework, the fuzzy inter-
section of two vectors, Ay & Vj, is represented
by equation (31) and the fuzzy union of two
vectors, Ay & W, is represented by equation
(32).

5.7. Error Correction Learning

Error correction learning adjusts the con-
nection weights between PEs in proportion to
the difference between the desired and com-
puted values of each output layer PE. Two layer
error correctior: learning is able to capture lin-
ear mappings between input and output pat-
terns. Multi-layer error correction learning is
able to capture nonlinear mappings between the
inputs and outputs. In the following two sec-
tions, each of these learning techniques will be
described.

5.7.1. Two-Layer Error Correction Learn-
ing

Consider the two-layer network shown in
Figure 13. Assume that the weights, W, are ini-
tialized to small random values (see §4.6.). The
input pattern, Ay, is passed through the connec-
tions weights, W, to produce a set of Fy PE val-
ues, Y =(y1,¥2, ..., ¥p). The difference between
the computed output values, Y, and the desired
output pattern values, By, is the error. Comput-
ing the error for each Fy PE is done using the
equation

Figure 13: Two-Layer Network

(Dky o b2 , Ppg , ooe bkp)=Bk

(k1 , 8 , 8k3 , **° , 8k ) =Ag

The error is used to adjust the connections
weights using the equaticn
Wit = wi' +aday, (34)

where the positive valued constant o is the
learning rate

The foundations for the learning rule described
by equations (33) and (34) are solid. By realiz-
ing that the best solution can be attained when
all the errors for a given pattern across all the
output PEs, y;, is minimized, the following cost
function can be constructed

1< 2

E= 3 .21 (byj—)) (35)
] -

When E is zero, the mapping from input to out-
put is perfect for the given pattern. By moving
in the opposite direction of the gradient of the
cost function with respect to the weights, the
optimal solution can be achieved (assuming
each movement along the gradient, o, is suffi-
ciently small). Restated mathematically, the
two-layer error correction learning algorithm is
computed as follows




= (=P (36)

Although the cost function is only with respect
to a single pattern, it has been shown (Widrow
& Hoff, 1960) that the motion in the opposite
direction of the gradient for each pattern, when
taken in aggregate, acts as a noisy gradient
motion that still achieves the proper end result.

The Perceptron (Rosenblatt, 1962) and the
Adaline (Widrow & Hoff, 1960), two of the
most prominent early neural networks,
employed error correction learning. In addi-
tion, the Brain-State-in-a-Box (Anderson, et
al., 1977) uses the two-layer error correction
procedure described above for one-layer
autoassociative encoding.

5.7.2. Multi-layer Error Correction Learn-
ing

A problem that once plagued error correc-
tion learning was its inability to extend learning
beyond a two-layer network. By remaining a
two-layer learning rule, only linear mappings
could be acquired. There had been several
attempts to extend the two-layer error correc-
tion leaming algorithm to multiple layers, but
the same problem kept arising: How much error
is each hidden layer PE responsible for the out-
put layer PE error? Using the three-layer neural
network in Figure 14 to explain, the problem of
multi-layer learning (in this case three-layer
learning) was calculating the amount of error
each hidden layer PE, y;, should be credited for
an output layer PE’s error. This problem, called
the credit assignment problem (Barto, 1984;
Minsky, 1961), was solved through the realiza-
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tion that a continuously differentiable threshold
function for the hidden layer PEs would allow
the chain rule of partial differentiation to be
used to calculate weight changes for any weight
in the network. Using the three layer network in
Figure 14 to illustrate the multi-layer error cor-
rection learning algorithm, the output error
across all the Fz PEs is found using the cost
function

1« 2
J=

The output of a Fz PE, z;, is computed using the
equation

P
1=
and each Fy (hidden layer) PE, y;, is computed
using the equation

n

rp= Y ayvy  (39)
A=1

y; =f(r);

Figure 14: Three-Layer Network

(bk‘l y b2 , Dig, see bkq)=8k




Baeh B i

2-22

and the hidden layer PE threshold function is

1
1+e

Using the same principle as described in the
previous section, the weight adjustments will
be performed by moving along the cost func-
tion in the opposite direction of the gradient to
a minimum (where the minimum is considered
to be the input-output mapping producing the
smallest amount of total error). The connection
weights between the Fy and F PEs are
adjusted using the same form of equation
derived earlier for two-layer error correction
learning, yielding

v = (40)

dE _ o9 |1 I 2
T W[i 2 (by=2) }
ij gL =1
= (bkj“zj))’.‘
=8y, (41)

Next, the adjustments to the connection
weights between the Fx and Fy PEs are found
using the chain rule of partial differentiation,
yielding

OE _ QE9Y0r; ox,
ov,; 0Y,0r;0x,0v,;

p
= 2 b=y ywpf (rdawy, (42
I=1

The multi-layer version of this algorithm is
commonly referred to as the backpropagation
of errors learning rule, or simply backpropaga-
tion. Utilizing the chain rule, it is possible to
calculate weight changes for an arbitrary num-
ber of layers. The number of iterations that
must be performed fo. each pattern in the data
set is large, making this off-line learning algo-
rithm very slow to train. Using equation (41)

and (42), the weight adjustment equations are

d OE
W:-;Pw = W:-;- - -a—‘;‘; (43)
and
JE
Vi = Vi By “4)

where o and P are positive valued constants
that regulate the amount of adjustments made
with each gradient move.

Extending the backpropagation to utilize
mean-variance connections (see §3.4.2.)
between the Fy and Fy PEs is straightforward
(Robinson, Niranjan & Fallside, 1988). Figure
15 shows the topology of a three-layer mean-
variance version of the multi-layer error correc-
tion learning algorithm. The hidden layer, Fy,
PE values are computed with the equation

n - 2
y =g r; = 2 (“m h.akh) 45)

h=1
where uy; represents the mean connection
strength between the h’th Fx and i’th Fy PEs,
v is the variance connection strength between
tne h’th Fy and i’th Fy PEs, and the threshold
function is the Gaussian function

gx) = 2 (46)

The output PE, Fz, values are then formed from
the linear combination of the hidden layer
Gaussians using the equation

4
5= XYW

i=1

(47)

where w;; is the connection strength between
the i’th Fy and j’th Fz PEs. Computing the gra-
dients for each set of weights yields the follow-
ing set of equations




Figure 15: Three-Layer Network
with Mean-Variance Connections
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Each arrow between the Fy and Fy
PEs represents two connections.
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j=1 Vi
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oE

awy, ~ =7
Using these equations, the update equations are
then

(50)

unew _ uol.d _ oE

W= i O (51)
OF

i = Vi~ B (52)
]
d_ OF

Wi =W T G

where o, B, 'y are positive valued constants that
regulate the amount of adjustments made with
each gradient move.

The backpropagation algorithm was intro-
duced by Werbos (1974), and later indepen-
dently rediscovered by Parker (1982) and
Rumelhart, Hinton, and Williams (1986). The
algorithm presented here has been brief. There
are several variations on the algorithm (cf. Sim-
pson, 1990a) including: alternative multi-layer
topologies, metho s of improving the learning
time, methods for optimizing the number of
hidden layers and the number of hidden layer
PEs in each hidden lay=r, and many more.
Although there are many issues that remain
unresolved with the backpropagation of errors
learning procedure, such as proper number of
training parameters, the existence of local min-
ima during training, the extremely long training
time, and the optimal number and configuration
of hidden layer PEs, the ability for this learning
method to automatically capture ncn- linear
mappings remains a significant strength.

5.8. Reinforcement Learning

The initial idea for reinforcement learning
was introduced by Widrow, Gupta & Maitra
(1973) and has been championed by Williams
(1986). Reinforcement learning is similar to
error correction learning in that weights are
reinforced for properly performed actions and
punished for poorly performed actions. The dif-
ference between these two supervised learning
techniques is that error correction learning uti-
lizes more specific error information by collect-
ing error values from each output layer PE,
while reinforcement learning uses non-specific
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error information to determine the performance
of the network. Where error-correction learn-
ing has a whole vector of values that it uses for
error correction, only one value is used to
describe the output layer’s performance during
reinforcement learning. This form of learning is
ideal in situations where specific error informa-
tion is not available, but overall performance
information is, such as prediction and control.

A two-layer neural network such as the one
found in Figure 16 serves as a good framework
for the reinforcement learning algorithm. The
general reinforcement learning equation is

e (54)
where, r is the scalar success/failure value pro-
vided by the environment, 8; is the reinforce-
ment threshold value for the j’th Fy PE, e;;is
the canonical eligibility of the weight from the
i'hFxPEtothej'thFYPE,and0<a<lisa
constant-valued learning rate. In error correc-
tion learning, gradient descent in error space
controlled learning. In reinforcement learning
it is gradient descent in probability space. The
canonical eligibility of wj; is dependant on a
previously selected probability distribution that
is used to determine if the computed output
value equals the desired output value and is
defined as

) -
= W +o(r Gj)e,.j

e = é—a‘;;i—j]ngi (55) J

where g; is the probability of the desired output
equalling the computed output, defined as )

o TTTNTS

which is read as the probability that y; equals
by; given the input, Ay, and the corresponding
weight vector, Wi

Neural networks that employ reinforcement
learning include the Adaptive Heuristic Critic
(Barto, Sutton & Anderson, 1983) and the
Associative Reward-Penalty neural network
(Barto, 1985).

5.9. Stochastic Learning

Stochastic learning uses random processes,
probability, and an energy relationship to adjust
connection weights in a multi-layered neural
network. Using the three-layer neural network
shown in Figure 14 to illustrate the learning
algorithm, the stochastic learning procedure is
described as follows:

1. Randomly change the output value of a hid-
den layer PE (the hidden layer PEs utilize a
binary step threshold function).

2. Evaluate the change using the resulting dif-
ference in the neural network’s energy as a

Figure 16: Reinforcement Learning Neural Network
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guide. If the energy after the change is lower,
keep the change. If the change in energy is not
lower after the random change, accept ii:2
change according to a pre-chosen probability
distribution.

3. After several random changes, the network
will eventually become “stable.” Collect the
values of the hidden layer PEs and the output
layer PEs.

4. Repeat steps 1-3 for each pattern pair in the
data set, then use the collected values to statis-
tically adjust the weights.

5. Repeat steps 1-4 until the network perfor-
mance is adequate.

The probabilistic acceptance of higher
energy states, despite poorer performance,
allows the neural network to escape local
energy minima in favor of a deeper energy min-
imum. This learning process, founded in simu-
lated annealing (Kirkpatrick, Gelatt & Vecchi,
1983), is governed by a “temperature” parame-
ter that slowly decreases the number of proba-
bilistically accepted higher energy states.

The Boltzmann Machine (Ackley, Hinton
& Sejnowski, 1985) was the first neural net-
work to employ stochastic learning. Szu (1986)
has refined the procedure by employing the
Cauchy distribution function in place of the
Gaussian distribution function, resulting in a
network that converges to a solution much
quicker.

5.10. Hardwired Systems

There are some neural networks that have
their connection weights predetermined for a
specific problem. These weights are “hard-
wired” in that they do not change once they
have been determined. The most popular hard-
wired systems are the neural optimization net-
works (Hopfield & Tank, 1985). Neural
optimization works by designing a cost func-
tion that, when minimized, solves an uncon-
strained optimization problem. By translating
the energy function into a set of weights and

(3]
.
]

.

bias values, the neural network becomes a par-
allel optimizer. Given the initial values of the
problem, the network will run to a stable solu-
tion. This technique has been applied to a wide
range of problems (cf. Simpson, 1990a),
including scheduling, routing and resource
optimization (see §4.3.3.).

Two other types of hardwired networks
include the Avalanche Matched Filter (Gross-
berg, 1969; Hecht-Nielsen, 1990) and the Prob-
abilistic Neural Network (Specht, 199(). These
networks are considered hardwired systems
because the data patterns are normalized to unit
length and used as connection weights. Despite
the lack of an adaptive learning procedure, each
of these neural networks are very powerful in
their own right.

5.11. Summary of Learning Procedures

There are several attributes of each of the
neural network learning algorithms that have
been described. Table 1 describes six key
attributes of the learning procedures described
above:

* Training Time - How long does it take the
learning technique to cdequately capture
information (quick, slow, very slow, and
extremely slow)?

* On-Line/Off-Line - Is the learning tech-
nique an on-line or an off-line learning
algorithm?

* Supervised/Unsupervised - Is the learning
technique a supervised or unsupervised
learning procedure?

* Linear/Nonlinear - Is the learning tech-
nique capable of capturing nonlinear map-
pings?

* Structural/Temporal - Does the learning
algorithm capture structural information,
temporal information, or both?

* Storage Capacity - Is the information stor-
age capacity good relative to the number of
connections in the network?

The information provided in Table 1 is meant

& e i RTa e v




as a guide and is not intended to be a precise
description of the qualities of each neural net-
work. For a more detailed description of each
neural network learning algorithm, please refer
to Simpson, 1990a, Hecht- Nielsen, 1990, or
Maren, Harsten & Pap, 1990.

6. NEURAL NETWORK RECALL

The previous section emphasized the stor-
age of information through a wide range of
learning procedures. In this section, the empha-
sis is retrieving information already stored in
the network. Some of the recall equations have
been introduced as a part of the learning pro-
cess. Others will be introduced here for the first
time. The recall techniques described here fall
into two broad categories: feedforward recall
and feedback recall.

6.1. Feedforward Recall

Feedforward recall is performed in net-
works that do not have feedback connections.
The most common feedforward recall tech-
nique is the linear combiner (see §3.4.1.) fol-
lowed by a threshold function

yj =AY xwy) 57

i=1
where the threshold function f is one of those
described in §3.5.

For a feedforward network using dual con-
nections (see §3.4.2.) where one set of connec-
tion weights, W, represents the mean and the
other set of connection weights, V, represents
the variance, the recall equation is

n 2
Wi~ X;
yj = g(Z( IV.-,- )) (58)

i=1

where g is the Gaussian threshold function (see
§3.5.5.).

For a feedforward network using dual con-

nections where one set of connection weights,
V, represents e min vector and the other set of

connection weights, W, represents the max vec-
tor (see §3.4.3.), and the system is confined to
the unit hypercube, the recall equation is

yj = (1 — supersethood (X, Wj))
X (1 - subsethood (X, V)

= subsethood (X, WJ-)
x supersethood (X, V) (59)

where the supersethood operation is defined as
supersethood(X, Y) =

Y max(0, x; - y)
=t (60)

Table 1: Neural Network Learning Algorithms
Learming Algorithm e Ol | Urtupemwisd | Nowhwesr | Tempord | Capatiy

Hebbian Leaming Fast On-line Unsupervised Linear Structural Poor
Prnciple Component Leaming Slow Off-line Unsupervised Linear Structural Good
Differenual Hebbian Leaming Fast On-line Unsupervised Linear Temporal Undetermined
Compeutive Learning Slow On-line Unsupervised Linear Structural Good
Min-Max Leaming Fast On-line Unsupervised Linear Stuctural Good
Two-Layer Error Correcion Learning | Slow Off-line Supervised Linear Both Good
Multi-Layer Error Correction Leaming!  Very Slow Off-line Supervised Nonlinear Both Very Good
Reinforcement Leaming Extremely Slow Off-line Supervised Nonlinear Both Good
Stochastic Leaming Extremely Slow Off-lne Supervised Nonlinear Structural Very Good
Hardwired Systems Fast Off-line Supervised Nonlinear Structural Good




Referring to Figure 5, equation (59) measures
the degree to which the input pattern Ay, falls
between the min and max vectors of class j,
where a value of 1 means that Ay falls com-
pletely between V; and Wj, and the closer y; is
to 0, the greater the disparity between Ay and
the class j, with a value of 0 meaning that Ay is
completely outside of the class.

6.2. Feedback Recall

Those networks that have feedback connec-
tions employ a feedback recall equation of the
form

xe+1) = (1-a)x()+

n
BY fx(dw;+ay, (61)
i=1

where xj(t+1) is the value of the j’th element in
a single-layer neural network at time t+1, fisa
monotonic non-decreasing function (e.g. sig-
moid function), ¢ is a positive constant that
regulates the amount of decay a PE value has
during a unit interval of time, P is a positive
constant that regulates the amount of feedback
the other PEs provide the j’th PE, and a; is the
constant valued input from the i’th component
of the k’th input pattern.

One issue that arises in feedback recall sys-
tems is stability. Stability is achieved when a
network’s PEs cease to change in value after
they have been given an initial set of inputs,
Ak, and have processed for a while. If the net-
work did not stabilize, it would not be of much
use. Ideally, the initial inputs to the feedback
neural network would represent the input pat-
tern and the stable state that the network
reached would represent the nearest neighbor
output of the system.

An important theorem was presented by
Cohen & Grossberg (1983) that proved for a
wide class of neural networks under a set of
minimal constraints, the network would
become stable in a finite period of time given
any initial conditions. This theorem dealt with

s
to
~

systems that had weights that were fixed. In an
extension to the Cohen- Grossberg Theorem,
Kosko (1990) showed that a neural network
could learn and recall at the same time, and yet
still remain stable.

6.3. Interpolation vs. Nearest-Neighbor
Responses

In addition to recall operations being either
feedforward or feedback, there is another
important attribute associated with recall: out-
put response. There are two types of neural net-
work output response: nearest-neighbor and
interpolative. Figure 17 illustrates the differ-
ence. Assume that the three face/disposition
pairs shown in Figure 17(a) have been stored in
a neural network. If an input that is a combina-
tion of two of the faces is presented to the net-
work, there are two ways that a neural network
might respond. If the output is a combination of
the two correct outputs associated with the
given inputs, then the network has performed
an interpolation (see Figure 17(b)). On the con-
trary, the network might determine which of the
stored faces is most closely associated with the
input and respond with the associated output
for that face (see Figure 17(c)). The feedfor-
ward pattern matching neural networks are typ-
ically interpolative response networks (eg.
Backpropagation and Linear Associative Mem-
ory). The feedforward pattern classification
networks (eg. Learning Vector Quantization)
and the feedback pattern matching networks
(eg. Hopfield Network and Bidirectional Asso-
ciative Memory) are typically nearest- neigh-
bor response networks.

7. NEURAL NETWORK TAXONOMY

Several different topologies, learing algo-
rithms, and recall equations have been
described. Attempts at organizing the various
configurations quickly becomes unwieldy
unless some simple, yet accurate, taxonomy
can be applied. The two most prevalent aspects
of neural networks, learning supervision and




Figure 17: Interpolative vs.
Nearest-Neighbor Recall

(a) Stored Associations: FACES — DISPOSITION

. [> Happy ; (A;B)
> sap (AyBy)
. [ ANGRY 7 (AyBy

(b) INTERPOLATIVE RECALL:
Respond with an interpolation of all stored values.

E> Happily Angry
(Devious)

(¢) NEAREST-NEIGHBOR RECALL:
Respond with the closest of all stored values.

DAngry

information flow, seemideally suited to address
this need. Table 2 utilizes these criteria to orga-
nize the neural networks described above into a
matrix with learning supervision on the ordi-
nate and recall information flow on the
abscissa.

8. COMPARING NEURAL NETS TO
OTHER INFORMATION PROCESSING
METHODS

There are several information processing
techniques that have capabilities similar to the
neural network learning algorithms described
above. Despite the possibility of equally com-
parable solutions to a given problem, there are
several addition aspects of a neural network
solution that are appealing including: fault- tol-
erance through the large number of connec-
tions, parallel implementations tha: allow fast
processing, and on-line adaptation that allows
the networks to constantly change according to

the needs of the environment. The following
sections briefly describe some of the alternative
methods that are used for pattern recognition,
clustering, control, and statistical analysis.

8.1. Stochastic Approximation

The method of stochastic approximation
was first introduced by Robbins and Monro
(1951) as a method for finding a mapping
between inputs and outputs when the inputs and
outputs are extremely noisy (i.e. the inputs and
outputs are stochastic variables). The stochastic
approximation technique has been shown to be
identical to the two-layer error correction algo-
rithm presented in §5.7.1. (Kohonen, 1984) and
the three-layer error correction algorithm pre-
sented in §5.7.2. (White, 1989).

8.2. Kalman Filters

A Kalnian Filter is a technique for estimat-
ing, or predicting, the next state of a system
based upon a moving average of measurements
driven by additive white noise. The Kalman
Filter requires a model of the relationship
between the inputs and the outputs to provide
feedback that allows the system to continuous
perform its estimation. Kalman filters are pri-
marily used for control systems. Singhal and
Wu (1989) have developed a method of using a
Kalman filter to train the weights of a muld-
layer neural network. In some recent work,
Ruck, et al. (1990) have shown that the back-
propagation algorithm is a special case of the
Extended Kalman Filter algorithm and have
provided several comparative examples of the
two training algorithms on a variety of data
sets.

8.3. Linear and Nonlinear Regression

Linear regression is a technique for fitting a
line to a set of data points such that the total dis-
tance between the line and the data points is
minimized. This technique, used widely in sta-
tistics (Spiegel, 1975), is similar to the two-
layer error correction learning algorithm
described in §5.7.1.
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Table 2: Neural Network Taxonomies

Brain-State-n-a-Box (Anderson, ol al, 1977)
Neural Optimization {Hopfekd & Tank, 1985

Supervised

Feedback RECALL INFORMATION FLOW Feedforward
.g K ey Ynden 1470 Kahorw 73
Networks (Amavi, 1972; Hopfield

§ Wgﬁ‘” Mw m*?z 1987) moc) m.;*mmcrtn m Sulton & Anderson, 1963)
%, ﬂ u.m(&mw %mmwmm 1984)

=] Leammatrix (Steinbuch & .1963.Wlbhlw. 1980)
o Bolzmann Machine
fal
-

, Hinton & Sejnowekd, 1965)

Neacognitron 1988)

Avalanche Maiched Fiker (Grossberg, 1969; Hechi-Nielsen, 1990)
Distrbuted Kanerva, 1988

Sparse 1
Gaussian Potential Fmion(Nm«k (Loe & Ki, 1989)
wmm(wm 1974; Parker, 1982, Rumehart, of al,, 1986)
P on {Rosenblatt, 1962)

istic Neural Network (Specht, 1990)
CwehyMadmo(Szu 1986)

Adafine lm&ﬂoﬂ 1960}

Nonlinear regression is a technique for fit-
ting curves (nonlinear surfaces) to data points.
White (1990) points out that the threshold func-
tion used in many error correction learning
algorithms is a family of curves and the adjust-
ment of the weights that minimizes the overall
mean-squared-error is equivalent to curve fit-
ting. In this sense, the backpropagation algo-
rithm described in §5.7.2 is an example of an
automatic nonlinear regression technique.

8.4. Correlation

Correlation is a method of comparing two
paiterns. One pattern is the template and the
other is the input. The correlation between the
two patterns is the dot product. Correlation is
used extensively in pattern recognition (Young
& Fu, 1986) and signal processing (Elliot,
1987). In paitern recognition the templates and
inputs are normalized, allowing the dot product
operation to provide similarities based upon the
angles between vectors. In signal processing
the correlation procedure is often used for com-
paring templates with a time-series to deter-
mine when a specific sequence occurs (this
technique is commonly referred to as cross-
correlation or matched filters). The Hebbian
learning techniques described in §5.2. are cor-
relation routines that store correlations in a
matrix and compare the stored correlations
with the input pattern using inner products.

8.5. Bayesizn Classification

The purpose of pattern classification is to
determine which class a given pattern belongs.

If the class boundaries are not cleanly separated
and tend to overlap, the classification system
must find the boundary between the classes that
minimizes the average misclassification
(error). The smallest possible error relative to a
predefined risk is referred to as the Bayes error,
and a classifier that minimizes Bayes error is
called a Bayesian classifier (Fukunuga, 1986).
The Parzen approach to implementing a Baye-
sian classifier utilizes a uniform kernel (typi-
cally the Gaussian function) to approximate the
probability density function of the data. A neu-
ral network implementation of this approach
(see §4.5.) is the Probabilistic Neural Network
(Specht, 1990).

8.6. Vector Quantization

The purpose of vector quantization is pro-
duce a code from an n- dimensional input pat-
tern. The code is passed across a channel and
then used to reconstruct the original input with
a minimum amount of distortion. There have
been several techniques proposed to perform
vector quantization (Gray, 1984), with one of
the most successful being the LBG algorithm
(Linde, Buzo & Gray, 1980). The Learning
Vector Quantization (see §5.5.) is a method of
developing a set of reference vectors from a
data set and is very similar to the LBG algo-
rithm. A comparison of these two techniques
can be found in Ahalt, et al. (1990).

8./. Radial Basis Functions

A radial basis function is a function that is
symmetric about a given mean (e.g. a Gaussian
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function). In pattern classification a radial basis
function is used in conjunction with a set of n-
dimensional reference vectors, where each ref-
erence vector has a radial basis function that
constrains its response. An input pattern is pro-
cessed through the basis functions to produce
an output response. The mean-variance con-
nection topologies that employ the backpropa-
gation algorithm (Lee & Kil, 1989; Robinson,
Niranjan, & Fallside, 1988) as described in
§5.7.2. are methods of automatically producing
the proper sets of basis functions (by adjust-
ment of the variances) and their placement (by
adjustment of their means).

8.8. Machine Learning

Neural networks are not the only method of
learning that has been proposed for machines
(although it is the most biologically related).
There are a large number of machine learning
procedures that have been proposed over the
course of the past thirty years. Carbonell (1990)
classifies machine learning into four major par-
adigms (pg. 2): “[IInductive learning (e.g.,
acquiring concepts from sets of positive and
negative examples), analytic learning (e.g.,
explanation-based learning and certain forms
of analogical and case-based learning meth-
ods), genetic algorithms (e.g., classifier sys-
tems), and connectionist learning methods
(e.g., nonrecurrent “backprop” hidden layer
neural networks).” It is possible that some of
the near-term applications might find it useful
to combine two or more of these machine learn-
ing techniques into a coherent solution. It has
only been recently that this type of approach
has even been considered.
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ABSTRACT

An artificial neural network (ANN) is a software implementation of a neural paradigm,
and, therefore, such projects yield to many of the disciplines of softwar2 engineering
On the other hand, many issues that must be faced, as the project proceeds, are unique
and require specialized knowledge to address.

This paper is concerned mainly with the management of such projects, however in order
to propose the management issues, it seems necessary to understand, at lcast superficially,
the process of the design and implementation of a neural-based system. This paper
therefore begins with a proposal for a methodology for the conduct of a project
involving the choice, design, and implementation of a neural-based system. It outlines the
issues that should be considered and resolved at each step of the project.

Based on this methodology, a project management plan can be put in place. Such a plan
calls for a set of milestones and design reviews for various levels of management (and the
customer) and a corresponding document set designed to prove a milestone has been
reached, and, finally, that the original requirements have been met.

1.0 INTRODUCTION

This paper brings together past experience in the development of software systems, including
expert systems and neural nets, in an attempt to formulate a system design methodology for neural
net projects. This is an important requirement for both the customer and the developer if such
projects are to become a professional activity and commercially feasible.

As with the early days of expert system projects there seems to be a host of issues unique to neural
computing which would suggest that the rules of good project design and management can be
ignored. It is the thesis here that these rules cannot be ignored and that there is little excuse for
'hacking' towards a solution. There are, in fact, critical issues to be resolved and there are
appropriate times to face these issues, and there is also a minimum level of knowledge and
experience necessary to resolve them and proceed. It is towards the structuring of these issues and
the evolution of a design methodology for facing the issues when required, and for providing a
mechanism for providing evidence that they have been faced, that this work is dedicated. When all
of these things are understood, it is then possible to develop a methodology for such projects, and
from this a project management approach.

The present work has been strongly influenced by a general systems design methodology
established by the author [A-1], by extensive experience in doing battle with real neural network
applications, and by later work, specific to neural computing, by Robert Hecht-Nielson [A-2] and
by Bailey & Thompson [A-3]. It is also influenced by the procedures and reporting mechanisms
defined in the United States Department of Defense Military Standards (MIL STDS) 2167A and
490.

In Section 2 an overview of the methodology is given, followed by four sections devoted to an
examination of the procedures that should be executed and issues that should be faced at each step.
In Section 7, a plan for project management is proposed. This plan shares many features with any
plan to manage the production of software systems. The details are based on the structure and the
resulting milestones of the proposed methodology.
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2.0 THE METHODOLOGY - AN OVERVIEW

The creation of an artificial neural network is essentially a software project with a special set of
rules and issues that must be observed and addressed by the design team. It is important to
distinguish here between a project in which no specific goals or deliverables are expected, such as a
familiarization exercise, and a project with a defined level of effort, deliverables and a budget.
We are specifically concerned with the later.

Neural engineering is not as advanced as other aspects of software engineering, however, it would
be folly to believe that creating and managing a project in neural engineering is different from any
other software undertaking. A methodology is therefore required, and proper project
management and control essential to the successful completion of anything but a toy project. The
methodclogy is strongly influenced by the concepts developed in the DND standards for software
systems development. That system produces three specifications: called the Level A, B, and C
Specification. The Level A specification (the A Spec.) describes the end-user problem to be solved
and provides the functionality and performance and that must be achieved and the constraints
which must be satisfied. The Level B Specification (the B spec.) is prepared by the design team
and describes the top-level design of the system to be built. This specification is usually reviewed
at a Preliminary Design Review (the PDR). The Level C specification is a detailed design
document which described the system to be built. This document is reviewed at a Critical Design
Review (CDR).

In addition to design reviews attended by the customer, there are lower level design reviews
conducted by the design team usually conducted on a regular basis. These internal reviews keep
the project on track and are invaluable preparation for the more public reviews. A good
methodology contains an intrinsic modularity at which the state of a project can be assessed,
reviewed and corrective action taken to ensure and maintain convergence to the original
requirements, if necessary.

The methodology proposed here has four major phases:

Requirements Analysis
Logical Design
Implementation

Integration and Maintenance

Each of these phases mark a major milestone at which the project can be evaluated and decisions
made as to progress and continuation.

The requirements analysis is sometimes referred to as 'functional specification development'
and results in the definition of the equivalent of the Level A Specification. This phase provides the
interface from the original problem to the functional specifications. During this phase, the
desired functionality and performance of the final system is specified. In addition, the user and
system interfaces of the final system should be outlined. As part of this analysis, it is important to
define the constraints (functional, economic and otherwise) that the design team must consider
during the design phase. In general, the approach is to consider the system to be built and specify
how is should appear to the user and, if appropriate, how it will interface to other portions of a
total system. An important aspect of this phase is to determine the available data sets and how the
final system will be evaluated for acceptance.

The logical design phase involves selecting the appropriate set of neural paradigms, designing
the network and finally the training regime. Each of these sub-phases constitute an ideal point for
an intermediate design review and project milestone meeting. Part way through this phase, a
Preliminary Design review (PDR) should produce the equivalent of the Level B Specification.
This is normally reviewed by the customer in terms of the original requirements laid out in the A
specification. The conclusion of this phase should provide the implementation team with the
equivalent of the C Specification - a clear set of specifications for implementation.

The implementation phase is when the neural system is created, trained and tested. An
important part of this phase is the choice of the implementation platform, the detailed training and
the testing (and often the debugging) of the network. This phase demands the most 'on the bench’




experience, since the gulf between theory and practice is, in some aspects of neural systems
engineering, very wide indeed. The result of this phase is the product, ready for integration and
delivery.

The final system must be delivered integrated and maintained over its life time. This phase
reinforces the need for an agreed upon acceptance plan and a document set that will permit
maintenance. Experience will confirm that these details should be considered at the beginning,
rather than at the end of the project.

The management of any project is intrinsically bound to the methodology being followed by the
design team. A good methodology has many attributes which simplify the overhead associated
with its management. Of great importance is its modularity, which yields milestones at which
progress can be measured and control exerted. Other factors are peculiar to the particular
software paradigm, and these will be compared and explored in the final section.

3.0 REQUIREMENTS ANALYSIS

3.1 Introduction

Requirements analysis forms the first step in any project, however, it is often overlooked in
projects designed to exploit new technologies, and often a statement of need is mistaken for a
definition of requirements.

The detailed mechanisms and the documentation of the requirements will depend on the formality
of the project organization, however, even for in-house projects, time spent on requirements will
benefit the project by finding a common ground for the project team.,

It is suggested here that the following form the minimum considerations that should precede a
neural net project: bound the problem, bound the project, define the acceptance tests, and finally
define the total deliverables package. These ideas are not profoundly different from any other
project, and will bring a focus to the project which will prove to be invaluable. In a global sense
the issues are 'What are we trying to build?, 'Under what set of constraints are we trying to build
it? and 'What demonstration will we require to prove it has been built?

3.2 Bound The Problem - What are we Trying to Build?

A necessary preamble to the final definition of requirements is to obtain from the user(s) a clear
idea of what it is that wil1 satisfy their needs. This is often difficult because the operational
language of the users may not be at a sufficiently technical level to be easily translated into
comprehensible technical jargon. Never-the-less, unless this step is clarified in some detail, almost
always what is produced will not be what was expected. This situation does not apply only to
neural networks, as your experience will confirm.

3.2.1 Statement of Requirad Functionality

The need here is for a concise statement of what functions the end-product will execute. This is
often stated in the user's vocabulary, and must be eventually translated into technical jargon by the
requirements analysis team. The user should be encouraged to define 'what' is required in as few
words as possible. This discipline tends to focus the need and removes concepts of ‘how' it should
be done from the discussion.

3.2.2 Solution Requirements

In this section a more detailed statement of the solution is given. This should include the type of
solution, the accuracy acceptable to the output, and the time constraints, if any, that are necessary.

3.2.3 Data Sources

The data definitions should include the data available for training and testing the system as well as
the data input to the final system if the format is different.
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3.2.4. Define the Interfaces

System interfaces include all hardware and software interfaces, including the requirements of
operation with specific operating systems and existing software.

Often overlooked is the need to specify high and low level protocols for control synchronization
nd the format and structure of data passed into and out of the surrounding system.

This machine-human interface is often the most crucial in the user's final acceptance of the system.
It is also the most difficult to specify in its entirety. In the end, every screen interface and control
protocols for mode changing, screen manipulation and data passing must be specified.

3.3 Bound the Project

The project is bounded by specifying the total budget which fixes the level of effort. In addition,
however, time is an often overlooked constraint. There are two aspects to timing constraints:
project time and performauce time. If a solution has to be available in a certain time frame, this
imposes constraints which should be understood at the beginning. If the neural network must fit
into a larger system response time may form a constraint. This will drive a host of considerations
from the neural topology to the execution platform.

3.4 Define Acceptance Tests

Neural networks are trained to respond to a set of data elements which are alleged to define the
input space. Because of the data dependence of the success of a project, it is of critical importance
that the final set of tests that are formulated to determine success or failure, and hence acceptance
of the final product, be specified in detail. From the contractor's point of view a test set which is
not representative of the training set can spell disaster.

All projects start with the accumulation of a data set which must be representative of the problem
and must eventually be used for training and testing. The problem is to guarantee that the training
and the test set can be considered representative.

3.5 Define the D«liverables
3.5.1 Documentation

In order to maintain the neural net a complete set of documentation is required. A description of a
neural net consists of a description of the paradigm, and the implementation topology. In addition
the training and test set should be documented. It is most useful when retraining the system to
have a knowledge of: the training parameters and the details of the training regime. Finally any
interface software, and restrictions on the execution platform.

3.5.2 Code

The most notable difference between the documentation of a neural paradigm and classical
software is the 'black box' character of neural nets. The concept of documented code is not
applicable since the character of the neural net response is buried in the topology and the weights
of the neurons. Furthermore, as discussed elsewhere, maintenance and extensions of the neural net
is different in ~oncept than classical software. The neural net is often thought of as a black box.

The documentation must be sufficient to permit the reconstruction of the neural net topology an
the weights of each neuron. This can take the form of a description of the paradigm and the
topology and a printed list of the weights (despite its length in some cases) With this data the
network can be reconstructed, and retraining because of minor input sets undergoing change can
often be shortened by beginning with the trained set.
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4.0 LOGICAL DESIGN

4.1 Introduction

The logical design phase begins the process of translating the requirements into a proposal for

implementation. In this phase all the capabilities of neural computing paradigms should be

examined to determine the best approaches to satisfying the requirements. ’
This phase is often a preliminary step in a bid/no-bid situation. Inappropriate requirements

formulated by a potential customer can lead to a no-win situation if a neural paradigm is :
demanded, accepted for design and delivery, and is intrinsically inappropriate. ;

There are no guarantees in this field, however, a few preliminary considerations will enhance the
probability of the right choice.

4.2 Confirm the Application
The logical design team should begin the design process by reconfirming that a neural computing
paradigm is suitable-for the problem. In general if an expert system solution will satisfy the
requirements then it should be chosen before a neural solution, and by extension if a classical
software algorithm will fulfill the needs, it should be chosen. The design team should look at not
only the functionality of neural computing but at the availability of data and the impact of the other
requirements.
4.2.1 Characteristics of Successful Applications
Successful neural applications have the following characteristics:

1. The algorithm to solve the problem is unknown or expensive to discover.

2. Heuristics or rules to solve the problem are unknown or perhaps difficult to enunciate.

3. The application is data intensive and a variety of data sets are available which can be

identified as correct or describes specific examples.

Several classes of problem have these characteristics at this time: Pattern recognition, pattern

completion or pattern classification, Statistical mapping.

Of these classes, applications include: Character Recognition, Image classification, Forecasting,
Incident Detection, Signature Identification, robot control, signal processing.

In general, it should be determined that:
1. Conventional computer technology ts unsuitable or inadequate.
2. The application requires qualitative or complex quantitative reasoning.

3. The solution is derived from inter-dependent or correlated factors which are difficult or
impossible to quantify.

4. Data is available and corresponding known solutions can be derived.
4.2.2 Characteristics of Poor Applications
Poor applications include:
In general, those -

1. For which algorithms or rule-based solutions are possible.
2. That require deduction and a logical approach are not suitable.




3. That require explanations of procedures. _
4. That are essentially mathematical computations or transformations.

In particular, those -

1. Requiring precise mathematical computations.
2. In which answers must be explained or the steps documented.
3. An adequate an representative data set is not available for training and testing.

4.2.3 Choosing a Software Paradigm

If the final system is to operate embedded in the original development system, the issue of a
software paradigm is relatively unimportant. In situations in which the system must interface to a
variety of data bases, graphics displays, and surrounding software, the representation of the whole
system and indeed the underlying language may become an important issue to resolve. Obviously
the issue is the induced overhead in creating the software interfaces to link the system, and the
potential consequences on performance.

4.3 Select the Neural Paradigm

This step involves selecting a potential set of neural paradigms which match the application
requirements. The issues here are the size, training and time constraints, output type. Table 1
contains a comparison of the capabilities of a variety of neural paradigms, which could be updated
as newer technologies become proven. The designer should choose a potential set of paradigms
which match the requirements, and prioritize the most likely candidates. In a constrained
environment (time and money) the highest priority candidate is is started first. However, the other
candidates may have to be called upon if unforeseen events prevent training convergence or
performance is not as expected.

4.3.1 Network Paradigm

The network choices include, the number of layers or slabs, the number and type of nodes, the size
of the hidden layers, the number and type of output nodes, and the connectivity of each neuron
and layer.

4.3.2 Output Type

Choosing the Size of the Output Layer: Choosing the number of output neurons depends on
the paradigm being used and on the type of output being generated. There are two broad
categories of outputs: hetro- and auto-associative. Auto-associative networks have the same
number of outputs as inputs, whereas hetro-associative generally implies less. These categories are
far too broad, and a further division into the various expected outputs is useful. These depend on
the application and can be categorized as: Classification, Images or Patterns, Optimizations, and
Numbers.

Classification: The outputs are interpreted as categories or attributes. The output is either a
binary vector or a real number, Generally classification 1s indicated by a binary vector of all
zeros expect the class of the input data which is a one. In some cases, real numbers are used to
indicate further information as, for example, the confidence of the classification.

Images or Patterns: In this application the outputs are interpreted as an image or pattern
generated in response to the input. The number obviously depends on the detail of the expected
patterns.

Optimization: The output size depends on the optimization problem and the information
required to interpret the results of the class of input data being optimized.

Numbers: Numbers are a subset of the other categories, however, in general numbers are used
when the output represents a number, such as power levels or switch settings, etc.




4.3.3 Training Method

Neural training falls into three categories: supervised, unsupervised and reinforced. The choice
depends on many factors but is strongly influenced by the availability of data. Supervised learning
requires pairs of data vectors consisting of the input pattern and the correct output. The training
data must therefore contain the solution the network is expected to provide. Generally this
training mode demands extensive data sets, and can consume a long time to achieve the correct
responses.

Unsupervised learning classifies input data patterns according to some form of nearness criteria.
The classification will depend on the structure of the training data, and the training time is usually
much shorter than unsupervised learning.

Reinforced learning is a compromise between the two. It requires only the input data and and
indications of the goodness of the response (a reward signal). Reinforced learning can consume
much longer times than the other two, but training data requirements are less stringent, although
the goodness criteria must be attached to each response.

4.3.4 Time Constraints

All aspects of the training and operation of neural networks are computationally intensive, since
every neuron performs a sum-of-products calculation often utilizing floating point operations.
Training time is usually not counted as part of the operational timing constraints, however, from a
project point of view, training times can be very large on an inadequate platform. This time is
pure delay, which tends to limit the iterations that can be tried in a fixed time-frame, and can of
course finally influence the delivery time table.

If the network must fit into a hybrid software system then the operational response should be
specified. If it is part of a diagnostic or prediction system, the response may be not critical. In
any event, response should be considered as a constraint which can intluence the size of the
network and eventually influences the cost of the execution platform.

4.4 Network Design

The design of 1he network involves three basic issues: the node, the network topology, and the
training details.

4.4.1 Node Level

The node or neuron design is constrained by the type of input to be used, the transfer function and
the nearness computation. The input data format has already been specified and is usually
unalterable. The nearness function is usually an inner product (a sum of products) however others
can be used such as a vector difference. The transfer function is the nonlinearity following the
nearness computation. This can be linear, signum, sigmoid, and hyperbolic tangent. The selection
is determined by the characteristics of the region boundaries and in the case of backpropagation
training by the necessity of a differentiable function. The calculation of the nonlinearity affects the
computational complexity of each neuron and the simplest possible should be chosen.

4.4.2 Network Level

At the network level of design, the topology of the interconnection of the neurons must be decided.
This involves the number of layers or slabs within a layer, the number and type of nodes, the size
of the hidden layers, the number and type of output nodes, ard finally the detailed
interconnectivity of all the neurons. Several paradigms have a fixed topology in that the number
of layers is predefined, e.g., Hopfield nets, Kohonen self-organization maps, etc.

In backpropagation nets, hidden layers act as levels of abstraction. Adding hidden layers will
increase the ability to abstract characteristics of the input classes, however, training will take
longer and in the end the training of multilayer networks by backpropagation become very tedious
and convergence is not necessarily guaranteed in practice. The number of neurons in a hidden
layer affects the ability to generalize the characteristics of the input data. Generalization and
memorization becomes a critical issues in selection the number of neurons in the hidden layer.
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The two opposing schemes for back propagation topology achieve memorization of the input
training set or achieve generalization of the features of the training set to identify examples never
before seen. In general, increasing the number of neurons in the hidden layer offers sufficient
memory for the network to memorize the test set. Conversely reducing the number of neurons, up
to a point, forces generalization.

Determining the exact number of neurons to achieve generalization is not a solved problem, and is
often achieved by experimentation. The difficulty lies in the affect on the test set. A network
trained to memorize will achieve very good results if the test set is equialent to the training set:
and conversely the performance can be very poor if the test set includes new examples outside the
training set.

4.4.3 Training Issues

The issues to be addressed before training begins are both strategic and tactical. Strategically the
training falls into three phases (as in chess) with a beginning, a middle and an end game. In each
of these phases, training parameters can be varied to hasten or encourage convergence. The plan
should outline the training parameters for each phases and some measurements which will suggest
when each phase has been completed. On the other hand, measurements should be determined to
decide when training is not converging, and the time has come to back-up and try a new set of
parameters. In practice it is often difficult to predetermine these measurement exactly and
sometimes a certain amount of synergy is necessary to observe lack of progress and to suggest
corrective actions. The need for a theoretical background, experience, and good judgement in
combining the theory and experience become evident during this phase.

These issues will be discussed in more detail in Section 5.4.
5.0 IMPLEMENTATION

5.1 Introduction

The implementation phase is the crucial phase in the development of a neural project. Despite all
the preparation, it is not always possible to guarantee convergence of the training, however,
following a well established me.hodology [B-1} will enhance the probabilit,.

The key activities are: Characterize and Prepare the Input Data Set, Choose the Development
System, Train the Network, and be prepared to Debug and Test the Network.

5.2 Characterize the Input Data Set
5.2.1 Assemble and Prepare the Input Data Set

This phase consists of two major activities: assembling the data set and preparing it for training
and eventual testing of the network.

The input data set refers to all the data that will be used both for training and testing the network.
Initially the concern is with the quality of the data. Under some circumstance the data can be
ambiguous, error ridden, come from multiple sources and formats, and in some cases have
conflicting judgements on its classification.

Preparing the data refers to two major activities: accommodating the input formats of the
development environment, and preprocessing the data to enhance its training potential.
Accommodating the input formats suggests the potential need for code conversions, and
normalization scaling. Preprocessing, sich as creating ratios or some form of filtering, is
sometimes useful in enhancing training or th: meaningfulness of the results. Obviously all training
and test data sets must be brought to the same format before being used.




Of critical importance during this phase is the definition of the acceptance test set. This is the final
data input which will define if the system is preforming with sufficient accuracy to be useful to the
end-user (and it may determine if the final invoice is accepted).

Typically the fnal test set is not made available to the development team. Since many neural nets
can be made to memorize a given set of input data, it is clear that the acceptance test set should be a
set which at least includes samples that have not been used in training.

On the other hand the development team needs a test set to be used to evaluate the effectiveness of
the training regime. A large set of data covering all interesting cases should be made available to
the development team from which they can choose the optimal training and test sets. The goal is to
force the neural net to generalize the characteristics of the input data classes based on the test set so
that appropriate responses to the test sets will be derived.

5.2.2 Select the Training Set

The selection of the training set for neural paradigms is the most critical decision that affects the
final outcome. While it is easy to say, the set must represent the total range of inputs in a relative
density of occurrences to represent the final desired results. This is not easy to accomplish, since
the n-dimension volume of the total space is impossible to define exactly, choice of examples for
training (and testing) is difficult.

A training set should be assembled as a subset of the total data set. In a real sense all the data
assembled is a potential candidate as a training set. Including all this data, however, will
profoundly affect the training time, and the cost of the project.

The training set can be considerably smaller than the total data set and should be chosen to achieve
generalization across the various classes of the problem. The training set should represent the key
features of the problem. A representative set should cover the breadth of the problem to be
solved. For example in a pattern recognition problem, the set shouid cover the range of problems
in the classes of images In a decision or control problem, it should cover all the significant cases.

In some cases it is possible to partition the training set into routine, difficult and border line cases.
This partition will be most useful in determining convergence conditions and, in particular, lack of
training convergence, if this occurs.

5.2.3 Select a Test Set

The test set should provide evidence that the system will be useful to the customer. The customer
and the contractor share a responsibility to ensure that this set reflects the customer's perception of
an adequate test, and the contractor's technical understanding of the relationship between the
training and the test conditions. The test set should reflect the distribution of input vectors similar
to the training set. A test set with parameters outside the training set can lead to failed tests.

