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Abstract

Ever increasing operational and technical requirements have led to highly integrated flight, guidance and control, and weapons
delivery systems. The effective implementation of these functions makes the fusion and interpretation of sensor data and the
multifunctional use of sensor information inevitable.

Neural networks, consistIng of parallel microcomputing elements, hold great promise for guidance, navigation and control
applications because of their ability to learn and acquire knowledge.

The Lecture Senes will bring together a group of NATO nation speakers with outstanding experience in this new area of
technology. First they will review the fundamentals of neural networks to serve as background so that advances in this new,
rapidly evolving technological area can be both understood and appreciated. They will then discuss a number of related
applications of direct benefit to the attendees. .

This Lecture Series, sponsored by the Guidance and Control Panel of AGARD, has been implemented by the Consultant and
Exchange Programme.

Abrege

Les exigences techniques et opdrationnelles toujours plus nombreuses ont amend des syst~mes de commandes de vol, de
guidage et de pilotage et de lancement d'engins fortement intdgrds. La mise en oeuvre effective de ces syst~mes passe
in6vitablement par le fusionnement et le ddpouillement des donndes des capteurs.

Les rdse. jx neuroniques, qui consistent en des 0l6ments micro-informatiques mise en paralle, sont tr~s prometteurs pour des
applications dans le domaine du guidage, du pilotage et de ia navigation, en raison de leur capacit6 d'apprentissage.

Cc cycle de conf6rences rassemble un groupe de conf6renciers des pays membres de I'OTAN ayant une experience
exceptionnelle dans ce nouveau domaine technologique. Les aspects fondamentaux des riseaux neuroniques seront abordds
dans un premier temps pour permettre une estimation des progr~s rdalisds dans ce domaine en pleine expansion. Un certain
nombre d'applications connexes, d'un intdrit particulier pour les participants, seront ensuite discutds.

Ce cycle de conferences est prdsent dans le cadre du programme des Consultants et des Echanges, sous I'6gide du Parel
AGARD du Guidage et du Pilotage.
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INTRODUCTION

Albert J. Shapiro
GEC-Marconi Electronic Systems Corp.

INTRODUCTION

The objective of this Lecture Series is to present both the fundamentals of neural networks and a
number of related Guidance, Navigation and Control (GNC) applications. The lecturers come from
several of the participating AGARD countries, specifically Canada, France, Germany, the United
Kingdom, and the United States. We will have nine lectures and conclude with a round-table
discussion involving all participants.

PERSPECTIVE

The digital computer has impactea GNC from two aspects. it makes possible the implementation of
large embedded systems utilizing complex algorithms and control logic. It has also become the
primary engineering tool which makes possible the design and analysis of such systems.

Advances in computational speed have enabled the real-time implementation of algorithm-intensive GNC
solutions for both aircraft and missiles. Application of Kalman filtering in hybrid-inertial
navigation and optimized flight control applications in airframes with complex flexure patterns are
examples of practically successful design and hardware/software integration. Kalman filtedng
allows for less precise sensors to be synergistically integrated through software to provide
improved overall system performance.

Airborne missions have become more complex and stressful to the pilot. Scenarios now require threat
avoidance, rapid replanning and reconfiguration of navigation modes in the presence of jamming of
navigation aids such as GPS, emission management in heavily defended areas, and continuous
evaluation of avionics system status in terms of fault detection and isolation and fault tolerant
reconfiguration The need for reducing the pilot's workload through relegation of more diagnostic
and decision- making functions to the computer has become a necessity.

The application of Artificial Intelligence or Expert Systems, , these applications is a significant
step in this direction. In conventional problem-solving, d' ,erministic responses are produced for
anticipated circumstances but unanticipated situations Lannot be properly processed. On the other
hand, the Expert System approach has additional information built into its Knowledge Base,
approximating the resources of a skilled problem solver. Ths Inference Engine provides the
mechanism to attack the problem with these resources.

However,to quote Dr. Bowen from one of his previous AGARD- sponsored lectures, 'An expert system,
nonetheless, is quite similar to a real-time control system; for example, both are command and event
driven, have feedback loops, require the same instrumentation packages, and access the same kind of
data from conventional data bases.'

Compare this to the prospect of the machine duplication of functions of the human brain in which,
somehow, a natural network of neurons, composed of interconnected living nerve cells, thinks, feels,
learns and remembers.



1-2

Scientists and engineers are primarily interested in models inspired by br';ar, iunction and not
necessarily the achievement of biological fidelity. The objectives of angineering research in
artificial neural networks (ANNs) are to understand how the brain's "computations" are organized and
carried out and then to understand the class of neural network models that replicate this
'computational powera.

The increasing interest in ANNs has been aided by both technological advances as well a deeper
understanding of how the brain works. A driving force is the need for a new breed of powerful
computers to solve a variety of problems that are proving to be very difficult for conventional
digital computers C'.oqnitive tasks such as pattern recognition under real-world conditions, pattern
matching, and combintorial optimization are some examples. Tasks such as recognizing a familiar
face, learning to speak and understand a natural language, and retrieving contextually appropriate
information from memory are typically performed naturally by the brain, but are beyond the reach of
conventionally programmed computers as well as the rule-based expert systems.

Neurocomputing, that is, nonprogrammmed adaptive information processing systems -artificial neural
networks- is a fundamentally new and different information-processing paradigm - the first
alternative to algorithmic programming. It holds the potential for significant breakthroughs in the
field of GNC - systems which can learn and rapidly accommodate to a wide variety of internal and
external stimuli occurring in nonpredetermined combinations. For example, rapid reaction to
unforeseen combinations/types of threats and aerodynamic changes, and autonomous vehicles capable of
self guidance are but examples of such leaps in capability.

With the foregoing in mind, this Lecture Series has two major themes: a tutorial introduction to
ANNs anj dpplications of the overall technology of ANN to the Guidance and Control field.

I hope that these papers will be as informative to you as I am sure they will be to me.

REFERENCES

I. Quinlaven, R. P., "Knowledge-Based Conceots And Artificial Intelligence Applications To
Guidance And Control', AGARD Lecture Series No. 155.

2. Bowen, B. A., "Real Time Expert Systems: A Status Report', AGARD Lecture Series No. 155.

3. Vemur, V., 'Artificial Neural Networks: Theoretical Conceptse, The Computer Society Of The
IEEE.



INTRODUCTION TO NEURAL COMPUTING AND CATEGORIES OF
NEURAL NETWORK APPLICATIONS TO GUIDANCE, NAVIGATION AND CONTROL

by

Uwe K. Krogmann
Bodenseewerk Geritatechnik GmbH

Intelligent Systems Division

Nusadorfer Str. - D-7770 Obedlngen

FRO

1. Introduction

"Future computer generation Imitates man*. "Many small cells are stronger than one large clll*. Such headlines are to be found In
the media in connection with a new kind of Information processing, the so-alled 'Artificial Neural Networks (ANN)'. As the term suggests,
these networks are an attempt to Imitate the biological paradigm, our brain, In structure and function.

In the course of evolution our central nervous system (brain and spinal cord) has developed Into a gigantic information- processing
network to which the sensory paths from sense organs lead and from which the motor paths lead to the muscles. All stimuli are supplied to the
central nervous system where they are processed Into perceptions, sensations etc. and trigger off our actions.

In our organism many organ systems work together. Only the central nervous system communicates as superior system with nil
others by collecting their Information and coordinating their functions.

Basically simllr problems will be found In future technical equipment and systems. Based on the structure of the biological brain,
the creatlon of artificial neural networks (abbreviated ANN) Is aimed to technically realize capabilities and characteristics such as self-
organisation, learning and associative memory. This is achieved by the particular structure of neural networks where a large number of simple
processor elements (PE) are interconnected with unl-directional signal channels to single- or multi-layer networks. All processing elements are
working in parallel as compared to one central, extremely efficient computer for sequential arithmetic and/or symbolic Information processing.

For the solution of a problem with a conventional computer (e.g. personal computer (PC)) an algorithm, a procedure or a set of
rules has to be developed and coded in software, I.e. a sequence of Instructlons. These Instructions are then carried out sequentially by the
computer.

By contrast, ANNs are not programmed but trained and loam Ilke their biological paradigm, the brain. This Is done by changing

the Intensity of the connections between the processor elemnt and by generating or eliminating structural connections. Thus the
"knowledge" of an ANN lie In the topology and in the Intensity of Its connections, I.e. the strength of the connection weights between the PEe.

With their capabilities of self-organisatio , leaming (adaptation) and association, ANNe can be used wherever it is difficult to

describe a problem algorithmically, the development of the opera*tonl software Is very cost-4ntensive or wherever unprecise, incomplete or

even contradictory Input data must be considered. Owing to the parallel Information processing ANN are fault tolerant and thus very reliable.

Ever-Increasing requirements placed on more demanding and complex systems on the one hand and financial resources getting

increasingly scarce on the other force us to filter out key i,.hnclogiss showing the potential for a high cost-h,nefit ratio to meet the Increased

requirements. In this respect Artificial Neural Networks i ipreent a now technology In the field of signal and Information processing for

Guidance and Control systems. This article is intended to V1ive a shord introduction Into ANN and their applicafon In guidance and control.

2. Genetal Structe of Guldaln end Centr Problem

G.a.C. problems extend over several hlerarchkicaly structured lve and the communication functions between these levels as

shown In Fig. 1. The represented Interoonnection of the difflrent function levels (scenario, mission, trajectory, sir vehicle state) can Le

conceived of as a hierarchically structured control system. T1he obcts on whkih G.a.C. functions are performed on the mentioned levels

reprent the control plants. Information processing by wh; ih actuation Is generated on all levels from sensor information represents the

controlle which Is of primary conce here (g. 2).

The controlling feedback chain typical of all GaC. levels requires functions such as recognizing and asseing the situation;
defining action goals; generating optimum of favorable solutions; decsion-making; planning and finally performing as well as monitoring of

actions. Hence, behavior levels of mental capabillties can be assigned to the function levels (Fig. 1).
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CASCADED G.a.C. LEVELS

SCENARIO DEGREE OF
SITUATION MENTAL EFFORT

REQUIRED CONTROL

MISSION
KNOWLEDGE

FLIGHT CONTROL________

PLAN___________

ON-BOARD RULE

FLIGHT
PATH

AIRCOTOH
VEHICLE
STATE A VEHICLE SKILL

AIR VEHICLE

FIGURE 1

COMMON BASIC STRUCTURE OF G.a.C. LEVELS

MASFRSCENARIO SENSORS

ACTUATIONMISO - -0FR
AIR VEHICLE SITUATION

MISSION SITUATION

AIR VEHICLE STATUS

ACTUATOR STATE

ACTIVTY DECISION PLAN

CONTROLLER/INFORMATION PROCESSING

FIGURE 2

For reasons of human limitations In more demanding dynamic scenarlos and In the operation of complex, high!y Integrated
systems, there Is the necessity for extended automation of these functions on higher levels such as trajectory control as well as mission
management and control. Furthermore, the Implementation of Intelligent functions on lower levels such as the fusion and Interpretation of
sensor data, multifunctlonal use of sensor Information and -m/llllent 'n become Inevitable.

The technical Implementation of the Intelligent G.aC. feedback chain functions leads to a signal processing structure which
contains conventional arithmetic, symbolic and sub-symbolic elements (Fig. 3). Wherse the symbolic element can be Implemented utilizing
expert-syftem software technIques, the sub4ymbolic element represents the application of ANNe. In building ANNe the brain Is utilized as
biological paradigm. In the following Its function end structure ae to be briefly eypllned as far as this Is Important for understanding ANNe.
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Activity Chain Implementation Elements

SENSOR DATA

KNOWLEDGE BASE DATA-BASE
World Model - Real-Time Sensor-Info
Domain KnowledgeI- Facts About Object

S- Problem Solving
Knowle 1

PROBLEM SOLVING BASED ON KNOWLEDGE. SENSOR DATA AND OBJECT TASK

CONVENTIONAL CONTROL SYMBOLIC CONTROL 8UB-SYMBOLIC CONTROL
Algorithmic/Numerical - Symbolic Processing Neuronal Network
Processing RL A Prcessing

INTERPRETER/COMBINER OF CONVENTIONAL SYMBOLIC SUB-SYMBOUC ELEMENTS FOR
(NOT OPTIMAL B FAVORABLE/SATISFACTORY SOLUTION

SCHEDULER TO INTEGRATE SOLUTION ELEMENTS TO SULUTION/ACTION PLAN
AND EXECUTION OF SOLUTION STEPS

COMMANDED ACTIONS
kr49

FIGURE 3

3. The bIological brain as paradigm

Function and structure

Two different functions of the brain are to be looked at. First, there Is the rational thinking with a function In conscious steps
performed in a particular serial sequence. The digital o)mputers we use today with a sequential processing of Instructlons listed in programs
(computers in so-called von-Neumann architecture) wore developed In the 1940s based on the Investigation of sequentially conscious
thinking.

On the other hand, there are the much more complex structures o' unconscious thinking or unconscious Intelligence. Here, a lot of
environment data ae processed within the context of our sensory peroptoa and characteristics extracted. The senscrimotor control of our
motions as well as three-dimensional thinking we largely unconscious. lhe structures of unconscious thinking provide the basis for the
enormous capacity orf our memory. AI of these functions performed uncor, ouly are running parallel in networks In which so-called neurons
Interact due to a close Interconnection and by means of electrochemical proosses.

Our brain Is organized as highly integrated system in functional units, which are Interconnected via variable connections, with each
functional unit having about one thousand to one hundred thousand nerve cells. These each have ten to ten thousand equally variable, so-
called synaptic connections to other neurons. In total, our central nervous system roughly contains the astronomical number of one hundred to
one thousand billion nerve cells. It is cler that this enormous Information-prooessing system cannot be completely structured and
programmed prenatally even if genetic Information Is taken Into account. The brain has the capability to organize Itself, learn and establish
associations.

To Imitate biological Information prooessing models for different levels of organisation and of abstraction have to be considered.
First, there is the level of the Individual neuron where it Is a matter of representing the static and dynamic electrical characteristics as wall as
the adaptive behavior of the neuron. On the network level the Interconnection of Identical neurons to form networks Ie examined to describe
specific sensor- and motoricity-related functions such as filtering, projection operations, controller functions In nonlinear, biological sMm.
Networks on the mental function level are the most complicated ones and comprise functions such as perception, solution of problems,
strategic proceeding etc. These are the networks on the highest level of biological Information processing.

The Neuron

The nerve cell the neuron) comprises the cell body (soma) which surrounds the cell nucleus (=Ig. 4). The oell body has a long
processus, the axon (or neurite) which ends in numerous ramifications which am attached to other 0ell vie s.called snaptc end heads thus
forming the synaptic connections between neurons. The synaptlc connection is to points where the oU body is expanded to so4alled
dendrites.
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In the stationary electro-chemical state the cell has a resting potetal of abo - 80 mV. If a nerve cell Is stimulated by another cell
via the synaptic connection, a short.time pole reversal of about 30 millivolts with a duration of 1 millisecond results (Fig. 5). This so-called
action or activation potential moves with up to 100 meters per second Wroes the exon to neighboring cells. The stimulus must exceed a
specific threshold so that this action potential Is genealed. The action polantil" Inmediately drops aft Its rise and the cell returns to the
resting state.

The degree of cell stimulation, I.e. the density of Informaton Is detmined by the frequency of the acton potentials. The greater
the stimulus, the higher the sequence of Impulses on the axon.

• - : X.ON

CELL-CORE

SIMPLIFIED BIOLOGICAL NEURON

FIGURE 4

What Is very Important for the learning and adaptive capabilities of biological neural networks Is the so-called plasticity
characteistic of the synapses. This characteristic gives the neurons a memory such that their reaction to an Impulse received depends on their
past history, i.e., for Instance, how many Impulses hae already been transmitted by It before and In which sequence. In this process, the past
history Is taken Into account ow minutes, hours, yes even ov much lne periods of time Pong-trm memory).

Apad from the stimulating neurons there ae also Inhibitive neurons. These produce transmitters which Increase the negative
charge In the Interior and thus the resting potential of the receiving cell. These Inhibitive neurons can blank out action potentials of stimulating

neurons, which are transmitting simultaneously, In the joint receiving neuron: Hence, all potentials received via synaptic connections are
added on the receiving neuron; those from stimulating neurons with a plus sign and those from inhibitive neurons with a minus sign. The sum
of all Inputs triggers the neuron activation via a nonlinear activation function.

3I0 : POTENTIAL

EXCITATION PATTERN IN RESPONSE OF A 3
STIMULUS (ACTIVATION POTENTIAL) 0 I !

FIGURE 5 
. I

POTENTIAL

What is remarkable In this connection:

Today's digital computers have cyo times (time for processing a partial Information) of 4 to 5 nanoseconds. The comparable cycle
time of a neuron (time for processing a stimulus up to readiness for receiving a new stimulus) Is 4 to 5 milliseconds. Thus the digital computer
is a million tImes fasr than the neuron. Despite this enormous difference In the time for processing a piece of Information and for reacting to
a stimulus neural networks ae in nany appliaIone superior to digital computers with sequential processing of often extensive programs
regarding the execution time due to their paale Informatlon processing.
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4. The Art 4oeuron

On the basis of the biological neuron a simplified model of the artificial neuron is shown In Fig. 6. According to this figure, the
neuron acts like an Integrator with feedback which Integrates the weighted presynaptic Input signals and maps the posthynaptic activation x
onto the output signal by means of one of the nonlinear functions shown as examples. A threshold value b Is also taken Into account. Thi
differential equation for the activation x of the J-th neuron taking into consideration the learned oonnectingiwelghte w describes the short-
term behavior of the neuron (short-term'memory, STM) as a function of the Input signals ol; I - 1,2...n. In this equation tife Inhibitory inputs are
taken into account by the term hI (see fig. 6). Because activation Is a nonnegative entity the condition x1 > . 0 must be Imposed.

The ability to learn and memorize something owing to the plastiity property of the biologic neuron is In the case of the artificial
neuron obtained by adaptation of the connecting weights. As a consequence, the short-term behavior of an element is made dependent on its
case-history (long-term memory, LTM).

MATH. MODEL OF THE NEURON

Presynaptic
Activity .. I ty

Inhibitory Inputs gn

M i 0-

ICondition:

Activity (STM) Learning (LTM)

Z B(x,)+ , _ ii_ ,, .w = (t) of ( Si 'x j i )

FIGURE 6

The differential equation for the adaptation of the connecting weights as shown in Fig. 6 describes the dynamic- of learning as a
function of the instantaneous values of the connecting weights (input weights), the activation and the Input quantity. For controlling the
learning speed the function "() Is also Introduced. The connecting weight leading from the Input I to the J-th neuron Is called wjl.

Depending on the particular form of the x- and w -equations there we different neural and network models (paradigms). A
partitioning Into exchatory and Inhibitory Inout signals i, howej, not nooseaily required If the former are considered to be positive and the
latter negative Input signals and the activation xI can also assume negative values.

A simplification of the neural model according to Fig. 6 considers the stationary activation statue and Is shown in Fig. 7. It was
Introduced by McCulloch and Pitts (1943). The resulting output signal Is

f i ) (1)

nstead of subetracting the threshold b from the sum of the weighted Input signals, It can be Interpreted as an additional weight
wjo with a oonstant Input "11 such that "he actvtoQ equation beomes

Xj - ~w 1 ~ +(2)xI , -alW1 l

Based on this equotion the artificial neuron can be represented as a bei processor element (PE) as shown In Fig. 8. It Is
remarkable that the summation of the weighted Input signals Is mathemPticay Identical with the scaler pioduct of the input and weight voctor.
Geometrcaly It is thus a meaure for the correlation bween te Ikpt vector I and de Irtantaneous weight vector w of the 1-th PE, as
shown In to following equaion:
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n NWJ, -<Ir i 11 • -1 I 11.oo,1-i (3)

Therefore the PE can be imagined to perform a vector pattern matching operation. Equation (3) can be looked at as the
fundamental equation of all adaptive networks.

MC CULLOCH-PITS NEURON LARTIFICIAL NEURON

ta t(x)

V/ + exP(.X))

SI =~1 j-b~ I------

, "Local
\V i Memory,

FIGURE 7 FIGURE 8

The PE according to Fig. 8 has two properties representing Important preconditions for the arrangement in parallel network
structures: Only local Inputs and local w11 memory (I.e. no other informatIon from a network is required): only one output signal Is produced
which Is propagated to other PEe or reprisents an output element of a network.

Possibly there are a large number of potential nonlinear output functions (threshold functions) The signum and sigmoid function,
hyperbolic tangent, binary step function, saturated ramp function are employed by the majority of PE types.

From a neurophysiological point of view the artificial neuron as described here is too simple. For the designer of advanced
adaptive systems this Is, however, no restriction. Utilizing Important characteristic features of the biological paradigm like Interconnection of a
large number of simple PEa with paallal processing and adaptible connection weights as well as nonlinear output functions yields the
possibility for the design of processing units with unprecedented capabilities.

S. Adep ve Processing Elements

The Adaptive Pinear Combiner (A.LC) Is known from adaptive signal processing. In Fig. 9 i [xo x x the Input vctor
and W - [wok wlk... wk] theweighvectorofthALC attime t The outputquantityasthesumoftheweigted nput quantities Is

LYk -W k T~ (4)

The same relationship applies for a Finite Impulse Response (FIR) fliter f Ik [Xk xk.l...xk4+ 1]T Is M there, xk4 with I = 1,2...(I.1)
being the filter input quantities delayed by one cock cycle each (delay operator z").

The weights we adapted by means of the LMS Pes man squares) algorithm which minimizes the square of the deviation of the
output quntly the desired output quantity d which Is oonsldered to be known. For this deviation and i square the followingequations apl: .frmi

T(5
ok dk" k W* (5)

ek2 dk 2 2dk kT k* k T k 1 (6)



1-7

ADAPTIVE LINEAR COMBINER FIR-FILTE
XK xK.1 XK-2 X K4_+WOK ZAt Z.1  .

XOk
Xlk W WOK K w2K w
XLk -- L7_

FIGURE 9 XT = =

At each Iteration in the adaptive process the gradient estimate bocomes

'- k =-
2 ek lk= -2 (dk- yk) lk (7)

With this simple gradient estimate the LMS algorithm is of steepest descent type by updating the weight vector according to

A
+ 1kk + 2 (dk- yk) (8)

The steepest descent step size parameter/p regulate speed and stability of adaptation. Adaptive signal processing based on the
ALC with LMS adaptation has been successfully applied In systems Identification, adaptive noise cancelling, adaptive prediction and others.

The Adaptive Linear Neuron (ADALINE) as the simplest nonlinear processing element is closely related to the ALC. As shown In
Fig. 10 it utilizes the signum output function. Since the output signal from the summation Is used for the error determination needed for
adaptation of the input weights, the LMS algorithm can be used here, as well.

The structure of the perceptron which Is also shown in Fig. 10 Is Identical with that of the ADALINE. The only difference Is that the
PERCEPTRON convergence algorithm uses the output signal ek for error recognition for the weight adaptation. In both cases , is introduced
to control the adaptation/learning rate.

Because of the nonlinear output function the ADALINE and PERCEPTRON become capable of Input signal classification. They are
capable to recognize whether a particular Input pattem belongs to a corresponding clasi or not. The classifying ability of the PERCEPTRON Is
illustrated In Fig. 11. For this purpose a simple eement with 2 inputs aind 1 ouiput Is investigated. Assuming w - const. after completion of
learning. The classification equation In this case describes a straight line in the Input signal plane (SI - S2 plaso). This line separates the two
classes. If the PERCEPTRON has more than two Inputs the straight separating line changes Into a plan (3 Inputs) or to a hyperplane
(> 3 Inputs). The PERCEPTRON adaptation algorithm converges when classes can be separated linearly. In practice, this Is frequently not the
case or not known a pdod. Then, the arrangement of simple proessor elements (e.g. PERC;EPTRON) In multi-ayer networks Is required.

Thus, the transition from the Individual adaptive element to the arrangement of such elements to form artificial neural networks
becomes necessary.

ADALINEPERCEPTRONI

S.C 4
.i OUg~xTPUT

S J Ak LBINARY OUTPU

ADAPTATION - DESIRED__--ALORTH ADAPTATION
OUTUT IcALGRIHMOUTPUT d k

LMS ADAPTATION ALGORITHM PERCEPTRON CONVERGENCE ALGORITHM

FIGURE 10
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ANN, a nonlinear system

The ANN dynamics can be described by a set of nonlinear diffeirential equations for an autonomous dissipative dynamic system.

dx

with x j as real variable, ILe. neuron activation. Snce the ft do root explicitly depend on time, the systemn Is said to be autonomous.

Wth dissipative systems, the flow In the phase-space characterized by the field of velocity vectors Is

1 ; ..- ;nI Tf .

contracting, ILe. dv/dt c 0

The volume contraction can be computed directly from the differential equations (9) without knowing the solution as follows

dv P
!. dxDIV el) (1

dt f

with

Drv(~ b xnJ~ 'I ...... in (12)
9 n xI aXn

On account of dv/dt < 0 the volume element is mapped onto a subspace of the phase space aymptotically with the volume zero.
This subspace Is a so-called attractor.

There are two kinds of attractors: periodical attractors as asymptotically stable limit cycles and asymtotcally stable fix points as
attractors which are primarily of interest to stable ANN. These asymptotic solutions (fix points for t - - >Co ) do not depend on the Initial
conditions. Moreover, the type of behaviour of a general non linear system, whether stable, unstable, oscillatory or chaotic, depends critically
on the Input applied to ft. For ANN, those nonlinear structures Are therefore suitbl that achieve asymptotic stable fix points (attractors) for a
large range of Input pattemso I.e. large Input signal space (Input vector space). In these fix points, the knowledge contained in the Input
patterns can be stored, or the Input signals can be dasalfled. This Is accomplished by Modification off during the learning (training) process
of the ANN.Upon completion of learning the w1 are fixed. in t recall mode t system acts a Shotlrm memory (STM) dynamic system;
i.e. a content addressiable memory (CW). aedon this brief represenitation of non-linear systm behaviour, the network operation can be
summarized as delineated In Fig. 13.

NETWORK OPERATION

INPU OuT -,, (J

External Input is *classrfter Training of network modifies F~
by the network by transitioning toi yield the correli *classification-
from initial state x (0) to the --- i (L~e. fixed points) for any allowed
fixed pointi for any allowed input4
input (T logtrmery Reference

_______________________ weights (*Teacher)

Fixed set of W ield auo- 1, TraIning of LTM weights -

hetero association: I. short tr eltm nln

m emory (STM) dynamic system Realtt tion ln

FIGURE 13
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Applying the direct method of Lyspuncv, different theorems can be utilized to prove stability for ANN with feedback connections. A
general design principle for absolutely stable Information processing arid memory storage by nonlinear feedback networks Is the Cohen-
Grossbiorg theorem with the J-th PE activaflon dynamics as shown In FIg. 14. For this class of nonlinear feedback systems two Important cases
for the PE's activation dynamics can be discerned: the so-celled additive and shunting short-term memory equations as shown in fig. 15.
These equations respresent the basis for the design and analysis of a number of specialized networks as applied for particular problems. An
example for a stable network structure belonging to the Cohen-Groeabarg class Is onei with self-exciting recurrent connections and neighbour.
Inhibiting ones, the so-called competitive syse as shown In fig. 16.

STABILITY THEOREMS

LYAPUNOV FUNCTIONS
* FIXED POINT -2 IS ASYMPTOTICALLY STABLE, IF SCALAR FUNCTION

V (2)V MAPS Rn -> R'] EXISTS AND

V (A) > V (R); V x il POSITIVE DEFINITENESS

V(x) < 0 Vx if X NEGATIVE DEFINITENESS

COHEN / GROSSBERG
STRUCTURES

1i WI f =(x(x)Evj i isvl

W n i CJ (i) d xj)*

CWSn I X = awi (XLil S~i~ i(Xi

LYIELD LYAPUNOV FUNCTION --- > STABILITY
kf57

FIGURE 14

COHEN-GROSSBERG THEOREM
ABSOLUTELY STABLE NONLINEAR FEEDBACK SYSTEMS STM EQUATiOS

I 1(ex)

Feedback WftX

Short-Term Memory Nonlinear Signal i Long-Term Memory
*Activation Adaptive Weight

Add"tivSTM uai Ai= Xi + n f wit)+

PaS"iv Positive ""Owns MINA
D9cay Feedback Pomdbsc5

Shunting STM Equation]

Xi = Al Xi + (B - XI)~f 0I XCi 1+) I (i ) gj (XI)E Il4)+ j

L Bounded Activations plus Automatic Gain Control

FIGURE 15

Fwrthefrmers, ANN we realized In structuree which show orly feedlarward connections. These are Inherently stable If they comprise
sltable single elemrent which Is achievable by a corresponding output funcet.



STABILITY THEOREMS, CONT-D

COMPETETIVE SYSTEMS

* NETWORK STRUCTURES WITH SELFEXCITING RECURRENT CONNECTIONS AND
NEIGHBOUR-INHIBITING CONNECTIONS

SYSTEM OF DIFF. EQUATIONS

Wl1(+ )  Wjj 1+) Wnn(+) dx

PE1  pE1j ... Pt:n IS COMPETITIVE IF

K ~O;Vjit
a xi

F- INTRACONNECTION WEIGHTS

FIGURE 16

In addition to global stability, convergence of a network plays an Important role. The stability problem occurs in the recall phase of
ANN with feedback connections. The convergence concerns the minimization of the error between the desired and the computed ANN output
signal. For this reason, the convergence Is of Importance in supervised learning and must be specially verified for each corresponding ANN
model and the appropriate learning strategy.

It shall be mentioned that there are ANN applications which demand periodical attractors. The corresponding ANN are trained for
stable limit cycle oscillations.

Learning, Self-Organleation (Encoding)

Contrary to the conventional proceeding in which the solution of a problem must be available In form of an algorithm, the way to
solve a definite task Is self-organized and learned in the case an ANN Is used. The ANNa with hard-wired encoding are an exception to this. In
their case, the knowledge of the problem and Its solution Is practically Implemented by prenatal determination of the topology as well as the
strength of the connections by the designing expert.

In the case of self-organization, the neural net forms an Internal cognitive model of the task and thus replaces the mathematical
description. This Is done by generating the suitable meshing and weights. The problem here Is the determination of the modification strategy
which leads directly to the problem of learning.

As mentioned already, in case of a massively parallel net (Fig. 12) the knowledge lies with the way of linking the 3lements (PE) as
well as with the strength of the linkings (nterconnectlon weights). If learning Is understood as a modification of the knowledge, the network
interconnections can be changed in three ways: generation of new Interconnections, loss of existing Interconnections and change of existing
Interconnection we!ghts. From adaptive signal processing, parameter and structure-adaptive filter structures are known. Regarding ANN* the
procedure is that so far only the weight factors of given ANN structures are modified. By the Interconnection weight zero, an Interconnection
can be Interrupted (acts like a structural change) or conversely Its effilcency can be Increased by Incroang the weight factor.

As shown in Fig. 17, supervised and unsupervised learning (encoding) can be discerned. The supervised learning by error
backcoupling has already been explained In chapter 5 when dealing with simple adaptive processing elements. For multi-layer nets, the
method of error backooupling falls. Here, the so-callod back propagation algorithm must be used for the supervised learning since for the PEe
on hidden layers the desired output cannot be ciasaified. In the example as treated In chaptor 9 a back propagation ANN Is considered In more
detail. The reinforced learning as mentioned in Fig. 17 Is looked at again In chapter 8 when dealing with the neuro control problem.

If no predefined training data are available or if their geneatIon Is too time and cost consuming, self-organizing nets must be
utilized that learn unsupervisedly. Based on local Information and Internal ANN control, the net self-organizes the presented data and
discovers its emergent collective properties. Unsupervised Hbblan learning (Donald Hebb, 1949) is Important to many ANN designs. From
Fig. 18 it becomes evident that the Hebblan learning rule computes corelation between the presynaptic signal ( Nd the post ynaptiO
activation (xj) where a positive oorrelation (xlsN > 0) is causing a weight Increase. Also a passive decy term (- ewll) Is often added In the w
equation. In each case, only local tnformatin Is required as compared to error backcoupllng or error back propgation, I.e. the presynaptb
signal on the Input pith, the postsynaptic activation of the PE and possibly the actual InterconnecJon weight value. In many cases, the output

signal sj (x) Is used Instead of the potsynaptio activation. For the clase of Cohen-Groseberg structures as mentioned before, the so-called

passive deay and gated decay unsupervised learning equation for the longterm memory weight adaptation can be utilized (Fig. 19).
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LONG-TERM MEMORY LEARNING TAXONOMY

H-ARDWIRED SUPERVISED UN-SUPERVISED
(OFF-LINE) (OFF-LINE) (REAL-TIME, ON-LINE)

CONNECTIONS FOR I LAYER CORRECTION, A w1 j - 01*F-SURROUND
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NETS x' xj

FIGURE 17

UNSUPERVISED HEBBIAN LEARNING
(SELF-ORGANIZATION)____

OUTPUT,. t I ACIATION /RECLLJ

w1  W. 1... W1.. W j [n_

INUT si it a

LTLL

LEARN. =r * X<W >

rl X, INPUT-VECTOR CORRELATION

INPUT.61 F_ _

FIGURE 18

Different learning pwadigms are making use, of the ac-called competitive learning. In Its simplest version, competitive learning
works Incomnbination with recall as shown In Fig. 20 (off1flne, unsuperlsod) The weight vector wthat matches best with the input vector will
yielute ighs actpo tion to the ascidanitae PE om Thi Is tewn in an e n the ut ight Vectoby-a"dnone ofthe otheis -Is

Ouste In poporton tohe eulidea d;&W A frm theInputvecto (Moutnputexteseon Pe oucan lyermpeteanwithee eachea othere
intra&layer by sending positive feedback signals to Itsel (recurrent self-excltatlion) and negative signalls to all Its neighbours (lateral neighbour
inhibition). This type of connection wes already show In Fig. 16 when mentioning competitive systems.
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COHEN-GROSSBERG THEOREM
8TU AND LTM DESIGN EQUATIONS

: ~ X, (t fjx) x, ()

Feedback f()
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A general design frame for absolutely stable information processing and memory storage (CAM)
by nonlinear competitive-cooperative feedback networks

FIGURE 19

NNET; UNSUPERVISED LEANRING EXAMPLE
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CORRECT 6WIj 1l W

I INPUT VECTOR

FIGURE 20

important Selif-organhzlng ANN models

a) Self-organizing Feature Map (SOFM)

The so-called "ef-organizing feature map Introduced by Kohonen consilst of a one- or two-dimensional arrangement of the PEe.
The structure is completely meshed and processes real-valued Input signals. The PEa simply form the sum of their weighted Inputs. The
modification of the interconnection weights Is made according to the previously mentioned method of compettive learning (Fig, 20). However,
in addition to the weight vector of the winner PE W, the weight vectors of a predetermined nelghbourhood of cells In the area a1 re aleo
modified In this case. This area Is reduced with Increilng tralning time.

In Fig. 21 a portion of a one-dimensonal SOFM network with a two-dimensional Input.(feture) space Is shown (left). When an
Input vector Is presented the winning network node (PE) I Identified Ocorrespndling o the minimum eudlidean distance between Input and
weight vector of that node (se. ao Fig. 20). The weight vector of the winner (c"est to Input vector) and thoe of i1s nelghbours, regardless of
their values, are updated to lea the ourrent Input by mongloeer to it poslition (Fig. 21, right).
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If the training vectors form individual boundaries In the fature space, the weight vectors will he adapted themselves after a
sufficient quantity of learing teps In such a way that they represent corresponding da" I.e. topologiclly dose processing elements
oorrespond to physically adjacent groups o4 Input vectors (olasese) that le, FM's can compute the probabilty density function (PDF) of Input
vectors and represent It Implictey by their own density.

Learning of SOFM Is unsupervised but learning phase and application phase we separated from each other. Thus, problems can
arlse during the application phase, In the case of a slow change of the Input data or the occurrence of data not learned by the net.

SELFORGANIZING FEATURE MAP (SOFM)

Output

W-

X1 X2 
I In put X "

Class / Category

In~ut

1 -dim SOFM with 2-dim Feature Space Weight (Node) - Response upon Presentation
of an Input

Topological Ordering I -dim or 2-dim Neighbourhoods of Connectivity Among NodesJ

FIGURE 21

b) A. ,tlve Resonance Theory (ART)

fo mimic cognitive functions autonomous *olf.organizing systems require means that are capable of learning, memory and
recognition in an unpredictable world v.".h no teacher available. Corresponding computationl units must continue to learn In a stable fashion
where this new learning mut not foic isslectve forgetting of past acquired knowledge.

Grossberg and Carpenter (1987) derigned the so-called ART network (Adoptive Resonance Theory) In order to solve the dilemma
between stability of the learned knowledge and the plasticity I.e. the capability of continued learning. ART networks are stable enough to
preserve significant post-acquired knowledge but nevertheless remain adaptable enough to Incorporate new information whenever it might
appear. The basic Idea which lead to the ART was the dis: -r that a 3-leyer net (FIg. 22) with competitive learning can perform any mapping
from input (feature) space Rm to output (category, clan) spaow FWn. The ART-net can be imagined " a two-layer structure resulting from
folding back the throe-level network on itself as shown in Fig. 22. Thus the simple ART module Includes a bottom-up competitive learning
stage In combination with a top-down outstar system, both representing adaptive filters with associated LTM weights.

The main function of the ART Is that the top-down attentive feedback encodes learned expectitions (learned bottom-up) In
response to arbitray temporal sequences of spatial input patterns in reel time. A large enough mismatch at level F1 quickly resets the F, code
before new learning can occur by triggering the odenting signal (Fig. 22). The F code Is reset If the degree of match is smaller Can a
predetermined vigilance parameter. In this basic configuration of the ART, stored pltems can be permanently updated on the one hand and
on the other hand, additional pattern classes in the net can be generated if the Input pattern has no slmilarity to existing pattern classes,

The different methods of learning and sef-organisation posseo patioular Important characteristics (Fig. 23) which have to be
considered when selecting the appropriate network for a given application. In Fig. 23 ARTMAP Is a new architectum using multiple ARTs In a
network hierarchy with supv lsed assoollave Wlarning. Also the Voctor Aeoclative Map (VAM)Ntwork lea new design for fas unsupervised
realtime error-based learning. t might play an Important role In sensory motor contrl tye problems. in ts key fatures t Is complementary to
the ART net
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ANN Reeal Operailon

In the preceding chapter, the gathering and etorae of Information and knowledge In an ANN was treated with aome detail. The
recall onimerne t retrieval of Information atored In ANN; I.*. the SM functlon. The recall procedure Is In general given by the solutionm of an
activatn equation in oonnectlon with a particular output function as ehown In general form In Fig. &Similarly as for learning, there wre some
baaic recall paradigme, from whilch for Cohen-rceeberg slrueoare the additive and the shurn" 8Thi equatione were given in Fig. 15.

Selsfucton c tlndANN

As already mentioned ANMe are &AalY content addressable memoriee (CAM) which either recall eitored Information or encode
new Input Info mo sell-contalned or supervied by a teaher Applfn ANN. the following besko functin can be performed (nee alec
Fig. 13):
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Auto-association: With a noisy or Incomplete Input pattern (vector), the undisturbed complete input pattern Is generated as output.

Hetero-associatlon: Input pattern and associated output pattern are dlfferc it.

Classifleation: Each Input pattern Is assigned to one of seeal cla s which are defined by the output pattern.

In all three cases, the storage of sscative mappings Is concerned. There are many applications where system elements must be
described by such stlimulus-response type mappings Including such as linear, nonlinear, logical or binary ones.

ANN Summary

While Fig. 13 shows the operational processes, the main features are resummarlzed In the following: Artificial neural nets

are computers that learn how to solve problems

problem solving Is based on sample data and learning mechanisms

they do not require expert knowledge representation, logical Inferencing schemes, statistical algorithms or
specialist/analyst to develop and code a solution

they are trained to Identify self-contalnedly the key features and associations enabling them to distinguish different
patterns

ckn learn on-line real-time or can be trained off-line by a sample data set

do require an appropriate architecture with sufficient capacity and paradigmatic learning/tialning scheme

they consist of three major elements: organized topology of Interconnected processing elements, method of encoding
Information, method of recalling information.

Their strengths and weaknesses are summarized as follows:

Strength:

unique solutions based on user data examples

no need to know algorithms

less/no software needed, more hardware-processing power required

provides solutions to problems such as: pattern matching and recognition, data compression, near-optimal solutions to
optimization problems, non-linear system modelling and control, function approximation etc.

- Inherent parallel processing structure yields faster solutions to a number of computation-intensve problems

- Internal generation of complex decision areas by means of non-linear combination of input vector components

robust performance In view of noisy and disturbed Input signals

Inherently fault-tolerant

ANN weaknesses are that they are not applicable to all processing problems and do require training and test data examples - with
a few exceptions.

A comparison of ANN with conventional digital computers Is summarized In table 1. This leads directly to some remarks regarding
the utilization of ANNs.

FEATURE DIGITAL COMPUTER NEURAL PROCESSING

Processing Programs with serially performed Parallel programs with
order instructions comparatively few steps

fKnowledge Static copy of knowledge Is stored Information stored in the inter-

COMPARISON CONW. DIGITAL vs. storage In Ikrresed memory location connection of neurons

Knowledge adapted by changingNew Information destroys old Inlerconnectlon atrengtNEURAL PROCESSING iformtion

Processing Central processing unit monitors No control not monitoring
Contro all Ities and has aces to of a neuron's activity

TABLE 1 globl Information, creating Neuron' output only a functionlltocllsiktg bola, talck lr'Kd critical - o' ~pt afi

point ol failure of Its locally availabl Information
from Interconnected neighbours

FAULT Rmoval of any processing - Distributed knowle ifnformatlon
TOLERANCE component leads to a defect represntation across manyneurons an thirl Interconnection

Corruption of memory Is Itrlfivat,
leads to a failure If portlon of neurons renoved,Information retned through

redundant distributed encoding
DISTRIBUTED ENCODING

FAULT.INTOLERANT - FAULT-TOLERANT
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General remarks for ANN application

Concerning the potential application it can be said that In many problems with only emall or almost no knowledge existing on theobject concerned, or where the parameters and states of this object can neither be described mathematically nor by rules and facts in a
somehow reliable manner, the development of sequential algorithms for conventional processors Is extremely difficult. The necessary
expenditure of cost and time for the algorithm and software development, verification and validation Is correspondingly high.

Contrary to the sequential conventional Information processing, the processing of Information utilizing neural nets offers In general
considerable advantages for all applications which are characterized by limited knowledge on the object. In contrast with the programmed
sequential computing, ANN can be applied successfully for the solution of problems with inexact and Incomplete or even contradictory Input
data.

The ability of neural nets to leam by examples (training pattern) or even unsupervised Is of particular importance, It Is not
necessary to program a task-specific function or information. If representative example data are available in sufficient number and by training
of the net with these data, due to Its generalization property the net can tolerate Input data which are superimposed by noise and
disturbances, for the recognition of the innut patterns.

By the use of non-linear processing elements in the network, multi-level nets can form complex decision areas in the feature
space. This corresponds mathematically to a non-linear mapping of the Input vector space onto that of the output vector. This allows also the
modelling of non-linear systems.

G.a.C. Applications of Artificial Intelligence
and Neural Computing

Man- Machine SITcLL E" enario/Battlefield
Interface Managemen

-Autom Tactical Mision
Guid /Nav lniglonm
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_____- ~ASSOCIATION _____Multipe SELFORGANIZATION " outag eDecoption ]Sensor Fusion . . ....

LTest, Diagnosis Reconnaissance

Operations Research ]Traectory ontrl

L Personnel Training .

INTELLIGENT ACTIVITY CHAIN

Recognition Objectives Favourable Making Plan Control
Solutions

FIGURE 24

7. Categoil fo ANN application

it has already been mentioned (chapter 2) that G.a.C. problems extend over several hierarchically structured levels. In order to
perform G.a.C. functions on these levels, the Implementation of a controlling feedback chain typical of all GaC. levels Is required. Any
technica apparatus which implements the feedback chain In a real-time autonomous system requires the solution of perception problems as
associated with the sensors an cognition problems (e.g. rocognition, hypothesis testing) as far a the remaining functions are concerned.
Very often In such systems, exploratory, goal-oriented actions will be perormed resulting in a perception-cogntion-action.reoognition cycle.

it has been shown (Fig. 3) that for the implementation of such quasi mental functions elements of artificial Intelligence are
required. In addition to more conventional expert system techniques ANN will gain an Increasing Importance within this scope. Therefore, as
shown In Fig. 24, the application potential for ANN covers Many areas, extending from relatively simple applications In Intelligent sensory and
actuator systems to highly complex misslon and senario management pmblems.



1-18

Areas which represent potential categories for sucoessful ANN application and which are recurring In many Ga.C. systems are the
following:

pattern recognition, signal lassilfication

associative memories

self-organization, learning

knowledge acquisition, adaptive expert system$

adaptive signal processing

control, stabilization, guidance

decision finding

optimization procedures

integration and fuslon of multiple sensor data

robotics, sensory notor control

It falls beyond the scope of this paper to treat these categories here In more detail. On account of the Importance for Ga.C., some
further considerations concerning neuro-control should, however, be made.

8. Neuro Control

The applicaton of ANN for control, stblilzation and guidance of objects can be considered as a further sp In the evolution of
control technique* to face up to the challenges within the scope of more complex systems which require more adaptaion and sef.
organization capabilities. Thereby, the maln problem It concwned with the real-time control of objects which are nonlinear and noisy and
where the dynamics of which Is time-varying, only Incomplaet or even unknown at all.

As common to all ANN, a characteristic feature of the neuro controllers Is that they are not programmed but trained either
supervised off-line or unsupervised on-line.

As a generalized example the structure of a fault-tolerant adaptive/learning neoro control system especially suitable for
applications on the lower leveils of the G.a.C. systems hierarchy (mlssiles, manned/unmanned air vehicles, robotics, mobile robots etc.) Is
shown In Fig. 25. As can be seen by this example, neuro-control systems can Include subaystems for pattern recognition in sensor data, failure
detection and Identification, dynamic modelling etc. which ae realized as ANN, however, are only of secondary Importance for the actual
neuro-oontrol problem.

Learning mechanism based on error backcoupling as shown In Fig. 10 ae less suitable for many neuro-oontrol applications since
they require a reference signal for supervised Isarning for the outputs of each single ANN element (PE). These reference signals are often not
available from the natural environment.

NEURO-CONTROL

PERFORMANCE CRITERIA/
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Dc(ACE) DATA FUSION FOR

REINFORCEMENT

SA iROL STATE
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ANN/ALGOR. ANN ANN
SEST AVAILABLE FARLURE MULTWlEAW.
SENSOR1 DATA FO ,.~m. DETECTION/ S--.,-.,,.. ENSOR DATA , ,,n

STATE DETEIIIIIrlTON IDENTIFICATION FUSIO FOR1

CONTROL

FIGURE 25
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The unsupervised Hebblan leming Is often also not applicable to neuro-control. As already mentioned and shown in Fig. 18 it

takes information for the adaptation of the connection weights from the network Itself (PE activation x, PE input s1). For many ANN
applications this Is a very favourable characteristic since no communication with the outside world Is requlrlZ for learning. However, this can
be a serious disadvantage for neuro-control applications If a particular performance criterion must be met which is referenced to the
environment.

The reinforcement learning paradigm (Fig. 26) takes this circumstance Into aocount. Thereby, the minforcement (rk) is a measure
for the change of a behaviour or performance criteria and thus considers the suocess or failure of a control action. The eligibility (e) of a
synaptical pathway is a function of the product resulting from the signal on this pathway and the output of the corresponding PE looked at for
a particular delayed period of time. Thus, the eligibility Is a measure of up to which extent the input signal on a synaptic connection has also
led to a large output signal. The eligibility should decay (for example exponentially, Fig. 26) unless another high value of the eligibility results
from the simultaneous occuranc of an input signal and the resulting PE activation. The reinforcement learning is formally similar to the
Hebblan learning If the PE activation Ixj) and the PE Input (al) are replacod by reinforcement (r) and eligibility (a). [

There a,) a number of neuro-control paradigms applicable to the design of the actual neuro-controler. The interested reader must
refer to the available literature.

As a frontend problem of neuro-control relevant data and facts from similar nd/or dissimilar sensor information are to be
obtained. Therefore in two examples ANN designs for multiple redundant sensor data failure detection and identification as well as for target
identification are briefly presented In the following chapter.

REINFORCEMENT-LEARNING
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REINFORCEMENT INPUT e,.k . ELIGIBILITY OF i-th PATHWAY AT TIME t k
r . REINFORCEMENT AT TIME t k

FIGURE 26

9. Example

As a first example the fault tolerant measurement of the proprio-spedfic motion state of an air vehicle shall be looked at here. For
this purpose, a number of redundant sensors for the angul. rate (e.g. gyros) as well as for the linear acceleration (accelerometers) are utilized.
In order to meet the reliability and fault tolerance requirements with a minimum number of sensors, the arrangement of the sensors is skewed
such that each sensor monitors several axes of the air vehicle. The problem now is to detect faults and performance degradation and to
localize the possibly defective sensor among the redundantly avalable ones.

The block diagram of the signal processing elements required for this purpose Is shown In Fig. 27. The measurement vector m
compds the sensor outputs and is a function of the real physical motion state. Moreover, the amaneable measurement contains
contributions due to step, rarnp- or stochastic type failures, represented by the failure vector E.

In a first ANN element, so-called validation or feature voctors xT 
- (v v .. ,v I are determined by a projection of the

measurement vector m. In the case of a specified fixed sensor geometry a hard-wirod ANNjFIg. 7, left network part) can be used where the
connection weights represent the projection mapping P.
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The second ANN element performs the fault detection and localization which corresponds to a classification. The output signals
calculated by the network and accumulated in the classification vector u gives Information which sensor Is oectve i.e. which class the
present Input feature vector Is belonging to. Correspondingly, only one of the output (u In Fig. 27) has a high activation (1 1) while the output
of the others is small. in the following two network models are considered for the clasuification task ANN-module.

FDIR NETWORK

* BLOCKDIAGRAM

* FAILURE D'TECTION AND LOCALIZATION

I- th MEASUMENT
DEFECT

P1. Pa Pt P Pn PI .

0T(:

---_a --- P P

P.1 *

DE1'ECTIM

FIGURE 27

O:timal Unear Associative Memory (O.AM)

If the determination of the feature vector LY) Is the result of a mathematically exact modelling of the relation between
characteristics and classes, an OLAM can be used. The process of encoding (learning) the Input Information Is then reduced to the a.prio I
calculation of the optimal weight matrix Q which mappes the input vector v onto the classification vector M. The optimal weight matrix W
yielding the least mean square correlation between input (k) and output vector ( k) pairs (k = 1,2...m) Is computed from the pseudo-Inverse
of the matrix X as shown in fig. 27. Here, X a (' ' Y - (k1j M2""... M). Greville's recursive algorithm can be utilized for example to
compute the pseudo-nvee of X The recalFlng Is sim-py th muldplIcation of by the optimal weight matrix W.

Yih OLAM, the total ANN for the faurt 3stection and localization Is hafdwired as shown in Fig. 27. t Is a three layer network. The
number of Input PE corresponds to the number of senas signals, the number of PE in the hidden layer to the dimension of the feature vectors
and the number of PE In the output layer to the number of defects or failures to be localized.

Back-onAmation network

It has already been mentioned that for the case of nely uneeparable classes multilayered nets must be used for classification.
The ntwork model mot wicily used for Vtil kind of applloaton Is toe back propagation network. b function and the a*oclated equations
are briefly reviewed he (Fig. 28).

input and output variables are scaled. The PE of the Input layer merely memorize the present Input signal. Each Input layer PE Is
connected with all PEs In the hidden layer. The latter multiply the Input signals as wall as th bias with the ass d weight factors

x " Wiw + we (13)
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Backpropagation ANN

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

V1 U

V"2

V n  ... 
m

ACTIVITY I INFORMATION FLOW OUTPUT DESIRED
INPUT y OUTPUTI OUTPUT

ERROR BACKPROPAGATION ERO

FIGURE 28

The output signal of the j-th hidden PE Is the sigmold function of Its activation Xj

Si - ((XJ) (14)

with

G '(x)= 1 / (1 eX) (15)

The same functions are performed by each PE of the output layer while these are also completely Interconnected with the PEs of
the hidden layer. There are no Intra-layer connections. Therefore the back propagation ANN Is a feed forward structure In which each elemont
of a follow-up layer receives Inputs from all elements of the preceeding layer.

The learning is performed by adapting the connection weights In such a way that the sum of the squares of the error between
network output variables u) and the desired output variables (J) of a set of training data Is minimized.

Let us assume that them are M Input/output vector pairs v(m); u(m) for the training. Initially, the weights are set to smell random
values. After the processing of the m-th training data pair, Itt' we ghts are adapted as follows:

w(m) . W(m1) +/aw(m) (16)

where bw(m) for the weights between hidden and output layer becomes

A wkjl(m) (5(kd kl ldk
m
)
1 - 

ukl(m) ) sj (17)

and for the weights between Input and hidden layer

NA .jI 1m). I:6 1 IdA(m1  1 1  ..) 'W j 1)v, lm (1,)
k-I

In this, Is again a measure for the learning rate, 6'(x) Is the derivative of the output function and v, Is the I-th Input signal.
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As shown by equation (18) the error between actual and desired output Is backpropagated from output to hidden-layer PEs.
Furthermore, there Is a weight transport from output to hidden-layer.

The total network for fault detection and localization (see albo Fig. 27) is shown In Fig. 29. As can be seen, the backpropagatlon
ANN Is preceeding by the network for the generation of feature vctjrs already Introduced in Fig. 27.

ANN FOR SENSOR FDI

MEASUREMENT GENERATION OFCLSICAON ESR
FEATURE VECTORS STUCLASSIFICATIONSSTATUS

FIGURE 29

The backpropgatlon part has been tralned with training data v(m), 9(m) In approx. 2,000 supervised learning steps. Tests with test
data sets showed very good results also with very noisy feature vectors.

The optimization of the number of PEa In the hidden layer generally is a problem of the backpropagatlon net. The PEa of the Input
and output layer are determined by the dimensions of the feature and classification vecto!s.

Neural taoet classification

For the classification of different targets in Infra-red PR) Images, a classifier has been designed on the basis of a backpropagation
ANN and compared with the results obtained with a polynomial classifler. The superiority of the neural classifier becomes evident from Fig. 30
where the detection rate Is plotted against the false alarm rate for both classifiers. It shall be mentioned here finally that the design and the
training of the neural classifier requires far less expense as compared to the development of the conventional one.

TARGET CLASSIFICATION

FALSE ALARM RATE
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1.6 I I I I-
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FIGURE 30
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10. Implementation of neural nets

The following includes a brief summary concerning the possbilities available today for the realization or implementation of ANN:

Software realizations for existing computers (super computers, massive parallel computers, conventional computers)
which are In principle not designed for ANN Implementations. Thereby, a mapping of the ANN Is made by vlrtualization on
systems and structures In which no or not all connections and processing elements of ANN are indeed physically existing,
L.e. they appear as memory areas and/or program structures.

Electronical iniplementations which are specifically designed for the layout of the ANN signal processing (bus-related
processors, co/attached processors, special Integrated circuits). Also analog devices are promising for high-speed ANN
Implementations.

Electro-optical or purely optical realizations. These will probably gain great importance In future.

I. Final Remarks

Concerning the aritic!al neural nets, there is at present a big euphoria. If we look at it soberly, however, it cannot be neglected that
there is a whole variety of unsettlod questions requiring Intensive research. In consideration of the obtained knowledge state and if we are
aware of the still unsettid questions, ANN can be used profitably for particular tasks already today.

The bioloVical rorvr, system Is the living example for the fact that strongly meshed systems of an extremely high order can adopt
ste5le states. Moreover, without supervised control, these biological systems are able to act purposively and task oriented. By an extensive
comprehension of the biological pn.radigm, the brain, we must try and strive to recognize the regularities which might be of decisive use to us
for the stabilization and elfl-.rgan!zation of highly Integrated complex dynamic systems.
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Neural Network Paradigms

Patrick K. Simpson
General Dynamics Electronics Division

P.0, Box 85310, MZ 7202-K
San Diego, CA 92138

SUMMARY AND WHAT ARE THEY GOOD FOR?

