?
l

-~

BBN Systems and Technologies {)
A Division of Bolt Beranek and Newman Inc. | ;
__
D—A]244 220
A
BBN Report No. 7627 :
DTIC
ELECTE BR
s JAN 08 19923 E
D o ¥
THE SIMNET
NETWORK AND PROTOCOLS
This document has been approved
for public release and sale; its
Q dn.r ibution is unlimited. o
200272
\WHMMWMWNW“
82 3 6 081/
//

- »

REPORT DOCUMENTATION PAGE OPMNG: 0704.0168

Publc reporsng burden for his cobe mon of inbormaton i esimated © average | howr par fesporua, indluding the sme e reviewing Instrucions, s arching exhing daw souces
manianng P cata neaded, M3 tevewing e oollecson of formeton. commens g T burden esamaw or vy other aepect of tes ododmdmmum,md,g'm“a“u“
for reduang Ths burden, © Washington Headquarters Services, Diectr ste ot Informaton svons and Repors, 1215 Jeflerson Devis Higtway, Suw !&,szmw »©
e Ofhoe of Ity mason and Reguiatory Aflars, Ofice of Mansgement arvs Budgel, Washington, DC 20%03. and

1. AGENCY USE ONLY (Loave Blank) : 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
)] June 1991 Technical Report .
4. TITLE AND SUBTITLE $. FUNDING NUMBERS

The SIMNET Network and Protocols

6. AUTHOR(S) Contract Numbers:

) MDA972-89-C-0060
MDA972-89-C-0061
Arthur R. Pope; Revised by Richard L. Schaffer

; | AND ADDRESS(ES: 8. PERFORMING ORGANIZATION
7. PERFORMING ORGANIZATION NAME(S) SS(ES) PERFORMING OR(

Bolt Beranck and Newman, Inc. (BBN)

Systems and Technologics; Advanced Simulation BBN Report Number:
10 Moulton 3treet 7627
Cambridge, MA 02138
9. SPONSORINGMONITORING AGENCY NAME (S) AND ADDRE SS(ES) - 10. SPONSORING MONITORING AGENCY
REPORT NUMBER
Defense Advanced Research Projects Agency (DARPA) DARPA Report Number:
3701 North Fairfax Drive None

Arlington, VA 22203-1714

e o A —— T e i, e i - . e

11. SUPPLEMENTARY NOTES

None

122 O1STRIBUTIONAVAILABILITY STATEMENT 120. DISTRIBUTIONCODE T

Distribution Statement A: Approved for public relcase; distribution is unlimited.
Distribution Code:
A

13. ABSTRACT (Maximum 200 words)

A Simulation Network (SIMNET) project technical report describing the the SIMNET network and its
communication facilities and protocols

14 SUBJECT TERMS 15 NUMBER OF PAGES
A technical description of the SIMNET network and its communication facilitics and
16. PRICE CODE
protocols.
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION LIMITATION
OF REPORT _ OF THIS PAGE OF ABSTRACT EORC ITATIOH GERESTIRACH
Unclassified Unclassified Unclassified Same as report,
] =
NSN 7540-01-283-5500 ‘Standard Form 208, 880922

Presabed by ANSI S 236 18
29901

Report No. 7627

The SIMNET Network and Protocols

Arthur R. Pope
Revised by Richard L. Schaffer

June 1991

Prepared by:

BBN Systems and Technologies
10 Moulton Street
Cambridge, Massachusetts 02138

Prepared for:

Defense Advanced Research Projects Agency (DARPA)
information and Science Technology Office