5.3 Choose the Development System

Experience suggests that the choice of the development platform will have the most profound
affects on the success of the project A wide variety of software development systems have
appeared over the last few years, some of which are useful as experimental learning tools for a
University Laboratory, and others which provide a leaner environment for the skilled
professional. The development system includes the software simulator, the operating system and
the hardware platform.

Many simulation platforms are now available to facilitate the process of training, testing,
debugging, and creating and displaying the system and human interfaces. These platforms operat.:
on a variety of workstations and PCs. The characteristics of the platform will profoundly affec:
the level of effort needed to set up, train, debug and test the system. Depending on the financial
resources committed to the project, a system should be judged based on:

The Vendor
Support and Training
Ficlded Systems
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Price
Functionality
The Neural Paradigms Implemented
User-Programmable Paradigms
Training and Debugging Facilities
Interfaces
Graphics and Dvisplays
System software Interfaces
Graphics Interfaces
Database Interface
Language Interfaces
Support Platforms Needed or Required
Operating System
Hardware Platform
Multiple Screen Processing (Windows)

The relative importance of these factors will depend on the project and the team's experience. The
final system can either operate in a stand-alone mode or be part of a larger system. In either case,
the development environment may have to be suitably modified in order to integrate the
operational network into the final system, thus portability may also be an important consideration.
Finally in the choice of a new system, the whole system capability should be carefully traded-off
against not only the learning curve required to begin work, but the learning curve to become
really proficient.

5.4 Training the Network
5.4.1 Training Phases

Many training paradigms have a <equence of phases. In each phase, the training parameters can be
optimally adjusted to speed the process.

5.4.2 Selecting Training Parameters

Once the paradigm, the structure of the neuron and the network topology have been decided, a
choice of training parameters is required. In backpropagation training, for example, the initial
weights, the learning rate, and the momentum must be selected before training begins. The
implementation team should have considered the choice of these parameters and if appropriate
considered the variation of parameters as training proceeds and convergence begins to occur (or
otherwise).

5.4.3 Convergence and Nonconvergence

Despite the theoretical proofs of convergence, experience suggests that neural training often results
in a hung situation in which the network will not converge. This can be caused by many factors:
for example, a poor choice of the training set, inappropriate training parameters, a stabilization
occurring in a local minima, by overtraining some of the neurons, or by network paralysis. Aside
from experience, which might suggest corrective approaches, it is in this situation that a powerful
simulation platform to assist in the debugging will be most appreciated.

5.5 Debug and Test

In the broadest sense, the test set is chosen to achieve some level of acceptable response. As
discussed in Section 5.1.1, the test set should be partitioned into routine, difficult and boundary
cases.

This approach is termed 'black box' testing and is the most common. There are however, other
testing procedures which are important in some cases and can be important indicators of bad
training and/or redundant layers or nodes. Some simulation packages for example permit the
viewing of the weights, and the on-line computation and presentation of ervors, etc.

Each of these approaches will be discused in the following. Finally, there is the question of what
to do if the network fails the acceptance tests. This will be discussed in the final section.
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5.5.1 The Black Box Approach

Generally a neural net is tested by comparing input and output for the appropriate response. The
network remains essentially a black box with its internal coding and data transformations being
undecipherable. Under these conditions the test set should, if possible, be divided into easy,
difficult and boundary sets. Acceptance criteria should be developed for each set. Attention
should be paid to comparisons to human responses when this is possible. Finally, in boundary
cases, it is useful to predefine the threshold acceptance level of the output responses.

5.5.2 Node and Layer Redundancy

Eliminating nodes and indeed whole layers can substantially reduce the computational complexity
of the final system. In some cases removing these redundancies will increase the convergence of
the training process.

By examining the weights of each node, those with low values of weights make a negligible
contribution to the final output and can likely be eliminated. Such pruning should be followed by
continued training to determine if an improved accuracy can be achieved, or to insure that the
incremental contribution that has been removed is restored.

A rule of thumb suggests that weights below about 0.1 are probably redundant and can be
removed.

At the other extreme, nodes that have weights much in excess of others should be suspect, for it
may indicate over training and contribute to a lack of generalization. Such a situation may suggest
a repeat of the training process, or indicate that some of the test set will fail.

5.5.3 Input Node Activation Sensitivity

In some applications it is possible to determine inappropriate behaviour by carefully selecting a test
set to positively reinforce an expected output at a given node.

5.5.4 Responses to Failed Test-Procedures

If after successful training, a network fails to respond to the test set with acceptable results, there is
a whole sequence of considerations that must be considered in a rational order by the design team.
In general these are:

The training and test set
The learning algorithm
The network design
The system interfaces

Training and Test Sets: The first thoughts are about the training and test set. The test and
training set should be re-examined for quality, representativeness and accuracy. The training set
must be chosen with the same characteristics as the training set. A test set with input members
different from the training set will invaniably lead to testing failures.

The Learning Algorithm: The learning algorithm constants should be examined.

The Network Design: The network nodes characteristics, architecturs and connectivity.

The System Interfaces: All interfaces should be examined including those between the
training set and the network, the user and the network and any other interconnected software.
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6.0 DELIVERY AND MAINTENANCE

6.1 Introduction

This phase of the project resembles any software delivery phase. The principle difference is the
mechanisms for demonstrating performance and functionality.

6.2 The Acceptance Test Plan

The functionality and performance tests should have been formulated as part of the requirements
analysis. The plan to satisfy these requirements should have been formulated and accepted at the
preliminary design review.

6.3 System Integration

Neural networks tend to be regarded as stand-alone systems, however, they can be integrated into
an overall system in two configurations: loosely coupled, or tightly coupled.

Loosely coupled neural networks (probably the most common at this time) communicate by
passing data files. Such systems function either as preprocessors, post processors, or as a
distributed system. Preprocessing networks prepare data for examination or processing by other
software modules. Post processing networks are often used to remove noise, classify patterns or
make predictions. A distributed system passes data to a neural net for analyses or to interface to
another system.

Tightly coupled systems are more full integrated, relying on data sharing to pass data. In a fully
integrate the neural net tends to loose its identity and become another module in a larger svstem.

6.4 System Performance Evaluation
The evaluation of performance usually includes both functionality and computational complexity.

Performance is judged by the successful treatment of the testing data set. Computational
complexity includes both memory requirement of the program and the time needed to fulfill its
function.

6.5 Maintenance Plan

The maintenance plan should consider three major issues: Environmental Modifications,
Structural Modifications and Interface Modifications.

Environmental modifications suggests that the character of the the input data has changed.
This could occur from a wide variety of causes, however, the result is the need for a redefinition
of a training set and the complete retraining of the network.

Structural modifications suggests that the role of the neural net is found to be unsatisfactory
or it must be changed to accommodate newer roles in the system. A suuctural modification
suggests in the worst case a complete reconsideration of the design methodology or at best a
reorganizing and training of the existing network.

Interface modifications suggests software changes to the human or system interfaces. These
could vceur from the need for more useful data presentation to humans, changes to the format of
the data base, or protocol changes to the surrounding system. Depending on the original
requirements, plans should be produced to show how thcse potential exigencies will be
approached.

We note that a maintenance plan, as in other software projects, depends on a document set that will
support the actions needed over the life of the system.




7.0 PROJECT MANAGEMENT

7.1 Introduction

In this section the basic project development methodology will be pulled together to exhibit a
management approach.

7.2 Management Overview

A characteristic of any design methodology is the intrinsic mechanisms for project monitoring and
control. Project plans and methodologies all exhibit some structure and modularity at which states
can be measvred and either forward or backward influence exerted to ensure convergence on the
original objectives or to adapt to changes caused by influences outside the project, or by
unforeseen events occurring in the project. These points in the methodology are characterized by
milestones which occur at the conclusion of a predictable set of activities at which reports can be
prepared and progress measured. Milestones also are points at which control can be exerted to
account for slippages caused by inappropriate predictions of the level of effort, the level of
difficulty, or by changes in the requirements.

In general there ic a distinction preserved between major and minor milestones. There are many
ways of defining such a distinction depending on the environment and the project. For our
purposes a major milestone signifies a point in the design process were a significant goal has been
achieved; typically the completion of a set of tasks marking a logically complete step in the overall
process. A useful criteria is to assume that at a major milestone, a different team will take over
the project and must be provided with a set of specifications for their task. Thus, major milestones
are points in the project where significant documentation and evaluation occurs. Minor milestones
are important events which are typically part of a larger logical task.

Staffing a neural network project depends on many factors. Project Leaders should have
experience in software development, and preferably a working knowledge of the capabilities and
limitations of neural computing paradigms. Since a wide variety of skills are necessary, it is not
necessary for all team members to be experts in neural computing, however, one team member
should have the capability to do the system analysis, and to determine the appropriate neural net
paradigm, as well as to judge the training and test sets. Programmers with conventional skills may
be required depending on the human and system interfacing requirements. Finally since vast
amounts of data are usually required, experience with data structures and data manipulative
software is very useful.

The methodology as outlined contains such milestones, and the issues that should be addressed and
activities that should be executed, and hence the reports that can be prepared by the project team to
provide evidence of reaching the milestone (or otherwise). In this section we will outline these
milestones and suggest the form of reporting and actions that are appropriate for managers.

7.3 Project Milestone Reviews
7.3.1 Major Milestones

The proposed methodology is characterized by four major milestones: Requirements Analysis,
Logical Design, Implementation, and Integration and Maintenance. These mark major milestones
in the project life-cycle. Each is characterized by attaining certain goals and each can be validated
by determining progress and achievements as discussed in the previous sections. Essentially at each
major milestone, the project team can be required to prepate reports outlining how each issue has
been addressed and the reasons for the choice of each alternative. The project leader is typically
charged with the responsibility of sign-off for the document set attesting to the conclusion of the
milestone.

Major Milestone #1: Requirements Analysis
In typical software projects, the requirements analysis is completed by the customer's team based

on the perceived needs of the end-user and results in a set of requirements specifications (the A-
Level Specifications). The design team has the problem of analyzing these specifications and




reducing these to a document set suitable for their purposes. In either case, evidence should be
presented that the following questions have been answered or the issues have been addressed:

What is:

The required functionality?

The performance?

The human and system interface definitions?

The acceptance tests?

The operational constraints?

The non-functional constraints on the final system?
The maintenance and documentation requirements?

Finally "Is there an adequate supply of useable data for training and testing?"
Major Milestone # 2: Logical Design

The conduct of this phase has been outhined in Section 4. The conclusion of this phase is marked
by the presentation of evidence to demonstrate either the consideration and/or attainment of the
following:

1. The application has been confirmed, in the sense that the team is confident that a neural
computing approach will yield results.

2. The neural paradigm has been selected including estimates or starting data for: the
network paradigm(s) including the network size, the output type, and the training
method, Time Constraints

3 The network alternatives have been designed, including the node level, and the network
level. The training issues and parameters have been considered and allocated.

Major Milestone # 3: Implementation

The level of effort and the amount of time required to implement the neural net is very difficult to
predict, due to the uncertainty of the traimng procedures. It is, however, during this phase that
detailed management is required to ensure that the project is converging and that appropriate steps
are being taken to maintain estimates of time and effort.

The expected result is, of course, that a trained neural net is presented as evidence of success,
however, the team should at minor milestones present evidence that they have:

1 Characterized the input data set by assembling and preparing the input data set, selested the
training and test set.

2. Chosen the development system, including the operating system and the hardware platform.

3. Achieved training to the standards required and successfully passed the preliminary test
requirements.

4. Created all the user and system interfaces, and have completed any test and demonstration
required by the original specifications.

The final requiremeat in this phase is the preparation of all the deliverable documentation, and the
preparation of the demonstrations required by the factory acceptance tests.

If an integration of the system into a larger environment is required this should be completed and
tested on-site, if possible. If the delivery requires integration into a system on the customer's site,
the interface documents should be carefully pursued and the integration plan finalized.

Major Milestone #4: Delivery and Maintenance

This phase should mark sign-off of the project. The delivery of the required document set, and the
test plan for acceptance should be prepared.




7.3.2 Preliminary Design Review

A preliminary design review should occur after the finish of the logical design phase. At this point
the complete logical plan for attacking the problem should be in place.

7.3.3 Critical Design Review

The critical design review should be held part way through Milestone 3, at the point where the
major decisions have been made with respect to platforms and the detailed training plans are in
place.

7.3.4 Pre-Delivery Preparation

Predelivery activity should include the instantiation of the user and system interfaces, as required,
as well as the pretesting preparation for the final test. The documentation should be subject to
quality assurance, and the list of deliverables checked-off.

7.4 Documentation and Configuration Control

It is truism to say that configuration control (or the lack of it) has contributed to more failures and
cost overruns in software projects than any other single cause. In neural engineering the need for
configuration control is even more urgent. In addition to the normal software documentation, a
complete record of the training portion of the project becomes critical in judging progress, and
maintaining convergence in time.

Of particul.~ importance is a detailed record of each parameter, and the changes effected during
training runs, the number of iterations, the rate of convergence, and any other tuning efforts based
on the heuristics of the team.

This record will prove valuable not only in situations where convergence is slow to occur, but will
be essential in post-delivery if modifications are to be effected in the field.

7.5 Disasters - Recovery and Containment

During phase three, a host of difficult problems can arise that require experience and often basic
knowledge of neural paradigms to surmount. The response to these problems will be based on the
quality of the implementation team.

In addition there may be fundamental problems which are caused by decisions made during earlier
phases of the design methodology. Some of these may be very difficult to fix ‘on-the-fly' and can
contribute to project failure or, at best, over-runs of time and money. These pathological errors
may occur at any stage of the project and can be classified as either global or detailed. Global
errors occur during the logical design phase, and usually indicate a restart of the project.

Global errors include:

Wrong choice of neural paradigms
Wrong choice of test and training data
Wrong Simulation Systcm

Inadequate Performance

Detailed errors refer to inappropriate choices made during the implementation phase, and are
manifested as lack of convergence, lack of performance, or failure of the test set.
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8.0 SUMMARY AND CONCLUSIONS

8.1 Summary
The Management Structure:

The thesis underlying this presentation has been that a project involving the development of a
neural computing system is subject to the same general rules of conduct as any other software
project. The management structure must account for the special features of such project, since
there is considerable difference in detail in arriving at a successful neural network compared to
other more familiar software systems. The management structure and the managers must
therefore be familiar with these difference and the issues which they raise if they are to understand
the importance of addressing these issues and the alternatives which should be considered.

The Methodology:

The methodology proposed follows the classical four major activities of: Requirements Analysis,
Logical Design, Implementation, and finally Delivery and Maintenance. Each of these mark a
major milestone in a project and each has a set of activities, issues and specialized expertize
required to successfully traverse the required activities. And most importantly, each can be
reported by preparing a document set which addresses the relevant issues, and the solutions and/er
alternatives found necessary to project a successful conclusion. This reduces the project and its
management to a an understood set of activities which are close to those normally found in a
software project. There are however some critical differences.

Project Differences: There are perhaps four major differences with more conventional software
projects: First the success is dependent on the availability of existing data; Second, the logical
design consists of choosing the set of paradigms most likely to yield success (rather than evolving a
systems algorithm); Third, there is no guarantee that the training regimes will converge, and that
the test sets will provide the evidence necessary for validation, and finally, the documentation and
configuration management must be adapted to the neural paradigm.

Software Project Failures: Failures generally tend to be based very intangible details of the
training and test sets, and the wrong choice of paradigm, and/or the lack of convergence of the
training regime. A whole new set of skills and techniques are necessary to rescue a failing project.

Selecting the Paradigm: The field of neural computing is in a rapid state of expansion, however,
there are now what could be called classical approaches. It should be possible to map an
application onto a set of potential paradigms with a fair degree of confidence.

Selecting the Simulation Platform: The simulation platform is a critical choice, as in most
software projects. Aside from the choice of paradigms, the most c-itical item is assistance in
influencing the training regimes, monitoring the training progress and, if necessary, in debugging
the failed system.

Training and Test Set Selection: The most critical concern of both the contractor and the customer
should be the selection of the training and the test sets. The training set must reflect the full scope
of potential inputs to the final system, and the test set must reflect the structure of the system as
learned through the training set. Failure to select these sets will cause project failure, in most cases
for the wrong reasons.,

Training Failures: The most distressing feature of neural computing is the lack of convergence of
the training procedure. As discussed there are many causes, and the field is rife with heuristics
and procedures for rescuing the situation. The main recourse is the experience of the team, a
good simulation platform, and sometimes raw luck.




8.2 Conclusions
The Neural Computing Field:

At the present time, the movement of the theories developed by neural science to the practice of
neural engineering is progressing along the same line that software did twenty years ago, and in
the same manner that expert systems software did over the last decade. The field is in a
tremendous growth phase with new theories, implementation platforms, and successful applications
appearing daily. In addition there is a certain amount of the baidwagon syndrome appearing in
the commercial world, resulting in many claims of neural computing expertise based on very
limited experience with the realities of hard experience. In such an environment it is easy to be
misinformed and misdirected. Many of the developed systems have been level-of-effort projects
with an open budget; this situation must evolve towards a more commercial development project
with the standard management, documentation and control procedures, if the field is to mature into
a professional discipline.

Software or Hardware:

In the end, a neural network will be considered as one of the alternatives to solving a problem. Its
inclusion in a hybrid system [C-1,2] composed of classical algorithmic scftware and rule-based
software will depend on the nature of the problem and the capabilities of the different paradigms.
This trend is already noticeable in hybrid systems of algorithms and rule-based systems. The
implementation of neural paradigms will follow the path of special purpose software which has
been relegated to microcode for such applications as input/output drivers, and will be implemented
on special purpose coprocessor boards.

Contract Award:

If contracts are to be let, a review of the design methodology and the project management plan
should be an integral part of the assessment procedure of the received bids. While there is still a
level of uncertainty in the convergence of most neural network projects, there are good
engineering design approaches which will minimize this risk and often contribute to the success of
the whole project.

Project Management:

In a larger view of the development of a software solution, the need for a neural network would
evolve, as part of the logical systems design, in response to the demands on the functionality, the
input data, and other knowledge. The methodology proposed here has begun with the implicit
assumption that a neural solution has been decided upon. It, never the less, proposed a distinct set
of phases in which progress can be measured, and issues faced at the appropriate time. This
certainly provides management control and leaves the development team with a set of guidelines
for ensuring that all options are explored in a systematic manner. It also suggests when things may
be going astray and convergence may not be occurring. The steps proposed may be traversed
quickly with an experienced project team on familiar ground, however, an awareness on the part
of the team and management of the logical sequence of considerations and issues lends order and
structure to the proiect.

The Near Future:

The neural computing field is in a state of rapid change: in theories, in new architectures, and in
computational platforms (software and hardware). Design and implementation teams will need a
constant infusion of updated concepts and information to make full use of this technology. This
statement is also true for those with applications that might benefit from the use of this technology.

Finally we have not considered the development of neural paradigm using new hardware neurons
[D-1,2,3]. It is clear that large, high performance neural networks will be implemented using a
variety of silicon or perhaps optical (perhaps, even biological) devices to simulate the neuron.
Some of these will be trainable and some will accept weights derived from software simulation.
This combination will offer an interesting challenge as the software and hardware engineers join
their methodological requirements to achieve very large neural networks.
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PROCESSING COMPLEXITY OF TWO APPROACHES TO
OBJECT DETECTION AND RECOGNITION

Todd Gutschow
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619-546-8877

Summary

The computational complexity of a processing
function is a driving factor in the implementation
of that function in an operational system. Artificial
neural networks offer the potential for significant
improvements in the computational complexity of a
number of guidance and control functions. To
illustrate such an improvement, this paper
considers a comparison between two different
approaches to object detection and recognition a
traditional approach employing a wide field of view
and constant spatial resolution throughout the
image sensing and processing chain, and a foveal
approach utilizing a roving “eyeball” circularly
symmetric sampling grid with a radially variant
resolution in the processing chain. The rationale
and characteristics of these two approaches are
described and compared. Quantitative evaluations
of the processing loads and data transfer rates are
then carried out for both approaches. These
processing requirements are then compared and the
operational implications of this comparison are
discussed. While this paper does not explicitly
discuss the efficacy ot the foveal approach,
references to relevant research resuits in this regard
are provided.

1 Introduction

Object detection and recognition are image
analysis operations that are of central importance
for the guidance and control of many types of
modern weapons. Unfortunately, except for the
sitnplest types of objects (e.g., “hot blobs™ in
infrared and radar imagery) and the simplest
operational scenarios, the computaticnal and data
transfer requirements connected with these
operations are orders of magnitude beyond current
real tim= on-board processing capabilities. Thus,

Robert Hecht-Nielsen
HNC, Inc.

and
Dept. of Electrical & Computer Engineering
University of California, San Diego
La Jolla, CA 92093

even though competent image object detection and
recognition systems can be built, most such
systems cannot be employed for guidance and
control because of size, mass, power, and cost
limitations. What is needed is a new approach that
can significantly reduce the computational burden
and data transfer requirements associated with
object detection and recognition.,

Most current approaches to image object
detection and recognition employ sensors that are
designed following the tradition of television. This
is logical, since an enormous technological
infrastructure exists for such devices. However,
most current systems continue the analogy all the
way through the entire processing chain. In other
words, at each stage of processing, the image pixels
or features that are used are sampled at regular
intervals across the entire image or subimage.
While this seems particularly natural (because of
our television mentality), it is not necessarily an
optimal or cost-effective approach for object
detection and recognition. In fact, this approach
clearly ignores the design principles employed in
biological vision systems.

Unlike television systems, the visual systems of
animals are optimized for object detection and
recognition — not for image rendering. No
example of a constant resolution image sensor or
image processing system exists among the
vertebrates (some insects have such systems).
Vertebrate animal visual systems are based upon
foveal sencors and foveal processing. Such systems
provide the advantage of high visual acuity within
a small central field, with resolution that drops off
rapidly with radial distance from the center. Such
foveal vision systems must employ eyeballs to allow
the high central resoluiion of the foveal sensor to
be rapidly moved to different locations within the
scene. The primary thesis of this paper is the claim
that military object detection and recognition




systems built upon this foveal eyeball concept
deserve intensive investigation.

The next section provides detailed descriptions of
two different image object detection and
recognition architectures: a constant resolution
architecture, and a foveal architecture. In
Section 3, these two architectures are compared.
Finally. in Section 4, the potential military
operational implications of this comparison are
discussed.

2 Two Architectures

In this section, the designs for two hypothetical
object detection and recognition systems (a
constant resolution system and a foveal system) are
discussed. To focus the discussion, we shall assuine
an image-based object detection and classification
system having a 1024 x 1024 pixel imaging sensor
looking down at the ground obliquely from an
airborne platform which always flys at about the
same altitude above the ground. It is further
assumed that the range is such that the number of
pixels on each object is reasonably large. The
analysis in this section will concentrate on
estimating the processing required to carry out
object detection and classification for a single
frame of this imagery. It is assumed that there are
40 object classes of interest and an average of 12
objects per frame. The next section compares the
results obtained in this section for the two system
concepts.

2.1 A Constant Resolution System

This subsection describes an object detection and
recognition system concept that uses constant
resolution imagery and constant resolution
processing. The system employs a two-stage
processing approach to reduce th~ computational
burden while maintaining high probabiiity of
detection and classification rates (see Figure 1).
The first processing stage performs object detection
using a small number of features computed across
the entire image. The result of this processing
stage is a set of potential object locations At each
potential object location, the secons stage of
processing eliminates false alarins and classifies the
true objects. This stage of processing uses a large
number of features than the first stage

We begin with a brief discussion of the features
that are used at both processing levels. Next, the
two processing stages arc described in detail.

2.1.1 Feature Extraction

Both the primary and secondary feature extractors
use Gabor logons (see Figure 2) as the feature set.
Gabor logons, originally introduced in the context
of uncertainty theory for information [9], have been
widely used in image processing and machine vision i
since Daugman extended the original work to !
two-dimensicns [8]. Examples of Gabor logons in

image processing include image compression [4],

image reconstruction [13], texture segmentation (4],

feature extraction and pattern recognition [3,19].

The primary advantage of Gabor logons is that
they provide local spatial frequency information
which has been demonstrated to be sufficient for
many types of object detection and classification.
A logon is constructed from a sinusoidal grating
function weighted by a two-dimensional Gaussian.
The sinusoid portion of the logon introduces a
“waviness”, whereas the Gaussian portion localizes
the logon to a region of the image that surrounds
the location corresponding to the mean of the
Gaussian. The extent of the Gaussian and
subsequently the logon is determined by the
variance of the Gaussian. The mathematical form
of a logon can be written as

Glz, y) = e‘[(f—ro)ﬂ—(y—!Io)ﬂ]’-—1[uo(r—:o)+uo(y_yo)]

where (zo, yo) are position parameters which
localize the function to a region of the image,
(ug,vo) are modulation parameters which orient
the function to a preferred direction and spatial
frequency, and («, ) are scale parameters which
determine the spatial extent of the logon.

As demonstrated in [8], the two-dimensional
Gabor logons are not orthogonal functions.
Therefore, the decomposition of an image into a set
of logon coefficients cannot be performed by simply
projecting the image onto the logons. Daugman [4]
has developed a neural network-based method for
decomposing an arbitrary image into a set of
logons. This method uses a relaxation process to
achieve a minimum mean squared error fit of the
image to the set of logons.

While this method works well, it is very
cotputationally intensive. Therefore, the object
detection and recognition systems described below
use the projection of the image onto each logon.
The “cross-talk” in the resulting logon coefficients
is ignored
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Figure 1- Constant resolution image object detection and recognition system design.
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Figure 3: Examples of geometric shapes used for
object detection.

2.1.2 Object Detection

The first stage of processing is object detection.
The approach [20] consists of calculating a set of
low resolution Gabor logon coefficients and
comparing these coeflicients with those derived
from a set of simple geometric shapes. The use of
low resolution logons provides resistance to noise
and background clutter, while comparison with
simple geometric shapes reduces false alarms In
order to ensure that all objects in the image are
detected, the object dete« ‘on process 1s applied
throughout the image on a sampling gnid of every
fourth pixel

In Figure 1, the p  rary feature extractor
calculates 16 complex Gabor coefficients
corresponding to two spatial scales, eight
orientations, and two phases at every fourth pixel
location. This results in 1,048,576 coefficients and
requires 36 billion arithmetic operations per image.
These coefficients are passed to the object detection
module which compares the 16 coefficients at each
pixel location to the coefficients derived from each
of five geometric shapes (see Figure 3).

The comparison is performed using a norinalized
similarity function derived from 3}

S5 = S0d) GO JGEI G

T IGGEHIIEHN NG IGGE D

where 5(i, 7) is the similarity function, G(1,)) is
the Gabor feature vector at pont (i, j) in the
image and G(p) is the Gabor feature vector of the
matching geometric shape This similanity function
is normalized to the interval (0,1)

The sunilarity values at each sampicd pixel are
then compared with a threshold Those pixels with
similarity values above the threshold are considered
potential object locations and are pas.ed on to the
second stage of processing. In general, a very large
fraction of the pixels will be below the threshold
and therefore will not be processed further,
resulting in a significant reduction in proccssing

bandwidth between the first and second stages.
This bandwidth reduction is accomplished while
maintaining a low object miss rate.

2.1.3 Object Recognition

The second stage of processing is object
recognition. The processing at this stage consists of
extracting a number of higher resolution Gabor
logon coefficients and inputting these coefficients to
a backpropagation neural network {11]. The
backpropagation network has been trained to
classify its input into one of the 40 object classes or
the “no object” class. This processing :s applied
only at thnse pixel locations that were above
threshold in the object detection stage. The
following discussion assumes that there are 100
such points.

At each potential object location, the secondary
feature extractor calculates 56 complex Gabor
coefficients corresponding to seven spatial scales,
eight orientations, and two phases. The spatial
scales irclude the two scales used in the detection
processing as well as five additional higher
resolution scales. In addition to these 56
coefficients, the secondary feature extractor
calculates 56 coefficients at each of 4 adjacent
locations for a total of 280 coefficients. These
adjacent locations are typically within a few tens of
pixels of the potential object location, and result in
a more robust classifier that is insensitive to the
precise position of the potential object location on
the object.

The magnitude of each complex coefficient is
calculated and the resulting 280-dimensional vector
is presented to a backpropagation classification
network. This network is trained to classify its
input vector into one of 40 object classes or the
not-an-object class. Through training on actual
examples of objects and false alarms, the network
is able to achieve a low false alarm rate and a high
probability of correct classification. It is worth
noting that this constant resolution method is itself
much more economical from a computational
standpoint than most classical approaches which
often require yet another order of magnitude more
processing per image.

2.2 A Foveal Rosette System

In the recent past, a number of resear~hers
(14,15,16,17,18,19,10} have advocated a
fundamentally new approach to image object
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Figure 4: A foveal image feature sampling pattern
rosette with 3 rings and 16 spokes. The radius of
each ring is twice that of the previous ring. Spa-
tial frequency features are gathered at the central
fizaticn point of the rosette and at the points of in-
tersection of the rings and spokes. For many ob-
jects, these spatial frequency feature sets provide a
unique signature ~ assuming that the central point of
the rosette is placed at an approximately repeatable
position on the object. Rules and neural networks
for moving the rosette (a saccade generation system)
ensure that the rosette moves repeatably to similar
fixation points on similar objects in different images.
A saliency detector neural network can be used to
determine when an object-identification-relevant fix-
ation point (a nezus point) has been found

detection and classification. This approach, which
we shall cali “eyeball” vision, is based upon a crude
analogy with mammalian vision. systems The idea
is to utilize many of the sucressful methods already
developed in machine vision research, and modify
these methc+s to work with a much smalier set of
multiresolution wavelet features that are sampled
in a non-uniform foveal pattern ( ‘ee Figure 4).
The idea of foveal sampling is that of having an
agile, readily movable sensor that moves
intelligently from fixed point to fixed point in the
image to carry out the object detection,
classification, tracking, and measurement functions.

As shown by Zeevi [19], Rybak [14,15,16,17], and
von der Malsburg {2,3,12], the operations required

to carry out most object acquisition and object
recognition operations in images can be carried out
using a relatively small ensemble of spatial
frequency and image intensity features. In fact, for
a foveated image sampling pattern, Rybak [14]
proposes that as few as 833 real-valued, local image
features are sufficient for carrying out many
practical object acquisition and recognition
functions. The work of Zeevi [19] and von der
Malsburg [2,3,12] supports Rybak’s conclusions. In
this paper we will discuss a slightly modified
version of Rybak’s foveal rosette system [14].

The point on the image that lies at the center of
the foveal sampling pattern (the rosette) is called a
fization pownt. As in biological vision, the
movement of the rosette from one fixation point to
the next is known as a “saccade”. Saccades are
generated primarily by exploiting feature data
gathered at the sparse peripheral sampling points
of the rosette. No information processing occurs
during a saccade. Processing only occurs during
pauses of the rosette at fixation points.

The goal of saccade generation is to ultimately
move the center of the rosette to 1 repeatable
position on each object of interest within the scene.
Once an object is approximately centered in the
rosette, it is classified utilizing the features
gathered in the high acuity central region of the
rosette. At least this is the case for compact objects
(which will be the focus of this paper). Extended
objects (objects larger than the two central rings of
the rosette — see Figure 4) can only be classified by
linking information gathered at multiple fixation
points located on the object. Building an eyeball
vision system for detecting ard classifying such
extended objects will probably be more difficult
than for compact objects. Since almost all military
object detection and classification problems can be
solved within the confines of a compact object
restriction, we will consider only compact objects.

In the presentation below, we begsin with a
discussion of the foveal rosette and a basic set of
features that are derived from the image at each of
the rosette sampling points. The feature set
presented here, while sufficient for an initial
development effort, should probably be expanded
for an operational system to inciude additional
important saccade generation clues such as color
gradients and frame-to-frame motion cues. The
issue of exactly how the foveal rosette features can
be physically extracted from the scene is also
discussed. Following the discussion of the foveal
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rosette and the feature set, methodologies for
object detection and recognition are reviewed.
Finally, methods for developing a feature vector
library for use in classification are presented.

2.2.1 The Foveal Rosette

The foveal rosette (see Figure 4) is nothing but a
sampling frame. At each intersection of a radial
line and a ring (or of the radial lines themselves —
namely, the center), a set of features is gathered.
The essential element of the rosette is the density
of the features, not their regular spacing. In fact,
randomly located sampling points could just as
well be used, as long as their average density were
to fall off properly with radial distance from the
center of the rosette. Regular spacing simply makes
the system easier to describe and work with. It also
facilitates the efficient mathematical comparison of
the feature sets gathered at different fixation points
on different images.

The features that are extracted at each point of
the rosette could be almost anything. For example,
we might measure the local spatial frequency of the
image at one or more scales. Another possibility
would be to detect local image flow or measure
color gradients. To allow comparison with the
constant resolution system des<ribed above, we
shall concentrate solely on the use of local spatial
frequency features (specifically, Gabor logons, as
shown in Figure 2).

The specific feature set that we will discuss in
this paper is based upon the concepts of Rybak and
his colleagues (14,15,16,17] Rybak’s idea 1s that
the spatial frequency measurements at each sample
point are made with both sine and cosine Gabor
logon correlation kernels at eight different angles
equally spaced between 0 degrees (vertical) and
1567.5 degrees (the opposite azimuths are covered
by the symmetry of the kernels) - see Figure 5.

We assume that the objects of interest have a
spatial frequency structure such that the objects
can be uniquely and easily classified by means of
spatial frequency measurements at two scales that
are a fixed percentage of the overall object size
(and the same for all object types). Further, we
assume that the object’s size can differ no more
than a factor ranging from 1/2 to 2 from some
mean. While these assumptions may seem quite
limiting, they really are not. Surprisingly, as
Rybak has shown {14], the foveal spatial frequency
features used here are capable of being reversed to
reconstruct an immediately recognizable

e

Spatial frequency features with octave frequency spacings

Vo=
SIS

Eight orientations used at each spatial frequency

Figure 5: Spatial frequency kernels with different
spatial frequencies are used at different sampling po-
sitions in the rosette. The spatial frequencies get
smaller (i.e., the kernels get physically larger) by a
factor of 1/2 on each successively larger ring. Sixteen
orientations of each sine and cosine kernel are used
at each sampling position (only eight orientations
are shown here, the others are derived by means of
symmetry).




approximate version of the portions of the original
image that were sampled. In most cases the |
reconstruction is quite sufficient to readily visually
recogmze the objects in the image. Rybak obtained
this result with only 833 features per rosette.

Experience from the. DARPA Neural Network
ATR project and on other image analysis projects
suggests that most military objects can be
classified by measuring spatial frequency content at
no more than two spatial frequencies that are a
fixed percentage of the object’s size. In fact, almost
all objects have this property. With the advent of
inertial navigation systems, GPS, laser ranging,
etc., almost all military imagery provides detailed
information about the approximate scale of objects
within a specific image. Thus, by means of either
optical lenses/telescopes or digital image
processing, the sizes of objects of interest within ~n
image can be controlled to within a factor of 1/2 to
2 of a desired mean. This is usually simple to
arrange in almost any application (e.g., a missile
seeker, a reconnaissance system, an imaging radar,
etc ). If necessary, the .ange of object sizes over
which the system can function can be increased
However, this would add cost.

An important issue regarding eyeball vision 1s the
nature of the sensing and feature extraction
hardware Clearly, the necessary sensing and
feature extraction operations can be carried out
using an ordinary television-type camera and
digital image processing While this will work, it
may not be the most cost-effective solution in the
long run. Specialized sensors that directly extract
foveal rosette sampled features from a scene, such
as Zeevi’s CCD delay line scheme [19], may
ultimately provide a more cost-effective sohition
In the discussion that follows, we will not concern
ourselves with the specific details of how the set of
features is derived from the scene. We shall simply
assume the existence of the rosette sampling
pattern and the associated spatial frequency
features (although we shall count the calculations
required to extract them).

The specific features we will discuss are shown in
Figures 2 and 5 (see {4,5,6,7,8] for details) At vach
sample point, we calculate Gabor logon wavelet
features of a single spatial frequency at eight
different orientation angles, using both sine and
costne logons. The scale of the spatial frequency
features at each ring is 2 times the scale of the
corzesponding features at the ring just side of it.
The spatial frequency of the features used on the
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first ring are the same as those used at the center.
The rings themselves have radii that increase by a
factor of 2 between successive rings. This feature
set, with some further tuning and refinement, is
probably adequate for many object detection and
classification problems.

2.2.2 Object Detection and Saccade Generation

In the eyeball vision concept, object detection
involves two processes:

o Movement of the rosette to positions where
objects are likely to be found.

e Determination that an object of interest lies at
or very near the center of the rosette.

Movement of the rosette to positions where
objects might be located is carried out via a set of
neural networks and rules. These networks and
rules determine (based upon feature information
gathered at the current rosette position and at
previous rosette positions) whether an object of
interest is likely to be in a particular direction. For
example, one rule that Rybak has explored is to
follow a prominent extended edge ar.d look for
areas of concentrated “line activity” at a specific
point. Such points of concentrated line activity
(1e., multiple strong line processes at different
angles located at approximately the same location)
are known as nezus points. In a typical military
object detection and classification problem, objects
of interest have one or more nexus points, whereas
most other objects in the environment do not.
Another rule might be that, if a particular edge
process is followed in search of nexus points, one
might later revisit tnis same edge process and
search for it in the opposite direction. In the
instance of such a rule, the periphery of each
rosette would be carefully searched for evidence
suggesting an extended edge process. This would
then be used in formulating future saccades to
examine. A saliency detection neural network can
also be used to augment the rule set to determine
whether or not a particular fixation point is a
nexus point on an object of interest.

Obviously, some kind of feature classification
process must be used in saccade generation. One
option is to have a separate feature znalyzer for
each distinct set of saccade generation rules. For
example, the extended edge following rule might
use a classifier that looks for and locates extended
edges in the scene using feature data from each
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rosette. Another process might involve looking for
edge intersections to determine the locations of
potential nexus pcints. In either case, a set of rules
for moving the rosette is required. Saccade
generation is cleatly the area of eyeball vision that
has the greatest need for additional research.
Notwithstanding the need for more research on
saccade generation, even the current crude systems
work remarkably well (see [15] for an impressive
example).

2.23 Object Recognition

As the foveal rosette is moved about the scene by
the saccade generation rules, a nexus point saliency
detection neural network (a mapping network
trained on points chosen by humans as being good
nexus points) is used at each step to determine if
an object of interest is present near the center of
the rosette. The inputs to this network are the
same multiresolution wavelet {;atures used by the
saccade generation rule base. This nexus detection
element is used to decide whether full classification
of the specific set of rosette features is called for.
The ultimate goal is to compare each nexus pomnt
rosette feature set with a stored library of
catalogued features.

The comparison or matching operation needs to
be carried out in such a way that the system 1s
insensitive to scale changes in the object by as
much as a factor of 1/2 to 2 from the baseline
scale, rotations of the object within the plane of
the image around the center of the rosette, and
small changes in the spatial frequency content of
the object. Methods for carrying out such
matching operations are known. One method is
graph matching [2,3,12]). In terms of our specific
features, the essence of graph matching is to take
the unknown feature set and compars it with each
of the known feature sets at a variety of scale and
rotation offsets. For example, we might take the
unknown feature vector and compare 1t (using an
abridged Euclidean distance measurement) with a
collection of auxiliary feature vectors derived from
a single library feature vector. The auxiliary
vectors are created by taking the library vector and
rearranging the feature values to correspond to
rotations of the foveal rosctte by 22.5 degrees
increments and scale changes of the rosette (by
factors or divisors of 2) across scales of 1/2 tu 2.
The Euclidean distance measurement is abridged so
that components which would correspond to rings
that do not exist in the scaled rosette are ignored

The outer ring is also often ignored, because its
features are used primarily for saccade generation.

Instead of usirz.g Euclidean distance, another
approach would be to use a neural network
comparison module that has been trained on a
large volume of known image feature data. The
output of the module is the determination of
whether or not the unknown feature vector and one
of the rotation/scale altered versions of the library
feature vector match sufficiently or not. The use of
a neural network for this function would seem
promising, since the subtleties of the matching
operation probably will allow a method that
utilizes more of the feature content to do better
than simple Euclidean distance comparison.

One of the challenges of the eyeball vision
method is to find a way of matching an enormous
number of library vectors with a particular
unknown feature vector in a small amount of time.
Cluster trees and other hierarchical indexing or
content-addressable memory techniques may be
useful for this purpose.

2.2.4 Feature Vector Library

The creation of a feature vector library for a
particular set of objects of interest might seem very
difficult, but it need not be. All that is needed is a
labeling of nexus points on objects of interest in a
reasonably large set of images. During the training
process, the rosette movement rules are allowed to
generate saccades and move the rosette around the
images. Human observation of the rosette’s
behavior can be utilized to improve and expand the
rule base. Neural networks can also be trained by
humans to make expeditious saccade commands.
Whenever the center of the rosette touches a
labeled object of interest near a nexus point, the
rosette feature vectors are captured and added to
the library with a tag specifying the class of the
object with which the vector is associated in the
image. Rybak’s work suggests that most objects
will have multiple nexus points. All of the feature
vectors from these points would typically be
gathered and stored.

2.2.5 Foveal Object Detection and Recognition
Architecture

Figure 6 shows a hypothetical foveal object
dJetection and recognition system architecture. This
system is now described. In the next section it is
compared with the traditional system.
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Figure 6: A foveal rosette image object detection and recognition system design.

As shown in Figure 6, the same image as used in
the traditional fixed-resolution system is foveally
sampled using a rosette with three rings, 16 spokes,
and a center point (49 sampling ponts). 16 sine
and 16 cosine Gabor logon wavelet features are
extracted at each sample point. If we assume that
digital processing is used, then each wavelet must
be computed by multiplying each pixel of a wavelet
template mask by each corresponding pixel value
beneath the mask. The calculational burden
associated with these operations is shown in the
table of Figure 7. The current position of the foveal
window is also emitted (this position is obtained
from the saccade generator). The output of the
foveal feature extraction module is a set of 32
features at each of the 49 sample points for a total
of 1568 features (one byte each).

Following feature extraction, the nexus point
detector module uses the foveal features to
determine if the current fixation point is a2 nexus.
This operation is assumed to be carried out by a
multilayer perceptron neural network [11] with
1568 inputs, 50 first hidden layer units, 50 second
hidden layer units, and two output units (one each
for yes and no). While the size of this network is
just a guess, experience with sinilar problems
(such as object detection using regularly sampled
spatial frequency features) suggests that a network
of this size should work for a typical image object
detection application. This network requires 83,652
operations to determine the nexus point
classification for a single fixation point (1569 x 50

+ 2 x 51 x 50 + 51 x 2 = 83,652, including bias
inputs).

If the fixation point is judged to be a nexus point
(a rare event), the object recognizer module is
activated. The object recognizer uses a search
procedure (such as a tree search) to search through
a large feature vector library. It is assumed that
100 comparisons, each requiring 3 x 1568 = 4704
arithmetic operations, are needed to complete the
search. This is reasonable, since trees can be
designed to keep the search time to a low multiple
of log N, where N is the number of example ieature
vectors stored in the feature vector library
(including redundant rotated and scaled versions).

Following each nexus point detection operation,
the saccade generator module selects a new fixation
point (unless it judges that the image search has
been completed). The operation of this module is
assumed to involve a combination of both rules and
neural networks having a combined total
computational burden four times as great as the
saccade generation module, or 334,608 operations
per fixation point (this is a guess based upon the
saccade generation methods of Giefing {10]. Rybak
[15], and Schimidhuber {18}).

Let us assume (as we did with the constant
resolution system considered in the previous
subsection) that there are 12 objects in the image
and assume that there are 2 nexus points for each
object (i.e., half of the nexus points are judged by
the recognition module to not be objects of any of
the 40 classes of interest). This is reasonable,
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Wavelet Size | Arith. Ops | Number of | Number of
Ring (in pixels) (per pixel) { Wavelets | Samples Pts. | Total Ops
Center Pt. 400 2 16 1 12,800
1 400 2 16 16 204,800
2 1,500 2 16 16 819,200
3 6,400 2 16 16 3,276,800
Total Ops. 4,313,600

Figure 7: The calculations associated with derivation of the 1568 features of a single foveal rosette.

because the nexus point detector will not be able
to do as detailed an analysis as the recognition
module. Let us further assume that there are a
total of 100 fixation points explored in the image.
We then get a total computational burden of
roughly 500 million arithmetic operations per
image (100 x 4,313,600 + 100 x 83,652 + 12 x 2
x 470,400 + 100 x 334,608 = 484,475,600) Note
that the calculational burden associated with
extraction of the foveal features is about 90% of
the total required computations. This illustrates
why it would be highly advantageous if a sensor
that directly extracts these features could be built.

3 Computational Complexity Comparison

In this section the real time object detection and
classification system described at the beginning of
Section 2 is used to compare the constant
resolution and foveal approaches.

3.1 The Guidance and Control Scenario

We shall assume that the airborne object detection
and classification problem described at the
beginning of Section 2 is being used for guidance
and control of weapon systems on-board the
platform and/or of the platform itself. We shall
assume a need to process 5 franies of imagery per
second. To make the comparisons simple, we shall
imagine that all of the data flows shown in Figure 1
and Figure 6 occur on a single shared data bus
within the information processing subsystem

3.2 Processing and Data Transfer
Comparisons

In the case of the constant resolution systeu we
have a total processing load of approximately 181
billion operations per second. The foveal system
will have a total processing load of 2.4 billion

operations per szcond. Thus, the foveal system is
almost two orders of magnitude faster than the
constant resolution system, assuming that both
systems are implemented in approximately the
same sort of hardware (see Figure 8).

In terms of data transfer, if we ignore the image
input (which is the same for both) the rates for the
constant resolution and foveal system operating at
5 frames per second are 5.6 MBytes per second and
1.5 MBytes per second, respectively. Here again,
the foveal system is better.

4 Operational Implications

The operational implications of the comparison
carried out in Section 3 are now briefly discussed.

4.1 System Envelope Parameters

The 2.5 billion operations per second processing
load of the foveal system is within reach of existing
or near-term processors, as is the associated 1.5
MByte per second data bus information transfer
rate. Thus, although it is still in need of validation
in terms of its performance, the foveal approach is
well within the computational and data transfer
rate envelope that can be reasonably postulated for
near-future military systems.

In contrast, the constant resolution system, with
its 181 billion operation per second processing load
and 5.6 MByte per second data bus information
transfer rate, will be more difficult to implement in
real time hardware in the near future.

5 Conclusions

Clearly, the eyeball vision concept impacts more
than just cost. It introduces the possibility of using
knowledge regarding the spatial appearance and
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MOPS per | MOPS per

Module Frame Second
Primary Feature Extractor 36,000 180,000
Object Detection 22.5 112.5
Secondary Feature Extraction 165 825
Object Classification 3.1 15.5
Total 36,200 181,000

Foveal Rosette System
MOPS per | MOPS per
Module Frame Second

Foveal Feature Ixtractor 430 2,150

Nexus Pount Detector 08 4.0

Saccade Generator 33.5 167.5

Target Recogmzer 11.3 56.5

Total 175.6 2,378
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Figure 8: The computational requirements of the constant resolution and foveal rosette systems.

characteristic detailed internal structure of ohjects
of interest.