Building intelligent systems that can model Neural networks are information process-
human behavior has captured the attention of ing systems. In general, neural networks can be
the world for years. So, it is not surprising that thought of as "black box" devices that accept
a technology inspired by the mind and brain inputs and produce outputs. Some of the opera-
such as neural networks has generated great tions that neural networks perform include:
interest. This chapter will provide an evolution- • classification - an input pattern is passed to
ary introduction to neural networks by begin- the network and the network produces a
ning with the key elements and terminology of representative class as output.
neural networks and then developing the topol- rerntatie c as output
ogies, learning laws and recall dynamics from pattern matching- an input pattern is passed
this infrastructure. The perspective taken in this to the network and the network produces
paper is largely that of an engineer, emphasiz- the corresponding output pattern.
ing the application potential of neural networks * pattern completion - an incomplete pattern
and drawing comparisons with other tech- is passed to the network and the network
niques that have similar motivations. Mathe- produces an output pattern that has the
matics will be relied upon in many of the missing portions of the input pattern filled
discussions to make points as precise as possi- in.
ble. • noise removal - a noise-corrupted input pat-

tern is presented to the network and the net-
1. OVERVIEW OF PAPER work removes some (or all) of the noise and

produces a cleaner version of the input pat-
This paper begins with a review of what tern as output.

neural networks are and why they are so • optimization - an input pattern representing
appealing. A typical neural network is immedi- the initial values for a specific optimization
ately introduced to illustrate several of the key problem are presented to the network and
features, Then, the fundamental elements of a the network produces a set of variables that
neural network such as input and output pat- represent a solution to the problem.
terns, the processing element, connections, and
threshold operations are described, followed by rcntro a intratern eprese
descriptions of neural network topologies, rense of a controller and the despted
learning algorithms, and recall dynamics. Next, response for the controller and the output is
a taxonomy of neural networks is presented that the roperonseqate the desired response.
uses two of their key characteristics: learning
and recall. Finally, a comparison of neural net- Neural networks consist of layers of pro-
works and similar non-neural information pro- cessing elements and weighted connections.
cessing methods is presented. Each layer in a neural network consists of a col-

2. WHAT ARE NEURAL NETWORKS lection of processing elements (PEs). Each PE
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connection from x1 to y2). By adjusting the
Figure 1: A Typical Neural Network connection weights, information is stored in the

network. The value of the connection weights
Outputs are often determined by a neural network learn-

_& ing procedure (although sometimes they are
r Mpredefined and hardwired into the network).By

performing the update operations for each of
the PEs the neural network recalls information.

S  Fz There are two important features illustrated

by the neural network shown in Figure 1 that
apply to all neural networks:

Local Operations. Each PE acts indepen-
dently of all others. A PE's output relies

Fonly on its constantly available inputs from
Y Y2 the abutting connections. The information

21 wn provided by the adjoining connections is all
a PE needs to process. Information from
other PEs where an explicit connection
does not exist is not necessary.

Distributed Representation. The large num-
X2  X3  ber of connections provides a large amount

of redundancy and facilitates a distributed
representation. A large number of connec-
tions must be eliminated for a significant
amount of information to be destroyed.

L Inputs The first feature allows neural networks to
opemte efficiently in parallel. The last feature

collects the values from all of its input connec- provides neural networks with inherent fault-
tions, performs a predefined mathematical tolerance and generalization qualities that are
operation (typically a dot-product followed by very difficult to attain from typical computing
a threshold), and produces a single output systems. In addition to these features, neural
value, networks can learn arbitrary nonlinear map-

Figure 1 illustrates a typical neural network pings given the proper topology, nonlinear pro-
with three layers denoted FX, Fy, and FZ. The cessing elements from nonlinear threshold
bottom layer, FX, accepts inputs into PEs x1,  operations, 2nd appropriate learning rules. The
x2, x3. A collection of weighted connections ability to learn nonlinear mappings simply by
(sometimes called "weights" or "connections") presenting instances of input and output pat-
connect the FX PEs to the Fy PEs. The Fy PEs, tems is a powerful attribute shared by few sys-

Yi and Y2, are the hidden layer. Similarly, the tems.
Fy PEs are connected to the Fz PEs which form There are three primary situations where
the output layer. The weight names serve as neural networks are useful:
both a label and a value. As an example, in Fig- Situations where only a few decisions areure 1 the connection from the Fx PE x1 to the •Siutosweenlafwdesosar
Fy PE Y2 is the connection weight w12 (the required from a massive amount of data(e.g. speech and image processing).
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• Situations where nonlinear mappings must 3. DISSECTING NEURAL NETWORKS
be automatically acquired (e.g. loan evalu- A convenient neural network analogy is the
ations and robotic control). directed graph, where the edges and nodes cor-

• Situations where a near-optimal solution to respond to weights and PEs, respectively. In
a combinatorial optimization problem is addition to connections and processing ele-
required very quickly (e.g. airline schedul- ments, threshold functions and input/output
ing and telecommunication message rout- patterns are also basic elements in the design,
ins). implementation and use of neural networks.

To summarize, the foundations of neural After a description of the terminology used to
networks consist of an understanding of the describe neural networks, each of these ele-
nomenclature and a firm comprehension of the ments will be examined in turn.
rudimentary mathematical concepts used to 3.1. Terminology
describe and analyze neural network process-
ing. In a broad sense, neural networks consist Unfortunately, neural network terminologyof three principle elements: remains varied, with a standard yet to be

adopted (although there is an effort to create
• Topology. A neural network's organization one, cf. Eberhart, 1990). To illustrate some of

into interconnected layers. the terminology introduced here, please refer to

• Learning. The adjustment of weights to Figure 2.
store information. Input and output vectors (patterns) are

* Recall. Retrieving information stored in the denoted by subscripted capital letters from the
weights. beginning of the alphabet. The input m patterns

Sections 4, 5, and 6 describes each of these are denoted as Ak = (ak1, ak2, ..., akn); k = 1, 2,
elements, respectively., Prior to these discus- .... m, and the output patterns as Bk = (bkl, bk2,
sions, Section 3 will address the fundamental ... , bkp); k = 1, 2, ..., m.
components used to create a neural network: The PEs in a layer will be denoted by the
connections, processing elements, and thresh- same subscripted variable. The collection of
old functions. PEs in a layer form a vector and these vectors

will be denoted by capital letters from the end

Figure 2: Two-layer Feedforward Neural Network & Weight Matrix
(bkl , bk2 , , bkp) =Bk

Yi Y2 Y3 "" Yp Fy

Y1 Y2 Y3 Yp F~ Y1 W11 W12 W13 *..

yX W21 W22 W2 3  Wlp

w

IC C
X1 2 3 n xXn Wni Wn2 Wna Wnp

FX(",
( a8kl ak2 , ak3 , " ' , akn ) =Ak W
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of the alphabet. In most cases three layers of can greatly affect the performance of the net-
PEs will suffice. The input layer of PEs is work.
denoted as FX = (xl , x2, ..., xn), where each xi In some instances the representation of the
receives input from the corresponding input features as a pattern vector is constrained by the
pattern component aki. The next layer of PEs type of processing the neural network can per-
will be the Fy PEs, then the FZ PEs (if either form. Some networks can only process binary
layer is necessary). The dimensionality of these data, such as the Hopfield network (Hopfield,
layers depends on its use. Using the network in 1982; Amari, 1972), Binary Adaptive Reso-
Figure 2 as an example, the second layer of the nance Theoiy (Carpenter & Grossberg, 1987a),
network is the output layer, hence the number and the Brain- State-in-a-Box (Anderson, et al.,
of Fy PEs must match the dimensionality of 1977). Others can process real-valued data such
output patterns. In this instance, the output as backpropagation (Werbos, 1974; Parker,
layer is denoted as Fy = (Y1, Y2, ..., yp), where 1982; Rumelhart, Hinton, & Williams, 1986)
each yj is correlated with the j'th element of Bk. and Learning Vector Quantization (Kohonen,

Connection weights are stored in weight 1984). Creating the best possible set of features
matrices. Weight matrices will be denoted by and properly representing those features is the
capital letters toward the middle of the alpha- first step toward success in any neural network
bet, such as U, V, and W. Referring to the exam- application (Anderson, 1990).
ple in Figure 2, this two layer neural network 3.3. Connections
requires one weight matrix to fully connect the
layer of n FX PEs to the layer of p Fy PEs. The A neural network is equivalent to a directed
matrix shown in Figure 2 describes the full set graph (digraph). A digraph has edges (connec-
of connection weights between FX and Fy, tions) between nodes (PEs) that allow informa-
where the weight wij is the connection weight tion to flow in only one direction (the direction
from the i'th Fx PE, xi, to the j'th Fy PE, yj. denoted by the arrow). Information flows

through the digraph along the edges and is col-
3.2. Input and Output Patterns lected at the nodes. Within the digraph repre-

Neural networks can not operate unless sentation, connections determine the direction
they have data. Some neural networks require of information flow. As an example, in Figure 2
only single patterns and others require pattern the information flows from the Fx layer
pairs. Note that the dimensionality of the input through the connections, W, to the Fy layer.
pattern is not necessarily the same as the output Neural networks extend the digraph representa-
pattern. When a network only works with sin- tion to include a weight with each edge (con-
gle patterns, it is an autoassociative network. nection) that modulates the amount of output
When a network works with pattern pairs it is signal passed from one node (PE) down the
heteroassociative. connection to the adjacent node. For simplicity,

One of the key issues when applying neural the dual role of connections will be employed.

networks is determining what the patterns A connection both defines the information flow

should represent. For example, in speech rec- through the network and it modulates the

ognition there are many different types of fea- amount of information passing between to PEs.

tures that can be employed (Lippmann, 1989), The connection weights are adjusted during
including: linear predictive coding coefficients, a learning process that captures information.
Fourier spectra, histograms of threshold cross- Connection weights that are positive valued are
ings, cross-correlation values. The proper excitatory connections. Those that with nega-
selection and representation of these features tive values are inhibitory connections. A con-
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nection weight that has a zero value is the same "' 3 '
as not having a connection present. By only Figure 3: The Processing Element
allowing a subset of all the possible connec-
tions to have non-zero values, sparse connec- X1 1
tivity between PEs can be simulated.

It is often desirable for a PE to have an 21 y = F(XWje1) 
internal bias value (threshold value). Panel (a) 31

of Figure 3 shows the PE yj with three connec- x
tions from Fx (w1j, w2j, w3j), and a bias val-
ue,Oj. It is convenient to consider this bias value
as an extra connection, w0j, emanating from the X0=1 w
FX PE x0, with the added constraint that x0 is
always equal to 1 as shown in panel (b). This e d wl y F(XWj,
mathematically equivalent representation sim- w Y (b)
plifies many discussions. Throughout the paper x2 w-3-
this method of representing the bias (threshold)
vaJues will be employed.x3

3.4. Processing Elements

The processing element (PE) is the portion
of the neural network where all the computing There are several mechanisms for comput-
is performed. Figure 3 illustrates the most com- ing the output of a processing element. The out-
mon type of PE. A PF can have one input con- put value of the PE shown in Figure 3(b), yj, is
nection, as is the case when the PE is an input a function of the outputs of the preceding layer,
layer PE and it receives only one value from the Fx = X = (XI, x2 , ... , Xn) and the weights from

corresponding component of the input pattern, Fx to yj, Wi = (wl, w2j, ... , wnj). Mathemati-
or it can have several weighted connections, as cally, the output of yj is a function of its inputs
is the case of the Fy PEs shown in Figure 2 and its weights,
where there is a connection from every Fx PE
to each Fy PE. Each PE collects the informa- YJ = F (X, Wj). (1)

tion that has been sent down its abutting con- 3.4.1. Linear Combination
nections and produces a single output value. The most common computation performed
There are two important qualities that a PE by a PE is a linear combination (dot-product) of
must possess: the input values, X, with the abutting connec-

* Local Operations. Described earlier in § 1. tion weights, Wj, followed by a threshold oper-
* Single Output Value. Each PE produces a ation (cf. Simpson, 1990a; Hecht-Nielsen,

single output value that is propagated 1990; Maren, Harston & Pap, 1990). Using the
through the connections from the emitting PE in Figure 3(b) as an example, the output yj
PE to other receiving PEs or it will be out- is computed using the equation
put from the network.

These two qualities allow neural networks to y f iwij) = f(X * Wj) (2)
operate in parallel. The value of the PE and its = 0
label use the same symbol. As an example, the whereW = (wl, w2j, ..., wnj) and f is one of the
output PE label yj in Figure 3 represents both threshold functions described in §3.4. of this
the PEs placement in the network and its value.
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chapter. The dot product update has a very
appealing quality that is intrinsic to its compu- Figure 4: Dual Connections
tation. Using the relationship Ak*W j
cos(Ak,W)/llAklI IIWJII, it is seen that the larger V11
the dot product (assuming fixed length Ak and V: W
Wj) the more similar the two vectors are.
Hence, the dot product can be viewed as a sim- =F(VW J

ilarity measure. Its

3.4.2. Mean-Variance Connections

In some instances PEs will have two con-
nections interconnecting PEs instead of just
one as shown in Figure 4. One use of these dual
connections is to allow one set of the abutting
connections represent the mean of a class and suring the amount of the input pattern that falls
the other the variance of the class (Lee & Kil, within the bounds, a m1-max activation value
1989; Robinson, Niranjan, & Fallside, 1988). is produced (Simpson, 1990b). Figure 5 illus-
In this case, the output value of the PE depends trates this notia using a graph representation
on the inputs and both sets of connections, i.e. for the mn and the mal. points. The ordinate of
yj = F(X,Vj,Wj), where the mean connections the graph re a vesents the value of each elementare represented by Wj = (wi1j, w2j, ... , wnj) and of the mmn and max vectors and the abscissa of
th ar iapreecnnte to J = (lj, v2j, ... vn) the graph represents the dimensionality of the
the variance connections V.=(lvj .,vj classification space. The input pattern, X, isfor the PE yj. Using this scheme, the output of claifith the ns ofte X, is
yj is calculating the difference between the compared with the bounds of the class. The
input, X, and the mean, WJ, divided by the vari- amount of disagreement between the classes
ance, Vj, squaring the resulting quantity, and bounds, ' and W, and input pattern, X, is

passing this value through a Gaussian threshold shown n the shaded regions. The measure of

function to produce the final output value as these shaded regions produces an activation

follows value y,

A fuzzy set, A, is defined as a set of ordered
Y i = l Wij-x (3) pairs, A = (x, mA(x)1. A direct analogy with

YJ = g vw (3) fuzzy sets is found when the min-max class is
- Ithe collection of points defining some set and

where the Gaussian threshold function is the classification function is the membership
function. When cast in this framework, each

g-= x ( class in a fuzzy min-max network is actually a
g(x) = exp(-) (4) fuzzy set. The classification value produced

The Gaussian threshold function is described in from the fuzzy min-max PEs represents the
greater detail in §3.5.5. degree to which an input pattern (object) fits
greater Mwithin each of the classes (fuzzy sets). Refer-
3.4.3. Min-Max Connections ring once again to Figure 5 and utilizing this

Another less common use of dual connec- fuzzy logic scheme, the max bound, Wi, is the
tions is to assign one of the abutting vectors, maximum point allowed in class j and the min
say V, to become the minimum bound for the bound, V, is the minimum point allowed in
class and the other vector, W, to becomes the class j. Measuring the degree to which X falls
maximum bound for the same class. By mea- between VJ and WJ can be done by measuring
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linearity in the network dynamics by bounding
Figure 5: Min-Max Classification a PE's output values to a fixed range.

3.5.1. Linear Threshold Function
Ak The linear threshold function (see Figure

6(a)), produces a linearly modulated output
IWJ from the input x as described by the equation

0y
L VJ (X) = (x x (6)

E where x ranges over the real numbers and a is
_ _ __ a positive scalar. If a = 1, it is equivalent to

dimension removing the threshold function completely.

3.5.2. Step Threshold Function
the relative amount of X that falls outside class The step threshold function, (see Figure
j. Rescaling the n-dimensional space to lie 6(b)), produces only two values, 03 and 8. If the
within the unit cube allows the use of the fuzzy input to the threshold function, x, equals or
supersethood and subsethood measures to pro- exceeds the threshold value, 0, then the step
duce classification values. (Kosko, 1986a). The threshold function produces the value P, other-
activation value of yj (the degree to which X wise it produces the value -8, where 3 and 8 are
belongs to the class j) is defined as the degree positive scalars. Mathematically this function
to which X is a superset of Wj times the degree is described as
to which Vj is a subset of X, yielding the output
value A 3 if (x < 0)

= 1ftx) = (- f x0 (7)
yj = (1- supersethood (X, Wj)) -8i if (x<0)

I- supesethood(X, V ( Typically the step threshold function produces

x (P1 - subsethood (X, V)) (5) a binary value in response to the sign of the

It is easy to show that yj is bound to the closed input, emitting + 1 if x is positive and 0 if it is
interval from 0 to 1. When yj = 1, X lies corn- not. By making the assignments 3=1, 8-0, and
pletely within the min-max bounds. When yj = 0=0, the step threshold function becomes the
0, X falls completely outside of the mn- max binary step function
bounds. When 0 < y.< 1, the value describes
the degree to which X is contained by the min- 1 if (x _> 0)
max bounds, fix) = 0 otherwise(

3.5. Threshold Functions
which is common to neural networks such as

Threshold functions, alsoreferto as the Hopfield neural network (Amari, 1972;
activation functions, sqasigfunctions, or Hopfield, 1982) and the Bidirectional Associa-
signal functions, map a PE's (possibly) infinite tive Memory (Kosko, 1988). One small varia-
domain to a prespecified range. Although the tion of equation (8) is the bipolar threshold
number of threshold functions possible is quite function
varied, there are five that are regularly
employed by the majority of neural networks: 1 if (x _ 0)
(1) linear, (2) step, (3) ramp, (4) sigmoid, and fix) = ((-1) otherwise (9)

(5) Gaussian. With the exception of the linear
threshold function, all of these introduce a non- which replaces the 0 output value with a -1. In
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punish-reward systems such as the Associative 3.5.3. Ramp Threshold Function
Reward-Penalty (Barto, 1985), the negative The ramp threshold function, (see Figure
value is used to ensure changes, where a 0 will 6(c)), is a combination of the linear and step
not. threshold functions. The ramp threshold func-

,_ _,_,,_tion places an upper and lower bound on the
values that the threshold function produces and
allows a linear response between the bounds.

f(x) These saturation points are symmetric around
the origin and are discontinuous at the points of
saturation. The ramp threshold function is

(a defined as(a) x

' if (x2y)

fix) = jx if (Ixl < Y) (10)

f(x)' Y if (x! -)
where yis the saturation value for the function

+7 and the points x = yand x = -y are where the dis-

(b) D continuities in f exist.
..- 3.5.4. Sigmoid Threshold Function

The sigmoid threshold function, (see Figure
6(d)), is a continuous version of the ramp

f(x) threshold function. The sigmoid (S-shaped)
function is a bounded, monotonic, non-

0 decreasing function that provides a graded,
(C) 4- nonlinear response within a prespecified range.

X The most common sigmoid function is the
logistic function

If(x) fix) -l+e (1I)

where a>O (usually a = 1), which provides an

(d) ~output value from 0 to 1. This function is famil-
x iar to statistics (as the Gaussian distribution

function), chemistry (describing catalytic reac-
tions), and sociology (describing human popu-
lation growth). Note that a relationship

variance between equation (11) and equation (8) exists.

f(x) When oa = oo in equation (11), the slope of the
sigmoid function between 0 and 1 becomes

(e) infinitely steep and, in effect, becomes the step
function described by equation (8).

ma O Two alternatives to the logistic sigmoid

,,__function are the hyperbolic tangent
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[(x) = tanh (x) (12) the input pattern and the layer of Fy PEs all

which ranges from -1 to 1, and the augmented receive their inputs from the Fx PEs; and (2)

ratio of squares the PEs in each layer utilize the same type of
update dynamics, eg. all the PEs will use the

( same type of connections and the same type of
Ax) [x 2 /(1+x 2 )] if (x>0) (13) threshold function.

0 otherwise 4.1.2. Intralayer vs. Interlayer Connections
which ranges from 0 to 1. There are two types of connections that a
3.5.5. Gaussian Threshold Function neural network employs: intralayer connec-

The Gaussian threshold function, (see Fig- tions and interlayer connections. Intralayer
ure 6(e)), is a radial function (symmetric about connections are connections between PEs in
the origin) that requires a variance value, v > 0, the same layer. Interlayer connections are con-
to shape the Gaussian function. In some net- nections between PEs in different layers. It is
works the Gaussian function is used in conjunc- possible to have neural networks that consist of
tion with a dual set of connections as described one, or both, types of connections.
earlier by equation (3) and in other instances 4.1.3. Feedfnrward vs. Feedback Networks
(Specht, 1990) the variance is predefined. In the
latter instance, the threshold function is When a neural network has connections

that feed information in only one direction,
S2 from input to output, without any feedback

x) = exp(-) (14) pathways in the network, it is a feedforward
neural network. The network is a feedback net-

where x is the mean and v is the predefined work if the network has any feedback paths,
variance, where feedback is defined as any path through

the network that would allow the same PE to be
4. NEURAL NETWORK TOPOLOGIES visited twice.

The building blocks for neural networks are 4.2. nstars, Outstars & the Adaline
in place. Neural network topologies now The two simplest neural networks are the
evolve from the patterns, PEs, connections, and instar and the outstar (Grossberg, 1982). The
threshold functions described in §3. Neural net- instar (see Figure 7(a)), is the minimal pattern
works consist of layer(s) of PEs interconnected encoding network. A simple example of an
by weighted connections. The arrangement of encoding procedure for the instar would take
the PEs, connections and patterns into a neural the pattern, Ak = (ak1, a2, ..., akn), normalize it,
network is referred to as a topology. After intro- and use the values as the weights, Wj = (w1j,
ducing some terminology six common neural w2j, ..., wnj), as shown by the equation
network topologies will be described.

4.1. Terminology aki(15)

4.1.1. Layers
Iki

Neural networks are organized into layers i = i

of PEs. PEs within a layer arc similar in two for all i = 1, 2,..., n.
respects: (1) the connections tnat feed the layer The dual of the instar is the outsar, (see
of PEs is from the same source, eg. the Fx layer Te 7(b)).fIlee instar is the ounimala(see
of PEs in Figure 2 all receive their inpts from Figure 7(b)). The outstar is the minimal patternrecal .ieural network. An output pattern is gen-
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row & Steams, 1985). Applications of the FIR
Figure 7: Instar & Outstar filter to noise cancellation, echo cancellation,

adaptive antennas, and control are numerous
(Widrow & Winter, 1988).

(a) 4.3. Single-layer Networiks: Autoassociation,
Yj Optimization, and Contrast Enhancement

Beyond the instar/outstar neural networks
are the single layer intraconnected neural net-

ViJ V2J V3J Vi works. Figure 8 shows the topology of a one-
layer neural network which consists of n Fx

1 2 • Fx  PEs. The connections from each Fx PE to every
other Fx PE and itself, yielding a connection

• •" matrix with n2 entries. The single-layer neural
( ak1 , ak2 , ak3 ,..., a) = Ak network accepts an n-dimensional input pattern

in one of three ways:

• PE Initialization Only. The input pattern is
used to initialize the Fx PEs and the input

(b) Yj pattern does not influence the processing
.J thereafter.

• PE Initialization and Constant Bias. The
input pattern is used to initialize the Fx PEs

WI1  WJ2 Wj3  Wp and the input remains as a constant valued

input bias throughout processing.

iZ2  Z3 z1  Fz * Constant Bias Only. The PEs are initialized
to all zeroes and the input pattern acts as a
constant valued bias throughout process-

(bkl , bk2 , bk3 ., bkp) =Bk ing.

One-layer neural networks are used for pat-
IIIII fm te utern completion, noise removal, optimization,

crated from the outstar using the equation and contrast enhancement. The first two opera-

= i (16) tions are performed by autoassociatively
= -yjwji encoding patterns and typically using the input

for all i = 1, 2, ..., p, where the weights are
determined using equation (15) or one of the
learning algorithm: described in §5. Figure 8: One-layer Neural Network

The ADALINE, ADAptive LInear NEuron,
(Widrow & Hoff, 1960) has the same topology
as the instar (see Figure 7(a)), but the weights,
Vj, are adjusted using the Least-Mean-Square
(LMS) algorithm (see §5.7.1.). In the frame- FX
work of adaptive signal processing, a similar
topology with the same functionality is referred
to a finite impulse response (FIR) filter (Wid- ( Ok , OW , , , akn ) Ak
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pattern for PE initialization only. The optimiza- face and output a complete face.
tion networks are dynamical systems that stabi- 4.3.2. Noise Removal
lize to a state that represents a solution to an
optimization problem and typically uses the Noise removal is similar to pattern comple-
inputs for both PE initialization and as constant tion in that a complete, noise-free, response is
biases. Contrast enhancement networks use the desired from a pattern corrupted by noise. Fun-
input patterns for PE initialization only and can damentally there is no difference between noise
operate in such a way that eventually only one removal and pattern completion. The differ-
PE remains active. Each of these one-layer neu- ence tends to be entirely operational. Using the
ral networks are described in greater detail in previous image storage example, if a blurry or
the following paragraphs. splotchy image is presented to the neural net-

work, the output would be a crisp clear image.
4.3.1. Pattern Completion Single-layer neural networks designed for pat-

Pattern completion in a single-layer neural tern completion and noise cancellation include
network is performed by presenting a partial the Discrete Hopfield network (Hopfield,
pattern initially, and relying upon the neural 1982), the Brain-State-in-a-Box (Anderson, et
network to complete the remaining portions. al., 1977), and the Optimal Linear Associative
As an example, assume a single layer neural Memory (Kohonen, 1984).
network has stored images of human faces. If
half of a face is presented to the neural network
as the initial state of the network, the neural One of the most prevalent uses of neural
network would complete the missing half of the networks is optimization (Hopfield & Tank,

I- - I II -l l II I

Figure 9: Local and Global Contrast Enhancement
+Ct +(X +0L +0L +C - on-center values

are all +a

(akl, au , a. , 4, a(a-- ' Fx  off-surround values

re all -0 (locally connected)

( 8 a 3 " 4 ak) 5 =k

&on-cente values

are all +a

(b)
XI X X3 4 Xs F Xoff-surround values

are all -~(fully connected)
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1985; Tank & Hopfield, 1986). Optimization is 4.4. Two-layer Networks: Heteroassociation
a technique for solving a problem by casting it and Classification
into a mathematical equation that, when either Two-layer neural networks consist of a
maximized or minimized, solves a problem. layer of n Fx PEs fully interconnected to a layer
Typical examples of problems approached of p Fy PEs as shown in Figure 10. The connec-
using an optimization technique include sched- tions from the FX to Fy PEs form the n-by-p
uling, routing, and resource allocation. The
neural optimization approach casts the optimi-
zation problem into the form of an energy func-
tion that describes the dynamics of a neural Figure 10: Examples of Two-layer
system. If the neural network dynamics are Neural Networks
such that the network will always seek a stable
state when the energy function is at a minimum,
then the network will automatically find a solu-
tion. The inputs to the neural network are the Y Y Y ""
initial state of the neural network and the final
PE values represent the parameters of a solu-
tion. (a)

4.3.4. Contrast Enhancement

Contrast enhancement in single-layer neu- X X X3 (

ral networks is achieved using on-center/off-
surround connection values. The on-center
connections are positive self-connections, i.e.
wii -" ( (a > 0) for all i = 1, 2, ..., n, that allow
a pattern's activation value to grow by feeding 1 """
back upon themselves. The off-surround con-
nections are negative neighbor connections, i.e.
wij = -J0 (P3 > 0) for all i not equal to j, that com- (b)
pete with the on-center connections. The com-
petition between the positive, on-center, and X3
the negative, off-surround, activation values
are referred to as competitive dynamics. Con-
trast enhancement neural networks take one of
two forms: locally connected and globally con-
nected. If the connections between the FX PEs
are only connected to a few of the neighboring
PEs (see Figure 9(a)), the result is a local com-
petition that can result in several large activa-Y.3 .
tion values. If the off-surround connections are
fully interconnected across the FX layer (see (c)
Figure 9(b)), the competition will yield a single
winner.

*** X2 X3
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weight for the connection from i'th Fx PE, xi, utilize the competitive dynamics of global on-
to the j'th Fy PE, yj. There are three common center/off-surround connections to perform the
types of two-layer neural networks: feedfor- classification.
ward pattern matchers, feedback pattern match- 4.5. Multi-layer Networks: Heteroassocia-
ers, and feedforward pattern classifiers. tion and Function Approximation 1

4.4.1. Feedforward Pattern Matching A multi-layer neural network has more than

A two-layer feedforward pattern matching two layers, possibly many more. A general
neural network maps the input patterns, Ak, to description of a multi-layer neural network is
the corresponding output patterns, Bk, k = 1, 2, shown in Figure 11, where there is an input
..., m. The network shown in Figure 10(a) illus- layer of PEs, FX, L hidden layers of Fy PEs
trates the topology of this feedforward network. (Y 1, Y2, ..., YL), and a final output layer, FZ.
The two-layer feedforward neural network The Fy layers are called hidden layers because
accepts the input pattern Ak and produces an there are no direct connections between the
output pattern, Y = (Y1, Y2, ..., yp), that is the input/output patterns to these PEs, rather they
network's best estimate of the proper output are always accessed through another set of PEs
given Ak as the input. An optimal mapping such as the input and output PEs. Although Fig-
between the inputs and the outputs is one that ure 11 shows connections only from one layer
produces the correct response Bk when Ak is to the next, it is possible to have connections
presented to the network, k = 1, 2, ..., m. Most that skip over layers, that connect the input PEs
two-layer networks are concerned with finding to the output PEs, or that connect PEs together
the optimal linear mapping between the pattern within the same layer. The added benefit of
pairs (Ak,Bk) (cf. Widrow & Winter, 1988; these PEs is not fully understood, but many
Kohonen, 1984), but there are other two-layer applications such as prediction and classifica-
feedforward networks that also work with non- tion are employing these types of topologies.
linear mappings by extending the input patterns Multi-layer neural networks are used for
to include multiplicative combinations of the pattern classification, pattern matching and
original inputs (Pao, 1989; Maren, Harsten & ptencasfctoptenmthn nP anps . 1function approximation. By adding a continu-
Pap, 1990). ously differentiable threshold function, such as
4.4.2. Feedback Pattern Matching a Gaussian or sigmoid function, it is possible to

A two-layer feedback pattern matching learn practically any nonlinear mapping to any

neural network, shown in Figure 10(b), accepts desired degree of accuracy (White, 1989). The
inputs from either layer of the network, either mechanism that allows such complex map-
the FX and Fy layers, and produces the output pings to be acquired is not fully understood for

for the other layer (Kosko, 1988; Simpson, each type of multi-layer neural network, blit in

1990). general the network partitions the input space
into regions and a mapping from the partitioned

4.4.3. Feedforward Pattern Classification regions to the next space is performed by the

A two-layer pattern classification neural net- next set of connections to the next layer of PEs,

work, shown in Figure 10(c), maps an input eventually producing an output response. This

pattern, Ak, to one of p classes. By representing capability allows some very complex decision

each class as a separate Fy PE, the pattern clas- regions to be performed for classification and

sification task is then reduced to selecting the pattern matching problems, as well as applica-

Fy PE that best responds to the input pattern. tions that require function approximation.

Most two-layer pattern classification systems There are several issues that must be
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Network (Specht, 1990), the Boltzmann
Figure 11: General Mulit-layer Machine (Ackley, Hinton & Sejnowski, 1985),

Neural Network and the Cauchy Machine (Szu, 1986).

COMPUTED OUTPUTS 4.6. Randomly Connected Networks

Fz Randomly connected neural networks are [F Z networks that have connection weights that are

randomly assigned within a specific range.
FyL Some randomly connected networks have

binary valued connections. Realizing that, a
FY jconnection weight equal to zero is equivalent to

no connection being present, binary valued ran-
dom connections create sparsely connected

FX networks. Randomly connected networks are
Fx "used in three different ways:

•* Initial weights - The initial connection val-
INPUTS ues for the network prior to training are pre-

set to random values within a predefined
addressed when working with multi-layer neu- range. This technique is used extensively in
ral networks. How many layers is enough for a effor-correction learning systems (see §5.5
given problem? How many PEs are needed in - §5.6. below).
each hidden layer? How much data is needed to
produce a sufficient mapping from the input dom pbr e ongnetof ae race
layer to the output layer? Some of these issues dom binary valued connections are placedhave been successfully dealt with. As an exam- between the first two layers of a multi-layer

terehave been s evsf dealt r hes hat eneural network as a pattern preprocessor.
pie, tThe use of such random connections can be
have proven that three layers is sufficient to used to increase the dimensionality of the
perform any nonlinear mapping (with the
exception of a few remote pathological cases) space that is being used for mappings in an
to any desired degree of accuracy with only one effort to improve the pattern mapping capa-
layer of hidden PEs (see White, 1989 for a biity. This approach was pioneered with
review of this work). Although this is a very the early Perceptron (Rosenblatt, 1962) and
important result, it still does not indicate what has been used recently in the Sparse Dis-
the proper number of hidden layer PEs is, or if
the same solution can be obtained with more * Intelligence from randomness - Early stud-
layers but fewer hidden PEs and connections ies in neural networks spent a great deal of
overall, effort analyzing randomly connected

binary valued systems. The model of theThere are several ways that multi-layer brain as a randomly connected network of

neural networks can have their connection neurons rom ted this research. These

weights adjusted to learn mappings. The most n ed p

popular technique is the backpropagation algo- fixed weight, non-adaptive systems have

rithm (Werbos, 1974; Parker, 1982; Rumelhart, and Rozonoer (1969).

Hinton & Williams, 1986) and its many vari-

ants (see Simpson, 1990a for a list). Other
multi-layer networks include the Neocognitron
(Fukushima, 1988), the Probabilistic Neural
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5. NEURAL NETWORK LEARNING In temporal learning the current response of the

Perhaps the most appealing quality of neu- network is dependant on previous inputs and
ral networks is their ability learn. Learning, in responses. In structural learning, there is no
this context, is defined as a change in connec- such dependance. Examples of temporal learn-

tion weight values that results in the capture of ing include prediction and control. The rein-
forcement learning algorithmq discussed belowinformation that can later be recalled. There are is an example of a temporal learning procedure.

several different procedures available for
changing the values of connection weights. Unsupervised learning, also referred to as
After an introduction to some terminology, self-organization, is a process that incorporates
eight different learning methods will be no external teacher ari relies upon only local
described. For continuity of discussion, the information during th entire learning process.
learning algorithms will be described in point- Supervised learning organizes presented data
wise notation (as opposed to vector notation). and discovers its emergent collective proper-
In addition, the learning algorithms will be ties. Examples of unsupervised learning that
described using discrete time equations (as will be discussed in the following sections
opposed to continuous time). The use of dis- includes Hebbian learning, principle compo-
crete-time equations makes them more accessi- nent learning, differential Hebbian learning,
ble to digital computer simulations. min-max learning, and competitive learning.

5.1. Terminology 5.1.2. Off-line vs. On-line Learning

5.1.1. Supervised vs. Unsupervised Learning Most learning techniques utilize off-line
All learning methods can be classified into learning. When the entire pattern set is used toAlldilearning methodsicanprberclassifiedeintotg

two categories, supervised learning and unsu- condition the connections prior to the use of the

pervised learning. Supervised learning is a pro- network, it is called off-line learning. As an

cess that incorporates an external teacher and/ example, the backpropagation training algo-

or global information. The supervised learning rithm (see §5.7.2.) is used to adjust connections

algorithms that will be discussed in the follow- in multi-layer neural network, but it requires

ing sections include error correction learning, thousands of cycles through all the pattern pairs

reinforcement learning, stochastic learning, until the desired performance of the network

and hardwired systems. Examples of super- has been achieved. Once the network is per-

vised learning include; deciding when to turn forming adequately, the weights are frozen and

off the learning, deciding how long and how the resulting network is used in recall mode

often to present each association for training, thereafter. Off-line learning systems have the

and supplying performance (error) informa- intrinsic requirement that all the patterns have

dion. Supervised learning is further classified to be resident for training. Such a requirement

learning and does not make it possible to have new patterns
itoral wolsaorie Structural automatically incorporated into the network astemporal learning. Structural learning is con- thyocrraerhsenwptrsmutb

cerned with finding the best possible input-out- they occur, rather these new patterns must be

put relationship for each individual pattern pair. o the er netor mute dne again
Examples of structural learning include pattern g
matching and pattern classification. The major- Not all neural networks perform off-line
ity of the learning algorithms discussed below learning. There are some networks that can add
focus on structural learning. Temporal learning new information "on the fly" non-destructively.
is concerned with capturing a sequence of pat- If a new pattern needs to be incorporated into
terns necessary to achieve some final outcome. the network's connections, it can be done
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immediately without any loss of prior stored type of learning and analyze the capabilities of
information. The advantage of off-line learning these networks using linear systems theory as a
networks is they usually provide superior solu- guide. The number of patterns that a network
tions to difficult problems such as nonlinear trained using equation (17) with unbounded
classification, but on-line learning allows ti, weights and connections is limited to the
neural network to learn in-situ. A challenge in dimensionality of the input patterns (cf. Simp-
the future of neural network computing is the son, 1990a).
development of learning techniques that pro- 5.2.2. Bounded PE Values & Unbounded
vide high-performance on-line learning with- Weights
out extreme costs.

Recently, implementations that restrict the
5.2. Hebbian Correlations values of the PEs and/or the weights of equa-

The simplest form of adjusting connection tion (17) have been employed. These networks,
weight values in a neural network is based upon called Hopfield Networks because John Hop-
the correlation of PE activation values. The field had excited people about their potential
motivation for correlation-based adjustments (Hopfield, 1982), restrict the PE values to either
has been attributed to Hebb (1949) who binary (0,1 ) or bipolar (-1,+1 ) values. Equa-
hypothesized that the change in a synapses effi- tion (17) is used for these types of correlations.
cacy (its ability to fire, or as we are simulating These discrete-valued networks typically
it in our neural networks, the connection involve some form of feedback recall, resulting
weight) is prompted by a neuron's ability to in the need to show that every input will pro-
produce an output signal. If a neuron, A, was duce a stable response (output). By limiting the
active, and A's activity caused a connected neu- PE values during processing, nonlinearities are
ron, B, to fire, then the efficacy of the synaptic introduced in the system, eliminating some of
connection between A and B should be the linear systems theory analyses that had pre-
increased. viously been performed. By adding feedback

5.2.1. Unb~ounded PE Values and Weights into the recall process, a discrete valued, non-

This form of learning, now commonly linear, dynamical system is formed. The single

referred to as Hebbian learning, has been math- layer versions of this learning rule are
ematically characterized as the correlation described as Hopfield nets (Hopfield, 1982)
weight adjustment and the two-layer versions as the Bidirectional

Associative Memory (Kosko, 1988). Some of

wnew = old +a b (17) the earlier analysis of these networks was per-
i. =i ki kj formed by Amari (1972 & 1977) who used the

where: i = 1,2, ..., n; j = 1,2, ..., p; xi is the value theory of statistical neurodynamics to show

of the i'th PE in the Fx layer of a two layer net- these networks were stable. Later Hopfield

work; yj is the value of the th Fy PE; and the (1982) had found an alternative method to

connection weight between the two PEs is wij prove stability. Also, the number of patterns

In general, the values of the PEs can range over that neural networks of this form can store is

the real numbers and the weights are unbound, limited (McEleice, et al., 1987).

When the PE values and connection values are 5.2.3. Bounded PE Values and Weights
unbound, these two layer neural networks are Sometimes both the PE values and the
amenable to linear systems theory. Neural net- weights are bounded. There are two forms of
works like the Linear Associative Memory suchts . Ther form an
(Anderson, 1970; Kohonen, 1972) employ this such systems. Ie first form is simply a running

average of the amount of correlation between

iUm | • ii | i I
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two PEs. The equation There are some neural networks that have
learning algorithms designed to produce, as anew 1od

wT =-k (aWbkJ+ (k - 1)w ) (18) set of weights, the principle components of the
input data patterns. The principle components k

describes the average correlation during the of a set of data are found by forming the cova-
presentation of the k'th pattern pair (Ak, Bk), riance (or correlation) matrix of a set of pat-
where: Ak = (akj, ak2, ..., akn); Bk = (bkl, bk2, terns and then finding the minimal set of
.... bkp); and k is current pattern number and k orthogonal vectors that span the space of the
= 1, 2, ..., m. The same information that was covariance matrix. Once the basis set has been
stored using equation (17) is stored using equa- found, it is possible to reconstruct any vector in
tion (18), the connection weights are simply the space with a linear combination of the basis
bound to the unit-interval in the latter case. vectors. The value of each scalar in the linear

The other example of a correlation neural combination represents the "importance" of
etworker eqmpleuoaorreation withbounethat basis vectors (Lawley & Maxwell, 1963).

naletwk arn ungd eqatsi wthe boune E It is possible to think of the basis vectors as fea-
values and bounded weights the sparse ture vectors and the combination of these fea-

ture vectors is used to construct patterns.

1 if akibkj = 1 Hence, the purpose of a principle component
( network is to decompose an input pattern into

n = jwif = 1 (19) values the represent the relative importance of

0 otherwise the features underlying the patterns.

This equation assigns a binary value to a con- The first work with principle component

nection if the PEs on each end of the connection learning was done by Oja (1982). Oja reasoned

have both had the value of I over the course of that Hebbian learning with a feedback term that

learning. The learning equation isequivalent to automatically constrained the weights could

performing the logic operation extract the principle components from the input
data. The equation Oja uses is

new =old

Wiw = (akir bkj) U iW? (20) new old old

where r) and U are the intersection and union w = w + b , (aa&i- poAjwij ) (21)

operations, respectively, where: aki is the i'th component of the k'th
input pattern Ak, i = 1, 2, ..., n; bkj is the j'th

Neural networks that have utilized this component of the k'th output pattern Bk, j = 1,
form of learning include the Learnmatrix 2,..., p; k = 1, 2,..., m; and a and 0 are positive
(Steinbuch & Piske, 1963) and the Willshaw constants.
Associative Memory (Willshaw, 1980). This
learning equation has a great deal of potential. A variant of the work by Oja has been
By sparsely encoding information in a binary developed by Sanger (1989) and is described
vector (say for example only 32 components by the equation
out of 1 million were set to 1, the others were
set to 0), it is possible to store a tremendous new= old

amount of information in the network. The wiJ W ij + k (akibkj - bkj_ YhWjh (22)

problem lies in creating the code necessary to

perform such dense storage (cf. Hecht-Nielsen, where the variables are similar to those of equa-
p990)s tion (21) with the exception of the non-zero,

time-decreasing learning parameter ^&. Equa-

5.3. Principle Component Learning tions (21) and (22) are very similar, the key dif-
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ference is equation (22) includes more that regulates the amount of change; and wij(t)
information in the feedback term and uses a is the connection value from the xi to yj at time
decaying learning rate. There have been many t. Klopf refers to the pre-synaptic changes,
analyses and applications of principle compo- Axi(t-h), h = 1, 2, ..., k, as drives and the post-
nent networks. For a review of this work, see synaptic change, Ayj(t), as the reinforcement,
Oja (1989). hence the name drive-reinforcement learning.

5.4. Differential Hebbian Learning 5.4.3. Covariance Correlation

Hebbian learning has been extended to cap- Sejnowski (1977) has proposed the covari-
ture the temporal changes that occur in pattern ance correlation of PE activation values in the
sequences. This learning law, entitled Differen- equation
tial Hebbian Learning, has been independently
derived by Klopf (1986) in the discrete time q ol + [(aki - x) (bkj - yj) ] (25)

form and by Kosko (1986b) in the continuous where the bracketed terms represent the covari-
time form. The general form, some variants, wher the diff er eeen the ovaci-and some similar learning laws are outlined in ance, the difference between the expected
the following sections. There are several other (average) value of the PE activation values andcheobwin ctions .th Th ee ered eylonr the input and output pattern values. The param-combinations that have been explored beyond
those that are presented in this section. A more eter 0< g < 1 is the learning rate. The overbar
thorough examination of these Hebbian learn- on the PE values represents the average value
ing rules and others can be found in Barto of the PE.
(1984) and Tesauro (1986). Sutton & Barto (1981) have proposed a similar

5.4.1. Basic Differential Hebbian Learning type of covariance learning rule, suggesting the
correlation of the expected value of xi with the

Differential Hebbian Learning correlates variance of yj as expressed by the equation
the changes in PE activation values with the

new oldequation = Wij + .xi (bkj-Y,) (26)

Wij(t + 1) = wij$t) + Axi(t - 1)Ayj(t) (23) 5.5. Competitive Learning

where: Axi(t) = xi(t) - xi(t-1) is the amount of Competitive learning, introduced by Gross-
change in the i'th FX PE at time t; and Ay)(t- 1) berg (1970) and Malsburg (1973) and exten-
= yj(t-1) - yj(t- 2 ) is the amount of change in the sively studied by Amari & Takeuchi (1978),
j'th Fy PE at time t. 1. Amari (1983) and Grossberg (1982) is a
5.4.2. Drive-Reinforcement Learning method of automatically creating classes for a

set of input patterns. Competitive learning is a
Klopf (1986) uses the more general case of two-step procedure that couples the recall pro-

this equation that captures changes in FX PEs cess with the learning process in a two-layer
over that last k time steps and modulates each neural network (see Figure 12). In Figure 12
change by the corresponding weight value for each FX PE represents a component of the input
the connection. Klopf's equation is pattern and each Fy PE represents a class (see

also §4.3.4.).
+ 1) = w,(:) + Step 1: Determine winning Fy PE. An input

k

x ~a(t- h)Iw - h)jAx5 - h) (24) pattern, Ak, is passed through the connections
-h - - ( from the input layer, Fx, to the output layer, Fy,

w he: is in a feedforward fashion using the dot product
where: a(t-h) is a decreasing function of time update equation
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yj= akiwij (27) Figure 12: Competitive Learning
i= i Neural Network

where: xi is the i'th PE in the input layer Fx , i Each Fy PE represents a class
= 1, 2, ..., n; yj is the j'th PE in the output layer
Fy, j = 1, 2, ..., p; and wij i3 the value of the con-
nection weight between xi and yj. Each set of
connections tha abut a Fy PE, say yj, as a ref-
erence vector W = (w1J, w2j, ..., wnj) represent-
ing the class j. The reference vector, W3, that is Fy yi y2 y3 ... Yp
closest to the input, Ak, should provide the
highest activation value. If the input patterns
Ak, k = 1, 2,..., m, and the reference vctors W), W
j = 1, 2, ..., p, are normalized to Euclidean unit
length, then the following relationship holds FX

/ n "

0:5 (yj =A, oWj= akiwij 51 (28) (41ak 2 8k ak Ak~

where the more similar Ak is to WJ, the closer where cx(t) is a positive, monotonically
the dot product is to unity (see §3.4.1.). The dot decreasing function of time. The result of this
product values, yj, &e used as the initial values operation is the motion of the reference vector
for winner-take-all competitive interacUoi-is toward the input vector. Over several presenta-
(see §4.3.4.). The re'do t of these interactions is tions of the data vectors (on the order of 10,000
identical to searching the Fy PEs and inding or more), the reference vectors will become the
the PE with the largest dot product value. Using centroids of data clusters (Kohonen, 1986).
the equation There have been several variations of this

algorithm (cf. Simpson, 1990a), but one of the
= 1 (yj Yk) for U k) (29) most important is the conscience mechanism

0 otherwise (DeSieno, 1988). By adding a conscience to
each Fy PE that only allows an Fy PE to

The Fy PE with the highest dot product value is become a winner if it has won an equiprobable
called the winning PE. The reference vector number of times. The equiprobable winning
associated with the winning PE is the winning constraint improves both the quality of solution
reference vector. and the learning time. Neural networks that

Step 2: Adjust winning Fy PE's connection val- employ competitive learning include Learning
ues. In competitive learning with winner-take- Vector Quantization (Kohonen, 1984), Self-
all dynamics like those described above, there Organizing Feature Maps (Kohonen, 1984),
is only one set of connection weights adjusted - Adaptive Resonance Theory I (Carpenter &
the connection weights of the winning refer- Grossberg, 1987a), and Adaptive Resonance
ence vector. The equation that automatically Theory II (Carpenter & Grossberi, 1987b).
adjusts the winning reference vector and no 5.6. Min-Max Learning
others is

Min-max classifier systems utilize a pair of
lwd+ at)y. (aki - w..) (30) vectors for each class (see §3.4.3.). For the

a
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class j, represented by the PE yj and defined by
the abutting vectors V (the min vector) and W. Figure 13: Two-Layer Network
(the max vector). Learnng i a mn-max neuraF
system is done using the equation (bk , b bk , , bkp) = Bk

oldo
w = min(aki, vd (31) Y1 Y2 Y3 Yp F

for the min vector and ft

w w = max(aki, w' ) (32) W

for the max vector. If the min and max vectors X 2 X n F
are constrained to lie between 0 and 1 along
each dimension, it is possible to think of each
reference vector as a fuzzy set (Simpson, (&kl , a , 8, , a
1990b). Within this framework, the fuzzy inter- _,

section of two vectors, Ak & Vj, is represented bk,- (33)
by equation (31) and the fuzzy union of two J
Nectors, Ak & Wj, is represented by equation The error is used to adjust the connections
(32). weights using the equation

5.7. Error Correction Learning w = od

Error correction learning adjusts the con- where the positive valued constant a is the
nection weights between PEs in proportion to learning rate
the difference between the desired and com-
puted values of each output layer PE. Two layer The foundations for the learning rule described

error correction learning is able to capture lin- by equations (33) and (34) are solid. By realiz-

ear mappings between input and output pat- ing that the best solution can be attained when

terns. Multi-layer error correction learning is all the errors for a given pattern across all the

able to capture nonlinear mappings between the output PEs, yj, is minimized, the following cost

inputs and outputs. In the following two sec- function can be constructed

tions, each of these learning techniques will be
described. E =1 (bkj - yj) 2  (35)

5.7.1. Two-Layer Error Correction Learn- j=1
ing When E is zero, the mapping from input to out-

Consider the two-layer network shown in put is perfect for the given pattern. By moving
Figure 13. Assume that the weights, W, are ini- in the opposite direction of the gradient of the
tialized to small random values (see §4.6.). The cost function with respect to the weights, the
input pattern, Ak, is passed through the connec- optimal solution can be achieved (assuming
tions weights, W, to produce a set of Fy PE val- each movement along the gradient, aX, is suffi-
ues, Y = (y1, y2, ..., yp). The difference between ciently small). Restated mathematically, the
the computed output values, Y, and the desired two-layer error correction learning algorithm is
output pattern values, Bk, is the error. Comput- computed as follows
ing the error for each Fy PE is done using the
equation
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aE i f 2- tion that a continuously differentiable threshold
-I ° S Ib- lakiWiij function for the hidden layer PEs would allow

LWjT'1 '~) jthe chain rule of partial differentiation to be
used to calculate weight changes for any weight
in the network. Using the three layer network in

n Figure 14 to illustrate the multi-layer error cor-
= (bkj- Zakiwij)aki rection learning algorithm, the output error

i= 1 across all the Fz PEs is found using the cost
function

= (bkj-Yj)aki (36) E q ( z -) 2  (37)

Although the cost function is only with respect 2. (=kj J
to a single pattern, it has been shown (Widrow
& Hoff, 1960) that the motion in the opposite The output of a FZ PE, zj, is computed using the
direction of the gradient for each pattern, when equation
taken in aggregate, acts as a noisy gradient
motion that still achieves the proper end result. = yiwi (38)

The Perceptron (Rosenblatt, 1962) and the i = i

Adaline (Widrow & Hoff, 1960), two of the and each Fy (hidden layer) PE, yi, is computed
most prominent early neural networks, using the equation
employed error correction learning. In addi-
tion, the Brain-State-in-a-Box (Anderson, et n
al., 1977) uses the two-layer error correction Yi = f (ri); r= akhvhi (39)
procedure described above for one-layer h= 1
autoassociative encoding.

5.7.2. Multi-layer Error Correction Learn- Figure 14: Three-Layer Network
ing

A problem that once plagued error correc- (bkl , bk2 , •, bkq) Bk
non learning was its inability to extend learning
beyond a two-layer network. By remaining a """

two-layer learning rule, only linear mappings Z z2 "" " F
could be acquired. There had been several ..
attempts to extend the two-layer error correc-
tion learning algorithm to multiple layers, but W
the same problem kept arising: How much error
is each hidden layer PE responsible for the out- Y" ""3 FY
put layer PE error? Using the three-layer neural ft
network in Figure 14 to explain, the problem of
multi-layer learning (in this case three-layer V
learning) was calculating the amount of error ft
each hidden layer PE, yj, should be credited for "- 2-3XF
an output layer PE's error. This problem, called
the credit assignment problem (Barto, 1984;
Minsky, 1961), was solved through the realiza- akI , a, , • ,Om
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and the hidden layer PE threshold function is and (42), the weight adjustment equations are

1 new old aE
(40) Wij - Wi -- i (43)

Using the same principle as described in the and
previous section, the weight adjustments will
be performed by moving along the cost func- Vhi  ld (44)
tion in the opposite direction of the gradient to aVhi

a minimum (where the minimum is considered where a and 03 are positive valued constants
to be the input-output mapping producing the that regulate the amount of adjustments made
smallest amount of total error). The connection with each gradient move.
weights between the Fy and FZ PEs are
adjusted using the same form of equation Extending the backpropagation to utilize
derived earlier for two-layer error correction mean-variance connections (see §3.4.2.)

learning, yielding between the FX and Fy PEs is straightforward
(Robinson, Niranjan & Fallside, 1988). Figure

E _ I q 21 15 shows the topology of a three-layer mean-
W aWij I= (bkj - zj) 2  variance version of the multi-layer error correc-

j=, Wtion learning algorithm. The hidden layer, Fy,
PE values are computed with the equation

- (bkj-zJ)y i

y( = g(ri); ri = I Vhi (45)
= 8.jV (41) h =l hI

r where Uhi represents the mean connection
Next, the adjustments to the connection whrenh epreen the mean cntion
weights between the Fx and Fy PEs are found strength between the h'th FX and i'th Fy PEs,usin th chin uleof artal iffreniaton, Vhi is the variance connection strength between
using the chain rule of partial differentiation, me h'th FX and i'th Fy PEs, and the threshold
yielding function is the Gaussian function

aE _ EYiari iXh
-vhi ayiariaXhavhi  g(x) = e- x 2  (46)

The output PE, FZ, values are then formed from
the linear combination of the hidden layer

= E (btz -Yl)YlWhf(ri)akh (42) Gaussians using the equation

l=1 p
The multi-layer version of this algorithm is j YiWij (47)
commonly referred to as the backpropagation = 1
of errors learning rule, or simply backpropaga- where wij is the connection strength between
tion. Utilizing the chain rule, it is possible to the i'th Fy and j'th FZ PEs. Computing the gra-
calculate weight changes for an arbitrary num- dients for each set of weights yields the follow-
ber of layers. The number of iterations that ing set of equations
must be performed fo. each pattern in the data
set is large, making this off-line learning algo-
rithm very slow to train. Using equation (41)
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new Uold aE

Figure 15: Three-Layer Network uhi= Uhi -a-hi (51)
with Mean-Variance Connections

(bkl bk2 bk3 bkq)= Bk V hnew old E (52)
' "''' i Vhi =hi-- -h (52

= wij E (53)

W where a, 03, y are positive valued constants that
f regulate the amount of adjustments made with

Yi Y2 Y3 y Y F each gradient move.
fThe backpropagation algorithm was intro-

duced by Werbos (1974), and later indepen-
U&V dently rediscovered by Parker (1982) and
FI Rumelhart, Hinton, and Williams (1986). The

X X2  X3  Xn FX algorithm presented here has been brief. There
are several variations on the algorithm (cf. Sim-

Af pson, 1990a) including: alternative multi-layer
(Skl 'k2 ak3 akn) topologies, methois of improving the learning

time, methods for optimizing the number of
hidden layers and the number of hidden layer

aPEs in each hidden lay, and many more.
Esh arerwe een to cnetns. Fy Although there are many issues that remain
PEs represents two connections. unresolved with the backpropagation of errors

learning procedure, such as proper number of

DE _ aEaz Yiari training parameters, the existence of local min-

- T yZiayriaUhi ima during training, the extremely long training
time, and the optimal number and configuration
of hidden layer PEs, the ability for this learning

q Uhi - a method to automatically capture ncn- linear
I J (bkj - zj) wijg'(ri) 2 (48) mappings remains a significant strength.
= Vhi 5.8. Reinforcement Learning

aE aEazj aYjarj The initial idea for reinforcement learning
Vhi - azjayjiriavhi was introduced by Widrow, Gupta & Maitra

(1973) and has been championed by Williams

q - a (1986). Reinforcement learning is similar to

- ; (b1j - zj) w5 g'( hi3 error correction learning in that weights are
j~l Vh (49) reinforced for properly performed actions and

punished for poorly performed actions. The dif-
E =(bkj - zj) Yi (50) ference between these two supervised learning

a wtechniques is that error correction learning uti-

Using these equations, the update equations a lizes more specific error information by collect-

then ing error values from each output layer PE,
while reinforcement learning uses non-specific
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error information to determine the performance e ing
of the network. Where error-correction learn- ij gI
ing has a whole vector of values that it uses for
error correction, only one value is used to where gi is the probability of the desired output

describe the output layer's performance during equalling the computed output, defined as
reinforcement learning. This form of learning is
ideal in situations where specific error informa- 9i = Pr (yj = bkj I W,Ak) (56)

tion is not available, but overall performance which is read as the probability that yj equals
information is, such as prediction and control. bkj given the input, Ak, and the corresponding

A two-layer neural network such as the one weight vector, Wi.
found in Figure 16 serves as a good framework Neural networks that employ reinforcement
for the reinforcement learning algorithm. The learning include the Adaptive Heuristic Critic
general reinforcement learning equation is (Barto, Sutton & Anderson, 1983) and the

Associative Reward-Penalty neural networknew oldwii wio + a(r-O O ) eij (54) (Barto, 1985).

where, r is the scalar success/failure value pro- 5.9. Stochastic Learning
vided by the environment, Oj is the reinforce- Stochastic learning uses random processes,
ment threshold value for the j'th Fy PE, eij is probability, and an energy relationship to adjust
the canonical eligibility of the weight from the connection weights in a multi-layered neural
i'th Fx PE to the j'th FY PE, and 0 < cc < 1 is a network. Using the three-layer neural network
constant-valued learning rate. In error correc- shown in Figure 14 to illustrate the learning
tion learning, gradient descent in error space algorithm, the stochastic learning procedure is
controlled learning. In reinforcement learning described as follows:
it is gradient descent in probability space. The
canonical eligibility of wij is dependant on a 1. Randomly change the output value of a hid-
previously selected probability distribution that den layer PE (the hidden layer PEs utilize a
is used to determine if the computed output binary step threshold function).
value equals the desired output value and is 2. Evaluate the change using the resulting dif-
defined as ference in the neural network's energy as a

Figure 16: Reinforcement Learning Neural Network

Ix scalar value

INPUTS performance
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guide. If the energy after the change is lower, bias values, the neural network becomes a par-
keep the change. If the change in energy is not allel optimizer. Given the initial values of the
lower after the random change, accept d.- problem, the network will run to a stable solu-
change according to a pre-chosen probability tion. This technique has been applied to a wide
distribution, range of problems (cf. Simpson, 1990a),
3. After several random changes, the network including scheduling, routing and resource

will eventually become "stable." Collect the optimization (see §4.3.3.).
values of the hidden layer PEs and the output Two other types of hardwired networks
layer PEs. include the Avalanche Matched Filter (Gross-

4. Repeat steps 1-3 for each pattern pair in the berg, 1969; Hecht-Nielsen, 1990) and the Prob-

data set, then use the collected values to statis- abilistic Neural Network (Specht, 1990). These
tically adjust the weights networks are considered hardwired systems

because the data patterns are normalized to unit

5. Repeat steps 1-4 until the network perfor- length and used as connection weights. Despite
mance is adequate. the lack of an adaptive learning procedure, each

The probabilistic acceptance of higher of these neural networks are very powerful in

energy states, despite poorer performance, their own right.
allows the neural network to escape local 5.11. Summary of Learning Procedures
energy minima in favor of a deeper energy min- There are several attributes of each of the
imum. This learning process, founded in simu- neural network learning algorithms that have
lated annealing (Kirkpatrick, Gelatt & Vecchi, been described. Table 1 describes six key
1983), is governed by a "temperature" parame- attributes of the learning procedures described
ter that slowly decreases the number of proba- above:
bilistically accepted higher energy states.

