
BBN Systems and Technologies
A Division of Bolt Beranek and Newman Inc.

AD-A244 220

BBN Report No. 7627
DTIC
ELECTE
JAN 08 1992

D
«

THE SIMNET

NETWORK AND PROTOCOLS

Thh document has been approved
for p'lblic release and sale; its
distribution is unlimited.

92-00272

§2 16 081/

/

REPORT DOCUMENTATION PAGE Form approved
\No.07040m OPMI

PubtcKpociiv buR>«n to. ti« ookckonollnbnnalonti MlmtMd » tvttn I btn* p«r iMponM.IndUfng t* in« fc< iv*«<a<ngInttuctont. w>tf«ng fihrqdaa UKICM0«twrV<aan
RtWOTrar« (UU nr«>d, av) »«(««ne (« ooll»c»an el Mortnaton. Svd comnwn* nawSng t* burdtn ttvnra or viy ««Mr Mfvcle«»« oaltc«oo»IMannMon.Mü<«ngtuao*<Mn
la <«3uari rn tudm. • Waihmgion Hr«)4ii<rwrt S«V<CM, Dttccrtw lot WomWfcn Offntra trö ftipar«, U1J Jttarton Ow«t »Vwijr. SUB IIO«. Arttigton. <* 12303-002. «^i
r« c*>o« fl tifcniajonjna Htgi«giyMm1Ojfcj olMjnjgwy w rt luJajQWijWngin. DC WW.

1. AGENCY USE ONLY ftot« fll*^ 2. REPORT DATl

June 1991

3 REPORT TYPE AND DATES COVERED

Technical Report
4. "nTU AND SUBTITLE

The SIMNET Network and Protocols

« AÜTHOR(S)

Arthur R. Pope; Revised by Richard L. Schaffer

7. PERFORMING ORGANIZATION NAME(S)ANDADDHESS(ES)

Bolt Beranek and Newman, Inc. (BBN)
Systems and Technologies; Advanced Simulation
10 Moulton Street
Cambridge, MA 02138

8 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

Defense Advanced Research Projects Agency (DARPA)
3701 North Fairfax Drive
Arlington, VA 22203-1714

5 FUNDING NUMBERS

Contract Numbers:
MDA972-89-C-0060
MDA972-89-C-0061

8. PERFORMING ORGANIZATION
REPORT NUMBER

BBN Report Number:
7627

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

DARPA Report. Number:
None

11. SUPPLEMENTARY NOTES

None

i2i DISTRIBUTIONAVAiLABiLfTY STATEMENT

Distribution Statement A: Approved for public release; distribution is unlimited.

12t> DISTRIBUTION CODE

Distribution Code:
A

13. ABSTRACT (Uiximum ?00 ttwoy

A Simulation Network (SIMNET) project technical report describing the the SIMNET network and its
communication facilities and protocols

14 SUBJECT TERMS

A technical description of the SIMNET network and its communication facilities and
protocols.

15 NUMBER OF PAGES

16. PRICE CODE

17. SECURtrY (XASSIFtCATlON
OF REPORT

Unclassified

1» SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified
20. LIMfTATlON OF ABSTRACT

Same as report.

NSN7MO-O1-2ft»55O0 SUndird Forni 208. MOiii
PiM<rt>«d br ANSI SU 238 II
2«*-01

Report No. 7627

The SIMNET Network and Protocols

Arthur R. Pope

Revised by Richard L. Schaffer

June 1991

Accesion For

NTIS CPA&I
DTIC 1 A3
Unannounced
Juätiiication

Ü
Ll

By
Distribution I

Availability Co-Ji'

Dist

A-I

Avail anrl/or
Spt'cial

Prepared by:

BBN Systems and Technologies
10 Moulton Street
Cambridge, Massachusetts 02138

APPROVED FOR PUiäüC RELiASE
DISTRIBUTION UNLIMITED

Prepared for:

Defense Advanced Research Projects Agency (DARPA)
Information and Science Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

1991 Bolt Beranek and Newman Inc.

BBN Systems and Technologies Report No. 7627

 Preface

SIMNET: Advanced Technology for the Mastery of War Fighting

SIMNET is an, advanced research project sponsored by the Defense Advanced Research

Projects Agency (DARPA) in partnership with the United States Army. Currently in its

sixth year, the goal of the program is to develop the technology to build a large-scale

network of interactive combat simulators. This simulated battlefield will provide, for the

first time, an opportunity for fully-manned platoon-, company-, and battalion-level units

to fight force-on-force engagements against an opposing unit of similar composition.

Furthermore, it does so in the context of a joint, combined arms environment with the

complete range of command and control and combat service support elements essential to

actual military operations. All of ths elements that can affect the outcome of a battle are

represented in this engagement, with victory likely to go to that unit which is able to plan,

orchestrate, and execute their combined-arms battle operations better than their opponent.

Whatever the outcome, combat units will benefit from this opportunity to practice

collective, combined arms, joint war fighting skills at a fraction of the cost of an

equivalent exercise in the field. ,<> - / ' ^—1
 ^ — / ' • / '" i^ P

While simulators to date have been shown to be effective for training specific military

skills, their high costs have made it impossible to buy enough simulators to fully train the

force. Further, because of the absence of a technology to link them together, they have

not been a factor in collective, combined arms, joint training. SIMNET addresses both of

these problems by aiming its research at three high-payoff areas:

• Belter and cheaper colleclive training for combined arms, joint war fighting skills.

A test bed for doctrine and tactics development and assessment in a full combined arms joint

setting.

A "simulate before you build" development model.

These payoffs are achievable because of recent breakthroughs in several core

technologies that have been applied to the SIMNET program:

High speed microprocessors.

Parallel and distributed multiprocessing.

• Local area and long haul networking.

Report No. 7627 BBN Systems and Technologies

Hybrid depth buffer graphics.

Special effects technology.

• Unique fabrication techniques.

These technologies, applied in the context of "selective fidelity" and "rapid prototyping"

design philosophies, have enabled SIMNET development to proceed at an unprecedented
pace, resulting in the fielding of the fi rst production units at Fort Knox, Kentucky, just

three years into the development cycle.

In addition to the basic training applications, work is underway to apply SIMNET
technology in the area of combat development to aid in the definition and acquisition of

weapon systems. This is made possible because of the low cost of the simulators, the
ease with which they can be modified, and the ability to network them to test the
employment of a proposed weapon system in the tactical context in which it will be used,

i.e., within the context of the combined arms setting.

Work on SIMNET is being carried out by co-contractors Bolt Beranek and Newman, Inc.
(BBN) and Perceptronics, Inc. Perceptronics is responsible for training analysis, overall
system specification, and the physical simulators, and BBN is responsible for the data
communication and computer-based distributed simulation and the computer image

generation (CIG) subsystems. The project is a total team effort.

DARPA is the DoD agency chartered with advancing the state of the art in military
technology by sponsoring innovative, high-risk/high-payoff research and development.

BBN Systems and Technologies Report No. 7627

 Table of Contents

1 Introduction 1

1.1 About this report 1

1.2 Distributed simulation 3

1.3 Scope of this work 6

2 Distributed simulation concepts. 9

2.1 Architecture 9

2.2 Simulation exercises H

2.3 Simulated vehicles 12

2.4 Coordinate systems 15

2.5 Events 17

3 Vehicle appearance 18

3.1 Overview 18

3.2 Measuring discrepancies in vehicle appearance 20
3.2.1 Discrete appearance attributes 20
3.2.2 Location 21
3.2.3 Orientation 21

3.3 Dead reckoning methods and discrepancy thresholds. 22
3.3.1 Vehicles of the static class 22

.3.2 Vehicles of the simple class 22
3 3.3 Vehicles of the tank class 22

3.4 The effect of delay 23

4 The SIMNET network 26

4.1 Network requirements 26

4.2 Network throughput 27

4.3 Network delay 28

5 Protocol data elements 31

5.1 Basic data elements 31
5.1.1 Angle 31
5.1.2 Battle Scheme 32
5.1.3 Boolean 33
5.1.4 Burst Descriptor 33
5.1.5 Event Identifier. 33
5.1.6 Exercise Identifier 34
5.1.7 Force Identifier 34
5.1.8 Munition Quantity 35
5.1.9 Object Identifier 35
5.1.10 Object Type 36
5.1.11 Organizational Unit 36
5.1.12 Repair Type 38

in

Report No. 7627 BBN Systems and Technologies

5.1.13 Simulation Address 39
5.1.14 Simulator Type 39
5.1.15 Site Identifier 39
5.1.16 Target Descriptor. 40
5.1.17 Terrain Database Identifier. 40
5.1.18 Time 41
5.1.19 Vehicle Capabilities 41
5.1.20 Vehicle Class 41
5.1.21 Vehicle Component 42
5.1.22 Vehicle Coordinates 42
5.1.23 Vehicle Guises. 43
5.1.24 Vehicle Identifier. 43
5.1.25 Vehicle Marking 44
5.1.26 Vehicle Status 44
5.1.27 Vehicle Subsystems 47
5.1.28 Velocity Vector 53
5.1.29 World Coordinates 53
5.1.30 XY Coordinates 54

5.2 Timers and counters 54

6 Association protocol 56

6.1 Architecture 56

6.2 Service elements 58

6.3 Service required from lower layers 60

6.4 Service provided by the association sublayer 61
6.4.1 Group subscription service 61
6.4.2 Datagram service 62
6.4.3 Transaction service 64

6.5 Specification of the association protocol 67
6.5.1 Association protocol data unit format 68
6.5.2 Datagram protocol procedure 71
6.5.3 Transaction protocol procedure 71

7 Simulation protocol 76

7.1 Simulation protocol data units 76

7.2 Use of association sublayer services 79

7.3 Protocol procedures 81
7.3.1 Activation 81
7.3.2 Deactivation 86
7.3.3 Appearance and other state updates 88
7.3.4 Weapons fire 99
7.3.5 Collisions 107
7.3.6 Transfer of munitions 108
7.3.7 Repairs 113

8 Data collection protocol 118

8.1 Data collection protocol data units 118

8.2 Use of association sublayer services 120

iv

BBN Systems and Technologies Report No. 7627

8.3 Protocol procedures 121
8.3.1 Status reports 121
8.3.2 Event reports 128

9 References 137

Appendix A: Data representation notation 139

A.l Overview 139

A.2 Constant definition 140

A.3 Type definition 140

A.4 Primitive types. ^40

A.5 Sequence type constructor 142

A.6 Array type constructor 143

A.7 Choice type constructor. 144

A.8 Bit alignment of data elements 145

Appendix B: Object type numbering scheme 148

B.l Vehicle type scheme ^49

B.2 Munition type scheme 151
B.2.1 Ammunition type scheme. 152
B.2.2 Missile type scheme 154
B.2.3 Bomb type code scheme 155
B.2.4 Mine type code scheme 156

B.3 Life form type scheme 157

B.4 Country codes 157

Appendix C: Defined object type codes. 159

C.l Object type codes for vehicles 159
C.l.l U.S. vehicles 159
C.l.2 Soviet vehicles 160
C.1.2 German vehicles 161

C.2 Object type codes for munitions. 162
C.2.1 U.S. ammunition 162
C.2.2 U.S. missiles 163
C.2.3 U.S. bombs ^3
C.2.3 U.S. mines 163

C.3 Object type codes for life forms 164

Appendix D: Vehicle-specific protocol 165

D.l SIMNET Ml Abrams main battle tank...,. 165
D.l.l Repairs 165
D.1.2 Vehicle specific status 166

D.2 SIMNET M2/3 Bradley fighting vehicle 167
D.2.1 Repairs 167
D.2.2 Vehicle specific "tatus l6y

Report No. 7627 BBN Systems and Technologies

Appendix E: Ethernet implementation 171
E.l Overview 171
E.2 Use of Ethernet Addresses 171
E.3 SIMNET Association Protocol Identifier. 172

E.3.1 Ethernet Version 2.0 172
E.3.2 ffiEE 802.3 173

Appendix F: Timers and counters 175

vi

BBN Systems and Technologies Report No. 7627

1 INTRODUCTION

The SIMNET project has developed a nu- "or simulating battles involving many vehicles by

interconnecting large numbers of int> e vehicle simulators. This form of simulation is called

distributed simulation because the computer systems supporting it—the individual vehicle

simulators—may be distributed over local or large distances. These computer systems communicate

by means of a network that allows them to exchange information quickly and efficiently. The manner

of exchange is governed by a set of rules and conventions that we call the SIMNET protocols.

1.1 About this report

The purpose of this document ;.s to describe the SIMNET network and its protocols at two

levels. At one level, we have sought to provide a basic understanding of the mechanisms

underlying a SIMNET distributed simulation. Beyond that, we have also attempted to

document the protocols in sufficient detail to allow others to produce simulators that are

fully compatible with the SIMNET system. Hence this report includes both a broad

discussion of basic concepts and a somewhat more formal specification of the data

communicated among simulators.

Someone desiring the basic understanding should examine chapters 1 through 4. The first

two chapters cover some fundamental concepts underlying the distributed simulation.

The third chapter focuses on an issue of critical importance to the distributed simulation:

that of how, and how often, information about a vehicle's appearance in the simulated

world must be communicated among simulators. A technique we employ to reduce the

volume of communicated data, based on dead reckoning, is described in that chapter.

The fourth chapter specifies the characteristics required of the network supporting the

simulation. Just as telephone conversations may be conveyed by a variety of media

ranging from copper wire to light pulses, so too a distributed simulation can be supported

by a variety of networks. The SIMNET protocols will operate on any network provided

that network meets the requirements described in chapter 4. One network that meets

these requirements—and with which we have experience—is the Ethernet™; appendix E

describes the manner in which SIMNET protocols are made to use that network.

™ Ethernet is a registered trademark of the Xerox Corporation.

Report No. 7627 BBN Systems and Technologies

Of course, to support a distributed simulation a network must be capable of some

minimum level of performance. What that level is depends on the size of the distributed

simulation, and on the types of things being simulated. The methods and protocols

described in this report are appropriate for distributed simulations both large and small, so

we do not prescribe any particular level of network performance. As an example,

however, chapter 4 describes our experience, which indicates that a network capable of

carrying 1500 packets per second is required to support a distributed simulation involv. g

500 vehicles.

The remaining chapters of this report define the protocols in detail. They describe both

the content of the data messages exchanged via the network, and the conditions under

which these messages are produced. To allow the contents of the messages to be defined

succinctly and unambiguously we employ a formal notation, which is described in

appendix A. In chapter 5 we collect in one place the definitions of several basic data

elements that appear in many of the messages. The messages themselves are defined in

chapters 6 through 8.

The protocols employ a particular representational scheme for identifying the types of

objects, such as vehicles and munitions. By this scheme, for example, an Ml tank is

described as one type of object, and an M60 tank, as another. The scheme is intended to

be extensible so that new types of objects can be incorporated into the framework

established by the scheme without disrupting existing software implementations.

Appendix B describes the overall scheme, and appendix C lists particular object types

that have been defined within it.

Because the distributed simulation involves specific types of vehicle simulators

performing detailed simulations of their vehicles, certain protocol messages must convey

information that is vehicle-specific. We have defined the format of this vehicle-specific

information for two types of vehicle simulators: the SIMNET Ml Abrams Main Battle

Tank simulator [1], and the SIMNET M2/3 Bradley Fighting Vehicle simulator [2].

Appendix D defines the vehicle-specific aspects of the protocols for these simulators.

Note that, although some portions of the protocol are permitted to be vehicle-specific, it

is not necessary for all simulators to deal with these vehicle-specific portions.

This report supersedes three earlier reports describing the SIMNET network and

protocols, [3], [4] and [17]. The protocols have undergone continued evolutionary

development as part of the SIMNET project. Although further development is expected,

BBN Systems and Technologies Report No. 7627

we believe that the current structure of the protocols ensures that the anticipated

changes—such as the introduction of new types of vehicles—will have minimal impact

on existing protocol implementations.

1.2 Distributed simulation

The simulated world about which we are concerned in this report is based on some region

of terrain typically tens or hundreds of kilometers across. The terrain is populated with

features such as hills, rivers, roads, trees, and buildings. Both the terrain and the features

emplaced upon it are static: they do not change form in the course of a simulation.1

Operating on and above the terrain are vehicles that do change dynamically in the course

of the simulation. Vehicles may move anywhere about the terrain, assume any

orientation, and change appearance in any of a variety of ways. These vehicles are often

simulated by interactive vehicle simulators operated at the direction of individuals or

crews. A crew perceives the simulated world from the vantage point of their vehicle,

wherever that happens to be. They see both the terrain around their vehicle, and the other

nearby vehicles being operated by other crews. Events unfold in this simulated world at a

pace which is simply that of real time.

Because; the simulated world exists as a place where battles are conducted, certain other

phenomena are also found there. These phenomena include:

• Weapons fire and the effects it has upon vehicles.

• Supplies of fuel and ammunition, and the transfer of these supplies among vehicles.

Vehicle malfunctions and repairs to correct these malfunctions.

Radar emissions and detection by radar.

We use the term exercise to refer to a simulation conducted over some period of time

involving some simulated world. The computer systems that simulate this world we call

simulators. A number of simulators may participate in an exercise at one time and they

1 It is not that the protocols preclude changes to the terrain; they simply make no provisions, in their

present form, for representing and distributing information about terrain changes.

Report No. 7627 BBN Systems and Technologies

must, of course, share information about the world they are simulating. This information

includes:2

Data required by a simulator in order for it to begin participating in an exercise.

Descriptions of the locations and appearances of vehicles.

Descripions of events related to weapons fire and collisions.

Reports of the exchange of fuel or ammunition among vehicles

Descriptions of repairs completed on veh ;.

Simulators share information by means of a network that interconnects them. The

network may span short distances (a local area network) or large ones (a long haul

network), or it may be some combination of both local area and long haul networks.

Although the network must meet certain basic requirements, its exact topology is not

important to a discussion of the protocols. All that is required of the network topology is

that each simulator attach to it at some point.

The exchanges among simulators are governed by a set of protocols that have been

designed with several goals in mind. Among these goals are:

• The protocols must ensure that a sufficiently consistent model of the simulated world is shared

among all simulators.

The protocols must allow simulators to begin and end their participation in an exercise at any time

without disruption to the exercise.

• The protocols must be extensible in future to accommodate new types of vehicles, weapons, and

other simulated phenomena without requiring significant changes to existing simulator

implementations.

• The protocols must minimize the amount of informauon to be exchanged via the netwvk, thereby

minimizing the requirement for network throughput.

• The protocols must allow an optimal balance to be achieved between the amount of computation

performed by simulators, and the amount of information that must be exchanged among them.

2 Note that information about the terrain is not among the things simulators exchange via the network in

the course of a simulation. Each simulator is assumed to have access to a description of the terrain.

BBS Systems and Technologies Report No. 7627

• The protocols must allow the computing tasks necessary for modeling phenomena in the simulated

world to be distributed appropriately according to where these tasks may best be performed.

The protocols must provide sufficient information about events in the simulated world to support

later mconstruction and analysis of those events.

A distributed simulation can encompass many different types of simulators. Two quite

different types of simulators that have been developed as part of the SIMNET project

serve to illustrate the range of possibilities. The Ml tank simulator is operated by a full

crew of four who control their single, simulated tank much as they would an actual tank.

The SIMNET Semi-Automated Forces system [5] on the other hand, allows a few

individuals to direct a large number of ground and air vehicles that operate as a unit in the

simulated world. One simulates a single vehicle; the other simulates many. Simulators

of both types can cooperate together in a single, distributed simulation. In this report,

wherever we need to distinguish a simulator as being one that simulates a single vehicle

at the direction of a full crew, we will call it a crewed vehicle simulator.

One other type of simulator we refer to in this report is the SIMNET Management,

Command, and Control (MCC) system [6]. As a simulator, it simulates a variety of

combat support and combat service support vehicles under the direction of a few

individuals, but it also plays an administrative role by initiating other, crewed vehicle

simulators into the distributed simulation. This combination of multiple functions in a

single system is not in any way a requirement of the SIMNET protocols, but it serves as a

further example of how the protocols will accommodate various types of simulation

systems.

Most of the messages exchanged via the network are multicast so that they can be

received by any system on the network. This makes possible systems that, by listening on

the network, can report or record all events happening in the simulated world. One such

system, which we call a Data Logger, simply records messages as they appear on the

network, noting the time of each one. The record produced by the Data Logger can be

used to analyze, review, or even replay all or part of an exercise.

Although the principle purpose of the network is to convey information about the

simulated world for use by simulators, it has other purposes as well. The network is used

by simulators to report supplemental information that may be useful in certain analyses of

an exercise, ^his information includes, for example, the status of a simulated vehicle's

internal subsystems and stores of supplies. Computers collecting this supplemental

Report Nu. 7627 BBN Systems and Technologies

information from the network can aid analysts in interpreting the events taking place in

the simulated world.

1.3 Scope of this work

Three points must be made concerning the scope of the work described in this report.

First, this report addresses the problem of linking together simulators—with each

simulator modeling one or more vehicles—so that a large collection of simulated vehicles

can interact in a simulated world. This problem is to be distinguished from that of linking

multiple computer systems together to create a single vehicle simulator. The two

problems are quite different in character, and they may demand different solutions.

Second, the techniques we have specified for linking together vehicle simulators are

meant to build upon, rather than replace, standard communication services. Our intent is

not to recommend a particular choice of network service, but rather to describe how a

network meeting certain requirements can be employed for distributed simulation. To

date we have used Ethernet, a standard, local-area-networking technology. Other

network services may prove to be as appropriate or better. Alternatives include the Fiber

Distributed Data Interface (FDDI) local area network; the DoD Internet Protocol (IP) and

ISO connectionless internetwork protocol extended to support multicasting; and the

DARPA internet stream protocol (ST) [7]. The disffibuted simulation protocols described

in this report could be carried by any of these.

There is another aspect to the distinction we draw between the content of information

communicated, and the mechanism by which it is carried. We have linked together local

area networks of simulators using long haul networks and gateways so that simulators at

various sites may participate in a common exercise. The simulators themselves use the

same protocols regardless of whether they are interacting locally or over a long haul

network. The gateways allow the long haul network to be included in a manner that

makes it transparent to the simulators, and requires no change to the protocols used

among simulators. We are continuing our study of gateway-to-gateway protocols that

will provide efficient utilization of a standard internet—such as one employing IP or ST

protocols—while supporting distributed simulation. The third point to be made about the

scope of this report, therefore, is that it does not describe gateway-to-gateway protocols.

However, the simulator-to-simulator protocols it does describe are identically effective

regardless of whether the simulators that use them are together on a single local area

network, or separated onto distinct local area networks that are linked by gateways and a

BBN Systems and Technologies Report No. 7627

long haul network. Our chief aims in developing a gateway-to-gateway protocol are to

retain this sense of network transparency, and to retain the simulator-to-simulator

protocols in their present form.

Report No. 7627 BBN Systems and Technologies I

BBN Systems and Technologies Report No. 7627

DISTRIBUTED SIMULATION CONCEPT

This chapter introduces concepts that provide a framework for the definition of

distributed simulation protocols.

2.1 Architecture

Distributed simulation operates in a particular network environment called a distributed

simulation internet. This network environment may consist of a single local area
network, or it may include a series of local area networks linked together by a long haul
network. Local area networks are referred to as sites, and the computers at each site
(attached to a local area network) are referred to as simulators. This arrangement is

illustrated in figure 2-1.

Simulator

Site
A

Simulator

— Simulator

v- Simulator

Site
R

Simulator

Simulator

Long Haul Network

^^M^m^m^mmm^^^^^mm^^^

Figure 2-1. A distributed simulation spans a collection of simulators located at various sites, connected by

local area and long haul networks. The overall network environment is called a distributed simulation

internet.

Typically, each simulator may be engaged in some aspect of an overall distribute.;

simulation; it may, for example, be simulating one vehicle. However, for convenience.

Report No. 7627 BBN Systems and Technologies

the term simulator is applied to all computers participating in the distributed simulation,

including those that are only "listening" to a simulation exercise passively rather than

simulating anything

A distributed simulation is implemented using a family of related protocols, each serving

a particular need of the distributed system. These protocols include:

• A simulation protocol, used to introduce simulated elements into an exercise, remove them from

an exercise, and convey information about the simulated world for use by simulators.

• A data collection protocol, used to report information arising from the simulation that is (a) of

interest primarily to those studying the course of an exercise, or (b) needed to restart an exercise

following an interruption.

An association protocol providing some communication services thai are both particular to the

application of distributed simulation, and needed to support the simulation and data collection

protocols.

Simulators engaged in a distributed simulation implement appropriate features from each

of these protocols, and participate in all of them simultaneously. For example, a

simulator that is involved in an exercise will be reporting information about its behavior

to other simulators using the simulation protocol, and reporting data for collection and

analysis using the data collection protocol Messages of both the simulation protocol and

the data collection protocol will be conveyed using the association protocol. All three

protocols are described in detail in this report.

The protocols, in turn, are based on the use of a communication service that may be

implemented in various ways. We describe in this report how one communication

network, Ethernet, may be used to provide this service. Figure 2-2 shows how the three

protocols and the underlying communication service are related to each other.

Simulators may engage in other communication protocols besides those used to achieve

distributed simulation. A simulator might implement additional protocols for functions

such as remote diagnosis or bulk transfer of data, and use the same ur

communication service to support these additional protocols. This r ever, is

concerned only with the three protocols that provide distributed simu

10

BBN Systems and Technologies Report No. 7627

Simulation
Protocol

Data Collection
Protocol

Association Protocol

Communication Service

i-™

Figure 2-2. The simulation and data collection protocols are carried by the association protocol, which, In

turn, is supported by an underlying communication service.

The simulation protocol and the data collection protocol share many aspects of data

representation and style. Moreover, there are cases where the interactions of one protocol

are closely related to those of the other. For example, when a simulator joins an exercise

through a simulation protocol interaction, it begins to make data available through data

collection protocol interactions. The division of functions among these two protocols is

intended to provide a logical and convenient grouping of those functions rather than a

distinct separation of them.

The information exchanged by computers as part of a protocol is packaged in messages

called protocol data units (PDUs). For each of the SIMNET protocols, a particular set of

PDU types is defined according to the communication needs of that protocol.

2.2 Simulation exercises

A simulation exercise is a joint activity in which multiple simulators share a common,

simulated world. Associated with any exercise are certain things that must be known to

each participant. These things include:

ii

Report No. 7627 BBN Systems and Technologies

• Information about the terrain upon which the exercise is taking place. Each simulator is assumed

to have access to any information it requires about the terrain. Of course, simulators must agree

closely on how the terrain is shaped, and how it is covered with features such as vegetation and

buildings. The SIMNET protocols impose no constraints on how terrain information is

represented or used by simulators. The protocols do, however, provide a mechanism for

identifying the terrain information to be used for a particular exercise. A collection of information

describing a particular area of terrain is referred to as a terrain databas'; each terrain database is

identified by a combination of name and version number.

• The date and time in the exercise's simulated world. Although time in the simulated world passes

at exactly the same pace as it does in the real world, clocks may be set differently there. The

SIMNET protocols convey the value of time in the simulated world so that simulators can vary

effects such as lighting and visibility according to the value of simulated date and time of day.

• The identity of the exercise.. The SIMNET protocols allow multiple exercises to occur

simultaneously using a single network while treating each as though it were being supported by its

own network. The concurrent exercises are kept from interfering with each other by the

assignment to each exercise of a distinct integer called an exercise identifier. All PDUs pertaining

to a particular exercise bear that exercise's identifier when transmitted over the common network.

The recipient of a PDU simply ignores the PDU if it bears the identifier of an exercise other than

the one in which it is currently participating.

The SIMNET protocols provide two mechanisms for distributing this information among

exercise participants. Using a feature of the data collection protocol, any simulator may

query for and obtain this information from other participants of an exercise. The

simulation protocol contains a second mechanism that allows one simulator to initiate

another into an exercise while providing it with the information. This latter process is

called activation. Either or both mechanisms may be used. It is nevertheless required

that a proper exercise identifier, terrain database, and simulated time be chosen prior to an

exercise, and that this information first be supplied to some participating simulator

through a means not encompassed by the SIMNET protocols.

2.3 Simulated vehicles

The SIMNET protocols are intended to accommodate a broad variety of different types of

vehicle simulators. An individual simulator participating in an exercise may model a

single vehicle—as does the Ml tank simulator—or many vehicles—as does the MCC

system. A single vehicle may be controlled by a full complement of human crew

12

BBN Systems and Technologies Report No. 7627

members, or many vehicles may be controlled by a single person. A vehicle may be

either manned, such as a tank or aircraft, or unmanned, such as a missile.

A simulator may begin to involve its vehicle in an exercise at any time, provided that the

vehicle joining the exercise has correct values for such pamneters as the exercise

identifier. The vehicle can be introduced into the exercise Ly the simulator itself, with

parameters provided by its human operators. Alternatively, a simulator's vehicle can be

introduced into an exercise by another computer, such as an MCC system, through the

process of activation.

Once a vehicle is involved in a simulation, it is said to be active. At any time that

vehicle's simulator can terminate its involvement in the exercise while announcing the

vehicle's withdrawal to other simulators. Alternatively, the vehicle can be removed from

the exercise by another computer—such as the MCC system that activated it. In either

case, the process is called deactivation, and it is conducted via the simulation protocol.

Hvery vehicle participating in an exercise has assigned to it a distinct number called a

vehk-e identifier. A system that simulates many vehicles must have a unique vehicle

identifier for each one, and a system that activates other simulators must provide them

with appropriate vehicle identifiers to use. No two vehicles in the same exercise may

have the same vehicle identifier.

In addition to a vehicle identifier, each vehicle participating in an exercise has several

attributes that its simulator makes known to all others via the simulation and data

collection protocols. These attributes include:

Which side the vehicle is fighting for. The vehicles participating in an exercise are grouped into

collections we ca\l forces. Typically, two forces are involved and these forces fight against each

other. However, the protocols allow vehicles to be divided among many different forces, and they

impose no restrictions as to which forces fight with or against which others. Forces are identified

by numbers in the range 1 through 255.

• What organizational unit the vehicle is allocated to. Within a force, vehicles are allocated among

various organizational units that are arranged in some hierarchy. For example, a vehicle may

belong to a certain company, of a certain battalion, of a certain brigade, etc. The protocols provide

a way for advertising a vehicle's position within its force's organizational hierarchy, for any of

various forms of military hierarchy.

13

Report No. 7627 BBN Systems and Technologies

What type of vehicle it is. A vehicle's type identifies it as a particular kind of vehicle, such as, for

example, an Ml Al Abrams main battle tank or a Soviet H1ND-E attack helicopter. There are

three vehicle types associated with each vehicle; one is the type of vehicle that is actually being

simulated; the other two are called the vehicle's guises, and they define how the vehicle appears to

other observers. Often, all three vehicle types are the same with the result that the vehicle appears

identically to all observers. The vehicle types can be made to differ, however, to obtain a useful

effect.

Each vehicle has two guises so that it can be made to appear as one type of vehicle to those of one

force, and as another type of vehicle to those of other forces. Based on whether an observer's

vehicle belongs to a particular force (force number 1) that observer's simulator will display other

vehicles using one guise or the other. One application of this feature is to support a battle between

two forces, each of which views themselves as using U.S.-type vehicles, and the other force as

using Soviet-type vehicles. All vehicles in the battle may be simulated as Ml tanks, but those of

force 1 may be disguised as T72 tanks to those of force 2, while those of force 2 are disguised as

T72 tanks to those of force 1.