Obviously, at this stage eyeball vision 1s httle
more than a concept. However, it seems worthy of
further investigation, if for no other reason than
the potential for computational cost savings
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NEURAL NETWORKS FOR TARGET
RECOGNITION

Bernard ANGENIOL
MIMETICS
5 Centrale Parc
Avenue Sully Prud’homme
92298 Chatenay Malabry Cedex
France

0 Introduction: why neural
networks are interesting in target
recognition problems

Modern strategic surveillance or
autonomous weapons systems have
performance requirements that imply
the use of new and innovative data
processing techniques. The ever
increasing number and sophistication
of modern threats, the availability of
large amount of data coming from large
numbers of transportable and moving
sensor platforms, the extremely strong
real-time defense system requirements,
have resulted in increased demands on
data and signal processing systems,
often overwhelming conventional
processing technologies.

The existence of larger numbers
of threats in a cluttered environment,
the existence of many false alarms,
implies the use of real-time adaptive
algorithms. Classical approaches have
led to often costly, inflexible, algorithm
intensive data processing systems; they
can only meet the performance
requirements through high-cost
developments of co-processors.

More precisely, target recognition
imply very adaptive developments, the
nature of targets being different from
one situation to another, the targets
themselves varying in time, for
example during the life of a weapon
systam. Various pattern recognition,
from the perspective of sensor signal
classification processing, are necessary,
for example to detect and classify
specific target signatures buried in
noisy, clutter-rich signals.

Neural networks techniques,
because learning from exaraples is a
crucial phase are well suited for
problems requiring an adaptive
behaviour; by applying the same
architectures to learn various database,
on can obtain developments at
relatively low costs; moreover, good
fault tolerance is obtained which is
particularly useful for signal processing
on clutter and noisy signals. Finally,
neural networks are intrinsically
parallel algorithms, which allows
execution on parallel neural networks
processors, which may provide the
answers to some of today's most
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formidable defense system processing
requirements.

1Input signals and databases

Essentially four types of signals
are used for target recognition, radar
signals, infra-red images, sonar signals
and TV images.

In each type of signal, several
subtypes can be described,
corresponding in particular to the
functionalities of the system; for
example, radar signals for panoramic
surveillance ar every different from
radar signals used in target detection in
weapon systems; moreover Sensors
have particularities in executing the
reception phase, which includes
filtering, amplification, and
demodulation of the signals, these
procedures being generally analog.

For the needs of neural networks
applications, big databases are necessary
for the learning phase. Here comes the
first real difficulty, because these
databases have to be really
representative of the problem to be
solved. Two issues are then possible;
either one uses data obtained from
simulations, or one uses real data
registered either in past conflicts, or in
experimentations made by the army or
the industrial groups interested in the
project. In both cases, some questions
are raised.

If one uses simulations, the
advantages are generally that one has as
many data as needed, that their cost
remain reasonable, generally the cost of
the development of the software

simulation, that it is easy to make a
database that is statistically
representative of the data to be
processed, and also to take into account
some particular cases that appear as
rather exceptional. This leads you to a
software that solves pfetty well the
target identification problem for signals
coming from the simulator. The
question is then: what about real data?
Are the data generated by the simulator
close enough to real data to ensure good
performance on real data? The answer
to these questions clearly depends of the
particular characteristics of the problem;
one can however say that it is relatively
easy to make simulations with shapes
close to real targets shapes, but that the
main difficulty remains in the
simulation of noises and clutter; the

experiments prove that resistance to
artificial noises does not necessarily
imply resistance to real cluttering.

If one uses real time data, the
advantage is of course that the database
used for learning will have
characteristics close to the data used in
real tests. The inconvenient is generally
that, except when for the addressed
problem, real databases have been
recorded for years, you have to record
new data to complete your database,
and this may imply very high costs.
Moreover, it may be merely impossible
to obtain a database being
representative of all exceptional
patterns that may occur in your data.
So, there is then little chance that the
system will be able to handle these
exceptional cases that he never met
before.




The best solution is most of the
time to use data coming from
simulations in the development of
prototypes, then, to make real
applications, to start from an existing or
reasonable cost database, and to
complete this real database by data
coming from simulation. This solution
is often the one offering the best
price/performance ratio.

It must also be enhanced that the
possibility of complementary learning
phases remains open and that,
consequently, if it will always be
possible to enhance the performance of
the system facing some particular
situations that had not been forecasted
originally.

2 What preprocessing?

The second problem that has to
be addressed is the choice of the
preprocessing. First, is preprocessing
really needed? It is clear that neural
networks, in many applications
perform very well on raw data. This is
particularly true in image processing,
less in signal processing. However, if
one wants to deal with raw data, one
may have to make a numeric
representation of the signal with very
high frequency; this implies very big
memory size for the system, and very
very long learning time. So, to obtain
equivalent results at reasonable cost,
one needs some preprocessing.

But, again this really depends of
the signal. For example, no
preprocessing is really necessary for
recognizing targets in TV images, while
preprocessing seems unavoidable in
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most problems using sonar signals.
Most of the time, the problem of
target recognition has been studied for
long time using various classical
methods. Adapted preprocessing was
then used, and the experiments prove
that the best preprocessings for classical
methods are also most often the best
preprocessing for neural methods. For
example, in the case of radar signals;
usual numeric preprocessing such as
pulse compression, doppler filtering,
nurmalization, or thresholding with

constant rate of false alarms have
proven to improve the performance of
neural recognition.
Again, the choice of
preprocessing in itself depends of the
problem; for example, if you want to
distinguish  between

helicopters, the frequency of blades is

various

one of the most discriminating
patterns, so that you will need a doppler
filtering.

But neural networks have
proven to be useful either in the choice
of the preprocessing, or in the
preprocessing itself. Here come a few

examples:
The way how neural networks

can be used to choose a preprocessing
has been studied in [16]. In this paper a
two-stage original architecture is
described: in the first stage, a first neural
network with input the raw signal
makes a pre-classification, identifying
the type of input signal, and yielding a
good choice of signal processing
method; in a4 second stage, this
preprocessing technique is applied to
the signal to feed a second neural
network which performs the precise
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classification. In this example, the
"preclasses” are classes such as transient
sounds, surrounding noise around,
quasi-stationnary noises.

An example of preprocessing
using neural networks concerns texture
analysis in infra-red images. Such a
procedure is described in [6]. For target
detection in infrared images, texture
analysis is a very useful tool ( while for
exainple, because of the low dynamic,
and low signal/noise ratio, contour
detecticn is not successful). To perform
the discrimination between textures,
two sorts of preprocessing are used:
multiresolution analysis by wavelet
transform to provide interscale level
energies, and the grey-level
distribution. A multi layers perceptron
then performs the classification.

Another example of
preprocessing is described in [12]. To
improve the performance in pulse
radar detection, pulse compression
techniques, which involve the
transmission of a long duration wide
bandwidth signal, and the compression
to a narrow pulse, are generally
employed. A neural network has been
trained to perform this compression,
with computational speed faster than
those of the traditional approaches.

3 Extraction of features

In all pattern recognition
problems, features extraction has always
been a key problem. If you are able of
finding discriminating characteristics of
patterns in signal or in image, then
making the classification is generally

rather an easy task. Before the
introduction of neural networks, there
was essentially two ways of extracting
features for a classification problem,
linear algebra and experience.

The only available mathematical
method was linear regression, which is
still the best method to be used when
the characteristic features can be
obtained in a linear way from the
parameters coming from the sensor; but
this means the problem is easy.

In other cases, the best help for
extracting features is probably to use the
experience of experts in the domain.
They generally are used to look for
particular patterns in the signal, their
approach has proven to be successful, so
why not try to identify these particular
patterns. Even when you use after
neural networks, this has proven to
save lot of time for learning. Moreover,
a good choice of the features may bring
to you some invariance properties that
are adequate to your application. In
target recognition, one generally wants
to have some translation, rotation or
scaling invariance; a convenient choice
of features may bring this property. This
is done in [9], ( see § 5.2 below).

In some cases, various
preprocessing and features extraction
have been applied to a same problem;
performances can then be compared.
This is the case in [18], for automatic
identification of pulse sonar noises. The
first approach is based on a joint use of
autoregressive modeling and wavelets
transform to obtain a reduced set of
parameters to feed the classifier neural
network. The second is based on a two




dimension signal (time-scale)
representation by compactly supported
wavelets as inputs for the network.

If backpropagation is certainly the
mos* popular algorithm in neural
networks, a key reason is its ability to
extract automatically features. In fact,
you can consider the first layer of multi
layer perceptron as being a feature
extraction program, dedicated to the
addressed problem. Moreover, the
procedure of shared weights allows to
impose translation or even scaling (
with convenient preprocessing)
invariance to these features.

In [5], an example of an extraction
of visual features for lofar images is
given. The identification of underwater
acoustic noises is actually made
essentially by human operators, either
by listening directly to the noise, or by
looking at the spectrogram of the noise
(lofar). A backpropagation neural
network has been used to extract visual
features from the lofar diagrams.

! Jost of the time, the features
that nave been automatically extracted
have their justification in the
performances of the classification that
follows them. But sometimes, specific
signal features extracted by hidden units
of the network can be given an
interpretation. A good example is given
in [11]. The problem addressed there is
to classify sonar returns from an
undersea metal cylinder and a
cylindrically shaped rock of comparable
size. It can be shown that certain hidden
units correspond to an aspect-angle
independent classification, while others
correspond to an aspect-angle
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dependent strategy, encoding in
particular specific spectral peaks or
nulls.

4 Neural classification techniques
Backpropagation is certainly the
most popular algorithm for target
recognition problems, as it is for most
classification problems. In  the
examples we are giving in 8§8,
backpropagation is used in [4], [5], [11],
[12], [13], [15], (18], (19], [20]. The main
reason for that, as was said previously,
is that backpropagation still works if
preprocessing or features extraction that
have been made Dbefore the
classification are not perfect. So, it is the
easiest way of making an application,
main problems generally occuring in
the optimization of the learning time.
For example, in [4],
backpropagation has been applied to the
problem of the detection of moving
targets in severely cluttered
environments from medium pulse
repetition frequency Doppler radar
signal. Performances, when compared
with conventional filter bank method,
proved to be much better especially in
highly cluttered environments.
Another example is given ii [15]
for the passive detection of target-like
signals in underwater acoustic fields.
The input to the Neural Network is an
intensity modulated signal which a
measure of the power of the signal at
different frequencies as time varies. The
first stage of the sysiem is an
autoassociative memory whose
function is to eliminate the noise. The
output of this first stage is input to the
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second stage which is a multilayers
perceptron. Performances are quite
promising.

Stochastic algorithms :uch as
Boltzmann machine are used more
exceptionally, generally when the
characteristics of the application imply
that the cost function that is used for
the classification has several local
minima one wants to escape from. The
inconvenient for these algorithms is
that they are generally computer time-
consuming, so that their study is often
coupled with hardware
implementation.

This is the case in [2], where
Synchronous Boltzmann machines are
implemented on a Connection
machine, for classification of boat
outlines extracted from infra-red
images.

In some oiher cases, randomness
can be used to escape from flat portions
of the energy landscape, as it is the case
in [22], where a stochastic variant of
backpropagation improves convergence
rates for a sonar target recognition
problem. .. '

Learning Vector Quantization is
a typical classification algorithm,
probably the most efficient when used
properly; but it has to use perfectly
adapted features as inputs; in some
problems, best results were obtained by
making a first classification using
backpropagation, then by applying a
Learning Vector Quantization to the
intermediate hidden units of the
backpropagation. In [9], Learning Vector
Quantization is applied to features that
have been manually extracted to insure

translation, rotation and scaling
invariance (see §5.2 below)

Neocognitron is a very powerful
algorithm, able to extract automatically
features, even with some invariance
properties. But, it is not so popular
because the architecture of the network
may be rather complicated, and the
results very dependent of the chosen
parameters. Most often, the architecture
of the network corresponds to a
decomposition into functionalities . In
[10], the neocognitron is applied to
detection, recognition, and
identification of targets in infra-red
images. It is proven that a neocognitron
can distinguish between tanks, cows
and haystacks, a difficult task when they
are viewed by an infrared sensor.

Kohonen Topological maps is the
most commonly used algerithm for
unsupervised target recognition
problems. In fact, the target recognition
problems are not so often
unsupervised, so that Topological maps
are rarely used. One can however see an
example of its use in [14] (see
description §5.4 below)

Finally, Widrow's Adaline is
v 2d in some cases, even if in most
cases, backpropagation is preferred ( see
[17] tor example)

5 The key points

In most of the target recognition
applications, some common difficulties
arise; on can quote four:

- Multi resolution recognition

- Invariance by translation,
rotation, scaling

- Movement detection




- Global situation analysis

5.1 Multi resolution recognition

Targets may be far or close, big or
small, the accuracy of the signal may
change due to noise or cluttering, so
that the scale to which one has to use
the signal may vary. The most popular
tools for taking into account these sorts
of problems is the use of Gabor
functions, or wavelets functions.

In [7], a multiresolution
segmentation technique is developed
for signals and images, combining
wavelets and neural networks.
Multiresolution analysis
localization of different contours in
different scales. Thanks to this

localization which characterizes the

allows

smoothness of the contour , one can
hope to distinguish objects with
different resolution.

A hierarchical organization of
feature vectors constructed from Gabor
convolutions with infra-red .mages at
different orientations and resolutions is
used in [8] for tanks recognition.

5.2 Invariance by translation, rotation,
scaling

Invariance by translation,
rotation, scaling is important since
targets are moving objects to be
recognized whatever their position,
distance or orientation is. Invariant
feature extraction is thus an important
factor. Even if shared weights
backpropagation can bring a partial
answer to this, abstract features are

often defined.
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In [9], invariant target recognition
is performed. The features are defined a
priori; for example the total number of
pixels with value 1, the sum of the
products of pixels which are at the same
distance from a designated origin, but
90 degrees apart, .. are some of these
features. Kohonen's Learning Vector
Quantization 2 technique is then
applied to these features and gives very
good performances for identifying
silhouettes images of targets.

5.3 Movement detection

Targets are moving. Sensors are
generally giving a picture, including
position
recognrition tasks are much easier if

of various targets. But

correlation between these positions is
done from one picture to the next
picture. This task of tracking, or
extracting trajectories is always
important, and is more difficult if the
frequency of picture is low, compared to

the speed of the targets, as in the case of
some radars, for example.

In [1], visual information about
the motion of objects in an image is
obtained, including the description of
the trajectories. A neural networks
implementation of the so-called
novelty filter allows to detect motion of
objects in a scene and to record

corresponding trajectories.

5.4 Global situation analysis

Another difficulty to use all the
information obtained is that, in many
cases, isolated information concerning
one target is not enough. A decision of
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attacking a target may depend of the
existence of other targets around it; the
spatial relations between several targets
often give important indications about
their intentions.

A global analysis tool is still
something prospective; however, some
prototypes are developed on the subject,
such as in [14], where recognition and
reconstruction of spatially related
grouping of various objects is
addressed. The recognition and
reconstruction properties are invariant
under input patterns that are translated,
distorted, incomplete and rotated by 30
degrees with respect to the training
patterns. The
combination of
neocognitron, and Kohonen's

algorithm is a
Fukushima's
multi-
layered multi-topological feature maps.

6 Integration

The Dbiggest difficulty of
integrating new technologies in big
systems has always been integration.
This is true as well for weapon systems
and neural networks. In fact, two levels
of the difficulty of integraticn appear:
the integration in the information
processing part of the system, and the
integration in the whole syster itself.
A third level of difficulty, is not
addressed here, but has to be quo ed: as
neural networks programs are made by
learning from examples, the software
engineering cycle imposed by military
administrations, as well as the usual
validation procedures are not
applicable. New agreements have to be
found on this subject between military
administrations and weapons systems

industry.

6.1 Integration of various neural and
non neural modules

Various functionalities have to
be performed in the computers of
weapons systems. Some of them, as
seen earlier, may be well performed by
using neural networks. But, all this
would be of no use without integration
capabilities networks
developments between themselves,
and with other modules. Fortunately,
lessons from expert systems have been
learnt, and integration is a high priority
for most of the neural networks tools.

of neural

An example of integration of
various neural algorithms used in
panoramic surveillance is given in {13].
In this application, several multi-layers
perceptron trained using
backpropagation are used for image
prediction, pattern and image
classification, image compression. Also,
a model deriving from simulated
annealing solves the tracking problem.

A combination of classical and
from
removing, to identification is presented

neural aigorithms, noise
in [21]. A preprocessing stage removes
noise from the imagery using data
and performs automatic
detection to obtain a range slice of the
object. The object is then normalized
for scale, rotation, and translation in
the field of view, Oriented receptive
fields are applied to extract edge
strengths, followed by a neural network
that does boundary completion. The
object shape thus obtained is then the
input of a neural network based
classification stage that identifies the
object.

fusion,




6.2 Integration in systems

When one wants to define a
neural networks module, as seen in § 1,
a strong constraint is the availability of
databases. This may lead to choices that
are not always compatible with the
functionalities of the whole system, as
mos. of the time the available data has
not been recorded especially fcr the
neural networks module.

Two good examples of a good
integration of neural modules within
the functionalities of the whole weapon
system are given: in [19], a
backpropagation module is used to
insure the load limitation of a radar
plot extractor system. The network
differentiates between true and false
plots before the tracking function is
performed. This allows to reserve the
tracking function, which is computer
time consuming to the true plots.

In [20], a target recognition system
based on neural networks is described,
as well as the integration in the system.
In this system, target recognition is
performed on infra-red images in two
steps.In the first step, potential targets
are classified in targets or false alarms,
to reduce computer
consuming; in the second step,

again the

classification of targets as planes,
helicopters or missiles, allows to adapt
the tracking algorithms, to give
priorities to the various targets, and to
give a better evaluation of threat.
Finally, concerning integration,
the real-time constraints justify the use
of parallel dedicated neural hardwares.
Up to now, the technology of realizing
neural hardwares, has been more
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developed in research laboratories than
in operational integration teams, so
that,

7 Conclusion

Neural networks are certainly a
very promising technique for target
recognition, their
adaptability, their fault tolerance and
their real-time potential due to their
parallelism. If, as in most of the
applications of neural networks,
choice of
preprocessing, and features extraction
are important to keep the amount of
time necessary for learning within
reasonable limits, the key factors for the
success of the applications are multi

because of

database availability,

resolution recognition capabilities,
recognition by
scaling ,

invariance of
translation, rotation,
movement detection capability. The
integration of neural modules in
weapon systems requires new
validation processes, as well as a careful
study to make the neural modules
compatible with the sequence of
functionalities of the system.
Backpropagation is certainly the
most often used neural algorithm,
because of its ability of extracting
features. Various comparisons of
performance with classical methods
have been made on some examples.
One is given in [17], where neural
networks outperform classical
algorithms for some problems of
classification of natural underwater
sounds. But there is no general rule,
and in fact, most of the time
performances mainly depend on the

representativity of the database.
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ABSTRACT

Vision systems are finding wide-spread use in such areas as autonomous robotics and in more mundane
situations for the interpretation and/or identification of objects in images generated by various sensors.
This tutorial presents an overview of the various areas 1 which such systems have proven successful
and an introduction to the underlying theory.

The human vision system seems to be composed of a set of pre-attentive filters located in the retina
which do an immediate data reduction by computing a set of features (a feature vector). These features
are transmitted to the brain for interpretation as images. Synthetic vision systems are based on the same
functional decomposition of feature extraction followed by interpretation.

The use of pre-attentive filters for svnthetic vision systems has gained wide acceptance and produced
some impressive results. The concept of pre-attentive filters 1s introduced and the Gabor and the
Fourier-Melln filter are shown as typical examples.

Several types of neural nets, given the «, propniate input data, can be trained as interpreters to classify,
complete and identify patterns. Several architectures are explored for these applications.

The first class of applications exploits the mapping charactenstics of neural networks. This ability leads
to a set of applications 1n pattern classification, pattern completion and pattern recogmition. The second
is in the more difficult field of object (target) recognition Experimental results in image compression
and target identification are drawn from the literature.

It is suggested that the techmques for creating vision systems appear to be applicable to very large class
of problems not normally associated with ‘seeing’ as we normally constder it.

INTRODUCTION

The goal of replicating the capabilities of the human vision system, or perhaps more ambitiously
the vision systems of various other animals with superior capabilities, is undergoing some form of
realization at this time. Electronic vision systems with some of the capabilities of animals are
being routinely accomplished.

While a complete electronic vision system that simulates the capabilities of ammals may seem a
desirable goal, in most cases some specific subfunction is all that is required. Robots, for example,
need only 'see’ what is required to perform their function. This may only demand the
identification of a hole in a casting into which some part is to be inserted. In other cases, only
predetermined shapes or objects need by identified. Thus, in most cases, while researchers may
seek biologically emulated electronic systems, a vastly lower order of functionality is usually what
emerges in practice.

Animal vision systems are composed of two main functional partitions. The first, in the eye,
consists of a vast array of pre-attentive filters located in the retina which are either genetically
coded or trained, early in life, to recognize certain attributes of the light energy they receive. The
output from the filters forms a feature vector (a coded representation of the image), which is
transmitted to the brain. The brain interprets this code and creates an image. The visual richness
of the resulting image depends on the evolutionary demands that have been placed on the species.
A frog, for example, seems to see only motion qualified by some indication of mass. The
interpretation of these images is very simple; small things you try to eat, and large things you try
to escape. The human system, we assume, has responded with the most complex and valid
representation of the external world both through our coding mechanisms and our interpretative
capabilities. On the other hand, it is very conceivable that we are missing many subtleties in the
surrounding world.

Research in vision systems seems to have been concentrated in three general areas: understanding
and proposing models of the animal system; modelling the generation of feature vectors, anc,
training neural networks to recognize certain attributes of an image. It is the latter two we are
interested in. The modelling approach attempts to create feature vectors which represent the
image with such fidelity that it can be reproduced (this is most useful in transmission and storage),
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or which enhances certain attributes useful for classification or for object recognition. This later
capability is perhaps of most interest to those concerned with guidance and control.

This paper is organized in four main parts: In the first we will review a model of animal vision
and from this propose a mode! for electronic vision systems. In the second, we will review neural
computation from the point of view of image processing. In the third, we address the use of
neural networks to classify or identify objects presented to the input. Finally, in the fourth, we
will address the use of pre-attentive filters used to more closely simulate animal vision.

VISION SYSTEMS

Animal Vision

A model of an animal vision system is shown in Figure 1. In this model, the image is decomposed
by a large array of sensors which become trained to recognize attributes of the environment (such
as vertical strips or bars) based on the characteristics of the received light. These sensors have
been shown to have a response which is similar to a two dimensional sinusoid, damped with a (two
dimensional) Gaussian decay function. This function originally proposed by Gabor has the unique
property of a minimal space-time dimensionality under a Fourier transform. The functions are
called Gabor-Logons, after Gabor [B-1] who studied these functions in communications theory.

A feature vector is generated based on the output of these preattentive filters and conveyed to the
brain 2long the optic channel The brain interprets the signals and creates an image. The
interpretation process is partially genetic, and is dependent on traiming. Daugman [C-1] and many
others have shown the validity of this model by actual measurements on the eye of various animals.
While the process seems almost unbelievable in its complexity, upon reflection it seems an
eminently sensible way of reducing the image data to an essential subset which can be processed in
some reasonable time.

Machine Vision - A General Architecture

Systems for emulating ammal vision system have a similar architecture, as shown in Figure 1. The
sensors could be physical elements producing a characteristic of the image, or simulated elements
whose outputs are derived by a computation on the input image. Sensors outputs are fed to a
processing element which act directly to produce results (such as classification) or to an interpreter
for subsequent processing. In the case of simulated filters, images are usually captured by some
form of scanner which produces a pixel stream representing light intensity and/or color. The
sequence of pixels becomes the synthetic image presented to the computational procedure. The
characteristics of th¢ sensors and their number depends on the application.

A PARTICULAR VIEW OF NEURAL COMPUTATION

All The World is a Vector

Neural computing, in all its paradigms, assumes some form of vector input and produces a vector
output. The interpretation of the vectors and the processes of responding to the input vector vary
widely, however the basic view remains unaltered.

In order to provide an image input to a neural network, it is necessary to reduce the image to a
vector. This is usually done by some form of raster scan in which the pixels become the vector
components. The generation of pixels depends on the sensor and on the problem. For example in
scanning a satellite image of clouds, a one kilometer square is averaged to produce a pixel.

The interpretation of the output vector depends on the problem. In image classification, for
example, the output would represent the estimate of which class the image is from. In target
recognition, the output would be an estimate of which the class of targets the object is from.

The initial task of the system designer is to decide on the format, size and interpretation of the

input and output vectors, and then on the appropriate neural paradigm needed to generate the
transformation.




The neuron in most paradigms computes a distance function between its internal weights and the
incoming vector. This is usually an-inner product or a vector-difference of lengths. The resulting
number represents how close the input is to the neuron's weights. The output of the middle layer
of a feedforward network is a set of numbers representing the closeness of the input vector with
each of the neuron weights. This vector must be processed to produce the desired output.

When considering image systems it is necessary to consider the effects of the volumes occupied by
the class of images and by the desired responses of the system.

Hyperspace and Hypervolumes

The world of images can be considered to occupy an n-dimensional space where each pixel is
interpreted as a basis vector in the space. In a real sense then, an image is a vector and a class of
similar images could be considered to occupy a volume in image space. For convenience,
multidimensional spaces are referred to as hypervolumes to indicate their n-dimensional character.
This distinction is important to remember since the intuitive extension of our concept of volumes
does not prove valid in n-dimensional space. The sphere is the only volume that preserves its
intuitive shape and metrics (volume, radius, circumference, etc.). The cube for example becomes
a multipointed star.

Image classes typically occupy very convoluted volumes in image space, which demands a complex
partitioning mechanism in order to separate and identify a particular class of images. Multilayer
neural networks would seem an ideal mechanism to accomplish this, since, in theory, a multilayer
network can create arbitrarily complex partitions. In practice, there are a multiple of practical
difficulties. The most significant being that successful training demands a representativ : set of
training examples which will expose to the neural network the complexity of the image volume,
and define strictly the boundaries between distinct volumes. Since the shape of the image space is
impossible to define, the selection of representative images also becomes very difficult to
guarantee.

In addition, very large image spaces (say 128x128 pixels or higher) demand relatively large neural
nets and there is no theoretical way of predicting the exact size or topology (number of layers and
number of neurons per layer). Despite the theoretical capabilities of multilayer neural networks,
the reality is that training by backpropagation (of an error) through many layers become
meffective, since the error, as it propagates backward, becomes less and less meaningful. Thus
multilayer networks become extremely difficult to train.

The results of these and other factors usually means that the space is partitioned in such a manner
that the exact partition between classes is only approximate and some intrinsic error always
remains. In most cases, there is a need to reduce the dimensionality of the image space by
extracting a feature vector which preserves the essential features of the image needed for the
particular application.

We will look at two applications to illustrate these concerns; classification and target recognition,
CLASSIFICATION AND RECOGNITION

Introduction

The classification and the recognition problems have similar attributes, however the problems are
essentially different. For our purposes we will assume that the classification problem will refer to
a situation in which a number of classes of images exist in which members of the same class share
some similar attributes. The problem becomes to view a new image and assign it to one of the
classes. Recognition usually refers to the (more difficult) problem of viewing an object within a
scene and assigning it to a class of objects. In the first case, the image is usually homogeneous,
while in the second the object can be arbitrarily located in some form of background clutter.

In the case of object recognition, the object must be found before it can be recognized. The
recognition algorithm must be insensitive to translation (both horizontal and vertical). It must in
general also be insensitive to rotation and scale changes of the object. These constraints impose
very difficult requirements on the recognition algorithm. In the case of classification, the scene
may also be rotated, and translation may imposed because of the starting point of the picture. In
general recognition is a more difficult problem than classification.
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Image (Vector) Classification

Image classification is the task of placing an unknown image into a class of predefined image
classes. The classification of clouds from satellite images, sea state from radar returns, or ground
cover are typical examples.

The classification of cloud images using neural computing paradigms, for example, seems an ideal
application. The classification requires trained meteorologists, the exact class differences while
recognizable are difficult to quantify, and many data sets are available for training and testing the
neural network. In addition there arc many examples of classified images available, and even
results from other approaches to the classification problem, to provide comparisons of
performance. Based on these problem attributes, it would be assumed that the problem was an
ideal candidate for neural technology.

The major difficulty with the application of neural networks to the classification of images is the
massive data sets required to describe an image. (say 100x100 pixels or larger). This introduces
major problems:

1 The computational load is immense, and adequate artificial neural network simulators
running on reasonable computers become very slow in training and operation.

2. The error surface during training becomes many-dimensional and very convoluted, so
that training may or may not converge in finite time.

3. The shape of the image volumes become impossible to predict and as a result the design
of the neural topology to achieve an acceptable partition is subject to a error approach.

4. The selection of traiming examples is difficult, since the training set must be both
representative (of the density in a complex image volume) and be chosen to achieve
rotational and translational invariance of the images.

The first two problems have been traditionally attacked by preprocessing the raw image data to
obtain a lower dimensional feature vector, which adequately represents the original image. The
goal is to generate a feature vector which has lower dimensionality than the image data and which
retains all the essential attributes of the image for subsequent processing. The latter two problems
offer a most difficult challenge 1n characterizing the training and test sets.

Object (Target) Recognition

Object recognition is a term used to desciibe the task of picking an object or class of objects from
an image. In this application, it is expected that the interpretation mechanisms will be presented
with a feature vector and the output will be a decision on the existence and possibly the location of
a member of a class of objects. In many cases, depending on the complexity of the system,
estimates of the existence of an object can be made even when they are obscured by screens.

The major difficulty is that the background is essentially clutter from which the objects must be
located and identified. This usually involves finding masses of distinguishing features and then
creating a negative in black and white, followed by a search for the shape of each mass. The
masses are isolated and features of each created for subsequent identification

Image (Vector) Completion

Image completion is a simple extension of the recognition problem. In this application, the image
is first classified and the classification 1s used to drive the display of a prototype of the class. A
typical application is to display the complete image of a partially concealed object, such as a gun or
a vehicle. The problem here is to define the class boundaries in such way that an incomplete
vector will terminate in the hypervolume assigned to the class of objects.




PRE-ATTENTIVE FILTERS AND VISION SYSTEMS

Introduction

In classical statistical analysis of large images, it is common to derive a feature vector which is
assumed to describe the essential attributes of the image. It is assurned that images in a class will
have features that are grouped in a lower dimensional hypervolume than the original image. The
feature vector is then subjected to statistical analysis to separate classes, usually by some form of
linear discriminate measure. A well chosen feature vector will maintain a one-to-one mapping
between the image classes and the feature vector space, and substantially reduce the computational
requirements for subsequent classification. Garand [C-1], for example, has proposed a set of
thirteen features which are used to classify cloud images with an accuracy in the high 80% range.

In machine vision system the image is captured by a scanning technique and represented by pixels
(grey scale or color), which in turn are used as inputs to computational elements which compute an
element of the feature vector. The elements are called pre-attentive filters or sometimes lenses.

Pre-Attentive Filters - The Concept

Any image can be considered as a projection onto a set of bases vectors {L(x,y)}, where {x,y}
represent the Cartesian location of the image pixel in image space. The resulting image becomes:

I(xy) = Z{aiLi(x,y)}

If the {Li(x,y)} is a complete orthogonal set (such as a Fourier series), then the set {aj) can be
computed by a standard inner-product computation, and the representation has a set of well known
characteristics. Orthogonal representations have been widely studied, perhaps because the
calculation of the coefficients is tractable, and orthogonality is comprehensible by humans. The
obvious question becomes 'How closely does the representation I'(x,y) correspond to the original
image? The answer must be qualified by several considerations, for example, "Is the goal is to
create a set of coefficients that preserve the image in detail to the extent that it can be reproduced,
or is the goal to extract a set of features particular to some application?"

{Li{x,y)} can be considered as a generalized set of filters whose individual characteristics will
determine their applicability to a particular problem doma.n. Filters used for various image
processing applications become subclasses of the generalized filter, each having a set of
characteristics and parameters which distinguishes them, and defines their suitability for a
particular application. Within an application, the number of filters required to achieve the
necessary performance becomes the 1ssue, since this will determine the computational complexity
required to generate the features. Having generated the feature vector, the question becomes
‘What processing is required to exhibit the required results?" Finally, the location of the pixels in
an image need not necessarily be in Cartesian coordinates. A polar representation is used in some
cases. The selection of an appropriate sct of L functions becomes the major issue in most vision
systems.

Feature vectors based on the apparent preprocessing performed by the human eye have been
studied. These are called Gabor lenses, and image compression (and reproduction) with less than
one bit per pixel has been reported. Gabor lenses are also insensitive to translation of the image.
Fourier-Mellin lenses have also been demonstrated, which are insensitive to rotation. These lenses
retain the essence of an image with a reasonably small feature vector.

The computation performed by these lenses correspond to that of a linear neuron. They compute
an inner product of the neuron weights, and the input image. The set of such products is the
feature vector. Each lens, however, requires an iterative experimental procedure to determine the
individual lens parameters (the weights), and the number of lenses to achieve the desired
compression or fidelity. In the experimental sciences, the lens parameters are adjusted to fit the
experimental observations (say of the image preprocessing in a cat's eye). In the image
classification problem, no such data exists and the parameters and number of lenses must be chosen
by an iterative set of experiments, which hopefully converge to the desired performance.

The selection of statistical feature vectors tends, on the other hand, to be based on image attributes
recognizable (and computable) by humans. The selection of a set of lenses to create a feature
vector, depends on the requirements of the problem, i.e., image compression and reproduction,
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image classification, etc. No well defined theory exists to guide the choice of features in any of
these approaches. Experimental results are the final validation.

The weights of the first layer of a feed-forward neural network contains the same number of
weights as the input space. In some sense these weights could be viewed as a synthetic image. Ina
trained neural net, each middle layer neuron represents a region in the image hypervolume. The
selection of the number of neurons and their weights, by what ever training mechanism, must
provide a minimal number of appropriately weighted neurons to yield the required classification
accuracy. Other than trial and error, no procedure exists in classical neural training approaches to
guarantee these results.

It is proposed here that the major difficulty is the lack of knowledge of the complexity of the
hypervolumes occupied by each image class. Indeed, given that this assumption is valid, the
problem is even more difficult because a description of the hypervolume is impossible to obtain.
Any approach to representing the distribution of images in this hypervolume must be based on this
assumption.

Figure 2 illustrates the <ituation in two dimensions. The image volumes are convoluted and
potentially interlaced as shown. The selection of an unrepresentative training set could create a
partitioning hyperplane as shown Remembering that a neuron computes a distance measure from
its internal weights, in this case it is clear that a single exemplar at the centroid will cause
overlapping with the neighboring class as shown in Figure 3. A multilayer network, while
potentially capable of drawing complex boundaries between such classes, must still be given the
correct number of neurons and the number of hidden layers and an appropriate training set to
achieve the correct partition. Clearly an image lens based on the centroid of the classes is
completely inappropriate This problem seemed to define the upper limits of classification
accuracy (regardless of the length of training). The final apparently insurmountable problem
seems to be that that the shape of the image volumes in image space cannot be determined.

Pre-Attentive Filters - The Theory

In general, some set of two-dimensional functions Li(x,y) defined on the same set of pixels as the
image can be defined (in the familiar case, for example, the exponential functions of the Fourier
series), such that a feature vector representing some estimate of the image is generated by the
series’

Fxyl = Z(a, L[x.y]

where the set {aj } represent the projections on {Lj}

The series expansion is an attempt to butld up the original function by the superposition of a set of
simpler functions, which have some predefined set of desirable attributes (such as orthogonality).

The resultant F[x,y] is either identical to I[x,y] or is different is some way. F is now processed to
regain I or to derive some attribute of I. Clearly if Li[x,y] is a complete orthogonal set, then
F[x,y} is an exact representation of I[x,y], and the set {aj } can be computed as the (normalized)
inner product.

a, = Z(Li[x,ylI{x,y])/ZLi[x,y]

The inner products and the projections of a vector on a nonorthogonal set of axis are not the same,
and they must be determined according to an optimization criterion. What ever the criterion it
should be tractable, and meaningful in practice. Consider for example minimizing the squared-
norm of the difference in the lengths of the image and the feature vector, i.e.,:

E = [x,y] - F{x.yI2

The difference can be computed by direct substitution at the pixel level:
Z(Ix,y] - Fix,y)?

Substituting the series expression for F(x,y) and differentiating with respect to aj yields:

SE/a; = -22(1[x,yILilx,y]) + Z2(ZaLk[x,y]Li[x,y]) = 0
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Satisfying this condition yields a set of simultaneous equations:

IZA0x,yILilx,yD = Z(aLalx,yILifx,y DI

The left-hand side represents an inner product calculation of the projection of each lens on all the
other lenses. This suggests that to minimize the mean square difference vector, we must find a set
of coefficients {aj} such that the inner product of each vector Li with the entire set combination of

Z(akLk[x,y]) is the same as the inner product with the original image. We note that this is
obviously true if:

Flx.y] =1{xy]

By substituting for the inner summation, the result can be written as :

2(1x,yILilx.y]) = Si = ZF[x,yILi[x.y]

We note also that the left hand side is the inner product of the image and the basis vectors. The set
of equations could therefore be 1epresented as a matrix equation:

S = LjjA

Where S 15 a vector of length n, Lij is a nxm matrix (where the terms are cemputed as the inner
product LiLj) and A is a vector of length n. For example, for the two dimens,nial case:

S] = LlLl a; + L1L2a2
Sa=LsLja; + LaLjay

By inverting the L,j matrix we could solve for a; and derive the exact representation of the image
providing the basis set were complete. The computational task 1s well known providing the basis
vectors are orthogonal. If they are not, the computational task is formidable for any reasonable
sized matrix, and accounts for the general lack of interest in nonorthogonal representations

In practice, the off-diagonal terms become an important indicator of the orthogonali© of the pre-
attentive filter If the lengths of all filter vectors are normalized on a unit hypersphere, then the
diagonal terms will be umty and the off-diagonal terms of the of the matrix, depending on their
size, will show how close the vectors are to being orthogonal.

The important conclusion from this generalization is that all preattentive filters can be described
by such an expansion, and their detailed character depends on the actual mathematical form of the
L, terms. Thus the choice of lenses depends on the detailed properties. We note also that each
lense computes an inner product with the input image, thus each lens regardless of type has the
same computational loading The minimal computational load will ihus depend only on the
number of lenses required to achieve the desired feature vector.

Invariance Properties

Under most conditions encountered in real guidance and control problems, the image space must
be considered unconstrained by orientation, and the image boundaries. In terms of the processing
required in a vision system, this implies that the image (or object) can be translated both
horizontally and vertically and arbitrarily rotated. In some cases, the image will be subjected to
magnification or contraction. This requirement places a very limiting constraint on the generation
of the feature vector which must, if required, peserve the set of features under the potential of all
these variations.

An essential characteristics in the definitivn of a vision system is the limitations on translational
and rotational invariances, and as a result the sclection of the feature vector must reflect these
requirements.

Fourier-Mellin Filters
Filters based on Fourier coefficients depend on the spectral information contained in the image.

Fourier coefficients can be computed along the image vector (considered as a time series), as a two
dimensional transform in x and y coordinates or as a polar transform. The major weakness of this
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approach is the large number of coefficients required to generate the feature vector. To
completely capture the image suitable for reproduction theoretically requires an infinite series.
Several alternatives to reduce the number of coefficients are used in practice, including the Gabor-
Logon and the Fourier-Mellin variations.

The Fourier-Mellin transform is a two step procedure which first computes the polar Fourier
transform, and then the energy moments along the radius.

The approach begins with a representation of the image in polar coordinates I[r,0]. A set of
circular harmonic can be generated as:

Fn(r) = (l/2n)fl(r,9) cxp{-im6}do

where the circular harmonic frequency m is an integer. The Fm(r) are referred to as a circular
harmonic function (CHF) The give the energy at each frequency as a function of the radius.

The image can be reconstructed as a Fourier series by.

I(r,8) = ZFn(r)exp(im6)

These coefficients could (and are) used in some applications as the feature vector, In some cases
the energy distribution as a function of the radius of each harmonic can be used. This distribution
can be modelled using moments and are computed in general as a Mellin transform:

Msm =frs'1Fm(r)dr

These coefficients are referred to as Fourier-Mellin descriptors In general, s can be a complex
number. In practice, 1t 1s usually real. It 1s usually the case that a few moments will be sufficient
to describe the image.

A F-M spatial filter is constructed by generating impulse response functions of the form:
Fi(x,y) = {r>-2expmB) } *
where * indicates complex conjugate.
Scale a1 } intensity invariance can be obtained by suitable normalizations of the F-M description.

If the descriptors are computed for S a real number, then the scale and intensity of an image can be
vaned by multupliers o and k  In which case, the descriptors become:

IMs_mlz = a25k2|Ms'm|2
The scale and intensity invariance can be achieved by defining a normalized invariant feature as:
(D = IMs'nllz / ZlMs_mIZ

All moments of the same order suffer the same multipies, and hence the feature ®(s,m) remains
invariant under translation, rotation. scal and illumination

The advantages of this approach are

1. The representation is completely invariant .

2. The number of moments required is normally small
Gabor Filters
A Gabor filter is a variant on the Fourier approach. The Gabor filter consists of a two-
dimensional Fourier transform weighted by a two-dimensional Gaussian function. The results is a
filter which 1s translationally invariant, but is rotationally dependent.
The two-dimensional Gabor filter is represented as a series of two-dimension Gabor functions

(x.y) = Z a)G(x.y)

The two-dimensional Gabor filter is the product of a 2-D sinusoid and a 2-D Gaussian weighting




function. This has been shown by Daugman {C-2] to achieve a minimal space-time uncertainty, and
also to provide a mode! of animal vision systems.

The initial Fourier spectrum yields an orthogonal basis for examining the image, however, the
Gaussian weighting function renders the final feature vector non-orthogonal.

Define
G = M(x.y)* W(x,y)
Where M is the 2-D sinusoid and W is the Gaussian weight.
Let
M(x,y) = exp{-2ri(uox +voy)}

Where u() and v( are spatial frequencies in cycles per radian.

This function can be centered at an arbitrary point xm,ym in the image by defining.

X=X -Xm
Yi=Y-Ym

Thus
M(x.y) = exp{-2mi(uo(x-Xm) +vo(Y-Ym))}
which can be written
M(x.y} = exp{-2ri(upx +vpy) - 19}

where
0 = 2R(XmUp + YmVo)

which 18 a phase angle
The Ga «ssian weighting function is defined as.
W(x,y) = exp(-1/2(x2/a2 + y,/b?))
where a and b are spatial variances.
This function can be arbir -ily centered and rotated by defining:

X=X - X0

N=y-yoo
Xg = Xjc0s8 -y;sinf
yg=Xi51n0 -yicos0

Thus
W(x,y) = exp(-(xg¥a? + y,2/b2)/2)

1s the damping function centered at (x(,yQ) at an orientation angle 6.

The Gabor functions are nonorthogonal. It is straight forward to work out the inner product,
which is:

<Gy(x,y) Gy(x,y)> = exp[-m(u, - u)?/(az2 + a2) + (v;-v;)2/(b,2+b;2)]

Daugman [C-2] has shown also that these functions achieve a maximum possible joint resolution in
the conjoint 2-D visual and the 2-D frequency domains. He has shown that they achieve the
theoretical lower bound on joint uncertainty in the two conjoint domains(x,y), the visual space, and
(u,v) the spatial frequency domain. Defining uncertainty in each of the four variables by the
normalized second moments, Ax, Ay, Au, Av about the principle axes he has shown that for:

(AX)(AY)Au)AY) 2 /1672

the lower bound exists for the 2-D Gabor functions.
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Advantages: Compression of less than one bit per pixel has been reported.
Disadvantages: There are eight parameters that must be set either by experiment or simulation.
Object Recognition - The Work of Sheng

A group lead by Professor Yulong Sheng at Laval University [A] has published a wide variety of
thecretical and experimental papers exploiting the Fourier-Mellin approach to generating feature
vectors.

It is evident from the equations that the Fourier-Mellin transform does not yield translational
symmetry because of the dependence of the center point chosen for the polar representation of the
image. In most appiications, some choice of center is necessary, often the center of gravity of the
picture. or some such definition that can be fond by scanning.

Arsenault and Sheng [A]] have proposed some practical limitations on the number of harmonic
components necessary to represent an image (a space shuttle) on a uniform background. A
centroid of the shuttle was computed and chosen as the center of the filter. The image was
reconstructed using increasingly higher order harmonic components. Their experiment showed
that up to thirty seven components were needed to provide good detail (e.g , to show the tip of the
tail).

They concluded form this experiment that a simple inverse relationship existed between the
angular dimension of the object and the angular frequency of the CHC:
"An object detail subtending and angle of 2n/M¢ at the center, where M¢ (an integer) can be
described by CHC orders up to M¢."

As a consequence of this, they proposed that for ar. image of NxN pixels, the maximum circular

They observed also that if an object has n-fold rotational symmetry, the image has an angular
penodicity of 2n/n  Thus the CHC are different from zero only at the discrete angular frequencies
of,

in=0,+n,+2n, ..
Two and even four-fold symmetry 1s not uncommon in som. 1mage classification problems.

Image Exemplars - A Generalization

When a filter array has been defined, each filter is an array of numbers corresponding to the
dimensionality of the input 1mage spac  The filter could therefore be consider as a synthetic
image and the result of the calculation s an inner product of the input image and the filter Each
filter in the bank contributes to the feature vector a number representing its closeness to the input
image The set of numbers must then be evaluated depending on the application.

In a sense each filter form 1g the feature vector could be regarded as a synthetic image in image
space. The task is to find a set of such vectors to yield the feature useful for the task at hand.
Since an image occupies a potentially convoluted volume, 1t secms reasonable to suspect that
regardless of the mechanism for arranging the eights of the pre-attentive filters that the end result
is a set of vectors which cover the image volumes for each class of image, in such a way as to
obtain the generalization needed for the task. The filters are in some sense a set of exemplars of
the of the volume occupied by the class. Based on this model there may be some hope in the future
of synthesizing the appropriate exemplars as a function of the optimization rcqguirements.

SUMMARY AND CONCLUSJIONS

Summary

The principle thesis developed in the preceding has been that the architecture for machine vision
systems will probably be based on some mode! of the animal vision system. This model supgests a
two fold-partition of functionality: first the extraction from the image space of a set of features,




followed by some form of interpretive function respongible for creating the appropriate response.

Feature extraction may be done directly by some form of sensor suite or be precedcd (as is
common now) by some scanning mechanism, which in turn supplies an image representation to
synthetic feature extractors. In any event, the result is the same; a feature vector must be
interpreted by subsequent processing to derive the final result.

The subsequent processing may be directed toward such functions as target location and
identification, classification of global image features, or the exact reproduction of the image in a
reduced format from that produced by the scanners.

We have shown that the feature extraction can be represented by a general mathematical model,
however, we have not been able to show how this could be ur plied to a particular requirements.