The Boltzmann Machine (Ackley, Hinton • Training Time - How long does it take the
& Sejnowski, 1985) was the first neural net- learning technique to dequately capture
work to employ stochastic learning. Szu (1986) infrmatiosl

has refined the procedure by employing the
Cauchy distribution function in place of the • On-Line/Off-Line - Is the learning tech-
Gaussian distribution function, resulting in a nique an on-line or an off-line learning
network that converges to a solution much algorithm?
quicker. • Supervised/Unsupervised - Is the learning

5.10. Hardwired Systems technique a supervised or unsupervised

There are some neural networks that have learning procedure?

their connection weights predetermined for a Linear/Nonlinear - Is the learning tech-

specific problem. These weights are "hard- nique capable of capturing nonlinear map-

wired" in that they do not change once they pings?

have been determined. The most popular hard- * Structural/Temporal - Does the learning
wired systems are the neural optimization net- algorithm capture structural information,
works (Hopfield & Tank, 1985). Neural temporal information, or both?
optimization works by designing a cost func- • Storage Capacity - Is the information stor-
tion that, when minimized, solves an uncon- age capacity good relative to the number of
strained optimization problem. By translating connections in the network?
the energy function into a set of weights and The information provided in Table 1 is meant
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as a guide and is not intended to be a precise For a feedforward network using dual con-
description of the qualities of each neural net- nections (see §3.4.2.) where one set of connec-
work. For a more detailed description of each tion weights, W, represents the mean and the
neural network learning algorithm, please refer other set of connection weights, V, represents
to Simpson, 1990a, Hecht- Nielsen, 1990, or the variance, the recall equation is
Marcn, Harsten & Pap, 1990. n 2

yj = g(i, (iii (58)

6. NEURAL NETWORK RECALL

The previous section emphasized the stor- where g is the Gaussian threshold function (see

age of information through a wide range of §3.5.5.).

learning procedures. In this section, the empha- For a feedforward network using dual con-
sis is retrieving information already stored in nections where one set of connection weights,
the network. Some of the recall equations have V, represents he nin vector and the other set of
been introduced as a part of the learning pro- connection weights, W, represents the max vec-
cess. Others will be introduced here for the first tor (see §3.4.3.), and the system is confined to
time. The recall techniques described here fall the unit hypercube, the recall equation is
into two broad categories: feedforward recall
and feedback recall. = (1 - supersethood(X, W,))

6.1. Feedforward Recall x (1 - subsethood(X, Vj))

Feedforward recall is performed in net- = subsethood(X, W1)
works that do not have feedback connections. x supersethood(X, Vj) (59)
The most common feedforward recall tech- where the supersethood operation is defined as
nique is the linear combiner (see §3.4.1.) fol-
lowed by a threshold function supersethood(X, ') =

nn

yj =f( xiwj) (57) -max(Oxi- yi)
= (60)i= 1 n

where the threshold function f is one of those xi
described in §3.5. =

Table 1: Neural Network Learning Algorithms
Training OnLn/ Sprie/ Linea/ Structural/ Str

Learning Algorithm Time Off-Line Unpvised Nonlinear Temporal Cpcty

Hebbian Learning Fast On-line Unsupervised Linmr Structural Poor

Principle Component Learning Slow Off-line Unsupervised Linear Structural Good
Differenual Hebbian Learning Fast On-line Unsupervised Linear Temporal Undetermined

Competive Learning Slow On-line Unsupervised Linear Structural Good

Min.Max Learning Fast On-tine Unsupervised Linear Stuctural Good
Two-Layer Error Correction Learning Slow Off-line Supervised Linear Both Good

Multi-Layer Erro Correction Learning Very Slow Off-line Supervised Nonlinear Both Very Good

Reinforcement Learning Extremely Slow Off-lne Supervised Nonlinear Both Good

Stochastic Learning Extremely Slow Off-ine Supervised Nonlinear Structural Very Good
Hardwired Systems Fast Off-line Supervised Nonlinear Structural Good

II I " -Ila-



2-27

Referring to Figure 5, equation (59) measures systems that had weights that were fixed. In an
the degree to which the input pattern Ak falls extension to the Cohen- Grossberg Theorem,
between the min and max vectors of class j, Kosko (1990) showed that a neural network
where a value of 1 means that Ak falls corn- could learn and recall at the same time, and yet
pletely between V. and Wj, and the closer yj is still remain stable.
to 0, the greater the disparity between Ak and 6.3. Interpolation vs. Nearest-Neighbor
the class j, with a value of 0 meaning that Ak is Responses
completely outside of the class. In addition to recall operations being either
6.2. Feedback Recall feedforward or feedback, there is another

Those networks that have feedback connec- important attribute associated with recall: out-
tions employ a feedback recall equation of the put response. There are two types of neural net-
form work output response: nearest-neighbor and

interpolative. Figure 17 illustrates the differ-
xj(t + 1) = (1 - ) xft) + ence. Assume that the three face/disposition

,n pairs shown in Figure 17(a) have been stored in

f 'f(xi(t))wj+ak (61) a neural network. If an input that is a combina-
i=1 tion of two of the faces is presented to the net-

work, there are two ways that a neural networkwhere x3(t+. 1) is the value of the j 'th element in night respond. If the output is a combination of

a single-layer neural network at time t+ 1, f is a the two correct outputs associated with the

monotonic non-decreasing function (e.g. sig- given inputs, then the network has performed

moid function), aL is a positive constant that gvniptte h ewr a efre
reglatethe amount of decay a PE value has an interpolation (see Figure 17(b)). On the con-
regulates t int of de, P a s trary, the network might determine which of the
during a unit interval of time, J3 is a positive stored faces is most closely associated with the

constant that regulates the amount of feedback input and respond with the associated output

the other PEs provide the j'th PE, and aki is the for at fesee Fiure 17(cte feefor
constant valued input from the iPth component for that face (see Figure 17(c)). The feedfor-
of the k'th input patterno ward pattern matching neural networks are typ-

ically interpolative response networks (eg.

One issue that arises in feedback recall sys- Backpropagation and Linear Associative Mem-
tems is stability. Stability is achieved when a ory). The feedforward pattern classification
network's PEs cease to change in value after networks (eg. Learning Vector Quantization)
they have been given an initial set of inputs, and the feedback pattern matching networks
Ak, and have processed for a while. If the net- (eg. Hopfield Network and Bidirectional Asso-
work did not stabilize, it would not be of much ciative Memory) are typically nearest- neigh-
use. Ideally, the initial inputs to the feedback bor response networks.
neural network would represent the input pat-
tern and the stable state that the network
reached would represent the nearest neighbor 7. NEURAL NETWORK TAXONOMY
output of the system. Several different topologies, learning algo-

An important theorem was presented by rithms, and recall equations have been
Cohen & Grossberg (1983) that proved for a described. Attempts at organizing the various
wide class of neural networks under a set of configurations quickly becomes unwieldy
minimal constraints, the network would unless some simple, yet accurate, taxonomy
become stable in a finite period of time given can be applied. The two most prevalent aspects
any initial conditions. This theorem dealt with of neural networks, learning supervision and
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the needs of the environment. The following
Figure 17: Interpolative vs. sections briefly describe some of the alternative
Nearest-Neighbor Recall methods that are used for pattern recognition,

(a) Stored Associations: FACES - DISPOSITION clustering, control, and statistical analysis.

S[ H PY8.1. Stochastic Approximation0 HAPPY (A1,B1)

The method of stochastic approximation
I was first introduced by Robbins and Monro

1> SAD (AB2 ) (1951) as a method for finding a mapping
01 between inputs and outputs when the inputs and

(A3'B3) outputs are extremely noisy (i.e. the inputs and
0" Aoutputs are stochastic variables). The stochastic

approximation technique has been shown to be

(b) INTERPOLATIVE RECALL: identical to the two-layer error correction algo-
Respond with an interpolation of all stored values. rithm presented in §5.7.1. (Kohonen, 1984) and

the three-layer error correction algorithm pre-
( L Happily Angry sented in §5.7.2. (White, 1989).

(Devious)

8.2. Kalman Filters
(c) NEAREST-NEIGHBOR RECALL:Repn NEARETh NEIGHBOR theALL: cA Kalimdn Filter is a technique for estimat-Respond with the closest of all stored values. ing, or predicting, the next state of a system

Angry based upon a moving average of measurements
driven by additive white noise. The Kalman
Filter requires a model of the relationship

information flow, seem ideally suited to address between the inputs and the outputs to provide
this need. Table 2 utilizes these criteria to orga- feedback that allows the system to continuous
nize the neural networks described above into a perform its estimation. Kalman filters are pri-
matrix with learning supervision on the ordi- manly used for control systems. Singhal and
nate and recall information flow on the Wu (1989) have developed a method of using a
abscissa. Kalman filter to train the weights of a multi-

layer neural network. In some recent work,
Ruck, et al. (1990) have shown that the back-

8. COMPARING NEURAL NETS TO propagation algorithm is a special case of the
OTHER INFORMATION PROCESSING Extended Kalman Filter algorithm and have
METHODS provided several comparative examples of the

There are several information processing two training algorithms on a variety of data

techniques that have capabilities similar to the sets.

neural network learning algorithms described
above. Despite the possibility of equally com-
parable solutions to a given problem, there are Linear regression is a technique for fitting a
several addition aspects of a neural network line to a set of data points such that the total dis-
solution that are appealing including: fault- tol- tance between the line and the data points is
erance through the large number of connec- minimized. This technique, used widely in sta-
tions, parallel implementations tha: allow fast tistics (Spiegel, 1975), is similar to the two-
processing, and on-line adaptation that allows layer error correction learning algorithm
the networks to constantly change according to described in §5.7. 1.
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Table 2: Neural Network Taxonomles
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Nonlinear regression is a technique for fit- If the class boundaries are not cleanly separated
ting curves (nonlinear surfaces) to data points, and tend to overlap, the classification system
White (1990) points out that the threshold func- must find the boundary between the classes that
tion used in many error correction learning minimizes the average misclassification
algorithms is a family of curves and the adjust- (error). The smallest possible error relative to a
ment of the weights that minimizes the overall predefined risk is referred to as the Bayes error,
mean-squared-error is equivalent to curve fit- and a classifier that minimizes Bayes error is
ting. In this sense, the backpropagation algo- called a Bayesian classifier (Fukunuga, 1986).
rithm described in §5.7.2 is an example of an The Parzen approach to implementing a Baye-
automatic nonlinear regression technique. sian classifier utilizes a uniform kernel (typi-

8.4. Correlation cally the Gaussian function) to approximate the
probability density function of the data. A neu-

Correlation is a method of comparing two ral network implementation of this approach
patterns. One pattern is the template and the (see §4.5.) is the Probabilistic Neural Network
other is the input. The correlation between the (Specht, 1990).
two patterns is the dot product. Correlation is
used extensively in pattern recognition (Young
& Fu, 1986) and signal processing (Elliot, The purpose of vector quantization is pro-
1987). In pattem recognition the templates and duce a code from an n- dimensional input pat-
inputs are normalized, allowing the dot product tern. The code is passed across a channel and
operation to provide similarities based upon the then used to reconstruct the original input with
angles between vectors. In signal processing a minimum amount of distortion. There have
the correlation procedure is often used for com- been several techniques proposed to perform
paring templates with a time-series to deter- vector quantization (Gray, 1984), with one of
mine when a specific sequence occurs (this the most successful being the LBG algorithm
technique is commonly referred to as cross- (Linde, Buzo & Gray, 1980). The Learning
correlation or matched filters). The Hebbian Vector Quantization (see §5.5.) is a method of
learning techniques described in §5.2. are cor- developing a set of reference vectors from a
relation routines that store correlations in a data set and is very similar to the LBG algo-
matrix and compare the stored correlations rithm. A comparison of these two techniques
with the input pattern using inner products. can be found in Ahalt, et al. (1990).

8.5. Bayesiar Classification 8.7. Radial Basis Functions

The purpose of pattern classification is to A radial basis function is a function that is
determine which class a given pattern belongs, symmetric about a given mean (e.g. a Gaussian
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function). In pattern classification a radial basis algorithms for vector quantization, Neural
function is used in conjunction with a set of n- Networks, Vol. 3, pp. 277-290.

dimensional reference vectors, where each ref- Albert, A. & Gardner, L. (1967). Stochastic
erence vector has a radial basis function that Approximation and Nonlinear Regression,
constrains its response. An input pattern is pro- MIT Press: Cambridge, MA.
cessed through the basis functions to produce A
an output response. The mean-variance con- Amari, S. (1971). Characteristics of randomly

nection topologies that employ the backpropa- connected threshold- element networks and

gation algorithm (Lee & Kil, 1989; Robinson, network systems, Proceedings of the IEEE,

Niranjan, & Falside, 1988) as described in Vol. 59, pp. 35-47.

§5.7.2. are methods of automatically producing Amari, S. (1972). Learning patterns and pattern
the proper sets of basis functions (by adjust- sequences by self- organizing nets of
ment of the variances) and their placement (by threshold elements, IEEE Trans. on Coin-
adjustment of their means). .uter Vol. C-21, pp. 1197-1206.

8.8. Machine Learning Amari, S. (1977). Neural theory of association

Neural networks are not the only method of and concept formation, Biological Cyber-

learning that has been proposed for machines netics, Vol. 26, pp. 175-185.

(although it is the most biologically related). Amari, S. (1983). Field theory of self-organiz-
There are a large number of machine learning ing neural nets, IEEE Transactions on Sys-
procedures that have been proposed over the tems, Man, and Cybernetics, Vol. SMC-13,
course of the past thirty years. Carbonell (1990) pp. 741-748.
classifies machine learning into four major par- Amari, S. & Takeuchi, M. (1978). Mathemati-
adigms (pg. 2): "[I]nductive learning (e.g., cal theory on formation of category detect-
acquiring concepts from sets of positive and ing nerve celss, Bioloical Cybernetics,
negative examples), analytic learning (e.g.,
explanation-based learning and certain forms Vol. 29, pp. 127-136.
of analogical and case-based learning meth- Anderson, J. (1970). Two models for memory
ods), genetic algorithms (e.g., classifier sys- organization using interactive traces, Math-
tems), and connectionist learning methods ematical Biosciences, Vol. 8, pp. 137-160.
(e.g., nonrecurrent "backprop" hidden layer Anderson, J. (1990). Knowledge representation
neural networks)." It is possible that some of in neural networks, Al Ex Fall 1990.
the near-term applications might find it useful
to combine two or more of these machine learn- Anderson, J., Silverstein, J., Ritz, S. & Jones,
ing techniques into a coherent solution. It has R. (1977). Distinctive features, categorical
only been recently that this type of approach perception, and probability learning: Some
has even been considered. applications of a neural model, Pyschologi-

cal Review. Vol. 84, pp. 413-451.
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Project Management
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ABSTRACT

An artificial neural network (ANN) is a software implementation of a neural paradigm,
and, therefore, such projects yield to many of the disciplines of softwai i engineering
On the other hand, many issues that must be faced, as the project proceeds, are unique
and require specialized knowledge to address.

This paper is concerned mainly with the management of such projects, however in order
to propose the management issues, it seems necessary to understand, at Last superficially,
the process of the design and implementation of a neural-based system. This paper
therefore begins with a proposal for a methodology for the conduct of a project
involving the choice, design, and implementation of a neural-based system. It outlines the
issues that should be considered and resolved at each step of the project.

Based on this methodology, a project management plan can be put in place. Such a plan
calls for a set of milestones and design reviews for various levels of management (and the
customer) and a corresponding document set designed to prove a milestone has been
reached, and, finally, that the original requirements have been met.

1.0 INTRODUCTION

This paper brings together past experience in the development of software systems, including
expert systems and neural nets, in an attempt to formulate a system design methodology for neural
net projects. This is an important requirement for both the customer and the developer if such
projects are to become a professional activity and commercially feasible.

As with the early days of expert system projects there seems to be a host of issues unique to neural
computing which would suggest that the rules of good project design and management can be
ignored. It is the thesis here that these rules cannot be ignored and that there is little excuse for
'hacking' towards a solution. There are, in fact, critical issues to be resolved and there are
appropriate times to face these issues, and there is also a minimum level of knowledge and
experience necessary to resolve them and proceed. It is towards the structuring of these issues and
the evolution of a design methodology for facing the issues when required, and for providing a
mechanism for providing evidence that they have been faced, that this work is dedicated. When all
of these things are understood, it is then possible to develop a methodology for such projects, and
from this a project management approach.

The present work has been strongly influenced by a general systems design methodology
established by the author [A-1], by extensive experience in doing battle with real neural network
applications, and by later work, specific to neural computing, by Robert Hecht-Nielson [A-2] and
by Bailey & Thompson [A-3]. It is also influenced by the procedures and reporting mechanisms
defined in the United States Department of Defense Military Standards (MIL STDS) 2167A and
490.

In Section 2 an overview of the methodology is given, followed by four sections devoted to an
examination of the procedures that should be executed and issues that should be faced at each step.
In Section 7, a plan for project management is proposed. This plan shares many features with any
plan to manage the production of software systems. The details are based on the structure and the
resulting milestones of the proposed methodology.
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2.0 THE METHODOLOGY - AN OVERVIEW

The creation of an artificial neural network is essentially a software project with a special set of
rules and issues that. must be observed and addressed by the design team. It is important to
distinguish here between a project in which no specific goals or deliverables are expected, such as a
familiarization exercise, and a project with a defined level of effort, deliverables and a budget.
We are specifically concerned with the later.

Neural engineering is not as advanced as other aspects of software engineering, however, it would
be folly to believe that creating and managing a project in neural engineering is different from any
other software undertaking. A methodology is therefore required, and proper project
management and control essential to the successful completion of anything but a toy project. The
methodology is strongly influenced by the concepts develbped in the DND standards for software
systems development. That system produces three specifications: called the Level A, B, and C
Specification. The Level A specification (the A Spec.) describes the end-user problem to be solved
and provides the functionality and performance and that must be achieved and the constraints
which must be satisfied. The Level B Specification (the B spec.) is prepared by the design team
and describes the top-level design of the system to be built. This specification is usually reviewed
at a Preliminary Design Review (the PDR). The Level C specification is a detailed design
document which described the system to be built. This document is reviewed at a Critical Design
Review (CDR).

In addition to design reviews attended by the customer, there are lower level design reviews
conducted by the design team usually conducted on a regular basis. These internal reviews keep
the project on track and are invaluable preparation for the more public reviews. A good
methodology contains an intrinsic modularity at which the state of a project can be assessed,
reviewed and corrective action taken to ensure and maintain convergence to the original
requirements, if necessary.

The methodology proposed here has four major phases:

Requirements Analysis
Logical Design
Implementation
Integration and Maintenance

Each of these phases mark a major milestone at which the project can be evaluated and decisions
made as to progress and continuation.

The requirements analysis is sometimes referred to as 'functional specification development'
and results in the definition of the equivalent of the Level A Specification. This phase provides the
interface from the original problem to the functional specifications. During this phase, the
desired functionality and performance of the final system is specified. In addition, the user and
system interfaces of the final system should be outlined. As part of this analysis, it is important to
define the constraints (functional, economic and otherwise) that the design team must consider
during the design phase. In general, the approach is to consider the system to be built and specify
how is should appear to the user and, if appropriate, how it will interface to other portions of a
total system. An important aspect of this phase is to determine the available data sets and how the
final system will be evaluated for acceptance.

The logical design phase involves selecting the appropriate set of neural paradigms, designing
the network and finally the training regime. Each of these sub-phases constitute an ideal point for
an intermediate design review and project milestone meeting. Part way through this phase, a
Preliminary Design review (PDR) should produce the equivalent of the Level B Specification.
This is normally reviewed by the customer in terms of the original requirements laid out in the A
specification. The conclusion of this phase should provide the implementation team with the
equivalent of the C Specification - a clear set of specifications for implementation.

The implementation phase is when the neural system is created, trained and tested. An
important part of this phase is the choice of the implementation platform, the detailed training and
the testing (and often the debugging) of the network. This phase demands the most 'on the bench'
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experience, since the gulf between theory and practice is, in some aspects of neural systems
engineering, very wide indeed. The result of this phase is the product, ready for integration and
delivery.

The final system must be delivered integrated and maintained over its life time. This phase
reinforces the need for an agreed upon acceptance plan and a document set that will permit
maintenance. Experience will confirm that these details should be considered at the beginning,
rather than at the end of the prc(,jct.

The management of any project is intrinsically bound to the methodology being followed by the
design team. A good methodology has many attributes which simplify the overhead associated
with its management. Of great importance is its modularity, which yields milestones at which
progress can be measured and control exerted. Other factors are peculiar to the particular
software paradigm, and these will be compared and explored in the final section.

3.0 REQUIREMENTS ANALYSIS

3.1 Introduction

Requirements analysis forms the first step in any project, however, it is often overlooked in
projects designed to exploit new technologies, and often a statement of need is mistaken for a
definition of requirements.

The detailed mechanisms and the documentation of the requirements will depend on the formality
of the project organization, however, even for in-house projects, time spent on requirements will
benefit the project by finding a common ground for the project team.

It is suggested here that the following form the minimum considerations that should precede a
neural net project: bound the problem, bound the project, define the acceptance tests, and finally
define the total deliverables package. These ideas are not profoundly different from any other
project, and will bring a focus to the project which will prove to be invaluable. In a global sense
the issues are What are we trying to build?', 'Under what set of constraints are we trying to build
it?' and 'What demonstration will we require to prove it has been built?'

3.2 Bound The Problem - What are we Trying to Build?

A necessary preamble to the final definition of requirements is to obtain from the user(s) a clear
idea of what it is that will satisfy their needs., This is often difficult because the operational
language of the users may not be at a sufficiently technical level to be easily translated into
comprehensible technical jargon. Never-the-less, unless this step is clarified in some detail, almost
always what is produced will not be what was expected. This situation does not apply only to
neural networks, as your experience will confirm.

3.2.1 Statement of Required Functionality

The need here is for a concise statement of what functions the end-product will execute. This is
often stated in th, user's vocabulary, and must be eventually translated into technical jargon by the
requirements analysis team. The user should be encouraged to define 'what' is required in as few
words as possible. This discipline tends to focus the need and removes concepts of 'how' it should
be done from the discussion.

3.2.2 Solution Requirements

In this section a more detailed statement of the solution is given. This should include the type of
solution, the accuracy acceptable to the output, and the time constraints, if any, that are necessary.

3.2.3 Data Sources

The data definitions should include the data available for training and testing the system as well as
the data input to the final system if the format is different.
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3.2.4. Define the Interfaces

System interfaces include all hardware and software interfaces, including the requirements of
operation with specific operating systems and existing software.

Often overlooked is the need to specify high and low level protocols for control synchronization
ad the format and structure of data passed into and out of the surrounding system.

This machine-human interface is often the most crucial in the user's final acceptance of the system.
It is also the most difficult to specify in its entirety. In the end, every screen interface and control
protocols for mode changing, screen manipulation and data passing must be specified.

3.3 Bound the Project

The project is bounded by specifying the total budget which fixes the level of effort. In addition,
however, time is an often overlooked constraint. There are two aspects to timing constraints:
project time and performan.ce time. If a solution has to be available in a certain time frame, this
imposes constraints which should be understood at the beginning. If the neural network must fit
into a larger system response time may form a constraint. This will drive a host of considerations
from the neural topology to the execution platform.

3.4 Define Acceptance Tests

Neural networks are trained to respond to a set of data elements which are alleged to define the
input space. Because of the data dependence of the success of a project, it is of critical importance
that the final set of tests that are formulated to determine success or failure, and hence acceptance
of the final product, be specified in detail. From the contractor's point of view a test set which is
not representative of the training set can spell disaster.

All projects start with the accumulation of a data set which must be representative of the problem
and must eventually be used for training and tesing. The problem is to guarantee that the training
and the test set can be considered representative.

3.5 Define the IDliverables

3.5.1 Documentation

In order to maintain the neural net a complete set of documentation is required. A description of a
neural net consists of a description of the paradigm, and the implementation topology. In addition
the training and test set should be documented. It is most useful when retraining the system to
have a knowledge of. the training parameters and the details of the training regime. Finally any
interface software, and restrictions on the execution platform.

3.5.2 Code

The most notable difference between the documentation of a neural paradigm and classical
software is the 'black box' character of neural nets. The concept of documented code is not
applicable since the character of the neural net response is buried in the topology and the weights
of the neurons. Furthermore, as discussed elsewhere, maintenance and extensions of the neural net
is different in oncept than classical software. The neural net is often thought of as a black box.

The documentation must be sufficient to permit the reconstruction of the neural net topology and
the weights of each neuron. This can take the form of a description of the paradigm and the
topology and a printed list of the weights (despite its length in some cases) With this data the
network can be reconstructed, and retraining because of minor input sets undergoing change can
often be shortened by beginning with the trained set.
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4.0 LOGICAL DESIGN

4.1 Introduction

The logical design phase begins the process of translating the requirements into a proposal for
implementation. In this phase all the capabilities of neural computing paradigms should be
examined to determine the best approaches to satisfying the requirements.

This phase is often a preliminary step in a bid/no-bid situation. Inappropriate requirements
formulated by a potential customer can lead to a no-win situation if a neural paradigm is
demanded, accepted for design and delivery, and is intrinsically inappropriate.

There are no guarantees in this field, however, a few preliminary considerations will enhance the

probability of the right choice.

4.2 Confirm the Application

The logical design team should begin the design process by reconfirming that a neural computing
paradigm is suitable -for the problem. In general if an expert system solution will satisfy the
requirements then it should be chosen before a neural solution, and by extension if a classical
software algorithm will fulfill the needs, it should be chosen. The design team should look at not
only the functionality of neural computing but at the availability of data and the impact of the other
requirements.

4.2.1 Characteristics of Successful Applications

Successful neural applications have the following characteristics:

1. The algorithm to solve the problem is unknown or expensive to discover.,

2. Heuristics or rules to solve the problem are unknown or perhaps difficult to enunciate.

3. The application is data intensive and a variety of data sets are available which can be
identified as correct or describes specific examples.

Several classes of problem have these characteristics at this time:. Pattern recognition, pattern
completion or pattern classification, Statistical mapping.

Of these classes, applications include: Character Recognition, Image classification, Forecasting,
Incident Detection, Signature Identification, robot control, signal processing.

In general, it should be determined that:

1. Conventional computer technology is unsuitable or inadequate.

2. Thc application requires qualitative or complex quantitative reasoning.

3. The solution is derived from inter-dependent or correlated factors which are difficult or
impossible to quantify.

4. Data is available and corresponding known solutions can be derived.

4.2.2 Characteristics of Poor Applications

Poor applications include:

In general, those -

1. For which algorithms or rule-based solutions are possible.
2. That require deduction and a logical approach are not suitable.
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3. That require explanations of procedures.
4. That are essentially mathematical computations or transformations.

In particular, those -

1. Requiring precise mathematical computations.
2. In which answers must be explained or the steps documented.
3. An adequate an representative data set is not available for training and testing.

4.2.3 Choosing a Software Paradigm

If the final system is to operate embedded in the original development system, the issue of a
software paradigm is relatively unimportant. In situations in which the system must interface to a
variety of data bases, graphics displays, and surrounding software, the representation of the whole
system and indeed the underlying language may become an important issue to resolve., Obviously
the issue is the induced overhead in creating the software interfaces to link the system, and the
potential consequences on performance.

4.3 Select the Neural Paradigm

This step involves selecting a potential set of neural paradigms which match the application
requirements. The issues here are the size, training and time constraints, output type. Table 1
contains a comparison of the capabilities of a variety of neural paradigms, which could be updated
as newer technologies become proven. The designer should choose a potential set of paradigms
which match the requirements, and prioritize the most likely candidates. In a constrained
environment (time and money) the highest priority candidate is is started first. However, the other
candidates may have to be called upon if unforeseen events prevent training convergence or
performance is not as expected.

4.3.1 Network Paradigm

The network choices include, the number of layers or slabs, the number and type of nodes, the size
of the hidden layers, the number and type of output nodes, and the connectivity of each neuron
and layer.

4.3.2 Output Type

Choosing the Size of the Output Layer: Choosing the number of output neurons depends on
the paradigm being used and on the type of output being generated. There are two broad
categories of outputs: hetro- and auto-associative. Auto-associative networks have the same
number of outputs as inputs, whereas hetro-associative generally implies less. These categories are
far too broad, and a further division into the various expected outputs is useful. These depend on
the application and can be categorized as: Classification, Images or Patterns, Optimizations, and
Numbers.

Classification: The outputs are interpreted as categories or attributes. The output is either a
binary vector or a real number., Generally classification is indicated by a binary vector of all
zeros expect the class of the input data which is a one. In some cases, real numbers are used to
indicate further information as, for example, the confidence of the classification.

Images or Patterns: In this application the outputs are interpreted as an image or pattern
generated in response to the input. The number obviously depends on the detail of the expected
patterns.

Optimization: The output size depends on the optimization problem and the information
required to interpret the results of the class of input data being optimized.

Numbers: Numbers are a subset of the other categories, however, in general numbers are used
when the output represents a number, such as power levels or switch settings, etc.
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4.3.3 Training Method

Neural training falls into three categories: supervised, unsupervised and reinforced. The choice
depends on many factors but is strongly influenced by the availability of data. Supervised learning
requires pairs of data vectors consisting of the input pattern and the correct output. The training
data must therefore contain the solution the network is expected to provide. Generally this
training mode demands extensive data sets, and can consume a long time to achieve the correct
responses.

Unsupervised learning classifies input data patterns according to some form of nearness criteria.
The classification will depend on the structure of the training data, and the training time is usually
much shorter than unsupervised learning.

Reinforced learning is a compromise between the two. It requires only the input data and and
indications of the goodness of the response (a reward signal). Reinforced learning can consume
much longer times than the other two, but training data requirements are less stringent, although
the goodness criteria must be attached to each response.

4.3.4 Time Constraints

All aspects of the training and operation of neural networks are computationally intensive, since
every neuron performs a sum-of-products calculation often utilizing floating point operations.
Training time is usually not counted as part of the operational timing constraints, however, from a
project point of view, training times can be very large on an inadequate platform. This time is
pure delay, which tends to limit the iterations that can be tried in a fixed time-frame, and can of
course finally influence the delivery time table.

If the network must fit into a hybrid software system then the operational response should be
specified. If it is part of a diagnostic or prediction system, the response may be not critical. In
any event, response should be considered as a constraint which can influence the size of the
network and eventually influences the cost of the execution platform.

4.4 Network Design

The design of the network involves three basic issues:' the node, the network topology, and the
training details.

4.4.1 Node Level

The node or neuron design is constrained by the type of input to be used, the transfer function and
the nearness computation. The input data format has already been specified and is usually
unalterable. The nearness function is usually an inner product (a sum of products) however others
can be used such as a vector difference. The transfer function is the nonlinearity following the
nearness computation. This can be linear, signum, sigmoid, and hyperbolic tangent. The selection
is determined by the characteristics of the region boundaries and in the case of backpropagation
training by the necessity of a differentiable function. The calculation of the nonlinearity affects the
computational complexity of each neuron and the simplest possible should be chosen.

4.4.2 Network Level

At the network level of design, the topology of the interconnection of the neurons must be decided.
This involves the number of layers or slabs within a layer, the number and type of nodes, the size
of the bidden layers, the number and type of output nodes, ard finally the detailed
interconnectivity of all the neurons. Several paradigms have a fixed topology in that the number
of layers is predefined, e.g., Hopfield nets, Kohonen self-organization maps, etc.

In backpropagation nets, hidden layers act as levels of abstraction. Adding hidden layers will
increase the ability to abstract characteristics of the input classes, however, training will take
longer and in the end the training of multilayer networks by backpropagation become very tedious
and convergence is not necessarily guaranteed in practice. The number of neurons in a hidden
layer affects the ability to generalize the characteristics of the input data. Generalization and
memorization becomes a critical issues in selection the number of neurons in the hidden layer.
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The two opposing schemes for back propagation topology achieve memorization of the input
training set or achieve generalization of the features of the training set to identify examples never
before seen. In general, increasing the number of neurons in the hidden layer offers sufficient
memory for the network to memorize the test set. Conversely reducing the number of neurons, up
to a point, forces generalization.

Determining the exact number of neurons to achieve generalization is not a solved problem, and is
often achieved by experimentation. The difficulty lies in the affect on the test set. A network
trained to memorize will achieve very good results if the test set is equ;-,alent to the training set:
and conversely the performance can be very poor if the test set includes new examples outside the
training set.

4.4.3 Training Issues

The issues to be addressed before training begins are both strategic and tactical. Strategically the
training falls into three phases (as in chess) with a beginning, a middle and an end game. In each
of these phases, training parameters can be varied to hasten or encourage convergence. The plan
should outline the training parameters for each phases and some measurements which will suggest
when each phase has been completed. On the other hand, measurements should be determined to
decide when training is not converging, and the time has come to back-up and try a new set of
parameters. In practice it is often difficult to predetermine these measurement exactly and
sometimes a certain amount of synergy is necessary to observe lack of progress and to suggest
corrective actions. The need for a theoretical background, experience, and good judgement in
combining the theory and experience become evident during this phase.

These issues will be discussed in more detail in Section 5.4.

5.0 IMPLEMENTATION

5.1 Introduction

The implementation phase is tte crucial phase in the development of a neural project. Despite all
the preparation, it is not always possible to guarantee convergence of the training, however,
following a well established mehodology [B-1 will enhance the probability.

The key activities are: Characterize and Prepare the Input Data Set, Choose the Development

System, Train the Network, and be prepared to Debug and Test the Network.

5.2 Characterize the Input Data Set

5.2.1 Assemble and Prepare the Input Data Set

This phase consists of two major activities: assembling the data set and preparing it for training
and eventual testing of the network.

The input data set refers to all the data that will be used both for training and testing the network.
Initially the concern is with the quality of the data. Under some circumstance the data can be
ambiguous, error ridden, come from multiple sources and formats, and in some cases have
conflicting judgements on its classification.

Preparing the data refers to two major activities: accommodating the input formats of the
development environment, and preprocessing the data to enhance its training potential.
Accommodating the input formats suggests the potential need for code conversions, and
normalization scaling. Preprocessing, st ch as creating ratios or some form of filtering, is
sometimes useful in enhancing training or th , meaningfulness of the results. Obviously all training
and test data sets must be brought to the same format before being used.
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Of critical importance during this phase is the definition of the acceptance test set. This is the final
data input which will define if the system is preforming with sufficient accuracy to be useful to the
end-user (and it may determine if the final invoice is accepted).

Typically the fnal test set is not made available to the development team. Since many neural nets
can be made to memorize a given set of input data, it is clear that the acceptance test set should be a
set which at least includes samples that have not been used in training.

On the other hand the development team needs a test set to be used to evaluate the effectiveness of
the training regime. A large set of data covering all interesting cases should be made available to
the development team from which they can choose the optimal training and test sets. The goal is to
force the neural net to generalize the characteristics of the input data classes based on the test set so
that appropriate responses to the test sets will be derived.

5.2.2 Select the Training Set

The selection of the training set for neural paradigms is the most critical decision that affects the
final outcome. While it is easy to say, the set must represent the total range of inputs in a relative
density of occurrences to represent the final desired results. This is not easy to accomplish, since
the n-dimension volume of the total space is impossible to define exactly, choice of examples for
training (and testing) is difficult.

A training set should be assembled as a subset of the total data set. In a real sense all the data
assembled is a potential candidate as a training set. Including all this data, however, will
profoundly affect the training time, and the cost of the project.

The training set can be considerably smaller than the total data set and should be chosen to achieve
generalization across the various classes of the problem. The training set should represent the key
features of the problem. A representative set should cover the breadth of the problem to be
solved. For example in a pattern recognition problem, the set should cover the range of problems
in the classes of images In a decision or control problem, it should cover all the significant cases.

In some cases it is possible to partition the training set into routine, difficult and border line cases.
This partition will be most useful in determining convergence conditions and, in particular, lack of
training convergence, if this occurs.

5.2.3 Select a Test Set

The test set should provide evidence that the system will be useful to the customer. The customer
and the contractor share a responsibility to ensure that this set reflects the customer's perception of
an adequate test, and the contractor's technical understanding of the relationship between the
training and the test conditions. The test set should reflect the distribution of input vectors similar
to the training set. A test set with parameters outside the training set can lead to failed tests.

5.3 Choose the Development System

Experience suggests that the choice of the development platform will have the most profound
affects on the success of the project A wide variety of software development systems have
appeared over the last few years, some of which are useful as experimental learning tools for a
University Laboratory, and others which provide a leaner environment for the skilled
professional. The development system includes the software simulator, the operating system and
the hardware platform.

Many simulation platforms are now available to facilitate the process of training, testing,
debugging, and creating and displaying the system and human interfaces. These platforms operat.,
on a variety of workstations and PCs. The characteristics of the platform will profoundly affeci
the level of effort needed to set up, train, debug and test the system. Depending on the financial
resources committed to the project, a system should be judged based on:

The Vendor
Support and Training
Folded Systems
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Price
Functionality

The Neural Paradigms Implemented
User-Programmable Paradigms
Training and Debugging Facilities

Interfaces
Graphics and Displays
System software Interfaces
Graphics Interfaces
Database Interface
Language Interfaces

Support Platforms Needed or Required
Operating System
Hardware Platform
Multiple Screen Processing (Windows)

The relative importance of these factors will depend on the project and the team's experience. The
final system can either operate in a stand-alone mode or be part of a larger system. In either case,
the development environment may have to be suitably modified in order to integrate the
operational network into the final system, thus portability may also be an important consideration.
Finally in the choice of a new system, the whole system capability should be carefully traded-off
against not only the learning curve required to begin work, but the learning curve to become
really proficient.

5.4 Training the Network

5.4.1 Training Phases

Many training paradigms have a -equence of phases. In each phase, the training parameters can be
optimally adjusted to speed the process.

5.4.2 Selecting Training Parameters

Once the paradigm, the structure of the neuron and the network topology have been decided, a
choice of training parameters is required. In backpropagation training, for example, the initial
weights, the learning rate, and the momentum must be selected before training begins. The
implementation team should have considered the choice of these parameters and if appropriate
considered the variation of parameters as training proceeds and convergence begins to occur (or
otherwise).

5.4.3 Convergence and Nonconvergence

Despite the theoretical proofs of convergence, experience suggests that neural training often results
in a hung situation in which the network will not converge. This can be caused by many factors:
for example, a poor choice of the training set, inappropriate training parameters, a stabilization
occurring in a local minima, by overtraining some of the neurons, or by network paralysis. Aside
from experience, which might suggest corrective approaches, it is in this situation that a powerful
simulation platform to assist in the debugging will be most appreciated.

5.5 Debug and Test

In the broadest sense, the test set is chosen to achieve some level of acceptable response, As
discussed in Section 5.1.1. the test set should be partitioned into routine, difficult and boundary
cases.

This approach is termed 'black box' testing and is the most common. There are however, other
testing procedures which are important in some cases and can be important indicators of bad
training and/or redundant layers or nodes. Some simulation packages for example permit the
viewing of the weights, and the on-line computation and presentation of errors, etc.

Each of these approaches will be discused in the following. Finally, there is the question of what
to do if the network fails the acceptance tests. This will be discussed in the final section.
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5.5.1 The Black Box Approach

Generally a neural net is tested by comparing input and output for the appropriate response. The
network remains essentially a black box with its internal coding and data transformations being
undecipherable. Under these conditions the test set should, if possible, be divided into easy,
difficult and boundary sets. Acceptance criteria should be developed for each set. Attention
should be paid to comparisons to human responses when this is possible. Finally, in boundary
cases, it is useful to predefine the threshold acceptance level of the output responses.

5.5.2 Node and Layer Redundancy

Eliminating nodes and indeed whole layers can substantially reduce the computational complexity
of the final system. In some cases removing these redundancies will increase the convergence of
the training process.

By examining the weights of each node, those with low values of weights make a negligible
contribution to the final output and can likely be eliminated. Such pruning should be followed by
continued training to determine if an improved accuracy can be achieved, or to insure that the
incremental contribution that has been removed is restored.

A rule of thumb suggests that weights below about 0.1 are probably redundant and can be
removed.

At the other extreme, nodes that have weights much in excess of others should be suspect, for it
may indicate over training and contribute to a lack of generalization. Such a situation may suggest
a repeat of the training process, or indicate that some of the test set will fail.

5.5.3 Input Node Activation Sensitivity

In some applications it is possible to determine inappropriate behaviour by carefully selecting a test
set to positively reinforce an expected output at a given node.

5.5.4 Responses to Failed Test-Procedures

If after successful training, a network fails to respond to the test set with acceptable results, there is
a whole sequence of considerations that must be considered in a rational order by the design team.
In general these are:

The training and test set
The learning algorithm
The network design
The system interfaces

Training and Test Sets: The first thoughts are about the training and test set. The test and
training set should be re-examined for quality, representativeness and accuracy. The training set
must be chosen with the same characteristics as the training set. A test set with input members
different from the training set will invariably lead to testing failures.

The Learning Algorithm: The learning algorithm constants should be examined.

The Network Design: The network nodes characteristics, architecturs and connectivity.

The System Interfaces: All interfaces should be examined including those between the
training set and the network, the user and the network and any other interconnected software.
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6.0 DELIVERY AND MAINTENANCE

6.1 Introduction

This phase of the project resembles any software delivery phase. The principle difference is the
mechanisms for demonstrating performance and functionality.

6.2 The Acceptance Test Plan

The functionality and performance tests should have been formulated as part of the requirements
analysis. The plan to satisfy these requirements should have been formulated and accepted at the
preliminary design review.

6.3 System Integration

Neural networks tend to be regarded as stand-alone systems, however, they can be integrated into
an overall system in two configurations: loosely coupled, or tightly coupled.

Loosely coupled neural networks (probably the most common at this time) communicate by
passing data files. Such systems function either as preprocessors, post processors, or as a
distributed system. Preprocessing networks prepare data for examination or processing by other
software modules. Post processing networks are often used to remove noise, classify patterns or
make predictions. A distributed system passes data to a neural net for analyses or to interface to
another system.

Tightly coupled systems are more full integrated, relying on data sharing to pass data. In a fully
integrate the neural net tends to loose its identity and become another module in a larger system.

6.4 System Performance Evaluation

The evaluation of performance usually includes both functionality and computational complexity.

Performance is judged by the successful treatment of the testing data set. Computational
complexity includes both memory requirement of the program and the time needed to fulfill its
function.

6.5 Maintenance Plan

The maintenance plan should consider three major issues: Environmental Modifications,
Structural Modifications and Interface Modifications.

Environmental modifications suggests that the character of the the input data has changed.
This could occur from a wide variety of causes, however, the result is the need for a redefinition
of a training set and the complete retraining of the network.

Structural modifications suggests that the role of the neural net is found to be unsatisfactory
or it must be changed to accommodate newer roles in the system. A stucturai modification
suggests in the worst case a complete reconsideration of the design methodology or at best a
reorganizing and training of the existing network.

Interface modifications suggests software changes to the human or system interfaces. These
could occur from the need for more useful data presentation to humans, changes to the format of
the data base, or protocol changes to the surrounding system. Depending on the original
requirements, plans should be produced to show how these potential exigencies will be
approached.

We note that a maintenance plan, as in other software projects, depends on a document set that will
support the actions needed over the life of the system.
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7.0 PROJECT MANAGEMENT

7.1 Introduction

In this section the basic project development methodology will be pulled together to exhibit a
management approach.

7.2 Management Overview

A characteristic of any design methodology is the intrinsic mechanisms for project monitoring and
control. Project plans and methodologies all exhibit some structure and modularity at which states
can be meast,red and either forward or backward influence exerted to ensure convergence on the
original objectives or to adapt to changes caused by influences outside the project, or by
unforeseen events occurring in the project. These points in the methodology are characterized by
milestones which occur at the conclusion of a predictable set of activities at which reports can be
prepared and progress measured. Milestones also are points at which control can be exerted to
account for slippages caused by inappropriate predictions of the level of effort, the level of
difficulty, or by changes in the requirements.

In general there ic a distinction preserved between major and minor milestones. There are many
ways of defining such a distinction depending on the environment and the project. For our
purposes a major milestone signifies a point in the design process were a significant goal has been
achieved; typically the completion of a set of tasks marking a logically complete step in the overall
process. A useful criteria is to assume that at a major milestone, a different team will take over
the project and must be provided with a set of specifications for their task. Thus, major milestones
are points in the project where significant documentation and evaluation occurs. Minor milestones
are important events which are typically part of a larger logical task.

Staffing a neural network project depends on many factors. Project Leaders should have
experience in software development, and preferably a working knowledge of the capabilities and
limitations of neural computing paradigms. Since a wide variety of skills are necessary, it is not
necessary for all team members to be experts in neural computing, however, one team member
should have the capability to do the system analysis, and to determine the appropriate neural net
paradigm, as well as to judge the training and test sets. Programmers with conventional skills may
be required depending on the human and system interfacing requirements. Finally since vast
amounts of data are usually required, experience with data structures and data manipulative
software is very useful.

The methodology as outlined contains such milestones, and the issues that should be addressed and
activities that should be executed, and hence the reports that can be prepared by the project team to
provide evidence of reaching the milestone (or otherwise). In this section we will outline these
milestones and suggest the form of reporting and actions that are appropriate for managers..

7.3 Project Milestone Reviews

7.3.1 Major Milestones

The proposed methodology is characterized by four major milestones: Requirements Analysis,
Logical Design, Implementation, and Integration and Maintenance. These mark major milestones
in the project life-cycle. Each is characterized by attaining certain goals and each can be validated
by determining progress and achievements as discussed in the previous sections. Essentially at each
major milestone, the project team can be required to prepare reports outlining how each issue has
been addressed and the reasons for the choice of each alternative. The project leader is typically
charged with the responsibility of sign-off for the document set attesting to the conclusion of the
milestone.

Major Milestone #1: Requirements Analysis

In typical software projects, the requirements analysis is completed by the customer's team based
on the perceived needs of the end-user and results in a set of requirements specifications (the A-
Level Specifications). The design team has the problem of analyzing these specifications and
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reducing these to a document set suitable for their purposes. In either case, evidence should be
presented that the following questions have been answered or the issues have been addressed:

What is:

The required functionality?
The performance?
The human and system interface definitions?
The acceptance tests?
The operational constraints?
The non-functional constraints on the final system?
The maintenance and documentation requirements?

Finally "Is there an adequate supply of useable data for training and testing?"

Major Milestone # 2: Logical Design

The conduct of this phase has been outlined in Section 4. The conclusion of this phase is marked
by the presentation of evidence to demonstrate either the consideration and/or attainment of the
following:

1. The application has been confirmed, in the sense that the team is confident that a neural
computing approach will yield results.

2. The neural paradigm has been selected including estimates or starting data for: the
network paradigm(s) including the network size, the output type, and the training
method, Time Constraints

3 The network alternatives have been designed, including the node level, and the network

level. The training issues and parameters have been considered and allocated.

Major Milestone # 3: Implementation

The level of effort and the amount of time required to implement the neural net is very difficult to
predict, due to the uncertainty of the traimng procedures. It is, however, during this phase that
detailed management is required to ensure that the project is converging and that appropriate steps
are being taken to maintain estimates of time and effort.

The expected result is, of course, that a trained neural net is presented as evidence of success,
however, the team should at minor milestones present evidence that they have:

1 Characterized the input data set by assembling and preparing the input data set, sele'ted the
training and test set.

2. Chosen the development system, including the operating system and the hardware platform.
3. Achieved training to the standards required and successfully passed the preliminary test

requirements.
4. Created all the user and system interfaces, and have completed any test and demonstration

required by the original specifications.

The final requiremeat in this phase is the preparation of all the deliverable documentation, and the
preparation of the demonstrations required by the factory acceptance tests.

If an integration of the system into a larger environment is required this should be completed and
tested on-site, if possible. If the delivery requires integration into a system on the customer's site,
the interface documents should be carefully pursued and the integration plan finalized.

Major Milestone #4: Delivery and Maintenance

This phase should mark sign-off of the project. The delivery of the required document set, and the
test plan for acceptance should be prepared.
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7.3.2 Preliminary Design Review

A preliminary design review should occur after the finish of the logical design phase. At this point
the complete logical plan for attacking the problem should be in place.

7.3.3 Critical Design Review

The critical design review should be held part way through Milestone 3, at the point where the
major decisions have been made with respect to platforms and the detailed training plans are in
place.

7.3.4 Pre-Delivery Preparation

Predelivery activity should include the instantiation of the user and system interfaces, as required,
as well as the pretesting preparation for the final test. The documentation should be subject to
quality assurance, and the list of deliverables checked-off.

7.4 Documentation and Configuration Control

It is truism to say that configuration control (or the lack of it) has contributed to more failures and
cost overruns in software projects than any other single cause. In neural engineering the need for
configuration control is even more urgent. In addition to the normal software documentation, a
complete record of the training portion of the project becomes critical in judging progress, and
maintaining convergence in time.

Of particul,- importance is a detailed record of each parameter, and the changes effected during
training runs, the number of iterations, the rate of convergence, and any other tuning efforts based
on the heuristics of the team.

This record will prove valuable not only in situations where convergence is slow to occur, but will

be essential in post-delivery if modifications are to be effected in the field.

7.5 Disasters - Recovery and Containment

During phase three, a host of difficult problems can arise that require experience and often basic
knowledge of neural paradigms to surmount. The response to these problems will be based on the
quality of the implementation team.

In addition there may be fundamental problems which are caused by decisions made during earlier
phases of the design methodology. Some of these may be very difficult to fix 'on-the-fly' and can
contribute to project failure or, at best, over-runs of time and money. These pathological errors
may occur at any stage of the project and can be classified as either global or detailed. Global
errors occur during the logical design phase, and usually indicate a restart of the project.

Global errors include:

Wrong choice of neural paradigms
Wrong choice of test and training data
Wrong Simulation Systezm
Inadequate Performance

Detailed errors refer to inappropriate choices made during the implementation phase, and are
manifested aq lack of convergence, lack of performance, or failure of the test set.
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8.0 SUMMARY AND CONCLUSIONS

8.1 Summary

The Management Structure:

The thesis underlying this presentation has been that a project involving the. development of a
neural computing system is subject to the same general rules of conduct as any other software
project. The management structure must account for the special features of such project, since
there is considerable difference in detail in arriving at a successful neural network compared to
other more familiar software systems. The management structure and the managers must
therefore be familiar with these difference and the issues which they raise if they are to understand
the importance of addressing these issues and the alternatives which should be considered.

The Methodology:

The methodology proposed follows the classical four major activities of: Requirements Analysis,
Logical Design, Implementation, and finally Delivery and Maintenance. Each of these mark a
major milestone in a project and each has a set of activities, issues and specialized expertize
required to successfully traverse the required activities. And most importantly, each can be
reported by preparing a document set which addresses the relevant issues, and the solutions and/or
alternatives found necessary to project a successful conclusion. This reduces the project and its
management to a an understood set of activities which are close to those normally found in a
software project. There are however some critical differences.

Project Differences: There are perhaps four major differences with more conventional software
projects: First the success is dependent on the availability of existing data; Second, the logical
design consists of choosing the set of paradigms most likely to yield success (rather than evolving a
systems algorithm); Third, there is no guarantee that the training regimes will converge, and that
the test sets will provide the evidence necessary for validation, and finally, the documentation and
configuration management must be adapted to the neural paradigm.

Software Project Failures: Failures generally tend to be based very intangible details of the
training and test sets, and the wrong choice of paradigm, and/or the lack of convergence of the
training regime. A whole new set of skills and techniques are necessary to rescue a failing project.

Selecting the Paradigm: The field of neural computing is in a rapid state of expansion, however,
there are now what could be called classical approaches. It should be possible to map an
application onto a set of potential paradigms with a fair degree of confidence.

Selecting the Simulation Platform: The simulation platform is a critical choice, as in most
software projects. Aside from the choice of paradigms, the most c-itical item is assistance in
influencing the training regimes, monitoring the training progress and, if necessary, in debugging
the failed system.

Training and Test Set Selection: The most critical concern of both the contractor and the customer
should be the selection of the training and the test sets. The training set must reflect the full scope
of potential inputs to the final system, and the test set must reflect the structure of the system as
learned through the training set. Failure to select these sets will cause project failure, in most cases
for the wrong reasons,

Training Failures: The most distressing feature of neural computing is the lack of convergence of
the training procedure. As discussed there are many causes, and the field is rife with heuristics
and procedures for rescuing the situation. The main recourse is the experience of the team, a
good simulation platform, and sometimes raw luck.
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8.2 Conclusions

The Neural Computing Field:

At the present time, the movement of the theories developed by neural science to the practice of
neural engineering is progressing along the same line that software did twenty years ago, and in
the same manner that expert systems software did over the last decade. The field is in a
tremendous growth phase with new theories, implementation platforms, and successful applications
appearing daily. In addition there is a certain amount of the baidwagon syndrome appearing in
the commercial world, resulting in many claims of neural computing expertise based on very
limited experience with the realities of hard experience. In such an environment it is easy to be
misinformed and misdirected. Many of the developed systems have been level-of-effort projects
with an open budget; this situation must evolve towards a more commercial development project
with the standard management, documentation and control procedures, if the field is to mature into
a professional discipline.

Software or Hardware:

In the end, a neural network will be considered as one of the alternatives to solving a problem. Its
inclusion in a hybrid system [C-1,2] composed of classical algorithmic scftware and rule-based
software will depend on the nature of the problem and the capabilities of the different paradigms.
This trend is already noticeable in hybrid systems of algorithms and rule-based systems. The
implementation of neural paradigms will follow the path of special purpose software which has
been relegated to microcode for such applications as input/output drivers, and will be implemented
on special purpose coprocessor boards.

Contract Award:

If contracts are to be let, a review of the design methodology and the project management plan
should be an integral part of the assessment procedure of the received bids. While there is still a
level of uncertainty in the convergence of most neural network projects, there are good
engineering design approaches which will minimize this risk and often contribute to the success of
the whole project.

Project Management:

In a larger view of the development of a software solution, the need for a neural network would
evolve, as part of the logical systems design, in response to the demands on the functionality, the
input data, and other knowledge. The methodology proposed here has begun with the implicit
assumption that a neural solution has been decided upon. It, never the less, proposed a distinct set
of phases in which progress can be measured, and issues faced at the appropriate time. This
certainly provides management control and leaves the development team with a set of guidelines
for ensuring that all options are explored in a systematic manner. It also suggests when things may
be going astray and convergence may not be occurring. The steps proposed may be traversed
quickly with an experienced project team on familiar ground, however, an awareness on the part
of the team and management of the logical sequence of considerations and issues lends order and
structure to the project.

The Near Future:

The neural computing field is in a state of rapid change:, in theories, in new architectures, and in
computational platforms (software and hardware). Design and implementation teams will need a
constant infusion of updated concepts and information to make full use of this technology. This
statement is also true for those with applications that might benefit from the use of this technology.