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

1991 Bolt Beranek and Newman Inc.

| Accesion For

p—

NTIS CPAS&I
DTIC TAB

thannounced
Jushiication

r<

By .
Distiibution{

Availability Cole

Dist Special

A4

Avani and jor

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

RS

BBN Systems and Technologies Report No. 7627

Preface

SIMNET: Advanced Technology for the Mastery of War Fighting

SIMNET is ar. advanced research project sponsored by the Defense Advanced Research
Projects Agency (DARPA) in partnership with the United States Army. Currently in its
sixth year, the goal of the program is to develop the technology to build a large—scale
network of interactive combat simulators. This simulated battlefield will provide, for the
first time, an opportunity for fully-manned platoon—, company—, and battalion-level units
to fight force—on—force engagements against an opposing unit of similar composition.
Furthermore, it does so in the context of a joint, combined arms environment with the
complete range of command and control and combat service support elements essential to
actual military operations. All of thz elements that can affect the outcome of a battle are
represented in this engagement, with victory likely to go to that unit which is able to plan,
orchestrate, and execute their combined—arms battle operations better than their opponent.
Whatever the outcome, combat units will benefit from this opportunity to practice
collective, combined arms, joint war fighting skills at a fraction of the costof an

P

equivalent exercise in the field. ,
1A < t ! iT. ™ ¥ : ! f s N] LA

4

While simulators to date have been shown to be effective for training specific milita
skills, their high costs have made it impossible to buy enough simulators to fully train the
force. Further, because of the absence of a technology to link them together, they have

not been a factor in collective, combined arms, joint training. SIMNET addresses both of

these problems by aiming its research at three high—payoff areas:
« Better and cheaper collective training for combined arms, joint war fighting skills.

« A test bed for doctrine and tactics development and assessment in a full combined arms joint

setting.

« A “simulatc before you build” development model.

These payoffs are achievable because of recent breakthroughs in several core
technologies that have been applied to the SIMNET program:

« High speed microprocessors.
« Parallel and distributcd multiprocessing.

« Local area and !ong haul networking.

Report No. 7627 BBN Systems and Technologies

« Hybrid depth buffer graphics.
» Special effects technology.

= Ur.que fabrication techniques.

These technologies, applied in the context of “selective fidelity” and “rapid prototyping”
design philosophies, have enabled SIMNET development to proceed at an unprecedented
pace, resulting in the fielding of the fi¢st production units at Fort Knox, Kentucky, just
three years into the development cycle.

In addition to the basic training applications, work is underway to apply SIMNET
technology in the area of combat development to aid in the definition and acquisition of
weapon systems. This is made possible because of the low cost of the simulators, the
ease with which they can be modified, and the ability to network thern to test the
employment of a proposed weapon system in the tactical context in which it will be used,

i.e., within the context of the combined arms setting.

Work on SIMNET is being carried out by co—contractors Bolt Beranek and Newman, Inc.
(BBN) and Perceptronics, Inc. Perceptronics is responsible for training analysis, overall
system specification, and the physical simulators, and BBN is responsible for the data
communication and computer-based distributed simulation and the computer image

generation (CIG) subsystems. The project is a total team effort.

- DARPA is the DoD agency chartered with advancing the state of the art in military
technology by sponsoring innovative, high-risk/high—payoff research and development.

BBN Systems and Technoiogies Report No. 7627

Table of Contents

1

INEFOAUCEION veververrneereerrernnsennssssssssnsssssssssnsssssssnsassessssssssessessansssssnesaesssssasasnssssssasns 1
U = 570 0L T 100 o e e R BEURIRER__NERRNRRER—————_R——_———————— 1
1.2 Distributed SIMUIAtION.....cccieeeriiereecerereenre ettt e et sas s aennes 3
1.3 Scope Of this WOTK......ccoviiriniiiiiiiiinnnnnnnisssisise st et sestresssssnssensnes 6

Distributed SIMUIGtiON CONCEPLS...ccverrierrssrsarsrssesansessessessessnsssnessssaesnesssassssonsarsses 9
2.1 ATCHIIECIUIE. c..oviceveerveesseeseenisessseersosssasssstssassssss staessssessssessossmansassassnassanssassrass 9
2.2 SIMUlAtON EXETCISES. ueirerriereenreeeserirneesitiiiesisstistesraecissaeensaessssstaessesssesssesnns 11
2.3 Simulated VERICIES......ccvereiveeiecrrcresetistineiiinstesiesinstsssseesanesssssssesassnessnsans 12
214 (COOTCINAE SySITINS suremserraeuer e a5 s scs « S Wotte o itts o Ml st 15
DI BB IR e it » s o oo sz o« e . Bverrrmerasil, SRR 17