Conclusions

There is at this time no global approach to defining the desired task of the vision system and
synthesizing the components necessary to optimize this task. A variety of feature generation
mechanisms have been studied, and experimental results are available for different tasks, however
no known optimization procedure exist at this time On the other hand vision systems seem to
encompass a wide variety of techniques in neural computing not normally associated with ‘seeing.’
Perhaps vision as understood by machines is a larger activity than that normally associated with
seeing.

It seems clear however that machine vision systems will evolve according to particular needs, and
the final integration of these into a human-like capability will probably be a result of advances both
in the physiology and psychology of animal vision system, combined with the development of
mathematical models and the creation of the appropriate processing capabilities The future
development of vision systems will occur in a fragmented way depending on specific requirements,
as we increase our understanding of mechanisms for deriving the appropriate features for the task
at hand.

The computational complexity of vision systems demands a high level of computer capability and it
is probably safe to say that while an understanding of the process can be obtained by simulation in
software, the eventual development of real-time systems will depend on hardware for both the
sensors and interpretation. Neither of these possibilities are too remote. Gabor filters are now
being developed by HNC and high performance analog neural chips are available from Intel.
These chips (80170NW) each contain 64 neurons each containing 80 weights The chip achieves
two billion multipy-accumulate operations per second. The next few years will see special purpose
vision system in wide availability and use.

ANNOTATED BISLIOGRAPHY

A. Target Recognition

The following conference proceedings contains numerous papers directed at the problem of target
recognition using neural networks. It is an obvious first reading for this particular application of
neural computing.

I. "Neural Networks for Automatic Target Recognition,” A Research Conference at the Wang
Institute, Boston University, May 11-13, 1990.

The following papers by Sheng and associates outlines the theory and practical application of
Fourier-Mellin filters to the problem of target identification:

2. Yulong Sheng, Henri H. Arsenault, "Experiments on Pattern Recognition using Invariant
Fourier-Mellin Descriptors,” J. Opt. Soc. Am., A/Vel. 3/No. 6, June 1986, pp. 771-776.

3. Yulong Sheng, Henri H. Arsenault, "Object Detection from a Real Scene using the Correlation
Peak Coordinates of Multiple Circular Harmonic Filters," Applied Optics, Jan 15, 1989/Vol.
28/No. 2, pp.245-249.
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4. Yulong Sheng, et al, "Frequency-Domain Fourier-Mellin Descriptors for Invariant Pattern
Recognition,” Optical Engineering, May 1989/Vol. 27, No. 5, pp.345-357.

5. Yulong Sheng, "Fourier-Mellin Spatial Filters for Invariant Pattern Recognition,” Optical
Engineering, May 1989/Vol. 28/No. §, pp. 494-500.

B. Image Compression

The following paper by Gabor is the original derivation of the Gabor Logon. It is written in older
frame of reference and is somewhat difficult to read (depending on your background):

1. Gabor, D., "Theory of Communication,” Journal I. E. E., London 1946, pp. 429-457.

In this seminal paper Daugman brings together the work of many previous researchers and
demonstrate the image compression and segmentation capabilities of the Gabor pre-attentive filters.
The paper contains a host of references to earlier work.

2. John G. Daugman, “Complete Discrete 2-D Gabor Transformations by Neural Networks for
Image Analysis and Compression,” IEEE Transactions on Acoustics, Speech and Signal Processing,
Vol. 36. No. 7, July 1988, pp. 1169-1179.

C. Classification

Lois Garand, "Automated Recognition of Oceonic Cloud Patterns and its application to Remote
Sensing of Meteorological Parameters," Ph.d. Thesis, Department of Meteorology, University of
Wisconsin-Madison, 1986.

B. Archie Bowen, and Jianli Liu, "Pattern Classification from Raster Data using Vector Lenses,
Neural Networks and Expert Systems,” Mapping and Modelling for Navigation, NATO Al Series
F, Vol. F6S, Egited by L. F. Pau, 1990.

D. Pre-Attentive Filters

An excellent paper on the general area of pre-attentive filters is contained in

I. John G. Daugman, "Six Formal Properties of Two-Dimensional Anisotropic Visual Filters:
Structural Principles and Frequency/Orientation Selectivity,” IEEE Trans. Systems, Man, and
Cybernetics, Vol. SMC-13, No. 13, September/October 1983.

2 John G. Daugman, "Uncertainty Relation for Resolution in Space, Spatial Frequency and

Ortentation Optimized by Two-dimensional Visual Cortical Filters," J. Opt. Soc. Am. A/Vol.2,
No. 7/July 1985, pp. 1160-1169.

3. M. R. Turner, "Texture Discrimination by Gabor Functions," Biological Cybernetics,
Springer-Verlag, Vol. 55, 1986, pp 71-82

4 Eric Suand, "Dimensionality-Reduction Using Connectionist Networks,"” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 11, No. 3, March 1989, pp. 304-314.

E. Animal Vision Systems

The following papers present experimental evidence of the functionality of animal vision systems:
1. Jones, J. P., and L. A. Palmer, "An Evaluation of the Two-Dimensional Gabor Filter Model of
Simple Rcceptive Fields in Cat Stnate Cortex,” Jour. of Neurophysiology, Vol. 58/No. 6, Dec
19878, pp.1233-1258.

2. John G. Daugman, "Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles,”
Vision Research, Vol. 20, pp 847-856, Permagon Press Ltd., 1980.

3. John G. Daugman, "Uncertainty Relation for Resolution in Space, Spatial Frequency, and
Orientation Optimization by Two-Dimensional Visual Cortical Filters,” J. Optical Soc. Am., Vol.
2, No. 7, July 1985, pp. 1160-1169.
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Neural Networks for Military Robots

Dr. W.A. Wright
Sowerby Research Centre
FPC 267 British Aerospace
Bristol BS12 TQW.

The paper, gives a shorl review of mobile robotic re-
search, and through the use of three case siudies which
describe, in brief, current research underiaken at three
establishments, indicates the role tha' neural networks
are playing in this process and hence the impact that
they may have on the military environment.

The three case studies are chosen to sllusirate the ad-
vantage, in terms of speed, compactness, end adapt-
ability, of the use of these systems in what are de-
fined as “the three essential functional areas for mobile
robot control”:

o localisation (where am I7),
o path planning (where do I want to be?),

o obstacle avoidance (is there anything in the
way?).

The first case study describes an ultra-sonic obstacle
avoidance system that has been developed by the Ger-
man company IBP Pietzsch for the ESPRIT II project
ANNIE. The second is a description of an investiga-
tion, carried oul at The Sowerby Research Cenire also
for the ANNIE project, into the use of a neural system
for the localisation a known mobile robot by the appro-
priate “fusing” of data obtained from several off-board
sensors., The last study describes a VLSI implemen-
tation of a localisaiion and path planning system that
has been designed and constructed by the University of
Ozford’s Robotics Group.

Althougn il is not intended, by presenting these case
studies, to portray them as the ezient of the state of
the art in this field it is, however, hoped thal they
will give a clear idea of how and why neural networks
are being used in this area, and illusirate the potential
advantages to be gained from their use in the field of
military robolics.

Introduction

Over the past few years there has been a keen interest
in the development of the military robot. This has
been reflected not only by the large amount of work on
mobile robotics that has been undertaken at various
establishment through-out the world (see appendix A)
but also by the funding that has been made available
by both the Department of Defence in the USA and
the British and other European Defence Ministries for

research projects aimed at investigating and develop-
ing such systems. The most notable of these projects
are possibly the DARPA ALV (Simpson 1987) initia-
tive, the French ALV initiative ROVA (Savage 1991)
and the British Mobile Advanced Robotics Defence Ini-
tiative MARDI (Bateman 1991). These projects have
concentrated or are concentrating upon the produc-
tion of an all-terrain autonomous mobile vehicle capa-
ble of navigating through an uncertain environment,
on a reconnaissance mission mapping out the terrain
or seeking out a partic:lar target for instance, Other
civil projects, the most notable being the Mars Rover
(Wolfe and Chun 1987), can in some circumstances be
seen as derivatives of these!. The use of mobile robots
therefore in the military arena is not a thing of sci-
ence fiction. The autonomous mobile robot is: a real,
tracked, wheeled, multi-legged, or even flying vehicle.

In general, however, robotic systems developed and ac-
tually used in the 1980’s come in a very different guise.
The robots that have already found their way into fac-
tory production lines are not mobile vehicles but the
static jointed arms or the more extensive assembly
automated units. These are used in the manufactur-
ing industry for the automated production of anything
from PCBs through to cars or washing machines. In
comparison to the static systems the functionality of
the industrial mobile robotic systems are much less
developed. In general most industrial mobile systems
are either controlled remotely via an operator or op-
erate in very restricted environments such as on the
factory floor following a buried metal strip. The truly
autonomous mobile robot, which is of prime interest
to the military, is still very much of a novelty.

The major problem involved in producing a truly
autonomous mobile robot is that although in many
cases the processing required is understood hardwere
limitations prevent it from being carried out with a
speed that is great enough on equipment that is small
enough to be practical. As devices have become faster
and faster this imbalance between processing ability,
size, and piocessing power is being redressed. This pa-
per intends, through a short review of mobile robotic
research, and the use of three case studies which de-
scribe, in brief, current research undertaken at three
establishments, to indicate the role that neural net-
works are playing in this process and hence the impact
that they may have on the military environment.

! A list outlining the main ALV projects and institutions in-
volved in these is given in sppendix A.
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It is not intended in this paper to produce a com-
plete overview of the use of neural networks for mo-
bile robots since this would be too great a task. Nor
is it intended, by presenting these few case studies,
to portray them as the extent of the state of the art
in this field. This would be very unfair to a large
number of very able workers. It is intended, however,
through these cese studies to demonstraie how this
technology is being used and the potential advantages
that can be ottained with the technology. Each case
study reviews a piece of on-going research, attempts
to highlight the relationship to mobile robotics in gen-
eral, and the contribution made by neural networks in
particular, summarises experimental results, and dis-
cusses their implications.

Each case study describes the use of neural networks
in what, for the purposes of this paper, are defined
as the three principal functional areas of any mobile
robot:

¢ localisation (where am I?),
o path planning (where do I want to be?),

e obstacle avoidance (is there anything in the
way?).

The thinking behind these functions and the con-
straints they impose, together with a brief résumé of
the work now being undertaken in the area of mobile
robotics with particular regard to the use of neural
networks, are given in the next section.

The first two case studies stem from the ANNIE
project (The Application of Neural Networks for In-
dustry in Europe) of which British Aerospace is a full
partner. This is an ESPRIT? II project, which is sup-
ported by the European Commission, and aims to
investigate the use of neural networks in areas rele-
vant to European industry. The project is divided
into three application areas:

e image processing,

¢ optimisation,

e control.

Both the ANNIE case studies describe work that is
being conducted within the control application area
which has concentrated on the investigation of the use
of neural networks in areas of particular relevance to
mobile robotics.

2 ESPRIT (European Strategic Programme for Research in In-
formation Technology) is 8 European Commission funding body
for collaborative research in the area of, as the name suggests,
information technology. This includes many varied areas, from
office systems to industrial robots.

The first case study describes work carried out by IBP
Pietzsch who are a small German company special-
ising in the production of inertial and robotic plat-
forms. Here, neural networks have been used to pro-
vide an obstacle avoidance function by studying the
signatures obtained from a bank of ultra-sonic sen-
sors placed around the robot. Although slightly arti-
ficial this study provides a graphic illustration of the
use of a neural network for sensor/motor association,
an area where the use of neura! networks is becoming
more prevalent.

The second case study describes the work that has
been carried out recently by British Aerospace for the
ANNIE project at the company’s corporate research
laboratories, the Sowerby Research Centre. Here a
neural network has been integrated into & vision based
surveillance system which, by matching the data pro-
cessed by the surveillance system with data derived
from a mobile robot’s own sensors, is able to identify
and so localise the robot. The work demonstrates the
use of neural networks for data fusion and advantage
to be gained from hybrid system which comprises sev-
eral neural networks.

The last case study describes the work now being un-
dertaken a the University of Oxford’s Robotics Group
under Dr Tarassenko. The group has succeeded in
constructing a small working autenomous robot based
on the analogue Pulsed Stream CMOS chips that have
been designed at Oxford in conjunction with Edin-
burgh University’s Department of Electrical Engineer-
ing. The work represcats one of the first demonstra-
tions of the integration of neural network hardware
into the control architecture of a mobile robot and
illustrates the advantages, in terms of speed and com-
patibility, that can be gained from these systems. The
Oxford project is particularly concerned with the pro-
duction and demonstration of an integral localisation
and path planning system for a mobile robot.

Finally, the possibilities that lie in store in the area of
mobile robotics are briefly reviewed in the final sec-
tion. Although it is always hard to predict new devel-
opments with any certainty it is hoped that at least
some idea of what the future might hold is given here.

Background

What is an Autonomous Mobile Robot?

As stated in the introduction there are now a vast va-
riety of robotic systems. However, this paper will con-
centrate upon the use of neural networks in the design
of mobile robotics and their impact in the military en-
vironment. The first requirement in such a discussion
is to define what is meant by the phrase autonomous
mobile robot. For the purposes of this paper it will be
taken that an “autonomous mobile robot” is:
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any self contained system which is able to
move through an “environment” as part of a
process of achieving certain goals or objec-
tives, and further is able to react to changer
or unforeseen events in that envircnment, in
order to pursue the achievement of those ob-
jectivee, in “real time”.

“Environment” here can mean anything from the lab-
oratory which is structured and usually well under-
stood through to open country which will be unstruc-
tured and possibly at best only partially known.

Here “real time” means:

to be able to react to a stimuli at sufficient
speed such that any action taken as a result
of that stimuli occurs in time for that action
to be relevant.

What is regarded here as “real time”, therefore,
changes depending upon the environment and the per-
formance required of the robot moving through that
environment. For instance real time constraints re-
quired for short term obstacle avcidance will differ
from those required for long term path planning. A ve-
hicle that requires geveral minutes to calculate a new
trajectory around an obstacle where that obstacle is
only seconds away can not be said to be acting in “real
time”, where as a vehicle that takes minutes to calcu-
late a path that will take hours to negotiate may cer-
tainly be regarded as processing in “real time”. The
real time requirements for a mobile robot can there-
fore range from a few milli-seconds to possibly sev-
eral minutes, depending upon the circumstances. The
time constraints of the various embedded control loops
also have a major input on the interpretation of the
phrase “real time”. This is a key element of the real
time requirement for mobile robotic systems, and one
for which appropriate processing architectures must
be designed.

Functional Requirements for a Mobile
Robot

The nature of the type of processing required in real
time for any autonomous robot moving through a
changing and uncertain environment are summarised
for the purpose of this paper under the three headings:

Path planning: given the position of the robot in
the environment, path planning is required to al-
low the robot to reach its desired destination,
whilst allowing for the relevant factors in the envi-
ronment such as any hazards and difficult terrain.
Often these environment factors may change, due
to unforeseen events, or obstacles etc. In general,
therefore, it is desirable that the map of the envi-
ronment and the path planning system is adapt-
able to accommodate these.
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Localisation: given a map of the environment the
position of the robot in that environment needs to
be determined. In practice this can be obtained
in a variety of ways. Dead reckoning, using the
vehicle’s inertial navigation, or odometry, can in
some cases be sufficient., However, other meth-
ods are available such as the use of beacons or
GPS satellite localisation. Other methods, neu-
ral implementations of which are described in the
case studies, use observed sensor information and
compare that with a taught or preprogrammed
world model.

Obstacle avoidance: a mobile robot must have the
ability to respond to unexpected obstacles in
“immediate” path. Often such systems in-
volve the use of computer vision techniques, the
use of active sensors (e.g. ultra-sonics, laser
range finders, etc), or a combination of both
(Thorpe et al. 1987)

These three criteria, obviously, give a somewhat re-
stricted view of the functionality of a mobile robot.
The fact that any robotic aystem may have other sub-
sidiary goals, such as searching, or tracking and fol-
lowing a particular object, has been ignored.

It is clear that the relative real time constraints for
each of these functions will differ from one to the
next. In the simplest case, where obstacle avoidance is
purely reactive and has no input to the path planning,
then this {unction is required to have the shortest re-
sponse time. However, in practice the response times
for the other functions increase as the complexity of
the interrelations between the differing functions is in-
creased.

As has already been mentioned, the high level of
computation involved in creating a real time sys-
tem with this degree of functionality in a rela
tively small space available on an autonomous sys-
tem is one of the major limitations of the cur-
rent systems and has troubled many research pro-
grammes such as the DARPA ALV (Simpson 1987)
for example. More recent ALV programmes such
as the ESPRIT II programme PANORARMA3
(Vacherand et al. 1990) and the Universitat der Bun-
deswehr ALV (Dickmanns 1990) have successfully
overcome this problem by using dedicated image pro-
cessing hardware coupled with a disiributed paral-
lel processing system. In the case of PANORARMA
this consists of Transputers together with a variety
of other processors (2 SUN 4 and several 68000s)
(Vacherand et al. 1990).

Other Initiatives

In some limited cases the above requirements have
been overcome, either by restricting the functional-
ity of the robot or by ensuring that the robot has only

3 Perception and Navigation Organisation for Autonomous Mo-
bile Applications
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to function in a well ordered and limited environment,
For the industrial market limited “autonomous” sys-
tems are now available (e.g. the cleaning robot pro-
duced by Robosoft in Paris). These are generally
robots with a very limited functionality designed to
clean floors or transport materials. The functionality
of these systems is usually limited to simple obsta-
cle avoidance. This is achieved through the analysis
of returns obtained from an active sensor or sensors,
usually ultra-sonic, placed on the robot. These allow
the proximity of objects to be determined and so the-
oretically any obstacles in the path of the robot may
be detected. Any path planning that is performed in
these limited systems is usually pre-programmed into
the robot before operation and is therefore not adap-
tive.

In the military ficid the examples of working au-
tonomous vehicies are not as common. Perhaps the
most dramatic, as has been highlighted by the resent
Gulf war, is the Cruise Missile. This uses a localisation
system called TERCOM to up-date its position and
so allow mid-course correction to the missile’s flight
path. The TERCOM system works by matching the
ground terrain with a map of the ground relief held
digitally in the memory of the missile. Such a system,
therefore, exhibits two of the main functions of an au-
tonomous vehicle: localisation and path planning. Ob-
stacle avoidance particularly with regard to the termi-
nal phase of the missile’s mission is, not surprisingly,
omitted.

Probably the most familiar example of an autonomous
robotic system in the military and civil fields is the au-
tonomous land vehicle or ALV. There have been and
are many research projects to investigate and build
ALV. A brief list, which gives some idea of the range
and scope of these projects, is given in appendix A.
The environment that the typical military ALV has
to operate in can be very extreme. Unlike the con-
trolled and sterile environments found on most indus-
trial shop floors a military ALV used in anger would
be expected to be able to function not only in an out-
door environment where diurnal, climatic, and sea-
sunal conditions can have a great effect, but also un-
der very hostile conditions that are found near and on
the battle field. It is not surprising that such an en-
vironment is likely to be very unstructured and may
change dramatically,. Many ALVs projects attempt
to use vision to guide the vehicle and for the obsta-
cle avoidance function (Bateman 1991, Savage 1991,
Buxton and Roberts 1990,  Vacherand et al. 1990,
Volfe and Chun 1987, Klein et al. 1987,
Simpson 1987, Mitchell and Keirsey 1984). Locali-
sation can also be achieved by visually identify-
ing beacons or way markers (Vacherand et al. 1990).
The attraction of vision that is important in the
military environment is that it is passive. How.
ever, active systems such as laser rangers have
also been used (Thorpe et al. 1957, Klein et al. 1987,
Buxton and Roberts 1990).

Although the functional road following ALV is now
nearing reality the amount of computing power that is
required to drive these robotic systems can be a lim-
iting factor in achievable periormance. This can be
illustrated by the processing power required for one
of the earlier ALV systems at Carnegi-Mellon Univer-
sity, the NavLab (Thorpe et al. 1987). This system
was built into a Chevrolet van and used a vision and
laser range finder system to guide the vehicle down
a metaled road whilst avoiding any obstacles found
in its path. The processing power required for this
system consisted of the Warp systolic array and 4
sun computers. At the time this power allowed the
van to travel unassisted at a speed of ~ 2 miles per
hour. Obviously, since the NavLab was first built
computational power has improved. ALVs such as
that built by Professor Dickmanns at the Universi.
tat der Bunderswehr are able to travel at ~ 50Km/h
on metaled well constructed roads (Dickmanns 1990,
Dickmanns and Graefe 1988). Furthermore, future
improvements to this system are expected to allow
the vehicle to travel on unmetaled tracks hopefully
over hilly terrain. This system uses a large array
of Transputers coupled with specifically designed im-
age processing hardware. Other notable systems are
the: French ROVA (Savage 1991) “Autonomous Road
Vehicle”, the UK MARDI (Bateman 1991) systems
the eight wheeled Mars Rover (Spiessbach et al. 1987,
Wilcox et al. 1987) and the six legged ASV (Adap-
tive Suspension Vehicle) (Spiessbach et al. 1987,
Klein et al. 1987). Further details of the the large
ALV projects are given in appendix A.

Neural Networks for Obstacle Avoidance and
Control

It was the work on the NavLab that led to the first
real use of neural network technology for the con-
trol of an autonomous vehicle. ALVINN (Autonomous
Land Vehicle in a Neural Network) (Pomerleau 1988,
Touretzky and Pomerlau 1989) demonstrated the
possible advantages to be obtained by the inclusion
of neural network processing for the control of the ve-
hicle. The idea behind ALVINN was simple: use a
neural network to find the road in a visual and laser
ranger images (see figure 1).

An MLP (Rumelhart et al. 1986) was given pixelated
image data from both a camera and a laser ranger on
board the van. During training the images given were
those that would be obtained if the van were leaving
or off the road upon which it was supposed to drive.
The MLP was then trained to provide the correct con-
trol signal (direction of motion) to bring the van back
onto the road. Once trained the configured network,
when implemented on the NavLab, resulted in an im-
provement by a factor of two over the processing speed
achieved previously using conventional techniques.

Given that the ALVINN network used whole pixelated
images as input it is not surprising that the size of
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Figure 1: Schematic view of the ALVINN architecture.

the network is very large even by the standards used
today. Specifically the input consisted of 960 inputs
from a 30 x 32 camera image and 256 from an 8 x
32 image obtained from the laser ranger. The final
configuration of the network consisted of:

e 1216 input units,
¢ 29 hidden units,

e 46 output units,

The output units encoded a linear representation of
the turning radius the vehicle should take, with the
tightest radius to the left being indicated by the left-
most unit the, tightest radius to the right the right-
most unit and straight on by the central unit.

Obviously to train a network of this cize required im-
mense amounts of both data and computational time.
To this end, since it was difficult to gain time on the
NavLab, data for training was simulated using actual
data gathered from the vehicle as a template, Al-
though this meant that real data was not used to train
the networks it had the advantage that data could be
generated that simulated the vehicle leaving or off the
road with out having to place the vehicle in such a
predicament.

Alternative approaches to reducing the amount of
computation, applied in research elsewhere, have in.
volved the use of processed visual data. Here, rather
than input whole pixelated images, the image may
be processed first using computer vision methods
which are able to extract the salient features in the
image: regions and their statistical features for in-
stance. This processed data may then be fed into
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Figure 2: Road image.

Figure 3: Segmentation of road image.

a much reduced network which will, therefore, have
much smaller overheads in terms of the data re-
quired and the time required to train the network
(Hutchinson 1990,  Carpenter and Grossberg 1987,
Jamison and Schalkoff 1988). An example of this can
be found in the work of Wright (Wright 1989). Here,
region features obtained from a segmented image (see
figures 2 & 3) are input to a network which is sub-
sequently trained to identify and label the road-like
regions in the image (see figure 4). Having identified
the road and obtained its position relative to the robot
this information can be used to direct the vehicle.
Such systems are now being prepared as a guidance
mechanism for the MARDI ALV (Bateman 1991).

Other techniques use more structured networks which
have a much reduced connec-
tivity (Fukushima and Miyake 1982) which facilitates
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Figure 4: Segmentation of the road image with the re-
gions labelled by the neural network as road displayed
in black.

training on complete images.

The inclusion of neural networks to carry out the ob-
ject/obstacle detection and subsequent motion control
has been further developed and demonstrated at Fu-
jiteu (Watanabe et al. 1989) and MIT/University of
Boston (Baloch and Waxman 1990). Both these sys-
tems, which are described further in the third case
study, use a hierarchy of networks to process the data.

Neural Networks for Path Planning & Locali-
sation

The initial use of neural networks to perform a path
planning function are exemplified by the work of Jor-
gensen. His work addresses the problem of deter-
mining 2 navigational path in a number of different
room environments (Jorgensen 1987). Here a sonar
map of each room was obtained by recording, after
extensive pre-processing, eight 180° sonar scans ob-
tained from different positions in each room. These
recordings where stored in a modified Hopfield net-
work (Hopfield 1982) i.e. the neurons could adopt a
continuous value between 0 and 1. A rectangular grid
of 1024 square cells was used to represent each room
and a unique neuron from the Hopfield network was
identified with an individual cell of the grid. The level
of activity of that neuron indicated the sonar activity
at that point. The idea of dividing the robot’s en-
vironment into a grid is not a new one: for example
the idea of Certainty Grids had been used earlier by
Thorpe (Thorpe 1984) and Moravec (Moravec 1986)
at Carnegie-Melon University, and this is the basis
of the common “free space” approach, which can be
used for obstacle avoidance is described in the first
case study.

During the recall phase, the robot was given a sin-
gle view of the room and the sonar return from that

point used to prompt the Hopfield network’s associa-
tive memory to complete the interior of the room.
Having obtained a map of the room the path could
then be computed.

This method is limited by the storage capacity of the
Hopfield network (Amit et al. 1885). The use of a net-
work with 1024 neurons meant that 37 room patterns
could be stored with little problem, although in prac-
tice only 10 rooms were stored. The system was imple-
mented on the Oak Ridge National Laboratory’s mo-
bile robot HERMIES (Hostile Environment Robotic
Machine Intelligence Experimental Series) with the
sonar system placed around the body of the vehicle.

The method, however, was seriously limited by the
considerable storage required for the synaptic weights
(there are n? synapses for a fully connected n-neuron
network). This meant that the computations required
for this associative recall required nearly 3 hours on
the robot’s on-board PC AT. Replacing the PC host
with a 4 node N Cube gave a sizable speed up but the
resultant speed and the limited recall of the Hopfield
network limited this approach (Jorgensen 1987), The
idea of grid localisation using a neural network has
besen adopted else where (Tarassenko et al. 1991), and
this work forms the central element of one of the case
studies presented here.

Neural Coutrollers

Although the generality of the subject of the applica-
tion of neural networks to control systems falls some-
what outside the scope of this paper, their use is
important and considered worthy of mention. The
use of neural networks for the control of a vehicle’s
motion has been taken up by many workers in the
field. Possibly one of the most well known is that of
Widrow with “The truck backer up” (Widrow 1990).
Other work has used various strategies: e.g. net-
works have been used to provide a trainable inverse
model of a system based on the input/output observa-
tions of the plant, Kawato (Kawato et al. 1987), Chen
(Chen and Pao 1989). The inverse model is then used
to generate control signals.

Other methods use two networks, one to model the
control response of the system and the other to pro-
duce control decisions. A great deal of the recent de-
velopments in this area within Europe have been re-
ported in the proceedings of the IEE conference Con-
trol 91. A large proportion of this work has concen-
trated upon exploitation of the non-linear and adap-
tive nature of a neural network to provide the adap-
tive feed-back controller that is central to some non-
linear predictor adaptive control systems, see figure
5. Such systems have great relevance to the driver-
less, or pilotless vehicle. Here, without a human con-
troller, the vehicle will have to be able to adapt to
both slow changes in the characteristics of the vehi-
cles performance, e.g. the lightening of the vehicle
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Figure 5: Predictor Adaptive Gain Control Architec-
ture

as the fuel load decreases, and more importantly sud-
den changes e.g. sudden changes in terrain, weight
changes caused by the delivery of of munitions, or as
has also been suggested damage to control surfaces on
aircraft (White and Sofge 1991).

A good example of the use of neural networks in adap-
tive control can be found in the papers by Brown et
al and Ince et al. Here a recurrent layered network is
used to model the non-linear response of the vehicle
to the control signals it is given (Brown et al. 1991,
Ince et al. 1991). The controller network runs in par-
allel to the predictor model and adapts as the vehicle’s
response changes by back propagating an error signal
generated by differencing the output of the reference
model and the actual response obtained from the vehi-
cle that the network is modelling. The network there-
fore acts as an adaptive gain feed-back controller (see
figure 5) for the vehicle which, as is demonstrated in
Brown et al and Ince et al, can be integrated directly
into a conventional predictor controller.

Neural Hardware

The brief review given above has tried to give an idea
of the breadth of work on the application of neural net-
works in the areas in sensing, control, path planning,
and obstacle avoidance. The more recent work in this
area has started to demonstrate the advantages to be
gained from the use of these systems. However, it is
the contention of the author that the true worth of us-
ing a neural network can not be realised uniess the net-
work that has been designed can be implemented on
appropriate hardware and integrated into a complzic
processing system. This view has particular merit in
the subject area that concerns this paper. ilere any
working system has to be realised in hardware that
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will provide the appropriate real time performance.
Furthermore, this hardware must be small enough and
flexible enough to fit into the control system of a mo-
bile robot. These constraints can be particularly harsh
in military environment?,

It may be argued that the potentially high speed, com-
pact nature of a neural network, once implemented on
the appropriate hardware technology, is perhaps the
greatest advantage of these systems over and above
that of more conventional processing techniques. Ob-
viously, this is not the only view of the worth of neural
networks, but it is a view that is of great importance
in the field of mobile robotics. Although neural sys-
tems generally do not easily map onto conventional
sequential or parallel hardware all the systems that
have been mentioned so far in this paper have used
some form of on board non-neural vrocessor. With
the advent of dedicated hardware (LeCun et al. 1990,
Murray et al. 1990, Holler et al. 1989) a further re-
duction in size and increase in performance can now
be anticipated. Perhaps the first example of the use of
such hardware is the work carried out by the Robotics
Group at Oxford University (Tarassenko et al. 1991),
a description of which forms one of the case studies
which are pow described.

Case Study 1: Obstacle Avoidance Us-
ing an Ultra Sonic Array

The wuse of data from ultra-sonic arrays, or
for that matter other dense range dependent
data, for obstacle avoidance is quite widespread
(Buxton and Roberts 1990, Jorgensen 1987). The
techriques developed to provide an obstacle avoidance
funciion using this type of data divide into two.

Conflguration space: this is a derivative of the cer
tainty grid (Elfes 1987) idea that was explained
earlier. Here a dense map of the environment is
obtained via either an active or passive sensor.
This map is then used to compute “free space
corridors”, which allow for the sige of the vehi-
cle, around obstacles present in the environment.
Ther= are many difficulties with this method: to
generate the configuration space requires a large
amount of processing, the method is not body
centred and therefore the view of the eaviron-
ment may not be consistent with the view seen
from the vehicle once it has moved to a differ-
ent position, and without continuous updating
the method cannot cope with moving obstacles.
The method is characterised by an explicit re-
calculation of the robot’s path around the obsta-
cle.

Potential fleld methods: this
method (Khatib 1986) usually relies upon mon-

* I intend to leave the difficult question of verification of such
neural systems until the conclusion




itoring the signature of an array of sensors ca-
pable of generating range dependent data in a
dense pattern around the vehicle. Simply, this
method uses the range data to determining the
position of obstacles relative to the robot. These
obstacles are then considered to have a repulsive
potential which repels the robot and so prevents
the vehicle from hitting the obstacle, Unlike the
previous method this technique is body centred
and since the method uses data that is continu-
ally updated is able to deal with moving obsta-
cles. Here, the robot moves “relatively” with an
implicit re-calculation of the path.

The work described here is the result of an investiga-
tion carried out by the German company IBP Pietzsch
for the ANNIE project into the use of neural network
architectures for reactive obstacle avoidance. Ultra-
sonic signatures are processed to produce a control
signal necessary to ensure that the vehicle avoids ob-
stacles placed in its path. The method that is devel-
oped here is somewhat similar to the potential field
method described briefly above. Although the results
of this investigation are obtained via simulation and
do not use real data it is hoped that they give a graphic
description of the potential use of neural networks for
sensor/motor integration. A more detailed description
follows.

Network Implementation

Briefly the simulation used is composed of:

¢ a mobile robot that is equipped with 9 ultra-sonic
sensors, as is shown in figure 6. These 9 sensors
are arranged in groups: 4 pointing forward, 2 on
each side of the robot pointing to the left and to
the right, and one sensor pointing to the rear,

¢ The environment in which the vehicle moves con-
sists of a room containing obstacles of differing
shape and complexity (see figure 7).

The robot is allowed to move through the environment
using 8 possible motions:

1. stop,
. fast forward,

. slow forward,
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. turn right by 45°,
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. turn left by 45°,
. turn right by 90°,
. turn left by 90°,
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As the control architecture diagram (figure 6) suggests
the output from the ultra-sonic sensors were exten-
sively preprocessed. The preprocessing range gated
the sensor output, before it was put into the neural
network, into 15 range values that were spaced loga-
rithmically. To ensure that this range data was pre-
sented to the network in a robust manner the range
values from each of the sensors were encoded in a 4 bit
coding® designed such that the codes for neighbouring
range gates were separated by a small Hamming dis-
tance. Thus similar codes would be obtained for range
values that just fell either side of a range boundary.

The 4 bit coding from each of the 9 sensors gave a 36
bit binary input to the network that was used, which
was a 3 layer MLP. The output layer of this MLP con-
sisted of 3 unitas. These encoded the 8 possible control
instructions that the robot should receive. Again, as
in the input coding it was ensured that this coding
was robust to small fluctuations and so similar mo-
tions were given codings separated by small Hamming
distances.

To train the network the vehicle was placed repeat-
edly in close proximity to 10 typical rectilinear obsta-
cles such as: corners, corridors, walls, and walls with
openings (see figure 8). To ensure that the vehicle is
able to meet all the situations that it may find itself
in, the position and orientation of ths vehicle was also
varied. This ensured that the configuration generated
on the network during training was as general as pos-
sible. In presenting the vehicle to the various obstacles
the sensor signals from the 9 sensors were generated
and this data together with a motor response signal
given by an operator was given to the network to allow
it to train.

As with all MLP simulations the precise constiuction
of the network is not clear at the outset and empir-
ical data has to be gathered to determine the num-
ber of hidden units and to set the back propagaticn
(Rumethart et al. 1986) parameters. The final config-
vration obtained from these experiments was an MLP
with:

e 36 input,
e 8 hidden (the only unknown variable),

¢ 3 output.

For this straight forward problem satisfactory conver-
gence was obtained after the repeated presentation of
10 obstacles as shown in figure 8. The slow nature of
the MLP error back-propagation required over 20,000
presentation of the 10 obstacles,

The slow learning rate obtained has since been greatiy
improved by the use of direct analogue input from the
sensors themselves. Here a slightly different architec-
ture has been used.

8 Obviously this assumes that a perfect return signature is ob-
tainable from these sensors which is usually not possible.
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e 10 inputs, 9 returns from the ultra-sonnic sen-
sors which are inverted, together with the current
speed of the vehicle,

e 3 hidden units,

¢ 2 output units, indicating the change in the vehi-
cles speed and angle of turn.

Although the performance of this network is not radi-
cally different from the previous design the use of ana-
logue inputs allows the network to be much smaller.
The small size of the network allows the training to
be accomplished much more easily,

Discussion

Once trained it was found the the network was able to
negotiate perfectly the obstacles it was given to train
upon. Testing the network on a set of rectilinear ob-
stacles upon which it had not been trained indicated
that the network could generalise to obstacles with
which it was not familiar. The network was able to
negotiate the new obstacles only failing to avoid these
in a small percentage (1%) of the cases. Furthermore,
this performance could be increased by retraining the
network on those cases which it found difficuit. Per-
haps surprisingly it was found that the performance
of the neural controller depended heavily upon the
identity of the operator who was used to give the di-
rection of motion of the vehicle for each training situa-
tion. This highlights an important point regarding the
adaptive nature of a neural network, in that the final
configuration of the network can be heavily dependent
upon not only the nature of the training data used to
configure it but also the way in which that data is
presented.

The dependency of the final configuration of a neu-
ral network after training with respect to these fac-
tors obviously has great bearing upon the variability
of such systems. This variability can be reduced if
the data used to train the network and the way that
data is presented is tightly specified. This point and
others related to the verification of these systems are
discussed further in the last section.

Although limited in its scope it is the intention of this
case study to demonstrate how a neural network can
be used to perform a sensor/motor association. The
use of a neural network to produce a reactive motor
response to a given stimulus has many advantages over
the more conventional approaches that have been de-
scribed. Apart from the speed and the compact nature
of these devices once implemented in VLSI silicon the
highly parallel nature of these systems (which allows
data from many processors to be processed simultane-
ously) coupled with their adaptability (which allows
data to be processed without the requirement for di-
rect calibration since this can naturally be configured
into the network during training) makes neural sys-
tems very useful for reactive control. The use of neural

networks to perform this associatir n has been carried
out successfully in a number of ot.1er areas related to
robot control (Waxman et al, 1985, Peterson 1991).

Case Study 2: Localisation from Off
Eoard Sensors

The work presented here represents part of that car-
ried out by British Aerospace’s corporate research cen-
tre The Sowerby Research Centre for the ESSRIT [1
project ANNIE. The investigation ia concerned with
the localisation of a robotic vehicle. However, rather
than performing this localisation using sensors placed
on the robot the investigation is con:erned with the
somewhat different problem of localisiag the robot us-
ing a surveillance system separate frum it. It is as-
sumed, not unreasonably, that the surveillance sys-
tem is able to provide both the bearing and range of
the objects it detects but is not able to consequently
identify the object, Localisation of a known vehicle
is, therefore, not possible if there are other targets
present without the use of prior knowledge such as
the robot’s approximate position or the identity of the
objects.

In general, military systems overcome this problem by
using say IFF techniques or allowing the vehicle in the
field to determine its position against a kno n frame
of reference, using GPS for instance, and communi-
cating this back to the surveillance system. However,
the use of either of these systems is not always desir-
able or possible. An alternative is to allow the vehi-
cle to simply communicate to the surveillance system
the present trajectory and then through a process of
“data fusion” determine which surveillance track best
matches the trajectory and so identify and localise
the vehicle. This last alternative has the advantage in
that it does not rely upon an external system such as
a satellite, nor would it be easy to jam or suffer from
externa interference. To perform this “data fusion”
however, which requires the data received from a ve-
hicle to be correlated with all the objects detected by
the surveillance system, may require some very inten-
sive computing. Furthermore, the correlation between
the signals may not be obvious and could well be non-
linear.

This investigation looks at the possibility of using a
neural network to perform this correlation in the hope
that the high bandwidth and non-linear adaptability
of neural networks will be of advantage, and demon-
strates this in a real laboratory environment. To carry
this out the investigation exploited a distributed real
time surveillance system that had already been built
for the ESPRIT I project SKIDS® and constructed in
a 10m x 10m room in one of the laboratories at The
Sowerby Research Centre. This environment together
with the mobile robot that was used for the investiga-
tion are described further in the following section.

% Signal and Knowledge Integration with Decisional control for
multi-sensory Systems
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Figure 9: Schematic View of SKIDS Environment

The Environment

The SKIDS surveillance, or tracking, system moni-
tors the room through the use of four monochrome
CCD cameras, one mounted at each of the four cor-
ners of the room (see figure 9). The images of the
room form reference frames which are stored by the
SKIDS machine and constantly updated. An event
within the room is detected by differencing the current
camera image and the reference frame. The result-
ing differenced image is then thresholded and grouped
into regions corresponding to the moving objects in
the room. From the least enclosing rectangle, which
is computed around each region, the position of the
event can be determined by projecting the bottom
of the rectangle onto the floor. The image process-
ing required to perform the segmentation is computa-
tionally very demanding. A parallel processor and a
specialised image processing engine are thevefore em-
ployed within the SKIDS system to provide sufficient
computational power. A Datacube pipeline image
processor is used to acquire and scale images from the
CCD cameras and a Transputer array provides the
parallel processing support required for the remain-
ing image processing tasks., In this way the SKIDS
machine supports the real time detection, position-
ing, and tracking of all events within the room (the
system typically operates at a sampling rate of about
6Hz).

Apart from objects such as humans and othe: vehicles
the environment also contains a mobile robot. It is in-
tended that the robot should be under the control of
the SKIDS machine. The function of the robot is to
carry a sensor suite to “remote” parts of the environ-
ment, for example to perform a localised inspection
task. However, the localisation of the robot from the
SKIDS track data alone is not possible without first
identifying which event corresponds to the vehicle.

Figure 10: Large Multi-input network

The mobile robot. used for the purposes of this inves-
tigation is the Robosoft Robuter. The Robuter has
two drive whesis mounted at the back with two cas-
tors at .he f:unt. Optical shaft encoders are attached
to the two c-ive whee's in order to monitor and con-
stantly fee:iback the motion of the robot wheels. The
Robuter can be controlled remotely from a Sun4 work-
station via an RS232 radio link #hich sends movement
and measurement commands to the on-board operat-
ing system. This operating system is based around a
68020 microprocessor and supports movement control
and sampling of the odometry obtained from shaft en-
coders on the wheels.

Thi: ctudy describes how the “data fusion” between
the event data produced by the SKIDS machine and
the robot trajectory as given by its odometry can be
carried out by a neural network to perform the posi-
tional and orientational independent identification of
the SKIDS event that corresponds to the robot which
can then be localised.

Network Implementation

Two successful network implementations have been
produced. Both are based upon the MLP and use
error-back propagation (Rumelhart et al. 1986). The
first network consists of a large input layer. This, as
can be seen from figure 10, comprises inputs from each
SKIDS track together with an equivalent signature ob-
tained from the robot odometry. This investigation
tried several different signatures based upon spatial
or angular decompositions of the SKIDS event and
robot velocities. The best performance was obtained
from the following two reference frame independent
signatures:

¢ object speed and angular velocity,

¢ object speed and acceleration.
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The fact that these signatures are found to be the best
is not so surprising. The velocity of the vehicle is a
relative measurement which can be obtained directly
from the vehicle odometry with out the problems in-
duced by systematic errors that would effect positional
measurements. The use of velocity, therefore, is po-
sitional independent. Furthermore, orientation inde-
pendence can be obtained if scalar, rather than vector,
measures such as speed are used.

The output of the network used n units where n repre-
sented the number of SKIDS tracks that the network
was designed for. For the case shown in the figure 10
n = 3. This allowed a 1 from n coding to be used to
encode the output. Here a high value at the n*® output
indicates a robot signature match with the n** SKIDS
input. It has been shown by MacKay (MacKay 1987)
among others that this output coding, provided the
network has been trained in the correct manner, al-
lows the values given at the output to be interpreted
as a confidence of the n*® interpretation. Since in cer-
tain circumstances one or more SKIDS events ave not
distinguishable from the real event this coding allowed
the network to give a result which reflects the level of
confusion.

To prevent any bias being introduced during train-
ing the position of the robot track in the training
data was randomised. After some experimentation the
most suitable network configuration for identifying the
robot from 3 SKIDS events was found to be:

o 8 input units,
¢ 8 hidden units,

¢ 3 output units.

Upon testing of the network a ~ 90 % success rate on
data different from that used to train it was found.
Furthermore, although as the percentage success rate
suggests in some cases the network was unable to iden-
tify to which track the robot odometry belonged, this
was usually because the network was unable to label
a track as coming from the robot with enough confi-
dence, as reflected by the value given at the output of
the network, for unambiguous recognition. Since the
majority of such cases resulted from situations where
the network indicated that there were two robot can-
didates, one of which was the correct solution, the
level of the miss.classification was much smaller than
suggested by the above result.

The disadvantage in using the large multi-input net-
work that is described here is that the system does not
have any inherent ability to scale. To change the sys-
tem from differentiating between not three but four
or five SKIDS tracks requires the network to be ex-
tended and completely retrained. Obviously this sug-
gests that although the large network may give desir-
able results its lack of flexibility probably precludes
its use in a real system,

Robuter Odometry Data SKIDS Track Data

Input Unit

Hidden Unus

Output Unn

Figure 11: Single SKIDS Event Input Network

An alternative to the use of a single large network is
to use a hybrid system of several small networks each
trained to determine if a single SKIDS event matches
the robot’s odometry. This has the advantage that
the individual networks that comprise such a system
can be trained separately. Furthermore, if this train-
ing is carried out appropriately then it is only nec-
essary to train a single network and allow the other
networks in the hybrid system to be “carbon copies”
of the first. Taking this idea a small MLP was trained
using error back-propagation (Rumelhart et al. 1986)
with the same velocity signature data that was found
to be effective with the large multi-input network.

These small networks were simple in construction as is
illustrated in figure 11. The input comprised 4 units
which allowed the odometry signature of the robot
and a single SKIDS track to be input to the network.
The output, which consisted of just 1 unit, signified
whether the SKIDS track given to the network be-
longed to the robot or not. The typical performance
of the network with 3 hidden units was found to be
marginly lower (85-90%) that obtained from the large
multi-input network.

The hybrid design has many advantages. As has al-
ready been mentioned such a system scales in a much
more sensible way than the large multi-input network
(as the network increases in size the more small net-
works are used). If the networks were implemented
in parallel, the computational burden imposed by this
hybrid system increases approximately linearly with
the number of networks and therefore SKIDS events,
Furthermore, since it is possible that only one small
network may have to be trained this greatly reduces
the amount of training and therefore data required to
configure the whole system.

A significant disadvantage of this system, however, is
that when the individual small networks are trained,
unlike the large multi-input networks, they are not
aware of the presence of other events that may have




been detected. Not surprisingly therefore the output
from the hybrid system may not be unicue. If the in-
put data is confused then several of the networks may
match the robot odometry to the particular SKIDS
event that they were given. This explains why slightly
lower results for the hybrid system in comparison with
the multi-input system were obtained. This problem
can be overcome by introducing a “winner takes all”
mechanism (Lippmann and Huang 1987) on the out-
puts of the networks.

An alternative to the “winner takes all” mechanism
is to use the temporal continuity of the events gen-
erated by the tracker. This exploits the fact that
there is a significant probability that the identity of
an event will remain the same from one time frame
to another. Obviously this probability is affected by
the amount of noise in the system, and presence and
number of other events in the room with which the
event could become confused. This temporal con-
tinuity can be exploited by allowing lateral inhibi-
tion (Carpenter and Grossberg 1987, Kohonen 1984)
between the outputs of the hybrid system. Here the
weighted links between the outputs adapt with time
such that an output that has had a high value for sev-
eral time steps is enhanced whilst the others are di-
minished. This serves to dampen fluctuations in the
output of the hybrid system such that in the event
that an output is ambiguous the network still gives a
definite answer.

Discussion

What has been demonstrated here is the use of a neu-
ral network, or networks, to perform the correlation
central for the “data fusion” required for the identi-
fication of @ known vehicle detected by a surveillance
system. The localisation that results from this process
is relative to the co-ordinate frame of the surveillance
system which may be moving or static. Further, it has
been demonctrated that this surveillance system can
be distributed and so dispersed though-out the region
of interest which gives a increase in the base line of the
system allowing better positioning to be determined.