Finally we have not considered the development of neural paradigm using new hardware neurons
[D-1,2,3]. It is clear that large, high performance neural networks will be implemented using a
variety of silicon or perhaps optical (perhaps, even biological) devices to simulate the neuron.
Some of these will be trainable and some will accept weights derived from software simulation.
This combination will offer an interesting challenge as the software and hardware engineers join
their methodological requirements to achieve very large neural networks.
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PROCESSING COMPLEXITY OF TWO APPROACHES TO
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La Jolla, CA 92093

Summary even though competent image object detection and
recognition systems can be built, most such

The computational complexity of a processing systems cannot be employed for guidance and
function is a driving factor in the implementation control because of size, mass, power, and cost
of that function in an operational system. Artificial limitations. What is needed is a new approach that
neural networks offer the potential for significant can significantly reduce the computational burden
improvements in the computational complexity of a and data transfer requirements associated with
number of guidance and control functions. To object detection and recognition..
illustrate such an improvement, this paper Most current approaches to image object
considers a comparison between two different detection and recognition employ sensors that are
approaches to object detection and recognition a designed following the tradition of television. This
traditional approach employing a wide field of view is logical, since an enormous technological
and constant spatial resolution throughout the infrastructure exists for such devices. However,
image sensing and processing chain, and a foveal most current systems continue the analogy all the
approach utilizing a roving "eyeball" circularly way through the entire processing chain. In other
symmetric sampling grid with a radially variant words, at each stage of processing, the image pixels
resolution in the processing chain. The rationale or features that are used are sampled at regular
and characteristics of these two approaches are intervals across the entire image or subimage.
described and compared. Quantitative evaluations While this seems particularly natural (because of
of the processing loads and data transfer rates are our television mentality), it is not necessarily an
then carried out for both approaches. These optimal or cost-effective approach for object
processing requirements are then compared and the detection and recognition. In fact, this approach
operational implications of this comparison are clearly ignores the design principles employed in
discussed. While this paper does not explicitly biological vision systems.
discuss the efficacy ot the foveal approach, Unlike television systems, the visual systems of
references to relevant research results in this regard animals are optimized for object detection and
are provided. recognition - not for image rendering. No

example of a constant resolution image sensor or
1 Introduction image processing system exists among the

vertebrates (some insects have such systems).
Object detection and recognition are image Vertebrate animal visual systems are based upon
analysis operations that are of central importance foveal sen.sors and foveal processing. Such systems
for the guidance and control of many types of pro':ide the advantage of high visual acuity within
modern weapons. Unfortunately, except for the a small central field, with resolution that drops off
simplest types of objectb (e.g., "lhot blob" ill rapidly with radial distance froin the center. Such
infrared and radar imagery) and the simplest foveal vision systems must employ eyeballs to allow
operational scenarios, the computational and data the high central resolution of the foveal sensor to
transfer requirements connected with these be rapidly moved to different locations within the
operatiorns are orders of magnitude beyond current scene. The primary thesis of this paper is the claim
real t;m! on-board processing capabilities. Thuns, that military object detection and recognition
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systems built upon this foveal eyeball concept 2.1.1 Feature Extraction
deserve intensive investigation.

The next section provides detailed descriptions of Both the primary and secondary feature extractors

two different image object detection and use Gabor logons (see Figure 2) as the feature set.

recognition architectures: a constant resolution Gabor logons, originally introduced in the context

architecture, and a foveal architecture. In of uncertainty theory for information [9], have been

Section 3, these two architectures are compared. widely used in image processing and machine vision

Finally. in Section 4, the potential military since Daugman extended the original work to

operational implications of this comparison are two-dimensions [8]. Examples of Gabor logons in

discussed. image processing include image compression [4],
image reconstruction [13], texture segmentation [4],

2 Two Architectures feature extraction and pattern recognition [3,19].

The primary advantage of Gabor logons is that

In this section, the designs for two hypothetical they provide local spatial frequency information

object detection and recognition systems (a which has been demonst-ated to be sufficient for

constant resolution system and a foveal system) are many types of object detection and classification.

discussed. To focus the discussion, we shall assume A logon is constructed from a sinusoidal grating

an image-based object detection and classification function weighted by a two-dimensional Gaussian.

system having a 1024 x 1024 pixel imaging sensor The sinusoid portion of the logon introduces a

looking down at the ground obliquely from an "waviness", whereas the Gaussian portion localizes

airborne platform which always flys at about the the logon to a region of the image that surrounds

same altitude above the ground. It is further the location corresponding to the mean of the

assumed that the range is such that the number of Gaussian. The extent of the Gaussian and
pixels on each object is reasonably large. The subsequently the logon is determined by the

analysis in this section will concentrate on variance of the Gaussian. The mathematical form
estimating the processing required to carry out of a logon can be written as

object detection and classification for a single
frame of this imagery. It is assumed that there are
40 object classes of interest and an average of 12 G(x, y) = e- [(x - x °)O- (Y- Y°)0] - ' [u °(x- x°)+ v°(Y- YO)]

objects per frame. The next section compares the

results obtained in this section for the two system where (xo,yo) are position parameters which

concepts. localize the function to a region of the image,

(u 0 , vo) are modulation parameters which orient
2.1 A Constant Resolution System the function to a preferred direction and spatial

This subsection describes an object detection and frequency, and (a, 13) are scale parameters which

recognition system concept that uses constant determine the spatial extent of the logon.

resolution imagery and constant resolution As demonstrated in [8], the two-dimensional

proces3ing. The system employs a two-stage Gabor logons are not orthogonal functions.

processing approach to reduce th, computational Therefore, the decomposition of an image into a set

burden while maintaining high probability of of logon coefficients cannot be performed by simply

detection and classification rates (see Figure 1). projecting the image onto the logons. Daugman [4]

The first processing stage performs object detection has developed a neural network-based method for

using a small number of features coi puted across decomposing an arbitrary image into a set of

the entire image. The result of this l)rocessing logons. This method uses a relaxation process to

stage is a set of potential object locations At each achieve a minimum mean squared error fit of the

potential object location, the second stage of image to the set of logons.

processing eliminates false alarms and clissifies the While this method works well, it is very

true objects. This stage of pro e.(,igi uie - largtl tomiiutatiotally inteuisive. Therefore, the object

number of features than the first stage detection and recognition systems described below

We begin with a brief discussion of the features use the projection of the image onto each logon.

that are used at both processing levels. Next, the The "cross-talk" in the resulting logon coefficients

two processing stages ar described in detail, is ignored
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Figure I- Constant resolution image object detection and recognition system design.
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Figure 2: Spatial frequency detection kernels -sine and cosine Gabor logon wavelet features.
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bandwidth between the first and second stages.
This bandwidth reduction is accomplished while
maintaining a low object miss rate.

2.1.3 Object Recognition

The second stage of processing is object
Figure 3: Examples of geometric shapes used for recognition. The processing at this stage consists of
object detection. extracting a number of higher resolution Gabor

logon coefficients and inputting these coefficients to
a backpropagation neural network [11]. The

2.1.2 Object Detection backpropagation network has been trained to

The first stage of processing is object detection. classify its input into one of the 40 object classes or

The approach [20] consists of calculating a set of the "no object" class. This processing is applied

low resolution Gabor logon coefficients and only at those pixel locations that were above
comparing these coefficients with those derived threshold in the object detection stage. The
from a set of simple geometric shapes. The use of following discussion assumes that there are 100
low resolution logons provides resistance to noise such points.
and background clutter, while comparison with At eacnl potential object location, the secondary
simple geometric shapes reduces false alarms In feature extractor calculates 56 complex Gabor
order to ensure that all objects in the image are coefficients corresponding to seven spatial scales,
detected, the object detet 'on process is applied eight orientations, and two phases. The spatial
throughout the image on a sampling grid of every scales irclude the two scales used in the detection
fourth pixel processing as well as five additional higher

In Figure 1, the p lary feature extractor resolution scales. In addition to these 56
calculates 16 complex Gabor coefficients coefficients, the secondary feature extractor
corresponding to two spatial scales, eight calculates 56 coefficients at each of 4 adjacent
orientations, and two phases at every fourth pixel locations for a total of 280 coefficients. These
location. This results in 1,048,576 coefficients and adjacent locations are typically within a few tens of
requires 36 billion arithmetic operations per image. pixels of the potential object location, and result in
These coefficients are passed to the object detection a more robust classifier that is insensitive to the
module which compares the 16 coefficients at, each precise position of the potential object location on
pixel location to the coefficients derived from each the object.
of five geometric shapes (see Figure 3). The magnitude of each complex coefficient is

The comparison is performed using a normalized calculated and the resulting 280-dimensional vector
similarity function derived from [3]' is presented to a backpropagation classification

network. This network is trained to classify its
S(i = G(i,j) G(p) min(iG(LJ)IL ILG(p), input vector into one of 40 object classes or the

Si _-_,(i,j)[[ IG(p)II m (-" Iui)K not-an-object class. Through training on actual
examples of objects and false alarms, the network

where S(i,j) ik the similarity function, G(i,j) is is able to achieve a low false alarm rate and a high
the Gabor feature vector at point (i,j) in the probability of correct classification. It is worth
image and G(p) is the Gabor feature vector of the noting that this constant resolution method is itself
matching geometric shape This similarity function much more economical from a computational
is normalized to the interval (0,1) standpoint than most classical approaches which

The similarity values at each sampled pixel are often require yet another order of magnitude more
then compared with a threshold Those pixels with processing per image.
similarity values above the threshold are considered
potential object locations and are pas~ed on to the 2.2 A Foveal Rosette System
second stage of processing. In general, a very large
fraction of the pixels will be below the threshold In the recent past., a number of resear-hers
and therefore will not be processed firther, [14,15,16,17,18,19,10] have advocated a
resulting in a significant reduction in proccssing fundamentally new approach to image object
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to carry out most object acquisition and object
recognition operations in images can be carried out
using a relatively small ensemble of spatial
frequency and image intensity features. In fact, for
a foveated image sampling pattern, Rybak [14]
proposes that as few as 833 real-valued, local image
features are sufficient for carrying out many
practical object acquisition and recognition
functions. The work of Zeevi [19] and von der
Malsburg [2,3,12] supports Rybak's conclusions. In
this paper we will discuss a slightly modified
version of Rybak's foveal rosette system [14].

The point on the image that lies at the center of
the foveal sampling pattern (the rosette) is called a
fixatiwn point. As in biological vision, the
movement of the rosette from one fixation point to
the next is known as a "saccade". Saccades are
generated primarily by exploiting feature data
gathered at the sparse peripheral sampling points

Figure 4: A foveal image feature sampling pattern of the rosette. No information processing occurs
rosette with 3 rings and 16 spokes. The radius of during a saccade. Processing only occurs during
each ring is twice that of the previous ring. Spa- pauses of the rosette at fixation points.
tial frequency features are gathered at the central The goal of saccade generation is to ultimately
fization point of the rosette and at the points of in- move the center of the rosette to A repeatable
tersection of the rings and spokes. For many ob- position on each object of interest within the scene.
jects, these spatial frequency feature sets provide a Once an object is approximately centered in the
unique signature - assuming that the central point of rosette, it is classified utilizing the features
the rosette is placed at an approximately repeatable gathered in the high acuity central region of the
position on the object. Rules and neural networks rosette. At least this is the case for compact objects
for moving the rosette (a saccade generation system) (which will be the focus of this paper). Extended
ensure that the rosette moves repeatably to similar objects (objects larger than the two central rings of
fixation points on similar objects in different images. the rosette - see Figure 4) can only be classified by
A saliency detector neural network can be used to linking information gathered at multiple fixation
determine when an object-identification-relevant fix- points located on the object. Building an eyeball
ation point (a nezus point) has been found vision system for detecting ard classifying such

extended objects will probably be more difficult
than for compact objects. Since almost all military

detection and classification. This approach, which object detection and classification problems can be
we shall call "eyeball" vision, is based upon a crude solved within the confines of a compact object
analogy with mammalian visio,. systems The idea restrition, we will consider only compact objects.
is to utilize many of the successful methods already In the presentation below, we btein with a
developed in machine vision research, and modify discussion of the foveal rosette and a basic set of
these methcas to work with a much smaller set of features that are derived from the image at each of
multiresolution wavelet features that are sampled the rosette sampling points. The feature set
in a non-uniform foveal pattern ( 'ee Figure 4). presented here, while sufficient for an initial
The idea of foveal sampling is that of having an development effort, should probably be expanded
agile, readily movable sensor that moves for an operational system to inciude additional
intelligently from fixed point to fixed point in the important saccade generation clues such as color
image to carry out the object detection, gradients and frame-to-frame motion cues. The
classification, tracking, and measurement functions. issue of exactly how the foveal rosette features can

As shown by Zeevi [19], Rybak [14,15,16,17], and be physically extracted from the scene is also
von der Malsburg [2,3,12], the operations required discussed. Foliowinig the discussion of the foveal



4-6

rosette and the feature set, methodologies for
object detection and recognition are reviewed.
Finally, methods for developing a feature vector
library for use in classification are presented.

2.2.1 The Foveal Rosette

The foveal rosette (see Figure 4) is nothing but a
sampling frame. At each intersection of a radial
line and a ring (or of the radial lines themselves -
namely, the center), a set of features is gathered.
The essential element of the rosette is the density
of the features, not their regular spacing. In fact,,
randomly located sampling points could just as
well be used, as long as their average density were
to fall off properly with radial distance from the
center of the rosette. Regular spacing simply makes
the system easier to describe and work with. It also
facilitates the efficient mathematical comparison of
the feature sets gathered at different fixation points 0 0
on different images.

The features that are extracted at each point of
the rosette could be almost anything. For example, Spatial frequency features with octave frequency spacings
we might measure the local spatial frequency of the
image at one or more scales. Aiother possibility
would be to detect local image flow or measure
zolor gradients. To allow comparison with the
constant resolution system described above,, we
shall concentrate solely on the use of local spatial
frequency features (specifically, Gabor logons, as Eight orientations used at each spatial frequency

shown in Figure 2).
The specific feature set that we will discuss in

this paper is based upon the concepts of Rybak and Figure 5: Spatial frequency kernels with different
his colleagues (14,15,16,17] Rybak's idea is that spatial frequencies are used at different sampling po-
the spatial frequency measurements at each sample sitions in the rosette. The spatial frequencies get
point are made with both sine and cosine Gabor smaller (i.e., the kernels get physically larger) by a
logon correlation kernels at eight different angles factor of 1/2 on each successively larger ring. Sixteen
equally spaced between 0 degrees (vertical) and orientations of each sine and cosine kernel are used
157.5 degrees (the opposite azimuths are covered at each sampling position (only eight orientations
by the symmetry of the kernels) - see Figure 5. are shown here, th!e others are derived by means of

We assume that the objects of interest have a symmetry).
spatial frequency structure such that the objects
car, be uniquely and easily classified by means of
spatial frequency measurements at two scales that
are a fixed percentage of the overall object size
(and the same for all object types). Further, we
assume that the object's size can differ no more
than a factor ranging from 1/2 to 2 from some
mean. While these assumptions may seem quite
limiting, they really are not. Surprisingly, as
Rybak has shown [14], the foveal spatial frequency
features ue'd hore are- capablc of being reversed to
reconstruct an immediately recognizable
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approximate version of the portions of the original first ring are the same as those used at the center.
image that were sampled. In most cases the The rings themselves have radii that increase by a
reconstruction is quite sufficient to read;'y visually factor of 2 between successive rings. This feature
recognize the objects in the image. Rybak obtained set, with some further tuning and refinement, is
this result with only 833 features per rosette. probably adequate for many object detection and

Experience from the .DARPA Neural Network classification problems.
ATR project and on other image analysis projects
suggests that most military objects can be 2.2.2 Object Detection and Saccade Generation
classified by measuring spatial frequency content at In the eyeball vision concept, object detection
no more than two spatial frequencies that are a involves two processes:
fixed percentage of the object's size. In fact, almost
all objects have this property. With the advent of * Movement of the rosette to positions where
inertial navigation systems, GPS, laser ranging, objects are likely to be found.
etc., almost all military imagery provides detailed
information about the approximate scale of objects * Determination that an object of interest lies at
within a specific image. Thus, by means of either or very near the center of the rosette.
optical lenses/telescopes or digital image Movement of the rosette to positions where
processing, the sizes of objects of interest within -.
image can be controlled to within a factor of 1/2 tu objects might be located is carried out via a set of

2 of a desired mean. This is usually simple to neural networks and rules. These networks and

in almost any application (e.g., a missile rules determine (based upon feature informationarrange gatheredsat.aty currentarosettepositionmand a
seeker, a reconnaissance system, an imaging radar, gathered at te current rosette position and at

etc ). If necessary, the .ange of object sizes over previous rosette positions) whether an object of
interest is likely to be in a particular direction. Forwhich the system can function canl be increased exmloerethtRbkasxprdiso

However, this would add cost. example,, one rule that Rybak has explored is to
follow a prominent extended edge ar, look for

An important issue regarding eyeball vision is the areas of concentrated "line activity" at a specific
nature of the sensing and feature extraction point. Such points of concentrated line activity
hardware Clearly, the necessary sensing and (i e., multiple strong line processes at different
feature extraction operations can be carried out angles located at approximately the same location)
using an ordinary television-type camera and are known as nexus points. In a typical military
digital image processing While this will work, it, object detection and classification problem, objects
may not be the most cost-effective solution in the of interest have one or more nexus points, whereas
long run. Specialized sensors that directly extract most other objects in the environment do not.
foveal rosette sampled features from a scene, such Another rule might be that, if a particular edge
as Zeevi's CCD delay line scheme [19], may process is followed in search of nexus points, one
ultimately provide a more cost-effective solution might later revisit tnis same edge process and
In the discussion that follows, we will not concern search for it in the opposite direction. In the
ourselves with the specific details of how the set of instance of such a rule, the periphery of each
features is derived from the scene. We shall simply rosette would be carefully searched for evidence
assume the existence of the rosette sampling suggesting an extended edge process. This would
pattern and t],e associated spatial frequency then be used in formulating future saccades to
features (although we shall count the calculations examine. A saliency detection neural network can
required to extract them). also be used to augment the rule set to determine

The specific features we will discuss are shown in whether or not a particular fixation point is a
Figures 2 and 5 (see ,,G,7,8] fur drtiu,.) At cacl nexus point on an ot)jt-d of interest.
sample point, we calculate Gabor logon wavelet Obviously, some kind of feature classification
features of a single spatial frequency at eight process must be used in saccade generation. One
different orientation angles, using both sine and option is to have a separate feature analyzer for
cosine logons. The scale of the spatial frequency each distinct set of saccade generation 'rules. For
features at each ring is 2 times the scale of the example, the ex*ended edge following rule might
corresponding features at the ring just inside of it. use a classifier that looks for and locates extended
The spatial frequency of the features used on the edges in the scene using feature data from each



4-8

rosette. Another process might involve looking for The outer ring is also often ignored, because its
edge intersections to determine the locations of features are used primarily for saccade generation.
potential nexus p,.ints. In either case, a set of rules Instead of usir.g Euclidean distance, another
for moving the rosette is required. Saccade approach would be to use a neural network
generation is clearly the area of eyeball vision that comparison module that has been trained on a
has the greatest need for additional research. large volume of known image feature data. The
Notwithstanding the need for more research on output of the module is the determination of
saccade generation, even the current crude systems whether or not the unknown feature vector and one
work remarkably well (see [15] for an impressive of the rotation/scale altered versions of the library
example). feature vector match sufficiently or not. The use of

a neural network for this function would seem

2.2 3 Object Recognition promising, since the subtleties of the matching
operation probably will allow a method that

As the foveal rosette is moved about the scene by utilizes more of the feature content to do better
the saccade generation rules, a nexus point saliency than simple Euclidean distance comparison.
detection neural network (a mapping network One of the challenges of the eyeball vision
trained on points chosen by humans as being good method is to find a way of matching an enormous
nexus points) is used at each step to detcrmine if number of library vectors with a particular
an object of interest is present near the center of unknown feature vector in a small amount of time.
the rosette, The inputs to this network are the Cluster trees and other hierarchical indexing or
same multiresolution wavelet f-Latures used by the content-addressable memory techniques may be
saccade generation rule base. This nexus detection useful for this purpose.
element is used to decide whether full classification
of the specific set of rosette features is called for.
The ultimate goal is to compare each nexus point
rosette feature set with a stored library of The creation of a feature vector library for a
catalogued features. particular set of objects of interest might seem very

The comparison or matching operation needs to difficult, but it need not be. All that is needed is a
be carried out in such a way that the system is labeling of nexus points on objects of interest in a
insensitive to zcale changes in the object by as reasonably large set of images. During the training
much as a factor of 1/2 to 2 from the baseline process, the rosette movement rules are allowed to
scale, rotations of the object within the plane of generate saccades and move the rosette around the
the image around the center of the rosette, and images. Human observation of the rosette's
small changes in the spatial frequency content, of behavior can be utilized to improve and expand the
the object. Methods for carrying out such rule base. Neural networks can also be trained by
matching operations are known. One method is humans to make expeditious saccade commands.
graph matching [2,3,12]. In terms of our specific Whenever the center of the rosette touches a
features, the essence of graph matching is to take labeled object of interest near a nexus point, the
the unknown feature set and compare it with each rosette feature vectors are captured and added to
of the known feature sets at a variety of scale and the library with a tag specifying the class of the
rotation offsets. For example, we might take the object with which the vector is associated in the
unknown feature vector and compare it (using an image. Rybak's work suggests that most objects
abridged Euclidean distance measurement) with a will have multiple nexus points. All of the feature
collection of auxiliary feature vectors derived from vectors from these points would typically be
a single library feature vector. The auxiliary gathered and stored.
vectors are created by taking the library vector and
rearranging the feature values to correspond to 2.2.5 Foveal Object Detection and Recognition
rotations of the foveal rosctte by 22.5 dcgrccs Architecture
increments and scale changes of the rosette (by
factors or divisors of 2) across scales of 1/2 t.j 2. Figure 6 shows a hypothetical foveal object
The Euclidean distance measurement is abridged so detection and recognition system architecture. This
that components which would correspond to rings system is now described. In the next section it is
that do not exist in the scaled rosette are ignored compared with the traditional system.
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rosette position
4 B te10241024pixd ... 4 Btes1568 features

. .1024x24 pixels Foveal Feature Extractor per 1seN
Image Mlbyte/frame rsNexus Point Detector

Sensor 4.3 MOPs/rosette 2 Kbtes/roset 84 KOPs/rosette

rosette position I es/no indicators
4 Bytes 2 Bytes/rosette

cae eerto 1 Bytes/rosette Target Recognizer

35KOPs/rosette 4./0 KOPs/rosette

41 class outputs
41 Bytes/rosette

Figure 6: A foveal rosette image object detection and recognition system design.

As shown in Figure 6, the same image as used in + 2 x 51 x 50 + 51 x 2 = 83,652, including bias
the traditional fixed-resolution system is foveally inputs).
sampled using a rosette with three rings, 16 spokes, If the fixation point is judged to be a nexus point
and a center point (49 sampling points). 16 sine (a rare event), the object recognizer module is
and 16 cosine Gabor logon wavelet features are activated.. The object recognizer uses a search
extracted at each sample point. If we assume that procedure (such as a tree search) to search through
digital processing is used, then each wavelet must a large feature vector library. It is assumed that
be computed by multiplying each pixel of a wavelet 100 comparisons, each requiring 3 x 1568 = 4704
template mask by each corresponding pixel value arithmetic operations, are needed to complete the
beneath the mask. The calculational burden search. This is reasonable, since trees can be
associated with these operations is shown in the designed to keep the search time to a low multiple
table of Figure 7. The current position of the foveal of log N, where N is the number of example ieature
window is also emitted (this position is obtained vectors stored in the feature vector library
from the saccade generator). The output of the (including redundant rotated and scaled versions).
foveal feature extraction module is a set of 32
features at each of the 49 sample points for a total Following each nexus point detection operation,

of 1568 features (one byte each). the saccade generator module selects a new fixation
point (unless it judges that the image search has

Following feature extraction, the nexus point been completed). The operation of this module is

detector module uses the foveal features to assumed to involve a combination of both rules and

determine if the current fixation point is a nexus. neural networks having a combined total

This operation is assumed to be carried out by a computational burden four times as great as the

multilayer perceptron neural network [11] with saccade generation module, or 334,608 operations

1568 inputs, 50 first hidden layer units, 50 second per fixation point (this is a guess based upon the

hidden layer units, and two output units (one each saccade generation methods of Giefing [10). Rybak

for yes and no). While the size of this network is [151, and Schimidhuber [18]).

just a guess, experience with similar problems Let us assume (as we did with the constant
(such as object detection using regularly sampled resolution system considered in the previous
spatial frequency features) suggests that a network subsection) that there are 12 objects in the image
of this size should work for a typical image object and assume that there are 2 nexus points for each
detection application. This network requires 83,652 object (i.e., half of the nexus points are judged by
operations to determine the nexus point the recognition module to not be objects of any of
classification for a single fixation point (1569 x 50 the 40 classes of interest). This is reasonable,
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"' Wavelet Size Arith. Ops Number of Number of
Ring (in pixels) (per pixel) Wavelets Samples Pts. Total Ops

Center Pt. 400 2 16 1 12,800

1 400 2 16 16 204,800
2 1,600 2 16 16 819,200
3 6,400 2 16 16 3,276,800

I Total Ops. 4,313,600

Figure 7: The calculations associated with derivation of the 1568 features of a single foveal rosette..

because the nexus point detector will not be able operations per second. Thus, the foveal system is

to do as detailed an analysis as the recognition almost two orders of magnitude faster than the
module. Let us further assume that there are a constant resolution system, assuming that both
total of 100 fixation points explored in the image. systems are implemented in approximately the
We then get a total computational burden of same sort of hardware (see Figure 8).
roughly 500 million arithmetic operations per In terms of data transfer, if we ignore the image
image (100 x 4,313,600 + 100 x 83,652 + 12 x 2 input (which is the same for both) the rates for the
x 470,400 + 100 x 334,608 = 484,475,600) Note constant resolution and foveal system operating at
that the calculational burden associated with 5 frames per second are 5.6 MBytes per second and
extraction of the foveal features is about 90% of 1.5 MBytes per second, respectively. Here again,
the total required computations. This illustrates the foveal system is better.
why it would be highly advantageous if a sensor

that directly extracts these features could be built. 4 Operational Implications

3 Computational Complexity Comparison The operational implications of the comparison

In this section the real time object detection and carried out in Section 3 are now briefly discussed.

classification system described at the beginning of
Section 2 is used to compare the constant 4.1 System Envelope Parameters
resolution and foveal approaches. The 2.5 billion operations per second processing

3.1 The GuidanuL and Control Scenario load of the foveal system is within reach of existing
or near-term processors, as is the associated 1.5

We shall assume that the airborne object d-tection MByte per second data bus information transfer
and classification problem described at the rate. Thus, although it is still in need of validation
beginning of Section 2 is being used for guidance in terms of its performance, the foveal approach is
and control of weapon systems on-board the well within the computational and data transfer
platform and/or of the platform itself. We shall rate envelope that can be reasonably postulated for
assume a need to process 5 fraraies of imagery per near-future military systems.
second. To make the comparisons simple, we shall In contrast, the constant resolution system, with
imagine that all of the data flows shown in Figure 1 its 181 billion operation per second processing load
and Figure 6 occur on a single shared data bus and 5.6 MByte per second data bus information
within the information processing subsystem transfer rate, will be more difficult to implement in

real time hardware in the near future.

3.2 Processing and Data Transfer
Comparisons 5 Conclusions

In the case of the constant resolution systeui we
have a total processing load of approximately 11 Clearly, the eyeball vision concept impacts more
billion operations per second. The foveal system than just cost. It introduces the possibility of using
will have a total processing load of 2.4 billion knowledge regarding the spatial appearance and
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Constant Resolution System
MOPS per MOPS per

Module Frame Second
Primary Feature Extractor 36,000 180,000

Object Detection 22.5 112.5
Secondary Feature Extraction 165 825

Object Classification 3. 1 15.5
Total 1 36,200 181,000

Foveal Rosette System
MOPS per MOPS per

Module Frame Second
Foveal Feature Extractor 430 2,150

Nexus Point Detector 0.8 4.0
Saccade Generator 33.5 167.5
Target Recognizer 11.3 56.5

Total -175.6 2,378

Figure 8: The computational requirements of the constant resolution and foveal rosette systems.

characteristic detailed internal structure of objects image analysis and compression", IEEE
of interest. Trans. Acoustics, Speech &$ Signal Processing,

Obviously, at this stage eyeball vision is little 36, 1169-1179, 1988.
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0 Introduction: why neural More precisely, target recognition
networks are interesting in target imply very adaptive developments, the
recognition problems nature of targets being different from

Modern strategic surveillance or one situation to another, the targets

autonomous weapons systems have themselves varying in time, for

performance requirements that imply example during the life of a weapon

the use of new and innovative data system. Various pattern recognition,

processing techniques. The ever from the perspective of sensor signal

increasing number and sophistication classification processing, are necessary,

of modern threats, the availability of for example to detect and classify

large amount of data coming from large specific target signatures buried in

numbers of transportable and moving noisy, clutter-rich signals.

sensor platforms, the extremely strong Neural networks techniques,

real-time defense system requirements, because learning from examples is a

have resulted in increased demands on crucial phase are well suited for

data and signal processing systems, problems requiring an adaptive

often overwhelming conventional behaviour; by applying the same

processing technologies, architectures to learn various database,

The existence of larger numbers on can obtain developments at

of threats in a cluttered environment, relatively low costs; moreover, good

the existence of many false alarms, fault tolerance is obtained which is

implies the use of real-time adaptive particularly useful for signal processing

algorithms. Classical approaches have on clutter and noisy signals. Finally,

led to often costly, inflexible, algorithm neural networks are intrinsically

intensive data processing systems; they parallel algorithms, which allows

can only meet the performance execution on parallel neural networks

requirements through high-cost processors, which may provide the

developments of co-processors. answers to some of today's most
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formidable defense system processing simulation, that it is easy to make a
requirements. database that is statistically

representative of the data to be
processed, and also to take into account

1 Input signals and databases some particular cases that appear as
Essentially four types of signals rather exceptional This leads you to a

are used for target recognition, radar software that solves pretty well the
signals, infra-red images, sonar signals target identification problem for signals
and TV images. coming from the simulator. The

In each type of signal, several question is then: what about real data?
subtypes can be described, Are the data generated by the simulator
corresponding in particular to the close enough to real data to ensure good
functionalities of the system; for performance on real data? The answer
example, radar signals for panoramic to these questions clearly depends of the
surveillance ar every different from particular characteristics of the problem;
radar signals used in target detection in one can however say that it is relatively
weapon systems; moreover sensors easy to make simulations with shapes
have particularities in executing the close to real targets shapes, but that the
reception phase, which includes main difficulty remains in the
filtering, amplification, and simulation of noises and clutter; the
demodulation of the signals, these experiments prove that resistance to
procedures being generally analog, artificial noises does not necessarily

For the needs of neural networks imply resistance to real cluttering.
applications, big databases are necessary If one uses real time data, the
for the learning phase. Here comes the advantage is of course that the database
first real difficulty, because these used for learning will have
databases have to be really characteristics close to the data used in
representative of the problem to be real tests. The inconvenient is generally
solved. Two issues are then possible; that, except when for the addressed
e'ther one uses data obtained from problem, real databases have been
simulations, or one uses real data recorded for years, you have to record
registered either in past conflicts, or in new data to complete your database,
experimentations made by the army or and this may imply very high costs.
the industrial groups interested in the Moreover, it may be merely impossible
project. In both cases, some questions to obtain a database being
are raised. representative of all exceptional

If one uses simulations, the patterns that may occur in your data.
advantages are generally that one has as So, there is then little chance that the
many data as needed, that their cost system will be able to handle these
remain reasonable, generally the cost of exceptional cases that he never met
thE development of the software before.
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The best solution is most of the most problems using sonar signals.

time to use data coming from Most of the time, the problem of
simulations in the development of target recognition has been studied for
prototypes, then, to make real long time using various classical

applications, to start from an existing or methods. Adapted preprocessing was

reasonable cost database, and to then used, and the experiments prove
complete this real database by data that the best preprocessings for classical

coming from simulation, This solution methods are also most often the best
is often the one offering the best preprocessing for neural methods. For
price/performance ratio. example, in the case of radar signals:

It must also be enhanced that the usual numeric preprocessing such as

possibility of complementary learning pulse compression, doppler filtering,
phases remains open and that, nurmalization, or thresholding with

consequently, if it will always be constant rate of false alarms have
possible to enhance the performance of proven to improve the performance of

the system facing some particular neural recognition.

situations that had not been forecasted Again, the choice of

originally, preprocessing in itself depends of the
problem; for example, if you want to

distinguish between various
2 What preprocessing? helicopters, the frequency of blades is

The second problem that has to one of the most discriminating

be addressed is the choice of the patterns, so that you will need a doppler
preprocessing. First, is preprocessing filtering.
really needed? It is clear that neural But neural networks have
networks, in many applications proven to be useful either in the choice
perform very well on raw data. This is of the preprocessing, or in the
particularly true in image processing, preprocessing itself. Here come a few
less in signal processing. However, if examples:-
one wants to deal with raw data, one The way how neural networks
may have to make a numeric can be used to choose a preprocessing

representation of the signal with very has been studied in [16]. In this paper a
high frequency; this implies very big two-stage original architecture is
memory size for the system, and very described: in the first stage, a first neural

very long learning time. So, to obtain network with input the raw signal

equivalent results at reasonable cost, makes a pre-classification, identifying

one needs some preprocessing. the type of input signal, and yielding a

But, again this really depends of good choice of signal processing

the signal. For example, no method; in a second stage, this

preprocessing is really necessary for preprocessing technique is applied to
recognizing targets in TV images, while the signal to feed a second neural

preprocessing seems unavoidable in network which performs the precise
..... ........... ....... ....... .. ...... . imnm I m Tim N mm |m m ( mm w m m m i mm m r l m u m m m m M m m mw m - m
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classification. In this example, the rather an easy task. Before the
"preclasses" are classes such as transient introduction of neural networks, there

sounds, surrounding noise around, was essentially two ways of extracting

quasi-stationnary noises, features for a classification problem,

An example of preprocessing linear algebra and experience.

using neural networks concerns texture The only available mathematical

analysis in infra-red images. Such a method was linear regression, which is

procedure is described in [6]. For target still the best method to be used when

detection in infrared images, texture the characteristic features can be

analysis is a very useful tool ( while for obtained in a linear way from the

example, because of the low dynamic, parameters coming from the sensor; but

and low signal/noise ratio, contour this me-ins the problem is easy.

detection is not successful). To perform In other cases, the best help for

the discrimination between textures, extracting features is probably to use the

two sorts of preprocessing are used: experience of experts in the domain.

multiresolution analysis by wavelet They generally are used to look for

transform to provide interscale level particular patterns in the signal, their

energies, and the grey-level approach has proven to be successful, so

distribution. A multi layers perceptron why not try to identify these particular

then performs the classification, patterns. Even when you use after

Another example of neural networks, this has proven to

preprocessing is described in [12]. To save lot of time for learning. Moreover,

improve the performance in pulse a good choice of the features may bring

radai detection, pulse compression to you some invariance properties that

techniqules, which involve the are adequate to your application. In

transmission of a long duration wide target recognition, one generally wants

bandwidth signal, and the compression to have some translation, rotation or

to a narrow pulse, are generally scaling invariance; a convenient choice

employed. A neural network has been of features may bring this property. This

trained to perform this compression, is done in [9], ( see § 5.2 below).

with computational speed faster than In some cases, various

those of the traditional approaches. preprocessing and features extraction
have been applied to a same problem;

performances can then be compared.

3 Extraction of features This is the case in [18], for automatic
In all pattern recognition identification of pulse sonar noises. The

problems, features extraction has always first approach is based on a joint use of

been a key problem. If you are able of autoregressive modeling and wavelets

finding discriminating characteristics of transform to obtain a reduced set of

patterns in signal or in image, then parameters to feed the classifier neural

making the classification is generally network. The second is based on a two
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dimension signal (time-scale) dependent strategy, encoding in
representation by compactly supported particular specific spectral peaks or
wavelets as inputs for the network., nulls.

If backpropagation is certainly the
mosl popular algorithm in neural 4 Neural classification techniques
networks, a key reason is its ability to Backpropagation is certainly the
extract automatically features. In fact, most popular algorithm for target
you can consider the first layer of multi recognition problems, as it is for most
layer perceptron as being a feature classification problems. In the
extraction program, dedicated to the examples we are giving in §8,
addressed problem. Moreover, the backpropagation is used in [4], [5], [11],
procedure of shared weights allows to [12], [13], [15], [181, [191, [20]. The main
impose translation or even scaling ( reason for that, as was said previously,
with convenient preprocessing) is that backpropagation still works if
invariance to these features. preprocessing or features extraction that

In [5], an example of an extraction have been made before the
of visual features for lofar images is classification are not perfect. So, it is the
given. The identification of underwater easiest way of making an application,
acoustic noises is actually made main problems generally occuring in
essentially by human operators, either the optimization of the learning time.
by listening directly to the noise, or by For example, in [4],
looking at the spectrogram of the noise backpropagation has been applied to the
(lofar). A backpropagation neural problem of the detection of moving
network has been used to extract visual targets in severely cluttered
features from the lofar diagrams. environments from medium pulse

'lost of the time, the features repetition frequency Doppler radar
that nave been automatically extracted signal. Performances, when compared
have their justification in the with conventional filter bank method,
performances of the classification that proved to be much better especially in
follows them. But sometimes, specific highly cluttered environments.
signal featuies extracted by hidden units Another example is given iii [15]
of the network can be given an for the passive detection of target-like
interpretation. A good example is given signals in underwater acoustic fields.
in [11). The problem addressed there is The input to the Neural Network is an
to classify sonar returns from an intensity modulated signal which a
undersea metal cylinder and a measure of the power of the signal at
cylindrically shaped rock of comparable different frequencies as time varies. The
size. It can be shown that certain hidden first stage of the system is an
units correspond to an aspect-angle autoassociative memory whose
independent classification, while others function is to eliminate the noise. The
correspond to an aspect-angle output of this first stage is input to the
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second stage which is a multilayers translation, rotation and scaling
perceptron. Performances are quite invariance (see §5.2 below)
promising. Neocognitron is a very powerful

Stochastic algorithms , uch as algorithm, able to extract automatically
Boltzmann machine are used more features, even with some invariance
exceptionally, generally when the properties. But, it is not so popular
characteristics of the application imply because the architecture of the network
that the cost function that is used for may be rather complicated, and the
the classification has several local results very dependent of the chosen
minima one wants to escape from. The parameters. Most often, the architecture
inconvenient for these algorithms is of the network corresponds to a
that they are generally computer time- decomposition into functionalities . In
consuming, so that their study is often [10], the neocognitron is applied to
coupled with hardware detection, recognition, and
implementation. identification of targets in infra-red

This is the case in [2], where images. It is proven that a neocognitron
Synchronous Boltzmann machines are can distinguish between tanks, cows
implemented on a Connection and haystacks, a difficult task when they
nrachine, for classification of boat are viewed by an infrared sensor.
outlines extracted from infra-red Kohonen Topological maps is the
images, most commonly used algorithm for

In some other cases, randomness unsupervised target recognition
can be used to escape from flat portions problems. In fact, the target recognition
of the energy landscape, as it is the case problems are not so often
in [22], where a stochastic variant of unsupervised, so that Topological maps
backpropagation improves convergence are rarely used. One can however see an
rates for a sonar target recognition example of its use in [141 (see
problem... description §5.4 below)

Learning Vector Quantization is Finally, Widrow's Adaline is
a typical classification algorithm, u ?d in some cases, even if in most
probably the most efficient when used cases, backpropagation is preferred ( see
properly; but it has to use perfectly [17] for example)
adapted features as inputs; in some
problems, best results were obtained by 5 The key points
making a first classification using In most of the target recognition
backpropagation, then by applying a applications, some common difficulties
Learning Vector Quantization to the arise; on can quote four:
intermediate hidden units of the - Multi resolution recognition
backpropagation. In [9], Learning Vectoi - Invariance by translation,
Quantization is applied to features that rotation, scaling
have been manually extracted to insure - Movement detection



5-7

- Global situation analysis In [9], invariant target recognition

is performed. The features are defined a

5.1 Multi resolution recognition priori; for example the total number of
pixels with value 1, the sum of theTargets may be far or close, big orA

Tmagthes accuay efa oe clsig oy products of pixels which are at the same
small, the accuracy of teig ma distance from a designated origin, but
change due to noise or cluttering, s 90 degrees apart, .. are some of these
thtthe saley t y hoe hs opusr features. Kohonen's Learning Vector
the signal may vary. The most popular Quantization 2 technique is then

tools for taking into account these sorts

of problems is the use of Gabor applied to these features and gives very

functions, or wavelets functions. rood performances for identifying
silhouettes images of targets.In [7], a nmultiresolution

segmentation technique is developed
for signals and images, combining
wavelets and neural networks. Targets are moving. Sensors are
Multiresolution analysis allows generally giving a picture, including
localization of different contours in position of various targets, But

different scales. Thanks to this recogrnition tasks are much easier if
localization which characterizes the correlation between these positions is

smoothness of the contour , one can done from one picture to the next
hope to distinguish objects with picture. This task of tracking, or

different resolution. extracting trajectories is always
A hierarchical organization of important, and is more difficult if the

feature vectors constructed from Gabor frequency of picture is low, compared to

convolutions with infra-red .nages at the speed of the targets, as in the case of
different orientations and resolutions is some radars, for example.
used in [81 for tanks recognition. In [1], visual information about

the motion of objects in an image is

5.2 Invariance by translation, rotation, obtained, including the description of

scaling the trajectories. A neural networks

Invariance by translation, implementation of the so-called
insaince is i tantsain novelty filter allows to detect motion of

rotation, scaling is important since ojcsi cn n orcr

targets are moving objects to be

recognized whatever their position, corresponding traectories.

distance or orientation is. Invariant 5.4 Global situation analysis
feature extraction is thus an important

factor., Even if shared weights Another difficulty to use all the

backpropagation can bring a partial information obtained is that, in many

answer to this, abstract features are cases, isolated information concerning

often defined. one target is not enough. A decision of
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attacking a target may depend of the 6.1 Integration of various neural and
existence of other targets around it; the non neural modules
spatial relations between several targets Various functionalities have to
often give important indications about Vrous fnctiol tes othei inentins.be performed in the computers oftheir intentions.

A global analysis tool is still weapons systems. Some of them, as
seen earlier, may be well performed by

something prospective; however, some
prototypes are developed on the subject, using neural networks. But, all this

such as in [14], where recognition and would be of no use without integration

reconstruction of spatially related capabilities of neural networks

grouping of various objects is developments between themselves,
and with other modules. Fortunately,

aressed.r heution propertieiand lessons from expert systems have been
ureconruto preres are iriant, learnt, and integration is a high priority
under input patterns that are translated, for most of the neural networks tools.

distorted, incomplete and rotated by 30

degrees with respect to the training An example of integration of

patterns. The algorithm is a various neural algorithms used in

combination of Fukushima's panoramic surveillance is given in [13].

neocognitron, and Kohonen's multi- In this application, several multi-layers

layered multi-topological feature maps. perceptron trained using
backpropagation are used for image

6 Integration prediction, pattern and image
The biggest difficulty of classification, image compression. Also,

integrating new technologies in big a model deriving from simulated
systems has always been integration, annealing solves the tracking problem.
This is true as well for weapon systems A combination of classical and
and neural networks. In fact, two levels neural algorithms, from noise
of the difficulty of integration appear: removing, to identification is presented
the integration in the information in [21]. A preprocessing stage removes
processing part of the system, and the noise from the imagery using data
integration in the whole system itself. fusion, and performs automatic
A third level of difficulty, is not detection to obtain a range slice of the
addressed here, but has to be quo ed: as object. The object is then normalized
neural networks programs are made by for scale, rotation, and translation in
learning from examples, the software the field of view. Oriented receptive
engineering cycle imposed by military fields are applied to extract edge
administrations, as well as the usual strengths, followed by a neural network
validation procedures are not that does boundary completion. The
applicable. New agreements have to be object shape thus obtained is then the
found on this subject between military input of a neural network based
administrations and weapons systems classification stage that identifies the
industry. object.
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6.2 Integration in systems developed in research laboratories than
in operational integration teams, soWhen one wants to define ag

neural networks module, as seen in § 1, that,

a strong constraint is the availability of 7 Conclusion

databases. This may lead to choices that Neural networks are certainly a
are not always compatible with the very promising technique for target

functionalities of the whole system, as recognition, because of their
most of the time the available data has adaptability, their fault tolerance and

not been recorded especially fcr the their real-time potential due to their

neural networks module. parallelism. If, as in most of the

Two good examples of a good applications of neural networks,
integration of neural modules within database availability, choice of

the functionalities of the whole weapon preprocessing, and features extraction

system are given: in [19], a are important to keep the amount of

backpropagation module is used to time necessary for learning within
insure the load limitation of a radar reasonable limits, the key factors for the

plot extractor system. The network success of the applications are multi

differentiates between true and false resolution recognition capabilities,
plots before the tracking function is invariance of recognition by

performed. This allows to reserve the translation, rotation, scaling

tracking function, which is computer movement detection capability., The
time consuming to the true plots, integration of neural modules in

In [20], a target recognition system weapon systems requires new

based on neural networks is described, validation processes, as well as a careful
as well as the integration in the system. study to make the neural modules

In this system, target recognition is compatible with the sequence of

performed on infra-red images in two functionalities of the system.
steps.In the first step, potential targets Backpropagation is certainly the
are classified in targets or false alarms, most often used neural algorithm,

to reduce again the computer because of its ability of extracting

consuming; in the second step, features. Various comparisons of

classification of targets as planes, performance with classical methods

helicopters or missiles, allows to adapt have been made on some examples.

the tracking algorithms, to give One is given in [17], where neural

priorities to the various targets, and to networks outperform classical

give a better evaluation of threat. algorithms for some problems of

Finally, concerning integration, classification of natural underwater

the real-time constraints justify the use sounds. But there is no general rule,
of parallel dedicated neural hardwares. and in fact, most of the time

Up to now, the technology of realizing performances mainly depend on the
neural hardwares, has been more representativity of the database.
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VISION SYSTEMS FOR GUIDANCE AND CONTROL: A TUTORIAL
OVERVIEW

BY

B. Archie Bowen, Ph. D., P. Eng.,
President, CompEngServ Ltd., 19 Fairmont Avenue, Ottawa, Ontario

ABSTRACT

Vision systems are finding wide-spread use in such areas as autonomous robotics and in more mundane
situations for the interpretation and/or identification of objects in images generated by various sensors.
This tutorial presents an overview of the various areas in which such systems have proven successful
and an introduction to the underlying theory.

The human vision system seems to be composed of a set of pre-attentive filters located in the retina
which do an immediate data reduction by computing a set of features (a feature vector). These features
are transmitted to the brain for interpretation as images. Synthetic vision systems are based on the same
functional decomposition of feature extraction followed by interpretation.

The use of pre-attentive filters for synthetic vision systems has gained wide acceptance and produced
some impressive results. The concept of pre-attentive filters is introduced and the Gabor and the
Fourier-Mellin filter are shown as typical examples.

Several types of neural nets, given the ., 'ropriate input data, can be trained as interpreters to classify,
complete and identify patterns. Several architectures are explored for these applications.

The first class of applications exploits the mapping characteristics of neural networks. This ability leads
to a set of applications m pattern classification, pattern completion and pattern recognition. The second
is in the more difficult field of object (target) recognition Experimental results in image compression
and target identification are drawn from the literature.

It is suggested that the techniques for creating vision systems appear to be applicable to very large class
of problems not normally associated with 'seeing' as we normally consider it.

INTRODUCTION

The goal of replicating the capabilities of the human vision system, or perhaps more ambitiously
the vision systems of various other animals with superior capabilities, is undergoing some form of
realization at this time. Electronic vision systems with some of the capabilities of animals are
being routinely accomplished.

While a complete electronic vision system that simulates the capabilities of animals may seem a
desirable goal, in most cases some specific subfunction is all that is required. Robots, for example,
need only 'see' what is required to perform their function. This may ony demand the
identification of a hole in a casting into which some part is to be inserted. In other cases, only
predetermined shapes or objects need by identified. Thus, in most cases, while researchers may
seek biologically emulated electronic systems, a vastly lower order of functionality is usually what
emerges in practice.

Animal vision systems are composed of two main functional partitions. The first, in the eye,
consists of a vast array of pre-attentive filters located in the retina which are either genetically
coded or trained, early in life, to recognize certain attributes of the light energy they receive. The
output from the filters forms a feature vector (a coded representation of the image), which is
transmitted to the brain. The brain interprets this code and creates an image. The visual richness
of the resulting image depends on the evolutionary demands that have been placed on the species.
A frog, for example, seems to see only motion qualified by some indication of mass. The
interpretation of these images is very simple; small things you try to eat, and large things you try
to escape. The human system, we assume, has responded with the most complex and valid
representation of the external world both through our coding mechanisms and our interpretative
capabilities. On the other hand, it is very conceivable that we are missing many subtleties in the
surrounding world.

Research in vision systems seems to have been concentrated in three general areas: understanding
and proposing models of the animal system; modelling the generation of feature vectors, and,
training neural networks to recognize certain attributes of an image. It is the latter two we are
interested in. The modelling approach attempts to create feature vectors which represent the
image with such fidelity that it can be reproduced (this is most useful in transmission and storage),
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or which enhances certain attributes useful for classification or for object recognition. This later
capability is perhaps of most interest to those concerned with guidance and control.

This paper is organized in four main parts: In the first we will review a model of animal vision
and from this propose a model for electronic vision systems. In the second, we will review neural
computation from the point of view of image processing. In the third, we address the use of
neural networks to classify or identify objects presented to the input. Finally, in the fourth, we
will address the use of pre-attentive filters used to more closely simulate animal vision.

VISION SYSTEMS

Animal Vision

A model of an animal vision system is shown in Figure 1. In this model, the image is decomposed
by a large array of sensors which become trained to recognize attributes of the environment (such
as vertical strips or bars) based on the characteristics of the received light. These sensors have
been shown to have a response which is similar to a two dimensional sinusoid, damped with a (two
dimensional) Gaussian decay function. This function originally proposed by Gabor has the unique
property of a minimal space-time dimensionality under a Fourier transform. The functions are
called Gabor-Logons, after Gabor [B-i] who studied these functions in communications theory.

A feature vector is generated based on the output of these preattentive filters and conveyed to the
brain Along the optic channel The brain interprets the signals and creates an image. The
interpretation process is partially genetic, and is dependent on training. Daugman [C-i] and many
others have shown the validity of this model by actual measurements on the eye of various animals.
While the process seems almost unbelievable in its complexity, upon reflection it seems an
eminently sensible way of reducing the image data to an essential subset which can be processed in
some reasonable time.

Machine Vision - A General Architecture

Systems for emulating animal vision system have a similar architecture, as shown in Figure 1. The
sensors could be physical elements producing a characteristic of the image, or simulated elements
whose outputs are derived by a computation on the input image. Sensors outputs are fed to a
processing element which act directly to produce results (such as classification) or to an interpreter
for subsequent processing. In the case of simulated filters, images are usually captured by some
form of scanner which produces a pixel stream representing light intensity and/or color. The
sequence of pixels becomes the synthetic image presented to the computational procedure. The
characteristics of th( sensors and their number depends on the application.

A PARTICULAR VIEW OF NEURAL COMPUTATION

All The World is a Vector

Neural computing, in all its paradigms, assumes some form of vector input and produces a vector
output. The interpretation of the vectors and the processes of responding to the input vector vary
widely, however the basic view remains unaltered.

In order to provide an image input to a neural network, it is necessary to reduce the image to a
vector. This is usually done by some form of raster scan in which the pixels become the vector
components. The generation of pixels depends on the sensor and on the problem. For example in
scanning a satellite image of clouds, a one kilometer square is averaged to produce a pixel.

The interpretation of the output vector depends on the problem. In image classification, for
example, the output would represent the estimate of which class the image is from. In target
recognition, the output would be an estimate of which the class of targets the object is from.

The initial task of the system designer is to decide on the format, size and interpretation of the
input and output vectors, and then on the appropriate neural paradigm needed to generate the
transformation.
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The neuron in most paradigms computes a distance function between its internal weights and the
incoming vector. This is usually an-inner product or a vector-difference of lengths. The resulting
number represents how close the input is to the neuron's weights. The output of the middle layer
of a feedforward network is a set of numbers representing the closeness of the input vector with
each of the neuron weights. This vector must be processed to produce the desired output.

When considering image systems it is necessary to consider the effects of the volumes occupied by
the class of images and by the desired responses of the system.

Hyperspace and Hypervolumes

The world of images can be considered to occupy an n-dimensional space where each pixel is
interpreted as a basis vector in the space. In a real sense then, an image is a vector and a class of
similar images could be considered to occupy a volume in image space. For convenience,
multidimensional spaces are referred to as hypervolumes to indicate their n-dimensional character.
This distinction is important to remember since the intuitive extension of our concept of volumes
does not prove valid in n-dimensional space. The sphere is the only volume that preserves its
intuitive shape and metrics (volume, radius, circumference, etc.). The cube for example becomes
a multipointed star.

Image classes typically occupy very convoluted volumes in image space, which demands a complex
partitioning mechanism in order to separate and identify a particular class of images. Multilayer
neural networks would seem an ideal mechanism to accomplish this, since, in theory, a multilayer
network can create arbitrarily complex partitions. In practice, there are a multiple of practical
difficulties. The most significant being that successful training demands a representati,-:' set of
training examples which will expose to the neural network the complexity of the image volume,
and define strictly the boundaries between distinct volumes. Since the shape of the image space is
impossible to define, the selection of representative images also becomes very difficult to
guarantee.

In addition, very large image spaces (say 128x 128 pixels or higher) demand relatively large neural
nets and there is no theoretical way of predicting the exact size or topology (number of layers and
number of neurons per layer). Despite the theoretical capabilities of multilayer neural networks,
the reality is that training by backpropagation (of an error) through many layers become
ineffective, since the error, as it propagates backward, becomes less and less meaningful. Thus
multilayer networks become extremely difficult to train.

The results of these and other factors usually means that the space is partitioned in such a manner
that the exact partition between classes is only approximate and some intrinsic error always
remains. In most cases, there is a need to reduce the dimensionality of the image space by
extracting a feature vector which preserves the essential features of the image needed for the
particular application.

We will look at two applications to illustrate these concern3: classification and target recognition.

CLASSIFICATION AND RECOGNITION

Introduction

The classification and the recognition problems have similar attributes, however the problems are
essentially different. For our purposes we will assume that the classification problem will refer to
a situation in which a number of classes of images exist in which members of the same class share
some similar attributes. The problem becomes to view a new image and assign it to one of the
classes. Recognition usually refers to the (more difficult) problem of viewing an object within a
scene and assigning it to a class of objects. In the first case, the image is usually homogeneous,
while in the second the object can be arbitrarily located in some form of background clutter.

In the case of object recognition, the object must be found before it can be recognized. The
recognition algorithm must be insensitive to translation (both horizontal and vertical). It must in
general also be insensitive to rotation and scale changes of the object. These constraints impose
very difficult requirements on the recognition algorithm. In the case of classification, the scene
may also be rotated, and translation may imposed because of the starting point of the picture. In
general recognition is a more difficult problem than classification.
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Image (Vector) Classification

Image classification is the task of placing an unknown image into a class of predefined image
classes. The classification of clouds from satellite images, sea state from radar returns, or ground
cover are typical examples.

The classification of cloud images using neural computing paradigms, for example, seems an ideal
application. The classification requires trained meteorologists, the exact class differences while
recognizable are difficult to quantify, and many data sets are available for training and testing the
neural network. In addition there arc many examples of classified images available, and even
results from other approaches to the classification problem, to provide comparisons of
performance. Based on these problem attributes, it would be assumed that the problem was an
ideal candidate for neural technology.

The major difficulty with the application of neural networks to the classification of images is the
massive data sets required to describe an image. (say 1OOxlOO pixels or larger). This introduces
major problems:

I The computational load is immense, and adequate artificial neural network simulators
running on reasonable computers become very slow in training and operation.

2. The error surface during training becomes many-dimensional and very convoluted, so
that training may or may not converge in finite time.

3. The shape of the image volumes become impossible to predict and as a result the design
of the neural topology to achieve an acceptable partition is subject to a error approach.

4. The selection of training examples is difficult, since the training set must be both
representative (of the density in a complex image volume) and be chosen to achieve
rotational and translational invariance of the images.

The first two problems have been traditionally attacked by preprocessing the raw image data to
obtain a lower dimensional feature vector, which adequately represents the original image. The
goal is to generate a feature vector which has lower dimensionality than the image data and which
retains all the essential attributes of the image for subsequent processing. The latter two problems
offer a most difficult challenge in characterizing the training and test sets.

Object (Target) Recognition

Object recognition is a term used to describe the task of picking an object or class of objects from
an image. In this application, it is expected that the interpretation mechanisms will be presented
with a feature vector and the output will be a decision on the existence and possibly the location of
a member of a class of objects. In many cases, depending on the complexity of the system,
estimates of the existence of an object can be made even when they are obscured by screens.