VehiCle APPEATANICE covcvriiriiieiinisussessersessesserssnsasnssentssssssssssssstostssasasssssssssassassasses 18
3.1 OVEIVIEW.couiiiiiiiiieereecresresass e e ssbs b sabe st b sanessaaas seesssssessssssessntsstesesesnes 18
3.2 Measuring discrepancies in vehicle appearance.........cceieninniiiiiniiin 20

3.2.1 Discrete appearance attribULES.....oueeveieieitiiiniintieesueseneesisse i 20
3.2.2 LOCAHUOM. .uceieiceirnenressersrnamsmersssssasssssssssstosassssesssnsassssansansasassansonsssatsssas 21
3.2.3 OMENIALON. c.ceivireerieereeeetiesreeees e eessersere st eassrbe st b b st e b b s e n b s e srenne 21
3.3 Dead reckoning methods and discrepancy thresholds..........coeeeenecnnnnce 22
3.3.1 Vehicles of the static Classcccovvininniiiiiiiimi 22
3.2 Vehicles of the simple Class.....ccociiniiiiiiinrninnirniinieeenseeees 22
3 3.3 Vehicles of the tank Class.......coceiiiiiiiiiii e 22
3.4 The effect Of delay.......cccorririniiniiniiniiniiie i e e 28

The SIMNET NEtWOTK...ccccorvireernncranssanessansaessansasssssssecssasssssasassssssesanssasssssssssss 26
4.1 NetWoOrk TEQUITEIMENTS .c.ccviririiiniiiiiiiisiessesssreste sttt et st et st s snen 26
4.2 Network throUZhPUL ...ttt 27
4.3 NEIWOTK AElaY...ceorereerreniniiiiiniissiniereseis ittt eseneeseenseseassessssisussssssisssnsnee 28

Protocol data eleMENtS.. ... eecsersrscesssssecsaesssssssassessessanssntssasasssssssssasssssssssssssass 31
5.1 BasicC data lEmENLS.......cocververreennreesiiisiisiasiesionsressssasssessstesssssssssasssssas sossesnes 31

51,1 ANGLE ittt e e e 31
5.1.2 Battle SChEME......oiveneerrrmrarsasccsssiissensunsronnessnssssasasssaasssssstsssasssassossssns 32
5.1.3 BOOIBAN....ooiieeciiirirreereesree e citeststbestssnesns s erte s e b bs s e suaesraesane st enn 33
5.1.4 Burst DESCIiPIOT..cccuivineeiiiniisinestsisresessseeststssinstastmissssssssssiasssnes 33
5.1.5 Event Identifier. et s 33
5.1.6 ExXercise Identifier. . cocoeeiveneinmneninniniiinineenie e ensnessesessassss s 34
5.1.7 FOrce IAeNtfIer.....ocovviieeereeeriiineiiiiiiiniie s s s sst s s ssseans 34
5.1.8 Munition QUANTILY ..c.cceeiriiriniiiiriisninisiie ettt st 35
5.1.9 Object Identifier....cccciviviriimimiiinieiieiniens s 35
5.1.10 ObJECE TYPL.viverriniiiriimsiriieieie et s s 36
5.1.11 Organizational Unit.....cocoeiiiiinnei s 36
5.1.12 REPAIT TYPE.urieeeereniiiiriritiieritntnsis sttt et sttt ssas s ssssasss 38