Although this system, like other identification meth-
ods, requires communication between the tracker and
vehicle or vehicles, since the system is distributed, line
of sight communication can be carried out to a variety
of points, reducing the risk of interference or revealing
the position of the vehicle.

This system also presents the alternative possibility
where the surveillance system is distributed across the
vehicles themselves to form a distributed robotic sys-
tem. Such a system would consist of a large number
of very simple mobile vehicles which are able to com-
municate with each other. The essential element of
this distributed system is that, like a colony of ants,
although the individual elements have a low degree of
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complexity the emergent behaviour of the whole sys-
tem (if configured correctly) may be extremely com-
plex. To allow the elements (vehicles) of this system
to move together and therefore act as whole it is nec-
essary for each vehicle know the relative position of
the others. The positions of differing objects relative
to a particular vehicle can be found via a simple pas-
sive or active tracking system. However, as has been
shown, it is necessary to identify them first before a
particular vehicle may be localised. This, as in the
case study, can be carried out by matching the sig-
nature of the tracked objects with their odometry as
communicated, The relative location of each identi-
fied vehicle can then be determined in reiative to the
whole group.

In the military field a robotic system such as this has
several desirable qualities. The system is constructed
of many simple, and hopefully, therefore cheap, dis-
posable elements. Since the system does not depend
upon any single element the system should be able to
withstand a high level of attrition without a catas-
trophic effect upon the whole system’s performance.
A variety of possible applications come to mind from
recognition and terrain mapping to the autonomous
convoying of logistic support around a battie field.

Case Study 3: Integrated Localisation
and Path Planning

The use of neural networks for the control
of a mobile robot has already been graphi-
cally demonstrated by Waxman and his co-workers
(Baloch and Waxmen 1990, Waxman et al. 1988) to-
gether with, for example, the work carried out at the
Fujitsu laboratories (Watanabe et al. 1989). In both
cases a hierarchal architecture of neural networks have
been designed to perform the differing functions re-
quired of the respective systems. In both these sys-
tems, however, a large proportion, if not all, of the
neural processing is carried out by a static worksta-
tion communicating to the robot via a radio link.

The system built by Waxman and his co-workers
for instance, MAVIN (Mobile Adaptive VIsual Navi-
gation) (Baloch and Waxman 1990), uses a large hi-
erarchy of networks to perform the processing re-
quired for the robot’s cameras saccade and gaze
control (simple ADALINEs (Widrow and Hoff 1960)
are used here) through to object classification (ART
I (Carpenter and Grossberg 1987) networks are used
extensively here). All the networks used in this
demonstration were simulated on a SUN 3/60 which
communicated with the robot via a radio link. The
image processing required was carried out on an AS-
PEX PIPE 1/800 video rate computer.

The network implementation for the Fujitsu robots is
some what different from MAVIN. Here the networks
that controlled the Fujitsu robots were trained and
adapted off the robot on a workstation; the trained
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Figure 12: Control Architecture for the Oxford Robot

networks are then down loaded onto the robots’ on-
board processor, Although this allows the robot to be
gelf contained the rietworks cannot be adapted on the
robot itself.

ft is the intention of this case study to highlight
the potential further and substantial advances to be
gained through the use of neural networks imple-
mented on dedicated VLSI hardware. The work de-
scribed is that still being undertaken by the Robotics
Group at the University of Oxford under Dr, Li-
onel Tarassenko and in part” supported by RSRE®
Malvern. The thrust of this work is to build a low-
cost, real time mobile navigation system based upon
a set of VLSI neural network navigational modules.
These modules are based upon the two functional re-
quirements that have been described earlier. This case
study gives an overview of the path planning and lo-
calisation modules together with a deacription of how
these two modules can be integrated together. Obvi-
ously the localisation module directly impinges upon
the path planning module; a schematic diagram of the
robot control archicecture is given in figure 12. Both
the path planning and localisation systems operate on
a certainty grid iclea which has been briefly described
earlier.

Localisation

The localisation system on this robot relies on the
certainty grid idea desc:ibed above. Here a 28-point
grid was used to map the robot’s environment, see
figure 13. In a similar way to that used by Jor-
gensen (Jorgensen 1987) the environmental character-
istics were learned by recording the 360° signature ob-
tained from a time-of-flight optical range finder. This

7 The resistive grid path planning system
¢ Royal Signal and Radar Establishment
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Figure 13: Diagrammatic view of the Oxford Labora-
tory Robot Environment

was a phase sensitive near infra-red device that was
developed by the research group with this purpose in
mind. This device is capable of resolving phase shifts
of 0.1° over a 50 dB range. This, as can be seen from
figure 14, allows a very detailed range map t. be pro-
duced. The original work carried out by Oxford in
this area concentrated on the use of an ultra-sonic sen-
sor. This required extensive preprocessing before the
signatures could be input to the network. The high
resolution infra-red scanner mitigates this problem.

Given a set of learned signatures the grid system can
be used to compute the robot’s approximate position.
This may be determined by comparing the current sig-
nature z with one of the k learned patterns u; which
correspond to the signature of the range finder at each
of the k grid points. By finding the closest match be-
tween z and one of the u;'s the position of the nearest
grid point to the present position of the robot can be
obtained. If a Euclidean metric is used to determine
the difference between z and all w;’s then the closest
match may be obtained for that u; were:

fie — wi® = li=ii’ - 2§z + [|w]i® (1)

ie a minimum. Given that z is constant with respect
to i using equation 1 a linear discriminant function
g(z) can be written were:

gi(z) = v 2 + wio, (2)

and wyo = ~1/2}|u||?. The discriminant function thus
uses the cross correlation of the input with the stored




Figure 14: Range map of the Oxford environment

patterns, the maximum value of which gives the pat-
tern u with which the signature = most closely corre-
lates.

If equation 2 is rewritten by identifying v = {T,;}
and z = {V;} as:

gi(z) = B7o1 T, Vi + wio, (3)

where n is the number of range points obtained in
each scan, the patterns recorded at the grid points
can be identified with neural weights T'ij. The cross
correlation central to the discriminant function can be
written as the vector matrix multiplication, E;‘T.,-V,-,
that is central to a neural network.

The advantage of the formulation given in equation 3
is that it provides a natural representation that when
implemented on a dedicated neural device allows the
simultaneous comparison of all range points with the
k learned patterns u;. The maximum of the discrim-
inant function g(z) can then be picked out using by
using a “winner takes all” function on the network.

The advantage of such a system of course depends
upon it implementation. As has previously been men-
tioned, for any implementation to be of advantage
both its speed and size are important characteristics.
The localisation algorithm that has been described
here can be buili quite simply into a small “win-
ner takes all” network. Since both the input vectors
V; and the network weights T,; are analogue this al-
lows the implementation to be mapped easily into the
pulse-stream VLSI analogue neural devices that have
been designed by the Department of Electrical Engi-
neering at the University of Edinburgh in conjunc-
tion with the Robotics Group (Murray et al. 1988,
Murray et al. 1990) which provide real time capabil-
ity. The speed of the localisation system is simply
limited by the traverse time of the infra-red scanner
which is approximately a second. Further, the com-
pact size and analogue nature of the pulse stream de-
vice allows the processing to take place compactly on
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Figure 15: Resistive grid map of the robot’s environ-
ment; high resistances (black areas) indicate obstacles.
The optimal path between P and G is indicated by the
black line joining these points.

the sensor where as a more conventional implementa-
tion say with Transputers would require many more
devices with a larger resultant deinand for power.

Path Planning

The path planning module in the Oxford robot adopts
a resistive grid approach to this problem. The use
of resistive grids was suggested in a related field by
Horn (Horn 1974) in the mid seventies. The idea
has also been exploited by Mead and his co-workers
and forms the central element of the silicon retina
(Mead and Mahowald 1988). This approach maps the
robot’s environment as a resistive grid, see figure 15.
Here the vertices of the grid are variable resistors: ob-
stacles and difficult terrain are indicated by infinite
or high resistances. This provides a map of the ter-
rain in terms of high and low resistances, the valleys
and peaks indicating the easy and difficult (accessible)
regions of the environment. An optimal path can be
obtained through the environment by simply applying
a potential difference between the the robot position
(P) and its desired destination (G) and following the
path of maximum current. Since the current cannot
flow through regions with an infinite resistance (obsta-
cles) and will be reduced in regions of high resistance
(difficult terrain) following such a current path will
guaraniee an obstacle free path.

Although this method has been tried before
(Mitchell and Keirsey 1984) it is the intention of this
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Figure 16: Path from middle of maze (P) to top left
corner (G). The dotted line represents that obtained
by repeated calculation of the path direction. The
solid line is the complete path obtained by a single
calculation of the path a point P

implementation to map the resistive grid directly into
a VLSI device using an array of MOS switches. Here
the grid vertices can adopt one of two states: an in-
finite resistance if the switch is open, and zero resis-
tance with the switch closed. The map of the envi-
ronment, therefore, consists of a zero resistance sur-
face with regions of infinite resistance representing the
obstacles. Allowing the resistance grid to have a 1:1
mapping with the localisation certainty grid enables
the current position of the robot in the resistive map
to be easily updated as the vehicle moves through the
environment,

The optimal path through the environment is found
by applying a potential difference between the robot’s
position and the desired destination and then deter-
mining the path of maximum current. This is in-
dicated by the node on the hezagonal grid that has
the largest potential difference between itself and the
robot’s node.

Having moved to the new node the process can then
be recalculated and an updated path found in real
time. It has been shown that by continualy recalcu-
lating the direction of motion after each step a better
(i.e. shorter) path can be obtained than by simply
calculating the complete path across the grid in one
go (Tarassenko and Blake 1991). This is illustrated in
figure 16. Here the paths out of the mase from point
P to point G, have been calculated using:

o repeated computation of the path direction, dot-
ted line;

¢ single computation of the path from point P, solid
line.

Since this calculation is carried out on chip (this is es-
sentially a hardware computation of Kirchhoff’s equa-
tion) the calculation can take place in the time it
takes the MOS grid to settle once the voltage is ap-
plied. Furthermore, since the grid map can be altered
by simply reconfiguring the MOS switches from data
down-loaded from RAM this implementation provides
a real time reconfigurable map that can be updated
as soon as new obstacles are detected or the position
of the robot is determined.

Control Architecture

The contrc! architecture for this robot reflects the
structure of the path planning and localisation sys-
tems and has been designed in a modular fashion
(see figure 12). Communication between the differ-
ing modules takes place asynchronously via a conven-
tional central controller which routes the appropriate
control signals to and from the modules. The cen-
tral controlier is also responsible for goal specification
and issuing commands to the robot platform controller
which, for the purposes of this design, is again conven-
tional. Since the intention of this control architecture
is to allow the bulk of the control processing to take
place locally within the localisation and path plan-
ning modules, the central controller is very simple in
construction.

Discussion

At the time of writing a small mobile robot has been
constructed and the localisation system implemented
on dedicated VLS] eural devices. A separate im-
plementation of the path planning system together
with the localisation system has also been undertaken.
Since the path planning system has not yet been im-
plemented on an appropriate device the integrated lo-
calisation/path planning has been carried out on a
SUN 4 which communicated with the robot via a ra-
dio link. To allow the path planner to operate on the
SUN 4 in near real time dynamic reconfigurablity was
not used.

This system has been demonstrated on a small bat-
tery powered Turtle that has been modified to carry
the infra-red scanner. Both the scanner and the robot
controller, which is based upon a 68000 processor, are
powered by the robots battery. This implementation
allowed the robot to move through a static laboratory
environment (i.. no moving obstacles) with the po-
sition of the robot and its direction of motion being
updated in real time at an approximate speed of 0.4
ms~1. This performance is limited by the traverse
speed of the scanner and the band width of the radio
link.




Although no obstacle avoidance function has yet been
integrated in the control architecture, this is planned
for the (near) future. It is expected that this function
will be implemented in a similar fashion to the work
described in the first case study, using a sensor /motor
association network. However, in this case it is pro-
posed that a number of fixed optical sensors are used
rather than ultra-sonic.

Although the networks described here have not all
been fully implemented in special hardware, this case
study has illustrated the advantages to be gained from
the use of dedicated hardware in terms of speed, ease
of integration, and particularly size. With the future
advent of larger, faster and more complex neural de-
vices it could be argued the the full potential of these
systems has still to be realised. It could further be
argued that it is a only matter of time before devices
similar to those described here are produced and used
in real production systems.

Conclusion

The case studies presented in this paper have tried to
outline potential areas where mobile robotics will ben-
efit from the use of neural networks. To do this studies
have been chosen which, rather than describing work
already completed and available in the scientific press,
portray some of the typical research that is currently
being undertaken. Since much of this research is still
in progress some of the results are inevitably not com-
plete.

The first two studies demonstrate how adaptable non-
linear systems can be used for the processing required
for functions from obstacle avoidance through to their
possible use for the “data fusion” required to localise
a vehicle detected by a distributed surveillance sys-
tem. Both studies are relevant to a number of the
fundamental functional requirements for any mobile
robotic system. The third case study illustrates in
part how the use of these systems can be implemented
in dedicated silicon. As both digital and analogue
neural VLSI devices are developed, it is expected
that neural networks will provide cheaper, faster, and
more compact alternatives to conventional hardware.
(Holler et al. 1989, LeCun et al. 1990) This is likely
to be of direct relevance to military requirements
where systems necessarily need to be adaptable, and
space on any vehicle is likely to be at premium.

In the case studies large volumes of data were required
to train the networks appropriately. This all too often
presents a problem in that although databases exist
these are usually too small to provide sufficient da....
Two solutions have been suggested to this problem.
The first is to use real on-line data by integrating the
networks directly into the system in which it is sup-
posed to operate. This has the obvious advantage of
enabling an accurate estimate of the neural network’s
performance, on real data, to be obtained.
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The second alternative is to adopt the solution demon-
strated in the first case study: the data is simulated.
If the simulation ic designed with care this can quite
often provide a good alternative. Furthermore, strict
controls can also be placed upon the data allowing the
performance to be tested easily. However, by its very
nature a simulation can never truly represent realdata
with all its anomalies and inaccuracies. An analysis
of how a network trained on simulated data would be-
have once placed in the real world would therefore be
uncertain and difficult to verify without, as was un-
dertaken with ALVINN (Pomerleau 1988), eventually
testing the networks on real data

A further alternative is to use real data but to gather
this into a large data base, such as a library of im-
ages for instance. This alternative has the advantage
of providing a repeatable set of real data which can,
when required for experimental reasons, be properly
controlled, However, the work involved in gathering
such a database can be very large and particular con-
sideration has to be taken to ensure no bias is intro-
duced into it during the production stage. This quite
often makes the production of such a data base sur-
prisingly expensive and therefore not desirable,

Another major problem for the future use of neural
networks for the sensor processing and control on a
mobile robot is the verification of these systems. In
both civil and military applications, for any safety
critical operations, it is necessary for the behaviour
of the systems used not only to be understood but
to be designed with the appropriate safe guards to
prevent undesirable responses. An appropriate certi-
fication procedure would also be required.

Until recently, with the exception of the large body of
work that exists for some of the unsupervised neural
networks, there has been very little effort in this area.
However, with the use of more mathematically struc-
tured neural networks, such as the radial basis func-
tion networks (Broomhead and Lowe 1988), verifica-
tion has started to become a possibility, Furthermore,
with the more recent interest of the control research
community, the problem of certifying such systems
has started to be addressed (Simper 1991). Although
there are no procedures laid down as yet to ensure
the verification of the design, configuration (training),
and testing of a neural network it has been suggested
that principles similar to those use for the verifica-
tion of a nathematical process be used. A thorough
understanding of the problem that the system is to
be designed to solve is required, something which is
generally necessary when trying to design a network
solution for a problem in any case. This can be diffi-
cult since many problems to which neural network are
being applied are highly non-linear and therefore may
not be easily tractable. With an appropriate under-
standing it is suggested (Simper 1991) that sufficient
safe guards could be put in place (e.g. an expert sys-
tem harness) to check against undesirable inputs being
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presented to the network or outputs from the network
having an undesirable effect.

It is accepted that the robotic systems that have
been described in the case studies are somewhat sim-
ple compared to the all terrain robotic systems that
are required for the military environment. This re-
flects the fact that the use of neural networks in the
area of mobile robotics is still limited. However, the
case studies that have been presented have demon-
strated that neural networks offer potential solutions
to some of the problems that are generic to the whole
field of mobile robotics, and, if implemented in dedi-
cated VLSI silicon, will hopefully have a direct bear-
ing on the future construction of such vehicles where
fast, compact, and adapiable, systems are required.
As these devices become available the true nature of
the advantages to be obtained from the use of neural
networks should become apparent over the next few
years.
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Appendix A: Mobile Robot Initiatives

Commercial Research & Development

o ESPRIT II Panorama (including BAe, SAGEM

(France), Rauma-Repola (Finland), Tamrock
(Finland), University of Helsinki, Universi-
dad Politecnica de Madrid, Easams (Frimley),
Southampton University, Central Energy Atom-
ique (Grenoble & Saclay, France), SEPA (FIAT,
Italy), EID (Portugal), LNETI (Portugal), CRIF
(Belgium)).
Target vehicles are 4x4 Mercedes Jeep, Rauma-
Repola Forwarder (FMG 933C Lokomo), Tam-
rock Driller. Five year project ending March
1994,

¢ ESPRIT I Voila (including: GEC, Plessy EL-
SAG, MS2i, RMR, Oxford Univestity, Sheffield
University, INRIA, University of Genoa):- pro-
duction of a vision guided mobile robot.

o MARD]I, (including BAe, UK MOD, Royal Arma-
ments Research and Development Establishment
(RARDE), Southampton University, Bristol Uni-
versity, Lucas):- production of an all terrain mil-
itary robot,

o GEC/Oxford University ‘Turtle’ project.

o Advanced Robotics Research Centre, Salford:-,
UK national center for robotics.

¢ PROMETHEUS. Companies involved include
Jaguar, Lucas, Pilkington, BMW, Porsche, Volk-
swagen, SAAB and Volvo, with PSA (a French
consortium consisting of Peugeot, Citroea and
Talbot).. Academic involvement is with the Uni-
versity of Southampton and University of Oxford.

o IVHS - Intelligent Vehicle Highway System. This
is a US Department of Transport project, which
commenced in 1989 and is heavily funded with
181 approved projects so far.

¢ Daimler-Benz AG, Stuttgart, Germany - auto-
mated guidance system.

e Mazda, Japan - three autonomous vehicle
testbeds.

e Nissan Motor Company, Yokosuka, Japan.

Fuzzy logic steering control of an autonomous ve-
hicle

e Volkswagen, Germany
Self Parking vehicles research
¢ Toyota, Japan

e SENTRY - Denning Mobile Robotics Inc.,
Woburn, Mass., USA.
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¢ EUREKA - AMR (Advanced Mobile Robot).
o EUREKA - MITHRA.

o Autonomous Land Vehicle, Martin Marietta
Corp., Denver, USA,

DARPA funded project, vehicle intended mainly
for military purposes.

o Fujitsu Lab, Ltd.,Kawasaki, Japan.

Image processing for autonomous vehicles.

o Mech. Eng. Lab, AIST, MITI, Ibaraki, Japan.
Steering control for an autonomous vehicle.

e Tokyo Research Lab, IBM Japan, Japan, - visual
navigation of autonomous vehicles.

o Shinko Electric Co., Ltd, Hyogo, Japan. - ultra-
sonics guided autonomous vehicles.

¢ Naval Ocean Systems Centre, San Diego, USA. -
ground surveillance robot.

¢ Sandia National Labs, Albuquerque, N. Mexico,
USA. - fleet of vehicles for remote control and
autonomous operation.

e Savannah River Lab., Aiken, South Carolina,
USA. - autonomous vehicles for nuclear applica-
tions.

e Jet Propulsion Lab, Pasadena, California, USA.
- primarily work for the Mars Rover vehicle.

o Tokyo Institute of Technology, Japan - primar-
ily walking vehicles but with spin-off applications
including control technology.

o FMC Corporation, Central Engineering Labora-
tories, Artificial Engineering Centre, Santa Clara,
California, USA. - multi-goal, real-time global
path planning for an autonomous land vehicle.

o Army Engineer Topographic Labs, Fort Belvoir,
Virginia, USA. - robotic reconnaissance vehicle
with terrain analysis.

Academic Research

o Carnegie-Mellon University, Pittsburgh, USA.
Chuck Thorpe, - Navlab/Alvan and Terregator.

o Oxford University, Engineering Department,
Prof. Mike Brady.

e MIT, USA, R. Brooks & A. Waxman.
o LAAS, France, Raja Chatila - HILARE.

e Heriot-Watt University, Edinburgh, Intelligent
Automation Lab., Chantler, M.J. et al.

o Southampton University, Department of Aero-
nautics and Astronautics, Prof. Chris Harris.
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e Tech. Univ. Munich, Germany, Lehrstuhl fur
Mikrowellentech - imaging radar for autonomous
vehicles.

e Massachusetts University, Amherst, Dept. Com-
puter and Information Science - Autonomous Ve-
hicle Navigation Project.

o Oakland University, USA, Centre for Robotics
and Advanced Automation - Autonomous vehi.
cle project.

e Univ, der Bundeswehr Munchen, Neubiberg,
Germany, Inst. fur Messtech, Prof. Dickman.

o Ohio State University, Columbus, USA.

o University of Maryland, Center for Automation
Research, Maryland, USA. - computer vision sys-
tems for Martin Marietta autonomous vehicle.
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SUMMARY

Multisensor data fusion (MDF) is the syn-
ergistic application of data from several
sources, typically sensors, toward a specific
task. In the area of guidance and control data
fusion plays a very important role. By combin-
ing the information from several sensors it is
possible to improve the performance of guid-
ance and control systems. Neural networks are
ideally suited to applications where only a few
decisions are required from a massive araount
of data. In this sense, neural networks should
play a crucial role in future data fusion sysiems.
This paper will describe several methods of

Figure 1: Multi-sensor Data Fusion System

applying neural networks to data fusion,
including: self-organizing hierarchical neural
systems, multi-layer error correcdon leamning
networks, and single layer pattern completion
systems. Application case studies will be
examined to determine how researchers have
applied neural networks to data fusion. In addi-
tion, a discussion of feature representation and
feature weighting will be provided.

1. INTRODUCTION

Multisensor data fusion remains one of the
most challenging research areas in the compu-
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tational sciences. Multisensor data fusion is the
process of combining the data from several dis-
tributed sensors (potentially thousands) and
making a decision. The sensors can vary widely
in reliability, the type of data being received
can vary, and the resulting decision might be
required in real-time. The applicability of neu-
ral networks to this environment represents a
natural synergism between the inherent capa-
bilities of neural networks ard the computa-
tional demands of the multisensor data fusion
(MDF) problem. This paper reviews current
MDF techniques, describes three neural net-
work approaches to MDF, and presents some
potential MDF applications in guidance and
control.

2. OVERVIEW OF DATA FUSION

Data fusion is the synergistic combination
of data from several sources into a coherent
decision. When the data is supplied sclely from
sensors the result is 2 multisensor dat: fusion
system. Figure 1 il'ustrates a general muitisen-
sor data fusion (MDF) system. In geueral, a
MDF system can be viewed as a sitaation-
response system. Some phenomenon occuss in
the environment that is observed by a set of N
sensors. Each sensor collects information and
transmits it across a channel where features are
abstracted from the sensor data. The entire set
of features recorded during a given interval of
time represents the situation. The set of features
produced from each sensor . subject to differ-
ent levels of noise, different time-delays for
information propagation, and different relative
importance weightings between sensors. The
situation data is eventually fed to a data fusion
system where a response must be provided
from the data. It is immediately evident why
data fusion is so difficult.

2.1. Advantages of Multisensor Data Fusion

The primary motivation for data fusion is
the realization that single sensor information is
often not enough. The synergistic collection of

information from a wide variety of sensors is
required to produce reliable responses.
Although this is the primary reason for data
fusion, there are others. Luo & Kay (1989)
have identified four advantages of MDF sys-
tems:

Redundancy: By receiving sensor informa-
tion from several similar sensors it is possible
to attain improved accuracy. In systems that
utilize redundant sensors the fusion is per-
formed at a low level.

Complementary: By recetving sensor infor-
mation from different sensors, it is possible to
create a more robust representation of the phe-
nomenon being sensed. In systems that utilize
complementary sensors the fusion is performed
at a high level.

Timeliness: By distributing the sensing task
to several sensors it is possible to produce
taster decisions. Single sensor systems often
need to repeatedly sample prior to emitting an
accurate decision. Multisensor systems take
advantage of the redundancy to achieve the
desired accuracy.

Cost: Depending on the system, it is possi-
ble to provide a multisensor system at less cost
than a single sensor system.

2.2. Multisensor Data Fusion Paradigms

A MDF system requires several capabili-
ties. It must be able to incorporate and arbitrate
data from a large number of sources. It should
allow the relative weighting of sources to be
done easily. And, it should provide timely
responses. L.uo and Kay (1989) have outlined
four primary paradigms that meet all of these
requirements:

Hierarchical Phase-Template Systems: A
general paradigm for robotic systems based
upon four temporal phase of sen.or-to-object
distance (far- away, near-to, touching, and
manipulation).

Logical Sensors: Abstracting each sensor
from a physical device to a logical entity allows




collections of sensors to represented very ele-
gantly. This approach is useful in applications
that require a world model to operate in har-
mony with the sensor system (eg. robotics).

Object Oriented Programming: Each sensor
in the MDF system is represented as a data
object. An object contains both data and func-
tions and it communicates to other objects via
messages. Like the Logical Sensors approach,
this has a very appealing general structure that
is amenable to several symbolic-based data
fusion tasks.

Neural Networks: Create patterns from the
various sensors (via preprocessing) and process
the multiple patterns using a neural network.
This technique will remain the focus of the
remainder of this paper.

:.3. Examples of Multisensor Data Fusion
Systems

The most incredible MDF systems are
mammals, especially humans. The ability to
fuse auditory, visual, olfactory, and tactile
information is unparalleled. Recent work by
Singer and others (Barinaga, 1990) has exposed
some clues about how humans are able to per-
form sensor fusion. Information in disparate
regions of the brain has been found to phase-
lock and operate synchronously. This research
is revealing a new approach to neural systems
where information is stored in oscillations of
different frequencies. Relative to mammals
most MDF systems pale, but the full capability
of a human is not necessary to provide
improved performance for most applications.
Recent examples of highly capable MDF sys-
tems include robots, surveillance systems, and
target tracking systems.

2.3. Multisensor Data Fusion Surveys

This paper will review the neural network
aspect of MDF with an emphasis on guidance
and control. There are several resources that
discuss other aspects of MDF. Maren & Pereira
(1989) have conducted an extensive survey of

8-3

multisensor information fusion that analyzes
sensor selection, levels of abstraction, architec-
tures, and methodologies for fusion. Luo and
Kay (1989) have also conducted an extensive
review of multisensor integration and fusion
with an emphasis on robotics applications.
Mitchie & Aggarwal (1986) have performed a
survey of multisensor integration with an
emphasis on image processing applications and
Garvey (1987) has analyzed the Artificial Intel-
ligence approaches to multisensor information
fusion.

3. NEURAL NETWORK DATA FUSION

There are three primary methods for neural
network data fusion: (1) pattern completion, (2)
pattern matching, and (3) hierarchical systems.
Each neural network fusion technique has its
own merits and an affinity for different applica-
tion areas. In the following sections each of
these techniques will be examined with specific
applications cited with each technique.

3.1. Pattern Completion Neural Fusion

The pattern completion technique for neu-
ral network MDF is illustrated in Figure 2. All
of the sensor data types are concatenated
together into a large vector with the desired
response. As an example, Anderson, et al.
(1990) used this representation for the classifi-
cation of radar emitters. In this instance, the
data types where pulse repetition interval, oper-
ating frequency, and so on, and the correspond-
ing output was the name of the radar system.

Pattern completion neural fusion fits within
a situation-response framework very well.
Applications that might use this fusion tech-
nique might include target recognition, signal
classification, and control applications. Target
recognition might utilize infrared, optical,
radar and acoustic data to describe the situation
and correlates this information with the classi-
fication of the target as a response. Signal clas-
sification can utilize Fourier spectra, duration
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of signal, and total signal power as the situation
and produce a classification of the signal as the
response. Control applications can collect sen-
sor data from the platform being controlled and
merge this with infrared information to create
the situation and the response would be the next
action to take.

Pattern completion neural fusion primarily
relies on autoassociative feedback neural net-
works (Simpson, 1990a & 1991). Neural net-
works that can be used for pattern completion
include the Brain-State-in-a-Box (Anderson, et
al., 1977) and the Hopfield associative memory
(Hopfield, 1982). Because of the feedback
nature of these systems, stability is usually
achieved at the expense of nonlinear saturation
points for each processing element’s response.
In other words, feedback neural systems tend to
require a binary representation of the data to
work most effectively.

Figure 2: Pattern Completion Data Fusion

The restriction to a binary representation
requires some clever preprocessing that pro-
vides the requisite information. Several tech-
niques have been developed for effectively
representing information in a binary vector,
including complete enumeration, thermometer
codes, and closeness codes (Collins, 1990).
When using pattern comp:letion neural fusion it
is vitaily important to develop a robust code
that can be used to represent the problem, or the
full potential of the neural network will not be
achieved. The code that is developed must
accurately represent both the value of the sen-
sor data and the relative importance of that sen-
sor data.

3.2. Pattern Matching Neural Fusion

One of the most common forms of neural
data fusion is the pattern matching approach.
As shown in Figure 3, the situation is passed to
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Figure 3: Pattern Matching
Data Fusion
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the network as the input and the response is
produced from the network as an output. There
are several neural networks that can be used for
pattern matching neural fusion, including the
Boltzmann Machine (Ackley, Hinton &
Sejnowski, 1985), the Cauchy Machine (Szu,
1986), the Probabilistic Neural Network
(Specht, 1990), the Adaline/Madaline (Widrow
& Winter, 1988), the Functional Link Net (Pao,
1989), and backpropagation (Werbos, 1974;
Parker, 1982; Rumelhart, Hinton & Williams,
1986). With the exception of the Adaline/Mad-
aline and the Functional Link Net, each of these
pattern matching neural networks have more
than two layers. Although it is not necessary to
have a multi-layer neural network for pattern

matching neural fusion, the interrel=tionships
between the various sensor data types tend to
be nonlinear and multi-layer neural networks
tend to be the most common form of nonlinear
pattern matching networks (others include
higher-order neural networks such as the Func-
tional Link Net). In addition to the pattern
matching neural networks, it is also possible to
include the pattern classification networks such
as Adaptive Resonance Theory (Carpenter &
Grossberg, 1987a & 1987b), Learning Vector
Quantization (Kohonen, 1990), and the Fuzzy
Adaptive Min-Max Unsupervised Classifier
(Simpson, 1990b).

3.2.1. Automatic Target Recognition

Rewrite to eliminate system type, numbers
and specific methods --

Ruck, et al. (1990) have used the multilayer
neural network pattern matching MDF
approach for the discrimination of various
objects in images. The data used in the experi-
ments was forward looking infrared (FLIR) and
absolute range. After the image was segmented
into blobs, features where abstracted from the
data from each of the two sensors. The FLIR
data was broken into a feature set that included
number of pixels in the blob, background stan-
dard deviation, and complexity (ratio of border
pixels to total pixels). The absolute range fea-
ture set included height of blob, complexity of
blob (computed the same as the FLIR complex-
ity), and pixel standard deviation across the
blob.

The features where then concatenated
together to form a large input vector to a back-
propagation network. The MDF system was
first tested using only range data to classify the
blobs. This demonstrated showed that the back-
propagation network was able to handle the
fusion problem effectively and the performance
improved when multisensor data was used.
Backpropagation is not the only neural classi-
fier that could have been used. Other neural net-
work pattern classifiers could have resulted in
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an equally acceptable solution. In the next
example of pattern matching neural fusion the
output is not a classification of the response,
rather it is a set of values, hence a pattern clas-
sification system would not be applicable here.

3.2.2. Space Object Status Monitoring

Eggers & Khuon (1990) have used a back-
propagation network for the monitoring of
space voject . The sensor data consisted of two
radars, one o, .rating in the L-band and the
other operating in the X-band. Each set of sen-
sor data was preprocessed using a fourth-order
autoregressive model that produced a four-
dimensional feature vector. These two vectors
were concatenated together to form the input to
the backpropagation network. The output from
the network was a four dimensional vector
describing the current state of the object (sta-
ble, pitch, roll, and yaw). The performance of
the system showed reliable output responses.

3.3. Hierarchical Neural Fusion

Hierarchical neural networks are used in
fusion systems that require low level sensor

level 4

level 1 Z

\—— \en s/ .
Sensor Data Sensor Data
Type 1 Type 2

Figure 4: Hierarchical Network Data Fusion

level 5 é ;

Response
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A
« Each Slab
Is @ two-layer
classifier.

information to be abstracted into higher level
features prior to the fusion. In the previous two
instances it was assumed that the feature
extraction process was sufficient enough to cre-
ate arepresentation that could be used by a neu-
ral network. Sometimes it is not possible to
extract enough information from non-neural
network techniques, especially in image pro-
cessing applications where scale, rotation, and
translation invariance are key elements that
need to be addressed prior to fusion.

Figure 4 shows a typical hierarchical net-
work. This network has five levels. There are
several input planes (level 1) that receive data
from the sensors. In successive levels the fea-
tures are gradually extracted from the data and
fused together. At level 4 there is a final fusion
of the information into a representation that is
classified by level 5. Each level of the hierar-
chical network is a two-layer neural network
classifier. The connections within each level
(slab) are modifiable and are used to classify
the features into a more abstracted representa-
tion. The connections between levels are hard-

» Connectlons
between slabs
are hardwired.

+ Fuslon occurs
at ditferent levels
and is passed
forward.

Sensor Data
Type N




wired to extract certain types of feature
composites. Typical adaptation algorithms for
these modifiable connections include Hebbian
learning (Fukushima, 1988), competitive learn-
ing (Hecht-Nielsen, 1990), and adaptive reso-
nance (Rajapaks=, Jakubowicz, & Acharya,
1990).

The first system to employ this form of
hierarchical composition was the Neocognitron
(Fukushima, 1988) which was applied to hand-
written character recognition. Other applica-
tions of the neocognitron include situation
analysis (Jakubowicz, 1990) and automatic tar-
get recognition (Gilmore & Czuchry, 1990).

3.3.1. Target Recognition

An ART-1 based hierarchical system has
been applied to the recognition of target-like
images (Rajapakse & Acharya, 1990). The
input sensors were simulated to represent two
different types of data. The features present at
each sensor are demoastrated to be insufficient
to classify the image when used alone, but the
combination of sensors was successful at the
same task. The system is currently being
extended to work with biomedical images.

4. APPLICATIONS OF NEURAL DATA
FUSION TO GUIDANCE AND CONTROL

There are several areas where neural fusion
can be applied to guidance and control. The fol-
lowing three sections outline some candidate
application areas and provide some guidelines
for applying the neural fusion techniques
described above.

4.1. Guidance Systems

Guidance systems require a few decisions
to made from a massive amount of data. Neural
networks are ideally suited for these types of
applications. Because of the parallel nature of
neural networks, additional sensors will not
necessarily slow the system. In addition, neural
networks are able to automatically weight the
relative importance of each type of sensor auto-
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matically.
4.2, Control Systems: Inverted Pendulum

Sometimes there are several different types
of sensor data available, but the use of the data
is not clear. The inverted pendulum (broom bal-
ancing) is an example of such as system. Sen-
sors placed on the cart and on the joint of the
inverted pendulum can be used to produce data
that is used to determine which direction to
move the cart so the pendulum will remain
upright. It is possible to add an image sensor
that can also determine the position of the pen-
dulum relative to the cart. Fusing the informa-
tion is not straightforward using conventional
techniques, but a pattern matching neural
fusion approach using a supervised learning
neural network like the backpropagation net-
work presents a feasible approach.

Other platforms that might utilize data
fusion for control include robotics, automobiles
and aircraft. Robots can utilize MDF for navi-
gation purposes. Information from high-fre-
quency active sonar and from cameras can be
fused to control a mobile robot. Cars with look-
ahead cameras can provide data that can be
fused with sensors on the suspension system to
produce commands back to the suspension sys-
tem that will adjust the tension to fit the needs
of the road. And, aircraft can fuse engine sensor
data to control air intake and fuel flow to opti-
mize for fuel efficiency, speed, or stealth pur-
poses.

4.3. Surveillance Systems: Border Surveil-
lance

Although it is not a strict guidance or con-
trol application, the use of neural fusion for sur-
veillance is extremely promising and worthy of
mention. One of the most difficult elements in
a surveillance system is the fusion of data from
the massive number of available sensors.

As an example, border surveillance sensors
might include acoustic, seismic, radar and
intelligence. Effectively fusing this data to clas-
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sify the activity is difficult using conventional
techniques. But, it is possible to train a neural
network to perform this task by suppiying the
network with examples of the various sensor
readings and the associated activity using a pat-
tern matching neural fusion approach. Correla-
tions that might not have been intuitively
obvious are often discovered by pattern match-
ing neural networks, an extremely useful
attribute in this application.

Other areas where data fusion can be used
include home security systems that fuse motion
and infrared data to determine if an intruder is
in the area. The output of the system can be
used to control lights and sirens in the localized
area of intrusion while automatically notifying
law enforcement.

5. CONCLUSIONS

Neural fusion techniques are becoming
more prominent because of their ability to eas-
ily handle massive amounts of data from a wide
variety of sources. The use of data fusion pro-
vides a mechanism for improving the reliability
of guidance and control systems at the expense
of greater system complexity and more compu-
tational requirements. The use of neural net-
works in a MDF environment represents a
natural fit of the strengths of neural networks
with the weaknesses in data fusion.
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Summary

Several advanced neural network architectures are
expected to be of significant value in guidance and
control., This paper reviews three advanced neural
network architectures (the graded learning
network, the recurrent backpropagation network,
and the hierarchical matched filter network) and
briefly discusses how they might be applied to
problems in guidance and control.

1 Introduction

Many interesting problems in guidance and control
can be reduced to the problem of implementing a
time dependent mapping (i.e., a spatiotemporal
mapping) between an n-dimensional input vector
and an m-dimensional output vector. Such
mapping problems are difficult to solve using
conventional techniques such as linear control
theory, statistical pattern recognition, or dynamic
programming, due to the inherent complexity of
spatiotemporal patterns, particularly when
insensitivity to various warping transforms is
demanded. Recent advances in neural network
technology may provide significant new capabilities
for addressing many of these problems.

This paper presents three neural network
architectures that solve spatiotemporal mapping
problems: the recurrent backpropagation network,
the graded learning network, and the hierarchical
matched filter network. It is expected that these
networks will become increasingly important in
solving complex spatiotemporal mapping problems.
Thus, the focus of this paper is to familiarize the
reader with the structure and operation of each
network, and to point out similarities and
differences.

These three networks were selected because they
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represent each of the three neural network learning
paradigms: supervised learning (recurrent
backpropagation network), reinforcement learning
(grading learning network), and self-organization
(hierarchical matched filtering network). This will
allow us to compare the different types of learning
and to gain insight into the suitability of each
learning paradigm for various types of problems.

The graded learning and recurrent
backpropagation networks are very similar in their
approach to approximating spatiotemporal
mappings. Their primary differences are in the
training procedures that are used. The common
architecture shared by these two networks is
described in Section 3. This architecture consists of
a single functional layer of fully connected
processing units. Both of these network
architectures address problems involving the
approximation of arbitrary fixed spatiotemporal
mappings.

In contrast, the hierarchical matched filtering
network is designed specifically for spatiotemporal
pattern classification problems. Its network
architecture is fundamentally different than that of
the other two networks. This architecture is
described in Section 6.

2 Spatiotemporal Mappings

Intuitively, we can describe a spatiotemporal
mapping as a mapping from a temporal sequence of
n-dimensional input vectors to a temporal sequence
of m-dimensional output vectors. Such an intuitive
description can be made mathematically precise.
We define H™*?[C] to be the vector Sobolev space
of all LP generalized n-dimensional real vector
functions of time with L? generalized derivatives up
to order k on a compact set C C R (for a gentle
introduction to generalized functions see [14], for a
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terse definition see [1]). With this definition, a
spatiotemporal mapping is defined as a mapping

x: A C HMP[C] — B c H™F#'[D).

Examples of spatiotemporal mappings include a
speech classifier that maps a time-varying speech
power spectrum to a word class number, and a
control system that maps a plant disturbance to a
system control function. More specifically, a speech
classifier takes a time-varying speech power
spectrum (a spatiotemporal pattern)

x:CCR—R"

and maps it to a class number function which, at
each time step, gives the class number of the word
that has most recently been completed (i.e., the
class number function is an integer-valued function
of time).

In a control system we typically have a plant
with mathematical form

J(x(t), u(t),d(t)) = x(t),

where x(t) is the state vector of the plant (typically
compesed of sensor readings) at time ¢, x is the
time rate of change of the state, u(t) is the vector
of control signals at time t, and d{t) is the vector
of plant disturbances (deviations from perfect
closed-system mathematical operation) at time .
The goal of the control system is typically to
achieve some kind of particular plant state (such as
a specific final sheet thickness in a steel rolling
mill). Thus, a conirol system is a mapping from an
outside disturbance function d to a control function
u that can achieve the desired control goal. This
view of control theory assumes that the plant has a
fixed dynamical structuie so that the controller’s
job is to produce a control vector that deals with
the effects of outside disturbances on the plant.

In general, the primary issue in spatiotemporal
pattern recognition is Lo build classifiers that are
insensitive to certain spatiotemporal warping
transformations (such as pitch change and time
warping in speech recognition). The primary issue
in control is to build causal recursive controllers
(i.e., controllers that operate in discrete time to
map the set {x(0), x(1), u(1), x(2),

u(?), ..,x(t—1), u(t — 1)} into u(t)) that perform
well with respect to some particular set of goals.
The graded learning network and the recurrent
backpropagation network are useful for such

control applications. The hierarchical matched
filter network is useful for pattern recognition
problems where there is a desire to be insensitive to
time warps (a class of spatiotemporal warping
transformations that map a spatiotemporal pattern
x(t) into a pattern x(6(t)), where 8 is a strictly
monotonically increasing smooth scalar function of
time).

3 A Fully Connected
Network Topology

A simple yet very powerful netwo>’ y is
that of a single fully connected lay.. sing
units (see [10] for a discussion of the cu,. silities of
this topology), such as shown in Figure 1, which
consists of a single functional layer of N units. To
simplify the discussion, an additional layer of
fanout units is included. This layer distributes
both the fed back output signals of the N
functional units, and the n components z;(t ~ 1),
z2(t — 1), ..., za(t = 1) of the input vector x(t ~ 1)
(the input vector used during the network’s
operation at time ¢t is latched into the fanout units
at time ¢ — 1 along with the fed back processing
element output signals from time increment ¢ — 1}.
Each of the N processing elements of the functional
layer also receives a bias input, which we shall label
zo(t ~— 1) where zo(t) = 1.0 for all values of t. The
number of fanout units is equal to 1 + n+ N.

The outputs of the network at time ¢ are the
outputs yi(t), y5(t), ...,y (t) of the first m
processing elements of the functional layer of the
network. The output signals of the remaining units
are Yoy 1) (8 Yma) (- YN ().

To simplify the notation, we define

5(t)  f0<j<
Zj(t)={;fj_n)(¢) tnin<ics @

where § =0,1,2,...,L and L = N + n. For
convenience we shall assume that time always
begins at ¢t = 0.

On time step t, processing element i calculates
its output signal y/(t) by means of the formula

) = s(L@t) i=12...,N (2
I

L) = Y wjzlt~1) 3)
j=0

where each of the functions s,(u) is bounded and
has a continuous derivative. A typical functional

P
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Figure 1: Single layer of fully connected processing units.

form for s;(u) is the bipolar logistic function given
by

1—-e™
14e4’ (4)

This function is bounded between -1 and +1 and
has a slope of 1 at zero.

To solve a spatiotemporal mapping problem with
the network topology shown in Figure 1, the
connection weights must be learned from a set of
examples of the mapping. The next two sections
describe learning methods that yield good
connection weights for this network topology.

s;(u) =

4 Recurrent Backpropagation
Network

The recurrent backpropagation network learns to
approximate a mapping between a sequence of n
dimensional input vectors and a sequence of m
dimensional output vectors. The mapping is
learned using a form of supervised learning to
adapt the weights. Supervised learning requires
that the some of outputs of the network be known

for some or all of the input vectors in the sequence.
In general, such information is more difficult to
acquire than a measurement of performance. Thus,
recurrent backpropagation is more restrictive than
the graded learning network in terms of the types
of problems that it can address. However, when
supervised learning can be used it will in general
produce a network that is superior to graded
learning both in terms of required training time
and approximation accuracy. Thus, when
supervised learning can be used it should be.

4.1 Recurrent Backpropagation
Error Function

Unlike the graded learning network, recurrent
backpropagation has a fixed error function that it
tries to minimize during training. This error
function is a spatiotemporal generalization of the
mean squared error function used in
backpropagation. To understand this error
function, we must first define the exact problem
that recurrent backpropagation attempts to solve.
Let the input to and output from the system at
time ¢ be x(t — 1) and y’(t), respectively. We shall
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assume that the system starts operation at ¢t = 1.
Initial values for the internal states of the system
at time ¢ = 0 are uniquely defined by the initial
values of the output signals (in other words, by the
vector y'(0)). The system runs forward in time
until some arbitrary stopping time tsop is reached.
During each of these ‘runs’ of the system the input
sequence {x(0),x(1),x(2),...,x(tsrop — 1)} is
provided to the system. From the initial state of
the system, y'(0), and the sequence of x(t) inputs,
the system produces outputs

{¥'(1),¥'(2),...,¥ (tstop)}. Clearly then, the
overall purpose of the system on each run is to map
the set

x = {y'(0), {x(0), (1), x(2), ...,

into the set

x(tstop - 1)}}

yl = {y/(l)’ yl(2)a tee ay,(tstop)}-:

Thus, we can view the operation of such a
spatiotemporal system as performing a mapping
from a set consisting of the initial system state and
a set of input values provided over the run, to a set
consisting of the output states produced by the
system over the run. The confusing thing about
this picture is that in many practical instances
(such as most control systems) the x(t) inputs are
functionally dependent upon eatlier y’(t) outputs.
The key observation is that this doesn’t matier.
The only effect this has is to limit the range of
possibilities for the x(t) sequences that the system
will see. We are only concerned with what the
system does when a particular sequence of x(t)
inputs is presented (given a certain initial state of
the system). We don’t care how these inputs arose.

The error calculation procedure for the recurrent
backpropagation network is similar to that used
with the backpropagation network, but with one
important difference: not all correct output signals
are known. In the case of recurrent
backpropagation, we assume that with each
training run example x we are also given
information concerning some of the correct values
of outputs of the network at various points during
the run. Specifically, we assume that at each time
{,1 <t < 1sqp during a training run we are given a
set U(t) of integers lying in the range from 1 to m,
inclusive, such that the correct output value yi(t)
for uris k at time ¢ is given for each k € U(t). It is
perfectly acceptable to have U(t) be the empty set
at some times t during the training run. However,

for there to be useful training, U(t) must be
non-empty for at least one time ¢t during training.