Where the vehicle is, and how it is oriented. A vehicle need not always be visible during an

exercise—some vehicles may vanish from one place to later reappear at another. At all times

when a vehicle is active and visible, however, it has a location and orientation in space. These arc

described in terms of a world coordinate system discussed in section 2.4. Some vehicles have

independently movable parts, such as a turret and a gun barrel, whose relative positions are also

described.

An optional vehicle marking. A vehicle may be seen by its observers as bearing a label such as a

name (e.g., "Titanic") or a bumper number (e.g., "PltLdr/3/C"). Whether and how the label is

displayed for a particular observer may depend on which forces the vehicle and its observer belong

to.

• Variations on the basic appearance of the vehicle. A vehicle's basic appearance can be modified

in various ways. For example, it can catch fire, emit a plume of smoke, or become destroyed.

Some variations, such as those just listed, are applicable iO almost all types of vehicles; other

variauons, such as whether an M2 infantry vehicle's rear ramp is lowered, apply only to a specific

type of vehicle.

• The vehicle's engine speed. A vehicle's engine speed is reported via the simulation protocol to

make possible a simulation of sounds on the battlefield.

T4

BBN Systems and Technologies Report No. 7627

What the vehicle is capable of. One vehicle may be called upon by another to supply munitions or

perform repairs. Whether a vehicle is capable of providing these services is indicated via the

simulation protocol.

• How various subsystems of the vehicle are operating. A vehicle's simulator may model the

vehicle to a level of detail where the operational status of various vehicle subsystems are

represented. The simulation and data collection protocols provide mechanisms for reporting the

status of a vehicle's subsystems, and for flagging changes in subsystem status.

What munitions, such as fuel and ammunition, the vehicle is carrying. Simulators that model the

quantities of stores of various kinds carried by their vehicles report this information via the dsta

collection protocol,

A vehicle's identifier, type, and fute assignment are attributes that do not change in the

course of an exercise. Other attributes change dynamically in a manner that requires the

vehicle'^, simulator to periodically inform other simulators of the changes.

A vehicle's appearance to observers is determined by attributes such as its guises,

location, and orientation. Whenever a vehicle's appearance changes in any significant

way, that vehicle's simulator must inform other simulators of the vehicle's new

appearance. The simulator does this by issuing an update message—called a Vehicle

Appearance PDU—to all of the other simulators participating in the exercise. In chapter

3 we describe these update messages, the conditions that compel simulators to send them,

and the behavior required of simulators receiving them.

2.4 Coordinate systems

Locations in the simulated world are identified using a right-handed Cartesian coordinate

system called the world coordinate system. The axes of this system are labelled X, Y,

and Z, with the positive X axis pointing east, the positive Y axis pointing north, and the

positive Z axis pointing up. A distance of one unit measured in world coordinates

corresponds to a distance of one meter in the simulated world, and a straight line in the

world coordinate system is a straight line in the simulated world.

Since simulators express locations to each other in terms of the world coordinate system,

all must share a common definition of where the origin of that coordinate system lies.

Moreover, in order to maximize the precision with which locations can be expressed, the

origin should be chosen so that the space used by simulated vehicles lies relatively near

15

Report No. 7627 BBN Systems and Technologies

the origin. These are the only constraints that the SIMNET protocols impose on the

origin of the world coordinate system. By convention, however, the origin is usually

placed at the southwest comer of the terrain area.

To describe the location and orientation in space of any particular vehicle, we introduce a

vehicle coordinate system that is fixed to that vehicle. This is also a right-handed

Cartesian coordinate system with meter-sized units; its X axis points to the vehicle's

right, its Y axis points to the vehicle's front, and its Z axis points up. A convention is

used for the position of the coordinate system's origin: the origin of a ground vehicle's

coordinate system is at the center of the vehicle's base; that of an air vehicle is in the

middle of its fuselage.

The location of a vehicle is specified as the position of the origin of its vehicle coordinate

system, expressed in world coordinates. The orientation of a vehicle is specified as the

relative rotation between its coordinate system and the world coordinate system. In the

context of the SIMNET protocols, this rotation is represented as a nine element rotation

matrix:3

R =

rii ri2 r-is

^l r22 ^23

- TSI r32 r33

3 The rotation matrix has several equivalent interpretations. When the world and vehicle coordinate

systems share a common origin, the following are all true:

• The three columns of the matrix correspond to unit vectors lying along each of the three

positive axes of the vehicle coordinate system, expressed in world coordinates.

• The three rows of the matrix correspond to unit vectors lying along each of the three positive

axes of the world coordinate system, expressed in vehicle coordinates.

When a vector expressed in vehicle coordinates is prcmultiplied by the matrix, the result is the

same vector expressed in world coordinates.

• When a vector expressed in world coordinates is postmultiplicd by the matrix, the result is the

same vector expressed in vehicle coordinates.

16

BBN Systems and Technologies Report No. 7627

2.5 Events

In the course of an exercise, various PDUs are issued by simulators to announce :ertain

events involving the vehicles they simulate. These PDUs report such occurrences as

collisions between vehicles, shots fired from vehicles, shells striking their targets, and

injuries suffered by vehicles. In studying an exercise it is often desirable to be able to

link these events, establishing associations between causes and effects. Given a PDU

describing the firing of a shell, for example, it must be possible for the analyst to locate a

later PDU describing the explosion of that shell, and any further PDUs describing how

other vehicles were damaged by the explosion.

To make these associations explicit, the various PDUs that describe a related series of

events are linked with each other by virtue of their bearing a common tag. The tag is

created by the simulator whose vehicle initiated the chain of related events, perhaps by

firing at or colliding with another vehicle. The tag consists of a pair of identifiers

provided by that simulator: its vehicle's identifier, and a unique serial number, called an

event identifier, generated by the simulator. Each time a vehicle initiates a new chain of

events, its simulator creates a new, unique event identifier on behalf of that vehicle.

From the time a vehicle enters an exercise until the time it withdraws, each event

identifier created for the vehicle must be a new, unique one. Since the event identifier is

unique among those created for the vehicle, and since the vehicle's own identifier is

unique among all vehicles in the exercise, the combination of the two identifiers uniquely

labels the chain of events.

This is how the pair of vehicle and event identifiers seives to link the PDUs that report

the events of a weapons engagement. When a vehicle fires, its simulator generates a new

event identifier and issues a PDU containing both that event identifier and its own vehicle

identifier. When the fired round impacts, the simulator issues a second PDU bearing the

same pair of identifiers. Then any simulator whose vehicle is damaged by the exploding

round reports its damage by issuing a PDU that contains the same pair of vehicle and

event identifiers. These PDUs, and the manner in which they convey vehicle and event

identifiers, are described in chapters 7 and 8.

The sequences of PDUs that describe a collision between vehicles, or a repair to a

vehicle, are also tied together by the PDUs sharing a common, unique pair of vehicle and

event identifiers.

17

Report No. 7627 BBN Systems and Technologies

3 VEHICLE APPEARANCE

Much of the information tiM must be communicated among simulators participating in a

distributed simulation is that which describes the appearance of vehicles as they move

about the simulated world. In this chapter, we describe the method used in the simulation

protocol for communicating vehicle appearance information.

3.1 Overview

As a simulator models the behavior of a vehicle in real time, that vehicle's appearance

can be constantly changing. The vehicle may be changing its orientation and location,

moving its turret or gun barrel, and even catching fire and burning. The vehicle's

simulator must inform other simulators of these changes so that all simulators

participating in the exercise can depict the vehicle correctly, at its current location.

The appearance of a vehicle is completely described by a Vehicle Appearance PDU,

which is defined as part of the simulation protocol. This PDU identifies a vehicle and

describes that vehicle's type, location, and orientation. The PDU also describes whether

the vehicle is on fire, destroyed, or emitting a plume of smoke. If the vehicle has

independently movable parts, such as a turret and gun barrel, the PDU describes the

relative positions of those parts. Finally, for reasons we will explain, the Vehicle

Appearance PDU may contain information about the vehicle's motion, such as its

velocity vector.

It would be possible for the simulator of a vehicle to issue a Vehicle Appearance PDU

describing that vehicle every single time the vehicle's appearance changed. However,

while the vehicle was in motion, PDUs would be issued as frequently as the simulator

recomputed the location of the vehicle, which could be quite often.

The simulation protocol allows us to reduce the frequency with which Vehicle

Appearance PDUs must be issued by employing a technique called dead reckoning. The

term, borrowed from navigation, means establishing the position of a ship based on an

earlier known position and estimates of time and motion. Simulators may use dead

reckoning to extrapolate the locations of vehicles so that they need obtain less often the

actual Vehicle Appearance PDUs describing those vehicles.

18

BBN Systems and Technologies Report No. 7627

This is how dead reckoning is used. Each simulator is responsible for maintaining a

detailed model of its own vehicle's state, including, for example, engine power, thrust,

and fuel consumption; aerodynamic forces or terrain forces; weapon systems computers,

etc. The simulator will have a precise notion of its own vehicle's appearance over time.

Each simulator also maintains a simple dead reckoning model of the state of all other

vehicles—simulated by systems elsewhere on the network—with which it might possibly

interact. Typically, these are all the other vehicles within a particular range of the

simulator's own vehicle. The dead reckoning model is maintained by extrapolating the

last reported location of each other vehicle, based on its last reported velocity vector, until

such time as a new Vehicle Appearance PDU is received.

This approach implies that each simulator is also responsible for issuing a new Vehicle

Appearance PDU whenever its vehicle changes course or speed. To do this, each

simulator must maintain, in addition to its "high fidelity" model, a dead reckoning model

that corresponds to the model that other simulators are maintaining of its vehicle. After

each update of both its high fidelity model and its dead reckoning model, the simulator

compares the exact appearance of its vehicle with the extrapolated appearance and issues

a Vehicle Appearance PDU only when a significant discrepancy has accumulated.

This approach obviously leads to a variable rate of issuing Vehicle Appearance PDUs that

will differ from one simulator to another at any given time. Each simulator transmits

these PDUs only when necessary. The principal motivation is, of course, to minimize

network communication traffic and hence the amount of incoming information that each

simulator must process.

In essence, dead reckoning achieves a trade off among three factors: the network

communication traffic, the amount of computation performed by simulators, and the

precision with which each simulator perceives the vehicles of other simulators. Network

traffic is reduced by dead reckoning because fewer Vehicle Appearance PDUs are

transmitted. Computation demands are increased for the simulators that must, as a result,

extrapolate the appearances of vehicles in the absence of any Vehicle Appearance PDUs

describing them. And precision is limited by the amount of discrepancy allowed to

accumulate between a vehicle's high fidelity model and its dead reckoning model.

There are many parameters of the dead reckoning algorithm that may be adjusted to

establish the point at which these three factors are balanced. The thresholds against

which discrepancies are gauged must be carefully chosen, for as these thresholds are

19

Report No. 7627 BBN Systems and Technologies

increased network traffic is reduced, but so is precision. There are also choices to be

made among dead reckoning algorithms. Dead reckoning can be based on the use of

higher order time derivatives of vehicle motion—such as acceleration—with the result

that network traffic is reduced, but more computations must be performed to use these

higher order derivatives.

The optimal choice of discrepancy thresholds and dead reckoning algorithms depends on

the type of vehicle simulated. The choices that are appropriate for slow moving ground

vehicles may not De optimal for high-speed aircraft. Thus the simulation protocol allows

different thresholds and algorithms to be used for different types of vehicles, and vehicles

are classified according to the method used for dead reckoning them. These

classifications are called vehicle classes. Currently, three classes are defined:

static Vehicles of this class are always stationary while visible, and they have no

independently moving parts. The location of one of these vehicles need not be

updated through dead reckoning because its velocity is always zero.

simple Vehicles of this class may move, but they have no independently moving parts.

The location of one of these vehicles is dead reckoned using its velocity vector.

tank Vehicles of this class may move, and they have independently moving turrets

and gun barrels. The Ml tank and the M2 fighting vehicle are both in this class.

The location of one of these vehicles is dead reckoned using its velocity vector.

3.2 Measuring discrepancies in vehicle appearance

Before defining the discrepancy thresholds and dead reckoning algorithms used for

vehicles of each of these classes, we first describe some discrepancy measures that are

appropriate to all vehicles. These are measures of the difference between a vehicle's

appearance as determined by its high fidelity model and that determined by its dead

reckoning model.

3.2.1 Discrete appearance attributes

A vehicle's appearance is partly described by a series of discrete attributes indicating

such things as whether the vehicle appears destroyed, whether it is on fire, and whether it

is emitting a plume of smoke. The discrepancy between two versions of a vehicle's

appearance, therefore, includes a measure of how these discrete attributes differ among

the two versions.

2»

BBN Systems and Technologies Report No. 7627

3.2.2 Location

A vehicle's location is defined as the location of its vehicle coordinate system's origin, in

world coordinates. The discrepancy between two versions of a vehicle's location,

however, is measured in the coordinate system of that vehicle. Specifically, we measure

the discrepancy between the actual location of a vehicle and its location as predicted by

dead reckoning, simply as the dead reckoned location transformed into the vehicle's

actual coordinate system. This is a three-element vector that describes the discrepancy

along each of the vehicle's three axes. By using the vehicle's own coordinate system for

this measure, we can apply different thresholds to discrepancies along each of the three

vehicle coordinate system axes. We are thus able to have different tolerances for

longitudinal than for lateral departures between actual and dead reckoned locations of the

vehicle.

3.2.3 Orientation

A vehicle's orientation is represented by a nine element rotation matrix. The discrepancy

between two versions of a vehicle's orientation can also be represented by such a matrix,

describing the relative rotation between the two vehicle orientations. This relative

rotation matrix may be obtained by multiplying the vehicle's actual rotation matrix by the

transpose of its dead reckoned rotation matrix. If R is a relative rotation matrix obtained

in this way.

R =

I'll r-\2 Ha

r2i ''22 t23

fSI r32 ^33

= ("«actual) ((Fidead reckoned))

then we can derive from R a simple measure of the amount of rotation that matrix

represents. This measure is the rotation exf sed as an angle measured about a single,

arbitrary axis. The direction of the axis is not significant for our application, but we use

the magnitude of the rotation as a measure of discrepancy. The magnitude of rotation is

represented by 0 in the equation

COS 6 =-
r"+r^33-1

This scalar angle of rotation about an arbitrary axis is the measure we use to describe the

discrepancy between a vehicle's actual orientation, and its dead reckoned orientation.

21

Report No. 7627 BBX Systems and Technologies

3.3 Dead reckoning methods and discrepancy threshoids

We now define the discrepancy thresholds and dead reckoning methods applied to the

various classes of vehicles.

3.3.1 Vehicles of the static class

A vehicle of the static class is always stationary while visible. Therefore, no dead

reckoning is performed of either its location or its orientation. The simulator of a static

class vehicle must issue a new Vehicle Appearance PDU describing the vehicle whenever

one of its discrete appearance attributes changes.

3.3.2 Vehicles of the simple class

A vehicle of the simple class is modeled using dead reckoning based on the vehicle's

velocity vector. This vector is computed by the vehicle's simulator and included in any

Vehicle Appearance PDUs that are issued to describe that vehicle.

The simulator of a simple class vehicle must issue a new Vehicle Appearance ?DU

whenever any of the following discrepancies accumulate between the appearance of the

vehicle as determined by its high fidelity model, and its appearance as determined by

dead reckoning:

A difference in any of the vehicle's discrete appearance attributes.

A difference in location, as measured along any of the three vehicle axes, that is greater than 10%

of the vehicle's dimension along that axis.

• A difference in orientation that is greater than 3 degrees.

Other values of the location and orientation thresholds may be chosen to meet the needs

of a particular tiaining system or exercise. This repon does not address the question of

how the location and orientation threshold values are provided to simulators.

3.3.3 Vehicles of the tank class

A vehicle of the tank class is modeled using dead reckoning based on the vehicle's

velocity vector. This vector is computed by the vehicle's simulator and included in any

Vehicle Appearance PDUs that are issued to describe that vehicle. Because the vehicle

22

BBN Systems and Technologies Report No. 7627

has an independently movable turret and gun, the Vehicle Appearance PDUs also contain

the relative positions of those parts.

The simulator of a tank class vehicle must issue a new Vehicle Appearance PDU

whenever any of the following discrepancies accumulate between the appearance of the

vehicle as determined by its high fidelity model, and its appearance as determined by

dead reckoning:

A difference in any of the vehicle's discrete appearance attributes.

A difference in location, as measured along any of the three vehicle axes, that is greater than 10%

of the vehicle's dimension along that axis.

A difference in orientation that is greater than 3 degrees.

A difference in turret azimuth, as measured relative to the vehicle's hull, that is greater than 3

degrees.

A difference in gun elevation, as measured relative to the vehicle's hull, that is greater than 3

degrees.

Other values of the location, orientation, azimuth, and elevation thresholds may be chosen

to meet the needs of a particular training system or exercise. This report does not address

the question of how the values of the thresholds are provided to simulators.

3.4 The effect of delay

A description of a vehicle's appearance passes through several hands from the time it is

first expressed as a Vehicle Appearance PDU, to the time the vehicle is displayed by an

observer's simulator. The steps include processing by the software that provides

communication services, transmission across a network, and perhaps queuing within the

receiving simulator. Each of these steps may impose some delay, with the result that the

observer is always seeing the vehicle as it was at some point in the recent past.

When a Vehicle Appearance PDU incurs a delay in travelling from its sender to an

observer, the observer perceives the sending simulator's vehicle not where it is at that

moment, but where it was when the PDU was sent. The magnitude of this discrepancy is

proportional to the speed of the vehicle described by the PDU, and to the magnitude of

the network delay. Therefore, this effect is expected to be most evident in certain

situations—such as when aircraft flying at high speed are able to observe each other

23

Report No. 7627 BBN Systems and Technologies

closely (e.g., they are in close formation) while being simulated by widely separated

simulators.

Nevertheless, in many distributed simulation situations a constant delay of even half a

second is not apparent. Using a network composed of Ethernets and terrestrial long-haul

circuits, we have found no evidence that the delay is a problem. More easilv noticed,

however, are the effects of any variance in the delay from one Vehicle Appearance PDU

to the next. If the delay between sender and observer varies, then the motion of the

vehicle may not appear smooth. In this case, the magnitude of the ef net is proportional

to the speed of the vehicle, and to twe variance of the delay. The effect may show up, for

example, when an air defense vehicle is tracking a fast-moving aircraft. If there exists

variance in the delay with which the air defense vehicle simulator displays its image of

the aircraft, and if the variance is not somehow compensated for, then the aircraft will be

seen to "jump" forward and backward as new Vehicle Appearance PDUs are received.

The simulation protocol includes a mechanism by which delay variance can be

compensated for. The mechanism requires some extra computation by an observer's

simulator, but—at the discretion of that simulator—this computation need not be

performed for all vehicles. An observer's simulator might choose to perform the extra

computation, for example, only for fast-moving aircraft that are near enough to be

tracked closely.

The mechanism uses timestamps that are reported at a millisecond scale. Each simulator

maintains its own millisecond clock, which need not be synchronized with that of any

other simulator. When issuing a Vehicle Appearance PDU, a simulator includes the

current value of its clock. A simulator receiving consecutive Vehicle Appearance PDUs

describing a single vehicle can examine the timestamps in those PDUs to measure, and

compensate for, any delay variance.

Here we prescribe one method a simulator might use to compensate for delay variance of

the Vehicle Appearance PDUs it is receiving.

Upon receiving a Vehicle Appearance PDU describing a particular vehicle for the first time, the

simulator simply records the information contained in that PDU, including the timestamp. It uses

this information to display the vehicle.

24

BBN Systems and Technologies Report No. 7627

Each time the simulator must use dead reckoning to extrapolate the appearance of the vehicle, it

increments its record of the vehicle's timestamp by the period of time over which it is

extrapolating. It then uses the updated appearance information to display the vehicle.

When a subsequent Vehicle Appearance PDU describing the same vehicle is received, the

simulator compares the timestamp in the PDU with that it has recorded (and updated while dead

reckoning). If the two are in close agreement, then the contents of the new PDU are adopted

immediately. Otherwise, the simulator either (a) extrapolates forward the appearance described in

the new PDU to the time of its recorded timestamp, or (b) sets aside the PDU until its recorded

timestamp matches that in the PDU.

The SIMNET protocols do not mandate this particular method of compensating for delay

variance, or even require the use of any delay variance compensation whatsoever.

Whether and how compensation is performed by any particular simulator will depend on

the nature of the network supporting the distributed simulation, and the use to which the

simulator will be put. The protocols do require, however, that all Vehicle Appearance

PDUs contain the timestamp that permits a method such as this to be employed by any

receiving simulator.

25

Report No. 7627 BBN Systems and Technologies

4 THE SIMNET NETWORK

The SIMINET protocols arc supported by a network whose capabilities are defined in this

chapter.

In terms of the ISO Basic Reference Model for Open Systems Interconnection [8], the

SIMNET protocols are Application Layer protocols that make direct use of network or

data link layer services with no specific services required of the intermediate layers.

4.1 Network requirements

Any network will support a distributed simulation using the SIMNET protocols provided

it meets the criteria listed below. These criteria apply regardless of whether the network

is a single, local area network, or a large distributed simulation internet composed of

many subnets.

• The network must provide for connectionless data transfer, also known as a datagram service.

This means that a computer on the network must be able to to transfer data to another computer on

the network in a single operation, without first establishing a connection with the destination

computer. The unit of data transferred in a single operation is called a datagram.

• A datagram must be able to convey at least 2048 bits (256 octets) of information.

The network must provide either for the broadcasting of datagrams, or for the multicasting of

datagrams. A broadcast datagram will be delivered to all computers on the network (other than the

sender). A multicast datagram will be delivered to a subset of all computers on the network.

(Broadcasting is actually a special case of multicasting.)

The network should have a low rale of non-delivery. Although the SIMNET protocols will

tolerate occasional failures by the network to deliver datagrams, these should be allowed to occur

only rarely.

• The network should maintain datagram integrity. Any transmission errors that result in the

corruption of a datagram should be detected by the network. Corrupted datagrams should not be

delivered.

• The network must provide a certain level of performance, which is characterized in terms of

throughput and delay. These performance criteria are discussed in the following sections.

It is possible that a computer may receive from the network a datagram that has become

corrupted in transit. The network itself provides a means for detecting and reporting most

26

BBN Systems and Technologies Report No. 7627

instances of datagram corruption. One may wish to log these erroneous datagrams as a

measure of the network's reliability, possibly providing early warning of any problems
with the network. Other than that, the computers participating in a SIMNET exercise can
safely ignore erroneous datagrams, discarding them without action. The protocols are
sufficiently robust that they can, in most cases, tolerate occasional network errors without
human crews participating in the simulation becoming aware of the errors.

4.2 Network throughput

The throughput of the network (the rate at which it can carry information) must be

sufficient to support the distributed simulation. However, adequate throughput is not

easily predicted, for it depends on many things.

Since Vehicle Appearance PDUs constitute almost all of the data carried by the network

during an exercise, the traffic load depends largely on the conditions that result in the
transmission of these PDUs. One factor is the manner in which simulated vehicles are

operated by their crews. A vehicle in motion usually transmits PDUs faster than one at

rest; the exact rate depends on statistics of the vehicle's velocity and acceleration.
Another factor is the nature of the model used as a basis for dead reckoning. When a
higher order dead reckoning model is used, corrections to a vehicle's dead reckoned state,
in the form of Vehicle Appearance PDUs, are usually required less frequently. A third
factor is the setting of the thresholds which determine how far a vehicle's actual state is

allowed to diverge from its dead reckoned state before a Vehicle Appearance PDU is
issued. As those thresholds are relaxed, PDUs will be transmitted less frequently, but the

movement of a vehicle will be seen by the crews of other vehicles with less fidelity.

The use of a higher order dead reckoning model may reduce the network traffic load, but
each simulator must then perform more computation to dead reckon the state of its own
vehicle and the state of every other simulator's vehicle. Any decrease in network traffic

load achieved by using higher order derivative information must be weighed against the
computational cost of a more complex dead reckoning algorithm, which must be
performed by each simulator in proportion to the number of vehicles it is tracking.

The traffic load on the network depends not only on the frequency with which datagrams

are transmitted, but also on the sizes of those datagrams. One trade-off concerns the

provision of redundant information in the Vehicle Appearance PDUs to save other

vehicle simulators from having to recompute it. For example, the vehicle's orientation

27

Report No. 7627 BBN Systems and Technologies

about each of three axes is encoded in a Vehicle Appearance PDU as a nine-element

rotation matrix, rather than as simply three angles. The resulting increase in network

traffic load is more than offset by the savings resulting from simulators receiving the

PDU no longer having to compute the rotation matrix themselves to support the common

operation of displaying vehicles.

The network resources that provide the throughput necessary for a distributed simulation

should not be subject to competition from other demands on the network. In general, this

will mean guaranteeing the availability of a certain level of network capacity for a

distributed simulation even though that capacity may not be needed at all times.

We have measured the network traffic produced by SIMNET Ml tank simulators and by

close-support aircraft simulators, be . individually and collectively, when operated in

realistic company- and battalion-scale exercises. Although we have measured network

traffic under various assumptions of dead reckoning algorithms and discrepancy

thresholds, the results described here were obtained using the parameters documented in

chapter 3. Each of the simulators we measured will produce up to fifteen Vehicle

Anpearance PDUs per second if operated in a certain manner (in the case of the Ml

siii i lator, this would require slewing the turret at a high rate). This seldom occurs,

however. We have found that an Ml simulator will generate an average of two to three

Vehicle Appearance PDUs per second while being actively operated, as during a

movement to contact or an attack. Ninety percent of the time, these simulators produce

Vehicle Appearance PDUs at a rate of less than four per second. For an active close-

support aircraft, about six Vehicle Appearance PDUs per second are produced.

However, when a large population of vehicles are participating together in an exercise,

the overall network traffic in terms of Vehicle Appearance PDUs per vehicle is somewhat

lower since not all vehicles are being operated actively at any one time. We have found

that the network traffic averaged over several companies of tanks, all participating in an

exercise at the same time, is about one Vehicle Appearance PDU per second per tank.

4.3 Network delay

By network delay, we mean the amount of time required for a datagram to be carried by

the network from one simulator to another. Two characteristics of this delay are

important to consider: the average magnitude of the delay, and the degree to which the

delay may vary from one datagram to another.

2«

BBN Systems and Technologies Report No. 7627

The magnitude of network delay affects the quality of a distributed simulation only in

certain ways. Consider a case where a target vehicle is being observed from another

vehicle, and the network delays by a fixed amount each target Vehicle Appearance PDU

reaching the observer's simulator. The observer will simply always see the target as it

was a fixed time earlier. As long as he is passively observing, this delay will not be

apparent. However, if the observer is also affecting the target vehicle—such as by

striking it with weapons fire, or by acting in a way that causes it to maneuver in

response—then the observer may notice the lag due to the network delay.

How much network delay is acceptable can only be determined by considering the

application itself—no absolute rule can be given. For distributed simulations involving

only ground vehicles, we have found to be acceptable the delays of a few hundred

milliseconds that result from transmitting data via satellite channels. However, unless

somehow compensated for, this delay would not be acceptable to aircraft pilots

attempting to fly in close formation. Note that within a site, the delays experienced by

datagrams traversing a local area network are more typically a few milliseconds at most.

The level of fidelity with which a simulator's vehicle is perceived by others is related to

the thresholds used by that simulator in determining when to transmit a Vehicle

Appearance PDU. This fidelity is also affected by the variance in network delay. If the

delay incurred by PDUs travelling from one simulator to another varies widely from one

PDU to another, the receiving simulator will be able to dead reckon the sending

simulator's vehicle with less than the accuracy dictated by the thresholds. Although the

simulation protocol allows delay variance to be somewhat compensated for (using a

mechanism described in section 3.4), it is nevertheless desirable to minimize it.

Another consequence of delay variance may be the delivery of datagrams out of

sequence. A datagram sent first may be overtaken by one sent second because it

encounters a larger delay. The timestamps included in Vehicle Appearance PDUs make

it possible to detect those for a particular vehicle that arrive out of sequence. Other

portions of the simulation and data collection protocols should not be affected by delay

variances of tens, or even hundreds, of milliseconds.

2'»

Report No. 7627 BBN Systems and Technologies I
I

30

BBN Systems and Technologies Report No. 7627

5 PROTOCOL DATA ELEMENTS

Communication carried out according to the governing rules of a protocol involves the

exchange of units of data called protocol data units (PDUs). Each PDU is composed of

individual data elements caüedfields. Among the first fields of every PDU is one that

identifies the type of the PDU; the header is usually followed by additional fields whose

format and meaning depend on the PDU's type.

In this chapter we define data elements that are commonly used in a variety of different

types of PDUs of all three SIMNET protocols. We also define in this chapter the

concepts of timer and counter, which are used in describing time-based and repetitive

protocol procedures.

5.1 Basic data elements

This section contains definitions of various basic data elements, including how these data

elements are represented as communicated bits. Because these elements form parts of

many different PDUs, their definitions are collected here for reference in later chapters.

A reference appears thus: (§5.1.1).

Data elements are defined in this report using a notation called Data Representation

Notation (DRN\ It is described fully in appendix A.

5.1.1 Angle

Angles, such as the azimuth of a tank's turret relative to the front of the tank, are

represented as 32-bit values:

type Angle Unsignedlnteger (32)

The 32-bit value is interpreted as a binary fixed-point fraction with an implied "binary

point" to the left of the most significant bit. The fraction expresses the angle as a portion

of a full circle, in the range

This method of measuring angles is referred to as Binary Angular Measure (PAM).

:<i

Report No. 7627 BBN Systems and Technologies

5.1.2 Battle Scheme

The battle scheme identifies how force IDs (§5.1.7) and guises (§5.1.23) are bein^i

applied in an exercise.

— none of those listed below

type BattleScheme enum (8) {

battleSchemeOther (0),

battleSchemeAbsolute,

battleSchemeRelative

}

In an exercise conducted using battleSchemeAbsolute, the distinguished and

other object types in the guises field of Vehicle Appearance PDUs are assigned as

follows:

Vehicle Guises

Distinguished Olhgr

US US

Soviet Soviet

US Soviet

Soviet US

Force ID

distinguishedForcelD

otherForcelD

observerForcelD

tarcetForcelD

If the battle scheme is battleSchemrRelative, the corresponding assignment is:

Force ID

distinguishedForcelD

otherForcelD

observerForcelD

targetForcelD

Vehicle Guises

Distinguished Other

US Soviet

Soviet US

US US

Soviet Soviet

In the tables above, Force ED refers to the force field of the Vehicle Appearance Packet

containing the guise. "US" refers refers to an object type representing equipment of US

manufacture and "Soviet" refers to an object type representing equipment of Soviet

32

BBN Systems and Technologies Report No. 7627

manufacture. "US" and "Soviet" are for example only. Object types representing the

equipment used by any two other opposing forces may be used instead.

5.1.3 Boolean

A Boolean data element is a single bit:

type Boolean enum (1) {

false,

true

)

The value 0 is interpreted as "false", and 1, as "true".