The major difficulty is that the background is essentially clutter from which the objects mut be
located and identified. This usually involves finding masses of distinguishing features and then
creating a negative in black and white, followed by a search for the shape of each mass. The
masses are isolated and features of each created for subsequent identification

Image (Vector) Completion

Image completion is a simple extension of the recognition problem. In this application, the image
is first classified and the classification is used to drive the display of a prototype of the class. A
typical application is to display the complete image of a partially concealed object, such as a gun or
a vehicle. The problem here is to define the class boundaries in such way that an incomplete
vector will terminate in the hypervolume assigned to the class of objects.
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PRE-ATTENTIVE FILTERS AND VISION SYSTEMS

Introduction

In classical statistical analysis of large images, it is common to derive a feature vector which is
assumed to describe the essential attributes of the image. It is assumed that images in a class will
have features that are grouped in a lower dimensional hypervolume than the original image. The
feature vector is then subjected to statistical analysis to separate classes, usually by some form of
linear discriminate measure. A well chosen feature vector will maintain a one-to-one mapping
between the image classes and the feature vector space, and substantially reduce the computational
requirements for subsequent classification. Garand [C-i], for example, has proposed a set of
thirteen features which are used to classify cloud images with an accuracy in the high 80% range.

In machine vision system the image is captured by a scanning technique and represented by pixels
(grey scale or color), which in turn are used as inputs to computational elements which compute an
element of the feature vector. The elements are called pre-attentive filters or sometimes lenses.

Pre-Attentive Filters - The Concept

Any image can be considered as a projection onto a set of bases vectors {L(x,y)}, where {x,y)
represent the Cartesian location of the image pixel in image space. The resulting image becomes:

l'(x,y) = ItaiLi(x,y))

If the (LI(x,y)} is a complete orthogonal set (such as a Fourier series), then the set {ai) can be
computed by a standard inner-product computation, and the representation has a set of well known
characteristics. Orthogonal representations have been widely studied, perhaps because the
calculation of the coefficients is tractable, and orthogonality is comprehensible by humans. The
obvious question becomes 'How closely does the representation I'(x,y) correspond to the original
image?' The answer must be qualified by several considerations, for example, "Is the goal is to
create a set of coefficients that preserve the image in detail to the extent that it can be reproduced,
or is the goal to extract a set of features particular to some application?"

{Li(x,y)} can be considered as a generalized set of filters whose individual characteristics will
determine their applicability to a particular problem domafn. Filters used for various image
processing applications become subclasses of the generalized filter, each having a set of
characteristics and parameters which distinguishes them, and defines their suitability for a
particular application. Within an application, the number of filters required to achieve the
necessary performance becomes the issue, since this will determine the computational complexity
required to generate the features. Having generated the feature vector, the question becomes
'What processing is required to exhibit the required results?' Finally, the location of the pixels in
an image need not necessarily be in Cartesian coordinates. A polar representation is used in some
cases. The selection of an appropriate set of L functions becomes the major issue in most vision
systems.

Feature vectors based on the apparent preprocessing performed by the human eye have been
studied. These are called Gabor lenses, and image compression (and reproduction) with less than
one bit per pixel has been reported. Gabor lenses are also insensitive to translation of the image.
Fourier-Mellin lenses have also been demonstrated, which are insensitive to rotation. These lenses
retain the essence of an image with a reasonably small feature vector.

The computation performed by these lenses correspond to that of a linear neuron. They compute
an inner product of the neuron weights, and the input image. The set of such products is the
feature vector. Each lens, however, requires an iterative experimental procedure to determine the
individual lens parameters (the weights), and the number of lenses to achieve the desired
compression or fidelity. In the experimental sciences, the lens parameters are adjusted to fit the
experimental observations (say of the image preprocessing in a cat's eye). In the image
classification problem, no such data exists and the parameters and number of lenses must be chosen
by an iterative set of experiments, which hopefully converge to the desired performance.

The selection of statistical feature vectors tends, on the other hand, to be based on image attributes
recognizable (and computable) by humans. The selection of a set of lenses to create a feature
vector, depends on the requirements of the problem, i.e., image compression and reproduction,
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image classification, etc. No well defined theory exists to guide the choice of features in any of
these approaches. Experimental results are the final validation.

The weights of the first layer of a feed-forward neural network contains the same number of
weights as the input space. In some sense these weights could be viewed as a synthetic image. In a
trained neural net, each middle layer neuron represents a region in the image hypervolume. The
selection of the number of neurons and their weights, by what ever training mechanism, must
provide a minimal number of appropriately weighted neurons to yield the required classification
accuracy. Other than trial and error, no procedure exists in classical neural training approaches to
guarantee these results.

It is proposed here that the major difficulty is the lack of knowledge of the complexity of the
hypervolumes occupied by each image class. Indeed, given that this assumption is valid, the
problem is even more difficult because a description of the hypervolume is impossible to obtain.
Any approach to representing the distribution of images in this hypervolume must be based on this
assumption.

Figure 2 illustrates the situation in two dimensions. The image volumes are convoluted and
potentially interlaced as shown. The selection of an unrepresentative training set could create a
partitioning hyperplane as shown Remembering that a neuron computes a distance measure from
its internal weights, in this case it is clear that a single exemplar at the centroid will cause
overlapping with the neighboring class as shown in Figure 3. A multilayer network, while
potentially capable of drawing complex boundaries between such classes, must still be given the
correct number of neurons and the number of hidden layers and an appropriate training set to
achieve the correct partition. Clearly an image lens based on the centroid of the classes is
completely inappropriate This problem seemed to define the upper limits of classification
accuracy (regardless of the length of training). The final apparently insurmountable problem
seems to be that that the shape of the image volumes in image space cannot be determined.

Pre-Attentive Filters - The Theory

In general, some set of two-dimensional functions Li(x,y) defined on the same set of pixels as the
image can be defined (in the familiar case, for example, the exponential functions of the Fourier
series), such that a feature vector representing some estimate of the image is generated by the
series-

F[x,y] = 1(a. Lf[x,y]

where the set {ai } represent the projections on {Li)

The series expansion is an attempt to build up the original function by the superposition of a set of
simpler functions, which have some predefined set of desirable attributes (such as orthogonality).

The resultant F[x,y] is either identical to I[x,y] or is different is some way. F is now processed to
regain I or to derive some attribute of I. Clearly if Ll[x,y] is a complete orthogonal set, then
F[x,y] is an exact representation of I[x,y], and the set {ai } can be computed as the (normalized)
inner product.

a. = Y(Li[x,y]l[x,y])/Li[x,y]

The inner products and the projections of a vector on a nonorthogonal set of axis are not the same,
and they must be determined according to an optimization criterion. What ever the criterion it
should be tractable, and meaningful in practice. Consider for example minimizing the squared-
norm of the difference in the lengths of the image and the feature vector, i.e.,:

E = II1[x,y] - F[x,y112

The difference dan be computed by direct substitution at the pixel level:

X(l[x,yj - F[x,y]) 2

Substituting the series expression for F(x,y) and differentiating with respect to ai yields.

8E/ai= -2Y(lIx,yJLi[x,y)) - -2(YakLk[x,y])Li[x,y]) = 0
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Satisfying this condition yields a set of simultaneous equations:

IX(I[x,y]Li[x,y]) = 1(akLk[x,y]Li[x,y])J

The left-hand side represents an inner product calculation of the projection of each lens on all the
other lenses. This suggests that to minimize the mean square difference vector, we must find a set
of coefficients { ai I such that the inner product of each vector Li with the entire set combination of

l(akLk[X,yI) is the same as the inner product with the original image. We note that this is
obviously true if:

F[x,y] = I[x,y]

By substituting for the inner summation, the result can be written as:

YX(I[x,y]Li[x,y]) = Si = YF[x,y]Li[x,y]

We note also that the left hand side is the inner product of the image and the basis vectors. The set

of equations could therefore be iepresented as a matrix equation:

S = LijA

Where S is a vector of length n, Lij is a nxm matrix (where the terms are ceouputed as the inner
product LiLj) and A is a vector of length n. For example, for the two dimens,,,nal case:

Si =" LILI al + L1L2a2
$2 = L2Llal + L2L1a2

By inverting the L1j matrix we could solve for a, and derive the exact representation of the image
providing the basis set were complete. The computational task is Aell known providing the basis
vectors are orthogonal. If they are not, the computational task is formidable for any reasonable
sized matrix, and accounts for the general lack of interest in nonorthogonal representations

In practice, the off-diagonal terms become an important indicator of the orthogonali" of the pre-
attentive filter If the lengths of all filter vectors are normalized on a unit hypersphcre, then the
diagonal terms will be unity and the off-diagonal terms of the of the matrix, depending on their
size, will show how close the vectors are to being orthogonal.

The important conclusion from this generalization is that all preattentive filters Cdn be described
by such an expansion, and their detailed character depends on the actual mathematical form of the
L, terms. Thus the choice of lenses depends on the detailed properties. We note also that each
lense computes an inner product with the input image, thus each lens regardless of type has the
same computational loading The minimal computational load will thus depend only on the
number of lenses required to achieve the desired feature vector.

Invariance Properties

Under most conditions encountered in real guidance and control problems, the image space must
be considered unconstrained by orientation, and the image boundaries. In terms of the processing
required in a vision system, this implies that the image (or object) can be translated both
horizontally and vertically and arbitrarily rotated. In some cases, the image will be subjected to
magnification or contraction. This requirement places a very limiting constraint on the generation
of the feature vector which must, if required, picserve the set of features under the potential of all
these variations.

An essential characteristics in the definition of a vision system is the limitations on translational
and rotational invariances, and as a result the selection of the feature vector must reflect these
requirements.

Fourier-Mellin Filters

Filters based on Fourier coefficients depend on the spectral information contained in the image.
Fourier coefficients can be computed along the image vector (considered as a time series), as a two
dimensional transform in x and y coordinates or as a polar transform. The major weakness of this
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approach is the large number of coefficients required to generate the feature vector. To
completely capture the image suitable for reproduction theoretically requires an infinite series.
Several alternatives to reduce the number of coefficients are used in practice, including the Gabor-
Logon and the Fourier-Mellin variations.

The Fourier-Mellin transform is a two step procedure which first computes the polar Fourier
transform, and then the energy moments along the radius.

The approach begins with a representation of the image in polar coordinates I[r,0]. A set of
circular harmonic can be generated as:

Fro(r) = (I/2nt)fI(r,O) exp[-imO]dO

where the circular harmonic frequency m is an integer. The Fm(r) are referred to as a circular
harmonic functio'i (CHF) The give the energy at each frequency as a function of the radius.

The image can be reconstructed as a Fourier series by.

I(r,O) = IF (r)exp(imO)

These coefficients could (and are) used in some applications as the feature vector. In some ..ases
the energy distribution as a function of the radius of each harmonic can be used. This distribution
can be modelled using moments and are computed in general as a Mellin transform:

M s,m n r' Fm1(r)dr

These coefficients are referred to as Fourier-Mellin descriptors In general, s can be a complex
number. In practice, it is usually real. It is usually the case that a few moments will be sufficient
to describe the image.

A F-M spatial filter is constructed by generating impulse response functions of the form:

Fr(x,y) = {r, 2exp(mO)}*

where * ;ndicates complex conjugate.

Scale ai J intensity invariance can be obtained by suitable normalizations of the F-M description.
If the descriptors are computed for S a real number, then the scale and intensity of an image can be
varied by multipliers ot and k In which case, the descriptors become:

IMs,ml,2 = a2sk2IMsml 2

The scale and intensity invariance can be achieved by defining a normalized invariant feature as:

= iMs,ml 2 / .IMsml2

All moments of the same order suffer the same multiples,, and hence the feature D(s,m) remains
invariant under translation, rotation. scal and illumination

The advantages of this approach are

1. The representation is completely invariant
2. The number of moments required is normally small

Gabor Filters

A Gabor filter is a variant on the Fourier approach. The Gabor filter consists of a two-
dimensional Fourier transform weighted by a two-dimensional Gaussian function. The results is a
filter which is translationally invariant, but is rotationally dependent.

The two-dimensional Gabor filter is represented as a series of two-dimension Gabor functions

l(x,y) = -aG(x,y)

The two-dimensional Gabor filter is the product of a 2-D sinusoid and a 2-D Gaussian weighting
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function. This has been shown by Daugman [C-2] to achieve a minimal space-time uncertainty, and
also to provide a mode! of animal vision systems.

The initial Fourier spectrum yields an orthogonal basis for examining the image, however, the
Gaussian weighting function renders the final feature vector non-orthogonal.

Define

G = M(x,y)*" W(x,y)

Where M is the 2-D sinusoid and W is the Gaussian weight.

Let

M(x,y) = exp{-2iti(uOx +vOy)}

Where uo and vo are spatial frequencies in cycles per radian.

This function can be centered at an arbitrary point xm,ym in the image by defining.

X, = X - Xm

yl = Y - Yn

Thus

M(x.y) = exp { -27ri(uo(x-xm) +v0(y-y..)) I

which can be written

M(x,y)' exp{-27ri(uox +voy) - io}

where
= 2E(xmnu0 + ynivo)

which is a phase angle

The C', ,sian weighting function is defined as.

W(x,y) = exp(-1/2(x 2/a2 + y2/b 2))

where a a&, b are spatial variances.

This function can be arbir "iiy centered and rotated by defining:

Xj= X - Xo

Yj = y - Yo
xg = xicosO -yisinO
yg = xisinO -yicosO

Thus

W(x,y) = exp(-(xg2/a2 + yg2/b 2)/2)

is the damping function centered at (xO,yO) at an orientation angle 0.

The Gabor functions are nonorthogonal. It is straight forward to work out the inner product,
which is:

<G(x,y) (j(x,y)> = exp[-iE(u, - uj) 2/(a 2 + aj2) + (v,-v,)2/(b,2+bj2)]

Daugman [C-2] has shown also that these functions achieve a maximum possible joint resolution in
the conjoint 2-D visual and the 2-D frequency domains. He has shown that they achieve the
theoretical lower bound on joint uncertainty in the two conjoint domains(x,y), the visual space, and
(u,v) the spatial frequency domain. Defining uncertainty in each of the four variables by the
normalized second moments, Ax, Ay, Au, Av about the principle axes he has shown that for:

(Ax)(Ay)(Au)(Av) z I/16I 2

the lower bound exists for the 2-D Gabor functions.
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Advantages: Compression of less than one bit per pixel has been reported.

Disadvantages: There are eight parameters that must be set either by experiment or simulation.

Object Recognition - The Work of Sheng

A group lead by Professor Yulong Sheng at Laval University [A] has published a wide variety of
theoretical and experimental papers exploiting the Fourier-Mellin approach to generating feature
vectors.

It is evident from the equations that the Fourier-Mellin transform does not yield translational
symmetry because of the dependence of the center point chosen for the polar representation of the
image. In most applications, some choice of center is necessary, often the center of gravity of the
picture. or some such definition that can be fond by scanning.

Arsenault and Sheng [A]] have proposed some practical limitations on the number of harmonic
components necessary to represent an image (a space shuttle) on a uniform background. A
centroid of the shuttle was computed and chosen as the center of the filter. The image was
reconstructed using increasingly higher order harmonic components. Their experiment showed
that up to thirty seven components were needed to provide good detail (e.g, to show the tip of the
tail).

They concluded form this experiment that a simple inverse relationship existed between the
angular dimension of the object and the angular frequency of the CHC:

"An object detail subtending and angle of 2it/,'c at the center, where Mc (an integer) can be
described by CHC orders up to Mc."

As a consequence of this, they proposed that for ar. image of NxN pixels, the maximum circular
harmonic frequency is equal to the integer part of lrN.????

They observed also that if an object has n-fold rotational symmetry, the image has an angular
periodicity of 2nt/n Thus the CHC are different from zero only at the discrete angular frequencies
of.

i = 0, + n, + 2n.

Two and even four-fold symmetry is not uncommon in som- image classification problems.

Image Exemplars - A Generalization

When a filter array has been defined, each filter is an array of numbers corresponding to the
dimensionality of the input image spac- The filter could therefore be consider as a synthetic
image and the result of the calculation is an inner product of the input image and the filter Each
filter in the bank contributes to the feature vector a number representing its closeness to the input
image The set of numbers must then be evaluated depending on the application.

In a sense each filter form ig the feature vector could be regarded as a synthetic image in image
space. The task is to find a set of such vectors to yield the feature useful for the task at hand.
Since an image occupies a potentially convoluted volume, it seems reasonable to suspect that
regardless of the mechanism for arranging the eights of the pre-attentive filters that the end result
is a set of vectors which cover the image volumes for each class of image, in such a way as to
obtain the generalization needed for the task. The filters are in some sense a set of exemplars of
the of the volume occupied by the class. Ba:;ed on this model there may be some hope in the future
of synthesizing the appropriate exemplars as a function of the optimization requirements.

SUMMARY AND CONCLUSIONS

Summary

The principle thesis developed in the preceding has been that the architecture for machine vision
systems will probably be based on some mode! of the animal vision system. This model suggests a
two fold-partition of functionality: first the extraction from the iniage space of a set of features,
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followed by some form of interpretive function responsible for creating the appropriate response.

Feature extraction may be done directly by some form of sensor suite or be preceded (as is
common now) by some scanning mechanism, which in turn supplies an image representation to
synthetic feature extractors. In any event, the result is the same; a feature vector must be
interpreted by subsequent processing to derive the final result.

The subsequent processing may be directed toward such functions as target location and
identification, classification of global image features, or the exact reproduction of the image in a
reduced format from that produced by the scanners.

We have shown that the feature extraction can be represented by a general mathematical model,
however, we have not been able to show how this could be Ar plied to a particular requirements.

Conclusions

There is at this time no global approach to defining the desired task of the vision system and
synthesizing the components necessary to optimize this task. A variety of feature generation
mechanisms have been studied, and experimental results are available for different tasks, however
no known optimization procedure exist at this time On the other hand vision systems seem to
encompass a wide variety of techniques in neural computing not normally associated with 'seeing.'
Perhaps vision as understood by machines is a larger activity than that normally associated with
seeing.

It seems clear however that machine vision systems will evolve according to particular needs, and
the final integration of these into a human-like capability will probably be a result of advances both
in the physiology and psychology of animal vision system, combined with the development of
mathematical models and the creation of the appropriate processing capabilities The future
development of vision systems will occur in a fragmented way depending on specific requirements,
as we increase our understanding of mechanisms for deriving the appropriate features for the task
at hand.

The computational complexity of vision systems demands a high level of computer capability and it
is probably safe to say that while an understan'ing of the process can be obtained by simulation in
software, the eventual development of real-time systems will depend on hardware for both the
sensors and interpretation. Neither of these possibilities are too remote. Gabor filters are now
being developed by HNC and high performance analog neural chips are available from Intel.
These chips (80170NW) each contain 64 neurons each containing 80 weights The chip achieves
two billion multipy-accumulate operations per second. The next few years will see special purpose
vision system in wide availability and use.

ANNOTATED BidLIOGRAPHY

A. Target Recognition

The following conference proceedings contains numerous papers directed at the problem of target
recognition using neural networks. It is an obvious first reading for this particular application of
neural computing.

I. "Neural Networks for Automatic Target Recognition," A Research Conference at the Wang
Institute, Boston University, May 11-13, 1990.

The following papers by Sheng and associates outlines the theory and practical application of
Fourier-Mellin filters to the problem of target identification:

2. Yulong Sheng, Henri H. Arsenault, "Experiments on Pattern Recognition using Invariant
Fourier-Mellin Descriptors," J. Opt. Soc. Am., AIVel. 3/No. 6, June 1986, pp. 771-776.

3. Yulong Sheng, Henri H. Arsenault, "Object Detection from a Real Scene using the Correlation
Peak Coordinates of Multiple Circular Harmonic Filters," Applied Optics, Jan 15, 1989/Vol.
28/No. 2, pp. 245-249.
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4. Yulong Sheng, et al, "Frequency-Domain Fourier-Mellin Descriptors for Invariant Pattern
Recognition," Optical Engineering, May 1989/Vol. 27, No. 5, pp.345-357.

5. Yulong Sheng, "Fourier-Mellin Spatial Filters for Invariant Pattern Recognition," Optical
Engineering, May 1989/Vol. 28/No. 5, pp. 494-500.

B. Image Compression

The following paper by Gabor is the original derivation of the Gabor Logon. It is written in older
frame of reference and is somewhat difficult to read (depending on your background):

1. Gabor, D., "Theory of Communication," Journal I. E. E., London 1946, pp. 429-457.

In this seminal paper Daugman brings together the work of many previous researchers and
demonstrate the image compression and segmentation capabilities of the Gabor pre-attentive filters.
The paper contains a host of references to earlier work.

2. John G. Daugman, "Complete Discrete 2-D Gabor Transformations by Neural Networks for
Image Analysis and Compression," IEEE Transactions on Acoustics, Speech and Signal Processing,
Vol. 36, No. 7, July 1988, pp. 1169-1179.

C. Classification

Lois Garand, "Automated Recognition of Oceonic Cloud Patterns and its application to Remote
Sensing of Meteorological Parameters," Ph.d. Thesis, Department of Meteorology, University of
Wisconsin-Madison, 1986.

B. Archie Bowen, and Jianli Liu, "Pattern Classification from Raster Data using Vector Lenses,
Neural Networks and Expert Systems," Mapping and Modelling for Navigation, NATO Al Series
F, Vol. F65, Edited by L. F. Pau, 1990.

D. Pre-Attentive Filters

An excellent paper on the general area of pre-attentive filters is contained in

1. John G. Daugman, "Six Formal Properties of Two-Dimensional Anisotropic Visual Filters:
Structural Principles and Frequency/Orientation Selectivity," IEEE Trans. Systems, Man, and
Cybernetics, Vol. SMC-13, No. 13, September/October 1983.

2 John G. Daugman, "Uncertainty Relation for Resolution in Space, Spatial Frequency and
Orientation Optimized by Two-dimensional Visual Cortical Filters," J. Opt. Soc. Am. A/Vol.2,
No. 7/July 1985, pp. 1160-1169.

3. M. R. Turner,, "Texture Discrimination by Gabor Functions," Biological Cybernetics,
Springer-Verlag, Vol. 55, 1986, pp 71-82

4 Eric Suand, "Dimensionality-Reduction Using Connectionist Networks," IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. II, No. 3, March 1989, pp. 304-314.

E. Animal Vision Systems

The following papers present experimental evidence of the functionality of animal vision systems:

1. Jones, J. P., and L. A. Palmer, "An Evaluation of the Two-Dimensional Gabor Filter Model of
Simple Rcceptive Fields in Cat Striate Cortex," Jour. of Neurophysiology, Vol. 58/No. 6, Dec
19878, pp.1233-1258.

2. John G. Daugman, "Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles,"
Vision Research, Vol. 20, pp 847-856, Permagon Press Ltd., 1980.

3. John G. Daugman, "Uncertainty Relation for Resolution in Space, Spatial Frequency, and
Orientation Optimization by Two-Dimensional Visual Cortical Filters," J. Optical Soc. Am., Vol.
2, No. 7, July 1985, pp. 1160-1169.
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Figure 3: Image Volume Centroids
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Neural Networks for Military Robots

Dr. W.A.Wright
Sowerby Research Centre

FPC 267 British Aerospace

Bristol BS12 7QW.

research projects aimed at investigating and develop-
ing such systems. The most notable of these projects

The paper, gives a short review of mobile robotic re- are possibly the DARPA ALV (Simpson 1987) initia-
search, and through the use of three case studies which tive, the French ALV initiative ROVA (Savage 1991)
describe, in brief, current research undertaken at three and the British Mobile Advanced Robotics Defence Ini-
establishments, indicates the role thal neural networks tiative MARDI (Bateman 1991).. These projects have
are playing in this process and hence the impact that concentrated or are concentrating upon the produc-
they may have on the military environment. tion of an all-terrain autonomous mobile vehicle capa-

The three case studies are chosen to illustrate the ad- ble of navigating through an uncertain environment,
vantage, in terms of speed, compactness, and adapt- on a reconnaissance mission mapping out the terrain
ability, of the use of these systems in what are de. or seeking out a partic!.'lr target for instance. Other
fined as "the three essential functional areas for mobile civil projects, the most notable being the Mars Rover
robot control": (Wolfe and Chun 1987), can in some circumstances be

seen as derivatives of these1 . The use of mobile robots
* localisation (where am I?), therefore in the military arena is not a thing of sci-

* path planning (where do I want to be?), ence fiction. The autonomous mobile robot is: a real,
tracked, wheeled, multi-legged, or even flying vehicle.

* obstacle avoidance (is there anything in the
way?). In general, however, robotic systems developed and ac-

tually used in the 1980's come in a very different guise.
The first case study describes an ultra-sonic obstacle The robots that have already found their way into fac-
avoidance system that has been developed by the Ger- tory production lines are not mobile vehicles but the
man company IBP Pietzsch for the ESPRIT I1 project static jointed arms or the more extensive assembly
ANNIE. The second is a description of an investiga- automated units. These are used in the manufactur-
tion, carried out at The Sowerby Research Centre also ing industry for the automated production of anything
for the ANNIE project, into the use of a neural system from PCBs through to cars or washing machines. In
for the localisation a known mobile robot by the appro- comparison to the static systems the functionality of
priate "fusing" of data obtained from several off-board the industrial mobile robotic systems are much less
sensors, The last study describes a VLSI implemen- developed. In general most industrial mobile systems
tation of a localisaiion and path planning system that are either controlled remotely via an operator or op-
has been designed and constructed by the University of erate in very restricted environments such as on the
Ozford's Robotics Group. factory floor following a buried metal strip. The truly

Although& it is not intended, by presenting these case autonomous mobile robot, which is of prime interest

studies, to portray them as the extent of the state of to the military, is still very much of a novelty.

the art in this field it is, however, hoped that they The major problem involved in producing a truly
will give a clear idea of how and why neural networks autonomous mobile robot is that although in many
are being used in this area, and illustrate the potential cases the processing required is understood hardware
advantages to be gained from their use in the field of limitations prevent it from being carried out with a
military robotics. speed that is great enough on equipment that is small

enough to be practical. As devices have become faster
and faster this imbalance between processing ability,

Introduction size, and piocessing power is being redressed. This pa.-

Over the past few years there has been a keen interest per intends, through a short re'ew of mobile robotic
in the development of the military robot. This has research, and the use of three case studies which de-

been reflected not only by the large amount of work on scribe, in brief, current research undertaken at three

mobile robotics that has been undertaken at various establishments, to indicate the role that neural net-

establishment through-out the world (see appendix A) works are playing in this process and hence the impact

but also by the funding that has been made available that they may have on the military environment.

by both the Department of Defence in the USA and 1 A list outlining the main ALV projects and institutions in-
the British and other European Defence Ministries for volved in these is given in appendix A.
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It is not intended in this paper to produce a corn- The first case study describes work carried out by IBP
plete overview of the use of neural networks for mo- Pietzsch who are a small German company special-
bile robots since this would be too great a task. Nor ising in the production of inertial and robotic plat-
is it intended, by presenting these few case studies, forms. Here, neural networks have been used to pro-
to portray them as the extent of the state of the art vide an obstacle avoidance function by studying the
in this field. This would be very unfair to a large signatures obtained from a bank of ultra-sonic sen-
number of very able workers. It is intended, however, sors placed ar.und the robot. Although slightly arti-
through these c.se studies to demonstrate how this ficial this study provides a graphic illustration of the
technology is being used and the potential advantages use of a neural network for sensor/motor association,
that can be obtained with the technology. Each case an area where the use of neural networks is becoming
study reviews a piece of on-going research, attempts more prevalent.
to highlight the relationship to mobile robotics in gen-
eral, and the contribution made by neural networks in The second case study describes the work that has

particular, summarises experimental results, and dis- been carried out recently by British Aerospace for the

cusses their implications. ANNIE project at the company's corporate research
laboratories, the Sowerby Research Centre. Here a

Each case study describes the use of neural networks neural network has been integrated into a vision based
in what, for the purposes of this paper, are defined sarveillance system which, by matching the data pro-
as the three principal functional areas of any mobile cessed by the surveillance system with data derived
robot: from a mobile robot's own sensors, is able to identify

and so localise the robot. The work demonstrates the

9 localisation (where am I?), use of neural networks for data fusion and advantage
to be gained from hybrid system which comprises sev-

* path planning (where do I want to be?), eral neural networks.

* obstacle avoidance (is there anything in the The last case study describes the work now being un-
way?). dertaken a the University of Oxford's Robotics Group

under Dr Tarassenko. The group has succeeded in

The thinking behind these functions and the con- constructing a small working autonomous robot based

straints they impose, together with a brief rsum6 of on the analogue Pulsed Stream CMOS chips that have

the work now being undertaken in the area of mobile been designed at Oxford in conjunction with Edin-
robotics with particular regard to the use of neural burgh University's Department of Electrical Engineer-

networks, are given in the next section. ing. The work represents one of the first demonstra-
tions of the integration of neural ne t work hardware

The first two case studies stem from the ANNIE into the control architecture of a mobile robot and
project (The Application of Neural Networks for In- illustrates the advantages, in terms of speed and com-
dustry in Europe) of which British Aerospace is a full patibility, that can be gained from these systems. The
partner. This is an ESPRIT 2 II project, which is sup- Oxford project is particularly concerned with the pro-
ported by the European Commission, and aims to duction and demonstration of an integral localisation
investigate the use of neural networks in areas rele- and path planning system for a mobile robot.
vant to European industry. The project is dividedinto three application areas: Finally, the possibilities that lie in store in the area ofmobile robotics are briefly reviewed in the final sec-

tion. Although it is always hard to predict new devel-
* image processing, opments with any certainty it is hoped that at least

* optimisation, some idea of what the future might hold is given here.

* control. Background

Both the ANNIE case studies describe work that is What is an Autonomous Mobile Robot?
being conducted within the control application area
which has concentrated on the investigation of the use As statd in the introduction there are now a vast va-
of neural networks in areas of particular relevance to riety of robotic systems. However, this paper will con-

centrate upon the use of neural networks in the design
of mobile robotics and their impact in the military en-
vironment. The first requirement in such a discussion

2 ESPRIT (European Strategic Programme for Research in In- is to define what is meant by the phrase autonomous
formation Technology) is a European Commission funding body mobile robot. For the purposes of this paper it will be
for collaborative research in the area of, as the name suggests, taken that an "autonomous mobile robot" is:
information technology. This includes many varied areas, from
office systems to industrial robots.
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any self contained system which is able to Localisation: given a map of the environment the
move through an "environment" as part of a position of the robot in that environment needs to
process of achieving certain goals or objec- be determined. In practice this can be obtained
tives, and further is able to react to changer in a variety of ways. Dead reckoning, using the
or unforeseen events in that environment, in vehicle's inertial navigation, or odometry, can in
order to pursue the achievement of those ob. some cases be sufficient. However, other meth-
jectivee, in "real time". ods are available such as the use of beacons or

GPS satellite localisation. Other methods, neu-
"Environment" here can mean anything from the lab- ral implementations of which are described in the
oratory which is structured and usually well under- case studies, use observed sensor information and
stood through to open country which will be unstruc- compare that with a taught or preprogrammed
tured and possibly at best only partially known, world model.

Here "real time" means: Obstacle avoidance: a mobile robot must have the
ability to respond to unexpected obstacles in

to be able to react to a stimuli at sufficient "immediate" path. Often such systems in-
speed such that any action taken as a result volve the use of computer vision techniques, the
of that stimuli occurs in time for that action use of active sensors (e.g. ultra-sonics, laser
to be relevant, range finders, etc), or a combination of both

(Thorpe et al. 1987)

What is regarded here as "real time", therefore, These three criteria, obviously, give a somewhat re-
changes depending upon the environment and the per- stricted view of the functionality of a mobile robot.
formance required of the robot moving through that The fact that any robotic system may have other sub-
environment. For instance real time constraints re- sidiary goals, such as searching, or tracking and fol-
quired for short term obstacle avoidance will differ lowing a particular object, has been ignored.
from those required for long term path planning. A ve-
hicle that requires several minutes to calculate a new It is clear that the relative real time constraints for
trajectory around an obstacle where that obstacle is each of these functions will differ from one to the
only seconds away can not be said to be acting in "real next. In the simplest case, where obstacle avoidance is
time", where as a vehicle that takes minutes to calcu- purely reactive and has no input to the path planning,
late a path that will take hours to negotiate may cer- then this function is required to have the shortest re-
tainly be regarded as processing in "real time". The sponse time. However, in practice the response times
real time requirements for a mobile robot can there- for the other functions increase as the complexity of
fore range from a few milli-seconds to possibly sev- the interrelations between the differing functions is in-
eral minutes, depending upon the circumstances. The creased.
time constraints of the various embedded control loops As has already been mentioned, the high level of
also have a major input on the interpretation of the computation involved in creating a real time sys-
phrase "real time" , This is a key element of the real tem with this degree of functionality in a rela-
time requirement for mobile robotic systems, and one tively small space available on an autonomous sys-
for which appropriate processing architectures must tem is one of the major limitations of the cur-
be designed. rent systems and has troubled many research pro-

grammes such as the DARPA ALV (Simpson 1987)
Functional Requirements for a Mobile for example. More recent ALV programmes such

(Vacherand et al. 1990) and the Universitat der Bun-

The nature of the type of processing required in real deswehr ALV (Dickmanns 1990) have successfully
time for any autonomous robot moving through a overcome this problem by using dedicated image pro-
changing and uncertain environment are summarised cessing hardware coupled with a distributed paral-
for the purpose of this paper under the three headings: lel processing system. In the case of PANORARMA

this consists of Transputers together with a variety
Path planning: given the position of the robot in of other processors (a SUN 4 and several 68000s)

the environment, path planning is required to al- (Vacherand et al. 1990).
low the robot to reach its desired destination,
whilst allowing for the relevant factors in the envi- Other Initiatives
ronment such as any hazards and difficult terrain. In some limited cases the above requirements have
Often these environment factors may change, due been overcome, either by restricting the functional-
to unforeseen events, or obstacles etc. In general, ity of the robot or by ensuring that the robot has only
therefore, it is desirable that the map of the envi-
ronment and the path planning system is adapt- 3 Perception and Navigation Organisation for Autonomous Mo-
able to accommodate these, bile Applications
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to function in a well ordered and limited environment. Although the functional road followint, ALV is now
For the industrial market limited "autonomous" sys- nearing reality the amount of computing power that is
tems are now available (e.g. the cleaning robot pro- required to drive these robotic systems can be a lim-
duced by Robosoft in Paris). These are generally iting factor in achievable performance. This can be
robots with a very limited functionality designed to illustrated by the processing power required for one
clean floors or transport materials. The functionality of the earlier ALV systems at Carnegi-Mellon Univer-
of these systems is usually limited to simple obsta- sity, the NavLab (Thorpe et al. 1987). This system
cle avoidance. This is achieved through the analysis was built into a Chevrolet van and used a vision and
of returns obtained from an active sensor or sensors, laser range finder system to guide the vehicle down
usually ultra-sonic, placed on the robot. These allow a metaled road whilst avoiding any obstacles found
the proximity of objects to be determined and so the- in its path. The processing power required for this
oretically any obstacles in the path of the robot may system consisted of the Warp systolic array and 4
be detected. Any path planning that is performed in sun computers. At the time this power allowed the
these limited systems is usually pre-programmed into van to travel unassisted at a speed of - 2 miles per
the robot before operation and is therefore not adap- hour. Obviously, since the NavLab was first built
tive. computational power has improved. ALVs such as

that built by Professor Dickmanns at the Universi-
In the military flid the examples of working au- tat der Bunderswehr are able to travel at - 50Km/h
tonomous vehicies are not as common. Perhaps the on metaled well constructed roads (Dickmanns 1990,
most dramatic, as has been highlighted by the resent Dickmanns and Graefe 1988). Furthermore, future
Gulf war, is the Cruise Missile. This uses a localisation improvements to this system are expected to allow
system called TERCOM to up-date its position and the vehicle to travel on unmetaled tracks hopefully
so allow mid-course correction to the missile's flight over hilly terrain. This system uses a large array
path. The TERCOM system works by matching the of Transputers coupled with specifically designed im-
ground terrain with a map of the ground relief held age processing hardware. Other notable systems are
digitally in the memory of the missile. Such a system, the: French ROVA (Savage 1991) "Autonomous Road
therefore, exhibits two of the main functions of an au- Vehicle", the UK MARDI (Bateman 1991) systems
tonomous vehicle: localisation and path planning. Ob- the eight wheeled Mars Rover (Spiessbach et al. 1987,
stacle avoidance particularly with regard to the termi- Wilcox et al. 1987) and the six legged ASV (Adap-
nal phase of the missile's mission is, not surprisingly, tive Suspension Vehicle) (Spiessbach et al. 1987,
omitted. Klein et al. 1987). Further details of the the large

Probably the most familiar example of an autonomous ALV projects are given in appendix A.

robotic system in the military and civil fields is the au-
tonomous land vehicle or ALV. There have been and nrl
are many research projects to investigate and build Control
ALV. A brief list, which gives some idea of the range It was the work on the NavLab that led to the first
and scope of these projects, is given in appendix A. real use of neural network technology for the con-
The environment that the typical military ALV has trol of an autonomous vehicle. ALVINN (Autonomous
to operate in can be very extreme. Unlike the con- Land Vehicle in a Neural Network) (Pomerleau 1988,
trolled and sterile environments found on most indus- Touretzky and Pomerlau 1989) demonstrated the
trial shop floors a military ALV used in anger would possible advantages to be obtained by the inclusion
be expected to be able to function not only in an out- of neural network processing for the control of the ve-
door environment where diurnal, climatic, and sea- hicle. The idea behind ALVINN was simple: use a
,vnal conditions can have a great effect, but also un- neural network to find the road in a visual and laser

der very hostile conditions that are found near and on
the battle field. It is not surprising that such an en-
vironment is likely to be very unstructured and may An MLP (Rumelhart et al. 1986) was given pixelated
change dramatically. Many ALVs projects attempt image data from both a camera and a laser ranger on
to use vision to guide the vehicle and for the obsta- board the van. During training the images given were
cle avoidance function (Bateman 1991, Savage 1991, those that would be obtained if the van were leaving
Buxton and Roberts 1990, Vacherand et al. 1990, or off the road upon which it was supposed to drive.
Wolfe and Chun 1987, Klein et al. 1987, The MLP was then trained to provide the correct con-
Simpson 1987, Mitchell and Keirsey 1984). Locali- trol signal (direction of motion) to bring the van back
sation can also be achieved by visually identify- onto the road. Once trained the configured network,
ing beacons or way markers (Vacherand et al. 1990). when implemented on the NavLab, resulted in an im-
The attraction of vision that is important in the provement by a factor of two over the processing speed
military environment is that it is passive. How- achieved previously using conventional techniques.
ever, active systems such as laser rangers have
also been used (Thorpe et al. 196? , Klein et al. 1987, Given that the ALVINN network used whole pixelated
Buxton and Roberts 1990). images as input it is not surprising that the size of
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Road Intensity 45 Direction
Feedback Unit Output Units z

29 p ,,Hde r

8x32 Range Finder
Input Retina-*

30x3_" video
Input Retina Figure 2: Road image.

Figure 1: Schematic view of the ALVINN architecture.

the network is very large even by the standards used
today., Specifically the input consisted of 960 inputs
from a 30 x 32 camera image and 256 from an 8 x
32 image obtained from the laser ranger. The final
configuration of the network consisted of:

* 1216 input units,

* 29 hidden units,

* 46 output units.

The output units encoded a linear representation of
the turning radius the vehicle should take, with the
tightest radius to the left being indicated by the left-
most unit the, tightest radius to the right the right-
most unit and straight on by the central unit. Figure 3: Segmentation of road image.

Obviously to train a network of this eize required im-
mense amounts of both data and computational time. a much reduced network which will, therefore, have
To this end, since it was difficult to gain time on the much smaller overheads in terms of the data rek
NavLab, data for training was simulated using actual quired and the time required to train the network
data gathered from the vehicle as a template. Al- (Hutchinson 1990, Carpenter and Grossberg 1987,though this meant that real data was not used to train Jamison and Schalkoff 1988). An excample of this can
the networks it had the advantage that data could be be found in the work of Wright (Wright 1989). Here,generated that simulated the vehicle leaving or off the region features obtained from a segmented image (seegeroad thaut haing plae the vehicle in sthe a figures 2 & 3) are input to a network which is qub-road w ith ou t h avin g to p lace th e veh icle in such a e u n l tr i d to d n if a d l b l th r ad i epredicament. sequently trained to identify and label the road-like

regions in the image (see figure 4). Having identified
Alternative approaches to reducing the amount of the road and obtained its position relative to the robot
computation, applied in research elsewhere, have in- this information can be used to direct the vehicle.
volved the use of processed visual data. Here, rather Such systems are now being prepared as a guidance
than input whole pixelated images, the image may mechanism for the MARDI ALV (Bateman 1991).
be processed first using computer vision methods
which are able to extract the salient features in the Other techniques use more structured networks which

image: regions and their statistical features for in- have a much reduced connec-

stance. This processed data may then be fed into tivity (Fukushima and Miyake 1982) which facilitates
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point used to prompt the Hopfield network's associa-
tive memory to complete the interior of the room.

--- Having obtained a map of the room the path could
then be computed.

This method is limited by the storage capacity of the
Hopfield network (Amit et al. 1985). The use of a net-
work with 1024 neurons meant that 37 room patterns
could be stored with little problem, although in prac-
tice only 10 rooms were stored. The system was imple-
mented on the Oak Ridge National Laboratory's mo-
bile robot HERMIES (Hostile Environment Robotic
Machine Intelligence Experimental Series) with the
sonar system placed around the body of the vehicle.

The method, however, was seriously limited by the
considerable storage required for the synaptic weights
(there are n2 synapses for a fully connected n-neuron
network). This meant that the computations required
for this associative recall required nearly 3 hours on

Figure 4:, Segmentation of the road image with the re- the robot's on-board PC AT. Replacing the PC host
gions labelled by the neural network as road displayed with a 4 node N Cube gave a sizable speed up but the
in black. resultant speed and the limited recall of the Hopfield

network limited this approach (Jorgensen 1987)., The
training on complete images. idea of grid localisation using a neural network has
The inclusion of neural networks to carry out the ob- be-!n adopted else where (Tarassenko et al. 1991), and
ject/obstacle detection and subsequent motion control this work forms the central element of one of the case
has been further developed and demonstrated at Fu- studies presented here.
jitsu (Watanabe et al. 1989) and MIT/University of
Boston (Baloch and Waxman 1990). Both these sys- Neural Controllers
tems, which are described further in the third casestudy, use a hierarchy of networks to process the data, Although the generality of the subject of the applica-

tion of neural networks to control systems falls some-
Neural Networks for Path Planning & Locali- what outside the scope of this paper, their use is
sation important and considered worthy of mention. The

use of neural networks for the control of a vehicle's
The 'initial use of neural networks to perform a path motion has been taken up by many workers in the
planning function are exemplified by the work of Jor- field. Possibly one of the most well known is that of
gensen., His work addresses the problem of deter- Widrow with "The truck backer up" (Widrow 1990).
mining a navigational path in a number of different Other work has used various strategies: e.g. net-
room environments (Jorgensen 1987). Here a sonar works have been used to provide a trainable inverse
map of each room was obtained by recording, after model of a system based on the input/output observa-
extensive pre-processing, eight 1800 sonar scans ob- tions of the plant, Kawato (Kawato et al. 1987), Chen
tained from different positions in each room. These (Chen and Pao 1989), The inverse model is then used
recordings where stored in a modified Hopfield net- to generate control signals.
work (Hopfield 1982) i.e. the neurons could adopt a
continuous value between 0 and 1. A rectangular grid Other methods use two networks, one to model the
of 1024 square cells was used to represent each room control response of the system and the other to pro-
and a unique neuron from the Hopfield network was duce control decisions. A great deal of the recent de-
identified with an individual cell of the grid. The level velopments in this area within Europe have been re-
of activity of that neuron indicated the sonar activity ported in the proceedings of the IEE conference Con-
at that point. The idea of dividing the robot's en- trol 91. A large proportion of this work has concen-
vironment into a grid is not a new one: for example trated upon exploitation of the non-linear and adap-
the idea of Certainty Grids had been used earlier by tive nature of a neural network to provide the adap-
Thorpe (Thorpe 1984) and Moravec (Moravec 1986) tive feed-back controller that is central to some non-
at Carnegie-Melon University, and this is the basis linear predictor adaptive control systems, see figure
of the common "free space" approach, which can be 5. Such systems have great relevance to the driver-
used for obstasle avoidance is described in the first less, or pilotless vehicle. Here, without a human con-
case study, troller, the vehicle will have to be able to adapt to

both slow changes in the characteristics of the vehi-
During the recall phase, the robot was given a sin- pigle view of the room and the sonar return from that e efraceg h iheigo h eil
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will provide the appropriate real time performance.
Furthermore, this hardware must be small enough and

Cleetdt $Te flexible enough to fit into the control system of a mo-
Dns.-- O bile robot. These constraints can be particularly harsh

in military environment 4 .
genlefrtorgIt may be argued that the potentially high speed, com-

pact nature of a neural network, once implemented ondernana g a~n f ,

schec.... the appropriate hardware technology, is perhaps the
greatest advantage of these systems over and above
that of more conventional processing techniques. Ob-

generaor viously, this is not the only view of the worth of neural
networks, but it is a view that is of great importance

. (onroler in the field of mobile robotics. Although neural sys-
- tems generally do not easily map onto conventional

$Teo "sequential or parallel hardware all the systems thatcernana

have been mentioned so far in this paper have used
some form of on board non-neural processor. With
the advent of dedicated hardware (LeCun et al. 1990,
Murray et al. 1990, Holler et al. 1989) a further re-

Figure 5: Predictor Adaptive Gain Control Architec- duction in size and increase in performance can now
ture be anticipated. Perhaps the first example of the use of

such hardware is the work carried out by the Robotics

as the fuel load decreases, and more importantly sud- Group at Oxford University (Tarassenko et al. 1991),

den changes e.g. sudden changes in terrain, weight a description of which forms one of the case studies
which are now described.

changes caused by the delivery of of munitions, or as

has also been suggested damage to control surfaces on
aircraft (White and Sofge 1991). Case Study 1: Obstacle Avoidance Us-

A good example of the use of neural networks in adap- ing an Ultra Sonic Array

tive control can be found in the papers by Brown et The use of data from ultra-sonic arrays, or
al and Ince et al. Here a recurrent layered network is for that matter other dense range dependent
used to model the non-linear response of the vehicle data, for obstacle avoidance is quite widespread
to the control signals it is given (Brown et al. 1991, (Buxton and Roberts 1990, Jorgensen 1987)., The
Ince et al. 1991). The controller network runs in par- techiques developed to provide an obstacle avoidance
allel to the predictor model and adapts as the vehicle's tezchion using this type of data divide into two.
response changes by back propagating an error signal o
generated by differencing the output of the reference
model and the actual response obtained from the vehi- Configuration space: this is a derivative of the cer-

cle that the network is modelling. The network there- tainty grid (Elfes 1987) idea that was explained

fore acts as an adaptive gain feed-back controller (see earlier. Here a dense map of the environment is

figure 5) for the vehicle which, as is demonstrated in obtained via either an active or passive sensor.

Brown et al and Ince et al, can be integrated directly This map is then used to compute "free space

into a conventional predictor controller, corridors", which allow for the sise of the vehi-
cle, around obstacles present in the environment.
There are many difficulties with this method: to

Neural Hardware generate the configuration space requires a large
amount of processing, the method is not body

The brief review given above has tried to give an idea centred and therefore the view of the environ-
of the breadth of work on the application of neural net- ment may not be consistent with the view seen
works in the areas in sensing, control, path planning, from the vehicle once it has moved to a differ-
and obstacle avoidance. The more recent work in this ent position, and without continuous updating
area has started to demonstrate the advantages to be the method cannot cope with moving obstacles.
gained from the use of these systems. However, it is The method is characterised by an explicit re-
the contention of the author that the true worth of us- calculation of the robot's path around the obsta-
ing a neural network can not be realised unless the net- cle.
work that has been designed can be implemented on
appropriate hardware and integrated into a comp!c'c Potential field methods: this
processing system. This view has particular merit in method (Khatib 1986) usually relies upon mon-
the subject area that concerns this paper. Here any 4 I intend to leave the difficult question of verification of such
working system has to be realised in hardwre that neural systems until the conclusion
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itoring the signature of an array of sensors ca-
pable of generating range dependent data in a
dense pattern around the vehicle. Simply, this
method uses the range data to determining the
position of obstacles relative to the robot. These
obstacles are then considered to have a repulsive
potential which repels the robot and so prevents oreoro-
the vehicle from hitting the obstacle, Unlike the cessing
previous method this technique is body centred - .orsr 

"  
" -'-----" inarv

and since the method uses data that is continu- 1 1 - coing
ally updated is able to deal with moving obsta-:______
cles. Here, the robot moves "relatively" with an
implicit re-calculation of the path.

LERNFAHRZEUG NEURAL NET

The work described here is the result of an investiga- , e nvv.. e -

tion carried out by the German company IBP Pietzsch
for the ANNIE project into the use of neural network coce
architectures for reactive obstacle avoidance. Ultra- exoan-,
sonic signatures are processed to produce a control acluo,, sion
signal necessary to ensure that the vehicle avoids ob-
stacles placed in its path. The method that is devel-
oped here is somewhat similar to the potential field
method described briefly above. Although the results
of this investigation are obtained via simulation and Figure 6: Control Architecture for Simulated Vehicle

do not use real data it is hoped that they give a graphic
description of the potential use of neural networks for
sensor/motor integration. A more detailed description
follows.

corner corner wth angle forms of obiacles

Network Implementation

Briefly the simulation used is composed of:

a mobile robot that is equipped with 9 ultra-sonic

sensors, as is shown in figure 6. These 9 sensors
are arranged in groups: 4 pointing forward, 2 on
each side of the robot pointing to the left and to
the right, and one sensor pointing to the rear,

* The environment in which the vehicle moves con- pass through crossing

sists of a room containing obstacles of differing
shape and complexity (see figure 7). L

The robot is allowed to move through the environment
using 8 possible motions: [-]

1. stop,

2. fast forward,

3. slow forward,

4. turn right by 450,

5. turn left by 450,

8. turn right by 90", Figure 7: The 5 primitives used to construct obstacles
for simulated environment

7. turn left by 900,

8. slow backwards.
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As the control architecture diagram (figure 6) suggests
the output from the ultra-sonic sensors were exten-
sively preprocessed. The preprocessing range gated
the sensor output, before it was put into the neural
network, into 15 range values that were spaced loga-
rithmically. To ensure that this range data was pre-
sented to the nletwork in a robust manner the range
values from each of the sensors were encoded in a 4 bit
coding' designed such that the codes for neighbouring
range gates were separated by a small Hamming dis-
tance. Thus similar codes would be obtained for range
values that just fell either side of a range boundary.

The -i bit coding from each of the 9 sensors gave a 36
bit binary input to the network that was used, which
was a 3 layer MLP. The output layer of this MLP con-
sisted of 3 units. These encoded the 8 possible control
instructions that the robot should receive. Again, as
in the input coding it was ensured that this coding
was robust to small fluctuations and so similar mo-
tions were given codings separated by small Hamming
distances.j. II
To train the network the vehicle was placed repeat-
edly in close proximity to 10 typical rectilinear obsta-
cles such as: corners, corridors, walls, and wails with
openings (see figure 8). To ensure that the vehicle is
able to meet all the situations that it may find itself
in, the position and orientation of the vehicle was also
varied. This ensured that the configuration generated
on the network during training was as general as pos-
sible. In presenting the vehicle to the various obstacles
the sensor signals from the 9 sensors were generated
and this data together with a motor response signal
given by an operator was given to the network to allow
it to train.

As with all MLP simulations the precise construction
of the network is not clear at the outset and empir- -
ical data has to be gathered to determine the num- A
ber of hidden units and to set the back propagation

(Rumelhart et al. 1986) parameters. The final config-
uration obtained from these experiments was an MLP
with:

* 36 input,

* 8 hidden (the only unknown variable),

* 3 output.

For this straight forward problem satisfactory conver-
gence was obtained after the repeated presentation of
10 obstacles as shown in figure 8. The slow nature of Figure 8:10 obstacles used to train the network
the MLP error back-propagation required over 20,000
presentation of the 10 obstacles.

The slow learning rate obtained has since been greatly
improved by the use of direct analogue input from the
sensors themselves. Here a slightly different architec-
ture has been used.

5 Obviously this assumes that a perfect return signature is ob-
tainable from these sensors which is usually not possible.
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* 10 inputs, 9 returns from the ultra-sonnic sen- networks to perform this associatir n has been carried
sors which are inverted, together with the current out successfully in a number of otaer areas related to
speed of the vehicle, robot control (Waxman et al. 198h, Peterson 1991).

* 3 hidden units, Case Study 2: Localisatijn from Off
* 2 output units, indicating the change in the vehi- Foard Sensors

cles speed and angle of turn.
The work presented here represents part of that car-

Although the performance of this network is not radi- ried out by British Aerospace's corporate research cen-
cally different from the previous design the use of ana- tre The Sowerby Research Centre for the ESFRIT II
logue inputs allows the network to be much smaller, project ANNIE. The investigation ia concerned with
The small size of the network allows the training to the localisation of a robotic vehicle. However, rather
be accomplished much more easily. than performing this localisation using sensors placed

on the robot the investigation is concerned with the
Discussion somewhat different problem of localis ag the robot us-

ing a surveillance system separate fr.)m it. It is as-
Once trained it was found the the network was able to sumed, not unreasonably, that the burveillance sys-
negotiate perfectly the obstacles it was given to train tem is able to provide both the bearing and range of
upon. Testing the network on a set of rectilinear ob- the objects it detects but is not able to consequently
stacles upon which it had not been trained indicated identify the object. Localisation of a known vehicle
that the network could generalise to obstacles with is, therefore, not possible if there are other targets
which it was not familiar. The network was able to present without the use of prior knowledge such as
negotiate the new obstacles only failing to avoid these the robot's approximate position or the identity of the
in a small percentage (1%) of the cases. Furthermore, objects.
this performance could be increased by retraining the In general, military systems overcome this problem by
network on those cases which it found difficult. Per- using say IFF techniques or allowing the vehicle in the
haps surprisingly it was found that the performance field to determine its position against a kno n frame
of the neural controller depended heavily upon the of reference, using GPS for instance, and .ommuni-
identity of the operator who was used to give the di- cating this back to the surveillance system. However,
rection of motion of the vehicle for each training situa- the use of either of these systems is not always desir-
tion. This highlights an important point regarding the able or possible. An alternative is to allow the vehi-
adaptive nature of a neural network, in that the final cle to simply communicate to the surveillance system
configuration of the network can be heavily dependent the present trajectory and then through a process of
upon not only the nature of the training data used to "data fusion" determine which surveillance track best
configure it but also the way in which that data is matches the trajectory and so identify and localise
presented. the vehicle. This last alternative has the advantage in

The dependency of the final configuration of a neu- that it does not rely upon an external system such as
ral network after training with respect to these fac- a satellite, nor would it be easy to jam or suffer from
tors obviously has great bearing upon the variability externai interference. To perform this "data fusion"
of such systems. This variability can be reduced if however, which requires the data received from a ve-
the data used to train the network and the way that hicle to be correlated with all the objects detected by
data is presented is tightly specified. This point and the surveillance system, may require some very inten-
others related to the verification of these systems are sive computing. Furthermore, the correlation between
discussed further in the last section. the signals may not be obvious and could well be non-

linear.
Although limited in its scope it is the intention of this
case study to demonstrate how a neural network can This investigation looks at the possibility of using a
be used to perform a sensor/motor association. The neural network to perform this correlation in the hope
use of a neural network to produce a reactive motor that the high bandwidth and non-linear adaptability
response to a given stimulus has many advantages over of neural networks will be of advantage, and demon-
the more conventional approaches that have been de- strates this in a real laboratory environment. To carry
scribed. Apart from the speed and the compact nature this out the investigation exploited a distributed real
of these devices once implemented in VLSI silicon the time surveillance system that had already been built
highly parallel nature of these systems (which allows for the ESPRIT I project SKIDS6 and constructed in
data from many processors to be processed simultane- a 10m x 10m room in one of the laboratories at The
ously) coupled with their adaptability (which allows Sowerby Research Centre. This environment together
data to be processed without the requirement for di- with the mobile robot that was used for the investiga-
rect calibration since this can naturally be configured tion are described further in the following section.
into the network during training) makes neural sys- 6 Signal and Knowledge Integration with Decisional control for

terns very useful for reactive control. The use of neural multi-sensory Systems
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tors at .he f~unt. Optical shaft encoders are attached
The SKIDS surveillance, or tracking, system moni- to the two c-lve wheL in order to monitor knd con-
tors the room through the use of four monochrome stantly feetback the motion of the robot wheels. The
CCD cameras, one mounted at each of the four cor- Robuter can be controlled remotely from a Sun4 work-
ners of the room (see figure 9). The images of the station via an RS232 radio link thich sends movement
room form reference frames which are stored by the and measurement commands to the on-bord operat-
SKIDS machine and constantly updated. An een ing system. This operating system is based around a
within the room is detected by differencing the current 68020 microprocessor and supports movement control
camera image and the reference frame. The result- and sampling of the odometry obtained from shaft en-

ing differenced image is then thresholded and grouped coder- on the wheels.
into regions corresponding to the moving objects in T
the room. From the least enclosing rectangle, which thie etudy describes how the "data fusion" between
is computed around each region, the position of the the event data produced by the SKIDS machine andevent can be determined by projecting the bottom the -obot trajectory as given by its odometry can be

even ca be etemine byprojctig th botom carried out by a neural network to perform the posi-
of the rectangle onto the floor. The image process- talnd ou tanal newr t peform te ong equredto perform the segmentation is computa- tional and orientational independent identification of
ing required tthe SKIDS event that corresponds to the robot which
cionally very demanding. A parallel processor and a can then be localised.
specialised image processing engine are therefore em-
ployed within the SKIDS system to provide sufficient
computational power. A Datacube pipeline image Network Implementation
processor is used to acquire and scale images from the
CCD cameras and a Transputer array provides the Two successful network implementations have been
parallel processing support required for the remain- produced. Both are based upon the MLP and use
ing image processing tasks. In this way the SKIDS error-back propagation (Rumelhart et &l. 1986). The
machine supports the real time detection, position- first network consists of a large input layer. This, as
ing, and tracking of all events within the room (the can be seen from figure 10, comprises inputs from each
system typically operates at a sampling rate of about SKIDS track together with an equivalent signature ob-
6Hz). tained from the robot odometry. This investigation

Apart from objects such as humans and othe,: vehicles tried several different signatures based upon spatialor angular decompositions of the SKIDS event and
the environment aso contains a mobile robot. It is in. r veloi e est pefome wS obtand

tendd tat he obo shuldbe nde th cotro of robot velocities. The best performance was obtainedtended that the robot should be under the control of fo h olwn w eeec rm needn

the SKIDS machine. The function of the robot is to signatues:

carry a sensor suite to "remote" parts of the environ- signatures:

ment, for example to perform a localised inspection
task. However, the localisation of the robot from the * object speed and angular velocity,
SKIDS track data alone is not possible without first
identifying which event corresponds to the vehicle.. object speed and acceleration.
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The fact that these signatures are found to be the best
is not so surprising. The velocity of the vehicle is a
relative measurement which can be obtained directly Robuter Odometry Data SKIDS Track Data
from the vehicle odometry with out the problems in-
duced by systematic errors that would effect positional
measurements. The use of velocity, therefore, is po-
sitional independent. Furthermore, orientation inde- Input Unit
pendence can be obtained if scalar, rather than vector,
measures such as speed are used.