Given the sets U(t), and the correct y(t) values
for each k € U(t), we define the mean squared error
F(w) of the recurrent backpropagation network to
be

‘nop

Z Y @ - u@)F| ()

€= keU(t)

. 1
K (Zg.“p #U(t)) (6)

where w is the weight vector of the network,
#U(t) = the number of elements in U(t)

(#U(t) = 0if U(t) is empty), and E[ ] is the
expectation or averaging operator (the averaging is
done over an unboundedly large number of input
examples chosen randomly with respect to p). Note
that the entire sum is divided by K, the total
number of error terms used. Thus, we are
measuring the average squared error per output for
which the correct output is given. This quantity is
then averaged over the entire input space by the
expectation operator. Again, as with
backpropagation, the mean squared error depends
only on the weights. Naturally, for this dependency
to hold, it must be assumed that the weights are
fixed throughout the evaluation of the network’s
performance.

F(w)

4.2 Recurrent Backpropagation
Network Learning Law
The recurrent backpropagation network learning

law is based on the standard gradient descent
method

wheW = wod _ oy F(w). (7N

The gradient calculation requires the partial
derivatives of F(w) with respect to the components
of w. The complete derivation of these partial
derivatives can be found in [10]. The result is a set
of recursion formulas

st (1e(t)) (8)

([M z(t =1} + i [k i (= 1)]) :
p=1

) (t) =

where




rhij (1)
rki;(0) = 0.

At the end of each run (after all of the z/(t — 1)
values are known), the recursion formulas in
Equation 8 can be solved. Naturally, in order to
adequately approximate the expectation operator,
we must average over a large number of runs where
the initial values and input sequence examples are
chosen randomly in accordance with a fixed
probability density function p. The need to batch
the results from a number of runs before modifying
the weights makes this learning law very slow.

Two variations of this learning law have been
developed. The first of these updates w after each
time step and is known as the jump-every-time-step
variation. The second updates w at the end of each
run. Both of these variations can improve the
training time of the network.

Another variant of the recurrent backpropagation
learning law is the teacher-forced learning law
introduced by Ronald Williams and David Zipser
[18] (who also introduced Equation 8). This variant
is like the jump-every-time-step version, except for
two changes. First, all of the correct output values
yx (t) that we are given for training are used in the
recursion equation (Equation 8) in place of the
corresponding y;(t) values. Second, after each
weight jump the r;;(t) value used to compute the
jump is set to zero. Williams and Zipser report
that, at least for some problems, une teacher forced
learning law seems to converge to a useful solution
faster than the original learning law or the two
other variants.

It is worth noting that the above derivation
assumes that the inputs to the network do not
depend upon the weight values. For many practical
problems, such as in control, this assumption will
be false because of the fact that the input is derived
from the output (for example, by a plant that takes
control signal outputs from the network, which
definitely depend on the weights, and produces
sensor inputs to the network — which therefore
also depend upon the weights). Thus, in using the
recurrent backpropagation network, this limitation
must always be kept in mind. However, this isn’t
to say that the method is unusable in these cases.
Often, the dependence of the input on the weights
is small, in which case the method may still work.
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5 The Graded Learning
Network

The graded learning network (GLN) is a mapping
neural network which uses a form of reinforcement
learning in which a performance measure or grade
is periodically presented to the network to guide
learning [4]. It combines the well known
optimization characteristics of simulated
annealing [13,7] with the speed advantages of a
gradient search method. The result is a powerful
new method of optimization for a broad class of
problems, including guidance and control.

Unlike supervised learning networks such as
backpropagation, GLN does not require the desired
output to be furnished for each training trial. Only
a measure of overall network performance over a
series of training trials is required. This is very
significant for problems in guidance and control,
since these problems are often characterized by a
lack of knowledge of the desired output for a given
training trial.

5.1 GLN Advantages

While GLN is not the only form of reinforcement
learning network, it does have two distinct
advantages over other such networks:

1. The GLN learning law does not specify the
form of the grading function.

2. The GLN learning law is not coupled to the
network topology.

The first of these advantages implies that the
grade must be furnished by an entity external to
the network. This external entity is typically some
type of monitoring module which can assess the
overall performarcce of the system. Such a
performance measure can be very complex and
often involves significant time delays between the
network response and the measurement. In general,
the grade measurement can be based upon any
factors that are consistently and repeatably a
function of the input-output behavior of the
network.

The second GLN advantage allows it to be
applied to arbitrary network topologies. In
particular, GLN can be used with topologies that
involve feedback connections between and within
layers of processing elements. Thus, GLN can be
applied to problems that have complex dynamical
response with unknown or uncertain time delays.
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5.2 Description of Graded Learning
Operation

The learning law for the graded learning network is
executed whenever a grade, G, is presented. Upon
such a presentation, the network adjusts its weights
using a training process that is, roughly speaking, a
biased form of Cauchy simulated annealing [15).
The bias is based on an estimate of the gradient of
the grading function. Thus, each weight
adjustment is a combination of a grading function
gradient estimate and a Cauchy random jump. A
temperature parameter determines the average size
of this random jump.

In the following discussion of GLN learning, it
will be convenient to define the network weight
vector, w, as the vector containing the weights of
all the units in the functional layer, including the
bias weights. The dimensionality of w is
g=(1+n+ )N)

In addition to w, GLN maintains three other
vectors of the same dimensionality for use during
training. The first of these vectors, a, is an
estimate of the gradient of the grading function
with respect to the network weight vector. The
second vector, b, contains the network weight
vector that thus far has yielded the best (lowest)
grade value. The final vector, ¢, contains the
random jump values.

When a grade, G, is presented to the network, it
is first checked to determine if it is better or worse
than the current best grade, Gpest(t). Subsequent
processing depends on the outcome of this check:
case 1: G < Gpest(t)

bt = oG+ (1 - )G,
Tnew ,BT
a? = 7aold+ 6cold.:

case 2: G 2 Grent(t)

et = oG +(1- )G
™Y = T

ane = 0a°'°'+¢»c°’d

where a, 3, v, 8, ¢, 0, and ¢ are parameters.
Typical values for these parameters are given in
Table 1.

Following these changes, the ¢ and w vectors are
updated as follows:

" = a™Y 4 Tr (9

TR

Table 1: Typical GLN Training Parameters

Tynical value
0.99
1.01
0.85
0.25
0.995
0.85
-0.15

Parameter

O Do Wi

where r is a g-dimensional Cauchy random variable
(see [15)). Finally, the new weight vector is
calculated:

wnew = b+ cnew.: (10)

After w is updated, the network is run once
again, with this new weight vector, to generate a
new grade. The process of weight updating can be
continued indefinitely (e.g., if the plant or its
environment are expected to change significantly
over time), or it can be turned off when a
satisfactory level of performance is obtained.

6 Hierarchical Matched
Filter Neural Network

The hierarchical matched filter network is designed
to perform spatiotemporal pattern classification
using a generalized multidimensional matched
filter. Traditionally, matched filtcring has been
used in application areas such as communications,
radar, and sonat, for detecting a specific waveform
in a time series signal. The generalized
multidimensional matched filter is optimized for
spatiotemporal pattern classification. Banks of
these matched filters can be used as
high-performance classifiers for spatiotemporal
patterns. Unfortunately, the direct implementation
of such matched filter banks for large problems
(such as large-vocabulary continuous speech
recognition), while attractive, is not practical.
However, it may be possible to develop a method
for exploiting the inherent statistical redundancy of
typical spatiotemporal pattern sets to allow more
efficient implementations of such matched filter
banks. In particular, we propose a hierarchical
neural network approach to this implementation
problem,




6.1 Matched Filtering

One well-known method of pattern recognition is
template matching or nearest neighbor classification
{5,6), in which unknown patterns are simply
compared with known examples (using an
appropriate distance measurement procedure) to
find the closest matching examples. Given a
sufficiently rich set of example patterns, such
classifiers can be shown to be near-optimal.
However, for practical problems, classifiers with a
sufficiently large number of example patterns are
often impractical,

Given two spatiotemporal patterns, u(¢) and
v(t), we want to create a matched filter distance
measurement that is invariant, or at least
insensitive, to the distortion of patterns by some
preselected class C of spatiotemporal warping
transformations. For example, if we wished to be
insensitive to small time warps, we might define the
class C to consist of transformations of the form
u(t) — u(6(t)) where 0.5 < df/dt < 2.9. Of
course,  might consist of much more complicated
transformations.

One choice for the distance measurement
Hy(u,t), that is invariant with respect to a class C
of spatiotemporal warping transformations, and
which only operates locally in time, is

Hy(u,t) = 7‘»2% /;: p(r=t) |u(r)~Tv(r)| dr,
(11)

where p is a non-negative smooth function with
p(r) > 0 for 7 € (—a,0) (where a is a non-negative
constant) and p(r) = 0 otherwise, and where C is a
defined set of spatiotemporal warping
transformations. The function p is called a time
windowing function. It serves the purpose of
focusing the attention of the distance measurement
on the time interval {t — a,t]. H can be interpreted
as the distance between the spatiotemporal pattern
u over the time interval [t — a,t], and the best
matching warped portion (of duration {t — a,]) of
v. Hy(u,t) which is called the generalized
multidimensional matched filler (or simply matched
filter, since we shall not use the traditional version
in the sequel) for input spatiotemporal pattern u,
tuned to spatiotemporal pattern v, over
spatiotemporal warp class C.
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6.2 The Nearest Matched Filter
Classifier

One way of building a pattern classifier for
spatiotemporal patterns is to gather many
examples of patterns belonging to each of the M
classes into which each unknown input pattern is to
be placed. An unknown spatiotemporal pattern
can then be ccmpared with these examples at each
time t, by means of matched filters based upon the
example patterns, to determine (via a classification
decision policy) whether a pattern belonging to any
one of the M classes has just finished arriving or
not. This is the nearest matched filter classifier.

To make the notatior concrete, let us define such
a training set of patterns to be the set
P= {(vl,ﬂl)’ (v2yﬁ2)’-~'-,(vNaﬂN)}) where
B € {1,2,..., M} is the number of the class to
which example pattern v; belongs. The input
signal, u, is fed to all of these matched filters in
parallel (the matched filters use weighting functions
that are balanced so that their responses are
comparable). The output of the classifier at time ¢
is a class number 3 determined by putting the
outputs of all N matched filters into a decision
policy function. For example, if we wanted to use a
simple 1-nearest neighbor policy, we would emit at
each time ¢ the class number §; associated with the
reference pattern v; having the smallest matched
filter output Hy, (u,t)—unless the value of the
smallest matched filter output exceeded a fixed
threshold, in which case we would provide a class
number output of 0, meaning that the input signal
does not currently match any example pattern well.
Clearly, the pattern class output typically will not
be smooth (it will jump abruptly from one class
number to another as the winning classifier of the
competition process changes). The generalized
multidimensional matched filter and the nearest
matched filter classifier (along with a neural
network implementation of the classifier for time
warps) were introduced in 1982 [12]. For further
information and discussion of these concepts, see
[10].

The nearest matched filter classifier can be
defined for a variety of spatiotemporal warping
transformations. However, common choices might
be time warping or pitch change transformations.
Time warping would be useful, for example, for
speech recognition, where the changes in how
words are pronounced are typically of a time-warp
nature. Pitch change transformations (such as
those that occur when we speed up or slow down a




9-8

phonograph record) would be useful for recognizing
vehicles by their sounds, since much of the sound of
a vehicle is from its engine, transmission, and
wheels, which produce sounds at pitches that are
directly dependent on road speed and gear
selection. In every case, the use of an appropriate
class of transformations will ensure that each
reference pattern can serve as a model for a wide
class of similar, but transformed, patterns. This
effective pattern reuse greatly reduces the number
of reference patterns that must be used.

Finally, the theoretical classification performance
of the nearest matched filter classifier has been
established for the case where C is the set of time
translations [11]. In this case, assuming that the
training set is sufficiently comprehensive (and
employs a 1-nearest neighbor classification decision
policy), the classifier error rate will satisfy the
Cover and Hart inequality (3]

R"<R<R (2- -—”1—12') . (12)

M-1

where R® is the error rate of the Bayes classifier.

The nearest matched filter classifier has one
problem, and two advantages. The problem is that
we may need an enormous training set; this
requirement may make the direct implementation
of such a classifier impossibly large and
computationally burdensome (since all N of the
Hy, (u,t) integrals must be computed in parallel).
The advantages are that the classifier is capable of
near-Bayesian performance (at least for some
classes of spatictemporal warping transformations),
and that the individual matched filters are
insensitive to noise. This latter advantage is
particularly important if all of the matched filters
are using the same weighting function (as opposed
to weighting functions that merely have the same
time integral), since Equation 12 shows that all of
the matched filters will then react approximately
the same to additive noise. Thus, since the decision
process is typically largely a relative comparison of
the matched filter outputs, the classifier output will
be somewhat insensitive to additive noise. The
combination of guaranteed high classification
accuracy (given our ability and willingness to
implement a sufficient training set) and additive
noise insensitivity make the nearest matched filter
classifier an interesting candidate for solving
spatiotemporal classification problems.

Finally, because the windowing function limits
the consideration of the incoming spatiotemporal

pattern to the time interval [t — a,t], the nearest
matched filter classifier can carry out only the first
local-in-time stage of spatiotemporal pattern
recognition. For many problems, local-in-time
classification is not sufficient. Often, to do a good
job of classification, we must exploit context
information that we can obtain only by considering
longer periods of time. One way to do this would
be to devise a classification decision policy function
that could exploit a priori syntax and context
information. Because such a postprocessing
opcration is often essential if adequate performance
is to be achieved, the nearest matched filter
classifier should really be thought of as just a front
end for a complete classifier, We now consider the
problem of implementing a nearest matched filter
classifier in a hierarchical neural network structure.

6.3 Nearest Matched Filter
Classifier Implementation

A neural network that approximately implements
the nearest matched filter classifier for the class of
time warp spatiotemporal warping transformations
(see [10]) has the disadvantage that it requires one
sub-network for each example pattern in the
training set. Thus, the size of the network grows
linearly with the size of the training set.

For many problems, such as continuous speech
recognition, the patterns in the t-aining set will be
highly redundant. In other words, these patterns
will have many sub-patterns (phonemes, for
example) in common—usuaily at several different
time duration levels. Thus, from a statistical
perspective, a direct implementation of such a
nearest matched filter classifier will be highly
inefficient, since each matched filter will contain
units that are tuned to essentially the same
short-term patterns that a multitude of other units
are also tuned to. Consolidating these units would
decrease the size of such an implementation
enormously ~ perhaps making such systems
practical. This section presents an outline of a
scheme for accomplishing this consolidation by
means of a new hierarchical design.

Figure 2 shows a design for a self-organizing
spatiotemporal feature detector layer. This layer
learns short time sequences of patterns in a way
that makes it insensitive to small time warps.
Perhaps the best way to describe the function of
this layer is to begin with a description of how it is
trained. Then its function during normal operation
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Figure 2: Schematic for a self-organizing spatiotemporal feature detector layer.

will be described.

During both training and normal operation of
the hierarchical neural network classifier, we
assume that the spatiotemporal patterns are
entered into the hierarchy at the bottom as
sequences of vector inputs in discrete time. The
sample rate is greater than the Nyquist rate for the
fastest varying component of the pattern. Further,
we assume that the individual patterns to be
classified have durations that are all approximately
the same (this condition is not necessary, but
relaxing it adds complications that will be avoided
in this paper). The patterns are assumed to arrive
in a random order described by a fixed probability
density. The only spatiotemporal warping
transformations are assumed to be mild time
warps. Given these assumptions, we now consider
the training of laye: m of the hierarchy. We assume
that all of the previous layers have already been
trained and their weights have been frozen.

The first step in training layer m is to train the
spatial weight vectors wy;, Wmae, ..., Wpn. These
are trained using Kohonen learning with conscience
(see [10] for details), with each successive training
trial utilizing the next discrete time sample of
input X(m_1)(t) from the previous layer as the
training vector. The « learning rate constant starts
off at a value near 1.0 and decreases to 0 in
accordance with a cooling schedule.

After this training process converges, the w,;
vectors will be distributed in x(m_1) space such
that each time sample x(p,1)(t) of the input to

layer m is equally likely to be closest (measured
using Euclidean distance) to each of the wy,;
weight vectors. At this point these spatial weight
vectors are frozen and the training of the z,,;
temporal weight vectors begins.

Before temporal weight training begins, the
processing elements are modified. Unlike spatial
weight training, where the processing elements
simply respond at each discrete time to the
distance from the current input to the unit’s
spatial weight vector, now in temporal weight
training, the reaction to inputs will have a
temporal behavior. Specifically, each processing
element will now be governed by equations such as

Tmi(t) = a(-czmi(t-1) +
dU® — Wi = xm-1(2)])),

0<emi(t) <1,

_f1if¢>0
U“)‘{o if¢ <0,

and

_[€ €20
““9‘{¢5in<m

and where wy,; is the spatial weight vector of unit i
of layer m, and ¢, d, ¥, and ¢ are positive
constants, with ¢, ¢ < 1.
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These equations ensure that each unit is
activated only if the input vector x(,,_1)(t) is
-fficiently close to the spatial weight vector wp;
w. vhat unit. The attack function « is used to
ensure that the “spin up” of each unit is faster
than than the “spin down”.

Given equations of the above sort, each
processing element within ¥ range of the input
vector X(m—_1)(t) will become activated. The
constants are chosen so that this activation always
hard limits at 1 within a few time units after the
input vector enters the ¢ sphere surrounding its
weight vector. After the input vector leaves this
sphere, the activity of the processing element
slowly decays. Note that by setting the value of ¢
correctly it will be possible to ensure that an
approximately constant fraction of the units is
always active—obviating the need for the
development (as yet unachieved) of a “local”
competition mechanism.,

Given the above unit behaviors, a steady stream
of input patterns is then entered into the system,
and the temporal weights z,,;, (which are all
initially zero) are modified by means of the
Kosko/Klopf learning law (see Section 3.6 of [10]
for details). This establishes temporal weights in
accordance with commonly encountered sequences
of unit activation.

Following equiiibration, the temporal weights are
frozen (if desir:d, to improve later performance,
the weights can first be “sharpened” via a
sigmoidal transformation before freezing). The
layer is now ready to be prepared for use. To do
this, yet another transfer function is introduced.

Following the frcezing of the weights of the unit,
the transfer functions emplryed during operational
use of the layer are inserted into the units. This
transfer function has a form such as

Tmi(t) = a(—czm(t-1) +

dUY = Wi, ~ Xm-1(t)])
[0 + Z Zmaj .’ch] )

J#s
0<zmi(t) £ 1.

The behavior of this transfer function is now briefly
described. First, for activation of unit ¢ of layer m
to occur, the input vector X(;,—1)(t) from the
previous layer must be passing through the sphere
c“radius ¢ surrounding the unit’s spatial weight
vector Wp,. Second, the activation level reached (if

not hard limited at 1.0) will depend on the sum of
the quantity ¢ and the temporal input intensity ;
2 ;i #mij Tmj. To achieve full activation, the :
temporal input intensity must be quite large (this

ensures that during training unit { is frequently '
active following the layer m units currently ,
supplying it highly weighted input). The offset y
6 > 0 is used to ensure that units that lie at the
start of learned spatiotemporal sequences will
become at least modestly active, even though they
do not have any predecessor units helping to get
them activated. In the end, this scheme (and other
variants) provides a spatial pattern of activity that
represents a history of the trajectory of the input
X(m-1)(t) over the last brief interval of time. The
h'~tory recorded by this network layer is, in terms
ot a set of spatiotemporal segments, burned into
the network during training. If the input pattern
deviates too much from one of these trajectory
segments, the layer will not respond much at all.

From the above observation it is clear that this
spatiotemporal layer is, in fact, acting as a
generalized matched filter bank over a brief interval
of time, with each activity constellation
representing a pattern trajectory segment learned
during training. The transfer function used
precludes constellations from becoming highly
active unless this is so (unless, of course, the layer
has been overloaded). Note that if overloading
occurs the layer can simply be made larger and the
¥ constant can be lowered. This allows the use of
larger numbers of (more spatially discriminating)
units to learn the spatiotemporal subtrajectories.
Note that this layer will be insensitive to modest
time warps, due to the gradual activation and
deactivation behavior of the operational transfer
functions.

The above discussion has reviewed the definition
of a new matched filter for spatiotemporal patterns
and introduced a hierarchical layered neura!
network designed to efficiently implement a 1. ak of
such matched filters for the purpose of achieving
spatiotemporal pattern recognition that is
insensitive to small time warps. In order to derive
the desired classification information, a mapping
network must be employed that will transform the
spatial constellations of activity at the highest
layers into a class number and a confidence level.

The self-organizing layer defined here has only
limited redundancy of spatial pattern
representation (in contrast to the Spatiotemporal
Pattern Recognizer network presented in Section




6.1 of [10}, which has enormous redundancy). Each
subsequent layer in the hierarchy has a time
constant 1/c¢ that is twice as long as the layer
below. This “temporal compression” property
ensures that the activity constellations at higher
and higher layers act as codes for longer and longer
sequences of spatiotemporal pattern. It is
conjectured that, if the layers are not overloaded
and if the spatiotemporal patterns are sufficiently
distinct, these constellation codes will be unique.
Further, in general, if the input pattern does not
resemble a pattern presented during training, then
none of the layers will respond significantly.

The architecture presented here moves us one
step closer towards efficient implementation of
large matched filter banks for spatiotemporal
pattern classification.

7 Applications to Guidance
and Control

In this section we will review a number cf
applications of interest to guidanace and control
problems.

7.1 Recurrent Backpropagation

Recurrent backpropagation has demonstrated the
ability to model complex dynamical systems. Such
a capability could be very useful in guidance and
control applications. For example, consider a seeker
system that must distinguish between different
types of objects such as a fighter aircraft and a
flare. One approach to distinguishing between
these objects is by their dynamical behavior.
Flares exhibit very simple dynamical behavior
(they fall) while fighter aircraft have significantly
more complex dynamical behavior (they turn,
accelerate, etc.). Such dynamical behavior models
could be developed using a recurrent
backpropagation network. The network would
learn to predict the next location of an object given
its recent dynamical behavior. The predicted
location could then be compared with the sensed
location to make a targeting decision. The network
could be trzined using actual examples of human
pilots flying either real or simulated aircraft.

7.2 Graded Learning

The graded learning network is most applicable to
control problems in which the objective of the

9-11

controller is difficult or impossible to measure. For
example, it may be desirable to design a missile
control system which maximizes its range. Such a
control system does not have an absolute measure
of performance since the maximum range
attainable is a function of the mission. However,
we can determine how often the missile reaches its
target and use this value to assign a success
measure to the control system. The graded learning
network can use this success information integrated
over a number of trial mission (either actual or
simulated) to learn an appropriate control law.

7.3 Hierarchical Matched Filter

The hierarchical matched filter network is most
applicable to spatiotemporal pattern classification
problems in which insensitivity to time warp
transformations is desired. An example of such a
problem is speech recognition in which we desire a
system that can classify speech independent of how
fast the speaker is speaking,.

8 Conclusions

This paper has presented three new neural network
architectures for addressing complex
spatiotemporal mapping problems such as those
encountered in guidance and control. The structure
and operation of each network was reviewed, and
application suggestions were given. From this
discussion, it is clear that advanced neural network
architectures hold great promise for developing
next generation guidance and control systems.
Additin~ . research and development aimed at
better characterizing the properties of these
networks and exploring their applications is
required to realize this promise.
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UTTL: Optical controller for adaptive phased array
antennas using neural network -architecture

B/DAS, P. PAA: 8/(Rensselaer
Palytachnic Institute; Troy, NY) IN: Optoelectronic
signal proc‘sl!ng tor phased-array antennas I1;
Proceedings Of the Meeting, LOs Angeles, CA, Jan, 16, 17,
1990 (A91-24926 09-32), -Bellingham, WA, Society of
*Optical Instrumentdtion Eng!neers. 1990, p. 161-172.
réh pupportcd By USAF.

The control of adaptive phased array antennas using the
least mean squares (LMS) atlgorithm is shown to be
araiogous to the implementation of a two-layer perceptron
neural network. The adaptive weights may be calculated
using the Back propagation algorithm, which is a
generatlized version of LMS., By using a full perceptron
model, additional adaptive weights are introduced at the
racefver; this is expected to improve performance over
existing systems. An optical processor for the control of
adaptive antennas is proposed, based on a two-evel ABS
perceptron. It is shown that currently available

technology is capable of realizing this receiver; the

optical architecture may a)so be applied to the demands of

future wideband interference suppression systems

90/00/00 81A24842

AUTH

UTTL: Simulation of heterogeneous neural networks on
serial and paralle) machines

PAA. A/{California, University, tos
Angeles) Parallel Computing (ISSN 0167-8191), vol. 14,
Aug. 1990, p. 287-303. Research supportéd by the W. M.

Keck Foundation and ITA Foundation. RPY#:
The development tool, DESCARTES is described. This tool

provides researchers with the capability to simulate

heterogensous connectionist networks in which the nodes

and 1inks may have different processing characteristics AUTH!

and effective cycling rates or which are made up of

modular, interacting. sub-networks. DESCARTES also makes it
possible for ressarchers to build hybrid networks which ABS:
combine @lements from distributed, localist, ang symbolic
marker-passing networks. CUrrently. DESCARTES s
tmplemented on ser{al machines, where it is ehle to
simulate networks of medium size by utilizing the
spreading-activation process to prufe unchanging nodes
from the update and spreading cycles. Simulation on SIMD
(Single Instruction Multiple Data) machines is discussed,
focusing on the SIMD simulation cycle, the cycle’s update
stape, the SIMD cycle’s Spread cut-to-links stage, and the
afficient backpropagation on SIMD machines. Simulation on
hypothetical MIMD {Multiple Instruction Multiple Data)
machines is also discussed. 20/08/00  91A22124

UTTL Neural networks and the control of smart systems ABS -
B/GROSSMAN, B8.; C/Y00. K. PAA:
C/{Florida Institute of Technology. Melbourne) IN:

U S -Japan workshop on Smart/Intelligent Materials and
Systems, Honolulu, M1, Mar, 19-23, 1990, Proceedings
(A91-21207 07-23). Lancaster, PA, Technomic Pub)ishing
Co., Inc., 1990, p. 242-251 Research supported by the
U.S. Army and Florida High Technolog: and Industry
Council

Artificial neural networks (ANNs) and their ability to
model and contro! dynamical systems for smart structures.
including sensors, actuators, and plants, are considered.
Bath 1inear and nonlinear systems have been successfully
modeled, Presently, two diverse regimes, smart mechanical
systems and smart electromagnetic systems, are being
developed. In order to better understand neural
controllers as used in the smart electromagnetic
structures, the study of ANNS s directed toward
understanding the ability of the network to approximate
system raesponses. Networks are being trained to mimic the
desired output of the system. The damped sinusoid was ABS
chosen as the model and was approximated using a

Jordan-like iterative network. The results to date

tngicate that the ANNS can eastly mimic these systems -

the question is whether the mechanism that the network

applies can be related to the mechantsms for classical

analysis.,  90/00/00  91A21214

AUTH

UTTL Neurocontro! of auto-lock-on target-tracking sight
control system

B8/SMITH, JAMES C , C/FERNANDO, JOSEPH P
PAA  C/{Osklisng Uni.orstty, Rochester, MI}  Control and
cormputers (ISSN 0315-8934), vol 17, no. 2, 1989, p.

32-36

Neural nets were used to implement the control of an
auto-lock-on target-tracking sight/vision contro}l system
The objective of the resultant target-tracking
neurocontrol system is to capture and emulate human
cognitive action in the eye-hand coordination for tracking
a target using a sight system The paper describes how a
track ing neurocontroller was designad and tmplanentad
using a microcomputer-based resl-time animation simulator
Successful tracking performance of the neurocontrol sight
system was achieved i1n the presence of pseudo-random ABS.
target maneuvers. 89/00/00 91A19981

AUTH:

UTTL: Electronic neural networks for global optimization
B8/MOOPENN, A. W.: C/GBERHARDT, S.
PAA  C/(JPL, Pasadena, CA) CORP uJet Propulsion Lab.,
California Inst. of Tech., Pasadena. IN: Inteltigent
control and adaptive systems; Proceedings of the Mueting,
Philadelphia, PA, Nov. 7, 8, 1989 (A91-19635 06-63).
8eliingnam, WA, Society of Photo-Optical Instrumentation
Engineers, 1990, p. 170-177. Research sponsored by DARPA
and SPILO,

An elsectronic neural network with feedback architecture.
toplemented in analog custom VLSI is described. Its

e e v et e

RPTH:

AUTH.

application to problems of giobal optimization for dynamic
assignment {s discussed. The convergance properties of the
neural network hardware are compared with computer
simulation results. The neura}l network’s ability to
provide optima! or near optimal solutions within only a
few neuron time constants, a speed enhancement of several
orders of magni tude over conventional search methods, is
demonstratad, The effecc of noise on the circuit dynamics
and the convergence behavior of the neural network
nardware 18 aiso examined. 90/00/00 91A19642

UTTL: Implemertation of expert system/Al technology for
reducing gro.~- test in present and future launch sSystems
A/ENGLE, JAMES: B/OWEN, CHARLES: C/COLMENAREZ, LUIS

PAA: C/(Rockwell International Corp., Space Systems Div.,
Downay, CA) AIAA, Aerospace Sciences Meeting, 29th,
Reno, NV, Jan, 7-10, 1991, 11 p.

The applicatton of expert system technology for prelaunch
and in-flight health monitoring is constfdered, and a
prelaunch sxpert system for the Orbiter maneuvering system
{s outlined. Design requirements and technoiogy concepts
for artificial- Intel)(gencelexpert system-based approaches
that reduce ground operation costs for a reaction control
system on future vehicles are presented. A number of the
current Al ensbling technologies for reducing grounda
processing, including expert built-in-test, artificial
neural hatworks, and intelligent machine vision systems
are discussed. Attention is concentrated on system
1ntegrutlon of Al techniques, angineering-support
automation, and intelligent operations paperless systems.
AIAA PAPER 91-0655 91/01/00 91419398

UTTL: Use of Hopfleld neural networks in optima) guidance
A/STECK, JAMES E. B/BALAKRISHNAN, S. N PAA:
8/(M!ssourl-Rolla University, Rolla)  AlAA, Aerospace
Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1893. 6 p.

A Hopfield neural network.architecture for homing missile
gutdance is considered in this study A }inear quadratic
optimal control prob’em is converted to a Hopfield neural
network structure. Several target-intercept scenarios are
provided to demonstrate the use of the neura) net
formulation. Further research directions are recommended.
AlAA PAPER 21-0587 91/01/00 91A19372

UTTL Optical neurochip based on a three-layered
feed- forward modal

A/OHTA, J.: B/KOJIMA, K.: C/NITTA, Y.: O/TAl, S ;
E/KYUMA, K. PAA, E/{Mitsubishi £lectric Corp., Centratl
Research Laboratory, Amagasaki, Japan) Optics Letters
(ISSN 0146-9592), vol. 15, Dec. 1, 1990, p. 1362-1364.

A GaAs/A)GaAs optical neurochip basaed on a three-layered
feed-forward model is reported. The optical neurochip
consists of a light-emitting diode array with 66 elements,
a fixed interconnection matrix, and a photodiode array
with 110 elements. The interconnection matrix is
determined by the backpropagation learning rule with three
quantized levels., There are 35. 29, and 26 neurons.
respectively, {n the input, hidden, and output layers., The
excitatory and inhibitory synapses are integrated on one
chip. 8y using the chip and external electronics, the
recognition of 10 characters with 5 x 7 bits has been
achijeved. 80/12/01 91A18667

UTT.: Feedback network with space invartant coupling
A/HAEUSLER, GERD: B/LANGE, EBERMARD PAA"
8/{Erlangen-Nuernberg, Universitaet, Erilangen, Federal
Republic of Germany) Applied Optics (ISSN 0003-6935),
vol. 29, Nov, 10, 1990, p. 4798-480S

Processing images by a neural network means performing a
repeated sequence of operations on the images. The
sequence consists of a general linear transformation and a
nonl tnear mapping of pixel intensities The general (shift
variant) linear transformation is time consuming for large
images if done with & serifal computer. A shift invariant
1inear transformation can be implemented much easier by
fast Fourier transform or optically, but the shift
invariant transform has fewer degrees of freedom because
the coupling matrix is Toeplitz. A neurai convolution
network with shift invariant coupling that neavertheless
exhibits autoassociative restoration of distorted images
18 presanted Scsides the simple implelentation, the
network has one more advantage associative recall does
not depend on object position. 90/11/10  91a17348

UTTL- Neural computatfon of arithmetic functions
A/SIU. KAI-YEUNG: B/BRUCK, JEHOSHUA  PAA A/(Stanford
University, CA); B/(1BM Almaden Research Center, San

Jose, CA) CORP: Stanford tUniv., CA.; IBM Research tab .
San Jose, CA. I1EEE, Proceedings (1SSN 0018-3219), vol
78. Oct. 1990, p. 1663-1675. Research supported by the

Joint Services Electronics Program andg USAF.

An area of application of neura) natworks 18 considered. A
neuron is modeled as a {inear threshold gate, and the
network architecture considered is the layered feedforward
network. It {s shown how common arithmetic functions such
as multiplication and sorting can dbe efficiently computed
in & shailovw neural network, Some known resuits are
tmproved by showing that the product of two n-bit numbers
and sorting of n n-bit numbars can be computes by a
polynomial-size neura) network using only four and five
unit delays, respectively. Moreover, the weights of each
thrashold element in the neural networks require 0(1og
n)-bit (instead of n-bit) accuracy. These results can be
extended to more complicated functions such as muitiple
progucts, division, rational functions, and approximation
of analytic functions. 90/10/00 91A14887
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UTTL: Holograph{c implemantation of a fully connected
neural network

HSIN«YU; C/PSALTIS, DEMETRI PAA
A/(National Chiso Tung University, Hsinchu, Republic of
China);- C/(Cal4fornia Institute of Technology. Pasadena)
1EEE, Proceedings (ISSN 0018-9218), vol. 78, Oct. 1990. p.
1637- 1645, -Research supportesd by DARPA and USAF.

A hologrnphic ‘implementation of a fully connected neural
network-.is preassnted: Yhis model has & simple structure
and is relatively easy tO implement, and {ts. operating
pr(ncipl.: and characteristics can be extended to other
types of networks; since afy .architecture can be
corigidered as a fully connected network with some of {ts
connoctionc missing. The basic principles of the fully
connoct.d network are reviewed. The optical implementation
of the network is-presented. Experimental resuits which
demonstrate its ability to recognize stored images are
given. and its performance and analysis are discussed
based on & proposed model for the system. Special
attention is focused on the dynamics.of the faedback loop
and the tradeoff between distortion tolerance and
image-recognition capability of the assoctative memory.
90/ 10/00 91A14885

UTTL: Maximum a posterior{ decisfon and evatuation of
ciass probabilities by 8ol tzmann perceptron classifiers
A/YAIR, EYAL: B/GERSHO, ALLEN  PAA: A/{18BM Scientific
Center, Haifa, Israel): B/{(California, University, Santa
8arbara) 1EEE, Proceedings {1ISSN 0018-9219), vol. 78,
Oct. 1990, p. 1620-1628. Research supported by the
Weizmann Foundatfion for Scientific Research, University of
California, Bell C ications R ch, Inc.. et al.
Neural-network architectures which may offer a valuable
alternative to the Bayesian classifier are described. In
networks, the a posteriori probabilfties are computed with
no a priori assumptions about the probability distribution
functions that generate the data; the neura} classifter
uses a general type of input-output mapping which is
designed to optimally comply with a given training set. It
i{s shown that the a posteriori class probabiiities can be
efficiently computed by a deterministic feedforward
network which is called the'Boltzmann perceptron
ciassifier (BPC). Maximum a posteriori classifiers are
aiso constructed as a special case of the BPC. Structural
relationships between the BPC and a conven.ional
multilayer perceptron are given, and it §s demonstrated
that rather intricate boundaries between classes can be
formed even with a relatively modest number of netwoik
units. Simulation rasults show that the BPC is comparable
in performance to a Bayesian classifier. 90/ 10/00
91A14883

UTTL: Nesrest nefghbor pattern classification perceptrc.as
A/MURPHY, OWEN U PAA: A/(Vermont, University,
8Burlington) 1€€EE. Proceeaings (ISSN 0018-9219).
Oct. 1990, p. 1595-1598.

A three-layer perceptron that uses the nearaest-neighbor
pattern-classification rule s presented., Thts neural
network ts of interest because it is designed specifically
for the sat of training patterns, and incorpcrating of the
training of the network into the design eliminates the
need for the use of training algorithms. The technique
therefore provides an alternative to the limitations and
unpredictability (such as having too many. too few, or
inappropriate training patterns) of the known training
techniques. Since the nearest-neighbor classification rule
is used, the network is capable of forming arbitrarily
complex decision regions. The design and training of the
network can be conmpleted in polynomial time, whereas it
has been shown that training a neural network s an
NP-complete problem.  390/10/00 91A 14880

vol., 78,

UTTL: Backpropagation through time - What ft does ard how
to do it

A/WERBOS. PAUL J. PAA  A/(NSF, washington, DC) 1EEE,
Proceedings (1SS5N 0018-8219), vol. 78, Oct. 1990, p.
1550~ $560.
Backpropagation, which is a simple method now being widely
used in areas like pattern recognition and fauit
diagnosis, is reviewed The basic equations for
backpropagation through time, and applications to areas
1ike pattern recognition involving dynamir eyzta~z,

cystems identification. ang coxtrol, are discussad

Further extensions of this method, to deal with Systems
other than nsursl networks, systems involving simultaneous
equations, Or true recurrent networks, and other practicatl
18su@s arising with the method are described. Pseudocode
1s provided to clarify the algorithms. The chain rule for
orderaed derivatives (the theorem which underiies
backpropagatton) i3 briefly discussed. The focus fs on
designing a simpiar version of backpropagation which can
oe transiated INTO computer cote and applied directiy by
neural~nutwork users,  90/10/00 91A14874

UTTL: 30 years of adaptive neural networks - Perceptron,
Magaline, and backpropagation

A/WIDROW, BERNARD; B/LEHR, MICHAEL A. PAA. B/(Stanford
University, CA) CORP: Stanford Univ., CA. 1EEE,
Procesdings (ISEN 0018-9219), vol. 78, Sept. 1990, p.
1415-1442, Research sponsored by S$O010 and Lockhead
Missiles and Space Co.. Inc.

Fundamental developments in feadforward ar*ificial neural
networks from the past thirty years are reviswed. The
history, origination, operating charactaristics, and basic
theory of several supervised neursl-network training

algor thms (fncluding the perceptron rule, the
jeast-mean-square algorithm, three Madaline ruies, and the
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backpropagation technique) are described, The Toncept
underlying these iterative adaptatfon atgorithms is the
minimal disturbance principte, which suggests that during
training it {8 advisable to, tnject new .information into a
network in a manner that disturbs stored information to
the smailest extent possihia. The two*principal kinds of
online rules that have developed for altering the weights
of a network are examined for both single-threshoid
elements anc multielement networks. They are
.rror-corrcctldﬁ rules; which alier the woights of a
network to correct error in the output response to the
-present input pattern, and gradient rules, which alter the
weights-of a network during:each pattern presentation by
gradient descent with the objective of reducing
mean-square error_ (averaged over al}l training patterns)
90/09/00 91A14870

UTTL. Expert sSystems and advanced- automation for space
missions.operations . . .
A/DURRANI, SAUJUAD H.: B/PERKINS, DOROTHY C : C/CARLTON,
P. DOUGLAS  PAA: A/(NASA, Office of Space Operattons,
washington, DC): B/(NASA, Goddard Space Flight Center,
Graenbelt, MD): ¢C/(Computer Sciences Corp., Laurel, MD)
CORP: National Asronautics and Space Administration,
washington, DC.; “National Aeronautics and.Space
Administration. Goddard Space Flight Center, Greenbelt.
MD:; Computer Sciences Corp., Laurel, MD. IAF,
Ihternational Astronautical Congress, 4ist, Dresden,
fedsral Republic of Germany, Oct. 6-12, 1990. 8 p.
increased conplextity of space-missions.during the 1980s
jed to the tntroduction 'of expert systems and advanced
automatson techniques in missfon operations. This paper
describes several technojogtes in operational use or under
developncnt at the National Aeronautics and-Space
Administration’s Goddard Space Flight Center. Several
expart systems are described that diagnose faults, analyze
spacecraft oparations and onboard subsystem performance
(in-conjunction with neural networks), and perform data
quality and oata accounting functions. The design of
customized user intarfaces is discussed, with examples of
thair applicn(fon to space missions. Displays, which allow
mission operators to see the spacecraft position,
orientation, and configuration under a varisty of
operating cenditions, are described. Automated systems for
schedul ing ar& discussed; and & testbed that allows tests
and demonstrations of the associated architectures,
tnterface protocols, and operations concepts is described.
tLessons learned are summarized

IAF PAPER 90-405  90/10/00 91A14013

UTTL: Ildentificatiion of aerospace acoustic sources using
sparse distributed associative memory

A/SCOTT. E. A ; B/FULLER. C, R.; C/O’8RIEN, W. F. PAA:
¢/{(virginia Polytechnic Institute and State University,
Blacksburg) CORP- Virginia Polytechnic Inst. and State
univ., Blacksburg. AIAA, Aeroacoustics Conference, 13th,
Tallahassee, FL, Oct 22-24, 1980. 12 p.

A pattern recognition system has been developed to
ciassify five diffarent aerospace acoustic sources. In
this paper the performance of two new classifiers, an
associative memory classifier and a neural network
classifier, is compared to the performance of a previously
designed system. Sources are classified using features
calculated from the time and frequency domain. Each
classifier undergoes a training pericd where it learns to
classify sources correctly based on a set of known
sources, After training the classifier is tested with
unknown sources. Results show that over 96 percent of
sources were identifted correctiy with the new associative
memory classifier. The neural network classifier
identified over 8t percent of the sources correctly.

ATAA PAPER 90-3992 90/ 10/00 91A 12508

UTTL Modified backpropagation algorithm for fast learning
in neural networks
A/REYNERI, L. M., B/FILIPPI, E. PAA: B/(Torino,
Politecnico, Turin, Italy) Electronics Letters (ISSN
0013-5194), vol. 26, Sept, 13, 1990, p. 1564-1566.

A fast learning rule for artificial neural systems which
is based on modifications to a backpropagation algorithm
ts described. The rule minimizes the error function along
the direction of the gradient and baclipripeyates the error
pattern accoraing to a constant orror energy approach.
90/09/13  91A12410

UTTL- Application of adjoint operators to neural learning
A/BARMEN, J., B/TOOMARIAN. N.; C/GULATI, S, PAA:
A/(1PL; California Institute of Technology, Pasacena);
C/(JPL, Pasadena, CA) CORP: Jet Propulsion Lab,,
California Inst of Tech.. Pasadena : Caltforniz Inst. of
Tech., Pasadena. App!ied Mathematics Letters (ISSN
0893-9659), vol. 3, no. 3, 1990. p. 13-18. Research
supported by DOD and DOE.

A technique for the efficient analytical computation of
such parameters of the neural architecture ss synaptic
weights and neural gain is presented as a single solution
of & set of adjoint equations. The learning model
discussed concentrates on the adiabat{c approximation
only. A problem of interest is represented by a system of
N coupled equations, and then adjoint operators are
introduced. A neura) network ts formalized as an adaptive
dynamica) system whose tempora) evolution is governed b+ &
set Of coupled nonltinear differenttal squations. An
approach based on the minimization of & constrained
neuromorphic energyl ike tunction is appiied, and the
complete learning dynamics are obtained as s result of the
calculations. 90/00/00  90AS50026
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UTTL: Integration of- paca\lol {mage.processing with
symbolic and-heural computations--for tmagery exploitation
A/ROMAN, EVELYN  PAA: A/(Optica) Systems and Equipment,
Lexington, MA): -IN: Atfborne reéconnatssance XIII;
Proceedings.of - the:Mesting: San Diego. CA, Aug. 7-9. 1989
(AS0~48601 22-06) “Bellingham; WA, Society-of
Photo-Optical Instrumentation. Engtinesrs, 1989, p. 72-83.
work conblntng para!’ol. symbotic, -and:neurail-
mothodologiu: 8t different stagos of procosslng for
imng-ry exploltation are d!scussed. toqotnor with a
prototype system-combinifg real-time parallel image
processing on an 8-stage paraliel image-processing engine
(PIPE) computer with expert aystem sofiware, A sumnary of
basic ‘neufal ‘concepts is given; and:the commonallty
betweeh neural nets and related mathematics; artificial
intelligence, and traditional image processing concepts is
shown. This provides numerous choices for the
Qmplementat!on of constra!nt satisfaction,
transformational invarfance, inferance and
representational mechanisms, and software lifecycle
engineering methodologtes in the different computational
layers. 89/00/00 90A48609

UTTL® Neural net classifiar for millimeter wave radar
A/BROWN, JOE R.: B/ARCHER; SUE: C/BOWER, MARK R, PAA;
C/(Martin Marietta Electronic Systems. Orlando, FL) IN.
Real-time signal processing XI11; Proceedings of the
Meeting, San Diego. CA, Aug. 10, 11, 1989 (AQ0-48408
22-32). Bellingham, WA, Society of Photo~09ttca!
Instrumentatton Engineers, 1989, p. 7176,

This paper describes the devalopmnnt of a neurat nat
classifier for use in an automatic target recognition
(ATR) system using millimeter wavae (MMW) radar data, Two
distinctive neural net classifiers were .developed using
mapping models (backpropagstion and counterpropagation)
and compared to a quadratic {Bayesian-l1ike) classifier. A
statistical feature set and a radar data set was used for
both training and testing all three classifier systems.
This statistical feature set {s often used to test MMW
ARTs prior to using actual data. Results are presented and
indicate that the backpropagation net performed at near
100 percent accuracy for the statistical feature set and
stightly outperformed the counterpropagation model in this
appiication. Both networks hold promising results using
real radar data. 89/00/00  S0A48413

UTTL: Application of neural! networks to automatic controil
A/GOLOENTHAL ., WILLIAM; B/FARRELL, JAY PAA B/(Chariles
Stark Oraper Laboratory, Inc., Cambridge. MA) IN. ATAA
Guidance, Navigation and Control Conference, Portland, OR,
Aug 20-22, 1990, Technical Papers. Part 2 (A90-47576
21-08). washington, DC. American Institute of Aeronautics
and Astronautics, 1990, p. 13108-1112,

The design of a robust control system for venhicles with
nighly nonlinear, time-varying, or poorly-modeled dynamics
poses serious difficulities for all currently advocated
dgesign methodologies These difficulties arfse in the
design of current aerospace and underwater vehiclies and
are crucial for proposed autonomous vehicies., In the
present paper the use of neural networks in adaptive
control loops is proposed, based on the fact that
feedforward neural networks with at least one hidden layer
have been uhown to be dense (under suitable assumpttions)
on the set of continuous functions. Thus, by the use of a
suitable adaptive learning algorithm, the interconnection
weights of the network could be selected so that the
network approximates the desired nonlinear control law to
any specified accuracy. An extension of the
backpropagation algorithm is presented which adaptively
determines the {nterconnection parameters necessary for
the neural network to function as a closed-loop controller
and to force the closed-1oop system to match a desired
reference response. An example of the app)ication of this
algorithm to the control of the cart pole system is
ncluded.