5.1.4 Burst Descriptor

A Burst Descriptor data element describes either a single round of ammunition, or several

rounds that are being fired as a burst from a machine gun:

type BurstDescriptor sequence {

projectile ObjectType,

detonator ObjectType,

quantity Unsignedlnteger (16),

rate Unsignedlnteger (16)

)

The projectile field identifies the type of projectile fired, and the detonator field

identifies the type of detonator (fuze) used. Both are instances of the Object Type data

eleaient (§5.1.10), which identifies a type of physical object. The quantity field is the

number of rounds fired in the burst (1 if only a single shot is described). If quantity is

greater than 1, the rate field is the rate of fire in rounds per second. Otherwise, when

quantity is 1, the rate field contains the following value:

constant burstRatelrrelevant 0

5.1.5 Event Identifier

An event identifier is a 16-bit serial number generated by a vehicle's simulator. It is

associated with a particular event that that vehicle is involved in, such as the firing of a

shell or a collision with another vehicle. Each event identifier is unique among all event

identifiers generated for that vehicle in the current exercise.

33

Report No. 7627 BBN Systems and Technologies

type EventlD Unsignedlnteger (16)

Some PDUs contain an event identifier field that is not used in certain cases. If unused,

the field should contain the following value:

constant eventlDIrrelevant 0

5.1.6 Exercise Identifier

An exercise identifier is an 8-bit number that distinguishes one exercise from others

occurring on the same network at the same time.

type ExerciselD Unsignedlnteger (8)

Some PDUs contain an exercise identifier field that is not used in certain cases. If unused,

the field should contain i;he following value:

constant exerciselDIrrelevant 0

5.1.7 Force Identifier

The participants in an exercise are divided into (usually two) collections of people and

equipment, called forces. Each force has a unique, 8-bit identifier:

type ForcelD Unsignedlnteger (8)

Some PDUs contain a force identifier field that is not used in certain cases. If unused, the

field should contain the following value:

constant forcelDIrrelevant 0

One force identifier has special meaning: vehicles that are assigned to force 1 may view

vehicles differently than those assigned to other forces (§2.3). To distinguish this force

identifier, it is given a particular name:

constant distinguishedForcelD 1

Three other forces have been defined:

constant otherForcelD 2

constant observerForcelD 3

constant targetForcelD 4

34

BBN Systems and Technnlogles Report No. 7627

By convention, these force IDs have the following meanings:

othejForcelD the opponent '" dislinguishedForcelD

observerForcelD appears to be friendly to both combatants

targetForcelD appears to be an enemy to both combatants

The manner in which vehicle guises (§5.1.23) are assigned to these force IDs is governed

by the battle scheme (§5.1.2).

5.1.8 Munition Quantity

An amount of some munition is represented by a Munition Quantity data element, which

defines the type of munition and the quantity of it:

type Munitj-orsQuantity sequence (

munition ObjectType,

quantity Float (32)

)

The munition field of this data element identifies the type of munition (§5.1.10), and

the quantity field specifies its quantity. The units in which the quantity is measured

vary according to the type of munition described. In general, ammunition is measured in

rounds and fuel is measured in gallons.

5.1.9 Object Identifie

Object identifiers serve to uniquely identify individual objects generated by simulators

using a state update procedure(§7.3.3). Object identifiers are used in place of vehicle

identifiers(§5.1.24) for objects that are not vehicles, for example: mine fields. An object

identifier is composed of two parts: a simulation address, which identifies the simulator

modeling that object(§5.1.13) and an object number, which uniquely identifies the object

within that simulator and exercise.

type ObjectID sequence {

simulator SimulationAddress, — of object's simulator

object Unsignedlnteger (16) — unique for that simulator

)

The format of the simulator field is defined in §5.1.13.

35

Report No. 7627 B BN Systems and Technologies

No two objects present in the same exercise may have identical object identifiers. No
rbject and vehicle present in the same exercise may share both the same simulation

address and the same object or vehicle number (see §5.1.24).

5.1.10 Object Type

Physical objects present in the simulated world include vehicles and munitions. Each
object has a particular type—for example, it is an Ml tank, or a Hellfire missile. An

object's type is described by a 32-bit code:

type ObjectType Unsignedlnteger (32)

Object type values are defined in appendices B and C.

Some PDUs contain an object type field that is not used in certain cases. If unused, the

field should contain the following value:

constant objectlrrelevant 0

5.1.11 Organizaticnai Unit

Each simulated vehicle may be associated with a series of organizational units, such as a

company, a battalion, etc. An Organizational Unit data element is used to refer to a
particular unit at any level in the organizational hierarchy, and to identify the larger units

of which it is also a member.

tjpe OrganizationalUnit sequence {

force ForcelD,

organizationType OrganizationType,

hierarchy array (organizationalLevels) of Unitldentifier

)

constant organizationalLevels 9

The grossest subdivision of units is into collections called forces (§5.1.7); the force

field identifies that to which the unit belongs. The organizationType field describes

how that force is organized, and detennines how the hierarchy field is to be

interpreted. Currently, two values are defined for the organizationType field:

36

BBN Systems and Technologies Report No. 7627

type OrganizationType enum (8) {

organizationirrelevant,

organizationArmy

)

The organizationType value organizationlrrelevant (defined as 0) is used

when no organizational hierarchy is to be specified. In such cases, all elements of the

hierarchy array should contain zeros.

In other cases, the elements of the hierarchy array identify a succession of nested
units, beginning from the top of an organizational hierarchy. Each array element may

specify a single unit, by number and type:

type Unitldentifier sequence {

unitNumber Unsignedlnteger (8) ,

unitType UnitType

)

constant unitNutnberlrrelevant 0

type UnitType enum (8) {

unitTypelrrelevant (0),

unitTypeArmy,

unitTypeBattalion,

unitTypeBattery,

unitTypeBrigade,

unitTypeCompany,

unitTypeCorps,

unitTypeDivision,

unitTypeFlight,

unitTypeGroup,

unitTypePlatoon,

unitTypeRegiment,

unitTypeSection,

unitTypeSquad,

unitTypeSquadron,

unitTypeTaskForce,

unitTypeTeam,

unitTypeTroop,

unitTypeWing

)

Not all elements of the array are used in each case; those that are not used to specify a

unit contain zeros.

37

Report No. 7627 BBN Systems and Technologies

The organizationType value organizationArmy is specified when the

hierarchy array identifies a unit within an organizational structure that is like that of

the U.S. Army or the Soviet Army. In this case, the elements of the hierarchy array

are used in the following way to describe the unit:

0 the army

1 the corps within that army

2 the division within that corps

3 the brigade, regiment, or group within that division

4 the battalion or squadron within that brigade

5 the company, team, battery, or troop within that battalion or squadron

6 the platoon within that company, etc.

7 the section within that platoon

8 the squad within that section

Within this framework, array elements that are not relevant contain zeros. If an entire

company is being referred to, for example, then the last three elements of the array

(corresponding to platoon, section, and squad) contain zeros.

5.1.12 Repair Type

The simulation protocol includes a mechanism for carrying out simulated repairs on

disabled vehicles. Although the types of repairs that may be performed depend on the

kind of vehicle being repaired, all repairs are identified by single, 16-bit integers:

type RepairType Unsignedlnteger (16)

A particular repair code, 0, has the effect of correcting all of the repaired vehicle's

disabilities:

constant repairEverything 0

Other repair codes are specific to the type of vehicle being repaired, and the type of

simulator modeling that vehicle. Appendix D defines repair codes for those vehicle

simulators developed under the SIMNET program.

38

BBN Systems and Technologies Report No. 7627

5.1.13 Simulation Address

Each simulator that participates in the distributed simulation internet has a globally

unique address. This address is composed of two parts: a site identifier, which specifies

the site where the entity resides; and a host number, that distinguishes the simulator's host

computer from among other hosts at the same site.

type SimulationAddress sequence (

site SitelD,

host Unsignedlnteger (16)

)

The Site ID data element is defined in §5.1.15. If the host field is not relevant in a

particular case, it should contain 0:

constant hostirrelevant 0

5.1.14 Simulator Type

Each type of simulation system participating in the distributed simulation internet is

described by a simulator type code. The value 0 is used in cases where no other simulator

type code is applicable.

type SimulatorType enum (16) {

simulatorUnknown,

simulators IMNET_MCC,

s i mu1at o r_SIMNET_SAF,

simulator_SIMNET_Ml,

3imulator_SIMNET_M2,

simulator_SIMNET_FRED,

3imulator_SIMNET_FWA,

simulator_SIMNET_FAAD_LOS_H,

simulator_SIMNET_STEALTH,

simulator_SIMNET_DI,

simulator_AGPT_LE02,

simulator_AGPT_üLF,

simulator_AGPT_DATA_LOGGER,

simulator_SIMNET_LOSAT

}

- SIMNET MCC system

- SIMNET SAF system

- SIMNET M1 (Abrams) simulator

- SIMNET M2/3 (Bradley) simulator

- SIMNET rotary-wing simulator

- SIMNET fixed-wing simulator

- SIMNETFAAD-LOS-H simulator

- SIMNET Stealth simulator

- SIMNET Dismounted Infantry

- AGPTLeo2 simulator

-■ AGPT Stealth simulator

- AGPT Data Logger

-- SIMNET Losat vehicle simualator

5.1.15 Site Identifier

Each site of the distributed simulation internet is assigned a unique, 16-bit identifier:

39

Report No. 7627 BBN Systems and Technologies

type SitelD Unsignedlnteger (16)

The value 0 is ustu to indicate that this identifier is irrelevant in a particular case:

constant siteirrelevant 0

5.1.16 Target Descriptor

A simulator issues a report when its vehicle fires upon another vehicle, or uses its laser to

range to another vehicle. In reporting the event, the simulator includes a description of

what it knows of the vehicle being fired upon or ranged to. This description is a Target

Descriptor data element:

type TargetDescriptor sequence {

targetType TargetType,

unused (8),

vehiclelD VehiclelD

}

The targetType field specifies how much the simulator knows about the target:

type TargetType enum (8) {

targetUnknown,

targetIsNotVehicle,

targetIsVehicle

)

-- the target vehicle is not known

-- target known, but not a vehicle

-- target known, and a vehicle

If the target is known and it is a vehicle, that vehicle's identifier is included in the

vehiclelD field (§5.1.24). Otherwise, that field contains zeros.

5.t.17 Terrain Database Identifier

When a simulator is activated by another computer system, the terrain database it is to use

for its simulation is described by a Terrain Database ID data element:

type TerrainDatabaselD sequence (
terrainName array (maxTerrainNameLength) of Character (8),

terrainVersion; Unsignedlnteger (16)

}

constant maxTerrainNameLength 14

40

BBN Systems and Technoiogies Report No. 7627

The terrainName field contains a mixed-case alphabetic string, encoded in ASCII and
padded with null (0) characters to a length of 14 octets. "Knox" and "Graf are examples

of terrain database names. The terrainVersion field contains a positive version

number, or 0 if the most recent version of the database is to be used:

constant latestTerrainVersion 0

5.1.18 Time

A Time data element represents a date and time as a count of the seconds elapsed since 0

GMT, 1 January 1970:

type Time Unsignedlnteger (32)

5.1.19 Vehicle Capabilities

A simulated vehicle is advertised on the network as being capable of supplying certain

services to other simulated vehicles. These are described by a Vehicle Capabilities data

element:

type VehicleCapabilities sequence {

ammunitionSupply Boolean,

fuelSupply Boolean,

recovery Boolean,

repair Boolean,

unused (28)

)

The ammunitionSupply field and fuelSuppxy fhld are true if the vehicle is capable
of supplying ammunition and fuel, respectively. The recovery field is true if the
vehicle is capable of recovering (towing) other vehicles. The repair field is true if the

vehicle is capable of carrying out repairs to other vehicles.

5.1.20 Vehicle Class

Each vehicle is classified according to how many independently movable parts it has
(such as turrets and gun barrels), and according to what algorithm should be used to dead
reckon its appearance. The classifications are called vehicle classes. They are identified

by 8-bit integers:

41

Report No. 7627 BBN Systems and Technologies

type VehicleClass enum (8) {

vehicleClassIrrelevant, -- class irrelevant

vehicleClassSt -tic, -■ static class

vehicleClassSimple, -- simple dass

vehicleClassTank - tank dass

}

The value vehicleClassIrrelevant is used in cases where the value of a Vehicle

Class data element is not relevant.

5.1.21 Vehicle Component

When a vehicle is struck by weapons fire, the damage suffered may depend on what part
of the vehicle was struck. A specification of a vehicle component is one form in which
the location of a hit is communicated among simulators. A vehicle component is

identified by the following data element:

type VehicleCompcnent enum (16) {

vehicleComponent Irrelevant, -- none of those listed below

hullComponent,

turretComponent

)

The value turretComponent is applicable to turreted vehicles, such as tanks. The
value hullComponent is applicable to all vehicle types. Values for additional

components may be defined as needed.

5.1.22 Vehicle Coordinates

A location may be specified, with reference to a particular vehicle's coordinate system,
by a Vehicle Coordinates data element. Each coordinate is a floating-point number,

measuring a distance in meters along one axis of the vehicle's coordinate system.

type VehicleCoordinates array (3) of Float (32)

The three elements of the array represent, in order, the X coordinate, the Y coordinate,

and the Z coordinate.

42

BBN Systems and Technologies Report No. 7627

5.1.23 Vehicle Guises

The basic appearance of a vehicle is described by an object type code (§5.1.10) that
identifies a particular type of vehicle, such as an Ml or a T72. Some applications of
distributed simulation require that each vehicle have two alternate appearances: one

when viewed by some observers, and a different one when viewed by others. Other

applications require that each vehicle appear identical to all observers.

To support both kinds of applications, two object type codes are used to report a vehicle's

appearance. They are packaged as a Vehicle Guises data element:

type VehicleGuises sequence {

distinguished ObjectType,

other ObjectType

1

Which of the object type codes determines the basic appearance of the vehicle depends on

what force the observer is assigned to. If the vehicle is being observed by someone
assigned to force 1 (represented by the dist inguishedForcelD constant), then the

vehicle's appearance is that specified by the distinguished field. Otherwise, it is

that specified by the other field.

5.1.24 Vehicle Identifier

Hvery vehicle participating in an exercise has associated with it a unique vehicle
identifier. A vehicle identifier is composed of two parts: a simulation address, which
identifies the simulator modeling that vehicle (§5.1.13); and a vehicle number, which

distinguishes the vehicle from others generated by the same simulator in the same

exercise.

type VehiclelD sequence {

simulator SimulationAddress,

vehicle Unsignedlnteger (16)

)

The format of the simulator field is defined in §5.1.13

The two parts of the vehicle identifier, taken together, fonn a globally unique value: the

simulator component uniquely identifies a simulator, and the vehicle component

uniquely identifies a vehicle modeled by that simulator. Vehicle identifiers share the

4}

Report No. 7627 BBN Systems and Technologies

same number space as object identifiers (§5.1.9). Thus, no object and vehicle present in

the same exercise may share both the same simulation address and the same object or

vehicle number.

Some PDUs contain a vehicle identifier field that is not used in certain cases. An
example is the vehicle identifier field of a Target Descriptor ID, which is unused if the
target is not known or is not a vehicle. In such cases, all components of the vehicle

identifier should contain zeros.

No vehicle is assigned a vehicle identifier whose vehicle component is zero.

5.1.25 Vehicle Marking

A vehicle may have a marking that is visible when viewed from other vehicles under

certain circumstances. The marking may, for example, be ship's name or a tank's bumper

number. A Vehicle Marking data element describes it:

type VehicleMarking sequence {

characterSet CharacterSetType,

text array (maxVehicleMarkingLength) of

Unsignedlnteger (8)

)

constant maxVehicleMarkingLength 11

The characterSet field identifies the character set according to which the text of the

marking should be interpreted and displayed. Currently, one character set is defined:

type CharacterSetType enum (8) {

asciiCharacterSet

}

The text field contains a string of from 0 to 11 characters, padded with null (0)

characters to a length of 11.

5.1.26 Vehicie Status

The operational status of a vehicle, the health of each of its subsystems, and the quantities

of the various munitions it carries are all represented by a single Vehicle Status data

element:

44

BBN Systems and Technologies Report No. 7627

type VehicleStatus sequence {

vehicleType ObjectType,

odometer Float (32),

age Unsignedlnteger (8),

unused (24),

failures VehicleSubsystems,

specific VehicleSpecificStatus

The vehicleType field specifies the type of vehicle described by the data element

(§5.1.10). The age field contains the vehicle's age, in years, and the odometer field

contains its lifetime travel, in meters.

The failures field describes the operational status of the vehicle (§5.1 ?7). It
identifies the specific subsystems of the vehicle that are simulated, and indicates t se
that have failed. A failed subsystem is represented by the value false for the appropriate
Boolean, and an operational subsystem, by the value true. The failures field also
indica es, by means of five Boolean fields, whether the vehicle has suffered a catastrophic
kill, or a partial kill classified as involving mobility, firepower, communication, or non-

critical subsystems.

The specific field represents additional, vehicle-specific information, including the
quantities of various kinds of munitions on board. The format of this field depends on the
type of vehicle being described, and the manner in which that vehicle is simulated:

45

Report No. 7627 BBN Systems and Technologies 9

I type VehicleSpecif icSt-':.us sequence |

category Specif icStatu.'C-.tegori

unused (16),

specific choice (category) of i

wh<»n (genericVehicleStatus)

generic GenericVehicleStatus,

when (simnetMlStatus)

ml SIMNET_Ml_Status,

when (simnetM2Status)

m2 SIMNET_M2_Status,

when (simnetFAADStatus)

faad SIMNET_FAAD_LOS_H_Status,

when (agptLeo2Status)

leo2 AGPT_Leo2_Status

}

The category field classifies the vehicle according to the format of its vehicle-specific

information. Currently, three categories are defined-

type SpecificStatusCategory enum (16) {

genericVehicleStatus,

simnetMlStatus,

simnetM2Status,

simnetFAADStatus,

agptLeo2Status

)

The genericVehicleStatus category is provide :ür describing any vehicle in a
generic, but limited, manner. Other categories exist for describing specific types of

simulated vehicles in greater detail. There are presently two such categories, which are

used for describing vehicles simulated by the SIMNET Ml and the SIMNET M2/3
simulators. The SIMNET_Ml_Status and SIMNET_M2_Status data elements used in

these cases are defined in appendix D.

If the vehicle-specific status is being described in a generic manner (admittedly, a

contradiction of terms), then the following representation is used:

46

BBN Systems and Technologies Report No. 7627

type GenericVehicleStatus sequence {

enginePower Unsignedlnteger (8) ,

batteryVoltage Unsignedlnteger (24),

stores array (maxGenericVehicleStores) of

MunitionQuantity

constant maxGenericVehicleStores 6

The enginePower field specifies the percent of fui ^r the vehicle's engine is able

to produce. The voltage of the vehicle's battery (in millivolts) is specified by the
batteryVoltage field. The stores array lists the quantities of various kinds of

munitions carried by the vehicle (§5.1.8). If fewer than six different kinds of munitions
are carried, then the first elements of the array are used to represent munitions, and the

remaining elements are filled with zeros.

5.1.27 Vehicle Subsystems

A Vehicle Subsystems data element specifies a set of vehicle subsystems. It is used, for
example, to indicate those subsystems that have failed in a particular vehicle, or those that

have changed as a result of a repair.

type VehicleSubsystems sequence {

category SubsystemsCategory,

operationalSuramary Boolean,

mobilitySummary Boolean,

firepowerSummary Boolean,

communicationSunmary Boolean,

noncriticalSunmary Boolean,

unused (11) ,

subsystems choice (category) of {

when (airVehicleSubsystems)

air AirVehicleSubsystems,

when (groundVehicleSubsystems)

ground GroundVehicleSubsystems

)

)

The subsystems of the vehicle are represented in two forms: a summary is provided by

the five Boolean fields, and detailed information is provided by the subsystems field.

The meaning of the five Boolean fields is as follows:

47

Report No. 7627 BBN Systems and Technologies

operationalSummary

mobilitySummary

firepowerSummary

communicationSurranary

noncriticalSummary

summarizes those subsystems that determine whether the

vehicle is at all operational. If, for example, the Vehicle

Subsystems data element is being used to indicate which

subsystems of a vehicle have failed, this bit is 1 if the

vehicle has suffered a catastrophic kill.

summarizes those subsystems that provide mobility.

summarizes those subsystems that provide firepower.

summarizes those subsystems that support

communication.

summarize other, noncritical subsystems.

More detailed information on a vehicle's subsystems is contained in the subsystems

field, which identifies individual subsystems of the vehicle. The format of this field

depends on the category of vehicle being described. Presently, two categories of vehicle

are defined to allow the data element to be used to describe the subsystems of air and

ground vehicles in a generic manner. Other categories may be defined as necessary.

type SubsystemsCategory enum (16) {

airVehicleSubsystems (1),

groundVehicleSubsystems (2)

1

For a vehicle of either generic category, the Vehicle Subsystems data element includes

individual fields corresponding to many specific subsystems. No one vehicle, however, is

expected to have all of these subsystems. When the data element is used to describe a

particular vehicle, the fields used are only those that correspond to subsystems that the

vehicle actually has. For each possible subsystem, the data element indicates both (a)

whether the subsystem exists in the simulated vehicle, and (b) if it exists, the status of that

subsystem.

The set of generic subsystems is divided into logical groups: electronic subsystems,

motive power subsystems, electrical and hydraulic power subsystems, etc. Each group is

represented by a collection of up to 32 Boolean data elements, with one Boolean

representing each subsystem. A Vehicle Subsystems data element contains two instances

of each group, organized as two elements of an array. The first element indicates which

subsystems of the group exist; a Boolean in the first element is true if the corresponding

48

BBN Systems and Technologies Report No. 7627

subsystem exists. The second element indicates the status of those that do exist; the
interpretation of these Booleans depends on the context in which the Vehicle Subsystems
data element is being used. If a Boolean of the first element indicates that a particular

subsystem does not exist, then the corresponding Boolean of the second element is

always false.

The following notation defines these data elements:

type AirVehicleSubsystems sequence {

electronic array (2) of ElectronicSubsystems,

motive array (2) of MotiveSubsystems,

power array (2) of PowerSubsystems,

weapon array (2) of WeaponSubsystems,

- Specific to air vehicles:
airframe array (2) of AirframeSubsystems,

cockpit array (2) of CockpitSubsystems

)

type GroundVehicleSubsystems sequence {

electronic array (2) of ElectronicSubsystems,

motive array (2) of MotiveSubsystems,

power array (2) of PowerSubsystems,

weapon array (2) of WeaponSubsystems,

-- Specific to ground vehicles:

chassis array (2) of ChassisSubsystems,

turret array (2) of TurretSubsystems

)

define sub-ystemExists 0 - first element of array

define subsystemstatus 1 - second element of array

The constants subsystemExists and subsystemstatus are index values defined

for the two-element arrays.

The following notation defines the collections of Booleans that represent individual

subsystems:

49

Report No. 7627 BBN Systems and Technologies

type AirframeSubsystems sequence {

- Airframe components:

airframeMajor

leftWing

rightWing

Boolean,

Boolean,

Boolean,

unused (5),

-- Control surfaces:

pitchControl

rollControl

yawControl

flaps

airBrakes

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

unused (3),

- Landing gear:

landingGearMajor

noseWheel

leftWheel

rightWheel

Boolean,

Boolean,

Boolean,

Boolean,

unused (12)

type ChassisSubsystems sequence {

-- Final drive subsystems:

finalDriveMajor

leftTrack

rightTrack

leftFrontWheel

rightFrontWheel

leftRearWheel

rightRearWheel

serviceBrake

parkingBrake

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

unused (7),

-- Hull subsystems:

hullMajor Boolean,

unused (7),

-- Driver subsystems:

driversVisionBlocks Boolean,
unused (7)

50

BBN Systems and Technologies Report No. 7627

type CockpitSubsystems sequence {

cockpitMajor Boolean,

unused (31)

}

type ElectronicSubsystems sequence {

- Communication subsystems:

communicationMajor Boolean,

radioAntanna Boolean,

intercom Boolean,

radio Boolean,

unused (12),

-- Sensor subsystems:
laserRangefinder Boolean,

electroOpticalMajor Boolean,

eoFLIR Boolean,

eoDATV Boolean,

eoCtlHandle Boolean,

radarMajor Boolean,

radarTransceiver Boolean,

radarTracking Boolean,

radarNetwork Boolean,

navigationMajor Boolean,

unused (6)

type PowerSubsystems sequence {

-- Electrical power subsystems:

priElectrical Boolean,

priDistributionBox Boolean,

secElectrical Boolean,

secDistributionBox Boslean,

alternator Boolean,

generator Boolean,

unused (10),

-- Hydraulic power subsystems:

priHydraulic Boolean,

unused (15)

}

51

Report No. 7627 BBN Systems and Technologies I
type MotiveSubsystems sequence {

-- Engine subsystems:

engineMajor

pilotRelay

starter

oilFilter

oilLeak

airCleaner

coolantLeak

fuelFilter

fuelXferPump

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

unused (7) ,

-- Drive train subsystems:

transmissionMajor Boolean,

transFluidFilter Boolean,

transFluidLeak Boolean,

leftGearbox Boolean,

rightGearbox Boolean,

universalJoint Boolean,

unused (10)

type TurretSubsystems sequence {

turretMajor Boolean,

turretTraverse Boolean,

stabilization Boolean,

gunnersCtlHandle Boolean,

cmdrsCtlHandle Boolean,

turretPositionlnd Boolean,

turretSlopelnd boolean,

gunnersPrimarySight Boolean,

gunnersSecondarySight Boolean,

gpsExtension Boolean,

gunnersVisionBlocks Boolean,

cmdrsVisionBlocks Boolean,

loadersPeriscope Boolean,

cmdrsPeriscope Boolean,

unused (18)

52

BBN Systems and Technologies Report No. 7627

type WeaponSubsystems sequence {

priGunMajor Boolean,

priGunMount Boolean,

priGunElevation Boolean,

priGunTraverse Boolean,

priGunMisfire Boolean,

secGunMajor Boolean,

secGunMount Boolean,

secGunElevation Boolean,

secGunTraverse Boolean,

secGunMisfire Boolean,

missileMajor Boolean,

launcherl Boolean,

launcher2 Boolean,

unused (19)

5.1.28 Velocity Vector

The velocity of a vehicle or projectile is represented by a Velocity Vector data element.

It specifies the component of the velocity that is parallel to each of the world coordinate

system's three axes, in meters per second:

type VelocityVector array (3) of Float (32)

The three elements of the array represent, in order, the velocity components parallel to the

X axis, the Y axis, and the Z axis.

5.1.29 World Coordinates

A location in the simulated world is defined by a set of three coordinates. Each
coordinate is a floating-point number, measuring a distance in meters along one axis of

the world coordinate system (§2.4):

type WorldCoordinates array (3) of Float (64)

The three elements of the array represent, in order, the X coordinate, the Y coordinate,

and the Z coordinate.

53

Report No. 7627 BBN Systems an& Technologies

5.1.30 XY Coordinates

XY Coordinates represent a location in the X-Y plane of the world coordinate system

(§2.4). Each coordinate is represented as a floating-point number, measuring distance

along a coordinat axis in units of meters.

type XYCoordinates array (2) of Float(64)

The first element of the array represents the X coordinate and the second element of the

array represents the Y coordinate.

5.2 Timers and counters

Some protocol procedures call for the repeated, periodic transmission of PDUs. For

example, the data collection protocol requires that each crewed vehicle simulator transmit

a Vehicle Status PDU every 30 seconds. We make use of a conceptual device called a

timer to describe the periodicity of a repeated transmission. A second conceptual device,

called a counter, is used to describe how many times the transmission is repeated. The

use of counters and timers is explained in the following paragraphs.

A timer is a variable used to determine the instants at which a periodically transmitted

PDU must be sent. When the PDU is first sent, the timer is set tc the number of seconds

that must elapse before the PDU is sent again. The timer is then iecremented by one unit

each second. When the timer reaches zero the PDU is resent, th timer is set back to its

original value, and the cycle repeats.

Some pjotocol procedures call for repeating the transmission of a PDU up to a specified

maximum number of times. This is usually done when the sender is not sure that a PDU

is being correctly conveyed to its recipient, and so must resend it until confirmation is

received. A counter is a variable used to keep track of the number of times the PDU has

been sent. When the PDU is first sent, the counter is set to the maximum number of

times tnat the PDU may be sent. When the PDU is resent (usually after a timer has

expired) the counter is decremented by one unit, and, if it hasn't reached zero, the PDU is

sent again.

Several timers and counters are involved in the definition of the SIMNET protocols. The

durations of the timers and the initial, maximum values of the counters are given names

like transactionRetryTime and transactionRetryCount. The optimal values

54

BBN Systems and Technologies Report No. 7627

of these depend on factors such as the frequency with which information should be made

available for later analysis or recovery of an exercise, and the reliability and delay

characteristics of the distributed simulation internet. The values chosen for the present

applications and implementations of the SIMNET protocols are summarized in appendix

F. Where a timer or counter is mentioned in the following chapters, we specify its typical

value for readability but also include its name in parentheses for reference to appendix F.

55

Report No. 7627 BBN Systems and Technologies

6 ASSOCIATION PROTOCOL

In chapter 2 the association protocol was introduced as a protocol providing

communication services used to support both the simulation protocol and the data

collection protocol. This chapter defines the association protocol in terms of the services

it provides, and the protocol procedures used to implement those services.

6.1 Architecture

The ISO Basic Reference Model for Open Systems Interconnection [8] is the architectural

framework within which the SIMNET protocols are defined. The communication service

underlying the SIMNET protocols provides functions associated with the physical, data

link, and network layers of the OSI model. The requirements for these services are

discussed in chapter 4.

The association protocol is designed to offer a streamlined composite of the specific

transport, session, and application layer services that are required by both the simulation

and data collection protocols.4 Although pieces of the transport, session, and application

layers are included in this composite, it resides in the application layer as a sublayer.

There it is viewed, in the terms of the OSI model, as implementing common application

service elements—i.e., services that are shared among multiple application protocols.

By combining several functions into a single protocol, the association protocol

iirplemcnt?? thi/se functions in the most efficient manner possible. Although the

association piutocol caii be CJU:ied by underlying presentation, session, and transport

protocols, those underlying protocols are not required. In its operation the association

protocol requires no services particular to the presentation, session, or transport layers,

other than connectionless-mode transmission of data to multiple recipients. Thus, the

association protocol may be implemented directly from services of the network or data

link layers to obtain maximum efficiency.

The sublayer containing the association protocol is called the association sublayer, and

the service it provides is the association service. Distributed simulation is implemented

No services specific to the presentation layer arc required by the SIMNET protocols. The presentation

of application data is defined by the Data Representation Notation documented in appendix A.

56

BBN Systems and Technologies Report No. 7627

as a pair of protocols—the simulation protocol and the data collection protocol—that

make use of the association service for their communication requirements, and reside in a

sublayer above it called the simulation sublayer. This layered structure is represented in

figure 6-1.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Simulation Sublayer

Association Sublayer

Figure 6-1. The application layer of the OSI reference model is divided into two sublayers: an association

sublayer providing common application service elements, and a simulation sublayer implementing distributed

simulation.

The association sublayer spans all simulators at all sites to provide a communication

service among them, as shown in figure 6-2. The sublayer includes a component within

each simulator, called the association entity. The simulation sublayer, in turn, spans all

simulators at all sites to provide a distributed simulation. The component of the

simulation sublayer within each simulator is called the simulation entity. A simulation

entity obtains services from its local association entity via a single association service

access point. The address of that service access point we call a simulation address.

57

Report No. 7627 BBN Systems and Technologies

Figure 6-2. The components of the simulation sublayer and the association sublayer within each simulator

are called simulation entities and association entities. Association entities communicate according to

association protocol, using the network service. Simulation entities communicate according to simulation

protocol, using the association service. The interface between a simulation entity and its local association

entity is an association service access point, it has an address called a simulation address.