The output of the network used n units where n repre-

sented the number of SKIDS tracks that the network Hidden Units
was designed for. For the case shown in the figure 10n = 3. This allowed a 1 from n coding to be used to
encode the output. Here a high value at the nth output
indicates a robot signature match with the nth SKIDS Output Unit
input. It has been shown by MacKay (MacKay 1987)
among others that this output coding, provided the
network has been trained in the correct manner, al- Figure 11: Single SKIDS Event Input Network
lows the values given at the output to be interpreted
as a confidence of the nth interpretation. Since in cer- An alternative to the use of a single large network is
tain circumstances one or more SKIDS events a:e not to use a hybrid system of several small networks each
distinguishable from the real event this coding allowed trained to determine if a single SKIDS event matches
the network to give a result which reflects the level of the robot's odometry. This has the advantage that
confusion. the individual networks that comprise such a system

can be trained separately. Furthermore, if this train-
To prevent any bias being introduced during train- ing is carried out appropriately then it is only nec-
ing the position of the robot track in the training essary to train a single network and allow the other
data was randomised. After some experimentation the e tosin t s ste to be aon copiernetworks in the hybrid system to be "carbon copies"
most suitable network configuration for identifying the of the first. Taking this idea a small MLP was trained
robot from 3 SKIDS events was found to be: using error back-propagation (Rumelhart et al. 1986)

with the same velocity signature data that was found
, 8 input units, to be effective with the large multi-input network.

* 8 hidden units, These small networks were simple in construction as is

* 3 output units. illustrated in figure 11. The input comprised 4 units
which allowed the odometry signature of the robot
and a single SKIDS track to be input to the network.Upon testing of the network a - 90 % success rate on The output, which consisted of just I unit, signified

data different from that used to train it was found. whether the SKIDS track given to the network be-
Furthermore, although as the percentage success rate longed to the robot or not. The typical performance
suggests in some cases the network was unable to iden- of the network with 3 hidden units was found to be
tify to which track the robot odometry belonged, this marsinly lower (85-90%) that obtained from the large
was usually because the network was unable to label mulginpy l or .
a track as coming from the robot with enough confi- multi-input network.
dence, as reflected by the value given at the output of The hybrid design has many advantages. As has al-
the network, for unambiguous recognition. Since the ready been mentioned such a system scales in a much
majority of such cases resulted from situations where more sensible way than the large multi-input network
the network indicated that there were two robot can- (as the network increases in size the more small net-
didates, one of which was the correct solution, the works are used). If the networks were implemented
level of the miss-classification was much smaller than in parallel, the computational burden imposed by this
suggested by the above result. hybrid system increases approximately linearly with

the number of networks and therefore SKIDS events.The disadvantage in using the large multi-input net- Furthermore, since it is possible that only one small

work that is described here is that the system does not network may have to be trained this greatly reduces

have any inherent ability to scale. To change the sys- the amount of training and therefore data required to

tem from differentiating between not three but four configure the whole system.

or five SKIDS tracks requires the network to be ex-

tended and completely retrained. Obviously this sug- A significant disadvantage of this system, however, is
gests that although the large network may give desir- that when the individual small networks are trained,
able results its lack of flexibility probably precludes unlike the large multi-input networks, they are not
its use in a real system. aware of the presence of other events that may have
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been detected. Not surprisingly therefore the output complexity the emergent behaviour of the whole sys-
from the hybrid system may not be unicue. If the in- tern (if configured correctly) may be extremely corn-
put data is confused then several of the networks may plex. To allow the elements (vehicles) of this system
match the robot odometry to the particular SKIDS to move together and therefore act as whole it is nec-
event that they were given. This explains why slightly essary for each vehicle know the relative position of
lower results for the hybrid system in comparison with the others. The positions of differing objects relative
the multi-input system were obtained. This problem to a particular vehicle can be found via a simple pas-
can be overcome by introducing a "winner takes all" sive or active tracking system. However, as has been
mechanism (Lippmann and Huang 1987) on the out- shown, it is necessary to identify them first before a
puts of the networks. particular vehicle may be localised. This, as in the

case study, can be carried out by matching the sig-
An alternative to the "winner takes all" mechanism nature of the tracked objects with their odometry as
is to use the temporal continuity of the events gen- communicated. The relative location of each identi-
crated by the tracker., This exploits the fact that fled vehicle can then be determined in relative to the
there is a significant probability that the identity of whole group.
an event will remain the same from one time frame
to another. Obviously this probability is affected by In the military field a robotic system such as this has
the amount of noise in the system, and preqence and several desirable qualities. The system is constructed
number of other events in the room with which the of many simple, and hopefully, therefore cheap, dis-
event could become confused. This temporal con- posable elements. Since the system does not depend
tinuity can be exploited by allowing lateral inhibi- upon any single element the system should be able to
tion (Carpenter and Grossberg 1987, Kohonen 1984) withstand a high level of attrition without a catas-
between the outputs of the hybrid system. Here the trophic effect upon the whole system's performance.
weighted links between the outputs adapt with time A variety of possible applications come to mind from
such that an output that has had a high value for sev- recognition and terrain mapping to the autonomous
eral time steps is enhanced whilst the others are di- convoying of logistic support around a battle field.
minished. This serves to dampen fluctuations in the
output of the hybrid system such that in the event Case Study 3: Integrated Localisation
that an output is ambiguous the network still gives a and Path Planning
definite answer.

The use of neural networks for the control
Discussion of a mobile robot has already been graphi-

cally demonstrated by Waxman and his co-workers
What has been demonstrated here is the use of a neu- (Baloch and Waxman 1990, Waxnan et al. 1988) to-
ral network, or networks, to perform the correlation gether with, for example, the work carried out at the
central for the "data fusion" required for the identi- Fujitsu laboratories (Watanabe et al. 1989). In both
fication of a known vehicle detected by a surveillance cases a hierarchal architecture of neural networks have
system. The localisation that results from this process been designed to perform the differing functions re-
is relative to the co-ordinate frame of the surveillance quired of the respective systems. In both these sys-
system which may be moving or static. Further, it has terns, however, a large proportion, if not all, of the
been demonztrated that this surveillance system can neural processing is carried out by a static worksta-
be distributed and so dispersed though-out the region tion communicating to the robot via a radio link.
of interest which gives a increase in the base line of the
system allowing better positioning to be determined. The system built by Waxman and his co-workers

for instance, MAVIN (Mobile Adaptive VIsual Navi-
Although this system, like other identification meth- gation) (Baloch and Waxman 1990), uses a large hi-
ods, requires communication between the tracker and erarchy of networks to perform the processing re-
vehicle or vehicles, since the system is distributed, line quired for the robot's cameras saccade and gaze
of sight communication can be carried out to a variety control (simple ADALINEs (Widrow and Hoff 1960)
of points, reducing the risk of interference or revealing are used here) through to object classification (ART
the position of the vehicle. I (Carpenter and Grossberg 1987) networks are used

extensively here). All the networks used in this
This system also presents the alternative possibility demonstration were simulated on a SUN 3/60 which
where the surveillance system is distributed across the communicated with the robot via a radio link. The
vehicles themselves to form a distributed robotic sys- image processing required was carried out on an AS-
tern. Such a system would consist of a large number PEX PIPE 1/800 video rate computer.
of very simple mobile vehicles which are able to com-
municate with each other. The essential element of The network implementation for the Fujitsu robots is
this distributed system is that, like a colony of ants, some what different from MAVIN. Here the networks
although the individual elements have a low degree of that controlled the Fujitsu robots were trained and

adapted off the robot on a workstation; the trained
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Figure 12: Control Architecture for the Oxford Robot A ---- --

netwo-ks are then down loaded onto the robots' on- _3M S4

board processor., Although this allows the robot to be
self contained the retworks cannot be adapted on the Figure 13: Diagrammatic view of the Oxford Labora-
robot itself. tory Robot Environment

It is the intention of this case study to highlight
the potential further and substantipl advances to be was a phase sensitive near infra-red device that was
gained through the use of neural networks imple- developed by the research group with this purpose in
mented on dedicated VLSI hardware. The work de- mind. This device is capable of resolving phase shifts
scribed is that still being undertaken by the Robotics of 0.1' over a 50 dB range. This, as can be seen from
Group at the University of Oxford under Dr., Li- figure 14, allows a very detailed range map to be pro-
onel Tarassenko and in part' supported by RSRE duced. The original work carried out by Oxford in
Malvern. The thrust of this work is to build a low- this area concentrated on the use of an ultra-sonic sen-
cost, real time mobile navigation system based upon sor. This required extensive preprocessing before the
a set of VLSI neural network navigational modules. signatures could be input to the network. The high
These modules are based upon the two functional re- resolution infra-red scanner mitigates this problem.
quirements that have been described earlier. This case
study gives an overview of the path planning and lo- Given a set of learned signatures the grid system can
calisation modules together with a description of how be used to compute the robot's approximate positiorl.
these two modules can be integrated together. Obvi- This may be determined by comparing the current sig-
ously the localisation module directly impinges upon nature z with one of the k learned patterns uj which
the path planning module; a schematic diagram of the correspond to the signature of the range finder at each
robot control arch;ecture is given in figure 12. Both of the k grid points. By finding the closest match be-
the path planning and localisation systems operate on tween z and one of the uj's the position of the nearest
a certainty grid idea which has been briefly described grid point to the present position of the robot can be
earlier, obtained. If a Euclidean metric is used to determine

the difference between z and all uj's then the closest
Localisation match may be obtained for that Uj were:

The localisation system on this robot relies on the jiz - uil2 = 11l:i2 - 2uT + Iuil l2 (1)
certainty grid idea desc: ibed above. Here a 28-point is a minimum. Given that z is constant with respect
grid was used to map the robot's envi-onment, see to i using equation 1 a linear discrininant function
figure 13. In a similar way to that used by Jor-
gensen (Jorgensen 1987) the environmental character- g(z) can be written were:

istics were learned by recording the 3600 signature ob- gi() = UTz + Wo, (2)
tained from a time-of-flight optical range finder. This

7 The resistive grid path planning system and w,o = - l/21ul1?. The discriminant function thus
Royal Signal and Radar Establishment uses the cross correlation of the input with the stored
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Figure 14: Range map of the Oxford environment I

patterns, the maximum value of which gives the pat-
tern u with which the signature x most closely corre-
lates.

If equation 2 is rewritten by identifying ui = {T0,}
and x = {V} as: Figure 15: Resistive grid map of the robot's environ-

gi W) = EJ'= =T V + Wio, (3) ment; high resistances (black areas) indicate obstacles.
The optimal path between P and G is indicated by the

where n is the number of range points obtained in black line joining these points.
each scan, the patterns recorded at the grid points
can be identified with neural weights Tij. The cross the sensor where as a more conventional implementa-
correlation central to the discriminant function can be tion say with Transputers would require many more
written as the vector matrix multiplication, ET,,V, devices with a larger resultant demand for power.
that is central to a neural network.

The advantage of the formulation given in equation 3 Path Planning
is that it provides a natural representation that when
implemented on a dedicated neural device allows the The path planning module in the Oxford robot adopts
simultaneous comparison of all range points with the a resistive grid approach to this problem. The use
k learned patterns ui. The maximum of the discrim- of resistive grids was suggested in a related field by
inant function g(a) can then be picked out using by Horn (Horn 1974) in the mid seventies. The idea
using a "winner takes all" function on the network. has also been exploited by Mead and his co-workers

and forms the central element of the silicon retina
The advantage of such a system of course depends (Mead and Mahowald 1988). This approach maps the
upon it implementation. As has previously been men- robot's environment as a resistive grid, see figure 15.
tioned, for any implementation to be of advantage Here the vertices of the grid are variable resistors: ob-
both its speed and size are important characteristics. stacles and diffcult terrain are indicated by infinite
The localisation algorithm that has been described orhg esan ces.Ti prvide mp fiete

or high resistances. This provides a map of the ter-
here can be build quite simply into a small "win- rain in terms of high and low resistances, the valleys
ner takes all" network. Since both the input vectors and peaks indicating the easy and difficult (accessible)

V and the network weights T i are analogue this al- regions of the environment. An optimal path can be

lows the implementation to be mapped easily into the obtained through the environment by simply applying

pulse-stream VLSI analogue neural devices that have otent re te h the ob o psin
beendesgne by he epatmen ofEletricl Egi- a potential difference between the the robot position

been designed by the Department of Electrical Engi- (P) and its desired destination (G) and following the
neering at the University of Edinburgh in conjunc- path of maximum current. Since the current cannot
tion with the Robotics Group (Murray et al. 1988, flow through regions with an infinite resistance (obsta-

Murray et al. 1990) which provide real time capabil- les) and will be reduced in regions of high resistance

ity. The speed of the localisation system is simply (difficult terran) following such a current path will

limited by the traverse time of the infra-red scanner guarantee an obstacle free path.

which is approximately a second. Further, the com-

pact size and analogue nature of the pulse stream de- Although this method has been tried before
vice allows the processing to take p!ace compactly on (Mitchell and Keirsey 1984) it is the intention of this
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* single computation of the path from point P, solid
line.

G

._-- Since this calculation is carried out on chip (this is es-
• sentially a hardware computation of Kirchhoff's equ-

--- tion) the calculation can take place in the time it
...- takes the MOS grid to settle once the voltage is ap-

... ' plied. Furthermore, since the grid map can be altered
by simply reconfiguring the MOS switches from data
down-loaded from RAM this implementation provides

_ - _._- a real time reconfigurable map that can be updated
as soon as new obstacles are detected or the position
of the robot is determined.

.. - ......- . . Control Architecture

The contro . architecture for this robot reflects the
structure of the path planning and localisation sys-
tems and has been designed in a modular fashion
(see figure 12). Communication between the differ-
ing modules takes place asynchronously via a conven-

Figure 16: Path from middle of maze (P) to top left tional central controller which routes the appropriate

corner (G). The dotted line represents that obtained control signals to and from the modules. The cen-

by repeated calculation of the path direction. The tral controller is also responsible for goal specification
solid line is the complete path obtained by a single and issuing commands to the robot platform controller
calculation of the path a point P which, for the purposes of this design, is again conven-

tional. Since the intention of this control architecture

is to allow the bulk of the control processing to take
implementation to map the resistive grid directly into place locally within the localisation and path plan-
a VLSI device using an array of MOS switches. Here ning modules, the central controller is very simple in
the grid vertices can adopt one of two states: an in- construction.
finite resistance if the switch is open, and zero resis-
tance with the switch closed. The map of the envi-
ronment, therefore, consists of a zero resistance sur-
face with regions of infinite resistance representing the
obstacles. Allowing the resistance grid to have a 1:1 At the time of writing a small mobile robot has been

mapping with the localisation certdinty grid enables constructed and the localisation system implemented

the current position of the robot in the resistive map on dedicated VLSI eural devices. A separate im-

to be easily updated as the vehicle moves through the plementation of the path planning system together

environment, with the localisation system has also been undertaken.
Since the path planning system has not yet been im-

The optimal path through the environment is found plemented on an appropriate device the integrated lo-
by applying a potential difference between the robot's calisation/path planning has been carried out on a
position and the desired destination and then deter- SUN 4 which communicated with the robot via a ra-
mining the path of maximum current. This is in- dio link. To allow the path planner to operate on the
dicated by the node on the hezagonal grid that has SUN 4 in near real time dynamic reconfigurablity was
the largest potential difference between itself and the not used.
robot's node.

This system has been demonstrated on a small bat-
Having moved to the new node the process can then tery powered Turtle that has been modified to carry
be recalculated and an updated path found in real the infra-red scanner. Both the scanner and the robot
time., it has been shown that by continualy recalcu- controller, which is based upon a 68000 processor, are

lating the direction of motion after each step a better o w er by ith r s ba e r This implementation

(i.e. shorter) path can be obtained than by simply allowed the robot to move through a static laboratory

calculating the complete path across the grid in one envigo(aasnoad lk 91.Tisielutae n vironment (i.e. no moving obstacles) with the po-
go (Tarassenko and Blake 1991)., This is illustrated in sition of the robot and its direction of motion being
figure 16. Here the paths out of the maze from point updated in real time at an approximate speed of 0.4
P to point G, have been calculated using: m 1s-1. This performance is limited by the traverse

Srepeated computation of the path direction, dot- speed of the scanner and the band width of the radio

ted line; 
link.
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Although no obstacle avoidance function has yet been The second alternative is to adopt the solution demon-
integrated in the control architecture, this is planned strated in the first case study: the data is simulated.
for the (near) future. It is expected that this function If the simulation is designed with care this can quite
will be implemented in a similar fashion to the work often provide a good alternative. Furthermore, strict
described in the first case study, using a sensor/motor controls can also be placed upon the data allowing the
association network. However, in this case it is pro- performance to be tested easily. However, by its very
posed that a number of fixed optical sensors are used nature a simulation can never truly represent real data
rather than ultra-sonic, with all its anomalies and inaccuracies. An analysis

of how a network trained on simulated data would be-
Although the networks described here have not all have once placed in the real world would therefore be
been fully implemented in special hardware, this case uncertain and difficult to verify without, as was un-
study has illustrated the advantages to be gained from dertaken with ALVINN (Pomerleau 1988), eventually
the use of dedicated hardware in terms of speed, ease testing the networks on real data
of integration, and particularly size. With the future
advent of larger, faster and more complex neural de- A further alternative is to use real data but to gather
vices it could be argued the the full potential of these this into a large data base, such as a library of im-
systems has still to be realised. It could further be ages for instance. This alternative has the advantage
argued that it is a only matter of time before devices of providing a repeatable set of real data which can,
similar to those described here are produced and used when required for experimental reasons, be properly
in real production systems. controlled., However, the work involved in gathering

such a database can be very large and particular con-

Conclusion sideration has to be taken to ensure no bias is intro-
duced into it during the production stage. This quite

The case studies presented in this paper have tried to often makes the production of such a data base sur-

outline potential areas where mobile robotics will ben- prisingly expensive and therefore not desirable.
efit from the use of neural networks. To do this studies Another major problem for the future use of neural
have been chosen which, rather than describing work networks for the sensor processing and control on a
already completed and available in the scientific press, mobile robot is the veiification of these systems. In
portray some of the typical research that is currently both civil and military applications, for any safety
being undertaken. Since much of this research is still critical operations, it is necessary for the behaviour
in progress some of the results are inevitably not com- of the systems used not only to be understood but
plete. to be designed with the appropriate safe guards to

The first two studies demonstrate how adaptable non- prevent undesirable responses. An appropriate certi-
linear systems can be used for the processing required fication procedure would also be required.
for functions from obstacle avoidance through to their Until recently, with the exception of the large body of
possible use for the "data fusion" required to localise work that exists for some of the unsupervised neural
a vehicle detected by a distributed surveillance sys- networks, there has been very little effort in this area.
tem. Both studies are relevant to a number of the However, with the use of more mathematically struc-
fundamental functional requirements for any mobile tured neural networks, such as the radial basis func-
robotic system. The third case study illustrates in tion networks (Broomhead and Lowe 1988), verifica-
part how the use of these systems can be implemented tion has started to become a possibility. Furthermore,
in dedicated silicon. As both digital and analogue with the more recent interest of the control research
neural VLSI devices are developed, it is expected community, the problem of certifying such systems
that neural networks will provide cheaper, faster, and has started to be addressed (Simper 1991). Although
more compact alternatives to conventional hardware. there are no procedures laid down as yet to ensure
(Holler et al. 1989, LeCun et al. 1990) This is likely the verification of the design, configuration (training),
to be of direct relevance to military requirements and testing of a neural network it has been suggested
where systems necessarily need to be adaptable, and that principles similar to those use for the verifica-
space on any vehicle is likely to be at premium. tion of a mathematical process be used. A thorough

in the case studies large volumes of data were required understanding of the problem that the system is to
to train the networks appropriately. This all too often be designed to solve is required, something which is
presents a problem in that although databases exist generally necessary when trying to design a network
these are usually too small to provide sufficient da.... solution for a problem in any case. This can be diffi-
Two solutions have been suggested to this problem. cult since many problems to which neural network are
The first is to use real on-line data by integrating the being applied are highly non-linear and therefore may
networks directly into the system in which it is sup- not be easily tractable. With an appropriate under-
posed to operate. This has the obvious advantage of standing it is suggested (Simper 1991) that sufficient
enabling an accurate estimate of the neural network's safe guards could be put in place (e.g. an expert sys-
performance, on real data, to be obtained. tem harness) to check against undesirable inputs being
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presented to the network or outputs from the network
having an undesirable effect.

It is accepted that the robotic systems that have
been described in the case studies are somewhat sim-
ple compared to the all terrain robotic systems that
are required for the military environment. This re-
flects the fact that the use of neural networks in the
area of mobile robotics is still limited. However, the
case studies that have been presented have demon-
strated that neural networks offer potential solutions
to some of the problems that are generic to the whole
field of mobile robotics, and, if implemented in dedi-
cated VLSI silicon, will hopefully have a direct bear-
ing on the future construction of such vehicles where
fast, compact, and adaptable, systems are reqaired.
As these devices become available the true nature of
the advantages to be obtained from the use of neural
networks should become apparent over the next few
years.
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* EUREKA - AMR (Advanced Mobile Robot).

Appendix A: Mobile Robot Initiatives • EUREKA - MITHRA.

* Autonomous Land Vehicle, Martin Marietta
Commercial Research & Development Corp., Denver, USA.

* ESPRIT II Panorama (including BAe, SAGEM DARPA funded project, vehicle intended mainly
(France), Rauma-Repola (Finland), Tamrock for military purposes.
(Finland), University of Helsinki, Universi-
dad Politecnica, de Madrid, Easams (Frimley), Fujitsu Lab, Ltd.,Kawasaki, Japan.
Southampton University, Central Energy Atom- Image processing for autonomous vehicles.
ique (Grenoble & Saclay, France), SEPA (FIAT, * Mech. Eng. Lab, AIST, MITI, Ibaraki, Japan.
Italy), EID (Portugal), LNETI (Portugal), CRIF
(Belgium)). Steering control for an autonomous vehicle.

Target vehicles are 4x4 Mercedes Jeep, Rauma- * Tokyo Research Lab, IBM Japan, Japan. - visual
Repola Forwarder (FMG 933C Lokomo), Tam- navigation of autonomous vehicles.
rock Driller. Five year project ending March
1994. * Shinko Electric Co. Ltd, Hyogo, Japan. - ultra-

sonics guided autonomous vehicles.

* ESPRIT I Voila (including: GEC, Plessy EL-

SAG, MS2i, RMR, Oxford Univestity, Sheffield * Naval Ocean Systems Centre, San Diego, USA. -
University, INRIA, University of Genoa):- pro- ground surveillance robot.
duction of a vision guided mobile robot. # Sandia National Labs, Albuquerque, N. Mexico,

* MARDI, (including BAe, UK MOD, Royal Arma- USA. - fleet of vehicles for remote control and
ments Research and Development Establishment autonomous operation.
(RARDE), Southampton University, Bristol Uni- * Savannah River Lab., Aiken, South Carolina,
versity, Lucas):- production of an all terrain mil- USA. - autonomous vehicles for nuclear applica-
itary robot., tions.

9 GEC/Oxford University 'Turtle' project. * Jet Propulsion Lab, Pasadena, California, USA.

e Advanced Robotics Research Centre, Salford:-, - primarily work for the Mars Rover vehicle.
UK national center for robotics. U Tokyo Institute of Technology, Japan - primar-

* PROMETHEUS. Companies involved include ily walking vehicles but with spin-off applications
Jaguar, Lucas, Pilkington, BMW, Porsche, Volk- including control technology.
swagen, SAAB and Volvo, with PSA (a French
consortium consisting of Peugeot, Citroen and FMC Corporation, Central Engineering Labora-
Talbot). Academic involvement is with the Uni- tories, Artificial Engineering Centre, Santa Clara,

versity of Southampton and University of Oxford. California, USA. - multi-goal, real-time global
path planning for an autonomous land vehicle.

* IVHS - Intelligent Vehicle Highway System. This
is a US Department of Transport project, which e Army Engineer Topographic Labs, Fort Belvoir,

commenced in 1989 and is heavily funded with Virginia, USA. - robotic reconnaissance vehicle

181 approved projects so far., with terrain analysis.

* Daimler-Benz AG, Stuttgart, Germany - auto-
mated guidance system. Academic Research

* Mazda, Japan - three autonomous vehicle * Carnegie-Mellon University, Pittsburgh, USA.
testbeds. Chuck Thorpe, - Navlab/Alvan and Terregator.

o Nissan Motor Company, Yokosuka, Japan. • Oxford University, Engineering Department,

Fuzzy logic steering control of an autonomous ve- Prof. Mike Brady.

hicle * MIT, USA, R. Brooks & A. Waxman.

* Volkswagen, Germany e LAAS, France, Raja Chatila - HILARE.

Self Parking vehicles research Heriot-Watt University, Edinburgh, Intelligent

* Toyota, Japan Automation Lab., Chantler, M.J. et al.

# SENTRY - Denning Mobile Robotics Inc., * Southampton University, Department of Aero-
Woburn, Mass., USA. nautics and Astronautics, Prof. Chris Harris.
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* Tech. Univ. Munich, Germany, Lehrstuhl fur Dickmanns, E.D., (1990). Dynamic vision for in-
Mikrowellentech - imaging radar for autonomous teligent motion control. In Proceedings of IEEE
vehicles. International Workshop on Inteligent Mo-

tion Control.
" Massachusetts University, Amherst, Dept. Com-

puter and Information Science - Autonomous Ve- Dickmanns, E.D. and Graefe, V., (1988). Machine
hicle Navigation Project. Vision and Applications.

" Oakland University, USA, Centre for Robotics
and Advanced Automation - Autonomous vehi- Elfes, A., (1987). Sonar-based real-world mapping

cle project. and navigation. IEEE Journal of Robotics and Au-
tomation, RA-3, 249-265.

" Univ. der Bundeswehr Munchen, Neubiberg,
Germany, Inst. fur Messtech, Prof. Dickman. Fukushima, K. and Miyake, S, (1982). Neocogni-

tion: A new algorithm for patfern recognition toler-
ant of deformatio-., and shifts in position. Pattern

* University of Maryland, Center for Automation Recognition.

Research, Maryland, USA. - computer vision sys-
tems for Martin Marietta autonomous vehicle. Holler, M., Tam, S., Catro, H., and Benson, R.,

(1989). An electrically trainable artificial neural
network with 10,24O floating gate synapses., In Pro-
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MULTISENSOR DATA FUSION AS APPLIED TO
GUIDANCE AND CONTROL

by
Patrick K. Simpson

General Dynamics Electronics Division
P.O. Box 85310, MZ 7202-K

San Diego, CA 92138

SUMMARY applying neural networks to data fusion,

Multisensor data fusion (MDF) is the syn- including: self-organizing hierarchical neural

ergistic application of data from several systems, multi-layer error correction learning

sources, typically sensors, toward a specific networks, and single layer pattern completion

task. In the area of guidance and control data systems. Application case studies will be
fusion plays a very important role. By combin- examined to determine how researchers have

ing the information from several sensors it is applied neural networks to data fusion. In addi-

possible to improve the performance of guid- tion, a discussion of feature representation and

ance and control systems. Neural networks are feature weighting will be provided.

ideally suited to applications where only a few
decisions are required from a massive arnount 1. INTRODUCTION
of data. In this sense, neural networks should
play a crucial role in future data fusion systems. Multisensor data fusion remains one of the
This paper will describe several methods of most challenging research areas in the compu-

Figure 1: Multi-sensor Data Fusion System
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tational sciences. Multisensor data fusion is the information from a wide variety of sensors is
process of combining the data from several dis- required to produce reliable responses.
tributed sensors (potentially thousands) and Although this is the primary reason for data
making a decision. The sensors can vary widely fusion, there are others. Luo & Kay (1989)
in reliability, the type of data being received have identified four advantages of MDF sys-
can vary, and the resulting decision might be tems:
required in real-time. The applicability of neu- Redundancy: By receiving sensor informa-
ral networks to this environment represents a don from several similar sensors it is possible
natural synergism between the inherent capa- to attain improved accuracy. In systems that
bilities of neural networks ard the computa- utilize redundant sensors the fusion is per-
tional demands of the multisensor data fusion formed at a low level.
(MDF) problem. This paper reviews current
MDF techniques, describes three neural net- Complementary: By receiving sensor infor-
work approaches to MDF, anO presents some mation from different sensors, it is possible to
potential MDF applications in guidance and create a more robust representation of the phe-
control. nomenon being sensed. In systems that utilize

complementary sensors the fusion is performed
at a high level.

2. OVERVIEW OF DATA FUSION Timeliness: By distributing the sensing task

Data fusion is the synergistic combination to several sensors it is possible to produce
of data from several sources into a coherent faster decisions. Single sensor systems often
decision. When the data is supplied solely from need to repeatedly sample prior to emitting an
sensors the result is a multisensor dat:: fusion accurate decision. Multisensor systems take
system. Figure 1 illustrates a general mitisen- advantage of the redundancy to achieve the
sor data fusion (MDF) system. In general, a desired accuracy.
MDF system can be viewed as a sitation- Cost: Depending on the system, it is possi-
response system. Some phenomenon occurs in ble to provide a multisensor system at less cost
the environment that is observed by a set of N than a single sensor system.
sensors. Each sensor collects information and
transmits it across a channel where features are 2.2. Multisensor Data Fusion Paradigms
abstracted from the sensor data. The entire set A MDF system requires several capabili-
of features recorded during a given interval of ties. It must be able to incorporate and arbitrate
time represents the situation. The set of features data from a large number of sources. It should
produced from each sensor . subject to differ- allow the relative weighting of sources to be
ent levels of noise, different time-delays for done easily. And, it should provide timely
information propagation, and different relative responses. Luo and Kay (1989) have outlined
importance weightings between sensors. The four primary paradigms that meet all of these
situation data is eventually fed to a data fusion requirements:
system where a response must be provided
from the data. It is immediately evident why Hierarchical Phase-Template Systems: A

data fusion is so difficult. general paradigm for robotic systems based
upon four temporal phase of sen.:or-to-object

2.1. Advantages of Multisensor Data Fusion distance (far- away, near-to, touching, and

The primary motivation for data fusion is manipulation).
the realization that single sensor information is Logical Sensors: Abstracting each sensor
often not enough. The synergistic collection of from a physical device to a logical entity allows
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collections of sensors to represented very ele- multisensor information fusion that analyzes
gantly. This approach is useful in applications sensor selection, levels of abstraction, architec-
that require a world model to operate in har- tures, and methodologies for fusion. Luo and
mony with the sensor system (eg. robotics). Kay (1989) have also conducted an extensive

Object Oriented Programming: Each sensor review of multisensor integration and fusion

in the MDF system is represented as a data with an emphasis on robotics applications.

object. An object contains both data and func- Mitchie & Aggarwal (1986) have performed a

tions and it communicates to other objects via survey of multisensor integration with an

messages. Like the Logical Sensors approach, emphasis on image processing applications and

this has a very appealing general structure that Garvey (1987) has analyzed the Artificial Intel-

is amenable to several symbolic-based data ligence approaches to multisensor information

fusion tasks. fusion.

Neural Networks: Create patterns from the
various sensors (via preprocessing) and process 3. NEURAL NETWORK DATA FUSION
the multiple patterns using a neural network. There are three primary methods for neural
This technique will remain the focus of the network data fusion: (1) pattern completion, (2)
remainder of this paper. pattern matching, and (3) hierarchical systems.

1.3. Examples of Multisensor Data Fusion Each neural network fusion technique has its
Systems own merits and an affinity for different applica-

The most incredible NMF systems are tion areas. In the following sections each of

mammals, especially humans. The ability to these techniques will be examined with specific

fuse auditory, visual, olfactory, and tactile applications cited with each technique.

information is unparalleled. Recent work by 3.1. Pattern Completion Neural Fusion
Singer and others (Barinaga, 1990) has exposed The pattern completion technique for neu-
some clues about how humans are able to per- ral network MDF is illustrated in Figure 2. All
forn sensor fusion. Information in disparate of the sensor data types are concatenated
regions of the brain has been found to phase- together into a large vector with the desired
lock and operate synchronously., This research response. As an example, Anderson, et al.
is revealing a new approach to neural systems (1990) used this representation for the classifi-
where information is stored in oscillations of cation of radar emitters. In this instance, the
different frequencies. Relative to mammals data types where pulse repetition interval, oper-
most MDF systems pale, but the full capability ating frequency, and so on, and the correspond-
of a human is not necessary to provide ing output was the name of the radar system.
improved performance for most applications.
Recent examples of highly capable MDF sys- Pattern completion neural fusion fits within
tems include robots, surveillance systems, and a situation-response framework very well.
target tracking systems. Applications that might use this fusion tech-

nique might include target recognition, signal
2.3. Multisensor Data Fusion Surveys classification, and control applications. Target

This paper will review the neural network recognition might utilize infrared, optical,
aspect of MDF with an emphasis on guidance radar and acoustic data to describe the situation
and control. There are several resources that and correlates this information with the classi-
discuss other aspects of MDF Maren & Pereira fication of the target as a response. Signal clas-
(1989) have conducted an extensive survey of sification can utilize Fourier spectra, duration
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of signal, and total signal power as the situation The restriction to a binary representation
and produce a classification of the signal as the requires some clever preprocessing that pro-
response. Control applications can collect sen- vides the requisite information, Several tech-
sor data from the platform being controlled and niques have been developed for effectively
merge this with infrared information to create representing information in a binary vector,
the situation and the response would be the next including complete enumeration, thermometer
action to take. codes, and closeness codes (Collins, 1990).

Pattern completion neural fusion primarily When using pattern completion neural fusion it

relies on autoassociative feedback neural net- is vitally important to develop a robust code

works (Simpson, 1990a & 1991). Neural net- that can be used to represent the problem, or the

works that can be used for pattern completion full potential of the neural network will not be

include the Brain-State-in-a-Box (Anderson, et achieved. The code that is developed must

al., 1977) and the Hopfield associative memory accurately represent both the value of the sen-

(Hopfield, 1982). Because of the feedback sor data and the relative importance of that sen-

nature of these systems, stability is usually sor data.

achieved at the expense of nonlinear saturation 3.2. Pattern Matching Neural Fusion
points for each processing element's response. One of the most common forms of neural
In other words, feedback neural systems tend to data fusion is the pattern matching approach.
require a binary representation of the data to As shown in Figure 3, the situation is passed to
work most effectively.

Figure 2: Pattern Completion Data Fusion
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matching neural fusion, the interreltionships
Figure 3: Pattern Matching between the various sensor data types tend to

Data Fusion be nonlinear and multi-layer neural networks

Response tend to be the most common form of nonlinear
pattern matching networks (others include
higher-order neural networks such as the Func-
tional Link Net). In addition to the pattern

(bkl , b, b3 , bkq) = Bk matching neural networks, it is also possible to
.0 kinclude the pattern classification networks such

Z2  Z3  .Z Grossberg, 1987a & 1987b), Learning Vector
f Quantization (Kohonen, 1990), and the Fuzzy
W Adaptive Min-Max Unsupervised Classifier
f (Simpson, 1990b).

Y1 Y2 Y3 . Yp F Y 3.2.1. Automatic Target Recognition
f Rewrite to eliminate system type, numbers

V and specific methods --

ft Ruck, et al. (1990) have used the multilayer
X1  X2  X3  ... n FX neural network pattern matching MDF

approach for the discrimination of various
.... objects in images. The data used in 'he experi-

(ak1 , ak2, ak3 , n , a1n) Ak ments was forward looking infrared (FLIR) and
absolute range. After the image was segmented
into blobs, features where abstracted from the

* ,, - • •data from each of the two sensors. The FLIR
Sensor Data Sensor Data Sensor Data

Type 1 Type 2 Type N data was broken into a feature set that included
S-0number of pixels in the blob, background stan-

Situation dard deviation, and complexity (ratio of border
pixels to total pixels). The absolute range fea-

the network as the input and the response is ture set included height of blob, complexity of
produced from the network as an output. There blob (computed the same as the FLIR complex-
are several neural networks that can be used for ity), and pixel standard deviation across the
pattern matching neural fusion, including the blob.
Boltzmann Machine (Ackley, f1-inton & The features where then concatenated
Sejnowski, 1985), the Cauchy Machine (Szu, together to form a large input vector to a back-
1986), the Probabilistic Neural Network propagation network. The MDF system was
(Specht, 1990), the Adaline/Madaline (Widrow first tested using only range data to classify the
& Winter, 1988), the Functional Link Net (Pao, blobs. This demonstrated showed that the back-
1989), and backpropagation (Werbos, 1974; propagation network was able to handle the
Parker, 1982; Rumelhart, H1inton & Williams,
1986). With the exception of the Adaline/Mad- ion problem effectively and the performancealine and the Functional Link Net, each of these improved when multisensor data was used.

Backpropagation is not the only neural classi-
pattern matching neural networks have more fier that could have been used. Other neural net-
than two layers. Although it is not necessary to work pattern classifiers could have resulted in
have a multi-layer neural network for pattern
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an equally acceptable solution. In the next information to be abstracted into higher level
example of pattern matching neural fusion the features prior to the fusion. In the previous two
output is not a classification of the response, instances it was assumed that the feature
rather it is a set of values, hence a pattern clas- extraction process was sufficient enough to cre-
sification system would not be applicable here. ate a representation that could be used by a neu-

3.2.2. Space Object Status Monitoring ral network. Sometimes it is not possible to
extract enough information from non-neural

Eggers & Khuon (1990) have used a back- network techniques, especially in image pro-
propagation network for the monitoring of cessing applications where scale, rotation, and
space ubject . The sensor data consisted of two translation invariance are key elements that
radars, one o,,rating in the L-band and the need to be addressed prior to fusion.
other operating in the X-band. Each set of sen- F
sor data was preprocessed using a fourth-order Figure 4 shows a typical hierarchical net-autoegrssie moel hatprodceda fur- work. This network has five levels. There areautoegrssie moel hatprodceda fur- several input planes (level 1) that receive data
dimensional feature vector. These two vectors se nut p n e level th e da
were concatenated together to form the input to frm the srs. entsuce leel the fa-the backpropagation network. The output from tures are gradually extracted from the data and
the backpn network. was afudiesoal ut ve o fused together. At level 4 there is a final fusionthe netw ork w as a four dim ensional vector o h n o m to n o a r p e e t t o h ti
describing the current state of the object (sta- of the information into a representation that is
ble, pitch, roll, and yaw). The performance of classified by levtw l 5. Each level of the hierar-the system showed reliable output responses, chical network is a two-layer neural network

classifier. The connections within each level
3.3. Hierarchical Neural Fusion (slab) are modifiable and are used to classify

Hierarchical neural networks are used in the features into a more abstracted representa-
fusion systems that require low level sensor tion. The connections between levels are hard-

Figure 4: Hierarchical Network Data Fusion
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wired to extract certain types of feature matically.
composites. Typical adaptation algorithms for
these modifiable connections include Hebbian
learning (Fukushima, 1988), competitive learn- Sometimes there are several different types
ing (Hecht-Nielsen, 1990), and adaptive reso- of sensor data available, but the use of the data
nance (Rajapak', Jakubowicz, & Acharya, is not clear. The inverted pendulum (broom bal-
1990). ancing) is an example of such as system. Sen-

sors placed on the cart and on the joint of the
The first system to employ this form of inverted pendulum can be used to produce data

hierarchical composition was the Neocognitron that is used to determine which direction to
(Fukushima, 1988) which was applied to hand- move the cart so the pendulum will remain
written character recognition. Other applica- upright. It is possible to add an image sensor
tions of the neocognitron include situation that can also determine the position of the pen-
analysis (Jakubowicz, 1990) and automatic tar- dulum relative to the cart. Fusng the informa-
get recognition (Gilmore & Czuchry, 1990). tion is not straightforward using conventional

3.3.1. Target Recognition techniques, but a pattern matching neural

An ART-I based hierarchical system has fusion approach using a supervised learning

been applied to the recognition of target-like neural network like the backpropagation net-

images (Rajapakse & Acharya, 1990). The work presents a feasible approach.

input sensors were simulated to represent two Other platforms that might utilize data
different types of data. The features present at fusion for control include robotics, automobiles
each sensor are demonstrated to be insufficient and aircraft. Robots can utilize MDF for navi-
to classify the image when used alone, but the gation purposes. Information from high-fre-
combination of sensors was successful at the quency active sonar and from cameras can be
same task. The system is currently being fused to control a mobile robot. Cars with look-
extended to work with biomedical images. ahead cameras can provide data that can be

fused with sensors on the suspension system to
produce commands back to the suspension sys-

4. APPLICATIONS OF NEURAL DATA tem that will adjust the tension to fit the needs
FUSION TO GUIDANCE AND CONTROL of the road. And, aircraft can fuse engine sensor

There are several areas where neural fusion data to control air intake and fuel flow to opti-

can be applied to guidance and control. The fol- mize for fuel efficiency, speed, or stealth pur-

lowing three sections outline some candidate poses.

application areas and provide some guidelines 4.3. Surveillance Systems: Border Surveil-
for applying the neural fusion techniques lance
described above. Although it is not a strict guidance or con-
4.1. Guidance Systems trol application, the use of neural fusion for sur-

Guidance systems require a few decisions veillance is extremely promising and worthy of

to made from a massive amount of data. Neural mention. One of the most difficult elements in

networks are ideally suited for these types of a surveillance system is the fusion of data from

applications. Because of the parallel nature of the massive number of available sensors.

neural networks, additional sensors will not As an example, border surveillance sensors
necessarily slow the system. In addition, neural might include acoustic, seismic, radar and
networks are able to automatically weight the intelligence. Effectively fusing this data to clas-
relative importance of each type of sensor auto-
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sify the activity is difficult using conventional ence, Vol. 249, pp. 856-858.
techniques. But, it is possible to train a neural Carpenter, G. & Grossberg, S. (1987a). A mas-
network to perform this task by suppiying the sively parallel architecture for a self-orga-
network with examples of the various sensor nizing neural pattern recognition machine,
readings and the associated activity using a pat- Computer Vision, Graphics and Image
tern matching neural fusion approach. Correla- Understanding, Vol. 37, pp. 54-115.
tions that might not have been intuitively
obvious are often discovered by pattern match- Carpenter, G. & Grossberg, S. (1987b). ART2:

ing neural networks, an extremely useful Self- organization of stable category recog-

attribute in this application. nition codes for analog input patterns,

Other areas where data fusion can be used Applied Opic, Vol. 26, pp. 4919-4930.

include home security systems that fuse motion Collins, D. (1990). Applications of neural net-

and infrared data to determine if an intruder is works to multisensor fusion, UCLA Exten-

in the area. The output of the system can be sion Short Course Notes, October 15-19.

used to control lights and sirens in the localized Fukushima, K. (1988). Neocognitron: A hierar-
area of intrusion while automatically notifying chical neural network capable of visual pat-
law enforcement. tern recognition, Neural Networks, Vol. 1,

pp. 119-130.

5. CONCLUSIONS Garvey, T. (1987). A survey of Al approaches
to the integration of information, in Pro-

Neural fusion techniques are becoming ceedings of the SPIE, Vol. 782, Infrared
more prominent because of their ability to eas- Sensors and Sensor Fusion, R. Buser & F.
ily handle massive amounts of data from a wide Warren, Eds., Orlando, FL, pp. 68-82.
variety of sources. The use of data fusion pro-
vides a mechanism for improving the reliability Gilmore, J. & Czuchry, A. (1990). An applica-

of guidance and control systems at the expense tion of the neocognitron in target recogni-

of greater system complexity and more compu- tion, Proceedings of the International

tational requirements. The use of neural net- Neural Network Conference: Volume 1,

works in a MDF environment represents a (pp. 15-18). Paris, France, July 9-13, Klu-

natural fit of the strengths of netral networks wer Academic Publishers: Dordrecht,

with the weaknesses in data fusion. Netherlands.
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Summary represent each of the three neural network learning
paradigms: supervised learning (recurrent

Several advanced neural network architectures are backpropagation network), reinforcement learning
expected to be of significant value in guidance and (grading learning network), and self-organization
control., This paper reviews three advanced neural (hierarchical matched filtering network). This will
network architectures (the graded learning allow us to compare the different types of learning
network, the recurrent backpropagation network, and to gain insight into the suitability of each
and the hierarchical matched filter network) and learning paradigm for various types of problems.
briefly discusses how they might be applied to The graded learning and recurrent
problems in guidance and control, backpropagation networks are very similar in their

approach to approximating spatiotemporal
mappings. Their primary differences are in the

1 Introduction training procedures that are used. The common
architecture shared by these two networks is

Many interesting problems in guidance and control described in Section 3. This architecture consists of
can be reduced to the problem of implementing a a single functional layer of fully connected
time dependent mapping (i.e., a spatiotemporal processing units. Both of these network
mapping) between an n-dimensional input vector architectures address problems involving the
and an rn-dimensional output vector., Such approximation of arbitrary fixed spatiotemporal
mapping problems are difficult to solve using mappings.
conventional techniques such as linear control In contrast, the hierarchical matched filtering
theory, statistical pattern recognition, or dynamic network is designed specifically for spatiotemporal
programming, due to the inherent complexity of pattern classification problems. Its network
spatiotemporal patterns, particularly when architecture is fundamentally different than that of
insensitivity to various warping transforms is the other two networks. This architecture is
demanded. Recent advances in neural network described in Section 6,
technology may provide significant new capabilities
for addressing many of these problems.

This paper presents three neural network 2 Spatiotemporal Mappings
architectures that solve spatiotemporal mapping
problems:., the recurrent backpropagation network, Intuitively, we can describe a spatiotemporal
the graded learning network, and the hierarchical mapping as a mapping from a temporal sequence of
matched filter network.. It is expected that these n-dimensional input vectors to a temporal sequence
networks will become increasingly important in of in-dimensional output vectors. Such an intuitive
solving complex spatiotemporal mapping problems. description can be made mathematically precise.
Thus, the focus of this paper is to familiarize the We define Hn'kP[C] to be the vector Sobolev space
reader with the structure and operation of each of all LP generalized n-dimensional real vector
network, and to point out similarities and functions of time with V generalized derivatives up
differences. to order k on a compact set C C R (for a gentle

These three networks were selected because they introduction to generalized functions see [14], for a
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terse definition see (1]). With this definition, a control applications. The hierarchical matched
spatiotemporal mapping is defined as a mapping filter network is useful for pattern recognition

problems where there is a desire to be insensitive to
time warps (a class of spatiotemporal warping

x : A C H' .kP[C] - B C m',p P[D]. transformations that map a spatiotemporal pattern
x(t) into a pattern x(O(t)), wher 0 is a strictly

Examples of spatiotemporal mappings include a monotonically increasing smooth scalar function of
speech classifier that maps a time-varying speech time).
power spectrum to a word class number, and a
control system that maps a plant disturbance to a
system control function. More specifically, a speech 3 A Fully Connected
classifier takes a time-varying speech power Network Topology
spectrum (a spatiotemporal pattern)

A simple yet very powerful netwo-' y is
x: C C R - R' that of a single fully connected lay. iing

and maps it to a class number function which, at units (see (10] for a discussion of the c,,. ilites of
each time step, gives the class number of the word this topology), such as shown in Figure 1, which

that has most recently been completed (i.e., the consists of a single functional layer of N units. To

class number function is an integer-valued function simplify the discussion, an additional layer of
of time). fanout units is included, This layer distributes

In a control system we typically have a plant both the fed back output signals of the N

with mathematical form functional units, and the n components xi(t - 1),
x 2(t - 1), ... , x,,(t - 1) of the input vector x(t - 1)

f(x(t), u(t), d(t)) " x(t), (the input vector used during the network's
operation at time t is latched into the fanout units

where x(t) is the state vector of the plant (typically at time t - 1 along with the fed back processing
composed of sensor readings) at time t, x is the element output signals from time increment t - 1).
time rate of change of the state, u(t) is the vector Each of the N processing elements of the functional
of control signals at time t, and d(t) is the vector layer also receives a bias input, which we shall label
of plant disturbances (deviations from perfect xo(t - 1) where xo(t) = 1.0 for all values of t. The
closed-system mathematical operation) at time t. number of fanout units is equal to 1 + n + N.
The goal of the control system is typically to The outputs of the network at time t are the
achieve some kind of particular plant state (such as outputs y1 (t), y(t)., ,yn(t) of the first m
a specific final sheet thickness in a steel rolling processing elements of the functional layer of the
mill). Thus, a control system is a mapping from an network. The output signals of the remaining units
outside disturbance function d to a control function are Y(+l)(t), yIm+2)(t),..., y'N(t).
u that can achieve the desired control goal. This To simplify the notation, we define
view of control theory assumes that the plant has a
fixed dynamical structule so that the controller's _ XJ (t) if 0 < j < n
job is to produce a control vector that deals with zj(t) =- ..~ )(t) if (n + 1) j L (1)

the effects of outside disturbances on the plant.In general, the primary issue in spatiotemporal where j = 0, 1, 2,..., L and L -- N + n. For
In gnerl, te pimay isue n satioempral convenience we shall assume that time always

pattern recognition is to build classifiers that are ceinc we s a t e
insensitive to certain spatiotemporal warping begins at t = 0.transformations (such as pitch change and time On time step t, processing element i calculates

tranforatins (uchas itc chage nd ime its output signal y'($) by means of the formula
warping in speech recognition). The primary issue I
in control is to build causal recursive controllers y'(t) s,(I.(t)) i 1, N (2)
(i.e., controllers that operate 'in discrete time to I
map the set {x(0), x(1), u(1), x(2), i(t) = Ej z(t- 1) (3)
u(2), .. x(t - 1), u(t - 1)) into ui(t)) that perform
well with respect to some particular set of goals.
The graded learning network and the recurrent where each of the functions s,(u) is bounded and
backpropagation network are useful for such has a continuous derivative. A typical functional
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Figure 1:, Single layer of fully connected processing units.

form for s8(u) is the bipolar logistic function given for some or all of the input vectors in the sequence.
by In general, such information is more difficult to

acquire than a measurement of performance. Thus,

si(u) = + (4) recurrent backpropagation is more restrictive than
1 the graded learning network in terms of the types

This function is bounded between -1 and +1 and of problems that it can address. However, when
has a slope of 1 at zero. supervised learning can be used it will in general

To solve a spatiotemporal mapping problem with produce a network that is superior to graded
the network topology shown in Figure 1, the learning both in terms of required training time
connection weights must be learned from a set of and approximation accuracy. Thus, when
examples of the mapping. The next two sections supervised learning can be used it should be.
describe learning methods that yield good
connection weights for this network topology. 4.1 Recurrent Backpropagation.

Error Function
4 Recurrent Backpropagation Unlike the graded learning network, recurrent

Network backpropagation has a fixed error function that it
tries to minimize during training. This error

The recurrent backpropagation network learns to function is a spatiotemporal generalization of the
approximate a mapping between a sequence of n mean squared error function used in
dimensional input vectors and a sequence of m backpropagation. To understand this error
dimensional output vectors. The mapping is function, we must first define the exact problem
learned using a form of supervised learning to that recurrent backpropagation attempts to solve.
adapt the weights. Supervised learning requires Let the input to and output from the system at
that the some of outputs of the network be known time I be x(t - 1) and y'(t), respectively. We shall

j miunin ul n |un u• i a• B D a iH a n1 1• HNHll
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assume that the system starts operation at t = 1.. for there to be useful training, U(t) must be
Initial values for the internal states of the system non-empty for at least one time t during training.
at time t = 0 are uniquely defined by the initial Given the sets U(t), and the correct yk(t) values
values of the output signals (in other words, by the for each k E U(t), we define the mean squared error
vector y'(0))., The system runs forward in time F(w) of the recurrent backpropagation network to
until some arbitrary stopping time tatop is reached. be
During each of these 'runs' of the system the input
sequence {x(O),x(1),x(2), .. .,x(t.top - 1)} is r tsop
provided to the system. From the initial state of F(w) E I- t) _ y,(t)]2

the system, y'(0), and the sequence of x(t) inputs, Yk(t) (5)

the system produces outputs L =1 kE U() I

{y'(l), y'(2), ... , y'(ttop). Clearly then, the K ( 1 (6
overall purpose of the system on each run is to map K = totop #U(t)
the set 

' t l /

where w is the weight vector of the network,

x ={ly'(O), fx(), x(), x(2),. . . , x(tp - 1)1} #U(t) = the number of elements in U(t)
(#U(t) = 0 if U(t) is empty), and E[ ] is the

into the set expectation or averaging operator (the averaging is
done over an unboundedly large number of input

y' y'(1), y'(2), . t. examples chosen randonly with respect to p), Note
that the entire sum is divided by K, the total

Thus, we can view the operation of such a number of error terms ased. Thus, we are
spatiotemporal system as performing a mapping measuring the average squared error per output for
from a set consisting of the initial system state and which the correct output is given. This quantity is
a set of input values provided over the run, to a set then averaged over the entire input space by the
consisting of the output states produced by the expectation operator. Again, as with
system over the run. The confusing thing about backpropagation, the mean squared error depends
this picture is that in many practical instances only on the weights. Naturally, for this dependency
(such as most control systems) the x(t) inputs are to hold, it must be assumed that the weights are
functionally dependent upon earlier y'(t) outputs. fixed throughout the evaluation of the network's
The key observation is that this doesn't matter, performance.
The only effect this has is to limit the range of
possibilities for the x(t) sequences that the system 4.2 Recurrent Backpropagation
will see, We are only concerned with what the
system does when a particular sequence of x(t) Network Learning Law
inputs is presented (given a certain initial state of The recurrent backpropagation network learning
the system). We don't care how these inputs arose. law is based on the standard gradient descent

The error calculation procedure for the recurrent method
backpropagation network is similar to that used
with the backpropagation network, but with one wnew = w

l
d - aVwF(w). (7)

important difference: not all correct output signals The gradient calculation requires the partial
are known. In the case of recurrent
backpropagation, we assume that with each derivatives of F(w) with respect to the components

training run example x we are also given of w, The complete derivation of these partial

information concerning some of the correct values derivatives can be found in [10]. The result is a set

of outputs of the network at various points during of recursion formulas

the run., Specifically, we assume that at each time
f, 1 < t < t top during a training run we are given a rkj(t) = s'(k(t))

set U(t) of integers lying in the range from I to m,
inclusive, such that the correct output value yk(t) ([6 z1(t - 1)] + [wkz (t -

for urit, k at time t is given for each k E U(t). It is 1 

perfectly acceptable to have U(1) be the empty set

at some times t during the training run. However, where
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5 The Graded Learning

rk~j(i) 0t) Network
Owij The graded learning network (GLN) is a mapping

rkij (0) = 0. neural network which uses a form of reinforcement

learning in which a performance measure or grade
At the end of each run (after all of the zg(t - 1) is periodically presented to the network to guide

values are known), the recursion formulas in learning [4]., It combines the well known
Equation 8 can be solved. Naturally, in order to optimization characteristics of simulated
adequately approximate the expectation operator, annealing [13,7] with the speed advantages of a
we must average over a large number of runs where gradient search method. The result is a powerful
the initial values and input sequence examples are new method of optimization for a broad class of
chosen randomly in accordance with a fixed problems, including guidance and control.
probability density function p. The need to batch Unlike supervised learning networks such as
the results from a number of runs before modifying backpropagation, GLN does not require the desired
the weights makes this learning law very slow. output to be furnished for each training trial. Only

Two variations of this learning law have been a measure of overall network performance over a

developed. The first of these updates w after each series of training trials is required. This is very
time step and is known as the jump-every-time-step significant for problems in guidance and control,
variation., The second updates w at the end of each since these problems are often characterized by a

run.. Both of these variations can improve the lack of knowledge of the desired output for a given

training time of the network. training trial.