ATAA PAPER 90-3438

90/00/00 20447691

UTTL Agvanced architecture for domesttc and giobal
aviation systems

A/KORGEL, CLAYTON C. PAA: A/{Martin Marietta Information
Systems Group. Bethesda, MO) 1 Ragdio Teziwncar
Commission for Aeronautics., Annual Assembly and Technical
Symposium, Washington, DC, Dec. 4-6, 1989, Proceedings
{A90-46390 21-04). Washington, DC, Radioc Technica}
Commission for Aeronautics, 1989, p. 197-209,

Candidate elements for the future aviation Systems are
outiined, and top-down as well as bottom-up system
architecture approaches sre examined, and it is noted that
automation and human factors will dominate the system
incluaing airspace and flight management Subsystems.
Communications systems, surveillance, and navigation and
landing are discussed. Since the systems under
consideration fnclude possible synergisms, redundancies,
and buck-up’ capabilities, possible options and trade-offs
are analyzed. Key technologfes for futurs aviation systems
such as the GPS/GLONASS integrated receiving set,

real-time axpert system/neuratl netwodrxs, antenna avionics,
interactive spocch and display processing. satellite
communication equipment, and microwave monoltthic
integrated Circuits are presented. 89/00/00 90A46398

UTTL. Neural network systems

A7GUYON, ISABELLE PAA- A/(AT&T Bell Laboratories,
Holmgel, NJ) IN: Internhational Symposium on Numer{ical
Mathods in Eng‘neering, 5th, Lausanne, Switzeriand, Sept.
11-15, 1989. Proceedings. Volume 1 (AS0-44401 20-31),
Southampton, England and New York/Berlin, Computstional

ABS:

AUTH: A/ROTH, MICHAEL -W.

ABS:

AUTH: A/BOONE, BRADLEV G.;
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AUTH, A/WERBOS, PAUL J.
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AUTH* A/EICHMANN, G.;

ABS:

AUTH: A/HEALY, MICHAEL J.

ABS:

T AR TS AT e

Meachanics Publ|catIonl/Spr!ngQr-Vnr\ng. 1989,. P 203-210.
In the last few years, devices lnlpir.d by the
architacture of “the braif have_become much moce powerful,
A 1ot -of effort. has- concentrated on networks using
very: rough models' of .neuron cells,{formal- neufons). The
ability of such systems to iearn from’ examples is a
particu!arly attractive. featy esearch is still in its
infahcy, - but it 18 oxpoct.d t . these.mode)s will be
useful both as mode) s :Gf “rea) brain-function-and as
Computational-devic for: many applications indluding
optimization; pattern rocognit\on._sptoch analysis, and
signal procaax'ng. Afchitectures. and the- Alloc|at.d
léarning algorithms that have been proposed are reviewed.
The notioh of generalization from the. training examples
are oxplnincd and vap{dus excmplls of prob\cm: and
:ppl!cations of practical interest that can Be handied by
neural networks are Ppresented. 89/00/00 90A44412

UTTL: Neural networks for automatic target recognition
PAA: A/(Johns Hopkins University,
Laurel, MD)  Johns HOpkins APL Technical. Digest (ISSN
0270~ 5214) vol, 11, Jan:-June 1990, p. 117-120. Research
supported by the Johns Hopkins University.

The use of neural networks and neurocomputers {s discussed
and_thefr applications for automatic target recognitfon
(ATR) are reviewed. A _framewdrk is presented illustrating
the application of noural natwork ‘technology -to the
solution of the ATR problom of rccogn!zing high-value
targets in noisy environments and discriminating them from
16w-value objscts and faise alarms. Neural network tools
which may be applied to ATR needs include collective
computation for fast optimatization, neurat network
learning algbrithns; neural network inspired feature
selection, and a neural netwark for higher vision. An
exampla of & bindcular sterso displacement map produced
using mode! images and preliminafy stefeo calculations on
the” Canact(on Machine at tha Naval Research Laboratory is
presanted and discussed. It is pointed out that neural
learning could facilitate the development of .both
automatic know\edga acquisttion and continuous system

fef inement, two jmportant ATR advances. 90/06/00
B0A44324

UTTL: New directions in misstle guidance - Signal
processing based on neural networks and fracta) modeling
B/CONSTANTIKES, KIM T.; C/FRY,
ROBERTY t. D/GILBERT, ALLEN S.; E/KULP, ROBERT L. PAA.
€/(Johns Hopkins Untversity, Laurel, MD) Johns Hopkins
APL Technical Digest (ISSN 0270- 521&), vol. 11, Jan.-Jdune
1990, p 28-38,

Projects tnvestigating the utility of signal processing
based on neural networks and fractal scene modeling are
discussed. New approaches to target recognition and
scene-matching development are examined with attention to
the performance and characteristics of image-based scene
matchers. A discussion on new models and representations
for missile guidance includes an investigation of neural
network learning models emphasizing the training phase and
the vartous alternatives to target representation. An
investigation of the recognition of range-proftile ship
signatures using a back-propagation neural net with
comparisons to baseline statistical ciassifiers is
described. Prospects for future work are discussed
including innovative approaches to target acquisition.
90/06/00  90A44318

UTTL. Neural networks for control and system
igentification

PAA: A/(NSF, washington, DC) IN.
1EEE Conference on Decisfon and Control, 28th, Tampa, FL,
Dec. 13-15, 1989, Proceedings. Volume 1 (A90-40776 18-63).
New York, Institute of Electrical and Electronics
€ngineers, 1989, p. 260-265.

A review IS presented of the field of neurocengineering as
a whole, highlighting the importance of neurocontrol and
neuroidentification. Then a description is gjven of the
five major architectures in use today in neurocontrol (in
robotics, in particular) and a few areas for future
research, Also included are comments on
neuroidentification. 89/00/00 90A40788

UTTL: Obscured object recognition for an ATR application
8/UANKOWSKI, M.; C/BASU, S.;
D/STOUANCIC, M.; E/ROYTMAN, L. PAA: £/(City College,
New York) IN: Advsnces {n image compression and
automatic target recognition; Proceedings of the Meeting.
Ortando., FL. Mar, 30, 31, 1989 (AS0-39951 17-63).
Be11ingham, WA, Society of Photo-Optical Instrumentation
£nginears, 1989, p. 66-73.

& common and matnly unsolved problem in image processing
is occlusion, Occlusjon occurs when one or more objects
obstruct the sensor’s view. In this paper, three methods*
2 neurs} network., a superresolving non-parametric
predictor, and an Extended-Post Context-free Grammar
syntactic pattern recognizer are used to generate the
missing data. To tllustrate these mothods. their
application to the reconstruction of obscured Roman
characters are presented. 89/00/00 90A39958

UTTL: The elements of adaptive neural oxport systems

PAA: A/(Boo!ng Computer Services,
Seattie, WA)_ IN: Applications of artificial intelligence
vit ~9rocood'n9l of _the Meeting, Orilardo FL, Mar, 28-30,
1989, Part 2 (AS0-38876 17-63). 8etlingham, WA, Society of
Photo-Optical Instrumentation Engineers., 1989, p, 830-2337.
The generalization properties of & class of neural
architectures can be modeled mathemstically. The model is
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a parallel predicate calculus based on pattern recognition
and self-organization of long-teri memdry -in-a neural
network. It may provide the basis for adaptive expert A8S:
systems capable of inductive learning and rapid processing
;3 ;agégh\y complex and changing enviropment. 89/00/00
A 3 -

UTTL: Neural networks for self-learning control systems

AUTH: A/NGUYEN, DERRICK H:{ B/WIDROW, BERNARD. PAA:
B8/(Stanford University, CA) CORP: Stanford Univ., CA,
IEEE. Control~Systems-Magazine (ISSN 0272-1708), vol. 10,
Apftl1 1990, p.” 18-23; R arch supported by SD10, USAF,
Thomson-CSF, and Lockhead Missiles.and Space Co.., Inc.

ABS: It is shown how & neural Network can lsarn of its own
accord to control a nonlinear dynamic system. An smulstor,
L nultilay.rgd neural network, learns to identify the
system’s dynamic characteristics. The controller, another
multilaysred:-neural network, next learns to control the
emilator. Thes self- “trained controlier is:then used to
control the actual: dynanic systen. The’ lo-rntng process
continues as-the emulator.and, controller improve and track
the physical process. An sxample is given to-illustrate
these iduas. The ’truck.backer-upper,’ a neural network
controllar that steers'a tratler truck while the fruck is
backing up t0 a loading dock, is demonstrated. The AUTH:
controller is able to guide the truck to the dock from
almost any initial position. The technique explored should
be applicable to a wide variety of nonlinear control
problems.  90/04/00  90A37571

UTTL: Survey of neural network technology for automatic ABS:
target recognition

AUTH: A/ROTH, MICHAEL W. PAA: A/(uvohns Hopklnt University,
Laurel, MO) 1EEE Transactions on Neural Networks (ISSN
1045-9227), vol. t, March 1990; p. 28-43;

ABS: A review is presentsd 6f ATR (sutomatic:target
recognition); and some of the highliights of nsural network
technology developments that have.the potential for making
a significant impact on ATR are discussed. In particutlar,
neural network technology developments in the areas of
collective computation, learning ajgorithms, expert
systems, and heurocomputer hardware could provide crucial
tools for developing improved algorithms and computational
hardware for ATR. The discussion covers-previous ATR
system efforts, ATR issues and needs, early vision and
collective computation, learning and adaptation for AIR,
feature extraction, higher vision and expert systems, and
neurocomputer hardware. 90/03/00  90A34467

AUTH:

UTTL: Identification and control of dynamical systems
using neural networks

AUTH: A/NARENDRA, KUMPATI S.:; B/PARTHASARATHY, KANNAN  PAA:
8/(yale University, New Haven, CT) 1€EE Transactions on
Neural Networks {(ISSN 1045-8227), vol 1, March 1990, p.
4-27. Research supported by Sandia Hational Laboratories.

ABS- It is demonstrated that neural networks can be used
effectively for the tdentification and control of ABS:
nonlinear dynamical systems. The emphasis is on models for
both tdentification and control. Static and dynamic
back-propagation methods for the adjustment of parameters
are discussed. In the models that are introduced,
muitilayer and recurrent networks are interconnected in
nove: ¢onfigurations, and hence there is A real need to
study them in a unified fashidn., Simulation results reveal
that the identification and adaptive control schemes
suggested are practically feasible. Basic concepts and
definitions are introduced throughout, and theoretica)
questions that have to be addressed ara also described,
90/03/00  90A34466

UTTL: Comparison of model based vision, statistical based,
and neural net based ATRs

AUTH: A/THEIS, TIMOTHY J.; B/AKERMAN, ALEXANDER, 11t PAA-
8/(1-MATH Associates, Inc., Oflando, fL) IN- NAECON 89;
Proceedings of the IEEE Nationa! _Asrospace and Electronics

Conference, Dayton, OH., May 22-26, 1983, Volume 4 AUTH.

(A90-30676 12-01). New York, lnsgituté of Electrical and
€lectronics Engineers, Inc., 1989, p. 1733-1738.

ABS: An effort is made to astablish a common ground upon which
a comparfison of model-based vision (MBV),
statistical-based, and neura)-net-based (NN) automatic
target recognizer (ATR) approaches can be performed, A
definitinn £or cach type of ATR as corpared to a generiz aRS:.
ATR is provided. Upon -these definitions, the differences,
purported risks, and benef {ts are described., It is found
that the comparison between statistical, M8V, and NN
approaches to ATR can only be mads at a very high system
level. The differences primarily desal with how the desired
targst is represented within the ATR. These representation
differences lead to other implementation differences,
which affect the performance flaxibility and technical
achievabil ity of @ach approach a5 it I8 faced with the
realities of new target types and engagement conditions.
It 1s noted that as sttempts are made to become more

specific, there are alvays attempts to indicate that a
particular technique does not belong exclusively to one
class of recognizers versus another. Indesd, s hybrid

approach of using models to train s statistica)-based RPT#:

classifisr is valid, but not clearly separable into one
class of recognizers, 89/00/00  90A30788

AUTH:
UTTL: _Intel)igent Missfon Adaptive Controtler (IMAC)
AUTH: A/GE!GER KEVIN: B/EDSON, BRUCE; C/MCCORD, JIM  PAA:
C/(USAF, Avionfcs Laboratory, Wright-Patterson AFB, OH) ABS:
IN: NAECON 89: Proceedings of the IEEE Nationsl Aerospace
and Electronics Confersnce, Dny!on. O, May 22-28, 1989.
volume 3 (A90-30676 $2-01). Néw York, Institute of

B-5

Electrical and Electronics Enginoors Inc., 1989, p.
1186-1192.
The Inte)ligent Mission-Adaptive Controller {IMAC)
research progran is investigating distributed-Al (DAl) and
adaptive neural system (ANS) technologies for applicatjon
{n_active elactronic-countermeasure -(ECM) resource
minagenent. The \hroat onvironmlnt for tactical and
‘strategic aircratt rnquirns the ECM system to handle
numerous fast~ r-ncting. sometimes agile systems which vary
in function from-acquisition to weapons guidance: IMAC is
an attempt to Capture and demonstrate the.important
concepts .of an ECM ‘resdurce manager. it deals with the
tradeoffs betweer ECM effectiveness, system costs, and

- ~term survivability. Preliminary results show
sheet- format for:acquiring
threat/threat- r-aponno information is superior to
decision-tree and fuzzy-cognitive-map formats:. Capturing
complex correlations "is found to be the key problem for
which a good knowlsdge-representation scheme is essential.
89/00/00 90A30765

UTTL: An-spplication of neura) net technology to
surveillance -information correlation and battle outcome
prediction

A/MALONEY, P. SUSIE_ PAA: A/(Lockheed Missites and Space
Co., Inc., Austin, TX) IN: NAECON 89: Proceedings of the
1EEE National Aerospace and El-ctrontcs Confarence,
Dayton; OH, May-22-26, 1989. Volume 2 (AS0-30676 12-0%).
New York, Institute of Electrical and Electronics
Engineers, Inc., 1989; p. 948-955. Research supported by
the Lockheed Missiles and Space Co., Inc.

The PNN -(probabitistic neural network) is a three-layer
feed-forward network tnat uses sums of Gaussian
distibutions to estimate the pdf for a training data set.
This tratned network can then be used to classify new data
sets and to provide a probabiiity associated with each
classification. The PNN has bsen applied successfully to
two separate ELINT emitter correlation problems
(hull-to-emitter and land-based emitter correlation}. Each
of these applications achieved & high degree of accuracy
in identifying the correct emitter among many possible
emitters, at an extremely fast rate (about 200,000 times
faster than a standard back-propagation neural network).
PNN also shows great potential for solving other
survetllance-analysis problems: an application to a
battie-outcome prediction problem {s described. 89/00/00
90A30749

UTTL: The Adaptive Network Cognitive Processor

A/EDSON, BRUCE: B/TURNER. CHERYL; C/MYERS, MICHAEL:
O/SIMPSON, PAT  PAA: A/(USAF, AvidOnics Laboratory,
wWright-Patterson AFB, OH);: C/(TRW MEAD Al Center, San
Diego, CA); O/(VERAC, Inc., San Diego, CA) IN AAAIC
‘88 - Asrospace Applications of Artificial Intel)igence:
Proceedings of the Fourth Annual Conference, Dayton, OH,
Oct. 25-27, 1988. Volume 1 (A30-30226 12-59). Xenia, OH,
Dayton SIGART, 1988, p. 133-143.

The Adaptive Network Cognitive Processor (ANCP) project is
an experiment in the use of adaptive network systems to
capture the cognitive processes used for deploying
electronic countermeasures by a fighter aircraft in an
electronic warfare threat environment. A functional
architecture was developed and initially implemented using
the Mark 1Il neurocomputer., The main capabilities of the
ANCP demonstrated were: internal modeling of the threat
environment (Field Interaction Net), adaptive flight route
planning (Gradient Descent), reflexive threat response
(Feed Forward Net) augmented with a reflective or expert
threat response (Fuzzy Cognitive Map) tn unfamiliar
situations (Confidence Fi{)ter), on-board recording of
unfamil tar situation/expert response for later retraining
(Back Error Propagation) as a reflexive response, and
initial training with & Learning Apprentice. 88/00/00
90A30231

UTTL. Optoslectronic implementations of neural networks
A/PSALTLS, DEMETRI: B/YAMAMURA, ALAN A.; C/LIN, STEVEN:
D/GU, XIANG-GUANG: E/HSU, KEN PAA: D/(California
Instituta of Technology, Pasadena): E/(Natifonal Chiao
Tung University, Hsinchu, Republic of China) IEEE
Communications Magazine (ISSN 0163-6804), vol. 27, Nov.
1989, p. 37-40, 71. Research supported by DARPA, USAF, and
U.S. Army.

The ability of optical systems to provide the massive
interconnections between processors required in most
neural network models, which constitutes their chief
advantage for such applications, ts discussed, focusing on
holography. BeLause of the sssential nonlinearity of the
holographic connec”ions, nonlinear processing elements are
nesded to perform complex computations. The use of GaAs
hybrid optoelectronic processing elements is examined.

GaAs is an excellent material for this purpose., since it
can be used to fabricats both fast slectronic circuits ang
optical sources and detectors. It is shown how & complete
hybrid neural computér can be implemented using available
technology developed for conventional computing. An
exparimentally demonstrated network in which optics plays
an even larger role is described.

AD-A217133  88/11/00  90A22506

UTTL: Information theory, complexity, and neural networks
A/ABU-MOSTAFA, YASER S. _PAA: A/(California Institute of
Technology, Pasadena) 1EEE Communications Magazine (ISSN
0163-6804), vol. 27, Nov. 1989, p. 25-28, 81.

Some of the matn results in.the mathematical evaluation of
neura)l networks as information processing systens are
discussed. The basic operation of feedback and
feed-forward neura! networks is described. Their memory
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capacity and computing power 'are 'consideted. The concept

of learning by example as it applies to neural networhs is

‘examined: 89/11/00° 90A22504°

-

urTL, Automatic target recognition on the connection
machine

A/BUCHANAN, J. ROBERT -PAA: A/(dohns Hopk ins University,
taurel, MD), Johns Hopkins APL Technical Digest (ISSN
0270-5214); vol. 10, July-Sept. 1989; p. 208-215.
Automatic target recognition (ATR) 1S a computationally
intensive problem that benefits from the abilities of the
cohnect ion Machine '(CM). a_massively parallel computer
used for data-level paraliel -computing.-The large
computatlonal resources -of the CM can eff!ciently handle
an approach to ATR that uses parallel stereo-matching and
neural-network algorithms, Such an approach shows promi{se
as an ATR -system of satisfactory performance: 89/09/00
90A 11938

UTTL: Applications of neural networks to avionics systems
A/SEIDMAN, ABRAHAM N. PAA: A/{Northrop Corp., Atrcraft
Div., Hawthorne, CA) AIAA Computers in Aerospace
Confarence, 7th, Monterey, CA, Oct. 3-5, 1989. 1t p

The application of neural networks is discussed as a
method of solution to a number of outstanding problems in
atrcraft avionics. The areas of application of artificial
naural networks to avionics dealt with are (1) target
selection ang (2) attack planning/steering. The target
selection is approached by the application of a
feed-forward, backpropagation network. The attack
planning/steering is approached by a new type of parallel
processing neural network.

AIAA PAPER 88-3093 89/10/00 90A10627

UTTL® A comparison of CMAC neural network and traditional
adaptive cdontrol systems

A/KRAFT L. GORDON; B/CAMPAGNA, DAVID P,
Hampshire, Universfity, Durham, NC) IN’

PAA  B/(New
1989 American

Control Conference, 8th, Pittsburgh, PA, June 21-23, 1789,

Proceadings. Volume t (A89-53951 24-63). New York,
Institute of Electrical and £lectronics Enginaers, i989,
p. 884-889.

A neural-network-based controller similar to the
cerebellar model arfthmetic computer (CMAC) method of
Miller et al. (1987) is compared to a self-tuning
regulator and a Lyapunov-based model! raference controtler
The three control algorithms are tested on exactly the
same control problems. Results are obtained when the
system being controlled is }inear and noise-free when
noise 18 added to the measurements, and when a non!inear
system {s controlled. Comparisons made with respect to
closed-loop system Stability, speed of adaptation, noise
refection, robustness, the number of required
calculations, and system tracking performance indicate
that the neural-network approach exhibits the potential
for soiving some of the problems that have plagued more
traditional adaptive control systems.  89/00/00
89453996

UTTL Adapttve pattern recognition and neural networks
A/PAD, YOH-HAN  PAA: A/(Case Western Reserve University,
Claveland., OH} Reading, MA, Addison-wesley Publishing
Co., Inc., 1989, 327 p.

The application of neural-network computers to
pattern-recognition tasks is discussed in an introduction
for advanced students. Chapters are devoted to the nature
of the pattern-recognition task, “the Bayasian approach to
the estimation of class membership, the fuzzy-set
approach, patterns with nonnumeric feature values,
learning discriminants and the generalized perceptron,
recognition and recall on the basis of partial cues,
associative memories, seif-organizing nets, the
functional~link net, fuzzy logic in the linking of
symboltc and subsymbolic processing, and adaptive pattarn
raecognition and its applications. Also included are
C-language programs for {1) & gensralized delta-rule net
for supervised learning and (2) unsupervised learning
based on the discovery of clustered structure. 89/00/00
89A51326

UTTL: Microwave diversity imaging and automatad target
identification based on modals of neural networks
A/FARHAT, NABIL H.  PAA: A/(Pennsyivania, University,
Philadeiphia) 1€EE, Proceedings (ISSN 0018-9219), vol.
77, May 1989, p. 670-681. Research supported by DARPA,
USAF, U.S5. Army, and NSF.

It is shown that coliective noniinear signal processing
based on models of naural networks combined with the use
of suitable target signatures, offers the promise of
robust superresolved target tdantification from partial
information. Results are presented of numerical
simulations using a neuromorphiC processor, where the
neural net performs simultanecusiy the functions of data
storage, processing and recognition. The resuits
demonstrate correct identification from:-as jow as 10
percent of a ful) sinogram representations derived from

real data collected in an anechoic chamber snvironment for

thres test targets (scale models of B-52, AWAC, and Space
Shuttle) and taught toc the network. Practical
considerattons and extensions to real systems are briefly
discussed. 89/05/00 89A45106

UTTL: A unified systoliC architecture for artifictal
neural networks
A/KUNG, S. Y.:

University, NJ):

B/HWANG, J. N:  PAA: A/(Princeton
8/(Southern Californis; University, Los

Aés:

AUTH:

ABS,

AUTH.

ABS.

AUTH:

ABS

AUTH.

ABS:

AUTH:

ABS:

Angeles, CA) _ Journal of Parsaliel and Distributed
comput!ng (ISSN 0743- 7315). vol. 6; April 1989, p

358-387: Research supported by SDIO. -

A.Prog mable ring systolic.arfay. is prasently developed
on- thnsblsls of.a generic fterative model encompassing
artificial neural networks; single 1ayer feadback
networks, multilayer feedforward nétworks, hierarchical
competitive networks, and evet: some probabil(sttc mode\s,
The-architecture thus obtained maximizes VLSL's advantages
in tarms:of intensive and pipclined computing., while
¢ircumventing the cofventional limitation on
communication: {t-is therefore, recommended, as a promising
structiral basis for a universal neurocomputer
architecture.  89/04/00. --89A41735

UTTL: Back propagation: fails t0 separate where perceptrons
sucCeed:

A/BRADY, MQRIIN L. B/RAGHAVAN; RAGHU; C/SLAWNY, JOSEPH
PAA: B/(Lockheed Cofpi., Palo Alto; CA): C/(Virginia
Polytechnic Institute and State University, Blacksburg)
1EEE” Transactions on Circuits and Systems (ISSN
0098-4084), votl. 36, May 1989, p. 665-674. Research
suppofted by, Lockhead-Corp: -

It s w1dnly,bnl|eved that the back propagation algorithm
in neural. networks, for -tasks such as pattern
classification, overcomes the limitations of the
perceptron. The authors construct several counterexampies
to this belief. They also construct linearly separable
examples which have & unique minfimum which fails to
separate two families of vectors, and a simple example
with four two-dimensiona) vectors in a single-layer
network showing iocal mintma with a. 1arge basin of
attraction. Thus, back propagation.is guaranteed to fail
fh the first example, and likely to fail in the second
example. It i{s shown that even multilayered (hidden-layer)
networks can also fail in this way to classify linearly
separable probiems. Since the authors’ . .examples are all
linearly sepafable, the perceptron-would correctly
classify them. The results disprove the presumption, made
in recent years, that, barring local minima, back
propagation will find the best set of weights for a given
problem. 89/05/00 890A41634

UTTL: Multitarget tracking with cubic energy optical
neural nets

A/BARNARD, ETIENNE: B/CASASENT, DAVID P. PAA
B/(Carnegie-Me\lon University, Pittsburgh, PA)
Optics {I1SSN 0003-6935), vol. 28, feb. 15,
791+-798. Research supported by SDIO.

A neural net processor and its optical realization are
described for a multitarget tracking appiication. A cubic
enargy function results and a new optical neural processor
is required. Initial simulation data are presented
89/02/15  £9A32825

Applied
1989, p.

UTTL. Supervised learhing of probability distributions by
neural netwdrks

A/BAUM, ERIC B,: B/WILC2EK, FRANK PAA, A/(Caltfornia
Institute of Technology. Jet Propulsion Laboratory,
Pasadena); 8/(Harvard University, Cambridge, MA}  CORP:
Jet Propulsion Lab , California Inst. of Tech., Pasadena.;
Harvard Univ., Cambridge, MA, IN. Neural information
processing systems: Proceedings of the First IEEE
Conference, Denver, CO, Nov. 8-12, 1987 (A89-29002 11-63).
New York, American Institute of Physics, 1988, p. 52-61
Research supported by DARPA,

Supervised learning algorithms for feedforward neural
networks are investigated analytically. The
back-propagation algorithm described by Werbos (1974),
parker (1985), and Rumelhart ot al. (1986) is generalized
by redefining the values of the fnput and output neurons
as probabiljties. The synaptic weights are then varied to
follow gradients in the logarithm of 1ikelihood rather
than n _the error. This modification is shown to provide a
mors rigorous theoretical basis for the algorithm and to
permit more ac.urate predictions. A typical application
involv'hg a medical-diagnosis expert system is discussed.
88/00/00  B9A29008

UTTL; Spaceplanes astronaut’s assocfate control server
A/HONG, ROBERT  PAA: A/(Grumman Aerospace Corp., Grumman
Afrcraft Systems Div., Bethpage, NY) IN' IEEE Conference
on Decision and.Control, 27th, Austin, TX, Dec. 7-9, 1988,
Procesdings. Volume 1 (ABB 2849§ 11-63). New York,
Institute of Electrical and Electronics Engineers, Inc ,
1988, p. $49-154,

The author addresses the extension of the DARPA/US Air
force Pilot’s Associate program to the astronaut’s
associate application, and particularly the control server
aspect. Some representative. techniques for implementing
this system are discussed. Artificial intelligence (AI)
and neural networks are applied synergtstccally to achieve
an optimum system. The author examines such issues as
adaptive atding. performance seeking control, qualitative
rulson!ng, naural networks gradient m-thodl for

connect fonist networks, and neural machihery for
spacecrsft control. 88/00/00  89A28508

UTTL: Autonomous reconf iguration of sensor systems using
neursl nets

A/SAKUEIW:C2Z, OLEG G.  PAA: A/(New York, State .
university, Bu!lalo) IN: -Sensor - fusion; Proceadings of
the Meeting, Orlando,AFL, Apr, 4% 6. 1988 (A89-269%51
10-63). Bcl!1ngham,> A ,SOct.ty of Photo-Optlcn!

r's, 1958.«9. 197
a1 NEtWOrks.to ononous agents
(intelligent robots operating i{n fsolated jocations) is
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discussed, and lrch!tocturo: for implementing
self-repairing sensdr and identification systems aboard
dutonomous agents ars proposed. The example of a
four-layer visual system which {dentifies visual objects
is considered-in which each processor connection is
assigned a'weight attribute. It is shown that when one of
the units becomes {noperativei- neighboring detectors in
that layer may be used to reprogram the weights connecting
surviving unfts_in order to: restore functionality,
88/00/00 89A26975

UTTL: Multisensor integration and fusion - Issues and
approaches

B/KAY, &3 HAEL G.  PAA: B/{North Carolina
State univor:lty. Raleign):  IN: Sensor fusion;
Proceoding: of the Meeting, Orlando, FL. Apr. 46,
(A89-26951710°63). Bellingham, WA, Society of
Photo-Optlcal Instrumentation Engineers, 1988, p. 42-49.
1ssues concerning thc effective integration of multiple
sensors into the operation of intelligent systems are
prasented, and a description of  some of the genera)
paradigns and methodologies that address this problem is
given, Multisensor integration, and the related notion of
multisensor fusion, are defined and distinguished. The
potential advantages and problems resulting from the
integration of information from multiple sensors are
discussed. 88/00/00 B9A26957

1988

UTTL: Sensor fusion; Proceedings of the Meeting, Orilando,
FL, Apr. 4-6, 1988

A/WEAVER, CHARLES B.  PAA: A/(Honeywsll, Inc..
Electro-Optics Div., Lexington., MA) Meet ing sponsored by
SPIE. Bellingnam, WA, Soctety of PHoto- Optical
Instrumentation Engineers (SPIE Proceedings. Valume 931),
1988, 218 p, For individual items see A83-28952 to
AB9-26975.

Papers are pressnted on multisensor target detectton and
classification, a geonetric approach to multisensor
fusion, and optimal and suboptimal distributed decision
fusion. Als0 considered are information fusion
methodology, theoretical approachol 10 data association
and fusion, and adaptive contro! of multisensor systems.
Other topics include target acquisttion and tracking in
the laser docking sensor, & neural network architecture
for evidence combination, an algorithm for sensor fusion,
ang the application of order statistic filters to
detection systems.

SPIE~-S3% 88/00/00  89A26951

UTTL. PSRI target recognition in range imagery using
neural networks

A/TROXEL, S. E.: B/ROGERS, S. K.:
D/MILLS, J. P. PAA: D/(USAF, Institute of Technology,
wright-Patterson AfB, OM) IN: Digital and opttical shape
reprasentation and pattern fecognition: Proceedings of the
Meeting, Orlando, FL, Apr. 4-6, 1988 (A89-23526 08-63).
Bellingham, wA, Society of Photo-Optical Instrumentation
Engineers, 1988, p. 295-301.

A method for classifying objects tnvarfant to position,
rotation, or scaje is presented. Objects to be classified
were multifunction )aser radar data of tanks and trucks at
various aspect angles. A segmented Doppler image was used
to mask the range image into candidate targets. Each
target vas then compared to stored tempiates representing
the different classes. A neural network was used to
perform the classiffcation with an accuracy near 100
percent. The neural network used in this study was a
muitilayer perceptron using a back propagation algorithm.
88/00/00  89A23556

C/KABRISKY, M.:

UTTL Neural-network techology and its applications
A/ROTH, MICHAEL W, PAA: A/(Johns Hopkins University,
Laurel, MO)  Johns Hopkins APL Technical Digest (ISSN
0270-5214), vol. 9, July-Sept. 1988, p. 242-253.

This paper discusses recent developments in neural-network
technology in the arsas of models, algorithms, and
special-purpose computational hardware Special attention
is given to the appltications of neural-network technology
in such areas as salutions of complex optimization
problems, communication modems, pattern recognition, and
enginaering problems in control systems. 88/09/00

B89A 18786

UTTL: Artificial neural network approaches to target
recognition

A/BOWMAN, CHRISTOPHER PAA. A/(Bal] Corp., Bal} Systems
Engineering Div., San Diego, CA) IN: ALAA/1EEE Digital
Avionics Systems Conference, Bth, San Jose, CA, Oct.
1720, 1988, Technical Pabors. Part 2 (A89-18051 05-06).
washington, DC, American Institute of Aoronauttcs and N
Astronautics, 1988, p. 847-857. .

Artificial Neural Network (ANN) technology is bolno
successfully applied to & variety of pattern recognition
problems, The ANN discovers festures itse)f based upon
user training. Trained ANN’s settia fast to good
sojutions, thereby providing cost affective_self-jearned
pattern fecognition. This paper describes what ANN‘s are
and how they are trained. A taxonomy is gtven along with
ANN dynamics snd training equations, ANN system
deveiopment methodology is sufmarized. An sppiication of
ANN‘S to sterso image matching ANN and multisensor target
recognition avionics is pressnted.

AIAA PAPER 88-4028 88/00/00 89A18179 -
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UTTL: Neursi-network implementation of-a scan-to-scan
correlation algorithm'

A/MCCURRY; MAX E. PAA: A/(U.S. Army, Advanced. Technology
Directérate, Huntsville, AL) IN: High spsed computing:
Procaedings of the Meeting, Los Angolct. CA, Jan. 114, 12,
1988 (A89-14451 03-63), Etl]inqhum. Socloty of
Photo-Optical ln:trumontat(on_Enginoort, 1988, p. 85-87.
This psper presents a neural-network spproach to the
problem of multtturgot tracking The problem is formilated
anaIyticA\|y in terms of desired optima and canstrasnts
that make it suitable for solution. us!ng -the

neurat network- formalism of Hopfie1d<Tank. The results of
computor simulations of & network designed to solve the
problem are presénted. 88/00/00 89A14460

=

uTTL: eralization of back- propagation to recurrent
neural networks

A/PINEDA; FERNANDO J. _PAA: A/(Johns Hopkins University,
Laurel, ‘MD)  Physical Review Letters (1SSN 0031-9007),
vol. 59; Nov. 9, 1987, p:-2229:2232:

An- adnpttvo neural network with asymmetric connections is
proposed that is related to the Hopffeld (1984) network
with grldod neurons. The prasent back- propanation
algorithm uses a recurrent gonorallzatson of the delta
rule of Rumelhart et al. (1986) t0 adaptively modify the
synaptic weights. The twork is architecturally simpler
than the master/slave petwork of Lapedes and Farber
(1986), and it vectorizés naturally-because the units are
homogenedus.  87/11/09  88A18289

UTTL: EAgineering cyberhetics -

A/GLORIOSO, R. M, PAA: A/{Massachusetts, University,
Amherst, Mass:) Englowood Cliffts; N.J., Prentice-Hall,
inc,. 1878. 270 p.

The prol.nt work examines tho corcopta of adaptation,
luarning. solf—organ!zut!on. self-repair; game playing by
machines, pattern recognition, and artificial
fntelligence, along with some applications 6f cybernetics
which have emerged so far, The discussion covers
fundamental computer organization and behavior, symbols
and decisfons in machines, informntion. jogic, automata,
and search techniques. Specific axamples of adaptive,
learning, and self-organizing systems as applied to
control and communications are provided. The principies of
redundant design, fault masking, and repafr for creating
retiable systems are discussed. Single and multilevel
threshold logic synthesis are outlined along with
descriptions of the Adalina (adaptive 1inear element),
Madaline (multiple adaptive 1inear element), and the
percaptron. Particular attention is devoted to pattern
recognition, where the various aspscts of the problem
fncluding systems for both optical and acoustical pattern
recognition, feature extraction, and pattern
classification are defined and arslyzed.
T6A 19444

75/00/00

UTTL: Experiments in image recognition with the aid of
expanding networks

A/GLADUN, V. P.; B/MAZAEVA, S. P.: C/SAVA, 1. G.
Problemy Bioniki, no. 6, 1971, p. 63-69. In Russian.

An image recognition learning algorf{thm i{s proposed for &
types of neural nets introduced by Gladun (1970) and called
the expanding type. According to this definftion, such
neural nets are progressively built by spare back-up
elements during the process of learning. The elements of
such nets are identified as active inputs, raceptors,
associative elements and recognizers, connected by
transmitting and forbidding couplings into a single body
Computer experiments are described to ijlustrate the work
of this learning aigorithm, 71/00/00  73A15794

UTTL: Memory-based reasoning for advanced taunch system
operations ~

A/MYLER, HARLEY R.; B/DUBOIS, DEAN A, CORP: Untversity
of Central Florida, Orlando. CSS: (Dept. of Computer
Engineering.) In its KSC-NASA/UCF Cooperative Agrasment
Research Projects 17 p (SEE N94-70698 09-61) 91/00/00
91N70701

UTTL. Cascading a systolic array and a fesdforward nasural
network for navigation and obstacle avoidance using
potential fields

A/PLUMER, EDWARD S. CORP: Stanford Univ., CA. €ss: (
Dept. of Electrical Engineering.)

A technique is developed for vehicle navigation and
control in the presence of obstacles. A potential function
was devised that peaks at the surface of obstacies and has
1ts minimum At the proper vehiclae destination, This
function is computed using a systolic array and is
guaranteed not to have tocal minima. A feedfoward neural
network is then used to control the steering of the
vehicle using local potential field fnformation. In this
case, the vehicle s a trailer tfuck bscking up. Previous
work has demonistrated the capability of a neurs! network
to control steering of such & trafler truck backing to &
loading platform, but without obstacles. Now, the neural
network was able to lesrn to navigste & trafler truck
sround obstacles while backing toward jts destination. The
network is tratned in an obstacie free space -to follow the
negative gradient of the field, after whiéh the network is
able to control snd navigate the truck to its target
destination in & spaCe of obstacles which may be
stationary -or movable.

NASA<CR- 177575 A-91066 NAS 1.26:177575

'91/02/00
91N19771

S B s S T e

B

ot

H
'

H

1

H

3

3

£

i

H

5

H

H

H

¥

3
z
3

2

:
E
=4

3

H
3
¥
i
3
H
3
3
%
ki

S
3
%
%
3
E
k4
3
3
:
Z
&
3
3
E
s
Z
Z
x
]

TR Jb PRRL A L SRR AN

b

R

LR




AEBRATEEE

hon P, adnon

RPT¥#- AD-A225408

astimation and control problems using as a model the
longitudinal motion of the A-4 afircraft. The purpose of
this thesis s to develop and demonstrate a neural Network
adsptive control structure consistent with adaptive

control theory _
89/12/00 91N13938

B-8
UTTL: Neural networks in nonlinesr aircraft controi UTTL: Target detection in Gaussian noise using artifictal
AUTH: A/LINSE, DENNIS J. CORP: Prifceton Univ.. NJ €8s ( Reural systens .
Dept. of Mechanfcal and.Aerospace Enginearing.) In NASA, AUTH: A/SDLKA JEFFREY L.: B/ROGERS, GEORGE _CORP: Navai
Langloy Rusearch Center. Joint University Program for Afr Surface warfare Center, Oahigren, VA. €5S. (Strategic
Transportation Rasearch, 1889-1990 p 151-i61 (SEE . Systems Dapt.)
N91-19024 11:01) ABS: Radar signal procassing with muttilayared pefceptrons was
ABS: Recent research indicatas that art{ficial neural networks investigated. Networks with nc hidden layer and a single
offer interdsting learning or adaptive capabt|!t'es. The hidden layer were tested on tield coliected millimeter
current research focuses on the potential for application wave target returns that have been corrupted with
of neural networks in a.nonlfnear afrcraft control law. artificial Gaussian noise at a Signal to noise leve)l of 3
The current work has basan to detsrmine which networks are dB. Performance as a function of network architecture was
suitabla for such.an application and how they will fit characterized.
into a nontihear Contrd) law. 90/12/00  91N19037 RPTH. AD A223983 NSWC/TR-5u0-171  90/06/00  SON28770
UTTL- Neural networks as a controi methodotogy UTTL: Analog hardwéia for learning neural natworks =
A/MCCULLOUGH, CLAIRE L CORP. Alabsma Univ., Huntsville AUTH A/EBERHART, SILVIO P, PAA. A/{vet .Propulsion Lab., 3
CSS: (Dept., of f£leétrical and Computer Engineering.) in California Inst. of Tech., Pasadena.) _ CORP: Nationai e
Alabama Univ., Research Reports: 1990 NASA/ASEE Summer Aeronautics and Space Adminlstration. Pasadena Office, CA. 3
Faculty Fellowship Program 8 p (SEE N91:18967 10-99) 1 Jet Propulstion Lab., Calffornia Inst. of Tech..
while conventional computers must be. programmad ina . Pasadena. =
logical fashifon By a person who thoroughly understands the ABS. Tnhis is a recurrent or feedforward analog neural natwork 4
task to be performed, the motivation behind neural processor having a multi-leval neuron array a&nd a synaptic i
networks {s to develop machines which can train themselves matrix for storing wetighted analog values of synaptic %’
to perform tasks, using available information about connection strengths which is characterized by temporarily 3
desired system behavior and learning from experience. changing one connection strength at a time to determine Z
There are three goals of this fellowship program. (1) to its effect on system output raelative to the desired 3
evajuate various neural net methods and generate computer target. That connection strength {s then adjusted based oOn .
software to implement those deemed most promising on a the effect, whereby the processor {s taught the correct 3
personal computer equipped with Matlab; {g) to evaluate rasponse to training examples connection by connection, p
methods currently in the professional literature for RPT#. NASA-CASE-NPD-17664-1-CU NAS_ 1.71-NPO-17664-1-CU e
system contro! using neural nets to choose those most US-PATENT-APPL-SN-463720 83/12/28  90N27384 14
applicable to control of flexibie structures;: and (3) to :
apply the control strategies d¢hoson 10 (2) to a computer R %
Simulation of a test article, the Control Structures UTTL: OMS FDIR: Initial prototyping 3
Interaction Suitcase Demonstrator, which {s a portable AUTH. A/TAYLOR, ERIC W.; B8/HANSON, MATTHEW A CORP+ Forg g
system consisting of a small flexibie beam driven by a Aerospace and Communicat tons corp,, Sunnyvale, CA. In
torque motor and mounted on springs tuned to the first NASA, Lyndon B. Johnson Space Center. Third Annual
flexible mode of the beam. Results of @ach are discussed. workshop on Space Operations Automation and Robotics (SOAR
90/10/00  9IN18997 1989) p 545-549 (SEE N9O-25503 19-59) e
ABS: The Space Station Freadom Program ($SFP) Operations ]
Management System (OMS) will automate major management =
UTTL. Optimal control by neural networks functions which coordinate the operations of onboard £
A/BANKS, S. P : 8/MARRISON, R. F, CORP. Sheffield Univ systems, elements and payloads. The objectives of OMS are 3
(England). CSS. (Dept. of Control Engineering.) to improve safety, reliability and productivity while 3
A neural petwork for the implementation of a nonlinear reduding maintenance and operations cost, This will be 2
optimal controller is developed, based on an enargy accomp) ished by using advanced automation téchnigues to Es
minim{zation principle The theory is applicable to any automate much of the activaty currently performed by the =
nont fnear problem with a quadratic cost functional, £1ight crew and ground personnel, OMS requirements have =
although it would be easy to extend it to non quadratic been organized intc five task groups: (1) Planning. %
functionals, A simple example of a scalar, Vinear, Execution and Replanning: (2) Data Gathering, 3
Quadratic problem (s presented. Preprocessing and Storage, (3) Testing and Training, (4) ot
RR-399 £TN-91-98527 90/06/14  91N15797 Rasource Management: and (5) Caution and warning and fault é
. Management for onboard subsystems, The scope of ths Y
prototyping effort falls within the Fault Management E
UTTL Massively parallel network architectures for requirements group. The prototyping will be performed in 3
automatic recognition of visual speech signals two phases. Phase 1 is the development of an onboard 3
A/SEUNOWSKI, TERRENCE J.., B/GOLOSTEIN, MOISE  CORP communtcations network fault detection, isolation, andg z
Johns Hopkins Univ., Baltimore, MD, reconfiguratton (FDIR) system, Phase 2 wili incorporate =
This research sought to produce a massively parallel giobal FDIR for onboard systems. Research into the A
network architecture that could interpret speech signals applicability of expert systems. object-oriented g
from video recordings of human talkers. The project’s programming, fuzzy sets, neural networks and other 2
results are summarized (1) A corpus of video recordings advanced techniques will be conducted. Tha goals and E
from two human speakers was analyzed with image processing technical approach for this new SSFP research project are 3
techniques and used as the data for tnis study: (2) It was discussed here, 90/03/00  90N25562 2
denonstrated thut a feedforward natwork could be trained &
t0 categorize voweis from these talkers (The performance K
was comparable to that of the nearest neighbors techniques UTTL. A compartson of two neural network schemes for ks
and to trained humans on the sama data); (3) A novel navigation 5
approach was developed to sensory fusion by tratning a AUTH: A/MUNRO. PAUL  CORP Pittsburgh Univ , PA.,  C$S. (Dept.
network to transfor~m from facial images to short-time of Information Science, ) In NASA, Lyndon B. Johnson %
scectratl amplitude envelopes. This information can be used Space Center., Third Annual Workshop on Space Operations 3
to increase the signal to noise ratio and hence the Automation and Robotics (SOAR 1989) p 305-310 (SEE z
performance of acoustiC speech recognition systems in N90O-25503 19-59) N
noisy environments; and (4) The use was explorsa of ABS. Neural networks have been applied to +isks in several -
recurrent networks to perform the same mapping for areas of artificial intelligence, including vision, 3
continuous speech. Results demonstrate the feasibility of speech, and language Relatively little work has been done B
adding a visual speech recognition component to enhance in the area of problem solving. Two approaches to H
existing speech recognition systams, Such a combined path-finding are presented, both using neural network i
system could Je used in noisy environments, such as techniques Both techniques require a training period H
cockpits, where improved communication 1S needed. This Training under the back propagation (8PL) method was H
demonstration of presymbolic fusion of visual ang acoustic accomplished by presenting representations of current i
speech signals is consistent with the current position, goal position pairs as input and appropriate i
understanding of human speech perception, actions as output. The Hebbian/interactive activation :
AD-A226968 AFOSR-90-0943TR  90/00/00  91N14805 (HIA) method uses the Hebbian rule to associate points :
that are nearby. A path to a goal is found by activating a '
representation of the goal in the network and processing M
UTTL- Applications of neural networks to adaptive control until the current position is activated above some ¢
A/SCOTT, RUSSELL W., II  CORP: Naval Postgraduate School, thresho!d level. 8PL. using back-propagation learning, >
Monterey, CA. failed to tearn, axcept in a very trivial fashion, that fis
Tne amount of a priori knowledge reguired to design some equivalent to table lookup techniquas. HIA, performea much
modersn- control systems {s becoming prohibitive. Two better, and required storage of fewer weights. In drawing
current methods acuressing this probicm are robust a comparison, it is important to note that back
control, in which the control design 18 {nsensitive to propagation techniques depend critically upon the forms of
errors in system knowledge. and adaptive controil, In which representation used. and can be sensitive to parameters in
the control law s adjusted in response to a continually the simulations; hence the BPL technique may yet yield
updated mode) nf the system. This thesis examines the strong results, 90/03/00 9ON25536
application of paratlel distributed processing (neural
networks) to the problem of adaptive control. The
structure of neural networks is introduced, focusing on UTTL: A comparison of two neural network schemes for
the Backpropagation paraaigm A general form of controller navigation
consistent with use in neural networks is developed ana AUTH: A/MUNRO, PAUL W, CORP: Pittsburgh Univ.,-PA. CSS:
combined with a discussion of 1inear teast squares Dept. of Information Science.) In Texas ASM Univ.,
parameter estimation teshniques to suggest a structure for NASA/ASEE Summer Faculty Fellowship Program-1989, Volume 2
neural network adaptive. controlliers, This neural network 10 p (SEE N90-24985 18-80)
adaptive control structure is then applied to a number of ABS: Neural networks have.been applied to tasks in several

areas of artificial intellfgence, (nc!uding viston,
speech, and janguage: Rclativ.!y Tittle work has been done
in the area of problem s6lving: Two annroacnns to
path:finding are presented, ‘both using neupal network
techniques. Both techniGues require a_training period.
Training under the back propagstion (BPL) method was
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actompl ished by presenting tepresentations of (current
pos!tion goa) position) pairs-as input and appropriate
actions as output The Hobbi.n/inturactlvo activation
(HIA)-method uses the Hebbian rule to associate points
tnat arc nnlrby. A path to ' goal” {s founhd By activating a

threshold lavel. BPL using back propn
fai\ud to learn, except in a:very trivial fashion, that {s
lent to tlb\c 1ookup techniques. HIA, purformcd nuch
better, -and roqu!rod storage of-fewer waights. In drawing
a_comparison, it is’ iWportant- 10 note that- pack
proplgatlon tochnlquol depend crtticuily upon the forms of
rcpron.ntation used, and can be sensitive to parameters in
the simulations; hence_the BPL’ ' technique ™ moy yet yield
StFONG Fasults! 89/12100 90N24991

UTTL: Neufomorphic optical sighal’ processing and image
understanding for automated_target recognition

CORP: Pennsylvania Univ.,
Philadelphia.