fii

Report No. 7627 BBN Systems and Technologies
5.1.13 Simulation AdAIEsS.......ceiiierieeniiee et 39
5.1.14 Simulator TYPE.....coeiiiiiereirienecie it s s s 39
5.1.15 Site Identifier. ... oot iveeiiiniciiiieiiiiii i 39
5.1.16 Target DesCIiPLOL.....ccectiviiiiniiiiiient et st s s 40
5.1.17 Terrain Database Identifier........c..cocovivinnin i, 40
SILEY TARECR e oes somsiomuanse s opmes s s s o s B ST, St o i s S5 4]
5.1.19 Vehicle Capabilitiescooceveeeiini i, 41
5.1.20 VehiCle Class....cccceiiiiiiineiruenieniire et 41
5.1.21 Vehicle COMPONENL.......ccccevertiimiiiiniiiiniiiiniiiesaee s ss s esens 42
5.1.22 Vehicle Coordinates.........ccoeeeeeneeriineninoninniiniissis e 42
5.1.23 VehiCle GUISES...coerinririierieerientcementrecetesieestsrie st srisssiasasssssvasensassas 43
5.1.24 Vehicle Identifien........coiviienenenninieniiien i 43
5.1.25 Vehicle Marking......cccooveeveiveiimeieeciiiniiniiiiine s snssosnsssssenns 44
5.1.26 Vehicle Statts......cccuiiiieiiiiirerenie ittt 44
5.1.27 Vehiclc SUbSYSIEMS....c..covveeveniiiiii i e 47
5.1.28 VElOCIY VECIOT ..ceiiiiueieivririiinieiiine ittt srinessss s sss s s s essnssassese 53
5.1.20 World COOrdiNatescueeerieriereeriienieienieecnie it nirstineesieseine e snnene 53
5.1.30 XY COOTAINALES.ccveireirriere et et eienieenerteseenie s s esas s ene 54

5.2 Timers and COUNLETScccvvrvviinniiiiinenneennn. A ———— 54
ASSOCIation Protocol....uiiininnciensennneniesasneernsreeniossones RSP 56
6.1 ATCRItECIUTE. ..coevreerriirsieeeeeararrerisseestestesstesanssansnsssessesssnsssssnsasse st sossassanss 56
6.2 SEIVICE ElEMENLS....civeereirerrraeeenrieeeniitieie sttt srbe s sbestsb e s s r e ees e sabaasnssrnne 58
6.3 Service required from lOWer 1ayers......cccoviiiiininiiniinn e 60
6.4 Service provided by the association sublayer ..., 61
6.4.1 Group SubSCIIPtion SEIVICE.......ccoiviiviiiiiiiiiniiiii e 61
6.4.2 Datagram SETVICE........cocvevirtmeriiiiiiiininierti s sestes s ssveassasassseseene 62
6.4.3 TransacCtion SEIVICE.......ccceoveriererererteneinteiiiesieiisie e e s ere s anens 64

6.5 Specification of the association ProtoCol........eveiiineieniniiniiinini 67
6.5.1 Association protocol data unit format..........ccoeeeiniiiiii 68
6.5.2 Datagram protocol procedure..........cc.coeiiiriiininiiinenn s 71
6.5.3 Transaction protocol FroCedure........coviiiiiiiiiiiiniin e 71
SiMUlation Protocol... i ciieiniiiniiininiecnenermnresssionssssssssssnsssssnsns 76
4, 'Simulation ProtoCo] QHEa IS,o - s B0 e ereernaaraae et o G 76
7.2 Use of association SUbIaYer SEIVICES..........ccovviiiiiniiiiiinn e sieeence s 79
7.3 Protoco]l ProCedures........cueeuceinimuiniinisriistiinninen et satssassssnssssssines 81
7.3.1 ACHVATION. .. vevteetieirit ettt eese e cete et st sra e rb e e ssraae e aessaesaae 81
1232 DO VAN 5ys0ro e T s T T TN o (SRS S 86
7.3.3 Appearance and other state updates........ccocvveiiniiiieniiniicesiinnienen 88
Te3id) VIO T P st simsemoyrsrs s TR TR 1,02 99
7.3.5 COLlISIONS. ...uiitiee ittt etrcteeeee et e st a e e cr e saeaes 107
7.3.6 Transfer of MUNIONS......cccveireireriinieniiiiii e 108
73,7 REPAILS....cciiiiiiniiiii it stan s e e s st stsr s oo 113
Data collection Protocol.... it 118
8.1 Data collection protocol data UnitS.......ccveeiveneniieiennniinene e 118
8.2 Use of association sublayer SEIVICES.....cuivevriviiiiniiieiniiincsenseec s 120