Another variant of the recurrent backpropagation
learning law is the teacher-forced learning law 5.1 GLN Advantages
introduced by Ronald Williams and David Zipser While GLN is not the only form of reinforcement
[18] (who also introduced Equation 8). This variant learning network, it does have two distinct
is like the jump-every-time-step version, except for advantages over other such networks:
two changes. First, all of the correct output values

Yk(t) that we are given for training are used in the I. The GLN learning law does not specify the
recursion equation (Equation 8) in place of the form of the grading function.
corresponding y(t) values. Second, after each
weight jump the rij(t) value used to compute the 2. The GLN learning law is not coupled to the
jump is set to zero. Williams and Zipser report network topology.
that, at least for some problems, tne teacher forced The first of these advantages implies that the
learning law seems to converge to a useful solution grade must be furnished by an entity external to
faster than the original learning law or the two the network., This external entity is typically some
other variants. type of monitoring module which can assess the

It is worth noting that the above derivation overall performance of the system. Such a
assumes that the inputs to the network do not performance measure can be very complex and
depend upon the weight values., For many practical often involves significant time delays between the
problems, such as in control, this assumption will network response and the measurement. In general,
be false because of the fact that the input is derived the grade measurement can be based upon any
from the output (for example, by a plant that takes factors that are consistently and repeatably a
control signal outputs from the network, which function of the input-output behavior of the
definitely depend on the weights, and produces network.
sensor inputs to the network - which therefore The second GLN advantage allows it to be
also depend upon the weights). Thus, in using the applied to arbitrary network topologies., In
recurrent backpropagation network, this limitation particular, GLN can be used with topologies that
must always be kept in mind. However, this isn't involve feedback connections between and within
to say that the method is unusable in these cases. layers of processing elements. Thus, GLN can be
Often, the dependence of the input on the weights applied to problems that have complex dynamical
is small, in which case the method may still work., response with unknown or uncertain time delays.
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5.2 Description of Graded Learning Table 1: Typical GLN Training Parameters
O p e r a tio n Taraeet: T y p ical a l r e t

The learning law for the graded learning network is Parameter Ty0ical value
executed whenever a grade, G, is presented. Upon a 0.99
such a presentation, the network adjusts its weights P 1.01
using a training process that is, roughly speaking, a 7 0.85
biased form of Cauchy simulated annealing [15). 6 0.25
The bias is based on an estimate of the gradient of f 0.995
the grading function. Thus, each weight 0 0.85
adjustment is a combination of a grading function _ -0.15
gradient estimate and a Cauchy random jump., A
temperature parameter determines the average size
of this random jump. where r is a q-dimensional Cauchy random variable

In the following discussion of GLN learning, it (see [15]). Finally, the new weight vector is
will be convenient to define the network weight calculated:
vector, w, as the vector containing the weights of
all the units ,in the functional layer, including the w n ew = b + cnew., (10)
bias weights. The dimensionality of w is
q = (1 + n + d)(N). After w is updated, the network is run once

In addition to w, GLN maintains three other again, with this new weight vector, to generate a
vectors of the same dimensionality for use during new grade. The process of weight updating can be
training. The first of these vectors, a, is an continued indefinitely (e.g., if the plant or its
estimate of the gradient of the grading function environment are expected to change significantly
with respect to thu network weight vector. The over time), or it can be turned off when a
second vector, b, contains the network weight satisfactory level of performance is obtained.
vector that thus far has yielded the best (lowest)
grade value., The final vector, c, contains the
random jump values. 6 Hierarchical Matched

When a grade, G, is presented to the network, it Filter Neural Network
is first checked to determine if it is better or worse
than the current best grade, Gb,.t(t). Subsequent The hierarchical matched filter network is designed
processing depends on the outcome of this check: to perform spatiotemporal pattern classification
case 1: G < Cbest(t) using a generalized multidimensional matched

filter. Traditionally, matched filtering has been
= aG + (1 - a)G b used in application areas such as communications,

mn ew = OT radar, and sonar, for detecting a specific waveform
anew = aold + ,cold, in a time series signal. The generalized

multidimensional matched filter is optimized for
case 2: G >_ Gbt(t) spatiotemporal pattern classification. Banks ofthese matched filters can be used as

=ne = t + (1 - a)G high-performance classifiers for spatiotemporalmew be$ patterns.. Unfortunately, the direct implementation
" T of such matched filter banks for large problems

anew = Oaold + kcold, (such as large-vocabulary continuous speech
recognition), while attractive, is not practical.

where a, fl, 7, 6, f, 0, and 4 are parameters. However, it may be possible to develop a method
Typical values for these parameters are given in for exploiting the inherent statistical redundancy of
Table 1. typical spatiotemporal pattern sets to allow more

Following these changes, the c and w vectors are efficient implementations of such matched filter
updated as follows: banks.. In particular, we propose a hierarchical

neural network approach to this implementation
e e = anew + Tr (9) problem.
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6.1 Matched Filtering 6.2 The Nearest Matched Filter
Classifier

One well-known method of pattern recognition is One way of building a pattern classifier for
template matching or nearest neighbor classificahon spatiotemporal patterns is to gather many
[5,6], in which unknown patterns are simply examples of patterns belonging to each of the M
compared with known examples (using an classes into which each unknown input pattern is to
appropriate distance measurement procedure) to be placed. An unknown spatiotemporal pattern
find the closest matching examples. Given a can then be ccmpared with these examples at each
sufficiently rich set of example patterns, such time t, by means of matched filters based upon the
classifiers can be shown to be near-optimal. example patterns, to determine (via a classification
However, for practical problems, classifiers with a decision policy) whether a pattern belonging to any
sufficiently large number of example patterns are one of the M classes has just finished arriving or
often impractical., not. This is the nearest matched filter classifier.

Given two spatiotemporal patterns, u(t) and To make the notatior concrete, let us define such
v(t), we want to create a matched filter distance a training set of patterns to be the set
measurement that is invariant, or at least P = {(vi I), (v2 , f 2 ), -., (vN,,#N)}, where
insensitive, to the distortion of patterns by some #k E {1,2,...,M} is the number of the class to
preselected class C of spatiotemporal warping which example pattern vk belongs. The input
transformations, For example, if we wished to be signal, u, is fed to all of these matched filters in
insensitive to small time warps, we might define the parallel (the matched filters use weighting functions
class C to consist of transformations of the form that are balanced so that their responses are
u(t) ---+ u(O(t)) where 0.5 < dO/di < 2.3. Of comparable)., The output of the classifier at time t
course, C might consist of much more complicated is a class number # determined by putting the
transformations. outputs of all N matched filters into a decision

One choice for the distance measurement policy function. For example, ,if we wanted to use a

Hv(u, t), that is invariant with respect to a class C simple 1-nearest neighbor policy, we would emit at
of spatiotemporal warping transformations, andtime the class number i associated with the
whhof stoepratal y w in transm s, ad reference pattern vi having the smallest matched

filter output Hv,(u, t)-unless the value of the

smallest matched filter output exceeded a fixed
threshold, in which case we would provide a class

00o number output of 0, meaning that the input signal
Hv(u,t) - inf p(r - t) I u(r) - Tv(r) I dr, does not currently match any example pattern well.

TEC Clearly, the pattern class output typically will not

(11) be smooth (it will jump abruptly from one class
where p is a non-negative smooth function with number to another as the winning classifier of the
p(r) > 0 for r E (-a, 0) (where a is a non-negative competition process changes). The generalized
constant) and p(r) = 0 otherwise, and where C is a multidimensional matched filter and the nearest
defined set of spatiotemporal warping matched filter classifier (along with a neural
transformations. The function p is called a time network implementation of the classifier for time
windowing function. It serves the purpose of warps) were introduced in 1982 [12]. For further
focusing the attention of the distance measurement information and discussion of these concepts, see
on the time interval [t - a, t].. H can be interpreted [10].
as the distance between the spatiotemporal pattern The nearest matched filter classifier can be
u over the time interval [t - a, t], and the best defined for a variety of spatiotemporal warping
matching warped portion (of duration [t - a, i]) of transformations. However, common choices might
v. IIv(u,t) which is called the generalized be time warping or pitch change transformations.
multidimensional matched filler (or simply matched Time warping would be useful, for example, for
filter, since we shall not use the traditional version speech recognition, where the changes in how
in the sequel) for input spatiotemporal pattern u, words are pronounced are typically of a time-warp
tuned to spatiotemporal pattern v, over nature. Pitch change transformations (such as
spatiotemporal warp class C. those that occur when we speed up or slow down a
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phonograph record) would be useful for recognizing pattern to the time interval It - a, t], the nearest
vehicles by their sounds, since much of the sound of matched filter classifier can carry out only the first
a vehicle is from its engine, transmission, and local-in-time stage of spatiotemporal pattern
wheels, which produce sounds at pitches that are recognition., For many problems, local-in-time
directly dependent on road speed and gear classification is not sufficient. Often, to do a good
selection. In every case, the use of an appropriate job of classification, we must exploit context
class of transformations will ensure that each information that we can obtain only by considering
reference pattern can serve as a model for a wide longer periods of time. One way to do this would
class of similar, but transformed, patterns. This be to devise a classification decision policy function
effective pattern reuse greatly reduces the number that could exploit a priori syntax and context
of reference patterns that must be used., information. Because such a postprocessing

Finally, the theoretical classification performance operation is often essential if adequate performance
of the nearest matched filter classifier has been is to be achieved, the nearest matched filter
established for the case where C is the set of time classifier should really be thought of as just a front
translations [11]. In this case, assuming that the end for a complete classifier. We now consider the
training set is sufficiently comprehensive (and problem of implementing a nearest matched filter
employs a 1-nearest neighbor classification decision classifier in a hierarchical neural network structure.
policy), the classifier error rate will satisfy the
Cover and Hart inequality [3] 6.3 Nearest Matched Filter

R < R < R* (2 A R, (12) Classifier Implementation
M 1 ) A neural network that approximately implements

where R* is the error rate of the Bayes classifier, the nearest matched filter classifier for the class of
The nearest matched filter classifier has one time warp spatiotemporal warping transformations

problem, and two advantages. The problem is that (see [101) has the disadvantage that it requires one
we may need an enormous training set; this sub-network for each example pattern in the
requirement may make the direct implementation training set. Thus, the size of the network grows
of such a classifier impossibly large and linearly with the size of the training set.
computationally burdensome (since all N of the For many problems, such as continuous speech
Ilv,(u,t) integrals must be computed in parallel). recognition, the patterns in the t-aining set will be
The advantages are that the classifier is capable of highly redundant. In other words, these patterns
near-Bayesian performance (at least for some will have many sub-patterns (phonemes, for
classes of spatiotemporal warping transformations), example) in common-usually at several different
and that the individual matched filters are time duration levels. Thus, from a statistical
insensitive to noise. This latter advantage is perspective, a direct implementation of such a
particularly important if all of the matched filters nearest matched filter classifier will be highly
are using the same weighting function (as opposed inefficient, since each matched filter will contain
to weighting functions that merely have the same units that are tuned to essentially the same
time integral), since Equation 12 shows that all of short-term patterns that a multitude of other units
the matched filters will then react approximately are also tuned to. Consolidating these units would
the same to additive noise. Thus, since the decision decrease the size of such an implementation
process is typically largely a relative comparison of enormously - perhaps making such systems
the matched filter outputs, the classifier output will practical. This section presents an outline of a
be somewhat insensitive to additive noise. The scheme for accomplishing this consolidation by
combination of guaranteed high classification means of a new hierarchical design.
accuracy (given our ability and willingness to Figure 2 shows a design for a self-organizing
implement a sufficient training set) and additive spatiotemporal feature detector layer. This layer
noise insensitivity make the nearest matched filter learns short time sequences of patterns in a way
classifier an interesting candidate for solving that makes it insensitive to small time warps.
spatiotemporal classification problems. Perhaps the best way to describe the function of

Finally, because the windowing function limits this layer is to begin with a description of how it is
the consideration of the incoming spatiotemporal trained., Then its function during normal operation
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X~iXM(il)X M0+) m(i+3)

X (m1) I y (m-1)2 X . (m-1)n

Figure 2: Schematic for a self-organizing spatiotemporal feature detector layer.

will be described, layer m is equally likely to be closest (measured
During both training and normal operation of using Euclidean distance) to each of the w, i

the hierarchical neural network classifier, we weight vectors. At this point these spatial weight
assume that the spatiotemporal patterns are vectors are frozen and the training of the z,..i
entered into the hierarchy at the bottom as temporal weight vectors begins.
sequences of vector inputs in discrete time. The Before temporal weight training begins, the
sample rate is greater than the Nyquist rate for the processing elements are modified. Unlike spatial
fastest varying component of the pattern. Further, weight training, where the processing elements
we assume that the individual patterns to be simply respond at each discrete time to the
classified have durations that are all approximately distance from the current input to the unit's
the same (this condition is not necessary, but spatial weight vector, now in temporal weight
relaxing it adds complications that will be avoided training, the reaction to inputs will have a
in this paper). The patterns are assumed to arrive temporal behavior. Specifically, each processing
in a random order described by a fixed probability element will now be governed by equations such as
density. The only spatiotemporal warping
transformations are assumed to be mild time
warps. Given these assumptions, we now consider Xmi(t) = a(-cXmi(t - 1) +
the training of layer m of the hierarchy. We assume d U(O - Iwli -Xm-l(t)l

that all of the previous layers have already been
trained and their weights have been frozen.

The first step in training layer m is to train the 0< Xmdt) _ 1,
spatial weight vectors wmi, Wm2, ... , wmv. These
are trained using Kohonen learning with conscience U 1 if ( > 0
(see (10] for details), with each successive training U(( 0 if < 0,
trial utilizing the next discrete time sample of
input x(m,1)(t) from the previous layer as the and
training vector. The a learning rate constant starts ("
off at a value near 1.0 and decreases to 0 in f = if > 0

accordance with a cooling schedule.. t if < 0,

After this training process converges, the wmi and where wmi 'is the spatial weight vector of unit i
vectors will be distributed in x(m-1) space such of layer m, and c, d, ¢, and 0 are positive
that each time sample x(m-)(i) of the input to constants, with c, 0 < 1..
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These equations ensure that each unit is not hard limited at 1.0) will depend on the sum of
activated only if the input vector x(.-1)(t) is the quantity 0 and the temporal input intensity
,officiently close to the spatial weight vector Wins Ej Zmij 0mj. To achieve full activation, the

,. hat unit. The attack function a is used to temporal input intensity must be quite large (this
ensure that the "spin up" of each unit is faster ensures that during training unit i is frequently
than than the "spin down", active following the layer m units currently

Given equations of the above sort, each supplying it highly weighted input). The offset
processing element within ¢ range of the input 0 > 0 is used to ensure that units that lie at the
vector x(m-1)(t) will become activated.. The start of learned spatiotemporal sequences will
constants are chosen so that this activation always become at least modestly active, even though they
hard limits at 1 within a few time units after the do not have any predecessor units helping to get
input vector enters the 0 sphere surrounding its them activated.. In the end, this scheme (and other
weight vector. After the inpiA vector leaves this variants) provides a spatial pattern of activity that
sphere, the activity of the procesing element represents a history of the trajectory of the input
slowly decays. Note that by setting the value of ' x(m- 1)(t) over the last brief interval of time. The
correctly it will be possible to ensure that an h'-tory recorded by this network layer is, in terms
approximately constant fraction of the units is ot a set of spatiotemporal segments, burned into
always active-obviating the need for the the network during training. If the input pattern
development (as yet unachieved) of a "local" deviates too much from one of these trajectory
competition mechanism. segments, the layer will not respond much at all.

Given the above unit behaviors, a steady stream From the above observation it is clear that this
of input patterns is then entered into the system, spatiotemporal layer is, in fact, acting as a
and the temporal weights zmoi (which are all generalized matched filter bank over a brief interval
initially zero) are modified by means of the of time, with each activity constellation
Kosko/Klopf learning law (see Section 3.6 of [10] representing a pattern trajectory begment learned
for details)., This establishes temporal weights in during training. The transfer function used
accordance with commonly encountered sequences precludes constellations from becoming highly
of unit activation, active unless this is so (unless, of course, the layer

Following equilibration, the temporal weights are has been overloaded). Note that if overloading
frozen (if desir-d, to improve later performance, occurs the layer can simply be made larger and the
the weights can first be "sharpened" va a 0 constant can be lowered. This allows the use of
sigmoidal transformation before freezing). The larger numbers of (more spatially discriminating)
layer is now ready to be prepared for use. To do units to learn the spatiotemporal subtrajectories.
this, yet another transfer function is introduced. Note that this layer will be insensitive to modest

Following the freezing of the weights of the unit, time warps, due to the gradual activation and
the transfer functions emplhyed during operational deactivation behavior of the operational transfer
use of the layer are inserted into the units. This functions.
transfer function has a form such as The above discussion has reviewed the definition

of a new matched filter for spatiotemporal patterns
Xm,(t) = a(-cxn,(t - 1) + and introduced a hierarchical layered neural

d U(O - Jw1, - x,.- 1 ()J network designed to efficiently implement a u. .k of
such matched filters for the purpose of achieving

[0 + E Zmj Xj] ) spatiotemporal pattern recognition that is

i~i insensitive to small time warps. In order to derive
the desired classification information, a mapping

0 < Xmni(t) _< 1. network must be employed that will transf'orm the
The behavior of this transfer function is now briefly spatial constellations of activity at the highest
described. First, for activation of unit i of layer m layers into a class number and a confidence level.
to occur, the input vector x(m-1)(t) from the The self-organizing layer defined here has only
previous layer must be passing through the sphere limited redundancy of spatial pattern
c radius V surrounding the unit's spatial weight representation (in contrast to the Spatiotemporal
vector w,n,. Second, the activation level reached (if Pattern Recognizer network presented in Section
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6.1 of [10], which has enormous redundancy). Each controller is difficult or impossible to measure. For
subsequent layer in the hierarchy has a time example, it may be desirable to design a missile
constant 1/c that is twice as long as the layer control system which maximizes its range. Such a
below. This "temporal compression" property control system does not have an absolute measure
ensures that the activity constellations at higher of performance since the maximum range
and higher layers act as codes for longer and longer attainable is a function of the mission., However,
sequences of spatiotemporal pattern. It is we can determine how often the missile reaches its
conjectured that, if the layers are not overloaded target and use this value to assign a success
and if the spatiotemporal patterns are sufficiently measure to the control system. The graded learning
distinct, these constellation codes will be unique. network can use this succes3 information integrated
Further, in general, if the input pattern does not over a number of trial mission (either actual or
resemble a pattern presented during training, then simulated) to learn an appropriate control law.
none of the layers will respond significantly.

The architecture presented here moves us one 7.3 Hierarchical Matched Filter
step closer towards efficient implementation of
large matched filter banks for spatiotemporal The hierarchical matched filter network is most
pattern classification, applicable to spatiotemporal pattern classification

problems in which insensitivity to time warp
transformations is desired., An example of such a

7 Applications to Guidance problem is speech recognition in which we desire a

and Control system that can classify speech independent of how
fast the speaker is speaking.

In this section we will review a number of
applications of interest to guidanace and control 8 Conclusions
problems.

This paper has presented three new neural network
7.1 Recurrent Backpropagation architectures for addressing complex

Recurrent backpropagation has demonstrated the spatiotemporal mapping problems such as those

ability to model complex dynamical systems. Such encountered in guidance and control. The structure

a capability could be very useful in guidance and and operation of each network was reviewed, and

control applications. For example, consider a seeker application suggestions were given. From this
system that must distinguish between different discussion, it is cle.ar that advanced neural network

types of objects such as a fighter aircraft and a architectures hold great promise for developing

flare. One approach to distinguishing between next generation guidance and control systems.
these objects is by their dynamical behavior. Additio" . research and development aimed at
Flares exhibit very simple dynamical behavior better characterizing the properties of these

(they fall) while fighter aircraft have significantly networks and exploring their applications is

more complex dynamical behavior (they turn, required to realize this promise.

accelerate, etc.). Such dynamical behavior models
could be developed using a recurrent References
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UTTL: Optical controller for adaptive phased array application to problems of global optimization for dynamic

antennas using neural network-architecture asasi2ment is discussed. The convergence properties of the

AUTH: A/OECUSATIS, C.; B/DAS. P. PAA: 8/(Rensselaer neural network hardware are compared With Computer

Polytechnic Institute, Troy, NY) IN, Optoelectronic simulation results. The neural network's ability to

signal processing for phased-array antennas I: provide optimal or near optimal solutions within only a

Proceedings of the Meeting, Los Angeles. CA. JAn. 16. 17. few neuron time constants, a speed enhancement of several
1990 (A91-24926 09-32). 8ellIngham, WA. Societ of orders of magnitude over conventional search methods, is

PhotowOptical InstrumentAtion Engineers. 1990. p. 161-172. demonstrated. The effect of noise on the circuit dynamics

Research pupported by USAF. and the convergence behavior of the neural network

ABS. The Control of adaptive phased array antennas using the hardware is also examined. 90/00/00 91A19642

least mean squares (LMS) algorithm Is shown to be
analogous to the implementation of a two-layer perceptron
neural network. The adaptive weights may be calculated UTTL: Implemertation of expert system/At technology for

using the back propagation algorithm, which is a reducing gro,.' test in present and future launch systems

generalized version of LMS. By using a full perceptron AUTH A/ENGLE, JAMES: B/OWEN. CHARLES: C/COLMENAREZ. LUIS

model, additional adaptive weights are introduced at the PAA: C/(Rockwell International Corp., Space Systems Div.,
receiver. this is expected to Improve performance over Downey. CA) AIAA. Aerospace Sciences Meeting. 29th,

existing systems. An optical processor for the control of Reno, NV. Jan. 7-10. 1991. It p.
adaptive antennas is proposed, based on a two-evel ABS The application of expert system technology for prelaunch

perceptron. It is shown that currently available and In-flight health monitoring is considered, and a

technology Is capable of realizing this receiver, the prelaunch expert system for the Orbiter maneuvering system

optical architecture may also be applied to the demands of Is outlined. Design requirements and technology concepts

future wideband Interference suppression systems for artificial-intelligence/expert-system-based approaches

90/00/00 91A24942 that reduce ground operation costs for a reaction control
system on future vehicles are presented. A number of the
current Al enabling technologies for reducing ground

UTTL: Simulation of heterogeneous neural networks on processing, Including expert built-in-test, artificial

serial and parallel machines neural networks, and intelligent machine vision systems

AUTH: A/LANGE. TRENT E. PAA. A/(California, University. Los are discussed. Attention Is concentrated on system
Angeles) Parallel Computing (ISSN 0167-8191). vol..14, integration of Al techniques. angineering-support
Aug. 1990. p. 287-303. Research supported by the W. M. automation and Intelligent operations paperless systems.

Keck Foundation and ITA Foundation. RPT#: AIAA PAPER 91-0655 91/01/00 91AI9398

ABS The development tool. DESCARTES is described. This tool
provides researchers with the capability to simulate
heterogeneous connectionist networks In which the nodes UTTL" Use of HopfIeld neural networks In optimal guidance
and links may have different processing characteristics AUTH: A/STECK. JAMES E.; B/BALAKRISHNAN. S. N PAA:

and effective cycling rates or which aro eade up of 8/(Missouri-Rolla, University. Rolla) AIAA, Aerospace
modular, interactingIsub-networks. DESCARTES also makes it Sciences Mating, 29th. Reno. NV. dan. 7-10, 1991. 6 p.
possible for researchers to build hybrid networks Wnich ABS: A Hopfeld neural network~architecture for homing missile
combine elements from distributed. localist, gnnd Symbolic guidance Is considered in this study A linear quadratic
marker-passing networks. Currently. DESCARTES is optimal control prob'em is converted to a Hopfield neural
implemented on serial machines. where it is "'le to network structure. Several target-intercept scenarios are
simulate networks of medium size by utilizing the provided to demonstrate the use of the neural net
spreading-activation process to prune unchanging nodes formulation. Further research directions are recommended.
from the update and spreading cycles. Simulation on SIMO RPTX; AIAA PAPER 91-0587 9t/01/00 91Ai9372
(Single Instruction Multiple Data) machines is discussed.
focusing on the SIMO simulation cycle, the cycle's update
stage, the SIMO cycle's spread out-to-links stage, and the UTTL Optical neurochip based on a three-layered
efficient backpropagation on SIMO machines. Simulation on feed-forward model
hypothetical MIND (Multiple Instruction Multiple Data) AUTH. A/OHTA. d.: S/KOJIMA. K.: C/NITTA. Y.; 0/TAI. S
machines is also discussed. 90/08/00 91A22124 E/KYUMA. K. PAA. E/(Mitsubishi Electric Corp.. Central

Research Laboratory. Amagasaki. Japan) Optics Letters
(ISSN 0146-9592). vol. i5. Dec. 1. 1990. p. 1362-1364.

UTTL Neural networks and the control of smart systems ABS A GaAs/AIGaAs optical neurochip based on a three-layered
AUTH A/THURSBY. M. H.: B/GROSSMAN. B.; C/YOO. K. PAA: feed-forward model is reported. The optical neurochip

C/(Florida Institute of Technology. Melbourne) IN: consists of a light-emitting diode array with 66 elements.
U S -,Japan Workshop on Smart/intelligent Materials and a fixed interconnection matrix, and a photodiode array
Systems. Honolulu, HI. Mar. 19-23. 1990. Proceedings with 110 elements. The interconnection matrix is
(A91-21207 07-23). Lancaster. PA. Ttchnomic Publishing determined by the otckpropagation learning rule with three
Co.. Inc.. 1990. p. 242-251 Researci supported by the quantized levels. There are 35. 29. and 26 neurons.
U.S. Army and Florida High Technolog' and Industry respectively. In the input. hidden. and output layers. The
Council excitatory and inhibitory synapses are integrated on one

ABS Artificial neural networks (ANNs) and their ability to chip. By using the chip and external electronics, the
model and control dynamical systems for smart structures, recognition of 10 characters with 5 x 7 bits has been
including sensors, actuators, and plants, are considered, achieved. 90/12/01 91A18667
Both linear and nonlinear systems have been successfully
modeled. Presently. two diverse regimes. smart mechanical
Systems and smart electromagnetic systems, are being UTI.: Feedback network with space invariant coupling
developed. In order to better understand neural
controllers as used in the smart electromagnetic AUTH A/HAEUSLER. GERD: S/LANGE. EBERHARD PAA'

structures, the study of ANNs is directed toward 8/(Erlangen-Nuernberg. Universitaet. Erlangen. Federal

understanding the ability of the network to approximate Republic of Germany) Applied Optics (ISSN 0003-6935).

system responses. Networks are being trained to mimic the vol. 29. Nov. IC. 1990. P. 4798-4805

desired output of the system. The damped stnusoid was ABS Processing images by a neural network means performing a

chosen as the model and was approximated using a repeated sequence of operations on the images. Ihe

Jordan-like Iterative network. The results to date sequence consists of a general linear transformation and a
idante ttatt n ohe ANN$resneasilymimicthse ytems -nonlinear mapping of pixel intensities The general (shift
indicate that the ANNa can easily mimic these systems - variant) linear transformation is time consuming for large
applies can be related the mechanisms fo classical images If done with a serial computer. A shift Invariant
analystse 90/ th/00 9 mA2124 linear transformation can be implemented much easier by

fast Fourier transform or optically, but tie shift

Invariant transform has fewer degrees of freedom because

UTTL Neurocontrol of auto-lock-on target-tracking sight the coupling matrix is Toeplitz. A neural convolution

control system network with shift invariant co-jpling that nevertheless

AUTH A/CHEOK. KA C : B/SMITH. JAMES C . C/FERNANO0. JOSEPH P exhibits autoassociative restoration of distorted images

PAA C/(Oakland Un.crs'ty. Rochester. M!) Control and 15 presx'led 2aCtidc the simple imple,.ntation. the

CO14uters (ISSN 0315-8934). vol 17. no. 2. 1989. p. network has one more advantage associative recall does

32-36 not depend on object position. 90/11/10 91A17348
ABS: Neural nets were used to implement the control of an

auto-lock-on target-tracking sight/vision control system
The objective of the resultant target-tracking UTTL* Neural computation of arithmetic functions
neurocontrol system is to capture and emulate human AUTH: A/SIU. KAI-YEUNG: 8/BRUCK. JEHOSHUA PAA A/(Stanford
cognitive action in the eye-hand coordination for tracking University. CA); B/|AM Almaden Research Center. San
a target using a sight system The paper describes how a dose. CA) CORP: Stanford Univ.. CA.; IBM Research Lab .
tracking neurocontroller was designed and implemented San Jose. CA. IEEE, Proceedings (ISSN 0018-9219). vol.
using a microcomputer-based real-time animation simulator 78. Oct. 1990. p. 1669-1675. Research supported by the
Successful tracking performance of the neurocontrol Sight Joint Services Electronics Program and USAF.
system was achieved in the presence of pseudo-random ABS. An area of application of neural networks is considered. A
target maneuvers. 89/00/00 91AI9981 neuron is modeled as a linear threshold gate, and the

network architecture considered is the layered feedforward

network. It isSshown how common arithmetic functions such
UTTL: Electronic neural networks for global optimization as multiplication and sorting can be efficiently computed

AUTH A/THAKOOR, A P.: 8/MOOPENN. A. W.: C/68ERHARDT. S. in a shallow neural network. Some known results are
PAA C/(JPL, Pasadena, CA) CORP Jet Propulsion Lab., improved by showing that the product of two n-bit numbers
California Inst. of Tech., Pasadena. IN: Intelligent and sorting of n n-bit numbers can be computed Dy a
control and adaptive systems; Proceedings of the Meting. polynomial-size neural network using only four and five
Philadelphia, PA. Nov. 7. 8, 1989 (A91-19635 06-63). unit delays, respectively. Moreover, the weights Of each
8ellingnam, WA, Society of Photo-Optical Instrumentation threshold element In the neural networks require O(Iog
Engineers, 1990. p. 170-177. Research sponsored by DARPA n)-blt (instead of n-bit) accuracy. These result can be
and So. extended to more complicated functions such as Multiple

ASS An electronic neural network with feedback architecture, products, division, rational functions, and approximation

implemented in analog custom VLSI is described. Its of analytic functions. 90/10/00 91Af4887
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UTTL: Holographic implementation of a fully connected backpropagation technique) are described. Thi concept
neural network underlying these Iterative adaptation algorithms is the

AUTH: A/HSU. KEN-YUH; B/LI, HSIN-YU; C/PSALTIS, DEMETRI PAA minimal disturbance principle. which suggests that during
A/(Natlonal Chiso Tung University. Hsinchu. Republic of training it Is advisable to injectnew information into a
China); C/(California Institute of Technology. Pasadena) network In a manner that disturbs stored information to
IEEE, Proceedings (ISSN 0018-9219). vol. 78. Oct. 1990. p. the smallest extent possihle. The twotprincipal kinds of

1637-1645. -Research supported by DARPA and USAF. online rules that have developed for altering the weights
ABS: A holographic implementation of a fully connected neural of a network are examined for both single-threshold

netWork-,Is presented; This model has a simple structure elements anC multielement networks. They are
and is relatively easy to implement, and itsoperating arror-correction rules; which slier the weights of a
principles and characteristics can be extended to other network to correct error in the output response to the
types of networks, ance anyarchitecture can be -present input pattern, and gradient rules, which alter the t

considered as a'fully connected network-with some of its wlghts-of a network during~each pattern presentation by
connect ions missing. The basic principles of the fully gradient descent with the objective of reducing
connected network are reviewed. The optical implementation mean-square error_(averaged over all training patterns)
of the network IS presented. Experimental results which 90/09/00 91A14870
demonstrate its ability to recognize stored Images are
given, and its performance and analysis are discussed
based on a proposed model for the system. Special UTTL. Expert systems and advanced-automation for space
attention is focused on the dynamicsof the feedback loop missionsroperations
afld the'tradeoff between distortion tolerance and AUTH: A/DURRANI. SAJAD H.; B/PERKINS, DOROTHY C, : C/CARLTON.
image-recognition capability of the associative memory. P. DOUGLAS PAA: A/(NASA. Office of Space Operations.
90/10/00 91A14885 Washington. DC): B/(NASA, Goddard Space Flight Center

Greenbelt, MO): C/(Computer Sciences Corp.. Laurel. M6)
CORP: National Aeronautics and Space Administration.

UTTL: Maximum a posteriori decision and evaluation of Washington. DC.; National Aeronautics and.Spce
class probabilities by Boltzmann perceptron classifiers Administration. Goddard Space Flight Center, Greenbelt.

AUTH: A/YAIR, EYAL: 6/GERSHO, ALLEN PAA: A/(IBM Scientific MD;: Computer Sciences Corp.. Laurel. MD. IAF,
Center. Haifa, Israel): B/(Callfornia. University. Santa International Astronautical Congress. 41st, Dresden.
Barbara) IEEE. Proceedings (ISSN 0018-9219). vol. 78. Federal Republic of Germany. Oct. 6-12. 1990. 8 p.
Oct. 1990. p. 1620-1628. Research supported by the ABS. Increased complexity of space-missions during the 1980s
Weizmann Foundation for Scientific Research, University of led to the introduction of expert systems and advanced
California. Bell Communications Research. Inc.. at al. automation techniques in mission operations. This paper,

ABS Neural-network architectures which may offer a valuable describes several technologies in operational use or under
alternative to the Bayesian classifier are described. In development at the National Aeronautics and Space
networks, the a posteriori probabilities are computed with Administration's Goddard Space Flight Center. Several
no a priori assumptions about the probability distribution expert systems ere described that diagnose faults, analyze
functions that generate the data; the neural classifier spacecraft operations and onboard subsystem performance
uses a general type of input-output mapping which 1I (inconjunction with neural networks), and perform data
designed to optimally comply with a given training sat. It quality and data accounting functions. The design of
is shown that the a posteriori class probabilities can be customized user interfaces is discussed, with, examples of
efficiently computed by a deterministic feedforward their applicatfon to space missions. Displays. which allow
network which is called the*Boltzmann perceptron mission operators to see the spacecraft position,
classifier (BPC). Maximum a posteriori classifiers are orientation, and configuration under a variety of
also constructed as a special case of the BPC. Structural operating conditions, are described. Automated systems for
relationships between the BPC and a Conven.ional scheduling ar& discussed and a testbad that allows tests
multilayer perceptron are given, and it is demonstrated and demonstrations of the associated architectures,
that rather intricate boundaries between classes can be interface protocols, and operations concepts is described.
formed even with a relatively modest number of netwo i Lessons learned are summarized.
units. Simulation results show that the BPC is comparable RPT7: IAF PAPER 90-405 90/10/00 91A14013
in performance to a Bayesian classifier. 90/10/00
91A14883

UTTL: Identification of aerospace acoustic sources using
Sparse distributed associative memory

UTTL: Nearest neighbor pattern classification perceptrcis AUTH" A/SCOTT. E. A : B/FULLER. C. R.: C/0'6RIEN, W. F. PAA:

AUTH" A/MURPHY, OWEN J PAA: A/(Vermont, University. C/(Virginia Polytechnic Institute and State University.
Burlington) IEEE. Proceedings (:SSN 0018-9219). vol. 78, Blacksburg) CORP, Virginia Polytechnic Inst. and State
Oct. 1990. p. 1595-1590. Univ.. Blacksburg. AIAA, Aeroacoustics Conference. 13th.

ASS- A three-layer perceptron that uses the nearest-neighbor Tallahassee. FL. Oct 22-24. 1990. 12 p.
pattern-classification rule is presented. This neural ASS: A pattern recognition system has been developed to
network Is of interest because it is designed specifically classify five different aerospace acoustic sources. In
for the set of training patterns. and incorpcrating of the this paper the performance of two new classifiers, an
training of the network into the design eliminates the associative memory classifier and a neural network j
need for the use of training algorithms. The technique classifier. I compared to the performance of a previously
therefore provides an alternative to the limitations and designed system. Sources are classified using features 4
unpredictability (such as having too many. too few, or calculated from the time and frequency domain. Each
inappropriate training patterns) of the known training classifier undergoes a training period where it learns to
techniques. Since the nearest-neighbor classification rule classify sources correctly based on a set of known
is used, the network is capable of forming arbitrarily sources, After training the classifier is tested with
complex decision regions. The design and training of the unknown sources. Results Show tnat over 96 percent of
network can be completed In polynomial time. whereas It sources were identified correctly with the new associative
has been shown that training a neural network is an memory classifier. The neural network classifier
NP-complete problem. 90/10/00 91A14880 identified over 81 percent of the sources correctly.

RPTO AIAA PAPER 90-3992 90/10/00 9iAi2SO5

UTTL: Backpropagatlon through time - What it does ard how
to do it UTTL Modified backpropagation algorithm for fast learning

AUTH" A/WERBOS. PAUL J. PAA A/(NSF, Washington. DC) IEEE. in neural networks
Proceedings (ISSN 0018-9219), vol. 78, Oct. 1990. p. AUTH A/REYNERI. L. M., S/FILIPPI. E. PAA: B/(Torino,
1550-1560. Politecnico. Turin. Italy) Electronics Letters (ISSN

ABS Backpropagation. which is a simple method now being widely 0013-5194), vol. 26, Sept. 13, 1990. p. 1564-1566,
used in areas like pattern recognition and fault ABS A fast learning rule for artificial neural systems which
diagnosis, is reviewed The basic equations for is based on modifications to a backpropagation algorithm
backpropagation through time. and applications to areas is described. The rule minimizes the error function along
like pattern recoonition involving dynamie sy/tz-z. thp di ectin- of the gradient and bacoprdpAwates the error
systems identification, and cohtrol. are discussed. pattern according to a constant urror energy approach.A
Further extensions of this method, to deal with systems 90/09/13 91At2410
other than neural networks. systems involving simultaneous
equations, or true recurrent networks, and other practical
issues arising with the method are described. Pseudocode UTTL- Applicatio.1 of adjoint operators to neural learning
is provided to clarify the algorithms. The chain rule for AUTH: A/BARHEN, J., B/TOOMARIAN. N.; C/GULATI, S. P•A:
ordered derivatives (the theorem which underlies A/(,IPL; California Institute of Technology, Pasadena);
backpropagation) is briefly discussed. The focus 1s on C/(JPL. Pasadena. CA) CORP: Jet Propulsion Lab..
designing a simplar version of backpropagation which can California Inst of Tech.. Pasadena : California Inst. of
de translated into computer code and applied directly by Tech., Pasadena. Applied Mathematics Letters (ISSN
neural-network users, 90/10/00 91A14874 0893-9659). vol. 3. no. 3. 1990. p. 11-18. Research

supported by DOD and DOE.
4BS: A technique for the efficient analytic.al computation of

UTTL: 30 years of adaptive neural networks - Perceptron. such parameters of the neural architecture as synaptic
Madallne. and backpropagation weights and neural gain is presented as a single solution

AUTH' A/WIOROW, BERNARD; 6/LEHR. MICHAEL A. PAA. B/(Stanford of a set of adjoint equations. The learning model
Un'versity, CA) CORP: Stanford Univ., CA. IEEE. discussed concentrates on the adiabatic approximation
Proceedings (ISEN 0018-9219). vol. 78. Sept. 1990. P. only. A problem of interest is represented by a system of I
1415-1442. Research sponsored by SIO and Lockhesd N coupled equations, and then adjotnt nperators are
Missiles and Space Cc. Inc. introduced. A neural network is formalized as an adaptive

ASS Fundamental developments in feedforwsrd itifijial neural dynamical system whose temporal evolution I governed o, a
networks from the past thirty years are reviewed. The set of coupled nonlinear differential equations. An
history, origination, operating characteristics, and basic approach based on the minimization of a Constrained
theory of several supervise* neural-network training neuromorphic energylIke functiol is applied, end the
algor thee (including the perceptron rule, the complete learning dynamics are obtained as a result of the
least-mean-square algorithm, three Madaline rules, and the calculations. 90/00/00 90A50026

lJ l lll I 11 i iii il i i l I lllI IVIl



B-4

UTTL: Integration of paralleloimageproc ssing with Mechanics Publicationi/ipringer-Verlag, 1989, p. 203-210.
Symbolic andneural computations-for imagory exploitation ASS: In the last few years, devicOs inspired by the

AUTH: A/ROMAN. EVELYN PAA: A/(Opticel Systems and Equipment, architecture of'fthe brain havo become much-more powerful.
Lexington. MA) IN:.Airborne reconnaissance XIII: A lot -of effort has been concentrated on networks using
Proceedings$of'theo4eeting; San Diego, CA, Aug. 7-9. 1989 very.rough models of"neuron cell ,(formal- neuions). The
(A90-48601 22-O6).-Bellingham; WA. Soclietyof ability of such aysems 16 'learn fromxGamples is a
Photo-Optical InstrumentationEngineers. 1989, p. 72-83. particularly attractiVe ,featu esearci is Still in its

ASS: Work combiningparallel. symbolc, andnouraI intfacy, but It- is expected I . these, modela will be
methodologies it alffeFoent stages of procesing for useful both'as models of-real brain function.-and as
imsagery exploitation are dlscussed;-together with a computational-devtces for many applications inaluding
prototype system combining real-time parallel image optimization; pattern recognition, speech analysis, and
processing on an 8;stage parallel Image-processing engine signal processihg. Architectures arid the associated
(PIPE) computer with expert system software. A summary of learning algorithms that have been proposed are reviewed.
basicneural concepts is given; and the commonality The notion of generalization from the training examples
between neural nets and related mathematics; artificial are explained. and various examples of problems and
intelligence, and traditional image processing concepts is applcations of practical Interest that can be handled by

shown. This provides numerous choices for the 
neural networks are presented. 89/00/00 90A44412

impleentation of constraint satisfaction.
transformationl invariance, Inference and
representational mechanisms, end software lifecycle UTTL: Neural networks for automatic target recognition
engineering methodologies in the different computational AUTH: A/ROTH, MICHAEL-W. PAA: A/(John* Hopkins University.

layers. 89/00/00 9OA49609 LauFl, MD) Johns Hopkins APL Technical. Diogest (ISSN
0270-5214). vol. ii. Jan-June 1990. p. 1i7-120. Research
supported by the Johns Hopkins University.

UTTL' Neural net classifier for millimeter wave radar ABS: The use of neural networks and neurocomputers is discussed
AUTH: A/BROWN. JOE R.; 8/ARCHER; SUE: C/BOWER, MARK R, PAA: and their applications for automatic target recognition

C/(Martin Marietta Electronic Systems., Orlando. FL) IN. (ATR) are reviewed. A framework is pressnted illustrating
Real-time signal processing XII; Proceedings.of the the application of neural network technology-to the
Meeting, San Diego. CA. Aug. 10, ti, 1989 (A90-48408 solution of the ATR problem of recognizing high-value
22-32). Belirigham. WA, Society of Photo-Optical targets in noisy environments and discriminating them from
Instrumentation Engineers, 1989. p. 71-76. low-value objects and false.alarms. Neural network tools

ASS- This paper describes the development of a neural net which may be applied to ATR needs include collective
classifier for use in an automatic target recognition computation for fast optimalization. neural network
(ATR) system using millimeter wave (MMW) radar data, Two learning algorithms; neural network inspired feature
distinctive neural net classifiers wereldeveloped using selection, and a neural network for higher vision. An
mapping models (backpropagation and counterpropagation) example of a binocular stereo displacement map produced
and compared to a quadratic (Bayesian-like) classifier. A using model images and preliminary stereo calculations on
statistical feature set and a radar data set was used for the'Connection Machine at the Naval Research Laboratory is
both training and testing all three classifier systems. presented and discussed. It is pointed out that neural
This statistical feature set is often used to test MMW learning could facilitate the development of,both
ARTs prior to using actual data. Results are presented and automatic knowledge acquisition and continuous system
Indicate that the backpropagetion net performed at near refinement. two important ATR advances. 90/06/00
100 percent accuracy for the statistical feature set and 90A44324
slightly outperformed the counterpropagation model in this
application. Both networks hold promising results using
real radar data. 89/00/00 90A48413 UTTL: New directions in missile guidance - Signal

processing-based on neural networks and fraCtal modeling

AUTH: A/BOONE. BRADLEY G.; B/CONSTANTIKES. KIM T.; C/FRY.
UTTL- Application of neural networks to automatic control ROBERT L.: O/GILBERT, ALLEN S.; E/KULP. ROBERT L. PAA.

AUTH A/GOLOENTHAL. WILLIAM; B/FARRELL. JAT PAA B/(Charles E/(Johns Hopkins University. Laurel, MO) Johns Hopkins
Stark Draper Laboratory, Inc., Cambridge. MA) IN. AIAA APL Technical Digest (ISSN 0270-5214), vol. I, Jan.-June
Guidance, Navigation and Control Conference, Portland. OR. 1990. p 28-38.
Aug 20-22. 1990, Technical Papers. Part 2 (A90-47576 ASS: Projects investigating the utility of signal processing
21-08). Washington. OC, American Institute of Aeronautics based on neural networks and fractal scene modeling are
and Astronautics, 1990. p. 1108-1112, discussed. New approaches to target recognition and

ASS: The design of a robust control system for vehicles with scene-matching development are examined with attention to
highly nonlinear, time-varying, or poorly-modeled dynamics the performance and characteristics of image-based scene
poses serious difficulties for all currently advocated matchers. A discussion on new models and representations
design methodologies These difficulties arise in the for missile guidance includes an investigation of neural
design of current aerospace and underwater vehicles and network learning models emphasizing the training phase and
are crucial for proposed autonomous vehicleS. In the the various alternatives to target representation. An
present paper the use of neural networks in adaptive investigation of the recognition of range-profile ship
control loops is proposed, based on the fact that signatures using a back-propagation neural net with
feedforward neural networks with at least one h'dden layer comparisons to baseline statistical classifiers is
have been Uhown to be dense (under suitable assumptions) described. Prospects for future work are discussed
on the set of continuous functions. Thus, by the use of a including innovative approaches to target acquisition.
suitable adaptive learning algorithm, the interconnection 90/06/00 90A443i8
weights of the network could be selected so that the
network approximates the desired nonlinear control law to
any specified accuracy. An extension of the UTTL. Neural networks for control and system
backpropagation algorithm iS presented which adaptively identification
determines the interconnection parameters necessary for AUTH. A/WERBOS. PAUL J. PAA: A/(NSF. Washington. DC) IN.
the neural network to function as a closed-loop controller IEEE Conference on Decision and Control. 28th. Tampa. FL,
and to force the closed-loop system to match a desired Dec. 13-15, 1989, Proceedings. Volume I (A90-40776 18-63).
reference response. An example of the application of this New York, Institute of Electrical and Electronics
algorithm to the control of the cart pole system is Engineers. 1989. p. 260-265.
included. ASS A review is presented of the field of neuroengineering as

RPT# AIAA PAPER 90-3438 90/00/00 90A47691 a whole, highlighting the importance of neurocontrol and
neuroidentification. Then a description i given of the
five major architectures in use today in neurocontrol (in

UTTL Advanced architecture for domestic and global robotics, in particular) and a few areas for future
aviation systems research, Also included are comments on

AUTH A/KORGEL. CLAYTON C. PAA: A/(Martin Marietta Information neuroidentification. 89/00/00 90A40788

Systems Group. Bethesda, M ) 1:4 Radio TC;,,,,uac
Commission for Aeronautics, Annual Assembly and Technical
Symposium, Washington. DOC. Dec. 4-6. 1989, Proceedings UTTL: Obscured object recognition for an ATR application
(A90-46390 21-04). Washington. OC. Radio Technical AUTH" A/EICHMANN. G.: B/ANKOSKI. M.; C/BASU, S.;
Commission for Aeronautics, 1989. p. 197-209. D/STOANCIC. M.: E/ROYTMAN. L. PAA: E/City College,

ASS Candidate elements for the future aviation systems are New York) IN: Advances in image compression and
outlined. and top-down as well as bottom-up system automatic target recognition; Proceedings of the Meeting.
architecture approaches are examinedd tnd ot is oted that rlando. FL. Mar. 30. 31, t989 (A90-39951 17-63).

automation and human factors will dominate the system Bellinghsm, A, Society Of Photo-Optical Instrumentation
Incluoing airspace and flight management subsystems. Engineers. 1989. p. 66-73.
Communications systems, surveillance, and navigation and ASS: A common ar mainly unsolved problem in image processing
landing are discussed. Since the systems under is occlusion. Occlusion occurs when one or more objects
consideration include posslble synergisms, redundancies. ObStruct the sensor's view. In this paper, three methods"
and buck-up" capabitlites, possible options end trade-offs a neural network, a superresolving non-parametric
are analyzed. Key technologies for future aviation systems predictor, and an Extended-Post Context-free Grammar
such as the GPS/GLONASS integrated receiving set, syntactic pattern recognizer are used to generate the
real-time expert system/neural networks, antenna avionics, missing data. To illustrate these methods, their
interactive speech and display processing, satellite application to the reconstruction of obscured Roman
communication equipment, and microwave monolithic characters are presented. 89/00/00 90A39958

integrated circuits are presented. 89/00/00 90A46398

UTTL: The elements of adaptive neuralexpert systems
AUTH: A/HEALY. MICHAEL J. PAA: A/(Boeing Computer Services.

UTTL. Neural network systems Seattle, WA) IN: Applications of artificial intelligence
AUTII. A,/;UYON. ISABELLE PAA" A/(AT&T Bell Laboratories. VII;- Proceedings of, the Meeting. Orlardo FL, Mar. 28-30.

Holmdel. NJ) IN; International Symposium on Numerical 1989. Part 2 (A90-38876 17;63). Bellingham, WA. Society Of
Methods In Eng'neering. 5th. Lausanne, Switzerland. Sept. Photo-Optical instrumentation Engineers. 1989. p. 830-837.
i1-15. 1989. Proceedings. Volume I (A90-44401 20-31). ASS: The generalization properties of a class of neural
Southampton. England and Now York/Berlin. Computatlonal architectures can be modeled mathematically. The model is

- "
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a parallel predicate calculus based on pattern recognition Electrical and Electronics Engineers. Inc., 1989. p.
and self-orgization of long-term mimry-in-& neural t85-1192.
network. It may provide the basis for adaptive expert ASS: The Intelligent Mission-Adaptive Controller (IMAC)
systems capable of inductive learning and rapid processing research program is investigating distributed-AZ (DAX) and
in a highly complex and changing environment. 89/00/00 adaptive neural system (ANS) technologies for application
90A38903 in active elictronc-counterimeasure-(ECM) resource

manegement. The threat environment for tactical and
strategic aircraft requris the ECM system to handle

UTTL: Neural networks for self-learning control systems numerous fast-reacting, sometimes agile Systems Which vary
AUTH: A/NGUYEN, DERRICKH;. S/WIDROW, BERNARD, PAA: In function from adquisition to weapons guidance: IMAC is

B/(Stanford Unilversity.-CA) CORP: Stanford Univ, CA. an attempt to capture and demonstrate the.important
IEEEControltSystemsMagazine (ISSN 0272 708), vol. 10. concepts of an ECM resource manager. It deals with the
April 1990, pJ.-8-23;.Resqrch uppoFted-by SDIO. USAF. tradoffs between ECM effectiveness, system Costs. and
Thomson-CSF. and Lockheed Missiltsand-Spaco'Co.. Inc. near- and far-term survivability. Preliminary results show

ASS: it is shown how a 6olurat hetwoik ocin learn of its own trhit o'epredlhot-forlmat for--acquiring

accord to control a nonlinear dynamic system. An emulator, threat/threat-response information Is superior to
a ilt~layeral neural nitwork , learn to identify the decision-tree and fuzzy-cognitive-map formats; Capturing
system's dynamic characteristics. The controller, another complex correlations is found to be the key problem for
multilayeredoneural network, next learns to control the which a good knowledge-representation scheme is essential.
emulator. The self-trained controller is~then-usid to 89/00/00 90A30765
control the actual dynamic system. The learning pr6cess
continues asthe emulator.andcontoller'improve and track
the physical process. An *kample is given to illustrate UTTL: An-application of neural- nt technology to
these ideas. The 'truck-backeor-upper.' a neural network surveillance ,information correlation and battle outcome
controller that stears-a trailer truck while the truck is prediction
backing up to a loading dock. is demonstrated. The AUTH: A/MALONEY. P. SUSIE PAA: A/(Lockheed Missiles and Space
controller is able to guide the truck to the dock from Co.. Inc.. Austin, TX) IN:_NAECON 89; Proceedings of the
almost any initial position. The technique explored should IEEE National Aerospace and Electronics Conference.
be applicable to a wide variety of nonlinear control Dayton; OH May 22-26, 1989. Volume 2 (A90-30676 12-01).
problems. 90/04/00 90A3757i New York. Institute of Electrical and Electronics

Engineers. Inc., 1989; p. 948-955. Research supported by
the Lockheed Missiles and Space Co. Inc.

UTTL: Survey of neural network technology for automatic ASS: The PNN (probabillstic neural network) is a three-layer
target recognition feed-forward network that uses sums of Gaussian

AUTH: A/ROTH, MICHAEL W. PAA: A/(dohns Hopkins University, dlstibutions to estimate the pdf for a training data set.
Laurel, MD) IEEE Transactions on Neural Networks (ISSN This trained network can then be used to classify new data
1045-9227). vol. t. March 1990 p. 28-43. sets and to provide a probability associated with each

ASS: A review is presented of ATR (automatic-target classification. The PNN has been applied successfully to
recognition), and some of the highlights of neural network two separate ELINT emitter correlation problems
technology developments that have the potential for making (hull-to-omitter and land-based emitter correlation). Each
a significant impact on ATR are discussed. In particular, of these applications achieved a high degree of accuracy
neural network technology developments In the areas of in identifying the correct emitter among many possible
collective computation, learning algorithms, expert emitters. at an extremely fast rate (about 200,000 times
systems, and neurocomputer hardware could provide crucial faster than a standard back-propagation neural network).
tools for developing Improved algorithms and computational PNN also shows great potential for solving other
hardware for ATR. The discussion covers-previous ATR surveillance-analysis problems: an application to a
system efforts. ATR issues and needs. early vision and battle-outcome prediction problem is described. 89/00/00
collective computation, learning and adaptation for ATR, 90A30749
feature extraction, higher vision and expert systems, and
neurocomputer hardware. 90/03/00 90A34467

UTTL: The Adaptive Network Cognitive Processor
AUTH: A/EDSON. BRUCE; 8/TURNER. CHERYL; C/MYERS. MICHAEL:

UTTL: Identification and control of dynamical systems O/SIMPSON. PAT PAA: A/(USAF. Avionics Laboratory.
using neural networks Wright-Patterson AFB, OH); C/(TRW MEAD Al Center. San

AUTH: A/NARENDRA, KUMPATI S.. S/PARTHASARATHY. KANNAN PAA: Diego. CA); 0/(VERAC. Inc., San Diego. CA) IN AAAIC
8/(Yale University. New Haven. CT) IEEE Transactions on '88 - Aerospace Applications of Artificial Intelligence:
Neural Networks (ISSN 1045-9227), vol 1, March 1990. p. Proceedings of the Fourth Annual Conference, Dayton, OH,
4-27. Research supported by Sandia National Laboratories. Oct. 25-27, 1988. Volume I (A90-30226 12-59). Xenia, OH.

ABS" It is demonstrated that neural networks can be used Dayton SIGART. 1988. p. 133-143.
effectively for the identification and control of ASS: The Adaptive Network Cognitive Processor (ANCP) project is
nonlinear dynamical systems. The emphasis is on models for an experiment In the use of adaptive network systems to
both identification and control. Static and dynamic capture the cognitive processes used for deploying
back-propagation methods for the adjustment of parameters electronic countermeasures by a fighter aircraft in an
are discussed. In the models that are introduced, electronic warfare threat environment. A functional
multilayer and recurrent networks are interconnected in architecture Was developed and initially implemented using
nove, configurations, and hence there is a real need to the Mark III neurocomputer. The main capabilities of the
study them in a unified fashion. Simulation results reveal ANCP demonstrated were: Internal modeling of the threat
that the identification and adaptive control schemes environment (Field Interaction Net). adaptive flight route
suggested are practically feasible. Basic concepts and planning (Gradient Descent). reflexive threat response
definitions are introduced throughout, and theoretical (Feed Forward Not) augmented with a reflective or expert
questions that have to be addressed are also described, threat response (Fuzzy Cognitive Map) in unfamiliar
90/03/00 90A34466 situations (Confidence Filter). on-board recording of

unfamiliar situation/expert response for later retraining
(Back Error Propagation) as a reflexive response, and

UTTL: Comparison of model based vision, statistical based, initial training with a Learning Apprentice. 88/00/00
and neural net based ATRS 90A30231

AUTH: A/THEIS. TIMOTHY .; B/AKERMAN. ALEXANDER. III PAA"
B/(I-MATH Associates. Inc.. Orlando. FL) IN* NAECON 89;
Proceedings of the IEEE National Aerospace and Electronics UTTL. Optoelectronic implementations of neural networks
Conference. Dayton. OH. May 22-26, 1989. Volume 4 AUTH. A/PSALTtS. DEMETRI; S/YAMAMURA. ALAN A.; C/LAIN. STEVEN:
(A90-30676 12-01). New York. Institute of Electrical and O/GU. XIANG-GUANG: E/HSU, KEN PAA: D/CCalifornia
Electronics Engineers. Inc.. 1989. p. 1733-1738. Institute of Technology, Pasadena): E/(National Chiao

ASS: An effort Is made to establish a common ground upon which Tung University, Hsinchu. Republic of China) IEEE
a comparison of model-based vision (MBV). Communications Magazine (ISSN 0163-6804), vol. 27, Nov.
statistlical-based, and neural-net-based (NN) automatic 1989, p. 37-40. 71. Research supported by DARPA. USAF., and
target recognizer (ATR) approaches can be performed. A U.S. Army.
definfttnn for cach type of ATR as compared to a e. A The ability of optical systems to provide the massive
ATR Is provided. Upon these definitions, the differences, Interconnections between processors required in most
purported risks, and benefits are described. It Is found neural network models, which constitutes their chief
that the comparison between statistical. MSV. and NN advantage for such applications, is discussed, focusing on
approaches to ATR can only be made at a very high system holography. Because of the essential nonlinearity of the
level. The differences primarily deal with how the desired holographic connections. nonlinear processing elements are
target Is represented within the ATR. These representation needed to perform complex computations. The use of GaAs
differences lead to other Implementation differences, hybrid optoelectronic processing elements is examined.
which affect the performance flexibility and technical GaAs is an excellent material for this purpose. since it
achievability of each approach at it is faced with the can be used to fabricate both fast electronic Circuits and
realities of new target types and engagement conditions, optical sources and detectors. It is shown how a complete
It is noted that as attempts are made to become more hybrid neural computer can be implemented using available
specific, there are always attempts to indicate that a technology developed for conventional computing, An
particular technique de not belong exclusively to one experimentally demonstrated network in which optics plays
class of recognizers versus another. Indeed. a hybrid an even larger role is described.
approach of using models to train a statiStical-based RPT#: AD-A217i33 89/11/00 90A22506
classifier is valid, but not clearly separable into one
class of recognizers. 89/00/00 90A30788

UTTL: Information theory, complexity, and neural networks
AUTH: A/ABU-MOSTAFA, YASER S. PAA: A/(California Institute of

UTTL:-Intelligent Mission Adaptive Controller (IMAC) Technology, Pasadena) IEEE Communications Magazine (ISSN
AUTH: A/GEIGER. KEVIN: 8/EDSON. BRUCE: C/MCCORD. dIM PAA: 0163-6804), vol. 27, Nov. 1989, p. 25-28, 81.