6.2 Service elements

The users of the association sublayer are simulation entities, residing in the simulation

sublayer and communicating by means of the association service. These are the key

elements of the service provided to simulation entities:

Datagrams. The association service will convey a umt of data from an originator to one

or more recipients. This service element is called the datagram service.

Transactions. The association service will mediate an interaction that involves the

transfer of a unit of data from an originator to a recipient, and the return of an associated

unit of data from the recipient to the originator. The service must also accommodate the

58

BBN Systems and Technologies Report No. 7627

unacknowledged receipt of both data units by any number of other simulation entities.

This service element is called the transaction service.5

Detecting and overcoming network failures. The association service must provide a

minimum probability of successful data transfer for the transaction service (whereas the

reliability of the underlying networks is assumed to be sufficiently high for the uses of the

datagram service). If an underlying subnetwork has an insufficient probability of

successful delivery, then the association sublayer compensates by retrying certain data

transfers.

User protocol. Along with any unit of data it transfers, the association service will

convey a user protocol number provided by the sending simulation entity. This protocol

number is conveyed so that simulation entities can indicate to each other the simulation

sublayer protocol to which a unit of data pertains. The protocol numbers are 8-bit

integers, with values that must be agreed upon by corresponding simulation entities. This

is done by assigned a unique global identifier to each protocol that uses the association

service.

Addressing The association service provides simulation entities with a consistent

method of addressing each other, independent of the addressing schemes of the various

subnetworks employed. A single simulation entity is addressed at each simulator by an

address that consists of two components:

A 16-bit inKgct that uniquely identifies the site at which the simulator resides. A unique global

site identifier must be assigned to each site in the distributed simulation internet.

A 16-bit integer that uniquely identifies the particular simulator within thai site.

The transaction service provided by the association sublayer is a hybrid of transport and application

layer functionality. Reliable end-to-end transfer, involving the possible retransmission of data, is a

transport layer function. Providing a request/response transaction mechanism is an application layer

function. The association PDU conveying a response is used to efficiently provide both a transport

layer acknowledgement and an application layer transaction response. Otherwise, if separate transport

layer acknowledgements were utilized, a tola! of four transport PDUs would be required (or more in

the case of retransmissions).

59

Report No. 7627 BBN Systems and Technologies

Multicast groups. The association service allows simulation entities to subscribe to

multicast groups. A unit of data directed to a multicast group will be received by all of

the simulation entities currently subscribing to that group.6

Each multicast group is identified by an 8-bit integer. By convention, the value 0 is used

to designate a multicast group that includes all simulation entities. Each simulation entity

indicates to the association service those additional multicast groups to which it wishes to

subscribe.

Blocking. To make the most efficient use of the network service, the association service

may place multiple association protocol data units in a single network datagram.

6.3 Service required from lower layers

The association protocol uses the services of lower layers in order to provide enhanced

services for the simulation sublayer. The services used are those described in chapter 4.

The association protocol may be implemented on top of any protocols at any layer that

can support the service requirements of chapter 4. Appendix E defines how the

association protocol is implemented on IEEE 802 networks.

The lower layer service must provide for the transfer of at least 256 octets of user data in

a single datagram. For efficiency, a single c'utagram may contain multiple association

protocol data units, provided all association PDUs are being addressed to the same

recipients. The recipients of a datagram must be able to unbundle the PDUs contained

therein. The association protocol allows this by including in each PDU a field from

which the length of that PDU can be determined. This field is used by recipients to

determine where successive PDUs he within the datagram.

Some network?, including Ethernet, require that datagrams be of some minimum length.

To accommodate this requirement, the association protocol allows a datagram to be filled

out to a minimum length by including in it a PDU whose sole purpose is to occupy space

in the datagram. This padding PDU, which appears as the last PDU in a datagram, is

inserted only when necessary.

6 The association of users into one or more multicast groups is a special session layer function provided

by the association sublayer to eliminate the need for a full session service.

60

BBN Systems and Technologies RePort No- 7627

6.4 Service provided by the association sublayer

The service provided by the association layer is defined here in terms of primitives that

characterize the interaction between the association layer and its users. This method

follows the descriptive conventions documented in ISO TR 8509 [9]. For a given

primitive, the presence of each parameter is described by one of the following symbols:

M The parameter is mandatory.

U The use of the parameter is a service-user option.

(=) The value of the parameter is identical to the corresponding parameter in the interaction

described by the preceding related service primitive.

6.4.1 Group subscription service

A simulation entity specifies to the association service those multicast groups of which it

is to be a member. This is a local interaction between the simulation entity and its related

association entity.

There are two primitives associated with this service:

A-Subscribe.req

A-Subscribe.conf

The sequence in which these primitives are used is illustrated in figure 6-3.

The simulation entity issues an A-Subscribe request to the association sublayer to

indicate that it is subscribing to a multicast group, or unsubscribing from a group

previously subscribed to. The association sublayer responds with an A-Subscribe

confirmation.

61

Report No. 7627 BBN Systems and Technologies

Association
Sublayer User

A-Subscribe.req

Association
Sublayer

A-Subscribe.conf

1 m>x-gim:v.'ä>.<fii

Figure 6-3. The sequence of service primitives associated with the group subscription service.

The parameters associated with these primitives are:

Parameter Name

multicast-group

subscribe

result

Esa Conf Description

M the multicast group for which the user wishes to

change its subscription

M whether the user wishes to subscribe to, or

unsubscribe from, the multicast group

M indicates success or failure of the association

sublayer operation

All simulation entities are members of multicast group 0, and may not withdraw from it.

The composition of other multicast groups (1 through 255), however, is determined

through the used of the A-Subscribe service element by individual simulation entities.

6.4.2 Datagram service

The datagram service is used to transfer a unit of data from an originator to a multicast

group of one or more recipients. This is a "non-confirmed" service.

There are two primitives associated with this service:

A-Datagram.req

A-Dalagram.ind

62

BBN Systems and Technologies Report No. 7627

The sequence in which these primitives are used is illustrated below:

Originator

A-Datagram.req

Association
Sublayer

Recipient

 , . mn i...„ .m. I

Figure 6-4. The sequence of service primitives associated with the datagram service.

The originator issues an A-Datagram request to the association sublayer to transfer a unit

of data to one or more recipients. The association sublayer issues an A-Datagram

indication to each recipient, conveying the unit of data.

The parameters associated with these primitives are:

Parameter Name

from-address

multicast-group

protocol-identifier

data

Req]M Description

M M(=) the originator's address

M M(=) the group of recipients to which the unit of data

is to be conveyed

M M(=) conveys from the originator to the recipients an

identificalion of the protocol according to which

the unit of data is to be interpreted

U U(=) the unit of data to be conveyed

The size of the unit of data to be conveyed must be a multiple of 8 octets.

63

Report No. 7627 BBN Systems and Technologies

6.4.3 Transaction service

The transaction service is used to transfer a unit of data from an originator to a designated

recipient, and to return, in response, a unit of data from that recipient back to the

originator. This is a "confirmed" service.

The recipient providing the response to the originator is termed the respondent. The

originator specifies a multicast group of recipients, of which both the originator and

respondent must be members. All other members of that group will receive both the

originator's unit of data, and the unit of data returned by the respondent. These other

multicast group members are called observers.

There are six primitives associated with this service:

A-Transact.req

A-Transacünd

A-Transact.rsp

A-Transact.conf

A-RequesLind

A-Response.ind

The sequence in which these primitives are used is illustrated in figure 6-5.

The originator issues an A-Transact request to the association sublayer to transfer a unit

of data to a respondent. The association sublayer issues an A-Transact indication to the

respondent, and an A-Request indication to each observer, conveying the unit of data.

The respondent issues an A-Transact response to the the association sublayer to return a

unit of data to the originator. The association sublayer issues an A-Transact confirmation

to the originator, and an A-Response indication to each observer, conveying the returned

unit of data.

64

BBN Systems and Technologies Report No. 7627

Originator Association
Sublayer

A-Transact.req

A-Transact.conf

Respondent

A-Transact.ind

A-Transacl.rsp

Observer

A-Request.ind

A-Response.ind

Figure 6-5. The sequence of service primitives associated with the transaction service.

The parameters associated with the A-Transact primitives are:

Parameter Name R?q IM Rsp Conf Description

originator-address M M(=) the originator's address

respondent-address M M(=) the respondent's address

multicast-group M M(=) the multicast group that

includes the originator, the

respondent, and all observers

65

Report No. 7627 BBN Systems and Technologies

Parameter Name

protocol-identifier

Reg Ind Rsp Conf

M M(=)

Description

conveys from the originator to

the recipients an identification

of the protocol according to

which both units of data is to

be interpreted

request-data U U(=) the unit of data to be conveyed

from the originator to the

respondent

response-data U U(=) the unit of data to be conveyed

from the respondent to the

originator

cache-response M indicates whether the unit of

data returned by the respondent

should be cached by its

association entity so that the

entity can retransmit the

response if necessary

result M indicates success or failure of

the association sublayer

operation

The originator's association entity can, if necessary, make several attempts to carry out

the transaction. Each time, it will attempt to transmit the request data to the respondent's

association entity, and, as a result, the respondent's association entity may receive the

same request data multiple times. The cache-response parameter indicates how that

association entity should respond in this situation. If the respondent has indicated that its

response should be cached, then its association entity will return the same response data

with each repeated attempt. If the response is not to be cached, the respondent's

association entity will obtain a fresh copy of the response data with each repeated

attempt. The cache-response parameter is available for the association sublayer user to

indicate which behavior is appropriate in a particular situation.

The parameters associated with the A-Request indication have the same values as those

supplied by the originator with its A-Transact request:

66

Systems and Technologies Report No. 7627

Parameter Name IM P?SfripHon

originator-address M(=) the originator's address

respondent-address M(=) the respondent's address

multicast-group M(=) the multicast group that includes the originator, the

respondent, and all observers

protocol-identifier M(=) identifies the protocol according to which the unit of data

is to be interpreted

request-dsta U(=) the unit of data to be conveyed from the originator to the

respondent

The parameters associated with the A-Response indication have the same values as those

supplied by the originator with its A-Transact request, and by the respondent with its A-

Transact response:

Parameter Name

originator-address

responden t-address

multicast-group

protocol-identifier

response-data

Ind Description

M(~) the originator's address

M(=) the respondent's address

M(=) the multicast group that includes the originator, the

respondent, and all observers

M(=) identifies the protocol according to which the unit of data

is to be interpreted

U(=) the unit of data to be conveyed from the respondent to the

originator

Each unit of data conveyed by the transaction service must be multiple of 8 octets in size.

6.5 Specification of the association protocol

We define the association protocol by first describing association protocol data units, and

then describing the protocol procedures that use them.

Two protocol procedures comprise tne association protocol: one implements the

datagram service, the other, the transaction service. Each is independent of the other. No

protocol procedure is invoked by use of the group subscription service, although each

67

Report No. 7627 BBN Systems and Technologies

association entity must maintain information about which multicast groups its user is

currently subscribed to.

6.5.1 Association protocol data unit format

The formats of association protocol data units (APDUs) are defined here using the data

representation notation documented in appendix A.

All APDUs have a length that is an integral multiple of 64 bits, and all begin with a

common 64-bit header. Included in this header is a code indicating the kind of APDU

present. Four kinds of APDUs are used by the association protocol:

A Datagram APDU is used for the datagram service to convey a unit of data from the oiiginator to

the recipient(s).

A Request APDU is used for the transaction service to convey a unit of data from the originator to

the recipient(s).

• A Response APDU is used for the transaction service to convey a unit of data from the respondent

to the originator and to other recipients.

A Padding APDU is used to pad a datagram to some minimum length, as required by the network

service.

APDUs are of the following form:

68

BBN Systems and Technologies Report No. 7627

type AssociationPDU sequence {

version AssociationProtocolVersion,

kind AssociationPDUKind,

dataLength Unsignedlnteger (8),

group MulticastGroupID,

userProtocol AssociationUserProtocol,

originator SimulationAddress,

variant choice (kind) of {

when (datagramAPDUKind) datagram sequence {

data array (dataLength) of AssociationDataUnit

),

when (requestAPDUKind) request sequence {
respondent SimulationAddress,
transactionID Transactionldentifier,

unused (16),
data array (dataLength) of AssociationDataUnit

),

when (responseAPDUKind) response sequence {
respondent SimulationAddress,
transactionID Transactionldentifier,

unused (16) ,
data array (dataLength) of AssociationDataUnit

),

when (paddingAPDUKind) padding sequence {
data array (dataLength) of AssociationDataUnit

)

)
)

The version field identifies the version of association protocol to which the APDU
pertains. This allows new versions of the association protocol to be introduced without

disruption to existing implementations. The association protocol described in this report

has version number 2:

type AssociationProtocolVersion enum (4) (

protocolVersionAug8 9 (1),

protocolVersionJan90 (2)

}

The kind field identifies the kind APDU present:

I
I

6')

Report No. 7627 5BN Systems and Technologies

type AssociationPDUKind enum (4) {

datagramAPDUKind (1),

requestAPDUKind (2),

responseAPDUKind (3),

paddingAPDUKind (4)

}

All four kinds of APDUs contain a data field whose length is an integral multiple of 64

bits. The dat aLength field of the APDU header specifies the length of the data field,

in multiples of 64 bits.

The data field contains the user's PDU. It is represented by data elements of the

following form:

type AssociationDataUnit array (8) of. Ur^ignedlnteger (8)

Each APDU is directed to a particular multicast group, identified by the group field of

the APDU header. The userProtocol field conveys a code describing the user

protocol to which the data field content pertains.

type MulticastGroupID Unsignedlnteger (8)

type AssociationUserProtocol Unsignedlnteger (8)

A Datagram APDU is produced when an originator requests the datagram service of the

association sublayer. The Request and Response APDUs are produced when an

originator requests the transaction service. In all three cases, the originator field of

the APDU header identifies the originator by its sirulation address.

Request and Rcüponse APDU- include so^.e additional fields required to implement the

transition service. Ine respondent. f:dd identifies the respondent as specified by the

originator. The transactionID fields contain sequence numbers generated by the

originatov's association entity.

type Transactionldentifier Unsignedlnteger (16)

A Padding APDU may be inserted at the end of a network datagram in order to pad it to

some minimum length, as required by the network service. The contents of the data

field of a Padding APDU are not interpreted.

70

BBN Systems and Technologies Report No. 7627

If an association entity receives from the network layer an APDU that is in error, it

discards the APDU.

6.5.2 Datagram protocol procedure

The datagram protocol procedure implements the datagram service.

In response to an A-Datagram.req service primitive from its user, an application entity

issues a Datagram APDU. The APDU contains the originator address, multicast group

number, protocol identifier, and user data supplied by the user. It is delivered to all

association entities by the network layer.

Upon receiving a correct Datagram APDU from the network layer, an association entity

determines whether the APDU pertains to a multicast group to which its user has

subscribed. If so, it issues an A-Datagram.ind service primitive to its user. The contents

of the APDU are decoded to obtain the from-address, multicast-group, protocol-

identifier, and data parameters of the service primitive. A Datagram APDU specifying a

multicast group not subscribed to is discarded.

6.5.3 Transaction protocol procedure

The transaction protocol procedure implements the transaction service.

Figures 6-6 and 6-7 represent the behavior of the association entities representing the

originator and the respondent. Initially, both entities are in their respective idle states.

For each transaction it initiates, the originator's association entity chooses a 16-bit value

called a transaction identifier. Consecutive transaction identifiers are assigned to

consecutive transactions; transaction identifier 65535 is followed by transaction identifier

0. The combination of the originator's simulation address and the transaction identifier

serves to distinguish a transaction from among other transactions that may be at the same

time.

The originator's association entity maintains the following state information for an active

transaction during the transaction protocol procedure:

• The values of the parameters supplied with the A-Transacl.req service primitive that initiated the

transaction.

71

Report No. 7627 BBN Systems and Technologies

The transaction identifier chosen for the transaction.

A timer and a counter used to perform retries.

The recipient's association entity maintains the following state information for an active

transaction during the transaction protocol procedure:

The simulation address of the transaction's originator.

The transaction identifier.

If the user has specified that the response be cached, then the association entity maintains a timer

and a copy of the response-data supplied by the user.

On receiving an A-Transact.req from its user, the originator's association entity prepares

a Request APDU using parameters supplied by the user and a newly chosen transaction

identifier. It then makes up to 3 attempts (transactionRetryCount) to send the

Request APDU and receive a matching Response APDU. A received Response APDU

matches the Request APDU if it bears the same originator and response simulation

addresses, user protocol identifier, multicast group number, and transaction identifier.

The retries are separated by a wait of 3 seconds (transact ionRetryTime). Upon

receiving a matching Response APDU, the association entity issues an A-Transact.conf

to lU user indicating success. Upon timing out after the last retry, it issues one indicating

failuje.

On receiving a Request APDU from the network service, an association entity determines

whether it's own user subscribes to the multicast group under which the Request APDU

was issued. If not, the Request APDU is discarded. Otherwise, the association entity

then determines whether its own user is identified as the transaction's respondent. If not,

it issues an A-Request.ind to its user with parameters obtained from the Request APDU.

If an association entity receives a Request APDU with an appropriate multicast group

number and its user identified as the respondent, it determines whether it has cached a

response matching the request. If so, it creates a Response APDU from the cached

information and reissues it to the network service. Otherwise, it issues an A-Transact.ind

to its user (the respondent) with parameters obtained from the Request APDU. From the

A-Transact.rsp returned by the respondent, the association entity creates a Response

APDU, which it issues to the network service. If the respondent specifies that the

response is to be cached, the association entity retains the response and enters its caching

72

BUN Systems and Technologies Report No. 7627

state for a period of 10 seconds (transactionCacheTime) before returning to idle

state. Otherwise, when the response is not to be cached, it returns directly to idle state.

Send Request

Idle
State

Receive Response

<

Requesting
State

Abandon

Retry

»M MW^twl■!■l■!■^!■!^lj■^^^l^w:'^!:!!■^!!^ : ■ ...
■~ ____™—~——i

__-^ ;

Transition

Send Request

Receive Response

Cnnditinn and Action

When an A-Transact.req service primitive is received from the user,

create a Request APDU and send it to all association entities using the

network service. Set a timer to 3 seconds

(transactionRetryTime)and a counter to 3

(transact ionRetryCount).

When a Response APDU related to the transaction is received from the

network service, issue an A-Transacl.conf service primitive to the user

indicating that the transaction has succeeded. Cancel the timer.

When the timer expires, decrement the counter. If it is nonzero, resend

the Request APDU and reset the timer to 3 seconds

(transact ionRetryTime).

When the timer expires, decrement the counter. If it is zero, issue an

A-Transact.conf service primitive to the user indicating that the

transaction has failed.

Figure 6-6. Behavior of the association entity serving the originator of a transaction.

Retry

Abandon

73

Report No. 7627 BBN Systems and Technologies

c
Receive Request

idle
State

Send Response
(Not Cached)

__wj Responding |

Send Response
(Cached)

Timeout

Caching
State 3

Resend Response

Transition

Receive Request

Send Response

Resend Response

Timeout

Condition and Action

When a Request APDU identifying the user as respondent is received

from the network service, and the request does not match a response

already cached, issue an A-TransacLind service primitive to the user.

When an A-Transact.rsp service primitive is received from the user,

create a Response APDU and send it to all association entities using the

network service. If response caching is specified, set a timer to 10

seconds (transactionCacheTime) and enter caching state.

Otherwise, enter idle state.

When a Request APDU identifying the user as respondent is received

from the network service, and the request matches a response already

cached, resend the Response APDU.

When the timer expires, discard the cached response.

Figure 6-7. Behavior of the association entity serving the respondent of a transaction.

On receiving a Response APDU from the network service, an association entity

determines whether the APDU pertains to an active transaction for which the entity is

representing the originator. If so, the procedure is as described above. If not, the entity

determines whether its own user subscribes to the multicast group under which the

74

I BBN Systems and Technologies Report No. 7627

Response APDU was issued. If not, the Response APDU is discarded. Otherwise, the

entity issues an A-Response.ind to its user with parameters obtained from the Response

APDU.

75

Report No. 7627 BBN Systems and Technologies

SIMULATION PROTOCOL

The Simulation protocol is used by simulators to communicate with each other

information about the simulated world. The protocol serves to initiate vehicles into an
exercise, withdraw them from an exercise, describe the externally visible appeararce of

vehicles, report the firing and impact of projectiles, transfer supplies between vehicles,

and effect repairs to vehicles.

7.1 Simulation protocol data units

The simulation protocol makes use of several kinds of protocol data units. All simulation
PDUs have a length that is an integral multiple of 64 bits. In some cases, this may require
padding to be included at the end of the PDU. All simulation PDUs begin with a
common 64-bit header. Included in this header is a code indicating the kind of PDU

present:

I
I

type SimulationPDUKind enum (8) (

activateRequestPDUKind (1) ,

activateResponsePDUKind (2),

deactivateRequestPDUKind (3) ,

deactivateResponsePDUKind (4),

vehicleAppearancePDUKind (5) ,

radiatePDUKind (6),

firePDUKind (7),

impactPDOKind (8),

indirectFirePDUKind (9> ,

collisionPDUKind (10),

serviceRequestPDUKind (11),

resupplyOfferPDUKind (12),

resupplyReceivedPDUKind (13) ,

resupplyCancelPDUKind (14),

repairRequestPDUKind (15),

repairResponsePDUKind (16)

markerPDUKind (17),

breachedLanePDUKind (18),

minefieldPDUKind (19),

I

- Activate Requet PDU

- Activate Response PDU

-- Deactivate Request PDU

-- Deactivate Response PDU

-- Vehicle Appearance PDU

- Radiate PDU

- Fire PDU

- Impact PDU

- Indirect Fire PDU

- Collision PDU

- Service Request PDU

- Resupply Offer PDU

-- Resupply Received PDU

- Resupply Cancel PDU

- Repair Request PDU

-- Repair Response PDU

-Marker PDU

- Breached Lane PDU

- MineField PDU

PDUs containing an unknown kind field should be ignored. Kind values in the range of

129 to 255 are reserved for temporary or experimental use.

76

BUN Systems and Technologies Report No. 7627

Followinfc ihe PDU header is a portion whose format depends on the kind of PDU. The

overall content of a PDU is:

77

Report No. 7627 BBN Systems and Technologies

type SimulationPDU sequence (
version SimulationProtocolVersion,

kind SimulationPDUKind,

exercise ExerciselD,
unused (40),

variant choice (kind) of {

when (activateRequestPDUKind)

activateReq ActivateRequestVariant,

when (activateResponsePDUKind)

activateRsp ActivateResponseVariant,

when (deactivateRequestPDUKind)

deactivateReq DeactivateRequestVariant,

when (deactivateResponsePDUKind)

deactivateRsp DeactivateResponseVariant,

when (vehicleAppearancePDUKind)

appearance VehicleAppearanceVariant,

when (radiatePDUKind)

radiate RadiateVariant,

when (firePDUKind)

fire FireVariant,

when (impactPDUKind)

impact ImpactVariant,

when (indirectFirePDUKind)
indirectFire IndirectFireVariant,

when (collisionPDUKind)

collision CollisionVariant,

when (serviceRequestPDUKind)

serviceReq ResupplyVariant,

when (resupplyOfferPDUKind)

resupplyOffer ResupplyVariant,

when (resupplyReceivedPDUKind)

resupplyReceived ResupplyVariant,

78

BBN Systems and Technologies Report No. 7627

when (resupplyCancelPDOKind)

resupplyCancel ResupplyCancelVariant,

when (repairRequestPDUKind)

repairReq RepairRequestVariant,

when (repairResponsePDUKind,

repairRsp RepairResponseVariant

when (markerPDUKind)

marker MarkerVariant,

when (breachedLanePDUKind)

breachedLane BreachedLaneVariant,

when (minefieldPDUKind)

minefield MinefieldVariant

)

The version field specifies the version of simulation protocol to which the PDU

pertains. The use of this field allows new versions of the simulation protocol to be

introduced without disruption to existing implementations. The simulation protocol

described in this report has version number 3:

type SimulationProtocolVersion enum (8) {

simProtocolVersionAug89 (1)

simProtocolVersionJan90 (2),

simProtocolVersionJan90Corrected (3)

}

The exerciselD field identifies the exercise to which the PDU pertains (§5.1.6).

7.2 Use of association sublayer services

Simulation PDUs are conveyed among simulators using the services of the association

sublayer defined in chapter 6. A single PDU is issued through a single invocation of

either the A-Datagram.req service primitive or the A-Transact.req service primitive. The

discussion of protocol procedures, below, specifies which of these two service primitives

is used in each case.

7')

Report No. 7627 BBN Systems and Technologies

To distinguish the simulation protocol from other protocols using the association

sublayer, the simulation protocol is assigned a unique association sublayer user protocol

number. This number is 1:

constant simulationProtocolNumber 1

Every simulation protocol interaction among simulation entities takes place within the

context of a particular simulation exercise. Associated with an exercise is an exercise

identifier, which distinguishes it from other, concurrent exercises. With but one

exception noted below, the interactions associated with a particular exercise are carried

by the association service using a multicast group number that is identical to the

exercise's identifier. This allows simulation entities to receive information only about the

exercises of interest to them by subscribing only to selected multicast groups.

The one exception to the rule stated above on the use of exercise identifiers as multicast

group numbers occurs with the protocol interaction used to introduce a simulation entity

into an exercise. That protocol interaction is performed using the multicast group number

0 (a group that includes all simulation entities) to ensure that a simulation entity may be

communicated with regardless of which multicast groups it has already subscribed to.

Some protocol interactions call for using the transaction service to issue a PDU to the

simulation entity that is modeling a particular vehicle, x. Use of the transaction service

requires knowing the simulation address of the respondent—in this case, the address of

the simulation entity modeling x. That address is discovered through the process of

receiving PDUs that describe x: the A-Datagram.ind service primitives that deliver these

PDUs also specify the simulation address of their originator. This simulation address

should be used for directing transactions to the simulation entity modeling x.

An alternate method of obtaining the address of a vehicle's simulation entity, by

extracting the simulation component of its vehicle identifier (§5.1.24), must not be

relied upon since it precludes transferring the simulation of a vehicle from one entity to

another.

The transaction service of the association sublayer allows a respondent to specify whether

a particular response should be cached for retransmission. This service element is chosen

using the cache-response parameter of the A-Transact.rsp service primitive. Use of this

feature for simulation protocol interactions is optional in all cases.

go

BBN Systems and Technologies Report No. 7627

7.3 Protocol procedures

The simulation protocol is logically divided into several distinct protocol procedures,

each of which provides a related set of functions. These procedures are defined

individually in the following subsections.

All protocol procedures involve the exchange of PDUs among simulation entities using

services of the association sublayer. For brevity, we sometimes use the term simulator in

this section when referring to simulation entities. When describing use of the association

sublayer, however, we generally revert to the more correct term, simulation entity.

Moreover, we usually shorten "the transaction service of the association sublayer" to "the

underlying transaction service".

7.3.1 Activation

One simulator may prompt another to begin simulating a vehicle through a procedure

called activation.

The activation procedure is commonly used by MCC systems to start crewed vehicle

simulators such as the Ml Abrams main battle tank simulator. An active vehicle can also

be re-activated through this same process, in effect resetting the simulation ofthat

vehicle. Activation is used for this purpose when an MCC system that has simulated the

towing (recovery) of a vehicle repositions that vehicle on the terrain at its towing

destination.

The simulation entity requesting the activation uses the underlying transaction service to

convey an Activate Request PDU to the entity that is to perform the simulation. The

Activate Request PDU includes information describing the vehicle to be simulated. An

Activate Response PDU is then returned to indicate whether the activation request has

been accepted.

This transaction is performed using the association sublayer's multicast group 0 (the

broadcast group) to ensure that the transaction will be received by the respondent

regardless of which multicast groups it has subscribed to.

An Activate Request PDU includes the following fields in addition to its PDU header:

XI

Report No. 7627 BBN Systems and Technologies

type ActivateRequestVariant sequence {

- Purpose of the activation:

reason ActivateReason,

- Identity of the activated vehicle:

vehicleClass VehicleClass,

vehiclelD VehiclelD,

unit OrganizationalUnit,

marking VehicleMarking,

guises VehicleGuises,

-- Information about the simulated world:

simulatedTime Time,

terrain TerrainDatabaselD,

battleScheme BattleScheme,

- Status of the vehicle:

onSurface Boolean,

unused (23),

status VehicleStatus,

location WorldCoordinates,

- Depending on vehicle class:

specific choice (vehicleClass) of (

-- A static vehicle:

when (vehiclaClassStatic) static sequence {

hullAzimuth Angle,

unused (32)

K

- A simple moving vehicle, without a turret:

wh^n (vehicleClassSimple) simple sequence (

hullAzimuth Angle,

unused (32)

},

-- A tank:

when (vehicleClassTank) tank sequence {

hullAzimuth Angle,

turretAzimuth Angle

)

K2

BBN Systems and Technologies Report No. 7627

— These fields are optional:

— Initial velocity and freeze state

velocity VelocityVector,

freezeState Boolean,

unused (31),

— More information about the simulated world:

VLVisibility Float (32), — visibility in visible light in meters

simulatedSkyColor SkyColor,

unused (24)

The reason field indicates the purpose of the activation:

type ActivateReason enum (8) {

activateReasonOther,

fiierciseStart,

oy.erciseRestart,

vehicleReconstltution,

towingArrival

)

-- none of those listed below

- initial entry into new exercise

-- restart of exercise

- restoration of vehicle status

-- towing destination reached

When a vehicle is first introduced into a new exercise, the activation reason is specified

as exerciseStart. If the exercise is being resumed after some interruption, a reason

of exerci seRest art is specified. If the vehicle is being activated to provide it a new

location, operational status, or supply of munitions, a reason of
vehicleReconst itution is specified. In all three cases, and in the case where the

reason is specified as act IvateReasonOther, the remaining fields of the Activate

Request PDU are interpreted as completely specifying the new state of the activated

vehicle.

After a vehicle has been lowed to a new destination, and upon reaching that destination, it

may be activated using an Activate Request PDU in which the reason field is specified

as towingArrival. In this pase, only the vehicle^ ass, locarion, onSurf ace,

and specific fields are interprets^ ui. specifying a new iocatian and orientation for the

vehicle. The vehicle will retain other state atmba'.cs il had prior to towing.

The vehicle ID field is relevant wkm the reason for the activawon is

exerciseRestart, vehicleReconstit^ci or . or towingArrival. In these

cases, the field identifies the particular vehicle bt i j ,re;%tivated by referring to a

vehicle that has already been participating in the exercise (§5.1.24). In all other cases, the

83

Report No. 7627 BBN Systems and Technologies

vehiclelD field contains zero, and the activated simulator is responsible for selecting a

new, unique identifier for the activated vehicle.

The organizational unit to which the vehicle is assigned it described by the unit field

(§5.1.11). The marking field describes a label on the vehicle, such as a bumper number,

that may be visible from other vehicles under certain circumstances (§5.1.25).

The guises field supplies two object type codes, specifying how the activated vehicle is

to appear when viewed from other vehicles (§5.1.23). Both object type codes are to be

included in the Vehicle Appearance PDUs subsequently issued for the vehicle.