The goal of research is study of computation and learning
in neural net models and demonstration of thetir uttlity in
image understanding and neuromofphic tntoriat ton
processing systems for remote sensing and target
identification. The approach to aghieving this goal has
two facets. One is combining innovative architectures and
methodologies with suitable algorithms to axploit existing
and emerging photonic tachnology in the jmplementation of
large-scale nourocomputors for use ‘{n: tho study of
complex self-organizing and Ioarnlag syst-mu* fast
solution of optimization problens, fuaturo extraction,
{formation of _object roprosont.tion). and pattorn
recognition. The second facet of the approach is to
denmonstrate and assess’ the capabiiities of nouromorphlc
processlng in solution of selected invors.-scattohtng and
recognition problems, The probiem studied as a test bed
for the work 18 that of automated radar target recognition
because of the existing capabilities and expertise in this
89/12/00

area. -
AD-A219827 EO/MO-89-1 A0N23884

UTTL: Neura) networks in support of manned space
A/WERBOS, F UL u. CORP: Natfonal Science Foundation,
washington, JC. In Jet Propulsion Lab., California Inst.
of Tech., Proceedings of the 3rd Annual Conference on
Aorospaca Computational Control, Volume 2 p 916 {SEE
N90-23040 16-61)

Many lobbyists in Washington have argued that artificial
intelligence (Al) is an alternative to manned space
activity In actuality, this is the opposite of the truth,
especially as regards artificial neural networks (ANNs),
that form of Al which has the greatest hope of mimicking
human abilities in learning, abflity to interface with
sensors and actuators, flexibility and balanced judgement.
ANNs and their relatfon to expert systems (the more
tradttional form of Al), and the limitations of both
technologies are briefly reviewed, A Few highlights of
recent work on ANNs, fncluding an NSF-sponsored workshop
on ANNs for control applications are gtiven. Current
thinking on ANNS for use in certain key arsas (the
National Aerospace Plane, teleopsration, the control of
jarge structuras, fault diagnostics, and docking) which
may be crucial to the long term future of man tn space s
discussed, 89/17/15  90ON23088

UTTL: ALVINN. An Autonomous Land Vehiclie In a Neural
Nettwors

A/POMERLEAU, DEAN A, CORP: Carnegie-Mellion univ.,
Pittsburgh, PA.: Pittsburgh Univ., PA. CSS: (Artificial
Intelligence and Psychology Project,) Presented _at the
1EEE Conferance on Neural Information Processing Systems
Natural and Synthetic, Denver, CO, Nov. 1988

ALVINN (Autonomous tand Vehicie In a Neural Network) is an
3 layer back propagation network designed for the task of
road following. Currently ALVINN takes images from a
camera and a laser range finder as {nput and produces as
cutput the direction the vehicle should travel in order to
follow the road. Training was conducted using simulated
road images. Successful tests on the Carnegie Mellon
autonomous navigation test vehicle {ndicats that the
network cafn follow reai roads under certain field
conditions. The representation developed to perform the
task differs greatly when the ni twork is trained under
various ccnditions. suggost1n9 the possibility of a nove)
adaptive autonomous navigatﬂon systen capable of tailoring
its processing to the conditions at hand.

AD-A218975 AlP-77 89/01/00 SON22797

UTTL: A real timc neural nat estimator of fatigue 1ife
A/TROUDET, T. B/MERRILL, W. PAA. A/{Sverdrup
Technology. lnc., Cleveland, OH.) CORP: National
Aeronautics and Space Admlnlstratlon Lewis Research
Center, Cleveland, OH. Presented at the International
Joint Conferefice on Neural Notworks, San Dfogo. CA, 17-21
Jun, 1990; cosponsored by IEEE and INNS

A neural net architecture is proposed to eéstimate. in
real-time, the fatigue iife of mechanical conponcnts, as
part of the Intcll(gont Control System for Reusable Rocket
Engines. Arbltrary component loading values were used as
input to tre‘n a two ridden-layer fo.dforwlrd neural net
[ tstsuatc component fatigue dam .
net to learn, based on a locs) strath 8
mapplng between 1oad soquoncn and !utigu damage has been
demonstrated fof & uniaxfal spocfmon. Because of its
demonstrated performance, the neural computat!on may be
axtended to complex cases where the '10ads are biaxisl or
triaxial, and the geometry of the component s complex

B-9

(®.g:, turbopump blades): The generality of the approach
-{s ‘'such that load/damape meppings can be-directly
extracted from experimsntal data without roqu!r!ng any
knowledge of the stress/strain profile of : the component.
In addttion, the parallel network architecturs allows
Feal-time 1ife calculations avan fOr high frsquency
‘vibrations. Owing to, its distributed nature, the neural
inplementation will be robust: reliable, snabling its
use in hostile environments su rock ngines. This
nelral net estimator of fatigu ife (s sesn -as the
enabl ing ' technology to achieve component 1ife ‘prognosis,
and -therefore would be an !nportlnt part” of - 1ife extending
. contrg) for reusable rocket engine
RPTH: NASA~TM-103117 E-8217 NAS 1. 15; 103117
SON21864 -

90/00/00

UTTL: Neural networks for aircraft control

AUTH: A/LINSE, DENNIS CORP: Princeton Univ., NJ.  CSS: (Dept.
of Mechaniéal and Aerospace Engineering.) In NASA,
tangliey Research Center, voint University Program for Afr
Transportation Research, 1988-1989 p 167-181 (SEE
N90-20921 14-01)

ABS: Current -fesearch in Artifictia) Neura) Networks indicates
that networks offer some' potantial advantages in
adaptetion and fault tolerance: -This research is directed
at determining the poss‘bl: .ppiicability of neura}
networks to aircraft control. The first: application will
be to afrcéraft trim. Neural network node characteristics,
network_topology and oporntion. neural network learning

-and exampie histories uslng neighboring optima)l control
with & neural net are discussed, 90/03/00 90N20937

UTTL: Computation and control with neural nets

AUTH: A/CORNELTUSEN, A.: B/TERDAL, P.; C/KNIGHT, T.;
O/SPENCER, J. CORP: Stanford Linear Acc.l.rltor Canter,
CA. Presented at the_ International Confersnce on
Accelerator and Large Experimental Physics Control
Systems, Vancouver, 8ritish Columbta, 30 Oct. - 3 Nov,
1989

ABS. As energies have increasad exponantially with time so have
the size and complexity of -accelerators and control
systems. Neural nets (NN) may offer the kinds of
tmprovements {n computation-and control that are neeted to
maintain acceptable functionality, For control their
assaciative characteristics could provide signal
conversion or data translation. Secause they can do any
computation such as least squares, they can close fesdback
1ocops autonomously to provide intelligent control at the
point of actfoh rather than at a centra) location that
requires transfers, conversions, hand-shaking and other
costly repetitions )ike input protection. Both computation
and control can be integrated on a single chip, printed
circuit or an optical equivalent that is also inhesrently
faster through full parallel operation. For such reasons
one expects lower costs and better results, Such systems
could be optimized by integrating sensor and signal
processing functions. Distributed nets of such hardware
could communicate and provide global monitoring and
multiprocessing in various ways e¢.g,, via token, slotted
or paraliel rings (or Steiner trees) for compatibility
with existing systems, Problems and advantages of this
approach such as an optimal, real-time Turing machine are
discussed. Simple exampi#s are simulated and hardware
implemented using discrete elements.

RPT#; DE90-006460 SU-SLAC-PUB-5035 CONF-891094-14 89/10/00
SON189 11

UTTL: Neurobeamformer 2°' Further exploration of adaptive
beamforming via neural networks

AUTH: A/SPEIDEL, S. L. CORP: Naval Ocean Systems Center, S5an
Diego, CA.  CSS: (Analysis Branch.)

ABS. This paper discussed nsural network technology as a tool
for signal processing. Test results show that the adaptive
beamformer method, based on neural network technology,
performs the desired function of diracting a besm so as to
enhance a target signal and reject noise and interference.
Compar ing test output values with a matched-corrslation
output shows that the plotted crossbar circuit energy
minima follow the shape of an inverted match-filter
output. The neurobsamformer has certain advantages of
implementation and adaptability over other methods. In
concept, it is implementable in analog circuitry with no
contro! code required. Thus a compact, simple, low-cost
grocessor componont that {s not sensitive to array
grooming can be produced. A stratgntforuard adaptive
beamformer cannot match the interference-cancellation
performance of mre exotic methods, which include sidelobe
canceilers. So, 8 neurdprocessor, that will (nclude a
neurcbsamformer as a componant, will be built, This
neuroprocessor will provide for cancellation of sidelobes,
enhance sburce discrimination and angle-estimation through
interaction of beams. Plans for this extended network wers
influoncod by studies of the 1iterature in biological
sensory processing, both peripheral and central,

RPT#: AD=A215118 NOSC/TD-1606 89/06/00 9ON18226

UTTL: Knowledge-based imaging-sensor fusion system

AUTH. A/HESTRDM GEORGE CORPi Odetics, Inc:, Ansheim, CA, In
NASA,. Lang)ey Research Center, Visual Informntion
Processing for Television and To!orobotic: p 215-229 (SEE
N90- 16204 08-35)

ABS: An imaging system which applies_knowledge-based technology
to supervise and control both sensor nardwar d
computation in the imaging system is ‘described. It
includes the development of &n imaging system bSreadboard
which brings together into_one system work that we and
others have pursued for LaRC for al years. The goatl
is to combine Digital Signal Processing (DSP) with
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AUTH:
ABS:

RPT#:

AUTH-

ABS.

AUTH.

ABS.

RPT#

AUTH:

ABS.

RPTY;

Knowlcdgo-eascd Proconsinn and 3180 tncludo Neural Net
processing. The system {s.consider
Inmagine that there is a: nicrogravity, expefiment on-board
Space Stat(on Freedom with a high frame_rats, high

Al

resolution camer.
acquired .from ‘/laborltory n_Earth, In. fact, .only a smali
fraction of‘the-data will be rocclvod. Again‘ 1magine
boing rccpon:lbl. for some lxpcrimontl on Mars with the
Mars -Rover: the data rate is a faw k its per second for
dat- from-severs) sensors and (nstruments. .Would it not be
have.a shart lystum wh .Would have, some
huMAn knowl dge and yet “totlow, som snntructions and
attempt tO_nake the best use: of the limited bandwidth for
trlnnnisslon. The systqm concept curr.nt status of the
breadbdard systom and_soie redent oxporimcntc at the
Mars-1ike Amboy Lava Flelds in c.11forn|a are discussed.
89/11/00 20N16220

UTTL: Resl=-time support for high pcrrormanco aircraft
opefation

A/VIOAL, JACQUES u. CDRP Catifornia unfv., LOs Angeles.
€SS: (Dept. of Computer Science.)’

The foaslbil(ty of real-time processing schemes using
artificial neural networks (ANNs) is |nv¢stigated. A
rationale for digital neural nets is presentod and a
general processor architecture for control applications ts
f1lustrated. Research results on ANN structures for
real-time appllcat‘ons are given. Rosoarch results on ANN
algorithms for real-time control are also shown.
NASA-CR=-185475 NAS 1.26:185475 88/01/00 .90N10075

UTTL: Integration of perception and reasoning in fast
neural modules _ _

A/FRITZ, DAVID G. CORP: George wWashington Univ.,
Washington, DC.;_ Cognitive Information Systems Co.,
Silver Spring, M0, CSS: (Inst. for Artificial
Intelligence.) In NASA Goddafd Space Flight Center, Tne
1989 Goddard Conferance on Space Applitations of
Artificial Intelligence p 349-356 (SEE N89-26578 20-63)
Artifictal neural systams promise to intagrate Symbolic
and sub-svmbol ic processing to achieve real time control
of physical systems. Two potentia) altérnatives exist. In
one, neural nets can be used to front-end expert systoms.
The expert systems, in turn, are developed with varying
degrees of parallelism, including their implementation in
neural nets. In the other, rule-based rfeasoning and sensor
data can be integrated within & single hybrid neural
system, The hybrid system reacts as a unit to provide
decistons (problem solutions) based on tha simultaneous
evaluation of data and rules, Discussed here is a model
hybrid systéem based on the fuzzy cognitive map (FCM). The
operation of the model is illustrated with the contro} of
a hypothetical sateliite that intelligentiy alters tts
attitude in space in response to an intersecting
micrometeorite shower. 89/04/00  B89N26603

UTTL Emptirical analysis and refinement of expert system
knowledge bases
A/WELSS, SHOLOM M. B/KULIKOWSKI, CASIMIR A, CORP*
Rutgers - The State Univ,,_ New Brunswick, NJ. €ss: (
center for Expert Systems Research. )
Classification methods from statistical pattern
racognition, peural nets, and machina laarning were
appiied to four real-world data sets. Each of thesae data
sets has been previously anatyzed and reported in the
statistical., medical, or machine learning literature. The
data sets are characterized by statistical uncertainty;
there is no completely accurate solution to these
problems. Training and testing or resampling techniques
are used to estimate the true error rates of
classification methods, Oetailed attentfon is given to the
analysis of performance of the neural nets using back
propagation. For these problems, which have relatively few
hypotheses and featuras, the machine learning procedures
faor rule induction or tree induction clearly performed
best,
AD-A206226

89/02/28  89N24858

UTTL. Neuromorphic leurning of continuous-valued rappings
in the presence of noise: Appiication to rial-time
adaptive control :

A/TROUDET, TERRY; B/MERRILL, WALTER C, PAA: A/(Sverdrup
Technology., Inc., Cleveland, oM. ) CORP: Natfonal
Aeronautics and Spacde Administration. Lewis Research
Centar, Cleveland, OH. Presented at the Internattional
Confarence oh Neural Natworks, washington, 0C, 18+22 Jun,
1989; sponsored by the 1EEE

The ability of feed-forward neural net architectures to
Tearn continuous-valued mappings in the presnnct of noise

is demonstrated in relatfon to pafameéfer 1dShiification
and real-time adaptivc eantiol appllcations. factors and
paranators anlucncfng the Ioarning p ‘formance of such
nets in the presence of noise are ldcntlficd._rheir
effects are discuslod thfough a computor simulatian of the
Back- Error-Propagat!on algorithm by taking the example of
the cart-poles system controlled by a nonithesr control
law. Adoquatl sampling of the state space is found to be
essential for cancel!ng the offocgvof the statistical
f1uctustions and allowing tearning to take piace.
NASA-TM: 101939 E-4706 NAS 1.15.101999" 89/00/00

89N24856

utTTL qtfiod backward @rror propagation for tactical
target recognition

A/PIAZZA _CHARLES C. CORP Afr Force Inst,- of Tech,,
Vrﬁght-Pnttcrson AFB, OH. css’: (SEhool of Engineering.)

This thcsﬁs explores a new approach to the classification

RPTH:

AUTH:

ABS

AUTH;

ABS:

RPTA:

AUTH:

ABS:

AUTH:

RPTA:

b'ologicg! y-based neural
ated from
d imagery, and

of tactical

argots uslnq .

ognition, The neural
3 porcoptron lrchltoctur..
ump1oying a bnckvggg erfor propagation. i

The minimization technique used wa
Nowton‘l method: This:second order

CI ssific-tion uu! 3 both first, second crdcr
tachhniques was performed, with comparisons draun._
AD-A202666 AFIT/GE/ENG/BBD 36 89/12(00 89N2\844

uTTL Automatié voiée rocognitlon Lus1rp traditional and
artif(Gia). feura). network_ approaches

A/BOTROS, NAZEIM M. CORP Untversity of Southern
111inois, Cafbondala. ' C5S: (Dept. of Electrical
Engineering.) In NASA, Lyndon B, Jobnson Space Center,
‘National Aeronautics and Space Auministration

(NASA)/Amer icah_Society for Engiheering Education (ASEE)
Summer Faculty Fcl!owship Program 1983, volume t 13 p (SEE
N89- 20058 12- 99)

The, matn objoctlve of tnis r arch is 1o develop an
algaritnm for {solated-wo ognition, This research is
tocusad, on dinital si Aal an ysis Father than linguistic
Analysis of _speech, F lturcs exthaction, is carried out by
spplying a _Linear Predjctive Coding (LPC) algorithm with
ofder of 16. Contlnuou ord and speakar indopendent
recognition will be considered if future study after
accompllshing this ‘sdlated word h. TO examtne the
slmilarlty betwesn the. Frefsrance and the training sets,
two npproachos are explored. The tirst is implementing
traditional pattern recognition techniques where a dynamic
time warping algorithm is appiied to a)ign the two sets
and calculate the probability of matthing by measuring the
Euclidean distance between the two sets. The sacond is
$nplomonting & backpropagation artificial neura) net mode}
with three layers as the pattern classiffer. The
adaptation rule implemented in this network is the
generalized least mean square (LMS) rule: The first
approach has baen accompllshed. A vocabulary of 50 words
was selected and tested. The accuracy of the algorithm was
found to be around 85 percent. The second approach is in
progress at the present time. 89/02/00  89IN20064

UTTL: Simuiation tests of the optimization method of
Hopfield and Tank using neural networks

A/PAIELLY, RUSSELL A. CORP: National Aeronautics and
Space Admtnistration. Ames Research Center, Moffett Field,
CA.

The method proposed by Hopfield-and Tank for using the
Hopfiaeld neural network with continuous valued neurons to
solve the traveling saiesman problem ts tested by
simulation. Severa) raesearchers have apparently been
unable to successfully repeat the numerical simulation
documented by Hopfield and Tank, However, as suggested to
the author by Adams, it appears that the reason for those
difficulties is that a key parameter value is reported
erroneously (by four ordars of magnitude) in the original
paper When a reasonable value {s used for that parameter,
the network performs generally as claimed. Additionally. a
new methou of using feedback to control the tnput bias
currents to the amplifiers s prop d and st tully
tested. This sliminates the need to set the input currents
by trial and error.

NASA-TM- 101047 A-88275 NAS 1.15.101047
89N 14004

88/11/00

UTTL: Genetic algorithms for adaptive real-time contro! in
space systems

A/VANDERZ2IuUP, J.; B/CHOUDRY, A,
hunteville. €5S. (Center for_Applied Optics.)
Marshall Space Flight Center, Third Conferance on
Artificial Intelligence for Space Applications, Part 2 p
47-51 (SEE NBB<24188 17-61)

Genetic Algorithms that are used for learning as one way
to control the combinational explosfon associated with the
qonoratlon of new rules are discussed. 'The Genetic
Algor{thm approach tends to work best when it can be
applied to a domain independent knowledge representation.
Applications to real time control (n space systems are
discussed. 88/06/00 88N24195

CORP: Alabama Univ.
In NASA,

uTTL. Third canfarenc- on Artificial Inteliigence for
Space _Applications, part 2

A/DENTON, JUDITH §.; B/FREEMAN MICHAEL S.:
MARY  CORP: National Aeronautics ang Space
Administration. ‘Marshall Space’ Flight Center, Huntsville,
AL, Confefence held in Huntsville, Ala., _Nov. 1987;
Y lrshalt Spaco'Fl!ght,
Als. lnd Alabama Upiv., Runtsville —ANN:
t —artitictal

C/VEREEN,

6 N88-24189° thiough N88-24197.
NASA-CP-2492- PT -2 M~57G PT-2 NAS 1,55:24927PT-2 88/06/00
89N24188
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UTTL: Memory efficient-evaluations of noniinear stochastic

. B:11

ternary -Tijkl mask to establish the weighted

‘equations and C3 applications {ntefcofinactions of the net and electronic feedback based

A/CONNELL, UOHN €., JR.  CORP: Naval postgraduate School; -on closed -Yoop TV systems. The performence wag found to be
Monterey, CAT - - 1n apresment with that of computer simulation, even though
The Statistical Mechanical Neural Computer (SMNC) aberration<of lanses and the defects of the systan were
“deveioped in-this;thesis utilizes a Statistics)-Mechanical . present: These results confirm the practical suitability
Non1inear, A1gorithn "(SMNA) to.determine ‘the 1ong-time of the Opto-electronic approack to the neural net

probability distribution of highly nonlinear stochastic inplementation and pavé the way for the implementation of
systems, Theiuse, 5fthe SMNA and a noval mesoscopic larger networks. 87/00/00  88N18804

#caling -techniqué he1p Brovide ‘the SMNC Withithe =~ - [

capabtlittes Of rieural computers without the drawbacks of

huge connection matrices and their attendant computational
raquirements. 1A this thes{s, the SMNC is_in{tially used

UTTL; Téaching artificial neural systems to drive: Manual
trafning tichniques’ for autonomous systems

t6 verify the ability of the’ SMNA to-diuplicafe relatively . AUTH: A/SHEPANSKI, Ui F.i _B/MACY; S. A. ~ CORPI TRW, Inc.,
sifple, single variable path {htagral solutions to. . Redond. Beach, CA.  In NASA. Lyndon B. Johnson Space
nonlinear Fokker-Pianck equations. After the fundamental Center;. Houston, Texas: First Annual Workshop, on Space
algorithms are  validatad, the SMNC's abi}ity t0.sipulate a Operations Automstion and Robotics (SOAR 87) p 231-238
twosvariabis, fultice)iular problem-by modeling k-portions - - Y(SEE~N88%17206 09:58) .~

of the neocortex consisting of 100,000 neural units ig ABS: A methddology. was deveidped for manually training
discussed. There are many important spplications of the aUtonomous control systems based on ar+ificial neural

SMNC and its unique SMNA to C3 ‘systems: inCluding radary systems {ANS).: In:applications where tre rule set -
sonar and electronic s‘gnals processing; missile-guidance .governing .an expert‘s decisfons s difficult to formulate,
systems and an integrated battle management system. Such ANS can_be,used_to sxtfact rules by associating the

C3 systems will benefit from the SMNC’s potential to information an expert receives with the actions taken.
effictently filter large amounts of data, recognize Property constructed networks imitate rulas of behavior
patterns and anticipate, with some degree of uncertainty. that permits them to.function autonomously when they are
the future state of highly nonlinear stochastic systems. trained on the spanning set of possible s{tustions. This
AD-A189872  87/12/00 ° 88N22569 : training ¢an be’provided manually, efther under the dirsct
supervision of a system trainer, or indirectly using a_
background mode where the networks assimilates tratining

s ] d data a§ the expert performs its day-to-day tasks, To
reacognition using range imagery . demonstrate these mathods, an ANS network was tratined to
A/TROXEL, STEVEN E.  _CORP: Air Force Inst. of Tach., trive & vehidle through similated freeway traffic.
wright-Patterson AFB, 0H.  CS5: (School of Engineering.) 87/10/00  88N17238 T ) i

This thesis explores_a new approach to the recognition of

tactical targets using a multifunction laser radar sensor. .

Targets of interést were tanks, jeeps, and trucks. Doppler UTTL: NASA_ JSC neural netwofk survey results

{mages were segmentad and overiaided onto a relative range AUTH: A/GREENWOOD, DAN_  CORP. Netrologic, Inc., San Diego. CA.
tmage. The resultant shapes were then transformed into a In NASA. Lyndon 8. Johnson Space Center, Houston, Texas.
position, scale, and rotatton invariant (PSRIV feature First Annual Workshop on Space_Operations Automation and
space. The Classification processes used the correlation Robotics (SOAR 87) p 97110 (SEE N88-17206 09-59)

peak of the template PSR! space and the target PSRI space ABS: A survey of Artificial Neural Systems in support of NASA’S
as features. Two classification methods were implemented. (Johnson Space Center) Automatic Perception for Mission

a classical distance measurement approach and a new Planning and Flight Control Research Program was
biologically-based neural network multilayer perception conducted. Several of the world’s leading ressarchers
architacture. Both mathods demonstrated classification contributed papers containing their most recent resuits on
rates near 100 parcent with a true rotation invariance artificial neural systems. Thess papers were broken into
demonstrated up to 20 degrees. Neural networks wers shown categories and descriptive accounts of the resulits make up
to have a distinct advantage in & robust environment and a _large part of this report: A1so included is miterial on
when a figure Of mertt criteria was applied, A space sources of information on artificial neural systems such
domain correlation was developad using iocal normalization as Dooks, technical reports, software tools, etc,

and multistage processing to locate and classify targets 87/10/00 88N17220

tn high clutter and with partially occluded targets.

AD-A188828 AFIT/GEO/ENG/87D-3  87/12/00  8BN19772

UTTL: Position, scale, and rotation invariant target

UTTL" Models of the vestibular system and postural control

UTTL: Automated radar target recognition based on models AUTH: A/YOUNG, L. R.; B/WEISS, A. PAA. B/(Mass. Eye and Ear
of neural nets Infirmary) CORP* Massachusetts Inst. of Tech.,
A/MIYAHARA, SHUNJI CORP: Pennsylvania Univ,, Cambridge. In NASA. Ames Res. Center Technol, and the
Philadeiphia. Neurologically Handicapped p 151-168 (SEE N75-1997S

Two methods of target recognition are proposed: (1) the 11-54)

use of sinogram representations as learning set in ABS. Applications of control theory and systems analysis to the
associative memory, based on models of neural nets as problem of orfentation and posturse control are discussed,
clzssifier; and (2) use of polar zation repreasentation for with the possible long range goals of contributing to the

use {n neural net based associative memory as a development of hardware for rehabilitation of the
classifier. Using microwave scattering data of scaled handicapped. 74/00/00  75N19992

mode)l targets. the concepts for the target recognition

were demonstrated by computer simulation of a 1024 (32 by

32) element neura! net associative memory based on the

outer product modei, The simulations show that partial UTTL: The brain as a mode) for LSI

input, consisting of less than 10 percent of the total AUTH: A/ALBUS, J. S. CORP: National Asronautics and Space
information, can identify the targets. Two-dimenstonal Administration. Goddard Space Fiight Center, Gresnbelt,
optical implementations of a neural net of B8 by 8 binary MD. IN ITS SIGNIFICANT ACCOMPLISHMENTS IN SCI. AND
neurons were studied. fault tolerance and robustness wers TECHNOL. AT GODDARD SPACE FLIGHT CENTER 1970 P 292-294

examined, using 8 four-dimensional clipped outer product /SEE N71-25256 13-34/ 70/00/00  71N25326
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ARTIFICIAL NEURAL NETWORK APPROACHES IN.GUIDANCE
AND CONTROL
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i
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13. Key\rords/Descriptors

Guidance and control Neural nets

Flight control Data fusion .

Missile guidance Parallel processing :

Weapon delivery :
14, Abstract i

Ever increasing operational and technical requirements have led to highly integrated flight, :
guidance and control, and weapons delivery systems. The effective implementation of these ;]
functions makes the fusion and interpretation of sensor data and the multifunctional use of sensor
information inevitable.

Neural networks, consisting of parallel microcomputing elements, hold great promise for :
guidance, navigation and contr¢” plications because of their ability to learn and acquire
knowledge.

The Lecture Series will bring together a group of NATO nation speakers with outstanding
experience ir. this new area of technology. First they will review the fundamentals of neural
networks to serve as background so that advances in this new, rapidly evolving technological area
can be both understood and appreciated. They will then discuss a number of related applications
of direct benefit to the attendees.

This Lerture Series, sponsored by the Guidance and Control Panel of AGARD, has been
implemented by the Consultant and Exchange Programme.

‘!
-




e .

1S

. i

R R wrtey

. o
e S

s T~y
e veco ST T IR Mgt Ay s

. ———
A tea .

Old

*3[qeIASUT UONBULIOJUT JOSUIS
JO 95N [PUONOUNJOINW 9} PUE BIEP JOSUIS Jo uonelardiayur
pUE UOISTY Y} SIYEW SHONIUNY ISR JO uoneyuswajdun
sandoge 9y swasAs  Awanop  suodeom  pue
‘jonuod pue 3suepms sy parerdaur AySny 03 paf oAy

Old

*OQqRIADUT UORBULIOJUY JOSUAS
JO 95N [PUOROUNR[NUI Y} PUE BIEP J05U3s Jo uoneardiayut
pUe UOISNY oY} SOYRUW! SUONIULY 2SI Jo uonejusurajdust
oAnoape  ayf “swass {oarep  suodeam  pue
“qonuod pue sduepmd ydnj parexdaun g3y o1 pap ~

Surssaooid popfereg | syuowanmbas feorayds) pue feuonelado 3usealsur 19Ayg Buissavoid oqreseq | stuawarmbos [esiuyoal pue euonersdo Fusearour 19a 4
uolsny ere(y uolsy vie(y |
SjJouRINaN | SI19U [BINON
Kxaarpap vodeoy, | saged 81 K1oA119p uodeam sofed @81
souepm3 S[ISSIN 1661 Joquaidag paystqng souepmB SpIsSYN 1661 19quardag poystiqre,
[onuod 1431 | TOUINOD ANV FONVAIND NI lonuod 1y3ng TOWINOD ANV FIONVAIND NI
jonuo2 pue aduepIng SHHOVOAddV XHOMLAN TVANEAN TVIOLILLAV [o1u0) pue AdUBPID SHHOVOUddV HOMLIAN TVINAN TVIOLLLYV
OLVN “9uawdojoasg QLVN uswdopaasgg
pure yoreasasy soedso1ay 103 dnoin) A1ostapy pure yoreasay dsedsoroy 103 dnosc) KIosIApyY
6LI-ST-QYVDV 6L SILIS AT QYUVOV 6LI-ST-qQUVOV 6L1 SAURS ANRITAAVOV
Old Ol1ld
*3[qellAaUI UONBULIOJUT 10SUIS *9[qEIIA9UI UONBULIOJU} JOSUIS
JO 95N [RUONDUNJUIN 3} PUE L3P 105U3s Jo uonejadiayuy JO SN [RUOHOUNIDNWE Y} PUE BIEP JOSUIS JO uonejardioyu
plR UOISNY JY) SOYBW SUONOUNY 953y} Jo uoneruar -adun pue UoISny A} SIHBUI SUORSUNY 35 Jo uoneudwadun
2Andepe oYy swoisks  Kwoapp  suodeam  pue aanoaya oyl surdisAs Lroanpp  suodesm pue
‘fonuod pire souepind Qy3yy payerdaut A3y 03 paf ~ary ‘[onuos pue sduepind Y3y paresdaiur ASY 03 poaf aey
Suissasoid jaqereg | syuswarmbor eoruyod) pue [euonersdo Suisearduwr 10Ag Buissadord ojpesey | siuswaimba: eouysay pue reuogerado Butsearom soay
oISty BIB(] uoIsny elegy
S13U JRANDN] | 13U feiadry
K1aarjap uodeap, safed 81 Kxoanap uodeapy saded 81
3ouepIng afIssIy 1661 19quiaidag paysiiqnd aoueping apisst 1661 1oquadag paystiqng
100u03 3431,y TOULNOD ANV FONVAIND NI fonuod wBg TOWLNOD ANV FONVAIND NI
[onuon Sue adueping SHHOVOUddV RIOMLEN TVINEN TVIOLALLAY [onuod pue duUEpIng SHHOVOUddV JHOMLIAN TVIANAN TVIDILALYV
OLVN “wswdopaacy OILVN “uawdopaasq
: pue yo1easay adedsordy 10] dnoin) A10SIPY pue Y= 953y 2oedsor1ay 10 dnoin . L10SIApY
GLI-ST-QEAVOV 6L1 913§ AIMDIT QY IOV 6L1-ST-AQAVHOV 6.L1 SOUAS AT A VOY
e ?:f_ﬁ.ﬂ,aaﬂ.}é%x%,&;;ﬁx&.ﬁ;.rs B R g el e ey

Y PN EReT

N 4 e r.;mﬁ i
e e SRR Y,




6-5€90-$€8-76 NUSI

-awuresdoig sfueyoxyg pue ueynsuoy) s £q paruswaidun
U29q seY ‘qUVOV JO [oUred [ONUC)) puk duepIns) 3yl Aq parosuods ‘SoLIag 210109 ST,

*s90puUdNe Y1 0} 3Jauaq 30o1Ip Jo suonedidde pajerar Jo Joquinu
€ SSNOSIp uay [ Koy, ‘paterverdde pue pooisiapun yioq aq ued eare peddojouydsy
Sunjoae Apider ‘mou smp ur Ssouvape eyl OS PUNOISRORQ SB IAIIS O} SHIOMISU
[2INSU JO SRIUSWRPUN] S} MIIAI M 241 1511 ‘AS0[0Ud9) JO BaTe Mt SR il aousuddxe
Surpueisino Pim s1axeads uoneu QLVN Jo dnoid e soy3a80o) Suuq [m ssuag 2o oYL

, ‘98pomouy
anmboe pue ureaj 0} AfIqe 112t JO IsnEdq suonedidde jonuoo pue uonrdiaey ‘odouepm3
10} astwoxd 1218 pioy ‘siuswiagd Sunndwodsordu [sjered Jo Junsisuod ‘SHIOMISU fRINAN

6-6£90-5£8-76 NdSI

‘auwrurefoz g sdueyoxy pue Jurynsuo)) sy} Aq pajuswodun
us3q sey ‘(QIVOY JO [oUed [0NU0D) pue 2duepm:) o Aq paiosuods ‘SoLiag 1m0 S,

‘Soopualie ay) 01 1auaq 19a11p Jo suoneosidde pajera Jo Joquinu
© SSnoSIp uaLp [ Koy, ‘pejeaidde pue poolsIdpuUN POQ 3G URI BAIR [RIISO[OUYDR)
Sunjoss Ajpider ‘mou SIp) Ur S9OUBAPE JEY} OS punoidyoeq Se SAISS O] SYIOMIOU
eIN3U JO STRJUDUIEPUN] A3 MAIADI [fim A1 1831 ASoouyoa} JO BoIR MOU ST} UT 0UaLISdX0
Fupueisino P sraxeads uoneu QLVN Jo dnord e oqe8o; Surq [fim SOLISG M0 YL

-a8pomony
anmnboe pue ures| 01 L1Iqe J121 Jo asnedaq suonedrdde jonuos pue uonediseu ‘souepms
10} astwroid 3ea18 pjoy ‘syuswepe Sunndwosoromu parered Jo Sunsuo0 ‘SYIOMISU [BINON

6-5£90-S€8-76 NHSI

‘swruresdo1d s3ueydxy pue Juelmsuo)) 3yi £q paruawadun
uI9q SBY ‘(QAVOV JO [ued [01U0)) pue 2ouepms) A Aq paI1osuods ‘SoLIag 91N T SY L

*$30pusklk Y3 03 IJouaq 1921p Jo suon. dde pajejas jo requnu
© SSNOSIp uay [ £aq ] ‘porerardde pue pooisispun yioq 9q Ued eare [eadojouyoa)
Sumjond Apider ‘mon sup ur sedueApe Jeyl OS punoiSyoeq Se SAIIS 0} SyIomidu
[RINSU JO S[RIUSUIEpUN U3 MTA [TIM Ao 31ty KTojoyoa) Jo vate mau s Ut adusuadxs
Supreisino Y sraxeads uoneu QI VN Jo dnoid e 1a3a801 SuLiq [Im SSUSS AIMOST YL

‘a8pajmouy
anmboe pue.uresy 0} AUMqe K19y JO Isnedsq suopesrdde jonuos pue uonediaeu ‘souepmd
10} asrroad 1ea8 poy ‘siwaurspe Sunndwosoromu jaffered Jo Junsisuod ‘SI0MISU [RINON

6-S£90-S£8-C6 NASI

‘sururerdol 98ueyoxy pue Juelmsuo)) oy Aq pauswmaidun
u23q sey ‘QYVDV JO [oUEJ [0U0D pue 2ouepIng o1 Aq paiosuods ‘SoL1ag 9In1da Y SIL,

*sapuale 3y 03 3gauaq 1a1p Jo suonsondde patear jo Jaquinu
B SSNOSIp A} [ A91] "poterdrdde pue poojsiapun Jiog 3q Ued Bare [ed13ojouyod)
Suaoas Aprder ‘mou SMp Ul SedUEAPE JE OS puUnNOIFNIRG SE SAIIS: O} SHIOMIdU
[BINAU JO S[EJUSUIRPUNJ SYI MO1AS] {TIM K3t 1811 *K30[ouT[oa) JO BaTR MOU ST UT 3dusLIadxe
Supueisino Y s1axeads uoneu QLVN Jo dnoif e 1039801 Suuxq fiim saLag aInoaY AL

"a3pajmony |

anmbor pure ures] 03 AIMIQe J19Y) Jo asnedaq suonesydde jonuos pue uonedneu ‘souepng
10} asnwoxd yea13 poy ‘siuomsie Sunndwosoionu (offesed Jo JunsISUOD ‘SHIOMIDU JRINDON

L T R R L S L U AL ORI N

[ . R R

Ry g R Y — AT S —— L

*o

ety e o Bed Daobont BB AR S e T R b e S R b R A R Ol R B i

Lol

o
iy



~ - N » el N "

AGERID

NATO -&5- OTAN

7 RUE ANCELLE - 92200 NEUILLY-SUR-SEINE DIFFUSION DES PUBLICATIONS
FRANCE AGARD NON CLASSIFIEES

Téléphone (1)47.38.57.00 - Télex 610 176
Télécopie (1)47.38.57.99

L'AGARD ne détient pas de stocks de ses publications, dans un but de distribution générate a I'ndresse ci-dessus. La diffusion imtiale des
publicattons de FAGARD est effectuce auprés des pays membres de cette organsation par Fintermédiaire des Centres Nationaux de
Distribution sutvants. A I'exception des Etats-Unis, ces centres disposent parfors d'exemplaires additionnels, dans les cas contraire, on peut
se procurer ces exemplaires sous forme de microfiches ou de microcopies auprés des Agences de Vente dont la liste suite.

CENTRES DE DIFFUSION NATIONAUX

ALLEMAGNE ISLANDE
Fachinformationszentrum, Director of Aviation
Karlsruhe c/o Flugrad
D-7514 Eggenstein-Leopoldshafen 2 Reykjavik

BELGIQUE ITALIE -
Coordonnateur AGARD-VSL Aeronautica Militare
Etat-Major de ia Force Aérienne Ufficio del Delegato Nazionale all’AGARD
Quartier Reine Elisabeth Acroporto Pratica di Mare
Rue d’Evere, {140 Bruxelles 00040 Pomezia (Roma)

CANADA LUXEMBOURG
Directeur du Scrvice des Renseignements Scientifiques Voir Belgique

Ministere de la Défense Nationale

Quawa, Ontanio K1A 0K2 NORVEGE

Norwegian Defence Research Establishment

DANEMARK i’)\tén:BBibI;%tekc(
Danish Defence Research Board N 7.()0?/xK' 1
Ved Idraetsparken 4 nne jetier
2100 Coper'hagcn (4] PAYS-BAS
. s Netherlands Delegation to AGARD
ESP A”%?k AGARD Publicati National Aerospace Laboratory NLR
Y ublicattons) Kluyverweg |
Pintor Rosales 34 262)19 HS I)t:e"t
28008 Madnd
AT PORTUGAL
ETATS-UNIS . L Portuguese National Coordinator to AGARD
National Aeronautics and Space Administration Gabinete de Estudos e Programas
Langley Research Center CLAFA
M/S180 Basc de Alfragide
Hampton, Virginia 23665 Alfragide
FRANCE 2700 Amadora
Q.ME.RA. (Direction) ROYAUME UNI
29, Avenue de la Division Leclerc Defence Research Information Centre
92320, Chatillon sous Bagneux Kentigern House
65 Brown Street
GRECE . Glasgow G2 8EX
Hellenic Air Force
Air War College TURQUIE
Scientific and Technical Library Milli Savunma Bagkanhg (MSB)
Dekelia Air Force Base ARGE Daire Bagkanhgi (ARGE)
Dekelia, Athens TGA 1010 Ankara

LE CENTRE NATIONAL DE DISTRIBUTION DES ETATS-UNIS (NASA) NE DETIENT PAS DE STOCKS
DES PUBLICATIONS AGARD ET LES DEMANDES D'EXEMPLAIRES DOIVENT ETRE ADRESSEES DIRECTEMENT
AU SERVICE NATIONAL TECHNIQUE DE L'INFORMATION (NTIS) DONT L’ADRESSE SUIT.

AGENCES DE VENTE
National Technical Information Service ESA/Information Retrieval Service The British Library
(NTIS European Space Agency Document Supply Division
5285 Port Royal Road 10, rue Mario Nikis Boston Spa, Wetherby
Springfield. Virginia 22161 75015 Paris West Yorkshire 1.§23 7BQ
Etats-Unis France Royaume Uni

L.es demandes de microfiches cu de photocopies de desuments AGARD (y compris les demandes faites auprés du NTIS ) doiventcompo ter
la denomination AGARD, atnsi que le numéso de séric ¢eFAGARD (par exemple AGARD-AG-315). Des informations analogues. telics
que le titre etla date de publication sont souhaitables. Veuilier nioter qu'il y alieu lespécifier AGARD-R-nnnet AGARD-AR-nnitlors dela
commande de rappurts AGARD ctdes rapports consultatifs AGARD respectivement. Des références bibliographiques complétes ainsi que
des résumés des publications AGARD figurent dans les journaux suivants:

Scientifique and Technical Aerospace Reports (STAR) Government Reports Announcements and Index (GRA&L)
publi€ nar ia NASA Scientific and Technical publié par le National Technical Information Service
Information Division Springficld -

NASA Headquatters SNTT ) . Virginia 22161

Washington D.C. 20546 Etats-Unis

Etats-Unis (accessible également en mode interactif dans la base de

données bibliographiques en tigne du NTIS, et sur CD-ROM)
Imprimé par Specialised Printing Services Limited
40 Chigwell Lane, Loughucn, Essex IG103TZ




AGEIRD

NATO - OTAN
7 RUE ANCELLE - 92200 NEUILLY-SUR-SEINE DISTRIBUTION OF UNCLASSIFIED
FRANCE :  AGARD PUBLICATIONS

Telaphone (1}4738.5700. - Telex 610 176
Telefax (1)47.38.57.99

AGARD does NOT hold ;tocks of A'GARD publications at the above address for %e‘ncx:a! distribution, Initial distribution of AGARD
publications is made to AGARD Member Nations through the following National istribution Centres. Further co‘p'\es are sometimes
available from these Centres (except in the United States), but if not may be purchased in Microfiche or Photocopy

orm from the Sales
Agencies listed below. -
. NATIONAL DIST RIBUTION CENTRES

BELGIUM ; ’ LUXEMBOURG

Coorggnnatsu\; ‘Ai:GARg— VSL . SeeBelgium

Etat-Major de la Force Erienne .

Quartier Reine Elisabeth NETHERLANDS L . \

Rue d’Evere, 1140 Bruxelles Ne‘!\erlands Delegation i¢ AGARD

National Aerospace Laboratory, NLR .

ADA Kluyverweg 1

Director P?ciennﬁafliclz)l&formaﬁon Services 2629 HS Delft

Dept of Nationt ence NORWAY

Otiaw, Ontario K1A 0K l;lom%g_ig‘x_l Dc;fem ¢ Research Establishment
DENMARK tin: Biblioteket

3231;‘1; Defenci R N M BN Rav 7S

raetsparke: A Ao
2100 Copenhage g:zfégeg;ll::ef::asusaclg s
runi

ERANCE Natlonal Aeronautics and Ny Tistation

NCE RA.(Die  Pace Administration

29A del W Qifictal Business m——
256 Chariion 2oasigingt°n' DC.  speCIAL FOURTH CLASS MALL Pl o Pl Use SO0 \ommm®
B

GERMANY

MANY o L3 001 AGARDLS179911105500:

Kulewle s DEFLNSE TECONIC 1110550024720

CFENSE TECHNICAL INFOR

GREECE T HNICAL INFORMAT T

Hellenic Air Fo ATTN DTIC'"I-Df-‘lB/'JGYCE\C!—li;iggig CENTER

; . CaMERON ST -
Air War Colleg \ STATI
Scientificand T m..gmmnmé mazfqggﬁf;iﬁs

Dekelia Air Fo .
Dekelia, Athen

ICELAND
Director of AV
c/o Flugrad
Reykjavik

ITALY UNITED STATES
‘Aeronautica Militare National Aeronautics and Space Administration (NASA)
Ufficio del Delegato Nazionale al’AGARD Langley Research Center
Aeroporto Pratica di Mare M/S 180
00040 Pomezia (Roma) Hampton, Virginia 23665

THE UNITED STA1 ES NATIONAL DISTRIBUTION CENTRE (NASA DOES NOTHOLD
STOCKS OF AGARL PUBLICATIONS, AND APPLICATIONS FOR COP SHOULD BE MADE
DIRECT TOTHE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.

SALES AGENCIES
National Technical ESA/Information Retrieval Service . The British Library
Information Service (NTIS) European Space Agency Document Supply Centre
5285 Port Royal Road 10, rue Mano Nikis Boston Spa, Wethe:by
Springfield, Virginia 22161 75015 Paris West Yorkshire 1523 7BQ
nited States : France United Kingdom

Requests for microfiches or phetorcpies of AGA dpcumems{includmg requests toNTIS) shouldincludethe word'AGARD and the

AGARD serial number (for example AGARD-AG-315). Collateral informationsuch as title and publication date i desirable Note that

'AGARD Reportsand Advisory Reports should be specified asAGARD-R»hnnand AGARD-AR-nnn, respectively.Fu\!bibliogmphxcal
references and abstracts O AGARD publications are givenin the following journals:

Scientific and Technical Aerospace Reg:ms (STAR) Goverment Reports Announcements and Index m&l)
published by MASA Sciextific and Tec sical published by the National Technical Information Service
{nformation Division - Springfield. - ¢
NASA Headquarters : . jrginia 22161 .
Washington D.C.205 United States -
United States glso available onne in the NTIS Bibliographic
atabase or on CD-ROM)

Printed by Specialised Prifiting Services Limited
40 Chigwell Lane, Loughton, Essex IGI103TZ