iv

BBN Systems and Technologies Report No. 7627
8.3 Protoco]l Procedures:......c.cuummmsmmssemssessarsvensssvssmssmmissssvssovsvsnsvns sssosus s 121
8.3.1 Status Mepontsh. .. cormmrms. .. T sEEET s 121

B8 BT POTES s M e SRS eooeaaR »« BSHE SRS E S eSS 128

O REFEIEIICES v euverrerrransenseressecssncssoresnsssssosssstssssssassssnssssssassssssssssssssnassesssnsoss senssnsass 137
Appendix A: Data representation NOLAtioN........cccecrcuvireussusssemssisrsisisisssssessnsarsssses 139
AT OVEIVIEW .. ciiiiiieiieiteit ettt eeae e ssasbesstesatestess s eabesas et asbesbe s sbs e st st asbtassassaasass 139
A.2 Constant definition........oeereeriininiiiineiee e . B 140
A3 Type defINitioN.. oo s s 140
A4 PrIMItIVE TYPES.coveveriiriniiiiiiiiiitiirie ettt st sttt s s 140
A.5 SequENCe tyPE CONSITUCTOT. .uiuiuriunrereressesesestsiesisisiiis sttt ars s sttt st 142
A6 AITAY LYPE CONSITUCIO .. cvitivirirerrsiessssissesesient st st st bt as e 143
A.7 ChOICE LYPC CONSITUCTOT. .c.cuvitiviriuerarernssssssessieasestsestse s ssbs st st sh bbb s 144
A.8 Bitalignment of data elements.......oouivienciiiiii e 145
Appendix B: Object type numbering Scheme.......ccoinencniiisnnsnneresnisssnenen: 148
B.1 VehiCle type SChemME.....oviiviiiiiiiiiitiinniest st 149
B.2 Munition tyPe SCHEIMEc.iviiiiiiiiriterininiessres ettt st srstsassanes 151
B.2.1 Ammunition type SCheme........cccvviminimiinie e 152

B.2.2 Missile type SCHEMEciiiiviiiiieienieicee s i e 154

B.2.3 Bomb type code scheme.......cccocoveeiienncs AR T T o £ TS 155

B.2.4 Mine type code SChEME.....ccvviiiinieniiiniicren i 156

B.3 Life form type SChEME.....c.uoviiiiiiiiiiiir it 1i5v
B.4 COUNMTY COUES...euuineirimcriiiiitireriisires et s b 157
Appendix C: Defined object type COUeS......oiveermincritsinuinsennaieseisiiersssesisissnscses 159
C.1 Object type codes for VERICIES ..couiriiiiniiiiiiiiii s 159
C.1.1T U.S. VERICIES .. cttteiie ettt sttt st 159

C.1.2 SOVIEt VERICIES...ciiiireiiieieeeneenceentesseiie s ese et e e e saae e snssassionin 160

C.1.2 German VEhICIES.....cccieiiveienie ittt 161

C.2 Object type codes fOr MUNIEIONS.....cviiieereiint ittt 162
C.2.1 U.S. AMMUNILION c.eviveeieeeeectsseitenrssiesmesasssssesessstesssts st sssesssessones 162

C.2.2 U.S. MISSIIES..ccrtiiiiiiieirrrereeeneeneesesesissnsisssssastesssssssaesesess sanssssnes 163

C.2.3 .S, DOMDS cetiiiiiiiiriirreieneeseesreesisstistes s aaesssssssessassssassss sassasssansasnes 163

C.2.3 U.S. ITNES .ccvtiee et crrereeenrereeseeestossesissessassssssssssesassssssenssssssstassesess 163