The simulatedTime field specifies the simulated time at which the PDU is issued

(§5.1.18). It;; purpose is to provide the receiving simulator with information necessary

for modeling a particular time of day or time of year. Because the PDU may be subject to

delay and retransmission by the association service and its underlying network, the time it

carries should be interpreted as being accurate to at most ±10 seconds.

The terrain field identifies the terrain database to be used by the activated simulator

(§5.1.17).

The vehicle's status—the health of its various subsystems and the quantities of supplies it

has on board—will be as described by the status field (§5.1.26). For a vehicle newly

introduced into an exercise, the odometer component of the status field will be zero;

for one that is being re-activated, perhaps as an exercise is being restarted, the

odometer component will reflect the distance travelled earlier by that vehicle in the

same exercise.

The onSurf ace and location fields provide the activated vehicle's initial location.

If onSurf ace is false, the vehicle will exist at the location in space specified by the

world coordinates (§5.1.29). Otherwise, when onSurf ace is true, the vehicle will exist

upon the terrain's surface at the location specified by the x and y components of the

world coordinates. (In this case, the z component is ignored.)

The latter portion of the PDU contains vehicle-specific information whose forma- vaTies

with the class of vehicle being activated. The correct interpretation of this pcion u

determined by the contents of the PDU's vehicleClass field (§5.1,20). 'iht direci'OP

the vehicle is to face initially is represented by the hullAzimuth field as an -cngle

measured counterclockwise from north (i.e., a value of 230 (90 degrees) me*".-: fac;..-.ö

84

BBN Systems and Technologies Report No. 7627

west). If the vehicle is of the tank class, the azimuth of its turret relative to its hull is

represented by the turret Azimuth field, which measures the angle counterclockwise

from the front of the hull (§5.1.1).

The final portion of the PDU contains optional fields. The presence of these fields may

be determined by the length returned by the association protocol. As with any PDU, a

simulator that receives an Activate Request PDU that includes unknown fields at the end

should ignore these unknown fields.

The first set of optional fields supports the activation of a simulator with an initial

velocity and freeze state. These fields may be particularly useful for initializing aircraft

simulators. The velocity field specifies the vehicle's initial velocity vector (§5.1.28).

If f reezeState field is true, the vehicle should be initialized in a "frozen" or

suspended state.

The second set of optional fields supports the initialization of visibility and sky state. It

may only be present if the fist set of optional fields is also present. The VLVi s ibi 1 it y

field specifies the visible light visibility in meters. The simulatedSkyColor field is

represented by SkyColor data element which is defined as follows:

type SkyColor enum (8) {

skyColorClear, — No cloud cover

skyColorPartlyCloudy, -- 0-50% cloud cover

skyColorPartlySunny, — 50-100% cloud cover

skyColorOvercast, — total, light colored cloud cover

skyColorRainy — total, dark colored cloud cover

)

A simulator that correctly receives an Activate Request PDU must immediately respond

by returning an Activate Response PDU. This PDU is simply an acknowledgement of

receipt; it does not represent that the simulator has successfully completed the activation

process.

An Activate Response PDU includes the following fields in addition to its PDU header:

85

Report No. 7627 BBN Systems and Technologies

type ActivateResponseVariant sequence {

vehiclelD VehiclelD,

result ActivateResult,

unused (8),

timeLimit ünsignedlnteger (16),

unused (48)

)

type ActivateResult enum (8) {

activateRequestAccepted,

invalidActivateParameter,

unexpectedActivateReason,

invalidVehicleIdentifier,

terrainDatabaseUnavailable

)

The result field indicates whether the activation request has been accepted, and, if not,

why not.

If the activation request has been accepted, then the vehiclelD field contains the

vehicle identifier of the activated vehicle (§5.1.24). Otherwise, it contains zeros.

The responding simulator may require some period of time before it is able to issue

Vehicle Appearance PDUs for the newly activated vehicle. This will be the case, for

example, if the simulator must perform considerable processing in order to initialize

itself. If the simulator accepts the activation request, and therefore returns a result of

activateRequestAccepted, then it must specify an upper limit for this period of

time. The limit is specified in the timeLimit field, in units of seconds. If the simulator

does not accept the activation request, and therefore returns a result other than

activateRequestAccepted, then the timeLimit field should contain 0.

7.3.2 Deactivation

A simulator may withdraw its own vehicle from an exercise at any time, or it may be

requested by another simulator (such as an MCC system) to withdraw it through a process

called deactivation. In either case, the withdrawal of the vehicle is announced using a

Deactivate Request PDU. This PDU is used in two ways:

If a simulation entity is withdrawing its own vehicle, it will convey the Deactivate Request PDU to

all other exercise participants using the underlying datagram service. Those receiving the

Deactivate Request PDU then cease to dead reckon and display the withdrawn vehicle.

86

BBN Systems and Technologies Report No. 7627

If one simulation entity is requesting that another cease simulating a vehicle, it will convey the

Deactivate Request PDU to the simulating entity using the underlying transaction service. That

entity responds with a Deactivate Response PDU, and ceases simulating its vehicle. Other

simulation entities receiving the same Deactivate Request PDU simply cease to dead reckon and

display the deactivated vehicle.

In both caaes, a multicast group number identical to the exercise identifier is used to

invoke the association service.

A Deactivate Request PDU includes the following fields in addition to its PDU header:

type DeactivateRequestVariant sequence {

vehiclelD VehiclelD,

reason DeactivateReason,

unused (8)

)

The vehiclelD field contains the identifier of the vehicle withdrawing (§5.1.24).

The reason field indicates the purpose of the deactivation:

type DeactivateReason enum (8) {

deactivateReasonOther,

exerciseEnd,

vehicleWithdrawn,

vehicleDestroyed,

towingDeparture

}

-- none of those listed below

- end of exercise

-- vehicle withdrawn from exercise

-- vehicle no longer exists

-- start of towing operation

A Deactivate Response PDU includes the following fields in addition to its PDU header:

type DeactivateResponseVariant sequence {

vehiclelD VehiclelD,

result DeactivateResult,

unused (8)

}

type DeactivateResult enum (8) {

deactivateRequestAccepted,

invalidDeactivateParameter,

unexpectedDeactivateReason,

vehicleNotActive

}

S7

Report No. 7627 BBN Systems and Technologies

The vehiclelD field is identical to that in the corresponding Deactivate Request PDU.

The result field indicates wnether the deactivation request has been accepted, and, if

not, why not.

7.3.3 Appearance and other state updates

State updates are issued periodically by simulators to describe some element of the state

of the system they simulate. A simulator learns of the existence of another simulated

systems when it first receives on of these updates, which may be at any point during an

exercise. State updates are used to describe vehicles, minefields, and radar emissions.

When an update for a given system has not been received for an defined interval of time,

the system is no longer considered to exist (or in the case of radar, to no longer be

emitting).

Vehicle Appearance PDU

A simulator periodically reports information about a vehicle it simulates so that other

simulators may correctly depict that vehicle. Information about the visual appearance of

a vehicle is issued as a Vehicle Appearance PDU describing the vehicle at the moment of

issue. For some types of vehicles, this PDU contains additional information used by

other simulators to dead reckon the vehicle's appearance from that moment forward.

The underlying datagram service is used to issue a Vehicle Appearance PDU.

A simulator will issue a new Vehicle Appearance PDU for its vehicle whenever the

discrepancy between the vehicle's actual appearance and its dead reckoned appearance

exceeds one of the discrepancy thresholds defined in chapter 3. It will also issue a new

Vehicle Appearance PDU if 5 seconds (vehicleAppearanceTime) have elapsed

since it issued the last one, to ensure that new simulators joining an exercise will

promptly learn of all existing vehicles.

If a simulator ceases to receive Vehicle Appearance PDUs describing a particular vehicle,

and none are received for a period of 12 seconds (vehicleDisappearanceTime),

hen the simulator may assume that that vehicle no longer exists. (A Deactivate Request

,)U also serves to indicate that a vehicle no longer exists.)

A Vehicle Appearance PDU includes the following fields in addition to its PDU header:

8S

BBN Systems and Technologies Report No. 7627

type VehicleAppearanceVariant sequence {

-- Identity of the vehicle:

vehiclelD VehiclelD,

vehicleClass VehicleClass,

force ForcelD,

-- Appearance of the vehicle:

guises VehicleGuises,

location WorldCoordinates,

rotation array (3,3) of Float (32),

appearance Unsignedlnteger (32),

marking VehicleMarking,

timestamp unsignedlnteger (32),

capabilities VehicleCapabilities,

engineSpeed Unsignedlnteger (16),

stationary Boolean,

unused (7) ,

- Reason for issuing the PDU:

reason AppearanceUpdateReason,

-- Depending on vehicle class:

specific choice (vehicleClass) of {

-- A simple moving vehicle, without a turret:

when (vehicleClassSimple) simple sequence {

velocity VelocityVector,
unused (32)

),

-- A tank:

when (vehicleClassTank) tank sequence {

velocity VelocityVector,

turretAzimuth Angle,

gunElevation Angle,

unused (32)

1

}

The vehiclelD field identifies the vehicle described by the Vehicle Appearance PDU

(§5.1.24). The force field identifies the force to which it has been assigned (§5.1.7).

H')

Report No. 7627 BBN Systems and Technologies

The guises field contains two objeci type codes describing the appearance of the

vehicle as viewed from other vehicles (§5.1.23). Which of the two codes apr 1ies depends

on what force the observing vehicle has been assigned to. The dependency is explained

in section 2.3.

The vehicle's position and orientation in the world coordinate system are described by the

location and rotation fields. The location field contains the position, in world

coordinates, of the vehicle's own coordinate system origin (§i.l.29). The elements of the

rotation field, which is a nine element rotation matrix as defined in section 2.4, appear

in the order r-n, ri2, hs, r2i,..., T33 (i.e., in row-major order).

The appearance field contains 32 bits describing modifications to the vehicle's basic

appearance. The convention for assigning bits within this field is to use the low-order 16

bits for vehicle appearance attributes that may apply to many types of vehicle, and to use

the high-order 16 bits for attributes that are specific to certain types of vehicles.7 The

bits within this field are presently used as follows (with bit 0 being the least-significant,

or rightmost, bit;

Name

vehDestroyed

vehSmokePlume

vehFlaming

vehDustCloudMask

Bits Purpose

0 is 1 if the vehicle is destroyed, and 0 otherwise

1 is 1 if a plume of smoke is rising from the vehicle,

and 0 otherwise

2 is 1 if flames are rising from the vehicle, and 0

otherwise

3-4 describes any dust cloud being raised by the vehicle:

no dust cloud

small dust cloud

medium dust cloud

large dust cloud

vehMobilityDisabled is 1 if the vehicle appears unable to move

7 If many additional appearance modifier bits are required for newly defined types of vehicles, it is

expected that certain bits will have to bear different meanings according to what type of vehicle they

describe.

MO

I
I
I

BBN Systems and Technologies Report No. 7627

vehFirepowerDisabled 6

vehCommunicationDisabled 7

vehShaded 8

vehTOWLauncherUp 30

vehEngineSmoke

IfPositionMask

31

30-31

is 1 if the vehicle appears unable to shoot

is 1 if the vehicle appears unable to communicate

is 1 if the vehicle is in shadow

is 1 if the vehicle is an M2 or M3 with its TOW

missile launcher raised, and 0 otherwise

is 1 if the vehicle is a T72 emitting engine smoke, and

0 otherwise

represents a soldier stance, if the "vehicle" is

dismounted infantry

unknown

standing

kneeling

Iprone

All other bits of the appearance field should remain zero.

The marking field describes a vehicle label, such as a bumper number, that may be

visible on the vehicle for some observers (§5.1.25).

The time st amp field allows a determination of the relative timing of consecutive

Vehicle Appearance PDUs describing the same vehicle. The value of this field is such

that, for any two consecutive Vehicle Appearance PDUs describing the vehicle at times x

milliseconds apart, the time stamp field of the latter Vehicle Appearance PDU is greater

than that of the earlier by the amount x. In the first Vehicle Appearance PDU produced

for a vehicle in an exercise, the t imestamp field may have an arbitrary value. Section

3.4 explains how the timestamp may be used by a receiving simulator.

The capabilities field describes the vehicle's capabilities for resupplying,

recovering, and repairing other vehicles (§5.1.19).

91

Report No. 7627 BBN Systems and Technologies

The engine Speed field contains the vehicle's engine speed, in revolutions per seconds.

It is present in the Vehicle Appearance PDU to allow simulators to synthesize the sounds

pre Juced by nearby vehicles.8

The stationary field, a Boolean, is true if the vehicle's velocity is zero, and false

otherwise.

The format of the remaining portion of the Vehicle Appearance PDU depends on the

class of vehicle it describes, as represented by the vehicleClass field (§5.1.20). Fora

vehicle of the static class, there are no additional fields. Vehicles of the simple and tank

classes are further described by their velocity vectors, expressed relative to the world

coordinate system in meters per second (§5.1.28). For tank class vehicles, turret azimuth

and gun elevation angles are also present (§5.1.1). The turret azimuth is zero when the

turret is aligned with the front of the tank, and it increases as the turret rotates

counterclockwise (as viewed when looking down on the tank). The gun elevation is zero

when the gun is parallel with the tank chassis, and it increases as the gun elevates.

A series of consecutive Vehicle Appearance PDUs describes a single vehicle at

consecutive points in time, for the period of time that that vehicle is active. The series

ends when a Deactivate PDU is issued for the vehicle, or when no Vehicle Appearance

PDUs have been issued for 12 seconds (vehicleDisappearanceTime). Only

certain Vehicle Appearance PDU fields are permitted to change from one PDU in the

series to the next. The appearance, rotation, timestamp, engineSpeed, and

specific fields may change from one PDU to the next. The location and

stationary fields may only change from one PDU to the next if the vehicle is of the

simple class or of the tank class. The vehiclelD, vehicleClass, force, guises,

marking, and capabilities fields do not change from one PDU to the next within

the same series. However, these fields may change between one series and the next—i.e.,

between two series of Vehicle Appearance PDUs that refer to the same vehicle identifier,

but tha. are separated by a Deactivate PDU or by a silence of at least 12 seconds

(vehicleDisappearanceTime).

8 At present no discrepancy thresholds are applied to the engine speed attribute of a vehicle's

"appearance". Hence, changes in engine speed alone do not result in the issuanc' ot Vehicle

Appearance PDUs.

92

BBN Systems and Technologies Report No. 7627

Radar

A Radiate PDU is periodically issued by the simulator of a vehicle possessing a radar. It

reports the set of target vehicles illuminated by the radar—allowing the implementation

of radar warning receivers—and it identifies the subset of those targets that were actually

detected by the radar to aid analysis of an exercise. The Radiate PDU also describes the

location of the radar emitter, and certain characteristics of its signal.

The rate at which Radiate PDUs are issued depends on the type of radar simulated, and

the number of targets illuminated by the radar. If a search radar is simulated, it is

expected that each scan of the radar will result in the issue of a single Radiate PDU—or

several PDUs if all targets cannot be described in a single PDU. If a tracking radar is

simulated, the simulator will issue Radiate PDUs at a fixed rate as long as the radar

continues to track a target; this rate is not currently specified.

A Radiate PDU is issued using the underlying datagram service. In addition to its PDU

header, it includes the following fields:

type RadiateVariant sequence {

vehiclelD VehiclelD,

mode RadarMode,

dutyCycle RadarDutyCycle,

location WorldCoordinates,

carrierFrequency SignalFrequency,

signalPower SignalPower,

antennaGain Float (32),

pulseEnergy Float (32), - joules

numberlllumed Unsignedlnteger (8),

numberDetected Unsignedlnteger (8) ,

targetID array (numberlllumed) of VehiclelD

)

The vehiclelD field includes the identifier of the vehicle containing the radar

(§5.1.24).

Two fields, mode and dutyCycle, characterize the type of radar:

«

Report No. 7627 BBN Systems and Technologies

- none of those listed below

-- none of those listed below

type RadarMode enum (8) {

radarModeOther,

radarModeSearch,

radarModeAcquisition,

radarModeTracking

)

type RadarDutyCycle enum(8) {

zadarDutyCycleOther,

radarDutyCycleContinuous,

radarDutyCyclePulsed

)

The location of the radar emitter, in world coordinates, is supplied in the location field

(§5.1.29).

The carrierFrequency , signalPower, antennaGain, and pulseEnergy

fields describe the radiated signal. The carrier frequency is specified in hertz:

type SignalFrequency Float (32) -- hertz

The power and energy of the radiated signal are characterized by three values. The power

input to the antenna is specified in watts by the signalPower field:

type SignalPower Float (32) watts

The antenna's efficiency is specified by the antennaGain field, as a fraction. The

energy of a radar pulse is specified by the pulseEnergy field, in joules.

The target ID field contains from 0 to 33 identifiers of vehicles illuminated by the

radar (§5.1.24).

constant maxRadiateTargets 33

The exact number of vehicle identifiers present is specified by the value of the

numberlllumed field. The vehicle identifiers are ordered so that those vehicles

actually detected by the radar are placed at the front of the list, and the

numberDetected field specifies how many targets there are in this first part of the list.

Of course, the value of the numberDetected field will never exceed the value of the

numberlllumed field.

94

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BBN Systems and Technologies Report No. 7627

If necessary, the target ID field is followed by 32 unused bits so that the Radiate

PDU's overall size is a multiple of 64 bits.

Mine fields

The SIMNET simulated battlefield supports mine fields. These minefields may be

created, cleared, and marked with flags. Three distinct PDUs are used to support

minefields: the Mine Field PDU, Breached Lane PDU, and the Marker PDU. Mine fields

represent the actual mine fields. They are not necessarily detectable without special

equipment. Breached lanes represent areas from which mines have been cleared. Mine

field markers are flags that may be used by troops to mark the boundaries of a mine field.

They are visible to the crews of simulators.

Mine Field PDU

The Mine Field PDU describes an emplaced mine field. A simulator receiving a Mine

Field PDU may use the information to depict the mine field. A Mine Field PDU is issued

whenever a mine field is created and once every 30 seconds (mineFieldTime)

thereafter A simulator may assume a mine field no longer exists if it has not received

any Mine Field PDUs from that particular mine field for a period of 66 seconds

(mineFieldTimeOut).

The Mine Field PDU is issued using the unde^ving datagram service .

A Mine Field PDU includes the following fields in addition to its PDU header:

type MinefieldVariant sequence {

mines array (maxMineDescriptors) of MineDescriptor,

vertices array (maxMinefieldVertices) of XYCoordinates,

numberOfVertices Unsignedlnteger (8),

numberOfMineTypes Unsignedlnteger (8) ,

minefieldID ObjectID,

emplacementTime Time, — When the minefield was placed

force ForcelD,

unused (56)

1

The mines field identifies the type and density of mines that make up the mine field.

Each type of mine in the mine field is described by a MineDescriptor data element of

the following form:

<>5

Report No. 7627 BBN Systems and Technologies

type MineDescriptor sequence {

mineType ObjectType,

density Float (32)

}

The mineType field identifies the type of mine (§5.1.10) The density field identifies

the areal density of the mineType type of mine in the mine field in units of mines per

square meter.

A maximum of 3 different types of mines may exist in a single mine field:

constant maxMineDescriptors 3

The vertices field describes the geometry of the mine field. The mine field is

represented as a two-dimensional polygon. Each vertex is described by an

XYCoordinates data element (§5.1.30). The polygon representing the mine field does not

cross itself and no vertex is repeated. The mine field's location in the simulated world is

determined by the projection of the specified polygon onto the surface of the terrain along

the Z axis of the world coordinate system (§2.4).

The numberOf Vert ices field specifies the number of vertices actually used to

describe the polygon. The polygon may have a maximum of thirteen vertices:

constant maxMinefieldVertices 13

The numberOfMineTypes field specifies the number of different mine types actually

described by the mines field.

The minef ieldID field uniquely identifies the mine field described by the Mine Field

PDU (§5.1.9).

The emplacementTime field indicates the time the mine field was originally

emplaced(§5.1.18). This time corresponds to the time the first Mine Field PDU was

issued for this mine field. The emplacement time is required to interpret the effect of

multiple overlapping mine fields and breached lanes.

The force field identifies the force which originally emplaced the mine field (§5.1.7).

96

BBN Systems and Technologies Report No. 7627

Breached Lane PDU

The Breached Lane PD', oribes a path that has been cleared through a mine field. It

may be used by simulators capable of sensing mines to indicate this cleared path. A

Breached Lane PDU is issued whenever a breached lane is created and once every 30

seconds (mineFieldTime) thereafter. A simulator may assume a breached lane no

longer exists if it has not received any Breached Lane PDUs from that particular breached

lane for a period of 66 seconds (mineFieldTimeOut).

The Breached Lane PDU is issued using the underlying datagram service. In addition to

its PDU header, it includes the following fields:

type BreachedLaneVariant sequence {

vertices array (4) of XYCoordinates, — a "lane"

breachedLanelD ObjectID,

numberOfVertices Unsignedlnteger (8) ,

forCe ForcelD, — the force of the breachers

breachT.ime Time — when the lane was breached

)

The vertices field specifies the geometry of the breached lane as follows: The

vertices define a three or four sided polygon in the X-Y plane of the world coordinate

system (§5.1.29). The location of the breached lane in the simulated world is the

projection of this polygon onto the surface of the terrain along the Z-axis of the world

coordinate system (§2.4).

The breachedLanelD field uniquely identifies the breached lane described by the

Breached Lane PDU (§5.1.9). The id need only be unique within the exercise specified

in the PDU header.

The numberOfVertices field specifies the number of vertices in the vertices field.

It must be either three or four.

The force field identifies the force which created the breach lane (§5.1.7).

The breachTime field identifies the time the at which the breach lane was originally

created. This time corresponds to the time the first Breached Lane PDU was issued for

this breachedLanelD. The breach time is required to interpret the effect of multiple

overlapping mine fields and breached lanes.

w

Report No. 7627 BBN Systems and Technologies

Marker PDU

The Marker PDU is used to introduce a static collection of objects (§5.1.10) into the

simulated world. Its primary purpose is to represent the collection of marker flags that

may be used to mark a mine field. A Marker PDU is issued whenever a collection of

markers is created and once every 5 seconds (vehicleAppearanceTime) thereafter.

A simulator may assume a collection of markers no longer exists if it has not ;ceived any

Marker PDUs from that particular collection of markers for a period of 12 seconds

(vehicleDisappearanceTime).

The Marker PDU is issued using the underlying datagram service. In addition to its PDU

header, it includes the following fields:

type MarkerVariant sequence {

guises VehirleGuises,

simulator SimulationAddress,

variantNumber MarkerVariantNumber,

numberOfMarkers Unsignedlnteger (8),

force ForcelD,

markers array (numberOfMarkers) of MarkerDescriptor

1

The guises field contains two object type codes(§5.1.23). These object type codes

specify the appearance of all the markers described by the Marker PDU. Which of the

two type codes applies depends on the force (§5.1.7) to which the observer belongs. This

dependency is explained in section 2.3.

The simulator field uniquely identifies the simulator which issued the Marker PDU

(§5.1.13).

The variantNumber field logically groups and orders the markers listed in this Marker

PDU with those in other Marker PDUs issued by the same simulator. The

variantNumber field has the following form:

type MarkerVariantNumber sequence {

number Unsignedlnteger (8), — th« number of this one

total Unsignedlnteger (8) — our, of this many

)

The number field identifies this Marker PDU as the nth member of a group of Marker

PDUs. The total field identifies the total number of members of the group. Each

BBN Systems and Technologies Report No. 7627

member of the group is uniquely identified by a nu^ib^r field in the range from 1 to the

number of members of the group.

The numberOf Markers field specifies the number of markers that follow in the

markers field.

The force field identifies the force associated with the markers in this Marker PDU

(§5.1.7).

Finally, each individual marker is described by a MarkerDescriptor data element in the

markers field. The MarkerDescriptor data element has the following form:

type MarkerDescriptor sequence {

location WorldCoordinates,

orientation Angle,

identifier Unsignedlnteger (16),

unused (16)

}

The location field specifies the location of the marker in world coordinates (§5.1.29).

Th; orientation field specifies the orientation of the marker, measured counter-

clockwise with respect to North. The angle is measured in units of BAMs (§5.1.1).

The identifier field uniquely identifies the marker within this simulator. When

combined with the simulator field of the Marker PDU, it uniquely identifies the

marker within the exercise specified in the PDU header. This combination of

simulator and identifier is also unique over 11 vehicle identifiers (§5.1.24) and

object identifiers (§5.1.9) in the same exercise.

7.3.4 Weapons fire

When a simulated vehicle fires its weapon, its simulator will usually issue two PDUs:

The first, a Fire PDU, is issued when the shell or missile is fired.

• The second, an Impact PDU or Indirect Fire PDU, is issued later, when the projectile detonates.

The Fire PDU describes the type of projectile fired, the location of the muzzle or launcher

from which it is fired, and the velocity of the projectile. This information is used by

simulators receiving the PDU to display a muzzle flash near the appropriate point on the

<w

Report No. 7627 BBN Systems and Technologies

firing vehicle. Also present in the Fire PDU to aid analysis of the exercise is information

such as the rate of slew of the turret at the time of firing, the target range used for the fire

control solution, and the kind of ammunition selected by the gunner.

In the case of direct fire where the projectile is either ballistic or it is guided in flight by

the firing soldier or his simulator, the determination of what the projectile hits is done by

the liring simulator. That simulator then issues an Impact PDU that describes the location

of the projectile's impact and identif'ps any vehicle struck. Simulators receiving this

PDU can display the impact and, if ir vehicle is the one smJck, assess any resulting

damage. e

Sometimes the protocol for a weapons engagement involves an Indirect Fire PDU but no

preceding Fire PDU. This case arises, for example, when bombs are released by an

imaginary aircraft that is not included in the simulation. When the bombs detonate, an

Indirect Fire PDU is produced to describe them.

100

I
i
I
I
I

I In the case of indirect fire, the system simulating the howitzer or mortar issues an Indirect

Fire PDU announcing the location of the projectile's detonation. In contrast with direct

fire, no determination is made by the firing simulator as to which vehicles are hit by the

indirect fire. Instead, each simulator computes its own vehicle's distance from the ^

detonation and assesses any damage. Indirect Fire PDUs are also used to describe the

detonations of bombs dropped by aircraft. I
I

Although the Impact PDU and Indirect Fire PDU are optimized for describing the

behavior of direct fire and indirect fire projectiles respectively, either PDU may be used

with any given projectile type. The principle difference between the PDUs is in how a

determination is made of what target vehicles are affected by a projectile. It may be M

desirable, for example, to issue an Impact PDU describing the detonation of a missile if it

actually strikes a target vehicle, but to issue an Indirect Fire PDU instead if the detonation

occurs some distance from any vehicle. In the former case, the target vehicle's simulator

can assess its vehicle's damage most accurately, while in the iatter case, the detonation

can have an effect on several nearby vehicles.

i

I
I

It is also possible for a round to be fired, yet never impact. This occurs, for example, S

when a round is fired outside the area of defined terrain. In such a case, an Impact PDU

or Indirect Fire PDU is used to report the "nonimpact" of the round so that its disposition

is never ambiguous. I
I
I

I
I

BBN Systems and Technologies Report No. 7627

Fire PDU

A Fire PDU describes the firing of a shell, a burst of machine gun fire, or a missile. It is

issued by the firing simulator, and may be used by the simulators that receive it to display

a muzzle flash at a location specified in the PDU.

A Fire PDU is issued us' .g the underlying datagram service. In addition to its PDU

header, it includes the following fields:

type FireVariant sequence {

-- Common to all shell and missile firings:

attackerlD VehiclelD,

eventID EventID,

burst BurstDescriptor,

target TargetDescriptor,

velocity VelocityVector,

muzzle WorldCoordinates,

projectilelD VehiclelD,

unused (8),

fireType FireType,

- Depending on whether a shell or a missile is fired:

specific choice (fireType) of {

-- If a shell is fired:

when (fireTypeShell) shell sequence {

range Float (32),

slewRate Float (32),

ammoSelected ObjectType,
unused (32)

I,

-- If a missile is fired:

when (fireTypeMissile) missile sequence {

tube Unsignedlnteger (8),

unused (56)

)

)

The attackerlD field identifies the firing vehicle (§5.1.24).

101

Report No. 7627 BBN Systems and Technologies

The event ID field contains an event identifier generated by the firing vehicle's

simulator (§5.1.5). It must be unique among all such identifiers generated for that vehicle

since it joined the exercise. This same identifier is repeated in the subsequent Impact

PDU or Indirect Fire PDU that reports the impact of the fired round.

The burst field identifies the kind of projectile and detonator fired, the number of

rounds contained in a machine gun burst, and the rate of fire (§5.1.4).

The target field describes what the firing simulator knows about the target being fired

upon (§5.1.16). It indicates whether the target is known, and, if so, whether it is a

vehicle. If the target is known and it is a vehicle, the identifier of that vehicle is included

in the field.

The muzzle field contains the location of the gun or missile launcher muzzle in world

coordinates (§5.1.29). The velocity of the projectile leaving that muzzle is specified by

the velocity field, in units of meters per second (§5.1.28). The vector is expressed in

world coordinates (§2.4).

While modeling the flight of a projectile such as a missile, a simulator may produce

Vehicle Appearance PDUs describing the appearance of the projectile. The

pro jectilelD field allows the firing simulator to specify a vehicle identifier it will be

associating with the projectile in order to report its appearance as a vehicle (§5.1.24). If

the firing vehicle's simulator will not be producing Vehicle Appearance PDUs describing

the travelling projectile, it places zeros in the project i le ID field.

The f ireType field classifies the kind of ammunition fired as a shell or a missile. The

values of this field are:

type FireType enum (8) {

fireTypeShell (1),

fireTypeMissile (2)

)

A machine gun burst is classified as fireTypeShell.

The format of the remaining portion of the PDU depends on whether the f ireType field

indicates that a shell or a missile is being fired. If a shell is being fired, the range,

slewRate, and ammoSelected fields are present. The range field specifies the

range (in meters) that the vehicle's fire control system has assumed in computing its

102

BBN Systems and Technologies Report No. 7627

ballistic solution. The Ml tank simulator, for example, reports the range displayed in the

gunner's sight. The slewRate field specifies the rate at which the vehicle's gun is

slewing relative to the world coordinate system, in revolutions per second. The

ammoSelected field specifies the type of ammunition that the vehicle's fire control

system has assumed is being fired (§5.1.10). The Ml tank simulator, for example, reports

the setting of the gunner's ammunition select switch.

Alternatively, if a missile is being fired, the tube field is present in the PDU. It specifies

the tube from which the missile is being launched.

Impact PDU

An Impact PDU is issued by a simulator when the flight of a projectile it is simulating,

ends. It may or may not describe an impact between the projectile and a particular, target

vehicle. The PDU serves two purposes:

It informs other simulators of the projectile's detonation so that they may produce the appropriate

visual and aural effects.

• It may identify a specific target vehicle struck by the projectile so that the target vehicle's

simulator can model ihe resulting damage.

There are two alternate ways in which the Impact PDU may be issued:

• If the projectile did not strike a target vehicle, or if it struck a target vehicle being simulated by the

same simulator as that simulating the projectile, then the Impact PDU is issued using the

underlying datagram service.

Otherwise, (when the projectile struck a target vehicle being simulated by another simulator) the

Impact PDU is issued using the underlying transaction service. The target vehicle's simulator is

identified as the transaction's respondent. The response returned through via the transaction

service contains no simulation PDU.

An Impact PDU includes the following fields in addition to its PDU header:

\.