C/(USAF, Avionics Laboratory. Wrfght-Patterson AFB, OH) ASS: Some of the main results in-the mathematical evaluation of
IN: NAECON 89: Proceedings of the IEEE National Aerospace neural networks as Information processing systems are
and Electronics Conference. Oayton; OR. May 22-26. !919. discussed. The basic operation of feedbeck and
Volume 3 (A90-30676 12;01). Nw York, Institute of feed-forward neural networks IS described. Their memory
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capacity and computing power 'are 'consideted. The concept Angeles. CA),_ Journalof Parallel and Ostributed
of learning by example as it applies to neural networks is Computing,(ISSN 0743-7315), vol

, 
6- April 1989, p.

examined- -a/li/D' 90A22504- 358387: Research supported by' SOO.
ABS: Aprogrammable ring systolic, array is presently developed

on th er6bls iof~a generic iterative model encompassing
UTTL'. Automatic target recognition on the connection artificial neural networks; single-layer feedsback
machine networks. suitilayer feedforward networki. hierarchical

AUTH: A/BUCHANAN. J. ROBERT -PAA; A/(Johns Hopkins University, competitive networks, and eve, some probabilistic models.
Laurel. MO), Johns Hopkins APL Technical Digest (ISSN The'architecture thus obtained maximizes VLSI's advantages
0270-5214). Vol. 10. July-Sept. t989; p. 208-215. in-terms'of Intensive and pipe)lned-computing. while

ASS: Automatic target recognition (ATR) Is a coeputationally circumventing the conventional limitation on
intensive problem that benefits from the'abilities of the communication: it- is therefore,recommended.as a promising
Connectlon Machine '(CM). a massively parallel computer structural basis for a universal neurocomputer
used for data-level parallel computing.-The large architecture. 89/04/00. -89A41735
computational resources of the CM can efficiently handle
an approach to ATR that uses parallel stereo-matching and
neural-network algorithms. Suchan approach shows promise UTTL: Back propagation fails to separate where perceptrons
as an ATR-system of sattsfactory performance- 89/09/00 succeed-

90A11938 AUTH: A/BRADY,-MARTIN L.; 6/RAGHAVANi RAGHU C/SLAWNY. JOSEPH
PAA: B/(Lockheed Corp.. Palo Alto; CA): C/(Virginia
Polytectnic Institute and State University, Blacksburg)

UTTL: Applications of neural networks to avionics systems IEEE Transactions on Circuits and Systems (ISSN
AUTH: A/SEIDMAN. ABRAHAM N. PAA: A/(Northrop Corp., Aircraft 0098-4094). vol;. 36. May 1989, p. 665-674, Research

Div.. Hawthorne. CA) AIAA Computers in Aerospace suppoted by.Lockheed Corp.
Conference, 7th. Monterey. CA. Oct. 3-5. 1989. 11 p ABS. It Is widely believed that the back propagation algorithm

ABS The application of neural networks is discussed as a in neural, networks, for tasks such as pattern
method of solution to a number of outstanding problems in classification, overcomes the limitations of the
aircraft avionics. The areas of application of artificial perceptron. The authors construct several counterexamples
neural networks to avionics dealt with are (1) target to this belief. They also construct linearly separable
selection and (2) attack planning/steering. The target examples which have a unique minimum which fails to
selection Is approached by the application of a separate two families of vectors, and a simple example
feed-forward. backpropagation network. The attack with four two-dimensional vectors in a single-layer
planning/steering is approached by a new type of parallel network showing local minima with a, large basin of
processing neural network. attraction. Thus. back propagationis guaranteed to fail

RPT# AIAA PAPER 89-3093 89/10/00 90A10627 in the first example, and likely to fail in the second
example; It Is shown that even multilayered (hidden-layer)
networks can also fail In this way to classify linearly

UTTL, A comparison of CMAC neural network and traditional separable problems. Since the authors',examples are all
adaptive control systems linearly separable, the perceptronwould correctlyAUTH, A/KRAFT, L. GORDON; B/CAMPAGNA. DAVID P. PAA B/(New classify them. The results disprove the presumption, made
Hampshire, University, Durham. NC) IN' 1989 American in recent years. that, barring local minima, back
Control Conference, 8th. Pittsburgh, PA, June 21-23. 18a9. propagation will find the best set of weights for a given
Proceedings. Volume I (A89-53951 24-63). New York. problem. 89/05/00 89A41634
Institute of Electrical and Electronics Engineers. 989,
p. 884-889.

ASS A neural-network-based controller similar to the UTTL: Multitarget tracking with cubic energy optical
cerebellar model arithmetic computer (CMAC) method of neural nets
Miller at al. (1987) is compared to a self-tuning AUTH. A/BARNARD, ETIENNE: B/CASASENT. DAVID P. PAA
regulator and a Lyapunov-based model reference controller B/(Carnegle-Mellon University. Pittsburgh, PA) Applied
The three control algorithms are tested on exactly the Optics (ISSN 0003-6935). Vol. 28. Feb. 15. 1989. p.
same control problems, Results are obtained when the 791-798. Research supported by SDlO.
System being controlled is linear and noise-free when ASS. A neural net processor and its optical realization are
noise is added to the measurements, and when a nonlinear described for a multitarget tracking application. A cubic
system is controlled. Comparisons made with respect to energy function results and a new optical neural processor
closed-loop system stability, speed of adaptation. noise Is required. Initial simulation data are presented
rejection, robustness, the number of required 89/02/15 89A32825

calculations, and system tracking performance indicate
that the neural-network approach exhibits the potential
for solving some of the problems that have plagued more UTTL. Supervised learning of probability distributions by
traditional adaptive control systems. 89/00/00 neural networks

89A53996 AUTH: A/BAUM, ERIC B.: B/WILCZEK. FRANK PAA. A/(California
Institute of Technology. Jet Propulsion Laboratory.

Pasadena); B/(Harvard University, Cambridge. MA) CORP:
UTTL Adaptive pattern recognition and neural networks Jet Propulsion Lab , California Inst. of Tech., Pasadena.:

AUTH A/PAO, YOH-HAN PAA: A/(Case Western Reserve University. Harvard Univ., Cambridge, MA. IN. Neural information
Cleveland. OH) Reading, MA, Addison-Wesley Publishing processing systems: Proceedings of the First IEEE
Co.. Inc.. 1989. 327 p. Conference. Denver. CO, Nov. 8-12. 1987 (A89-29002 11-63).

ASS The application of neural-network computers to New York. American Institute of Physics, 1988, p. 52-61
pattern-recognition tasks is discussed in an introduction Research supported by DARPA,
for advanced students. Chapters are devoted to the nature ASS Supervised learning algorithms for feedforward neural
of the pattern-recognition task. the Bayesian approach to networks are investigated analytically. The
the estimation of class membership, the fuzzy-set back-propagation algorithm described by WerbOs (1974),
approach, patterns with nonnumeric feature values, Parker (1985), and Rumeihart 6t al. (1986) Is generalized
learning discriminants and the generalized perceptron, by redefining the values of the input and output neurons
recognition and recall on the basis of partial cues, as probabilities. The synaptic weights are then varied to
associative memories, self-organizing nets, the follow gradients in the logarithm of likelihood rather
functional-link net, fuzzy logic in the linking of than in the error, This modification is shown to provide a
symbolic and subsymbolic processing, and adaptive pattern morp rigorous theoretical basis for the algorithm ad to
recognition and Its applications. Also included are permit more acurate predictions. A typical application
C-language programs for (I) a generalized delta-rule net involving a medical-diagnosis expert system is discussed.
for supervised learning and (2) unsupervised learning 88/00/00 89A29008
based on the discovery of clustered structure. 89/00/00
89A51326

UTTL; Spaceplanes astronaut's associate control server

AUTH. A/HONG ROBERT PAA: A/(Grumman Aerospace Corp., Grumman
UTTL: Microwave diversity imaging and automated target Aircrait Systems DIv.. Bethpage, NY) IN, IEEE Conference
identification based on models of neural networks on Decision and.Control, 27th. Austin. TX. Dec. 7-9, 1988.

AUTH- A/FARHAT. NABIL H. PAA: A/(Pennsylvania, University, Proceedings. Volume I (A89-28491 11-63). New York.
Philadelphia) IEEE. Proceedings (ISSN 0018-9219), vol. Institute of Electrical and Electronics Engineers. Inc
77. May 1989, p. 670-681. Research supported by DARPA. 1988, p. 149-154.
USAF. U.S. Army. and NSF. ASS: The author addresses the extension of the DARPA/US Air

ABS It is shown that collective nonlinear signal processing Force Pilot's Associate program to the astronaut's
based on models of neural networks combined with the use associate application, and particularly the control server
of suitable target signatures, offers the promise of aspect. Some reprosentative .techniques for implementing
robust superresolved target idartifiCation from partial this system are discussed. Artificial intelligence (Al)
information. Results are presented of numerical and neural networks are applied synergistically to achieve
simulations using a neuromorphic processor, where the an optimum system. The author examines such Issues as
neural net performs simultaneously the functions of data adaptive aiding, performance seeking control, qualitative
storage. processing and recognition. The results rdasoning. neural networks gradient methods for
demonstrate correct identification from as low as ID conhctionist networks, And neural machihery for
percent of a full sinogram representations derived from spacecraft control. 88/00/00 89A28506
real data collected In an anechoic chamber environment for
three test targets (scale models of B-52. AWAC, and Space
Shuttle) and taught to the network. Practical UTTL: Autonomous reconfiguration of sensor systems using
considerations And extensions to real System$ are briefly neural nets
discussed. 89/05/00 89A45106 AUTH: A/JAKULJW:CZ, OLEG G. PAA: A/(New York, State

UniVersity. Buffalo) IN:-SnsorfusIn; Proceedings of
thi.eting, OrIsndo. FL, Apr .46, 1988 (A89-26951

UTTL: A unified systolic architecture for artificial 10-63). Bellin ham. WA. Society.of PhotoOptiCae
neural networks Inetrumenttiton Engineers. 198Bp. 07fl203.

AUTH' A/KUNG, S. Y.; B/HWAN, J. N. PAA: A/(Princeton ABS: The app lication,of neural netWorKs to autoinomous agents
University, NJ), I/(Southern California, University. Los (intelligent robots operatIng in Isolated locations) Is
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discussed. and architectures for Implementing UTTL: Neural-network implementation of a scan-to-scan

self-repairing sensor and identitfictlon Tsystems aboard correlationalgorithm'
autonomous agents are proposed. The example of a AUTH: A/MCCURRY; MAX E. PAA: A/(U.S. Army. Advanced Technology
four-layer Visual system which identifies visual objects Directorate. Huntsillea AL) IN: High speed computing:
is considered -in which each processor connection is Proeedings of the Meeting, LOS Angeles, CA. Jan. 11. 12.
assigned aweight -attribute. It is shown that when one of 1988 (A89-14451 03-63). Bellingham, WA,,Society Ofthe units becomes tnoperativet neighboring detectors in Photo;Optical Instrumentation Engineers, 1988. p. 85-87.
that layer may bi used to reprogram the weights connecting ASS: This paper presents a neuralnotwork approach to the
surviving units in order to-restore functionality, problem of multitarg4it tracking. The problem is forrilated
d/00/010. 9A26975 analytically in teimilof dested optima and constraints

that make,'it suitable for solution usiig the
neural;netwok fomallsm 6ffH6pfieid:Tank. The results of

UTTL: Multisensor integration and fusion - Issues and computer simulations of a network designed to solve the
approachea problem are presented. 88/00/00 89Ai4460

AUTH: A/LUO. REN C.-; B/KAY. ,:?HAEL G. PAA: B/(North Carolina
State University, Releiigi) IN: Sensor fusion;
Proceedings of the Meeting, Orlando. FL. Apr. 4-6, 1988 UTTL: Generalization of back-propagaion to recurrent
(AS9-2695i'063). Bellingham. WA. Society of neual networks c gu
Photo-Optical Instrumentation Engineers, 1988, p. 42-49. AUTH: A/PINEDA. FERNANDO J. PAA: A/(Johns Hopkins University.

ABS: Issues concerning the effective integration of multiple Laurel,' D) Physical Review Letters (ISSN 0031-9007),
sensors into the operation of intelligent systems are Vol. 59. Nov. 9. 1987. P; 2229-2232;
presented, and a description of- some of the general ASS: An-edptve neural network withTasymmetric connections is
paradigms and methodologies that address this problem Is proposed that is related to the Hopfield (1984) network
given. Multisensor integration, and the related notion of with graded neurons. The'present back-propagation
multisensor fusion, are defined and distinguished. The algorithm uses'a recurrentgeniralization of the delta
potential advantages and problems resulting from the rule of Rumelhart at at (1986) to adaptively modify the
integration of information from multiple sensors are synaptic weights. The network Is architecturally simpler
discussed. 88/00/00 89A26957 than the master/slave network of Lapedes and Farber

(1986). and it vectoriuis naturally-because the units are
homogeneous. 87/11/09 88AI8289

UTTL: Sensor fusion; Proceedings of the Meeting. Orlando.
FL. Apr, 4-6, 1988 1

AUTH: A/WEAVER, CHARLES B. PAA: A/(Honeywell. Inc.. UTTL: Engineering cybernetics I
Electro-Optics Div., Lexington. MA) Meeting sponsored by AUTH. A/GLORIOSO. R. M, PAA: A/(Massachusetts, University,
SPIE. Beilingham, WA. Society of Photo-Optical Amherst. Miss.) Englewood Cliffs; N.d,, Prentice-Hall,
Instrumentation Engineers (SPIE Proceedings. Volume 931). Inc.. 1975. 270 p.
1988. 218 p. For individual Items see A89-26952 to AS: The present work examines the corcept$ of adaptation.
A89-26975. learning. selfw6rganizstIon.'self-repair. game playing by

ASS: Papers are presented on multisensor target detection and machines. pattern recognition. and artificial
classification, a geometric approach to multisensor intelligence, along with some applications of cybernetics
fusion, and optimal and suboptimal distributed decision which have emerged so far. The discussion covers
fusion. Also considered are Information fusion fundamental computer organization and behavior, Symbols
methodology, theoretical approaches to data association anO decisions in machines. information, logic, automata.
and fusion, and adaptive control of multisensor systems. and search techniques. Specific examples of adaptive.
Other topics include target acquisition and tracking in learning, and self-organizing systems as applied to
the laser docking sensor, a neural network architecture control and communications are provided. The principles of
for evidence combination, an algorithm for sensor fusion, redundant design, fault masking, and repair for creating
and the application of order statistic filters to reliable systems are discussed. Single and multilevel
detection systems. threshold logic synthesis are outlined along with

RPT#: SPIE-931 88/00/00 89A26951 descriptions of the Adallne (adaptive linear element).
Madallne .(multiple adaptive linear element), and the
perceptron. Particular attention is devoted to pattern

UTTL. PSRI target recognition in range imagery using recognition, where the various aspects of the problem
neural networks including systems for both optical and acoustical patternAUTH: A/TROXEL, S. E.: B/ROGERS, S. K.; C/KABRISKY. M.: recognition, feature extraction, and pattern
0/MILLS. J. P. PAA: D/(USAF. Institute of Technology, classification are defined and arslyzed. 75/00/00
Wright-Patterson AFB. OH) IN: Digital and optical shape 76A19444
representation and pattern recognition: Proceedings of the
Meeting, Orlando, FL. Apr. 4-6. 1988 (A89-23526 08-63).
Bellingham. WA, Society of Photo-Optical Instrumentation UTTL: Experiments in Image recognition with the aid of
Engineers. 1988. p. 295-301. expanding networks

ABS. A method for classifying objects invariant to position. AUTH: A/GLAOUN. V. P.: B/MAZAEVA, S. P.: C/SAVA. 1. G.
rotation, or scale is presented. Objects to be classified Problemy Bioniki, no. 6. 1971, p. 63-69. In Russian.
were multifunction laser radar data of tanks and trucks at ABS. An image recognition learning algorithm is proposed for a
various aspect angles. A segmented Doppler image was used type of neural nets introduced by Gladun (1970) and called
to mask the range image into candidate targets. Each the expanding type. According to this definition, such
target was then compared to stored templates representing neural nets are progressively built by spare back-up
the different classes. A neural network was used to elements during the process of learning. The elements of
perform the classification with an accuracy near 100 such nets are identified as active inputs. raceptors.,
percent. The neural network used in this study was a associative elements and recognizers, connected by
multilayer perceptron using a back propagation algorithm, transmitting and forbidding couplings into a single body
88/00/00 89A23556 Computer experiments are described to illustrate the work

of this learning algorithm. 71/00/00 73Ai5794

UTTL Neural-network techology and its applications UTTL: Memory-based reasoning for advanced launch system
AUTH: A/ROTH. MICHAEL W. PAA: A/(dohns Hopkins University, operations

Laurel, MO) Johns Hopkins APL Technical Digest (ISSN AUTH: A/MYLER. HARLEY R.; B/DUBOIS, DEAN A. CORP: University
0270-5214), vol. 9. July-Sept. 1988. p. 242-253. of Central Florida. Orlando. CSS: (Dept. of Computer

AS This paper discusses recent developments In neural-network Engineering.) In its KSC-NASA/UCF Cooperative Agreement
technology in the areas of models, algorithms, and Research Projects i7 p (SEE N91-70698 09-61) 9i/00/00
special-purpose computational hardware Special attention 91N7070i
is given to the applications of neural-network technology
in such areas as solutions of complex optimization
problems, communication modems, pattern recognition, and UTTL. Cascading a systolic array and a feedforward neural
enginaring problems in control systems. 88/09/00 network for navigation and obstacle avoidance using
89Ait786 potential fields

AUTH: A/PLUMER, EDWARD S. CORP: Stanford Univ., CA. CSS: (
Dept. of Electrical Engineering.)

ASS: A technique Is developed for vehicle navigation andUTTL: Artificial neural network approaches to target control in the presence of obstacles. A potential function
recognition was devised that peaks at the surface of obstacles and has

AUTH. A/BOWMAN. CHRISTOPHER PAA. A/(Sall Corp., Sall Systems its minimum at the proper vehicle destination. This
Engineering Div., San Diego, CA) IN: AIAA/IEEI Digital function is computed using a systolic array and is
Avionics Systems Conference, 8th, San Jose, CA, Oct. guaranteed not to have local minima. A feedfoward neural
17-20. 1988, Technical Papers. Part 2 (A89-1805t 05-06). network is then used to control the steering of the
Washington. OC. American Institute of Aeronautics and vehicle using local potential field information. In this
Astronautics. 1988. p. 847-857 case. the vehicle is a trailer truck backing up. Previous

ABS Artificial Neural Network (ANN) technology Is being work has demonstrated the capability of a neural network
Successfully applied to a variety of pattern recognition to control steering of such a trailer truck backing to a
problems, The ANN discovers features itself based upon loading platform, but without obstacles. Now, the neural
user training. Trained ANN's settle fast to good network was able to learn to-navigate a trailer truck
solutions. thereby providing cost effective-self-learned around ObstaCles while backing toward its destination. The
pattern recognitton. This paper describes what ANN's are network Is trained in on obstacle free space to follow the
and how they are trained. A taxonomy is given along with negative gradient of the field, after which the network Is
ANN dynamics and training equations. ANN system able to control and navigate the truck to its target
development methodology Is sumarizled, An application of destination in a space of ob tlacis which may be
ANN'S to stereo image matching ANN and multisensor target Ststlory-or movable.
recognition avionics is presented. RPTI: NASA-CR-177575 A-91066 NAS 1.26:177575 g1/02/00

RPTN: AIAA PAPER 88-4029 88/00/00 89Ai8179 SINI977i
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UTTL: Neural networks in nonlinear aircraft control UTTL: Target detection in GauSSlan noise using artificial
AUTH: A/LINSE, DENNIS J. CORP: Princeton Univ.. NJ CSS' ( neural systems

Dept. of Mechanical and.Aerospace Engineering.) In NASA, AUTH: A/SOLKA. JEFFREY L.; B/ROGERS. GEORGE CORP: Naval
Langley Research Center. Joint University Program for Air Surface Warfare Center. Oahlgren, VA. CSS. (Strategic
Transportation Research. 1980-1990 p 151-i61 (SEE Systems Dept.)N,151-19024l 1t 01) ASS: Radar e14nal processing with muliilaye~ed perceptrons was

ASS* Recent research indicates that artificial neural networks Investigated. Networks with nC hidden layer and a Single
offer interesting learning or adaptive capabilities. The hidden layer were tested on field collected millimeter
current research focuses on the potential for application wave target returns that have been corrupted with
of neural networks in a.norlinear aircraft control law. artificial Gaussian noise at a signal to noise level of 3
The current work has'been to determine which networks are dB. Performance as a function of network architecture was
Suitable for such an aeplcation~and how they will fit characterized.
into a nonlinear control law. 90/12/00 9IN19037 RPTf. AD A223983 NSWC/TR-.J-17i 90/06/00 90N28770

UTTL- Neural networks as a control methodology UTTL: Analog hardwaiR for learning neural networks
AUTH: A/MCCULLOUGH CLAIRE L CORP. Alabama Univ., Huntsville AUTH A/EBERHART. SILVIO P. PAA. A/(JetPropulsion Lab..

CSS: (Dept. of Ele6trical and Computer Engineering,) In California Inst. of Tech.. Paadena.) , CORP: National
Alabama Univ.. Research Reports: 1990 NASA/ASEE Summer Aeronautics and Space Administration. Pasadena Office. CA.
Faculty fellowship Program 8 p (SEE N91-18967 10-99) Jet Propulsion Lab., California Inst. of Tech..

ASS. While conventional computers must be~progFammed in a Pasadena.
logical fashion by a person who thoroughly understands the ASS. This Is a recurrent or feedforward analog neural network
task to be performed, the motivation behind neural processor having a multi-level neuron array and a Synaptic
networks is to develop machines which ca train themselves matrix for storing -4eighted analog values of synaptic
to perform tasks, using available information about connection strengths which is characterized by temporarily
desired system behavior and learning from experience, changing one connection strength at a time to determine
There are three goals of this fellowship program. (1) to its effect on system output relative to the desired
evaluate various neural net methods and generate computer target. That connection strength is then adjusted based On
software to Implement those deemed most promising on a the effect, whereby the processor is taught the correct
personal computer equipped with Matlab; (2) to evaluate response to training examples connection by connection.
methods currently in the professional literature for RPT#. NASA-CASE-NPO-17664-i-CU NAS i,?i'NPO-17664--CU
System control using neural nets to choose those most US-PATENT-APPL-SN-463720 89/12/28 90N27384
applicable to control of flexible structures: and (3) to
apply the control strategies choson in (2) to a computer
simulation of a test article, the CoItrol Structures UTTL: OMS FDIR: Initial prototyping
Interaction Suitcase Demonstrator. which is a portable AUTH. A/TAYLOR. ERIC W; 6/HANSON. MATTHEW A CORP Ford

system consisting of a small flexible beam driven by a Aerospace and Communications Corp., Sunnyvale. CA. In
torque motor and mounted on springs tuned to the first NASA, Lyndon B. Johnson Space Center. Third Annual
flexible mode of the beam. Results of each are discussed. Workshop on Space Operations Automation and Robotics (SOAR
90/10/00 91N18997 19891 p 545-549 (SEE N90-25503 19-59)

ABS: The Space Station Freedom Program (SSFP) Operations
Management System (OMS) will automate major management

UTTL. Optimal control by neural networks functions which coordinate the operations of Onboard
AUTH A/BANKS. S. P B 8/HARRISON, R. F. CORP. Sheffield Univ systems, elements and payloads. The objectives of OMS are

(England). CSS, (Dept. of Control Engineering.) to improve safety, reliability and productivity while
ASS A neural network for the implementation of a nonlinear reducing maintenance and operations cost. This will be

optimal controller is developed, based on an energy accomplished by using advanced automation techniques to
minimization principle The theory is applicable to any automate much of the activity currently performed by the
nonlinear problem with a quadratic cost functional, flight crew and ground personnel. OMS requirements have
although it iould be easy to extend it to non quadratic been organized into five task groups: (I) Planning.
functionals. A simple example of a scalar, linear. Execution and Replanning: (2) Data Gathering,
quadratic problem is presented, Preprocessing and Storage. (3) Testing and Training. (4)

RPT# RR-399 ETN-91-98527 90/06/14 9IN15797 Resource Management: and (5) Caution and Warning anO Fault
Management for onDoard subsystems. The scope of this
prototyping effort falls within the Fault Management

UTTL Massively parallel network architectures for requirements group. The prototyping will be Performed in
automatic recognition o& visual speech signals two phases. Phase I is the development of an onboard

AUTH A/SEJNOWSKI. TERRENCE J.. B/GOLDSTEIN, MOISE CORP communications network fault detection, isolation, and
Johns Hopkins Univ., Baltimore, MO. reconfiguration (FOIR) system, Phase 2 will incorporate

ASS This research sought to produce a massively parallel global FOIR for onboard systems. Research into the
network architecture that could interpret speech signals applicability of expert systems. object-oriented
from video recordings of human talkers. The project's programming, fuzzy sets. neural networks and other
results are summarized (I) A corpus of video recordings advanced techniques will Do conducted. The goals and
from two human speakers was analyzed with image processing technical approach for this new SSFP research project are
techniques and used as the data for this study: (2) It was discussed here, 90/03/00 9ON25562
demonstrated that a feedforward network Could be trained
to categorize vowels from these talkers (The performance
was comparable to thot of the nearest neighbors techniques UTTL. A comparison of two neural network schemes for
and to trained humans on the same data): (3) A novel navigation
approach was developed to sensory fusion by training a AUTH: A/MUNRO. PAUL CORP Pittsburgh Univ , PA. CSS. (Dept.
network to transfo-m from facial images to short-time of Information Science.) In NASA, Lyndon B. Johnson
spectral amplitude envelopes. This information can be used Space Center. Third Annual Workshop on Space Operations
to increase the signal to noise ratio and hence the Automation and Robotics (SOAR 1989) p 305-310 (SEE
performance of acoustic speech recognition systems in N90-25503 ig-59)
noisy environments; and (4) The use was explored of ASS. Neural networks have been applied to .isks in several
recurrent networks to perform the same mapping for areas of artificial intelligence. incloding vision.
continuous speech. Results demonstrate the -eastbility of speech, and language Relatively little work has been done
adding a visual speech recognition component to enhance in the area of problem solving. Two approaches to
existing speech recognition systems. Such a combined path-finding are presented, both using neural network
system could .e used in noisy environments. such as techniques Both techniques require a training period
cockpits, where improved communication is needed. This Training under the back propagation (BPL) method was
demonstration of presymbolic fusion of visual and acoustic accomplished by presenting representations of current
speech signals is consistent with the current position, goal position pairs as input and appropriate
understanding of human speech perception, actions as output. The Hebblan/interactive activation

RPTO AD-A226S68 AFOSR-90-0949TR 90/00/00 9IN14805 (HIA) method uses the Hebblan rule to associate points
that are nearby. A path to a goal is found by activating a
representation of the goal in the network and processing

UTTL- Applications of neural networks to adaptive control until the current position is activated above some
AUTH A/SCOTT. RUSSELL W., It :0RP: Naval Postgraduate School. threshold level. 8PL, using back-propagation learning.

Monterey. CA. failed to learn. except in a very trivial fashion. that is
ABS Tne amount of a priori knowledge required to design some equivalent to table lookup techniques. HIA. performed much

moderr-control systems is becoming prohibitive. Two better, and required storage of fewer weights. In drawing
current methods addressing this problem are robust a comparison, it is important to note that back
control, in which the control design Is insensitive to propagation techniques depend critically upon the forms of
errors in system knowledge, and adaptive control, in which representation used, and can be sensitive to parameters in
the control law is adjusted in response to a continually the simulations; hence the BPL technique may yet yield
updated model nf the system. This thesis examines the strong results. 90/03/00 9ON25536
application of parallel distributed processing (neural
networks) to the problem of adaptive control. The
structure of neural networks is introduced, focusing on UTTL: A comparison of two neural network schemes for
the Backpropagation paradigm. A general form of controller navigation
consistent with use in neural networks Is developed and AUTH: A/MUNRO. PAUL W. CORP: Pittsburgh Univ.,-PA. CSS:
combined with a discussion of linear least squares Dept. of Information Science.) In Texas A&M Univ..
parameter estimation tezhnictues to suggest a structure for NASA/ASEE Summer Faculty Fellowship ProgrAm-1989, Volume 2
neural network adaptive, controllers, This neural network 10 p (SEE N90-24985 18-80)
adaptive control structure is then applied to a number of ASS: Neural networks have been appliJd to tasks in several
estimation and control problems using as a model tne areas of artificial intelligence. including vision.
longitudinal motion of the A-4-aircraft. The purpose of speech, and language. lRelatively little work has been done
this thesis Is to develop and demonstrate a neural network In the area of problem solving; Two approaches to
adaptive control Structure consistent with adaptive Path-finding are presented, both using neural' network
control theory techniques. Both techniques require a training period.

RPT#- AD-A225408 89/12/00 9iNi3938 Training under the back propagation (BPL) method was
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accomplished by presenting representations of (current (e.g.. turbopump blades); The generality of the approach
position, goal position) pairs-as input and appropriate 'i aSuch that load/damageimappings can bedirectly
actions a! output. The Hebbin/interactivi-activation extracted from experimental data without requiring any
(HIA)-method~usss the Hibbian rule to issodiate points knowledge of the stress train profile of the component.
that are nearby. A path to 'r-goal s 'found-A3y activating a In'addtion, the parallel network architecture allows
representationof" the goal in'thi network:and processing real-time life calculations .ven for htgh frequency
until the cuirent o6iti6n IS activited-a6oVe some vibrations*. Owing toit s distributed nature, the neuralthreshold level.' SPL. using back-propagation learning. Implementation will be robust,and reliable, enabling its

failed to learn, except In aTvery trivial fashion, that is use In h6stile environments luh-as rocket engines. This
equivalent to table lookup techniques. HIA. performed much neural net estimator of fatigue life Is %ean-55 the
better, and requiredatorage of fewer weighta. In drawing enabllng'4technology to achieve' component lifeprognos.
a comarlsob. It is important-to note that-back and therefore would be an Important part-of-life extendjg
propagation techniques depend critlcallyoupon the forms of - ontrdl for reusable-rocket engines.
representation'used. and can be iSesittve to parameters in RPT#: NASA-TM-iO31i1 E-5217 NAS A.15:03i17 90/00/00
the simulations; hence the BPL~tehnique9mayyet yield 9ON21564
st 6njr esults. 89/2/00 90N24g91

UTTL: Neural networks for aircraft control
UTTL: Nsuromorphic Optical signal'orocesstngani imago AUTH: A/LINSE. DENNIS CORP: Princeton Univ., NJ. CSS: (Dept.
understanding for automated target recognition of Mechanical and Aerospace-Engineering.) In NASA.

AUTH: A/FARHAT. NABIL H. CORP: Pennsylvania Univ.. Langley Research Center. Joint University Program for Air
Philadelphia. Transportation ResearCh, 1988-1989 p 167-181 (SEE

ASS: The goal of research Is study of computationand learning N90-20921 i4-0i)
in neural net models and demonstration of their utility In ASS: Current-research in Artificial,Neural Networks indicates
Image understanding and neuromorphic information that networks offer sbmepotintial advantage$ In
processing systems for remote sensing and target adaptation and fault tolerance: This research is directed
identification. The approach to achieving this goal has at determining the posisbl'e applicability of neural
two facets. One is combining innovative architectures and networks to aircraft control. The first,application will
methodologies with suitable algorithms to exploit existing be to aircraft trim. Neural network node characteristics,
and emerging photonic technology in the implementation of network topology and operation, neural network learning
large-scale neurocomputers for use lin: the study of and example histories us in neighboring optimal control
complex self;organizilng and learning systems- fast with a neural net are discussed. 90/03/00 90N20931
solution of optimization problems, feature extraction,
(formation of object representation), and pattern
recognition. The second facet of the approach is to UTTL: Computation and control with neural nets
demonstrate and assess the capabilities of neuromorphic AUTH: A/CORNELIUSEN, A.: B/TERDAL, P.; C/KNIGHT, T.;
processing In solution of selected inversescattering and 0/SPENCER. d. CORP: Stanford Linear Accelerator Center,
recognition problems. The problem studied as a test bed CA. Presented at the International Conference on
for the work Is that of automated rsdar target recognition Accelerator and Large Experimental Physics Control
because of the existing capabilities and expertise in this Systems,- Vancouver. British Columbia. 30 Oct. - 3 Nov.
area. i989

RPT#: AD-A219827 EO/MO-ag-i 89/12/00 90N23884 ABS. As energies have increased exponentially with time so have
the size and complexity of-accelerators and control
systems. Neural nets (NN) may offer the kinds of

UTTL: Neural networks In support of manned space Improvements in computation-and control that are needed to
AUTH: A/wERBOS. FUL J. CORP: National Science Foundation. maintain acceptable functionality. For control their

Washington, JC. In Jet Propulsion Lab.. California Inst. associative characteristics could provide signal
of Tech.. Proceedings of the 3rd Annual Conference on conversion or data translation. Because they can do any
Aerospace Computational Control. Volume 2 p 916 (SEE computation such as least squares- they can close feedback
N90-23040 16-61) loops autonomously to provide intelligent control at the

ASS Many lobbyists in Washington have argued that artificial point of action rather than at a central location that
intelligence (Al) is an alternative to manned space requires transfers. conversions, hand-shaking and other
activity In actuality, this is the opposite of the truth, costly repetitions like input protection. Both computation
especially as regards artificial neural networks (ANNs). and control can be integrated on a single chip, printed
that form of Al which has the greatest hope of mimicking circuit or an optical equivalent that Is also Inherently
human Sbilities in learning, ability to interface with faster through full parallel operation. For such reasons
sensors and actuators, flexibility and balanced judgement. one expects lower costs and better results. Such systems
ANN$ and their relation to expert systems (the more could be optimized by integrating sensor and signal
traditional form of Al). and the limitations of both processing functions. Distributed nets of such hardware
technologies are briefly reviewed. A Few highlights of could communicate and provide global monitoring and
recent work on ANNs. including an NSF-sponsored workshop multiprocessing In various ways e.g., via token, slotted
on ANNs for control applications are given. Current or parallel rings (or Steiner trees) for compatibility
thinking on ANNs for use in certain key areas (the with existing systems. Problems and advantages of this
National Aerospace Plane. teleoperation, the control of approach such as an optimal, real-time Turing machine are
large structures. fault diagnostics. and docking) which discussed. Simple examplis are simulated and hardware
may be crucial to the long term future of man In space is implemented using discrete elements.
discussed. 89/1^/15 90N23088 RPT#: DE9O-006460 SU-SLAC-PUB-5035 CONF-891094-14 89/10/00

90N189 i

UTTL: ALVINN. An Autonomous Land Vehicle In a Neural
Nettwork UTTL: Neurobeamformer 2, Further exploration of adaptive

AUTH: A/POMERLEAU. DEAN A. CORP: Carnegie-Mellon Univ., beamforming via neural networks
Pittsburgh. PA.: Pittsburgh Univ., PA. CSS: (Artificial AUTH: A/SPEIDEL. S. L. CORP: Naval Ocean Systems Center. San
Intelligence and Psychology Project,) Presented at the Diego. CA. CSS: (Analysis Branch.)
IEEE Conference on Neural Information Processing Systems ABS. This paper discussed neural network technology as a tool
Natural and Synthetic. Denver, CO. Nov. 1988 for signal processing. Test results show that the adaptive 3

ABS ALVINN (Autonomous Land Vehicle In a Neural Network) is an beamformer method, based on neural network technology,
3 layer back propagation network designed for the task of performs the desired function of directing a beam so as to
road following. Currently ALVINN takes Images from a enhance a target signal and reject noise and interference.
camera and a laser range finder as input and produces as Comparing test output values with a matched-correlation
output the direction the vehicle should travel in order to output shows that the plotted crossbar circuit energy
follow the road. Training was conducted using simulated minima follow the shape of an inverted match-filter
road images. Successful tests on the Carnegie Mellon output. The neurobeamformer has certain advantages of
autonomous navigation test vehicle Indicate that the Implementation and adaptability over other methods. In
network can follow reai roads under certain field concept, it is implementable in analog circuitry with no
conditions. The representation developed to perform the control code required. Thus a compact, simple, low-cost
task differs greatly when the nitwork is trained under processor component that is not sensitive to array
various conditions, suggesting the possibility of a novel grooming can be produced. A straightforward adaptive
adaptive autonomous navigation system capable of tailoring beamformor cannot match the interference-cancellation
its processing to the conditions at hand. performance of m)re exotic methods, which include sidelobe

RPT#: AD-A218975 AIP-77 89/01/00 90N22797 cancellers. So, a neuroprocesior. that will include a
neurobsamformer as a component, will be built, This
niuroprocessor will provide for cancellation of sidelobes.

UTTL* A real time neural net estimator of fatigue life enhance source discrimination and angle-ostimation through A
AUTH A/TROUDET. T.; B/MERRILL. W. PAA. A/(Sverdrup Interaction of beams. Plans for this extended network were

Technology. Inc., Cleveland, OH.) CORP: National influenced by studies of the literature In biological
Aeronautics and Space Administration. Lewis Research sensory processing, both peripheral and central.
Center, Cleveland. OH. Presented at the International RPT#: AD-A21Bii8 NOSC/TDoi606 89/06/00 90NI8226
joint Conference on Neural Networks, San Diego, CA. 17-21
Jun. 1990: cosponsored by IEEE and INNS

ASS: A neural net architecture liproposed to estimate, in bTTL: Knowledge-based imaging-sensor fulon system
real-time, the fatigue lie of mechanical components, as AUTH. A/WESTROM. GEORGE CORP: Odetics. InC., Anaheim. CA. In
part of the Intelligent Control System for'Reusable Rocket NASA,, Lingley Research Canter. Visual Information
Engines. Arbitrary component loading values were used as Processing for Television and Tolerobotics p 25-221 (SEE-
Input to train a two hidden~layer feedforward neural net N90-i6204 08-35)
to estimate component fatigue damage. Theabflity of the ASS: An Imaging system which applies knowledge-balsd technology
net to learn, based on a local strain approach the to upervise and control both sensor hardware arid
mapping between load sequence and'fstIgue damage has been cmputation in the imAming system, is described. It

demonstrated for a uniaxial specimen. Because of its incljdes the development of an imagingfsystem breadboard
demonstrated performsnce, the neural computation may be which brings togethr into one system work' that we and
extended to complex caSes where the biods are blaxial or othoes have pursued for LORC for Several yeas. The goal
triaxial. and the geometry of the Component is complex is to combine Digital Signal ProcesIg (DSP) with



B;1O

Knowledge-Sased Processinigand also Include Neural Net of tactical targets-using a now biologi 1lybiled neural
proessing. The systes icOfhigiadrd i siart camera. network. Tie targets of interest were geneated from
Imagine that Athere s a ikcrogbavity eXpeirment on-board Doppler igeiy and forward lookin iifrered imagery, and
Space Station Freedoikmwith a high framerate. high consiated, of, tanks. -trucks. riemoreda i onnil carriers.
resolution camera'Al I -the data canniot possibly be jepedptoem iand lubricant tkers. Each
acquired from a -laboratoryon Earth. Iinfact, only a small Atarget, wasdesc-ribedby featurevectora. such as

fraction of theidata will be received. Again. imagine normalized moment inva tint.'Th featres were generated
being reapfl:esible for Sa expOeriets on Mars with the from thei'mageryueing'a isegisnting procass: These feature
Mairs Rover: the dat rate it a few kI lobits per second for vectors-were used iau the input to a'neuAl network
,datajfom-severl sensors and instruments..Would it not be Clastifieor', tactal target recognitlon. The neural
profe abte to have.a tsart -ysttm whichLwOuld have some network, onsitted of a'Rulti laysipe 'feptrona.rchitecture.
Shuai knowledge and yet folowsoe Inistructions and employing-a backward,eFror propagation, lerning algorithm.
attempt to make the best use of, the limited bandwidth for The minimization tlchnique used-wosanapproximation to
transmission. Thi system concept. current status of the Newton's method Thissecond ordera IgorIthm'is a
breadboard system and-isom recent experiments at the generalized version of, well.known first order techniques,
Mars-like Amboy Lava Fields in California are discussed. 1.e:. graIeent,6f steepest descet~snt miirntur methods.
89/it/O0 9ON16220 Classification using both firstai scond order

techniques Was performed, with comparisons drawn,
RPT#: AD-A202666 AFIT/GE/ENG/880-36 88112O0 89N21644

UTTL: Reel-time support for high performance aircraft
operation

AUTH: A/VIDAL, JACQUES J. CORP: California Univ., Los Angeles. UTTL: Automatic vOice recogniti6n usirg traditional and
CSS: (Dept. of Computer Science.) artiffiial-1 eural network approaches -

ASS: The feasibility of real-time processing schemes using AUTH: A/BOTROS. NAZEIH M. CORP: University of Southern
artificial neural networks (ANNS) is investigated. A Illinois. Carbondale. 'CSS: (Dept. of Electrical
rationale for digital neural nets is presented and a Engineering.) in NASA. Lyndon B. 6hnson Space Center.
general processor architecture for control applications is National Aeronautics and Space Administration
illustrated. Research results on ANN structures for (NASA)/American society for Engineering Education (ASEE)
real-time applications are given. Research results on ANN SummerPFcultyFellowship Program 1988._ Volume 1 13 p (SEE
algorithms for real-time control are also shown. N89-20058 12-99)'

RPT#: NASA-CR-iB5475 NAS 1.26:185475 89/01/00 90N10075 ABSe The main objective of this research is to develop an
algoritiA for' ilatedword recognition. This research is

focusedOn digital Signal analysis rather than linguistic
UTTL: Integration of perception and reasoning in fast analysts of'speech, 'Features extiaction, is carried Out by
neural modules epplying a Linear-Predictive Codlig (LPC) algorithm with

AUTH' A/FRITZ. DAVID G. CORP: George Washington Univ.. order Of 16. Continu6ujsword anid speaker Independent
Washington. DC.: Cognitive Informatlon Systems Co., racognition will be onsi'dered in future study after
Silver Spring. MO. CSS: (Inst. for Artificial accomplishing this 'solatad wbrd rsar ch. To examine the
Intelligence.) In NASA Goddard Space Flight Center, The Gimilaritybetween the, refrince and the training sets.
1989 Goddard Conference on Space Applications of two approaches are explored. The first is implementing
Artificial Intelligence p 349-356 (SEE N89-26578 20-63) traditional pattern recognition technilues where a dynamic

ABS. Artificial neural systems promise to integrate symbolic time warping algorithm is applied to align the two sets
and sub-symbolic processing to achieve real time control and calculate the probability of matbiing by measuring the
Of physical systems. Two potential alternatives exist. In Euclidean distance between the two sets. The second is
one, neural nets can be used to front-end expert systems. implementing & backpropagation artificial neural net model
The expert systems, in turn, are developed with varying with three layers as the pattern classifier. The
degrees of parallelism, including their implementation in adaptation rule Implemented in this network Is the
neural nets, In the other, rule-based reasonin2 and sensor generalized least mean square (LMS) rule; The first
data can be integrated within a single hybrid neural approach has been accomplished. A vocabulary of 50 words
system. The hybrid system reacts as a unit to provide was selected and tested. The accuracy of the algorithm was
decisions (problem solutions) based on the simultaneous found to be around 85 percent. The second approach is in
evaluation of data and rules. Discussed here Is a model progress at the present time. 89/02/00 89N20064
hybrid system based on the fuzzy cognitive map (FCM). The
operation of the model is illustrated with the control of
a hypothetical satellite that intelligently alters its UTTL: Simulation tests of the Optimization method of
attitude in space in response to an intersecting HopflaId and Tank using neural networks
micrometeorite Shower. 89/04/00 89N26603 AUTH: A/PAIELLI, RUSSELL'A. CORP: National Aeronautics and

Space Administration. Ames Research Center, Moffett Field.
CA.

UTTL Empirical analysis and refinement of expert system ABS The method proposed by Hopflad and Tank for using the

knowledge bases Hopfield neural network with continuous valued neurons to
AUTH. A/wEISS. SHOLOM M.. B/KULIKOWSKI. CASIMIR A. CORP- solve the traveling salesman problem is tested by

Rutgers - The State Univ.,,New Brunswick, NJ. CSS: ( simulation. Several researchers have apparently been
Center for Expert Systems Research.) unable to successfully repeat the numerical simulation

ASS. Classification methods from statistical pattern documented by Hopfield and Tank. However, as suggested to
recognition, neural nets, and machine learning were the author by Adams. it appears that the reason for those
applied to four real-world data Sets. Each of these data difficulties is that a key parameter value is reported
sets has been previously analyzed ,nd reported in the erroneously (by four orders of magnitude) in the original
statistical, medical. or machine learning literature. The paper When a reasonable value is used for that parameter,
data sets are characterized by statistical uncertainty; the network performs generally as claimed, Additionally, a
there is no completely accurate solution to these new methou of using feedback to control the input bias
problems. Training and testing or resampling techniques currents to the amplifiers Is proposed and successfully
are used to estimate the true error rates of tested. This eliminates the need to set the input currents
classification methods. Detailed attention Is given to the by trial and error.
analysis of performance Of the neural nets using back RPT#: NASA-TM-i01047 A-88275 NAS 1.15.101047 88/11/00
propagation. For these problems, which have relatively few 89N14004
hypotheses and features, the machine learning procedures
for rule Induction or tree induction clearly performed
best.

RPT# Ai-A206226 89/02/28 89N24858 UTTL: Genetic algorithms for adaptive real-time control in
space systems

AUTH: A/VANDERZIdP, d.; B/CHOUDRY. A. CORP: Alabama Univ..
UTTL. Neuromorphic learning of continuous-valueo mappings huntrville. CSS. (Center for Applied Optics.) In NASA.
in the presence of noise: Application to r)al-time Marshall Space Flight Center. Third Conference on
adaptive control Artificial Intelligence for Space Applications, Part 2 p

AUTH: A/TROUDET. TERRY: B/MERRILL._WALTER C. PAA: A/(Sverdrup 47-51 (SEE NOB-24i88 17-61)
Technology, Inc., Cleveland. OH.) CORP: National ABS: Genetic Algorithms that are used for learning as one way
Aeronautics and Space Administration. Lewis Research to control the combinational explosion associated with the
Center. Cleveland, OH. Presented at the International generation of new rules are discussed.'The Genetic
Conference on Neural Networks, Washington. DC. 18-22 dun. Algorithm approach tends to work best when it can be
1989;sponsored by the IEEE applied to a domain independent knowledge representation.

ABS. The ability of feed-forward neural net architectures to Applications to real time control In space Systems are
learn continuous-valued mappings in the presence of noise discussed. 88/06/00 88N24195
is demonstrated in relation to pfaaeter idrhtificatIon
and reialtime -adaptive control applications. Factors and
parameters influencing the learning performance of such
nets In the presence of noise eie identified. Their UTTL. Third Coniference on Artificial Intelligence for
effcts-are discussed through a computer simuiation of the Space Applications, part-2,
Back-Error-Propagation algorithm by taking the example of AUTH: A/DENTON, dUDITH S.; B/FREEMAN. MICHAEL S.; C/VEREEN.
the cart-pole system controlled by a nonlinear control MARY CORP: National Aeronautics and Space
law. AdeqlUSte sampling of the state space Is found to be Administration. 'Marshall Space'Flight Center, Huntsville.
essential for cneling the effect of the statistical AL. Conference held in Huntsville, Ala., 2z3 NOv. 1987;
fluctuations.and allowing learning to take place. iponsoard,by'NASA. Marshall 'Spae-sFlight Cinter.

RPT#: NASA-TM;101999 E-4706 NAS 1i.5.101999- 89/00/00 Huntsvilli Alea and'Alabama Upiv.,'Huntvi'lle ANN:
89N24856 Topis ejative to the application jfrtffiifial

tnttiiece ta space operations are disciusid, New

techhologies for space station automatl6n design data
UTTL: TModified backward error propagation for tacticsl captur. computer viji neural nets. 'autolatic
targetrecognition programing: and rel time appfcetions *re'discussed.

AUTH: A/PIAZZA, CHARLES ,C. CORP: Afi Force Ihst. of Tech.. For iindividual titles; see N88-24i89 through N88-24197.
Wriglht Patterson AFa, OH, CST: (Saho01 of Engineering,) RPTff: NASA-CP2492-PT-2 M-576-PT-2 NAS i,5:2492 PT-2 88/06/00

ABS: This thesis explores * new approach to the classification 88N2488. ..



UTTL- Memory efficient 'evaluationsrof nonlinear stochastic ternary-Tijkl mask to establish the weighted

equations and C3 applications interconnmctions of the net and electronic feedback based

AUTH: A/CONNELL, JOHN C., JR. CORP, Naval PoStgraduate ,School; on clotei6-loop TV systems., The performance wai found to be

Monterey. CA. in agreement with that of computer simulation, even though

ASS: The Statistical Mechanical Neural Computer (Si4NC) aborrationbf lenses and the defects of the System were

-developed i1i'thilsthesei utilizes a StatiaticslMechenical 'pioamnt. These results confirm the practi6al suitability

NOniinenrAlgor tim'(SMNA) to determine'the long-time of the opto-eloctronc approach to the neural net

probabillty'djitr butfon of highly nonlinear stochastic Implementation and pave the way for the Implementation Of
systems. the',uieo f-tfi,,SMNA ind a novel teso~icopic largeir networks. 87/00/00 8eNiS804

'scal ing technlilui.help' provide 'the SMNC, 41th the
capesltIes of neural coputers without the drawbacks of

hulje connection matrices and their attendant computational UTTL: Teaching artificial neural systems to drive: Manuel

iqufrente.m- Inthis rthesis, I the SMNC 1 initiilly'used traiAingfthchniques' for Autonomous systems-

to verify the ability of theiSMNAo diupitcsa reatively AUTH:- A/SHEPANSK,'Ji F., B/MACY. S. A. CORP; TRW. Inc.,

simple, single variable path Integral soluti6ns to', edond. Beech. CA. In NASA. Lyndon S. Johnson Space

nonlinear Fokker-Pianck equations. After the fundamental Caenterj Huiton. Tes' ; Firit Annual Workahop on Space

algorithmsare' validated, the SMNC's ability to.simulate a Operations Automation and Robotics (SOAR 87) P 231-238

twovariablei, multicellular problem by m6delinglaiport" -- -(SEE- N9w0206 09!59)of thl'nebcortox consisting of 100.000 noural, units is ASS. A-met* loy wsdvop ormully training

discussed. There are many important applications f the autonomous control systems based on arIficial neural

SMNC and its unique-SMNA to C3 systems-includling radar systeml'(ANS). In applications where tIe rule set

sonar and electronic s'gnals processing; missileguidanco 
-governingan expert's decisions Is difficult to formulate.

systems ind an integrated battle management system. Such ANS can-beueed-to extract rules by associating the

C3 systems will benefit from the SMNC'IS potential to Informati6o6an expert receives with the actions taken.

efficiently filter large amounts of data, recognize Properly constructed networks imitate rules of behavior

patterns and anticipate, with some degree of uncertainty, that permits them to, function autonomously when they are

the future state of highly nonlinear stochastic systems. trained on-the spanning set of possible-situations. This
RPT#: AO-AiS9872 37/i2/60) ' 88N22569 • t'ratning cn be'provided manually, either under the direct

supervision of a,system trainer, or Indirectly using a

background mode where the networks assimilates training

UTTL: Position. scale. and rotation invariant target data as the expert performs its day-to-day tasks. To

recognition using range imagery demonstrate these methods, an ANS network was trained to

AUTH: A/TROXEL. STEVEN E., CORP: Air Force Inst. of Tech.. drivea vehicle through simulated freeway traffic.

Wright-Patterson AFB. OH. CSS: (School of Engineering.) 87/10/00 98Ni7238

ASS: This thesis oxplores a new approach to the recognition of

tactical targets using a multifunction laser radar sensor.

Targets of interest were tanks, jeeps, and trucks. Doppler UTTL: NASA JSC neural network survey results

images were segmented and overlaided onto a relative range AUTH: A/GREENWOOD. DAN CORP. Netrologic. Inc., San Diego. CA.

Image. The resultant shapes ware then transformed into a In NASA. Lyndon S. Johnson Space Center, Houston. Texas.

position, scale. and rotation invariant (PSRI1 feature First Annual Workshop on Space Operations Automation and

space. The classification processes used the correlation Robotics (SOAR 87) p 97-110 (SEE NE-i7208 09-59)

peak of the template PSRI space and the target PSRI space ASS: A survey of Artificial Neural Systems In support of NASA's

as features. Two classification methods were implemented. (Johnson Space Canter) Automatic Perception for Mission

a classical distance measurement approach and a new Planning and Flight Control Research Program was

biologically-based neural network multilayer perception conducted. Several of the world's leading researchers

architecture. Both methods demonstrated classification contributed papers containing their most recent results on

rates near 100 percent with a true rotation invariance artificial neural systems. These papers were broken into

demonstrated up to 20 degrees, Neural networks Were shown categories and descriptive accounts of the rasults make up

to have a distinct advantage in A robust environment and a large part of this report; Also included is material on

when a figure of merit criterIa was applied, A space sources of Information on artificial neural systems such

domain correlation was developed using local normalization as books, technical reports,, software tools. etc,

end multistage processing to locate and classify targets 87/10/00 88N17220

in high clutter and with partially occluded targets.

RPTK: AD-AI88828 AFIT/GEO/ENG/870-3 87/12/00 88Ni9772

UTTL- Models of the vestibular system and postural control

UTTL: Automated radar target recognition based on models AUTH: A/YOUNG. L. R.; S/WEISS, A. PAA. S/(Maes. Eye and Ear

of neural nets Infirmary) CORP- Massachusetts Inst. of Tech.,

AUTH. A/MIYAHARA. SHUNJI CORP: Pennsylvania Univ.. Cambridge. In NASA. Ames Res. Center Technol. and the

Philadelphia. Neurologically Handicapped p 51-168 (SEE N75-19975

ASS. Two methods of target recognition are proposed: (1) the 11-54)

use of sinogram representation* as learning set in ASS. Applications of control theory and systems anal sis to the

associative memory, based on models of neural nets as problem of orientation and posture control are discussed.

c1tssifier: and (2) use of polar zation representation for with the possible long range goals of contributing to the

use In neural net based associative memory as a development of hardware for rehabilitation of the

classifier. Using microwave scattering data of scaled handicapped. 74/00/00 75Nt9992

model targets, the concepts for the target recognition

were demonstrated by computer simulation of a 1024 (32 by

32) element neural net associative Memory based on thC

outer product model. The simulations show that partial UTTL: The brain as a model for LSI

input, consisting of less than 10 percent of the total AUTH: A/ALSUS. U. S. CORP: National Aeronautics and Space

information, can identify the targets. Two-dimensional Administration. Goddard Spice Flight Center. Greenbelt,

optical implementations of a neural net of 8 by 8 binary MD. IN ITS SIGNIFICANT ACCOMPLISHMENTS IN SCI. AND

neurons were studied. Fault tolerance and robustness were TECHNOL. AT GODDARD SPACE FLIGHT CENTER 1970 P 292-294

examined, using a four-dimensional clipped outer product /SEE N71-25256 13-34/ 70/00/00 71N25326

M
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Ever increasing operational and technical requirements have led to highly integrated flight,
guidance and control, and weapons delivery systems. The effective implementation of these
functions makes the fusion and interpretation of sensor data and the multifunctional use of sensor
information inevitable.

Neural networks, consisting of parallel microcomputing elements, hold great promise for
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