C.3 Object type codes for life fOrmS......ccceevemiiiiiiii 164
Appendix D: Vehicle—specific Protocol......iuirnensmimmmnsensenssssisnssssssisiacissnsennes 165
D.1 SIMNET M1 Abrams main battle tank....... .o, 165
D11 REPAITS.ceueiririiiiiiiiiiint sttt bbb st 165

D.1.2 Vehicle SPECIfiC STAUS....oviirrrriineiese sttt s e 166

D.2 SIMNET M2/3 Bradley fighting vehiClecocoviinniiiiiiiiiiiicinn 167
D.2.1 REPAITS.cciiiieuereiie ettt s e 167

D.2.2 Vehicle SPECIfiC ctatuS...cuiivirieiinieiiieeeiiis s 169

v

Report No. 7627 BBN Systems and Technologies
Appendix E: Ethernet implementation......eeeeenenieneseniesnnesesnsressosssssennosseans 171
E.l OVEIVIEW .cuiiieiiiieitieteee e eeieeeste e s sanae s eeaensee sttt s smteeemeesennese s satesaesssanneeeas 171
E.2 Use Of Ethernet AdAressesoouuiiiiuiriiiieririeiniteeieeeceree e esnsssssnnsesesns 171
E.3 SIMNET Association Protocol Identifier..........ccocueievvinniinnnnniniiininiinnnn 172
E.3.1 Ethernet Version 2.0.......ccuiiiiiieeoiinieiniieeseeeenneoenssescnneonses e 172
E3.2 TEEE B02.3 . ciiieieiireeerieeiineseesineeseenseeessaesasessasesssssstsssnsssnnsaessnns 173
Appendix F: Timers and COUNLETS......cucoiiieinrersnsesnseesnsesssssssssssssssssssssssessessassasss 175

vi

BBN Systems and Technologies Report No. 7627

1 INTRODUCTION

. ==

The SIMNET project has devcloped a me: ‘or simulating battles involving many vehicles by
interconnecting large numbers of in & vchicle simulators. This form of simulation is called
distributed simulation because the computer systems supporting it—the individual vehicle
simulators—may be distributed over local or large distances. These computer systems communicate
by means of a network that allows them to exchange informaticn quickly and efficiently. The manner

of exchange is governed by a set of rules and conventions that we call the SIMNET protocols.

1.1 About this report

The purpose of this document ‘s to describe the STMNET network and its protocols at two
levels. At one level, we have sought to provide a basic understanding of the mechanisms
underlying a SIMNET distributed simulation. Beyond that, we have also attempted to
document the protocols in sufficient detail to allow others to produce simulators that are
fully compatible with the SIMNET system. Hence this report includes both a broad
discussion of basic concepts and a somewhat more formal specification of the data

communicated among simulators.

Someone desiring the basic understanding should examine chapters 1 through 4. The first
two chapters cover some fundamental concepts underlying the distributed simulation.

The third chapter focuses on an issue of critical importance to the distributed simulation:
that of how, and how often, information about a vehicle’s appearance in the simulated
world must be communicated aniong simulators. A technique we employ to reduce the

volume of communicated data, based on dead reckoning, is described in that chapter.

The fourth chapter specifies the characteristics required of the network supporting the
simulation. Just as telephone conversations may be conveyed by a variety of media
ranging from copper wire to light pulses, so too a distributed simulation can be supported
by a variety of networks. The SIMNET protocols will operate on any network provided
that network meets the requirements described in chapter 4. One network that meets
these requirements—and with which we have experience—is the Ethernet™; appendix E
describes the manner in which SIMNET protocols are made to use that network.

™ Ethernet is a registcred trademark of the Xcrox Corporation.

Report No. 7627 BBN Systems and Technologies

Of course, to support a distributed simulation a network must be capable of some
minimum level of performance. What that level is depends on the size of the distributed
simulation, and on the types of things being simulated. The methods and protocols
described in this report are appropriate for distributed simulations both large and small, so
we do not prescribe any particular level of network performance. As an example,
however, chapter 4 describes our experience, which indicates that a network capable of
carrying 1500 packets per second is required to support a distributed simulation involv: g
500 vehicles.