103

Report No. 7627 BBN Systems and Technologies I
type ImpactVariant sequence {

-- For any round fired:

attackerlD

eventID

burst

projectilelD

result

VehiclelD,

EventID,

BurstDescriptor,

VehiclelD,

FireResult,

unused (8),

Forprojoctiles that impact somewhere:

momentum

energy

directioi.ality

location

range

Float (32),

Float (32),

Float (32),

WorldCoordinates,

Float (64),

~ newton-seconds

- joules

- steradians

-- For shots that strike a particular vehicle:

targetID VehiclelD,
component VehicleComponent,
impact VehicleCoordinates,

trajectory VehicleCoordinates

The attackerlD field identifies the firing vehicle (§5.1.24),

The event ID field contains the same event identifier as that supplied by the firing

simulator in the preceding Fire PDU (§5.1.5). This identifier, in conjunction with the

firing vehicle's identifier, serves to associate corresponding pairs of Fire PDUs and

Impact PDUs.

The burst field identifies the kind of projectile and detonator fired, the number of

rounds contained in a machine gun burst, and the rate of fire (§5.1.4). It is identical to the

burst field of the corresponding, preceding Fire PDU.

If the appearance of the fired projectile was described during its flight by a series of

Vehicle Appearance PDUs, then the projectilelD field contains the vehicle identifier

used for the projectile (§5.1.24). Otherwise, the projectilelD field contains zeros.

The result field indicates what has become of the fired round:

104

I

BBN Systems and Technologies Report No. 7627

type FireResult enum (8) {

nonimpact (1),

groundlmpact (2),

vehiclelmpact (3),

proximatelmpact (4)

}

~ the projectile did not impact

-■ the projectile struck terrain

-- the projectile struck a vehicle

-- the projectile 'struck" a vehicle

-- in proximity fused detonation

If the projectile was "lost" (e.g., it flew outside the area of defined terrain), then the

result field will have the value nonimpact, and the remaining fields of the PDU are

unused.

Otherwise, the location field specifies the point at which the projectile impacted either

a vehicle or tne terrain (§5.1.29), and the range field specifies the straight-line distance

from muzzle to impact. The momentum and energy fields specify the impact

momentum and explosive energy of the projectile, in newton^seconds and joules

respectively. The directionality of the projectile's explosion is described by the

directionality field, which specifies a solid angle in steradians. For a highly

directional explosion, directionality will be small; for a spherically symmetrical

explosion, directionality will be 4K.

Only if the projectile impacted a vehicle are the target TD, component, impact, and

trajectory fields used. The target ID field identifies the vehicle struck (§5.1.24).

The component field specifies which component of the target vehicle was struck. The

impact field specifies the location at which the vehicle was struck, represented in its

own vehicle coordinate system, as determined by the simulator producing the Impact

PDU (§5.1.22). The trajectory field specifies the incident velocity of the projectile,

also represented in the target vehicle's own coordinate system, in meters per second.

Indirect Fire PDU

The impacts of shells fired by howitzers or mortars, or the detonations of bombs dropped

from aircraft, are described by Indirect Fire PDUs that are issued by the simulators

modeling those artillery pieces or aircraft. A single Indirect Fire PDU can describe

several bomb or shell detonations, specifying a location and time for each detonation. In

contrast to the Impact PDU, this PDU does not identify the particular vehicle''';) affected

by the detonations; every simulator computes its own vehicle's distance from the

explosions in order to assess any damage.

105

Report No. 7627 BBN Systems and Technologies

Each detonation is described within the PDU by an Indirect Fire Detonation data element

of the following form:

type IndirectFireDetonation sequence {

location WorldCoordinates,

attackerlD VehiclelD,

eventID EventID,

delay Unsignedlnteger (16),

unused (40)

)

The location field of this object specifies the location of the detonation in world

coordinates (§5.1.29). The use of the other two fields depends somewhat on the type of

detonation being described. If the detonation is that of a shell fired by a moriar or

howitzer, the attackerlD field identifies the firing vehicle (§5.1.24), and the

event ID field contains the event identifier used in the Fire PDU that previously reported

the firing (§5.1.5).

Alternatively, if the detonation is that of a bomb, the attackerlD field contains the

vehicle identifier of the aircraft dropping the bomb. As there will be no preceding Fire

PDU, the event ID field will be a new event identifier generated by the simulator

modeling that aircraft.

In either case, the vehicle component of the attackerlD vehicle identifier may

instead contain zero if that firing vehicle or aircraft is purely notional (as is the case for

close air support aircraft simulated by an MCC system).

A delay value is associated with each of the detonations described in the PDU. It

specifies the amount of time, in milliseconds, by which that detonation follows the

previous detonation. (The first delay value is the amount of time by which the first

detonation follows issuance of the PDU.)

An Indirect Fire PDU is issued using the underlying datagram service.

Several detonations of the same kind may be described in a si ct Fire PDU,

which includes the following fields in addition to its PDU hea

106

BBN Systems and Technologies Report No. 7627

type IndirectFireVariant sequence {

burst BurstDescriptor,

unused (32),

detonations array (burst.quantity) of

IndirectFireDetonation

)

The burst field identifies the kind of projectile and fuze fired, and the number of

detonations described by this PDU (§5.1.4). The rate component of the Burst

Descriptor data element is not used and should contain the value

burstRatelrrelevant.

A single Indirect Fire PDU may describe up to five detonations.

constant naxIndirectFireDetonations 5

7.3.5 Collisions

A Collision PDU is used to report collisions between vehicles. It serves two purposes: it

ensures that when two vehicles collide, both are aware of the collision; and it allows the

cause of vehicle damage to be identified.

There are two ways in which the Collision PDU is used:

• When any simulator becomes aware of a collision between its vehicle and a vehicle simulated

elsewhere, it notifies the other simulator by using the underlying transaction service to convey a

Collision PDU.

• When a simulator simulates a collision between two vehicles that it is both simulating, it reports

the event by using the underlying datagram service to issue a Collision PDU.

Of course, only moving vehicles may cause collisions. The simulator of a moving

vehicle must constantly check for collisions between its vehicle and either features of the

terrain or other vehicles around it. However, the simulator of a vehicle that does not

move (such as an MCC system simulating only static class vehicles) need not perform

this processing. Instead it can learn of collisions involving its vehicle by listening for

Collision PDUs.

A Collision PDU includes the following fields in addition to its PDU header:

107

Report No. 7627 BBN Systems and Technologies

type CollisionVariant sequence {
vehiclelD VehiclelD,

eventlD EventlD,

targetlD VehiclelD,
unused (16)

}

The vehiclelD field identifies the vehicle whose simulator detected the collision

(§5.1.24). That simulator will generate a unique event identifier and report it in the

eventlD field (§5.1.5). The target ID field identifies the other vehicle involved in the

collision.

When a Collision PDU is issued using the supporting transaction service, it is issued as a

transaction request; no simulation PDU is returned with the correspording transaction

response.

7.3.6 Transfer of munitions

The simulation protocol provides a mechanism for transferring munitions, such as fuel or

ammunition, between vehicles that are being modeled by separate simulators. For

example, the protocol allows ammunition carriers and fuel tankers to resupply combat

vehicles, and it allows combat vehicles to cross-level their ammunition loads among

themselves.

The two vehicles participating in a transfer of munitions are referred to as the supplier

and the receiver. The behavior of each is described by the state diagrams shown in

figures 7-1 and 7-2. Briefly, the procedure is carried out as follows. At the beginning of

the procedure, both the supplier and the receiver are in their respective ready states when

the receiver notices a nearby vehicle capable of supplying it. The receiver transitions to

requesting state upon requesting some munitions from the supplier, and it remains in that

state while awaiting a reply to its request. When the reply arrives with an offer of

munitions the receiver transitions to receiving state, and remains in that state for whatever

time is required to load some portion of the offered munitions. After that time has

elapsed, the receiver returns to ready state and sends an acknowledgement to the supplier

for the portion of munitions taken. The supplier, meanwhile, waits in offering state from

the time it offers the munitions until the time an acknowledgement is received from the

receiver for some portion of those munitions.

We now describe this procedure in greater detail.

108

I
I
a
i
i
i
i
i
i
i
E
i
i
i
i
i
i
i
i

BBN Systems and Technologies Report No. 7627

The procedure is initiated by a simulator (that of the receiver) issuing a Service Request

PDU when it finds that the following conditions are all true:

The receiver is in ready stale.

Transition

Request Munitions

Cancel Request

Repeat Request

Receive Offer

Reject Offer

Accept Munitions

Condition and Action

When conditions for resupply are met, issue a Service Request PDU

and set a timer to 5 seconds (serviceRequestTime).

When conditions for resupply are no longer met, cancel the timer.

When the timer expires, re-issue the Service Request PDU and reset the

timer to 5 seconds (serviceRequestTime).

When a Resupply Offer PDU is received, set the timer to the period

required for receiving some increment of munitions.

When conditions for resupply are no longer met, issue a R». supply

Cancel PDU and cancel the timer.

When the timer expires, increment the count of munitions on board and

issue a Resupply Received PDU.

Figure 7-1. Receiver behavior during a transfer of munitions

109

Report No. 7627 BBN Systems and Technologies

Offer Munitions

[Ready \^___
l State r^-

\

Transfer Complete

Transfer Canceled

Offering
State

y
Transfer Abandoned

)

'•"":' ■ ■''"'■'"' •'"■i '"■■:i ■''■' ■:!':■!' •v'^' ['i" mmmmvvv,'s' — , 1

Transition

Offer Munitions

Transfer Complete

Condition and Action

When a Service Request PDU is received, issue a Resupply Offer PDU

and set a timer to 1 minute (resupplyTime).

When a Resupply Received PDU is received, cancel the timer and

decrement the count of munitions on board.

Transfer Canceled When a Resupply Cancel PDU is received, cancel the timer.

Transfer Abandoned When the timer expires.

Figure 7-2. Supplier behavior during a transfer of munitions.

• The receiver has the capacity for additional munitions, and it has identified a nearby vehicle

capable of providing those munitions. For example, the receiver needs ammunition and a nearby

vehicle has identified itself as an ammunition supplier by setting the ammunitionSupplier bit

in the capabilities field of its Vehicle Appearance PDU (§5.1.19).

• The potential supplier is within an appropriate distance. For example, a fuel or ammunition truck

must be within 30 meters of the Ml tank in order to supply it.

Both receiver and supplier are stationary.

Neither receiver nor supplier are destroyed.

110

BBN Systems and Technologies Report No. 7627

T^e transfer of munitions has been enabled by any necessary crew action appropriate to the

receiver. For example, the transfer of ammunition to the Ml main battle tank is enabled when its

crew set an ammunition resupply/distribution switch to a position labelled RECV.

Any of the above conditions pertaining to the supplier can be tested using information

made available by the supplier's simulator in the form of Vehicle Appearance PDUs.

When all conditions are satisfied, the receiver's simulator issues a Service Request PDÜ

identifying the receiver, the potential supplier, and the kinds of munitions desired. Upon

issuing the PDU, the receiver transitions to its requesting state.

A simulator that receives the Service Request PDU, and notices that its own vehicle is

identified as the supplier, may respond by offering some portion of whatever munitions

are currently loaded on that venicle. In figure 8, this is shown as a transition from ready

state to offering state. Meanwhile, the receiver's simulator re-issues its Service Request

PDU every 5 seconds (serviceRequestTime) until such an offer is forthcoming. The

offer takes the form of a Resupply Offer PDU issued by the supplier's simulator. It

identifies the supplier, the receiver, and the quantities of various munitions offered. The

munitions offered will be a subset of those possessed by the supplier, and a subset of

those requested by tne receiver.

Upon receiving the offer of munitions, the receiver changes from requesting state to

receiving state. The receiver then has up to 1 minute (resupplyTime) to acknowledge

the receipt of those munitions by returning to the supplier a Resupply Received PDU

listing the exact munitions taken. The receiver need not accept all of the munitions

offered, but instead can indicate in its receipt just how much it did accept. After delaying

for up to 1 minute, the receiver issues its Resupply Received PDU and returns to ready

state. When the supplier receives the Resupply Received PDU it also returns to ready

state, and the procedure is complete.

The time required for the receiver to return the Resupply Received PDU, and the amount

of munitions reported by that PDU as taken, determine the rate at which the supplier and

receiver are able to transfer munitions. For example, an Ml tank obtaining 105 mm

shells from an ammunition supply truck will acknowledge receipt of a single round after

40 seconds; this results in a simulated rate of resupply for the Ml tank of one round every

40 seconds.

in

Report No. 7627 BBN Systems and Technologies

Throughout the transfer process, both the receiver's and the supplier's simulators

continue to monitor the conditions necessary for the transfer. If any of these conditions

ceases to hold, either simulator can abort the transfer by issuing a Resupply Cancel PDU

with the result that no munitions are transferred. Alternatively, the receiver can terminate

the transfer early but accept some of the munitions offered by issuing a Resupply

Received PDU for the partial load. Finally, if the supplier waits in offering state for a full

minute (resupplyTime) but receives no Resupply Received PDU (perhaps because the

receiver has withdrawn from the exercise), it should return to ready state and assume that

no munitions were taken.9

The Service Request PDU, Resupply Offer PDU, and Resupply Received PDU are all of

the same format. They identify the two participants in the transfer of munitions, and they

list the munitions requested or transferred. These PDUs include the following fields in

addition to their PDU headers:

type ResupplyVariant sequence {

receiverlD VehiclelD,

supplierlD VehiclelD,

vehicleType ObjectType,

simulatorType SimulatorType,

unused (40),

numberMunitions Unsignedlnteger (8) ,

munitions array (numberMunitions) of MunitionQuantity

)

The receiverlD and supplierlD fields identify the receiving and supplying

vehicles (§5.1.24). The vehicleType and simulatorType fields are used only for Service

Request PDUs, where they identify the type of the receiving vehicle and the type of its

simulator (§5.1.10 and §5.1.14). In Resupply Offer PDUs and Resupply Received PDUs,

these fields contain zeros.

With the supply transfer protocol we have defined it is possible—although unlikely—that the supplier

and receiver may disagree as to whether any supplies have been transferred. This situation will occur

if a Resupply Received PDU becomes corrupted in transit, or if the supplier sends a Resupply Cancel

PDU at the moment the receiver sends a Resupply Received PDU. These occurrences are too

improbable to warrant the use of the more complex protocol that is necessary to prevent them.

112 I
I

BBN Systems and Technologies Report No. 7627

The remaining portions of these PDUs list quantities of various types of "lunitions,
representing each with a Munition Quantity data element (§5.1.8). The
numberMunitions field reports the number of different types of munitions in this list,

which may range from 0 to 28. Note that in a Service Request PDU soliciting munitions,
there should always be at least one Munition Quantity data element present.

constant maxResupplyMunitions 28

The Resupply Cancel PDU includes the following fields in addition to its PDU header:

type ResupplyCancelVariant sequence (

receiverlD VehiclelD,
supplierlD VehiclelD,

unused (32)

)

The receiverlD and supplierlD fields identify the receiving and supplying

vehicles (§5.1.24).

The Service Request PDU, Resupply Offer PDU, Resupply Received PDU, and Resupply

Cancel PDU are all issued using the underlying datagram service.

7.3.7 Repairs

The simulation protocol allows one vehicle to be repaired by the crew of another. This

feature is used to simulate maintenance teams that can reach disabled combat vehicles
and carry out repairs to them under the direction of maintenance personnel. For a repair

to be successfully performed, the maintenance team must remain with the disabled
vehicle for a period of time determined by the nature of the repair. Once that period has
elapsed, the repair is entirely accomplished. However, if the process is aborted before the
necessary period has elapse!—perhaps due to the departure of the maintenance team—
then no repair is performed and the combat vehicle is left in its initial state. There are no

partial repairs.

We call the vehicle being repaired the receiver, and the vehicle whose crew is performing

the repair, the supplier. The receiver's simulator is responsible for recognizing a nearby,

potential supplier of repairs, and for identifying the times during which repairs can be

113

Report No. 7627 BBN Systems and Technologies

carried out. It does this by checking, every 5 seconds (serviceRequestTime),

whether the following conditions are all true:

• The potential supplier is within an appropriate distance. For example, a maintenance team's

vehicle must be within 30 meters of the Ml tank in order to repair it.

Both receiver and supplier are stationary.

• Neither receiver nor supplier are destroyed.

The performance of repairs has been enabled by any necessary crew action appropnate to the

receiver. For example, the crew may be required to shut off their vehicle.

Any of the above conditions pertaining to the supplier can be tested using information

made available by the supplier's simulator in the form of Vehicle Appearance PDUs.

If all conditions are satisfied, the receiver's simulator issues a Service Request PDU using

the underlying datagram service. This PDU, whose format is defined in the previous

section, carries the following information:

The receiverlD field identifies the vehicle soliciting service (the receiver).

The supplierlD field identifies the vehicle from which service is sought (the supplier).

The vehicleType field identifies the type of vehicle soliciting service.

The simulatorType field icfefitifif the type of simulator modeling that vehicle.

The numberMunitions field is 0, and the PDU contains no Munition Quantity data elements.

The receiver's simulator repeats its test of conditions every 5 seconds

(serviceRequestTime), and each time it reissues the Service Request PDU if all

conditions hold.

A simulator that receives the Service Request PDUs and notices that its own vehicle is

identified as the supplier can allow tne crew of its vehicle to perform i repair on the

receiver. Any repair should be consistent with both the type of the receiver, and the type

of the simulator modeling the receiver. As long as Service Request PDUs continue to be

received, the repair process may be allowed to proceed. However, if Service Request

PDUs cease to be received and are not seen for a period of 12 seconds

(serviceCancelTime), the supplier's simulator must assume that the conditions listed

above are no longer all true. It must therefore abort the repair process.

114

BBN Systems and Technologies Report No. 7627

If the repair process successfully runs to completion, the supplier may then accomplish

the repair by issuing a Repair Request PDU to notify the receiver of the repair. The

receiver's simulator acknowledges receipt of the Repair Request PDU by returning a

Repair Response PDU. (This acknowledgement simply indicates that the repair was

performed, not that the repair was appropriate or that the disabled vehicle has become

well because of the repair.) These two PDUs are exchanged using the underlying

transaction service.

The Repair Request PDU includes the following fields in addition to its PDU header:

type RepairRequestVariant sequence {

receiverlD VehiclelD,

supplierlD VehiclelD,

eventID EventID,

repair RepairType

}

The receiverlD field identifies the disabled vehicle, and the supplierlD field

identifies the maintenance team (§5.1.24). A unique event identifier is generated by the

supplier's simulator and reported in the eventID field (§5.1.5).

The repair field identifies the type of repair performed (§5.1.12). The value of this

field is interpreted according to the type of vehicle repaired, and the type of simulator

modeling that vehicle. Repair codes appropriate to various types of vehicles and

simulators are listed in appendix D.

The Repair Response PDU includes the following fields in addition to its PDU header:

type RepairResponseVariant sequence {

receiverlD VehiclelD,

supplierlD VehiclelD,
result RepairResult,

unused (24)

(

type RepairResult enum (8) {

repairRequestAccepted,

invalidRepairType

)

115

Report No. 7627 BBN Systems and Technologies

The contents of the receiverlD and supplierlD fields are identical to those of the
corresponding Repair Request PDU. The result field indicates whether the repair
request has been accepted, and, if not, why not.

116

i ■ BBN Systems and Technciogies Report No. 7627

I
I

117

Report No. 7627 BUN Systems and Technologies

8 DATA COLLECTION PROTOCOL

The data collection protocol is used to report, via the network, information about the

simulated world. Whereas the simulation protocol conveys information of interest to

simulators, the data collection protocol conveys additional information that is primarily of

use to:

• Analysts who may be studying an exercise.

Systems that must monitor the state of an exercise in order to restart it or resume it after some

interruption.

8.1 Data collection protocol data units

The data collection protocol makes use of several kinds of protocol data units. All data

collection PDUs have a length that is an integral multiple of 64 bits, and all begin with a

common 64-bit header. Included in this header is a code indicating the kind of PDU

present:

type DataCollectionPDUKind enum (8) {

exerciseStatusPDUKind (i), --Exercise Status PDU

simulationStatusPDUKind (2), --Simulation Status PDU

vehicleStatusPDUKind (3), - Vehicle Status PDU

statusQueryPDUKind (4) , -- Status Query PDU

statusResponsePDUKind (5), --Status Response PDU

statusChangePDUKind (6), ■-Status Change PDU

laserRangePDUKind (7), --Laser Range PDU

eventFlagPDUKind (8) - Event Flag PDU

)

PDUs containing an unknown kind field should be ignored. Kind values in the range of

129 to 255 are reserved for temporary or experimentnl use.

Following the PDU header is a portion whose format depends on the kind of PDU. The

overall content of a PDU is:

118

BBN Systems and Technologies Report No. 7627

type DataCollectionPDU sequence {

version DataCollectionProtocolVersion,

kind DataCollectionPDUKind,

exercise ExerciselD,

unused (40),

variant choice (kind) of {

when (exerciseStatusPDUKind)

exerciseStatus ExerciseStatusVariant,

when (simulationStatusPDUKind)

simulationStatus SimulationStatusVariant,

when (vehicleStatusPDOKind)

vehicleStatus VehicleStatusVariant,

when (statusQueryPDUKind)

statusQuery StatusQueryVariant,

when (statusResponsePDOKind)

statusResponse StatusResponseVariant,

when (statusChangePDUKind)

statusChange StatusChangeVariant,

when (laserRangePDUKind)

laserRange LaserRangeVariant,

when (eventFlagPDUKind)

eventFlag EventFlagVariant

}

}

The version field specifies the version of data collection protocol to which the PDU

pertains. Use of this field allows new versions of the data collection protocol to be

introduced without disruption to existing implementations. The data collection protocol

described in this report has version number 3:

type DataCollectionProtocolVersion enum (8) {

dcProtocolVersionAug89 (1),

dcProtocolVersionJan90 (2),

dcProtocolVersionJan90Corrected (3)

}

The exerciselD field identifies the exercise to which the PDU pertains (§5.1.6).

119

Report No. 7627 BBN Systems and Technologies

8.2 Use of association sublayer services

Data collection PDUs are conveyed among simulators using the services of the

association sublayer defined in chapter 6. A single PDU is issued through a single

invocation of either the A-Datagram.req service primitive or the A-Transact.req service

primitive. The discussion of protocol procedures, below, specifies which of these two

service primitives is used in each case.

To distinguish ihe data collection protocol from other protocols .'sing the association

sublayer, the data collection protocol is assigned a unique association sublayer user

protocol number. This number is 2:

constant dataCollectionProtocolNumber 2

Most data collection protocol interactions among simulation entities take place within the

context of a particular simulation exercise. Associated with an exercise is an exercise

identifier, which distinguishes it from other, concurrent exercises. With but one

exception noted below, the interactions associated with a particular exercise are carried

by the association service using a multicast group number that is identical to the

exercise's identifier. This allows simulation entities to receive information only about the

exercises of interest to them by subscribing only to selected multicast groups.

The one exception to the rule stated above on the use of exercise identifiers as multicast

group numbers occurs with the protocol interaction used to query simulation entities

about the exercises they are participating in. That protocol interaction may be performed

using the multicast group number 0 (a group that includes all simulation entities) to

ensure that a simulation entity may be queried regardless of which multicast groups it has

already subscribed to.

The transaction service of the association sublayer allows a respondent to specify whether

a particular response should be cached for retransmission. This service element is chosen

using the cache-response parameter of the A-Transact.rsp service primitive. Use of this

feature for data collection protocol interactions is optional in each case, unless specified

otherwise in the following description of that protocol interaction.

120

BBN Systems and Technologies Report No. 7627

8.3 Protocol procedures

The data collection protocol is logically divided into two distinct protocol pro:edures,

each of which provides a related set of functions. One protocol procedure provides for

reporting information about the internal state of simulators. Another provides for

reporting interesting events. The two sets of protocol functions are described in separate

sections, below.

All protocol procedures involve the exchange of PDUs among simulation entities using

services of the association sublayer. For brevity, we sometimes use the term simulator in

this section when referring to simulation entities. When describing use of the association

sublayer, however, we generally revert to the more correct term, simulation entity.

Moreover, we usually shorten "the transaction service of the association sublayer" to "the

underlying transaction service".

8.3.1 Status reports

One purpose of the data collection protocol is to allow information to be obtained about

the conditions of an exercise and the state of simulators to supplement that which is

already available via the simulation protocol. The data collection protocol requires

simulators to periodically report internal state information, as well as to report this

information in response to certain prompting PDUs.

In the following sections, we first describe the PDUs that are used by simulators to report

information. We then describe the conditions under which these PDUs are issued.

Exercise Status PDU

An Exercise Status PDU describes the conditions being simulated in an exercise. In

addition to its PDU header, the PDU includes the following fields:

121

Report No. 7627 BBN Systems and Technologies

type ExerciseStatusVariant sequence {

- Times:

realTime Time,
simulatedTime Time,

-- The terrain database chosen for the exercise:

terrain TerrainDatabaselD,

- The battle scheme chosen for the exercise:

battleScheme BattleScheme,

- Weather conditions:
simulatedSkyColor SkyColor,

unused (16),
VLVisibility Float (32), — visibility in visible light in meters

The PDU's header identifies the exercise described by the PDU (§5.1.6).

The realTime and simulatedTime fields report the real (actual) time, and the

simulated time, as of the moment the PDU is issued (§5.1.18). The terrain upon which

the exercise is taking place is identified by the terrain field (§5.1.17). How force

identifiers and guises are being used is identified by the battleScheme field (§5.1.2).

The weather conditions are described by the simulatedSkyColor and

VLVisibility fields. These two fields are used in the same manner as in the Activate

Request PDU (§7.3.1).

Simulation Status PDU

A Simulation Status PDU describes the role a particular simulator is performing in an

exercise, and the parameters according to which it is conducting its simulation.

A Simulation Status PDU includes the following fields in addition to its PDU header:

122

BBN Systems and Technologies Report No. 7627

type SimulationStatusVariant sequence {

simulator SimulatorType,

numberünits Unsignedlnteger (8),

unused (8),

-- Times:

exerciseEntryTime Time,
realTime Txme,

simulatedTime Time,

-- The terrain database used by the simulator:

terrain TerrainDatabaselD,

-- The organizational units simulated:

units array (numberünits) of OrganizationalUnit,

-- Simulator-specific information:

specific choice (simulator) of {

when (simulator_SIMNET_MCC)

simnetMCC SIMNET_MCC_Status,

)

}

The simulator field describes the type of simulator (§5.1.14), and the PDU's header

identifies the exercise in which it is participating (§5.1.6). Three fields are included for

reporting times (§5.1.18):

exerciseEntryTime is the real time at which the simulator became a

participant in the exercise.

realTime is the real time at which the PDU is issued.

simulatedTime is the simulated time at which the PDU is issued.

Any of these three fields may contain 0 if its correct value cannot be determined by the

simulator.

The terrain field identifies the terrain database being used by the simulator, by name

and version number (§5.1.17). In this use of the Terrain Database ED data element, the

version number reported in the terrainVersion field ofthat data element may not be

the value latestTerrainVersion (defined as 0).

123

Report No. 7627 BBN Systems and Technologies

The units field is an array that lists the organizational units being modeled by the

simulator. Each array entry is an Organizational Unit data element that identifies one unit

and specifies the force to which the unit is assigned (§5.1.11). If individual components

of a unit are assigned to different forces, the force field of its Organizational Unit data

element contains the value f orcelDIrrelevant (defined as 0). The number of units

described is specified by the numberUnits field.

The last portion of the PDU may contain information specific to the type of simulator

repoiting. At present one variant is defined, for use by the SIMNET MCC system:

type SIMNET_MCC_Status sequence {

-- Whether various optional elements are being simulated:

opticnTOC
optionAdminLog

optionBnHQTanks

optionScoutPlt

optionFSE

optionALO

optionCSS

optionCE

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

Boolean,

unused (56)

-- Tactical Operations Center

- Admin/Log Center

- Bn HO tank section

- scout platoon

-- fire support element

-- air liaison officer

-- combat service support

- combat engineering

The Boolean fields labelled opticnTOC through cpt ionCE specify whether various

optional elements that the MCC system can simulate are actually enabled for use in the

exercise. A bit is 1 if its coiresponding element is enabled, and 0 otherwise.

Vehicle Status PDU

The status of an individual vehicle is reported using a Vehicle Status PDU. In addition to

its PDU header, the PDU includes the following fields:

type VehicleStatusVariant sequence {

vehiclelD VehiclelD,

unused (16),

unit OrganizationalUnit,

status VehicleStatus,

unused (32)

}

124

BBN Systems and Technologies Report No. 7627

The PDU's header identifies the exercise in which the vehicle is participating (§5.1.6).

Its vehicle identifier is contained in the vehicle ID field, and the unit field specifies

the force and organizational unit to which the vehicle has been assigned (§5.1.11). The

operational status of the vehicle, the health of each of its subsystems, and the quantities of

various supplies it carries are all represented in the status field (§5.1.26).

When status is reported

Certain status PDUs (Exercise Status, Simulation Status, and Vehicle Status PDUs)

contain information that is essential for restarting a simulator after an equipment failure,

or for restoring an exercise to earlier conditions. These PDUs are issued at regular

intervals chosen according to the volatility and quantity of the information represented.

They are also issued in response to queries, as described later in this section. All

simulators respond to the appropriate queries, but some also issue status PDUs at regular

intervals according to the following conventions:

A crewed vehicle simulator that models its vehicle's individual munitions stores and subsystems

issues a Vehicle Status PDU every 30 seconds (vehicleStatusTime) to report the state of that

vehicle.

• A simulator that does not model the internal stores and subsystems of a vehicle need not

periodically issue Vehicle Status PDUs for that vehirb.

A simulator that models an entire organizational unit issues a Simulation Status PDU every 5

minutes (sin.alationStatusTime) to identify its role.

A simulator that does not model an entire organizational unit need not periodically issue

Simulation Status PDUs.

• Exercise Status PDUs are not issued periodically by any simulator (they are issued only in

response to queries).

A status PDU is also issued by a simulator in response to an appropriate query in the form

of a Status Query PDU. A Status Query PDU includes the following fields in addition to

its PDU header:

125

Report No. 7627 BBN Systems and Technologies

type StatusQueryVariant sequence {

~ Specifying the type of response sought:
responseKind DataCollectionPDUKind,

-- Specifying the desired respondents:
unitRelation UnitRelation,

simulatorType SimulatorType,

vehiclelD VehiclelD,

unused f 6),

unit OrganizatnnalUnit

}

type UnitRelation enum (8) {

unitRelationlrrelevant,

unitSpecified,

unitlncluded,

unitIncluding

)

The fields of the Status Query PDU allow the querying simulator to specify the type

status information sought, and to identify, by various means, the simulators that should

provide it. By using appropriate values in these fields, a simulation entity can issue a

Status Query PDU using the underlying datagram service and discover what other

simulation entities are present by the status PDUs they return. Alternatively, a simulation

entity can send a Status Query PDU to a particular other simulation entity using the

underly;ng transaction service in order to solicit a status PDU only from that simulator.

The responseKind field indicates the type of information sought by specifying a kind

of data collection PDU. It contains one of the values exerciseStatusPDUKind,

simulationStatusPDUKind, or vehicles tat usPDUKind.

Other fields of the Status Query PDU allow any of five conditions to be specified. Each

condition may be specified or not, at the discretion of the simulator issuing the query. A

simulator responds only if it meets all of the conditions specified in the query.

1. The exerciselD field of the Status Query PDU's header provides one mechanism by which

respondents are selected (§5.1.6). If the exerciselD field has the value

exerciselDIrrelevant (defined as 0), and the PDU is issued to the association sublayer

using multicast group 0, then a simulator involved in any exercise may respond. Otherwise, the

exerciselD field specifics a particular exercise, the PDU is issued using the corresponding

multicast group, and only simulators participating in that exercise will respond.

126

I

BBN Systems and Technologies Report No. 7627

2. The vehiclelD field ailows the query to bft directed to the simulator modeling a particular

vehicle (§5.1.24). If the vehiclelD field contains zeros, then a simulator may respond

regardless of which vehicles it models. Otherwise, a simulator may respond only if it models the

specified vehicle.

3. The simulatorType field allows the query to be directed to a particular type of simulator

(§5.1.14). If the simulatorType field has the value simulatorUnknown (defined as 0),

then any type of simulator may respond. Otherwise, a simulator may respond only if it is of the

specified type.

4. The force componentof the unit field(§5.1.11)alIows the query to be directed to simulators

of vehicles assigned to a particular force. If the force component has the value

f orcelDIrrelevant, then a simulator may respond regardless of what forces its vehicles are

assigned to. Otherwise, a simulator may respond only if it simulates a vehicle assigned to the

specified force.

5. The unitRelation and unit fields allow the query to select respondents based on the

organizational units they simulate. The unitRelation field specifies one of these four cases:

unitRelationlrrelevant a simulator may respond regardless of what unit it

simulates.

ur it Specified a simulator may respond if it simulates the specified unit.

unit Included a simulator may respond if it simulates a unit that is

included within that specified by the unit field.

unit Including a simulator may respond if it simulates a unit that includes

that specifiM by the unit field.

If a query specifies that a response is to br in the form of a Vehicle Status PDU, and the .

conditions specified in the query include those that pertain to individual vehicles

(selecting on the basis of vehicle identifier, force, or organizational unit), then a

responding simulator issues Vehicle Status PDUs only for those vehicles that meet the

query's conditions.

If a Status Query PDU is issued using the association sublayer's datagram service, then

any response is also issued using the datagram service. A response is issued with the

same multicast group number as the query. The simulator issuing the query waits up to 5

seconds (statusQueryTime) for any responses to be received.

127

Report No. 7627 BBN Systems and Technologies

If a Status Query PDU is issued using the association sublayer's transaction service, then

the only simulator that may return a response is that selected as the transaction's
respondent In this case, if the conditions specified in the Status Query PDL are met,
then the respondent returns the appropriate status PDU. In doing so, the responding
simulation entity does not permit its association entity to cache its response, but rather, it
generates a new, fully current status PDU whenever its response must be reissued. If the

conditions specified in the Status Query PDU are not met, the respondent returns a Status
Response PDU. In addition to its PDU header, the Status Response PDU includes the
following field:

type StatusResponseVariant sequence {

result StatusResult,

unused (56)

)

type StatusResult enum (8) {

invalidQueryParameter (1) ,

queryConditionFailed (2)

)

The exerciselD field of the PDU's header contains the exercise identifier that was
included in the corresponding Status Query PDU. The result field of this PDU

contains the value invalidQueryParameter if the Status Query PDU contained an
invalid parameter, and the value qusryConditionFailed otherwise.

8.3.2 Event reports

The data collection protocol includes provisions for reporting various types of events that
may be of interest to those studying an exercise. Changes in a vehicle's operational status

are reported by the vehicle's simulator using Status Change PDUs. These PDUs allow an
analyst to follow the fortunes of an individual vehicle, and attribute changes in its
operational status to specific causes. The use of a vehicle's laser range finder is reported

by a Laser Range PDU whose contents may allow an analyst to determine what target

was examineu and what result was obtained. Another PDU, the Event Flag PDU, is
available to the analyst for annotating a recording of an exercise (such as that produced

by the Data Logger) to flag any event that may be of interest.

I
■

B
I
I

I
I
i
l

128

BBN Systems and Technologies Report No. 7627

Reporting a change of status

At the time that the operational status of a vehicle or any of its subsystems changes, the

vehicle's simularor issues a Status Change PDU describing what has changed, and why.

This PDU is issued when any of the following events occurs:

A vehicle's subsystem fails for any reason, including wear-and-tear, a collision, crew error,

interaction with the terrain, or combat damage.

A vehicle's subsystem returns to operation for any reason, including crew repair or repair by a

maintenance team.

A vehicle is destroyed by any cause.

A vehicle is reconstituted by any cause.

In addition to its PDU header, the Status Change PDU includes the following fields:

129

Report No. 7627 BBN Systems and Technologies

type StatusChangeVariant sequence {

vehiclelD VehiclelD,

unused (8) ,

effect StatusChangeEffeet,

cause choice (effect) of {

when (effectVehicleDestroyed) destroyed sequence {

kind DamageCause,

unused (24)

),

when (effectVehicleReincarnated) reincarnated sequence {

kind RepairCause,

unused (24)

).

when (effectSubsystemsDamaged) damaged sequence {

kind DamageCause,

unused (24)

),

when (effectSubsystemsRepaired) repaired sequence {

kind RepairCause,

unused (24)

)

).

eventID EventID,

agentID VehiclelD,

subsystems VehicleSubsystems

)

type StatusChangeEffect enum (8) (

effectVehicleDestroyed (1) ,

effectVehicleReincarnated (2),

effectSubsystemsDamaged (3) ,

effectSubsystemsRepaired (4)

}

130

BBN Systems and Technologies Report No. 7627

-- none of those listed below

type DamageCause enum (8) {

damageCauseOther (0),

damageCauaeBreakdown (1),

damageCauseCollision (2),

damageCauseCrewError (3) ,

damageCauseDirectFire (4),

damageCauselndirectFire (5) ,

damageCauselntervention (6) ,

damageCauseTerrain (7),

damageCauseBattlemaster (8)

}

type RepairCause enum (8) {

repairCauseOther (0),

repairCauseCrew (1),

repairCauselntervention (2),

repairCauseMaintTeam (3),

repairCauseBattlemaster (4)

}

The vehiclelD field identifies the affected vehicle (§5.1.24), and the effect field

describes how it was affected:

- none of those listed below

effectVehicleDestroyed

effectVehicleReinca mated

effectSubsystemsDamaged

effectSubsystemsRepaired

the vehicle was destroyed,

the vehicle was restored to complete operation,

some vehicle subsystems have been damaged,

some vehicle subsystems have been repaired.

In the case of vehicle subsystems becoming damaged or repaired, the particular

subsystems involved are. ntified by the subsystems field (§5.1.27). That field

contains a single Boolean data element for each of the vehicle subsystems whose

operational status is being modeled by the simulator. A Boolean is true if the

corresponding subsystem has been affected (damaged or repaired), and false otherwise.

Also present in the field are Boolean data elements that summarize groups of subsystems.

If a vehicle loses or gains its firepower ability, for example, the f irepowerSummary

component of the Vehicle Subsystems data element will contain the value true (defined as

1).

The cause field describes what caused the change of operational status reported by the

PDU. If the effect is one of ef fectVehicleDestroyed or

131

Report No. 7627 BBN Systems and Technologies

ef fectSubsystemsDamaged, then the cause field contains one of the following

values:

damageCauseOther

damageCauseBreakdown

damageCauseCollision

damageCauseCrewError

damageCauseDirectFire

damageCauselndirectFire

damageCauseIntervention

damageCauseTerrain

damageCauseBattlemaster

none of the causes listed below.

the breakdown was due to random failure.

the vehicle collided with another.

the damage was caused by crew error.

the vehicle was struck by direct fire.

the vehicle was damaged by indirect fire.

the change was due to intervention by a technician.

the vehicle collided with a terrain feature, such as a

building.

the change was due to intervention by the Battlemaster

(exercise controller)

If the effect is one of ef f ectVehicleReincarnated or

ef fectSubsystemsRepaired, then the cause field contains one of the following

values:

repairCauseOther

repairCauseCrew

repairCauseIntervention

repairCauseMaintTeam

repairCauseBattlemaster

none of the causes listed below.

the damage was repaired by the vehicle's own crew.

the change was due to intervention by a technician.

the damage was repaired by a simulated maintenance

team.

the change was due to intervention by the Battlemaster

(exercise controller)

Some changes in the operational status of a vehicle may be attributed to an event reported

by an earlier simulation protocol PDU. If the vehicle is damaged in a collision with

another, there will have been a Collision PDU issued by either or both vehicles'

simulators, reporting that collision. If a vehicle is damaged by a missile or shell, there

will have been a Vehicle Impact PDU or Indirect Fire PDU produced, describing the

impact or explosion. A simulated repair to a vehicle that succeeds in fixing any of its

subsystems will have been described by a Repair PDU. In all of these cases, the

132

BBN Systems and Technologies Report No. 7627

preceding PDU reporting the causal event contains a unique combination of vehicle and

event identifiers, distinguishing that event from all others. The Status Change PDU

specifies that event by repeating the vehicle and event identifiers in its agent ID and

event ID fields (§5.1.24 and §5.1.5).

In other cases, where no preceding PDU can be said to represent the cause of the status

change, the agent ID field contains zeros and event ID field contains the value

eventIDIrrelevant.

Laser range finding

The Laser Range PDU reports a vehicle's use of its laser range finder. The Ml tank

simulator, for example, issues an instance of this PDU whenever one of the simulator's

laser range finder buttons is pressed by a crew member. In addition to its PDU header,

the PDU includes the following fields:

type LaserRangeVariant sequence {

vehiclelD VehiclelD,

result LaserRangeResult,

returnSwitch ReturnSwitch,

target TargetDescriptor,

muzzle WorldCoordinates,

location WorldCoordinates,

whichLaserRange LaserRangeFinder (8) ,

unused (56)

)

type LaserRangeResult enum (8) {

laserRangeMalfunction (1) ,

laserRangeMultipleReturns (2),

laserRangeNoReturn (3),

laserRangeSingleReturn (4)

)

The vehiclelD field identifies the vehicle using its range finder (§5.1.24), and the

result field describes the effect of using it. The re suit field's interpretation is:

laserRangeMalfunction an attempt was made to obtain a range, but the rangefinder

malfunctioned.

laserRangeMultipleReturns multiple returns were received by the laser rangefinder;

one is reported in this PDU.

133

Report No. 7627 BBN Systems and Technologies

laserRangeNoReturn

laserRangeSingleReturn

no acceptable returns were received by the laser

rangefinder.

a single return was received by the laser rangefinder; it is

reported in this PDU.

If the vehicle has a switch for selecting whether the range finder should report the first or
the last return it receives, the position of this switch is indicated in the returnSwitch

field. It contains one of these values:

type ReturnSwitch enum (8) {

noReturnSwitch,

firstReturn,

lastReturn

}

-- no 'first/last return"switch

- switch set to first return"

-- switch set to "last return"

The location of the laser's "muzzle", in world coordinates, is described by the muzzle
field (§5.1.29).

The whichLaserHange field identifies which of the vehicle's laser range finders was
employed. The laser range finders are enumerated as follows:

type LaserRangeFinder enum (8) {

gunnerLaser, — gunner's laser

citvLaser — Commander's Independent Thermal Viewer laser

}

If the range finder was able to deduce a range (in which case the PDU's result field

contains either laserRangeSingleReturn or laserRangeMultipleReturns)
then two other fields of the PDU will also contain information. Tne target field will

specify whether the lased target is known, and if so, what it is (§5.1.16). The locat ion

field will specify the point, in world coordinates, whose range was reported by the range

finder (§5.1.29).

Flagging events of interest

The Event Flag PDU may be used to insert an annotation at a particular point in a

recording of an exercise being made by a Data Logger. Typically, the PDU marks an

event that is of interest to an analyst studying an exercise, such as the transmission of an

134

BBN Systems and Technologies Report No. 7627

order by voice radio. Upon hearing the transmission, the analyst may cause an

appropriate Event Flag PDU to be issued. The PDU will be recorded by the Data Logger

in sequence with other PDUs related to the exercise, thereby identifying that event in the

context of the overall exercise.

An Event Flag PDU includes the following fields, in addition to its PDU header:

type EventFlagVariant sequence {

number Integer (32),

sequenceNumber Onsignedlnteger (32),

vehiclelD VehiclelD,

textLength Unsignedlnteger (16),

text array (textLength) of Character (8)

)

The number field contains an integer, assigned by the analyst, identifying the type of

event being flagged. The sequenceNumber field contains consecutive integers in

consecutive Event Flag PDUs produced by the same simulation entity. It permits the

detection of cases where Event Flag PDUs may have been lost. The vehiclelD field

may be used to specify a vehicle (§5.1.24); if not used for that purpose, it contains zeros.

The text field may contain any ASCII character string, up to a maximum of 228

characters. If necessary, the text field is followed by up to 56 unused bits so that the

overall size of the PDU is a multiple of 64 bits.

135

Report No. 7627 BBN Systems and Technologies

136

I
I
i

BBN Systems and Technologies Report No. 7627

9 REFERENCES

[1] James Chung, Alan Dickens, Brian O'Toole, and Carol Chiang. SIMNETM1

Abrams Main Battle Tank Simulation: Software Description and Documentation

(Revision 1). BBN Report Number 6323. BBN Systems and Technologies Corp.

Cambridge, Mass., August 1988.

[2] James Chung, Alan Dickens, Carol Chiang, Brian O'Toole, Warren Katz, and

Bryant Collard. SIMNET M2/3 Bradley Fighting Vehicle Simulation: Software

Description and Documentation. BBN Report Number 6892. BBN Systems and

Technologies Corp. Cambridge, Mass., August 1988.

[3] Arthur Pope. The SIMNET Network and Protocol. BBN Report Number 6369.

BBN Laboratories, Inc. Cambridge, Mass., February 1987.

[4] Arthur Pope. The SIMNET Network and Protocols. BBN Report Number 6787.

BBN Laboratories, Inc. Cambridge, Mass., May 1988.

[5] A. Ceranowicz, S. Downes-Martin and M. Saffi. SIMNET Semi-Automated Forces

Version 3.0: A Functional Description (Revised). BBN Report Number 6939.

BBN Systems and Technologies Corp. Cambridge, Mass., March 1989.

[6] Arthur Pope, Tim Langevin, Linda Lovero and Andrew Tosswill. The SIMNET

Management, Command and Control System. BBN Report Number 6473

(Revised). BBN Systems and Technologies Corp. Cambridge, Mass., July 1988.

[7] C. Topolcic, Ed, Experimental Internet Stream Protocol, Version 2 (ST-II), RFC

1190. CIP Working Group, October 1990.

[8] International Standards Organization. Information processing systems — Open

Systems Interconnection — Basic Reference Model. ISO 7498-1984.

[9] International Standards Organization. Technical Report 8509—Information

Processing Systems Open Systems Interconnection — Service Conventions. 1985.

[10] The Institute of Electrical and Electronics Engineers, Inc. Standard for Binary

Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. The Institute of

Electrical and Electronics Engineers, Inc. New Yo:;k, New York, 1985.

137

Report No. 7627 BBN Systems and Technologies

[11] The Ethernet: A Local Area Network: Data Link Layer and Physical Layer

Specifications. Digital Equipment Corporation, Intel Corporation, and Xerox

Corporation; Version 2.0; November 1982.

[12] The Institute of Electrical and Electronics Engineers, Inc. IEEE Standards for

Local Area Networks: Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) Access Method and Physical Layer Specifications. ANSI/IEEE Std

802.3-1985. The Institute of Electrical and Electronics Engineers, Inc. New York,

New York, 1985.

[13] Dan Friedman and Varda Haimo. SIMNET Network Performance. BBN Report

Number 6711. BBN Communications Corporation. Cambridge, Mass., 1988.

[14] The Institute of Electrical and Electronics Engineers, Inc. IEEE Standards for

Local Area Networks: Logical Link Control ANSI/IEEE Std 802.2-1985. The

Institute of Electrical and Electronics Engineers, Inc. New York, New York, 1984

[15] The Institute of Electrical and Electronics Engineers, Inc. Project 802: Local and

Metropolitan Area Network Standard - Overview and Architecture IEEE

P802.1A/D10. The Institute of Electrical and Electronics Engineers, Inc. New

York, New York, 1990.

[16] J.K. Reynolds and J. B. Postel. Assigned numbers. Request For Comments 1060,

Internet Activities Board. March, 1990.

[17] Arthur Pope. The SIMNET Network and Protocols. BBN Report Number 7102.

BBN Laboratories, Inc. Cambridge, Mass., July 1989.

138

BBN Systems and Technologies Report No. 7627

APPENDIX A: DATA REPRESENTATION NOTATION

A formal notation is used in this report to define the format of communicated data. This

appendix describes that notation, which we call Data Representation Notation (DRN).

In the following description of DRN, fragments of the notation are displayed in a

"typewriter" font like this: sequence. Within a fragment of notation, a name displayed

in italics (e.g., fieldName) is a placeholder for which another fragment of notation is to

be substituted.

A.1 Overview

A DRN specification consists of a series of type definitions and constant definitions. A

type definition describes how a unit of data is represented as a sequence of bits, and it

associates a name with that representation. A constant definition associates a name with a

particular value. The type definitions and constant definitions published in this report

constitute a single DRN specification.

The notation employs these kinds of lexical tokens: reserved words, names, numbers,

and delimiters.

The reserved words are: array, choice, constant, enum, of, sequence,

type, unused, when. Character, Float, Integer,

Unsignedlnteger.

A name consists of a letter followed by zero or more letters, digits, and "_" characters.

Both uppercase and lowercase letters may be used. A name must differ from any

reserved word.

A number is a series of one or more digits. It is interpreted as a decimal value.

The delimiters are: "(",")", j > >

(t »» i* "

The "—" delimiter is used to mark the presence of a comment, which lies between the "■
- " delimiter and the end of the line. Apart from their role in terminating comments,

ends of lines are of no significance. Blanks (spaces) may appear anywhere, and are only

required in certain places to delimit reserved words, names, and numbers. The other

delimiters will be described in the context of their usage.

139

Report No. 7627 BBN Systems and Technologies

The "@" character is reserved for the purpose of annotating DRN specifications with

control information intended to direct automated software tools. A line beginning with

"@" followed by a name is interpreted as such a directive. This report does not define

specific directives of this form.

A.2 Constant definition

A constant definition associates a names with a numeric value. It is of the form:

constant name number

The name must be one not defined elsewhere in the DRN specification by either a

constant definition or a type definition. By convention, constant names begin with

lower-case letters.

A.3 Type definition

A type describes a data representation as a way of encoding information in a series of

bits. A type definition, which associates a name with a particular type, is of the form:

type name typeSpec

The name must be one not defined elsewhere in the DRN specification by either a

constant definition or a type definition. By convention, type names begin with upper-

case letters.

The typeSpec specifies a particular type. There are three ways in which a type may be

specified: through the use of a primitive type, through the use of a type constructir, or by

reference to a name defined elsewhere in a type definition. Primitive types and type

constructors are described in the following sections.

A.4 Primitive types

Primitive types are the basic data elements out of which other, more elaborate data

elements may be constructed. There are five kinds of primitive type. Four of these are

specified by a particular reserved word, followed by a number in parentheses:

140
9
I

BBN Systems and Technologies Report No. 7627

Character (bits)

Float (bits)

Integer (bits)

Unsignedlnteger (bits)

In each case, the number, bits, specifies the quantity of consecutive bits to be used to

represent the data element. The octets of data elements larger than 8 bits are represented

in order, with the most-significant octet first and the least-significant octet last.

The Character primitive type represents a printable character. Its size is always specified

as 8 bits. The character is represented using ASCII encoding, with the high-order bit

always 0.

The Float primitive type represents a floating point number encoded in ANSI/IEEE

standard format [10]. Its size is always specified as either 32 bits or 64 bits.

The Integer primitive type represents a signed integer encoded in twos-complement

binary format. It never exceeds 32 bits.

The Unsignedlnteger primitive type represents an unsigned binary integer. It never

exceeds 32 bits.

The fifth kind of primitive tyne, called an enumerated type, specifies a list of possible

values and the number of bits used to represent them. It is written:

enum (bits) { valueList }

As before, bits specifies the quantity of consecutive bits to be used to represei t the data

element. This number never exceeds 32. The data element represents a value as a

unsigned binary integer. The possible values of the data element are enumerated by the

valueList, which is a series of comma-separated items. Each item may he either of die

form:

vaiueName (.number)

or just:

valueName

Each item in the series associates a name, valueName, with a numeric value. By

convention, value names begin with lower-case letters. These names must be unique.

141

Report No. 7627 \ BBN Systems and Technologies

and not defined elsewhere in the DRN specification by either a constant definition or a

type definition. If an item specifies both a r. M ~ ana a airabe:, then the name is

associated with the specified number. Otherwise, the name is associated with a number

one larger than that associated with the previous name in the series. If no number is

specified for the first name in the series, dien that name is associated with the value 0.

A.5 Sequence type constructor

A sequence is one kind of type constructor. It specifies an ordered collection of various

types of data elements cailed fields, and it is written:

sequence { fieldList }

where fieldList is a series of comma-separated items. Each item may be either of the

form:

fieldName typeSpec

orof t'.eform:

unused (bits)

An item of the first form specifies that a data element of a particular type is present, and it

associates a name with that data element. The typeSpec may be a primitive type, a type

constructor, or a name defined by a type definition. The name must be unique among

those included in thefieldlAst. By convention, field names begin with lower-case letters.

The second form of field list item is used to specify that some bits of the sequence remain

unused. These bits appear in the representation, but no data is encoded by them.

The successive fields of a structure occupy succe.- sive bits in the representation. The bits

of a particular field will precede all other bits of fL.ds defined laier in the same structure.

Within an octet, bits are allocated to fields in order from most- to least-significant bit.10

10 Do not confuse the order in which bits are allocated to the fields of a structure, with the order in which

bits are transmitted on a network. The Ethernet, for example, conveys the bits of an octet in the order

least-significant bit to most-significant bit.

142

BBN Systems and Technologies Report No. 7627

The overall size of a sequence constructor type is the sum of the sizes of its component

fields.

DRN allows one to describe a sequence field whose form depends on the contents of

another field that occurs earlier in the same sequence. The earlier field, which determines

the form of the later one, is called the determinant. A determinant must be an Integer, an

Unsignedlnteger, or an enumerated type data element The specification of the later field

will make reference to the determinant. This refers - s; in the form of a series of

period-separated field names, which refer to fields n consecutively nested

sequences. The manner of specifying a determinant is best illustrated with an example;

one is presented in the next section.

A.6 Array type constructor

An array is another kind of type constructor. It specifies an ordered collection of data

elements of the same type, and it is written:

array (boundsList) of typeSpec

The boundsList is a series of comma-separated items, specifying the dimensions of an

array of data elements of type typeSpec. Each item of boundsList has one of these forms:

/lumber
valueName

determinant

If the item is a number, or a name that has been associated with a constant value, then the

corresponding dimension of the array is fixed at that value.

If the array is being specified as a field within a sequence, then a determinant can be used

to define an array dimension that is variable. Here is an example of a sequence that

includes an array of variable dimension:

sequence {

size Unsignedlnteger (8),

data array (size) of Character (8)

1

143

Report No. 7627 BBN Systems and Technologies

In this example, the number of elements in the array data is determined by the contents

of the size field, for any particular instance of the sequence. In the following example,

the determinant refers to a field within a field:

sequence {
parameters sequence (

max Float (32),
count Unsignedlnteger (32)

},
data array (parameters.count) of Float (32)

}

Array elements are represented in order, with the last array subscript varying most

frequently. Successive elements occupy consecutive octets. The overall size of an anay

is the size of an array element times the number of elements.

A.7 Choice type constructor

A choice is the third kind of type constructor. It describes a selection of alternate data

elements, and the conditions under which each alternate will be represented.

A choice type constructor is written:

choice (determinant) of { whenList }

where whenList is a series of clauses separated by commas. Each clause has the form:

when (choiceVaiue) choiceName typeSpec

A choice may appear only as a field within a sequence. The determinant specifies a data

element that occurs earlier in the same sequence according to the conventions described

in the previous section on sequences.

Each clause specifies one alternate representation of the choice that corresponds to a

particular value of the data element specified by the determinant. That value,

choiceValue, may be specified in the clause as a number, as a name that has been

associated with a constant value by a constant definition, or as a name that has been

associated with a constant value by the definition of an enumerated type. The typeSpec

describes the representation corresponding to that value. The choiceName is a name

included as a convenient way of referring to the representation alternative. By

144

BBN Systems and Technologies Report No. 7627

convention, such names begin with lower-case letters. Each must be unique among those

of the same whenList.

There may be no duplicates among the values specified in clauses.

If, for any particular instance of the choice, ihtfieldSpec data element has a value not

listed among the clauses, then the choice is not represented (i.e., it occupies no bits of the

representation). Otherwise, the size of the choice is the size of whichever alternate data

element it represents.

A.8 Bit alignment of data elements

Many computers require that certain data elements always be aligned in memory on a

certain multiple of their basic byte or word size. Correspondingly, DRN imposes

restrictions on the sizes of some data elements and the arrangement of sequence fields to

ensure that certain alignment constraints will always apply.

Here we define these restrictions by associating a notional attribute, alignment, with each

data element. A data element with an alignment attribute of n must start a multiple of n

bits from the beginning of the PDU. The value of a data element's alignment attribute is

determined as follows:

• If the data element is of a primitive type, and its size is 8,16, 32, cr 64 bits, then its alignment

attribute is 8,16, 32, or 64, respectively.

• If the data element is of a primitive type, and its size is not 8,16, 32, or 64 bits, then its alignment

attributeis 1.

• If the data element is a sequence then its alignment attribute is the maximum of the alignment

attributes of the sequence's fields, and 8.

• If the data element is an array then its alignment attribute is that of its array element.

If the data element is a choice then its alignment attribute is the maximum of the alignment

attributes of its alternate components.

These restrictions are imposed on sequences:

• The size of a sequence, measured in bits, must be a multiple of its alignment attribute, and a

multiple of 8.

• The bit offset of a field within a sequence must be a multiple of the field's alignment attribute.

145

Report No. 7627 BBN Systems and Technologies

• If a field has an alignment attribute of 1, then the following must hold:

I bit offset of first bit of field I bit offset of last bit of field I
L 32 J-L 32 J

This restriction is imposed on arrays:

• The size of an array element, measured in bits, must be both a multiple of its alignment attribute,

and a multiple of 8 bits.

This restriction is imposed on choices:

The size of choice must be a multiple of its alignment attribute.

146

BBN Systems and Technologies Report No. 7627

147

Report No. 7627 BBN Systems and Technologies

APPENDIX B: OBJECT TYPE NUMBERING SCHEME

Objects in the simulated world include vehicles, buildings, bridges, projectiles, portions

of fuel, plants, soldiers, etc. It is necessary, for the purposes of communication, to be

able to describe an object in a succinct manner. This is done by using codes to refer to

the types of objects, and by communicating these codes. This appendix describes the

scheme according to which object type codes are defined. The following appendix lists

the codes that are presently defined for specific types of objects.

An object type code is represented in 32 bits. The value 0 is reserved; it is used in

particular cases to mean that an object type code is not applicable, or has not been

defined.

The 32 bits are interpreted as a series of fields, each spanning some number of

consecutive bits. The interpretation must be performed by examining the fields from left

(most-significant bit) to right (least-significant bit). This is because, at each point in the

series, fields to the left may determine the format of fields to the right.

The first field always occupies the leftmost 3 bits of the 32 bit code. This field is called the domain field.

The values of this field, as presently defined, are:

0 Other (miscellaneous)

1 Vehicle (e.g., tank, submarine)

2 Munition (e.g., projectile, detonator, fuel, repair part)

3 Structure (e.g., building, bridge)

4 Life Form (e.g., Uee, soldier, Martian)

The following subsections describe how the remaining 29 bits of the object type code are

interpreted for the values of the domain field representing vehicles, munitions and life

forms. Object type codes for other domains have not been defined.

Values of all fields are Gained sequentially, starting from 1. 0 is reserved for

"miscellaneous".

148

I BBN Systems and Technologies Report No. 7627

B.1 Vehicle type scheme

The domain of vehicles includes platforms that operate on land, in the air, on or below the

sea, and in space. It includes both towed and self-propelled platforms. Guided missiles

and rockets have been classified as munitions rather than vehicles.

The object type code describing a vehicle is divided into these fields, listed here from left

to right:

domain 3 bits

environment 3 bits

class

country

series

model

function

3 bits

6 bits

obits

6 bits

5 bits

contains the value 1, denoting a vehicle

describes the environment in which the vehicle operates (ground,

air, water)

organizes vehicles within a particular environment into broad

classes (e.g., wheeled vs. tracked, fixed wing vs. rotary wing)

describes the country to which the vehicle's design is attributed

(e.g., USA. USSR)

identifies a particular vehicle chassis (e.g.. Ml, Ml 13)

identifies a particular model of vehicle (e.g., Ml, Ml Al, Ml AI

Block II)

identifies the function of the vehicle (e.g., main battle tank,

armored personnel carrier, reconnaissance vehicle)

The value of the class field is interpreted within the context of a particular

environment field value. For example, if the environment field is "air", the class

field specifies whether the vehicle is a fixed wing or a rotary wing vehicle; if the

environment field is "ground", class specifies wheeled or tracked.

The chart below shows the environment and class f ~ld values that are presently

defined, and the relationship among them. Field values are indicated in parentheses.

Environment

Air(l)

Class

Fixed Wing (1)
Lighter Than Air (2)
Rotary Wing (3)

149

Report No. 7627 BBN Systems and Technologies

Ground (2) Self-Propelled, Armored, Tracked (1)
Self-Propelled, Armored, Wheeled (2)
Self-Propelled, Unarmored, Tracked (3)
Self-Propelled, Unarmored, Wheeled (4)
Towed (5)

Space(3)

Water (4) Amphibious Warfare (1)
Auxiliary (2)
Materials upport (3)
Mine Warfare (4)
Submarine (5)
Surface Combat (6)

The interpretation of the country field value is fixed, regardless of the environment

and class fields. This interpretation is defined below, in the section entitled "Country

Codes".

The series field is interpreted within the context of the country, class and function

fields, and the model field is interpreted within the context of those fields plus the

series field. Appendix C lists currently defined vehicle typr codes, along with their

series and model field values.

The interpretation of the function field is dependent only on the environment field.

For air vehicles, the values of the function field are:

0 Miscellaneous

1 Air Combat

2 Ground Attack

3 Reconnaissance

4 Bomber

For ground vehicles, the values of the function field are:

0 Miscellaneous

1 Anti-Aircraft Gun or Surface-to-Air Missile

150

I

I B3N Systems and Technologies Report No. 7627

2 Armored Personnel Carrier

3 Command Post

4 Howitzer or Anti-Tank Gun

5 Mortar

6 Multiple Rocket Launcher

7 Reconnaissance

8 Recovery

9 Supply Truck

10 Tank Destroyer

11 Tank, Light

12 Tank, Main Battle

13 Combat Engineering

14 Surface to Surface Missile Launcher

For vehicles of other environments, one function field value is presently defined:

0 Miscellaneous

B.2 Munition type scheme

The domain of munitions includes military supplies MKJ than vehicle-' ir:..)un;'ioi.,

petroleum, oil, and lubricants; repair pans; medical supplieü; ex.

The object type code describing a munitiua has these as its leftmost fields:

domain 3 bits contains the value 2, denoting a munition

class 4 bits describes the class of munition: projectile, fuel, repair part, etc.

The values of the class field, as presently defined, are:

0 Miscellaneous

1 Detonator

2 Missile

3 Petroleum, Oil, and Lubricants

151

No. 7627

4 Projectile

5 Propellent

6 Bomb

7 Mine

BBN Systems and Technologies

Of these classes of munition, the detonator, projectile, and propellent classes are treated

in a similar manner. This is described in the next subsection, entitled "Ammunition type

scheme". Object type codes for missiles and bombs are described separately in two

following subsections. Object type code schemes for the other classes of munitions have

not been defined.

B.2.1 Ammunition type scheme

For the classes detonator, projectile, and propellent, the entire object type code is divided

into these fields:

contains the value 2, denoting munition

describes the class of munition: projectile, propellent, or detonator

describes the caliber of munition

organizes munitions within a class into smaller subclasses (e.g.,

time detonator vs. percussion detonator, or training projectile vs.

high explosive projectile)

describes the country to which the ammunition's design is

attributed (e.g., USA, USSR)

identifies a particular series of munition

identifies a particular model of munition

domain 3 bits

class 4 bits

calxber 5 bits

subclass 4 bits

country

series

model

6 bits

5 bits

5 bits

The value of the subclass field is interpreted within the context of a particular class

field value, but independently of the caliber field value. The chart below shows the

relationship between class and subclass field values, for those subclasses that are

presently defined. Field values are indicated in parentheses.

Class Subclass

152

BBN Systems and Technologies Report No. 7627

Detonator (1)

Projectile (3)

Propellent (4)

Percussion (1)
Proximity (2)
Time (3)

Biological (1)
Bomblets (2)
Chemical (3)
High Explosive (4)
High Explosive, Plastic (5)
High Explosive, Incendiary (6)
Illumination (7)
Kinetic (8)
Nuclear (9)
Practice (10)
Shaped Charge (11)
Smoke (12)

Bagged (1)
Canistered (2)

The caliber field has a common interpretation for all three classes of ammunition—

detonator, projectile, and propellent. Its values each represent a range of ammunition

caliber:

0 caliber noi applicable

1 caliber > 0 mm, but <10 mm

2 caliber > 10 mm, but < 20 mm

3 caliber > 20 mm, but < 30 mm

31 caliber > 3u0 mm

The interpretation of the country field value is fixed, regardless of the class of

ammunition or of the content of the subclass field. This interpretation is defined

below, in the section entitled "Country codes".

The series field is interpreted within the context of the country, subclass, and

caliber fields, and the model field is interpreted within the context of those fields plus

the series field. Appendix C lists currently defined munition type codes, along with

their series and model field values.

153

Report No. 7627 BBN Systems and Technologies

B.2.2 Missile type scheme

For the missile class of munitions, the entire object type code is divided into these fields:

doma in 3 bits contains the value 2, denoting munition

contains the value 2, denoting missile

describes the intended target of the missile

indicates the type of warhead that the missile carries

describes the country to which the ammunition's design is

attributed (e.g., USA, USSR)

identifies a particular series of munition

identifies a particular model of munition

The target field indicates the type of target that the missile is intended to be used

against. The values presently defined for this field are:

class 4 bits

target 5 bits

warhead 4 bits

country 6 bits

series 5 bits

model 5 bif.

0 Miscellaneous

1 Anti-Aircraft

2 Anti-Armor

3 Anti-Missile

4 Anti-Radar

5 Anti-Satellite

6 Anti-Ship

7 Anti-Submarine

8 Anit-Surface

The warhead field indicates the type of warhead carried by the missile. The value1--

presently defined for this field are:

0 Miscellaneous

1 Biological

2 Bomblets

3 Chemical

154

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BBN Systems and Technologies Report No. 7627

4 High Explosive

5 High Explosive, Plastic

8 Kinetic

9 Nuclear

11 Shaped Charge

The interpretation of the country field value is fixed, regardless of the contents of the

target and warhead fields. This interpretation is defined below, in the section

entitled "Country codes".

The series field is interpreted within the context of the country, warhead, and

target fields, and the model field is interpreted within the context of those fields plus

the series field. Appendix C lists currently defined missile type codes, along with their

series and model field values.

B.2.3 Bomb type code scheme

For the bomb class of munitions, the entire object type code is divided into these fields:

domain 3 bits contains the value 2, denoting munition

contains the value 6, denoting bomb

specifies the bomb's nominal weight

organizes bombs into various subclasses (e.g., general purpose,

cluster, demolition)

describes the country to which the bomb's design is attributed (e.g.,

USA, USSR)

identifies a particular series of bomb

identifies a particular model of bomb

The weight field represents the nominal weight of the bomb, using the following

encoding:

0 nominal weight not applicable

1 nominal weight > 01b., but <100 lb.

155

class 4 bits

weight 5 bits

subclass 4 bits

country 6 bits

series 5 bits

model 5 bits

Report No. 7627 BBN Systems and Technologies

2 nominal weight > 100 Ib., but < 200 lb.

3 nominal weight > 200 Ib., but < 300 lb.

31 nominal weight > 3000 lb.

The value of the subclass field is interpreted independently of the weight field. It is

one of these values:

0 Niiscellaneous Bomb

1 General Purpose Bomb

The interpretation of the country field value is fixed, regardless of the contents of the

weight and subclass fields. This interpretation is defined below, in the section

entitled "Country codes".

The series field is interpreted within the context of the country, subclass, and

weight fields, and the model field is interpreted within the context of those fields plus

the series field. Appendix C lists currently defined bomb type codes, along with their

series and model field values.

B.2.4 Mine type code schepr*

For the mine class of munitions, the entire object type code is divided into these fields:

domain 3 bits contains the value 2, denoting munition

contains the value 7, denoting mine

specifies the mine's nominal target

specifies the medium in which the mine is designed to operate

describes the country to which the mine's design is attributed (e.g.,

USA, USSR)

identifies a particular series of mine

identifies a particular model of mine

The target field indicates the principal type of target that the mine is designed to be

used against. The values presently defined for this field are:

156

class 4 bits

target 5 bits

environment 4 bits

country 6 bits

series 5 bits

model 5 bits

BBN Systems and Technologies Report No. 7627

0 Miscellaneous

1 Tank

2 Person

The environment field indicates the environment in which the mine is intended to

operate. The values presently defined for this field are:

0 Miscellaneous

1 Land

2 Water

The interpretation of the country field value is fixed, regardless of the contents of the

target and environment fields. This interpretation is defined below, in the section

entitled "Country codes".

The series field is interpreted within the context of the country, target, and

environment fields, and the model field is interpreted within the context of those

fields plus the series field. Appendix C lists currently defined mine type codes, along

with their series and model field values.

B.3 Life form type scheme

The domain of life forms includes any living organism.

The object type code describing a life form consists of the following fields:

doma in 3 bits contains the value 4, denoting a life form

type 29 bits identifies the type of life form

Appendix C lists currently defined life forms.

B.4 Country codes

Object type codes for both vehicles and munitions include a field specifying the country

of origin of the vehicle or munition type. This is used, for example, to subdivide types of

tanks into those originating in the U.S.A., those originating in the U.S.S.R., etc.

Tlio values of the country field, as presently defined, are:

157

Report No. 7627 BBN Systems and Technologies

0 Other

1 U.S.A.

2 U.S.S.R.

3 Germany

158

BBN Systems and Technologies Report No. 7627

APPENDIX C: DEFINED OBJECT TYPE CODES

This appendix enumerates the object type codes that are presently defined for various

types of vehicles and munitions.

Wherever a number appears in parentheses in this appendix, it is defining a value for a

field of an object type code. The value 0 is defined for fields whose contents, in a

particular case, are not presendy used to distinguish among types of objects. For

example, in the subsection below defining object type codes for U.S. vehicles, it is

specified that an Ml 09 howitzer is referred tobyaseries field value of 4, and a

model field value of 0; no codes for distinct models of the M109 are presently defined.

C.1 Object type codes for vehicles

Each of the following subsections lists object type codes defined for vehicles of a

particular country. Within each subsection, the lists are organized by other fields of the

vehicle type code: environment, class, and function. All object type codes for

vehicles have a domain field value of 1.

C.1.1 U.S. vehicles

All object type codes for U.S. vehicles have a country field value of 1. The following

list defines valid series and model field values for particular values of the

environment, class, and function fields.

Environment: Class

Air; Fixed Wing

Air; Rotary Wing

Ground; SP, Armored, Tracked

Series Model Function

A-10(l) (0) Ground Attack

F-16(2) A(l) Air Combat

B(2) Air Combat

C(3) Air Combat

D(4) Air Combat

F-14(3) A(l) Air Combat

D(2) Air Combat

AH-64(1) (0) Ground Attack

OH-58D(2) (0) Air Reconnaissance

Ml Abrams(l) (0) Tank, Main Battle

M2 Bradley (2) M2(l) APC

M3(2) Reconnaissance

159

Report No. 7627 BBN Systems and Technologies

Ground; SP, Unarmored, Wheeled

Ground; Towed,

M113(3) M113A2(1) APC

M577 (2) Conunand Post

M106A1 (3) Mortar

M109 155min(4) (0) Howitzer

M88 (5) Al(l) Recovery

ADATS (6) (0) Anti-Aircraft

LOSAT (7) CO) Tank Destroyer

M35 2.5ton(l) M35A2(1) Supply Truck

HEMTT (2) M977(l) Supply Truck

M978 (2) Supply Truck

M57 Mine layer (1) (0) Combat Engineering

M128 GEMSS (2) (0) Combat Engineering

M58A1 (3) (0) Combat Engineering

Towed pallet (4) (0) Supply Truck

C.1.2 Soviet vehicles

All object type codes for Soviet vehicles have a country field value of 2. The

following list defines valid series and model field values for particular values of the

environment, class and function fields.

Environment: Class

Air; Fixed Wing

Air; Rotary Wing

Series Model Function

Su-25 (1) (0) Ground Attack

MiG-23 C (2) (0) Air Combat

MiG-27 D (3) (0) Air Combat

MiG-21 C (4) (0) Air Combat

MiG-25 A (5) (0) Air Combat

MiG-29 (6) (0) Air Combat

MiG-31 (7) (0) Air Combat

Mi-24(1) (0) Ground Attack

Mi-28 (2) (0) Ground Attack

Mi-8 (3) (0) Ground Attack

Mi-17 (4) (0) Ground Attack

160

I
I

BBN Systems and Technologies

Ground; SP, Armored, Tracked

Ground; SP, Armored, Wheeled

Ground; SP, Unarmored, Wheeled

Ground; Towed

Report No. 7627

1-72(1) M(l) Tank, Main Bailie

BREM-l(l) (2) Recovery

BMP-1 (2) (1) APC

K(2) Command Post

2S1 122mm (3) (0) Howitzer

BMP-2 (4) (()) APC

ZSU-23/4M (5) (0) Anit-Aircraft

ACRV (6) (0) Command Post

T-80 (7) (0) Tank, Main Battle

BRM(8) (0) Ground Reconnaissance

T-64 (9) (0) Tank, Main Battle

T-62 (10) (0) Tank, Main Battle

T-55(ll) (ft) Tank, Main Battle

T-54 (12) (0) Tank, Main Battle

BDRM(l) (0) APC

BRDM-2 (9) (0) Ground Reconnaissance

Mine layer (0) (0) Combat Engineering

GAZ-66(1) (0) Supply Truck

BM-21 (1) (1) Rocket Launcher

Ural-375 (2) Cargo (1) Supply Truck

Fuel (2) Supply Truck

BTR-80 (3) (0) APC

PMR-3 (0) (0) Combat Engineering

MICLIC (1) (0) Combat Engineering

155mm (1) (0) Howitzer

M-1943 (1) (0) Mortar

Towed pallet (1) (0) Supply Truck

C.I.2 German vehicles

All object type codes for German vehicles have a country field value of 3. The

following list defines valid series and model field values for particular values of the

environment, class and function fields.

I
I

161

Report No. 7627 BBN Systems and Technologies

Environment: Class Series Model Function

Ground; SP, Armored, Tracked Leo-2(l) (0) Tank, Main Battle

Marder (2) (0) APC

C.2 Object type codes for munitions

There is presently one munition type code defined for fuel. It has a domain field value

of 2 (denoting a munition) and a class field value of 3 (denoting POL); the remaining

fields are zero.

Each of the following subsections lists object type codes defined for ammunition or

missiles of a particular country. Within each subsection, the lists are organized by other

fields of the munition type code: class, caliber, and subclass in the case of

ammunition; or target and warhead in the case of missiles. All object type codes for

munitions have a domain field value of 2.

C.2.1 U.S. ammunition

All object type codes for U.S. ammunitions have a country field value of 1. The

following list defines valid series and model field values for particular values of the

class, caliber and subclass fields.

Class: Caliber: Subclass

Detonator; Mine; Proximity

Detonator; 107mm; Percussion

Detonator; 107mm; Proximity

Detonator; 155mm; Percussion

Detonator; 155mm; Timed

Detonator; Bomb; Percussion

Projectile; 5.56 mm; Kinetic

Projectile; 25mm; Kinetic

Projectile; 25mm; High Explosive

Projectile; 105mm; Kinetic

162

Series Model

M603(l) (0)

M557(l) (0)

M513(l) (0)

M739(l) (0)

M728(l) (0)

M904(l) (0)

M855(l) (1)

M856(l) (2)

M791(l) (0)

M792(l) (0)

M392(l) M392A2(1)

1
i
I
I
I

BBN Systems and Technologies Report No. 7627

Projectile; 105mm; Shaped Charge M456 (1) M456A1 (1)

Projectile; 107mm; High Explosive M329(l) (0)

Projectile; 155mm; High Explosive Ml07 (1) (0)

C.2.2 U.S. missiles

All object type codes for U.S. missiles have a country field value of 1. The following

list defines valid series and model field values for particular values of the target

and warhead fields.

Target: Warhead Series Model

Anti-armor; Shaped Charge

Anti-air; High Explosive

TOW (1) (0)

M47 Dragon (2) (0)

Hellfire (3) (0)

Maverick (4) (0)

Sidewinder (1) (0)

ADATS (2) (0)

Stinger (3) (0)

C.2.3 U.S. bombs

All object type codes for U.S. missiles have a country field value of 1. The following

list defines valid series and model field values for particular values of the weight

and subclass fields.

Weight: Subclass Series Model

500 lb.; Genera] Purpose Mk82 (1) (0)

C.2.3 U.S. mines

All object type codes for U.S. mines have a country field value of 1. The following list

defines valid series and model field values for particular values of the target and

environment fields.

Target: Environment

Tank; Land

Series Model

M15(l) (1)

M19(2) (1)

M21 (3) (1)

163

Report No. 7627 BBN Systems and Technologies

Person; Land

M741 (4)

M718(5)

M75 (6)

M14(l)

M18A1 (2)

M16A2(3)

M731 (4)

M692 (5)

M74 (6)

C.3 Object type codes for life forms

All type codes for life forms have a domain field value of 4. There are two life forms

defined. The type field value of 1 represents a U.S. infantryman. The type field value

of 2 represents a Soviet infantryman.

164

BBN Systems and Technologies Report No. 7627

APPENDIX D: VEHICLE-SPECIFIC PROTOCOL

This appendix defines those aspects of the SIMNET protocols that are specific to a

particular type of vehicle simulator.

D.1 SIMNET M1 Abrams main battle tank

This section defines those aspects of the SIMNET protocols that are specific to the
SIMNET Ml Abrams Main Battle Tank simulator [1].

D.1.1 Repairs

The SIMNET Ml simulator recognizes the following values of the Repair Type data

element:

type SIMNET_Ml_RepairType enum (16) {

mlReplaceAlternator (1),

mlReplaceBattery (2) ,

mlReplaceEngineOilFilter (3),

mlReplaceTransOilFilter (4),

mlReplacePrimaryFuelFilter (5),

mlReplacePilotRelayStarter (6) ,

mlReplacePowerPack (7),

mlRepairServiceBrake (8) ,

mlRepairParkingBrake (9) ,

mlRepairTurretTraverseDrive (10),

mlRepairTurretMountlnterface (il),

mlRepairGunElevationDrive (12),

mlRepairStabSystem (13),

mlRepairLRF (14),

mlRGpairFuelTransferPump (15),

mlRepairGPS (16),

mlRepairCdrExtGPS (17)

}

These values are interpreted as follows:

mlReplaceAlternator replace alternator

mlReplaceBattery replace battery

mlReplaceEngineOilFilter replace engine oil filler

mlReplaceTransOilFilter replace transmission oil filter

165

Report No. 7627 BBN Systems and Technologies

mlReplacePrimaryFuelFilter

inlReplacePilotRelayStarter

mlReplav^eiPowerPack

mlRepairServiceBrake

mlRepairParkingBrake

mlRepairTurretTraverseDrive

mlRepairTurretMountInterface

inlRepairGunElevationDrive

mlRepairStabSysterp

mlRepairLRF

mlRepairFuelTransferPump

mlRepairGPS

inlRepairCdrExtGPS

repla. i (imary fuel fiKcr

replace pilot relay and starter

replace engine and transmission

repair service brake

repair parking brake

repair turret traverse drive

repair turret mount interface

repair gun elevation drive

repair gun stabilization system

repair laser rangefinder

repair fuel ransler pump

repair gunner's primary sight (GPS)

repair commander's extension to the GPS

D.1.2 Vehicle specific status

The following structure describes Ml-specific status information, including the quantities
of fuel and ammunition stowed in various compaitments of the Ml:

type SIMNET_Ml_Status sequence {

enginePower

battery

frontLef ta'ijei.

frontRightFuel

rearFuel

apdsReadyAmmc

Float (32) .

Flos'-, J^J,

F:.'?c (32),

Float (32),

Float (32),

Unsignedlnteger (8),

apdsSemiReadyAmmo Unsignedlnteger (8) ,

apdsHullTurretFloorAmmo Unsignedlnteger (8),

heatReadyAnmo Unsignedlnteger (8) ,

heatSemiReadyAmmo Unsignedlnteger (8) ,

heatHullTurretFloorAmmo Unsignedlnteger (8),

unused (208)

The enginePower field specifies the fraction of full power the vehicle's engine is able

to produce. The voltage of the vehicle's battery (in volts) is specified by the battery

166
I
I

I BBN Systems and Technologies Report No. 7627

field, and the quantity of fuel in each tank (in gallons) is specified by the

frontLeftFuel, frontRightFuel, and rearFuel fields.

The vehicle carries ammunition of two types (APDS and HLEAT) distributed among three

places (the ready rack, the semi-ready rack, and the hull or turret floor stowage). The last

six fields of the SIMNET_Ml_Status data element specify the number of rounds of each

type in each of these places.

D.2 SIMNET M2/3 Bradley fighting vehicle

This section defines those aspects of the SIMNET protocols that are specific to the

SIMNET M2/3 Bradley Fighting Vehicle simulator [2].

D.2.1 Repairs

The SIMNET M2/3 simulator recognizes the following values of the Repair Type data

element:

type SIMNET_M2_RepairType enum (16) |

m2ReplaceGenerator (1),

m2ReplaceBattery (2),

m2R©placeEngine (3) ,

m2ReplaceStarter (4),

m2ReplaceEngineFuelFilter (5) ,

m2ReplaceAirCleaner (6),

m2ReplaceTransmission (7) ,

m2ReplaceTurretDistBox (8),

m2ReplaceGunnersCtlHandle (9),

m2ReplaceCmdrsCtlHandle (10),

m2ReplaceTurretPositionInd (11),

m2ReplaceTurretSlopeInd (12) ,

m2RepairCoolantLeak (13),

m2RepairTransOilLeak (14) ,

m2RepairEngineOilLeak (15) ,

m2RepairServiceBrake (16) ,

m2RepairParkingBrake (17) ,

m2RepairGunnersSight (18) ,

m2RepairGunElevationDrive (19),

m2RepairTurretTraverseDrive (20),

m2RepairCannonMountInterface (21) ,

m2RepairTOWLauncher (22),

167

Keport No. 7627 BBN Systems and Technologies

mSRepairlntercom (23)

}

These values are interpreted as follows:

m2ReplaceGenerator

m2ReplaceBattery

ni2ReplaceEngine

m2ReplaceStarter

m2ReplaceEngineFuelFilter

m2ReplaceAirCleaner

in2ReplaceTransmission

m2ReplaceTurretDistBox

m2ReplaceGunnersCtlHandle

ni2ReplaceCindr sCt IHandle

m2ReplaceTurretPositionInd

m2ReplaceTurretSlopeInd

m2RepairCoolantLeak

m2RepairTransOilLeak

m2RepairEngine0ilLeak.

m2RepairServiceBrake

m2RepairParkingBrake

m2RepairGunnersSight

m2RepairGunElevationDrive

m2RepairTurretTraverseDrive

m2RepairCannonMountInterface

m2RepairT0WLauncher

m2RepairIntercom

replace generator

replace battery

replace engine

replace engine starter

replace engine fuel filter

replace air cleaner

replace transmission

replace turret electrical distribution box

replace gunner's control handle

replace commander's control handle

replace turret position indicator

replace turret slope indicator

repair engine coolant leak

repair transmission oil leak

repair engine oil leak

repair service brake

repair parking brake

repair gunner's sight

repair gun elevation drive

repair turret traverse drive

repair cannon mount interface

repair TOW missile launcher

repair crew intercom

I

168

I
I

I
BBN Systems and Technologies Report No. 7627

D.2.2 Vehicle specific status

The following structure describes M2/3-specific status information, including the

quantities of fuel and ammunition stowed in various compartments of the vehicle:

type SIMNET_M2_Status sequence (

enginePower Float (32),

hullBattery Float (32),

turretEmergencyBattery Float (32) ,

topFuel Float (32),

bottomFuel Float (32),

apCanAmmo Unsignedlnteger (8) ,

apCanAmmcType Unsignedlnteger (8),

heCanAmmo Unsignedlnteger (8),

heCanAmmoType Unsignedlnteger (8) ,

apStowedAmmo Unsignedlnteger (16),

heiStowedAmmo Unsignedlnteger (16),

towStowedAmmo Unsignedlnteger (4; ,

dragonStowedAmmo Unsignedlnteger (4),

towlLoaded Unsignedlnteger (1),

tow2Loaded Unsignedlnteger (1) ,

towLauncherUp Unsignedlnteger (1) ,

m3Configuration Unsignedlnteger (1) ,

rampDown Unsignedlnteger (1) ,

unused (179)

The enginePower field specifies the fraction of full power the vehicle's engine is able

to produce. The voltage of the vehicle's two batteries (in volts) is specified by the

hullBattery and turretEmergencyBattery fields, and the quantity of fuel in its

two tanks (in gallons) is specified by the topFuel and bottomFuel fields.

Severa1 fields are used to describe the vehicle's ammunition load as modeled by the M2/3

simulator. Twenty-five millimeter rounds are stored in three places within the vehicle:

in a bin called the AP can attached to the turret, in a similar bin called the HE can, and in

stowage compartments within the floor of the vehicle. Although the two cans are labelled

AP and HE, they do not necessarily contain just APDS and HEI rounds respectively.

Ammunition is loaded into the cans in strings of 30 rounds, and either bin may contain a

mix of both APDS and HEI strings.

The SIMNET_M2_Status data element describes the quantity and mix of ammunition in

each can using the following scheme. The apCanAmmo and heCanAmmo fields indicate

169

Report No. 7627 BBN Systems and 1 echnologies

how many rounds of either type are in each of the two cans. The apCanAmmoType and

heCanAmnioType fields indicate what types of ammunition the cans contain. This type

information is encoded as a series of bits, with a single bit corresponding to each string in

the senes of ammunition strings contained in a can. If a bit is 0, the corresponding string

contains APDS ammunition; if it is 1, the string contains HEI ammunition. The low-

order bit of the 8-bit field corresponds to the first string of ammunition leading into the

gun breach; this string may contain fewer than 30 rounds if some have been fired.

Higher-order bits represent successive strings in the series, each of 30 rounds. If a can

contains 210 rounds or less (seven strings or less), then some highest-order bit(s) of its

type field are unused, and they should be 0.

The apdsStowedAmmo, heiStow^dAmmo, towStowedAmmo, and

dragonStowedAmmo fields specify the number of rounds of various types of

ammunition stowed in the vehicle's floor compartments. The remaining bit fields of the

SIMNET_M2_Status data element indicate whether each of the two TOW missile

launchers is loaded, whether the launcher is raised or lowered, whether the simulated

vehicle is the M2 or the M3 variant of the Bradley Fighting Vehicle, and whether the

vehicle's rear ramp is raised or lowered.

no

BBN Systems and Technologies Report No. 7627

APPENDIX E: ETHERNET IMPLEMENTATION

This appendix specifies how the data link layer services required by the SIMNET

association protocol are provided by either of the two popular Ethernet standards. The

preferred standard is IEEE 802.3 [12] (aka ISO 8802/3). Use of the older Ethernet

Version 2.0 [11] standard is discouraged. Both of these local area networks meet all of

the requirements described in chapter 4.

E.1 Overview

A full description of Ethernet may be found in the referenced documents [11] [12]. What

follows is a brief summary of this network. An Ethernet provides a single physical

channel operating at a fixed data rate of 10 Megabits per second. Ethernet may carry

datagrams ranging in size from 368 to 12,000 bits. Several types of physical media are

supported, but shielded coaxial cable is perhaps the most common.

We have modeled the behavior of an Ethernet supporting a distributed simulation of 500

simulators, each producing updates at the rate of five per second (somewhat more than

the typical rate actually measured), and found that the Ethernet is easily capable of

carrying the resulting network traffic with negligible delay. This model is described in a

separate report, SIMNET Ethernet Performance [13].

E.2 Use of Ethernet Addresses

Ethernet supports 48-bit source and destination addresses. The association protocol

places no requirements on the Ethernet source address. All association protocol PDUs

are transmitted using a multicast destination address. The multicast address is formed

from the multicast-group and protocol-identifier parameters of the association protocol

datagram and transaction services as follows:

The first transmitted bit of the destination address is 1, identifying it as a logical or group address.

• The second transmitted bit of the destination address is 1, identifying it as a locally administered

address.

The third through 32nd bits of the destination address are 0.

• The 33Td through 40th bits of the destination address are the association protocol multicast-group

number, transmitted on the Ethernet in sequence from low-order bit to high-order bit.

171

Report No. 7627 BBN Systems and Technologies

• The 41st through 48t,1 bits of the destination address are the association protocol protocol-identifier

number, transmitted on the Ethernet in sequence from low-order bit to high-order bit.

Note that an Ethernet transmits data least significant bit first. Note ?lso that the protocol-

identifier parameter is carried by the userProt ocol field of the Association PDU(see

§6.5.1). It is not to be confused with the kind field of the same PDU or the SIMNET

Association Protocol Identifier described below.

An Ethernet datagram may contain one or more association PDUs. All PDUs in a

datagram must pertain to the same association protocol multicast-group and association

protocol protocol-identifier.

E.3 SIMNET Association Protocol Identifier

Ethernet Version 2.0 and and IEEE 802.3 support different mechanisms for specifying the

kind of higher level protocol which is carried by a data link layer PDU. The following

sections describe how the SIMNET association protocol is identified for each of the two

Ethernet standards.

E,3,1 Ethernet Version 2.0

The Ethernet Version 2.0 specification defines datagrams that include a 16-bit type field.

In accordance with this specification, a datagram containing SIMNET association

protocol information should have a type field whose value is 21,000 decimal or 5208

hexadecimal [16]. That value labels all datagrams containing SIMNET association PDUs

and distinguishes them from any other types of datagrams traversing an Ethernet Version

2.0 network. The essential subset of Ethernet Version 2.0 Data Link Layer PDU is

illustrated in figure E-l.

172

I
I
I

BBN Systems and Technologies Report No. 7627

I
DLL

Header

Destination
Address

4—I—I—I—h
Source

Address

Type

i—I—h

Data

Figure E-1: Ethernet Version 2.0 Data Link Layer header.

E.3.2 IEEE 802.3

IEEE 802.3 splits the data link layer into two sublayers, the Media Access Control

(MAC) sublayer and the Logical Link Control (LLC) sublayer. These are illustrated in

figure E-2. The Media Access Control PDU is identical to the Ethernet Version 2.0 Data

Link Layer PDU, except that the Ethernet Version 2.0 "Type" field has become a

"Length" field. The "Length" field specifies the number of octets of data that follow.

The Logical Link Control PDU is encapsulated within the MAC PDU. The length in

octets of the LLC PDU, including all headers, is the value o^ the length field of the MAC

PDU. The Logical Link Control PDU contains four fields: DSAP, SSAP, Control, and

Information. The Control field contains the value 3, indicating the LLC "Unnumbered

Information" command (see [14]). The DSAP and SSAP specify the LLC's destination

and source service access points. Because DSAP and SSAP are only eight bit fields, only

a very limited number of global SAPs are permitted. Consequently, Project 802 has

developed the "sub-network access protocol" (SNAP)[15]. SNAP allows a much larger

number of protocols to be supported. Use of the SNAP protocol is indicated by DSAP

and SSAP hexadecimal values of AA. When this is the case, the LLC Information field

contains a SNAP PDU.

173

Report No. 7627 BBN Systems and Technologies

MAC Header

LLC, Header t
NAPHeader

I

Destination
Address

i 1—I—I—Y
Source
Address

1 1 1"
Length

DSAP SSAP

1—I-

CNTL

PROTOCOL ID

Data
■

Figure E-2: IEEE 802 Ethernet Data Link Layer; Media Access Control, Logical Link Control and SNAP

headers.

The SNAP PDU contains two fields; Protocol Identification and Protocol Data. The

SIMNET association protocol has been assigned the unique protocol identifier 08-00-08-

52-08 (hexadecimal). When this value in found in the Protocol Identification field of the

SNAP, the SNAP Protocol Data field contains a SIMNET Association PDU.

174

BBN Systems and Technologies Report No. 7627

APPENDIX F: TIMERS AND COUNTERS

The following timers are used in defining the

Timer Seconds

mineFieldTime 30

mineFieldTimeOut

resupplyTime

serviceCancelTime

serviceRequestTime

66

60

12

simulationStatusTime 300

statusQueryTime

transactionCacheTime 10

transactionRetryTime

vehicleAppearanceTime 5

SIMNET protocols:

Description

The maximum lime between any two Mine Field

PDUs issued by any mine field.

How long a simulator waits without receiving a

Mine Field PDU describing a particular mine field

before concluding that that mine field no longer

exists.

How long a supplier waits for a response to a

Resupply Offer PDU.

How long a supplier waits without receiving a

Service Request PDU from a receiver before

concluding that the receiver is no longer requesting

service.

The period between successive Service Request

PDUs issued by a simulator requesting service for

its vehicle.

The maximum lime between successive Simulation

Status PDUs issued by a simulator.

The period a simulator waits to receive responses to

a Status Query PDU issued using the datagram

service.

The period a cached transaction response is

retained by an association entity.

The period between successive transmissions of a

Request APDU by an association entity.

The maximum time between successive Vehicle

Appearance PDUs issued for any vehicle.

175

Report No. 7627 BBN Systems and Technologies

vehicleDisappearanceTime 12

vehicleStatusTime 30

How long a simulator wails without receiving a

Vehicle Appearance PDU describing a particular

vehicle before concluding that that vehicle no

longer exists.

The maximum time between successive Vehicle

Status PDUs issued by a simulator.

The following counters are used in defining the SEMNET protocols:

Counter Repetitions Description

transactionRetryCount 3 The maximum number of times a Request APDU is

transmitted by an activation entity for one

transaction.

176

I