The remaining chapters of this report define the protocols in detail. They describe both
the content of the data messages exchanged via the network, and the conditions under
which these messages are produced. To allow the contents of the messages to be defined
succinctly and unambiguously we employ a formal notation, which is described in
appendix A. In chapter 5 we collect in one place the definitions of several basic data
elements that appear in many of the messages. The messages themselves are defined in

chapters 6 through 8.

The protocols employ a particular representational scheme for identifying the types of
objects, such as vehicles and munitions. By this scheme, for example, an M1 tank is
described as one type of object, and an M60 tank, as another. The scheme is intended to
be extensible so that new types of objects can be incorporated into the framework
established by the scheme without disrupting existing software implementations.
Appendix B describes the overall scheme, and appendix C lists particular object types

that have been defined within it.

Because the distributed simulation involves specific types of vehicle simulators
performing detailed simulations of their vehicles, certain protocol messages must convey
information that is vehicle-specific. We have defined the format of this vehicle-specific
information for two types of vehicle simulators: the SIMNET M1 Abrams Main Battle
Tank simulator [1], and the SIMNET M2/3 Bradley Fighting Vehicle simulator [2].
Appendix D defines the vehicle-specific aspects of the protocols for these simulators.
Note that, although some portions of the protocol are permitted to be vehicle-specific, it
is not necessary for all simulators to deal with these vehicle—specific portions.

This report supersedes three earlier reports describing the SIMNET network and
protocols, [3], [4] and [17]. The protocols have undergone continued evolutionary
development as part of the SIMNET project. Although further development is expected,

BBN Systems and Technologies Report No. 7627

we believe that the current structure of the protocols ensures that the anticipated
changes—such as the introduction of new types of vehicles—will have minimal impact

on existing protocol implementations.

1.2 Distributed simulation

The simulated world about which we are concerned in this report is based on some region
of terrain typically tens or hundreds of kilometers across. The terrain is populated with
features such as hills, rivers, roads, trees, and buildings. Both the terrain and the features

emplaced upon it are static: they do not change form in the course of a simulation.!

Operating on and above the terrain are vehicles that do change dynamically in the course
of the simulation. Vehicles may move anywhere about the terrain, assume any
orientation, and change appearance in any of a variety of ways. These vehicles are often
simulated by interactive vehicle simulators operated at the direction of individuals or
crews. A crew perceives the simulated world from the vantage point of their vehicle,
wherever that happens to be. They see both the terrain around their vehicle, and the other
nearby vehicles being operated by other crews. Events unfold in this simulated world at a

pace which is simply that of real time.

Because the simulated world exists as a place where battles are conducted, certain other
phenomena are also found there. These phenomena include:

« Weapons fire and the effects it has upon vehicles.

» Supplies of fuel and ammunition, and the transfer of these supplics among vehicles.

« Vehicle malfunctions and repairs to correct these malfunctions.

« Radar emissions and detection by radar.

We use the term exercise to refer to a simulation conducted over some period of time
involving some simulated world. The computer systems that simulate this world we call

simulators. A number of simulators may participate in an exercise at one time and they

1 It is not that the protocols preclude changes to the terrain; they simply make no provisions, in their

present form, for representing and distributing information about terrain changes.

Report No. 7627 BBN Systems and Technologles

must, of course, share information about the world they are simulating. This informauon

includes:?

+ Data required by a simulator in order for it to begin participating in an exereise.

« Descriptions of the locations and appearances of vehicles.

+ Descrip.ons of events related to weapons fire and collisions.

» Reports of the exchange of fuel or ammurition among vehicles

» Descriptions of repairs completed on veh s,
Simulators share information by means of a network that interconnects them. The
network may span short distances (a local area network) or large ones (a long haul
retwork), or it may be some combination of both local area and long haul networks.
Although the network must meet certain basic requirements, its exact topology is not

important to a discussion of the protocols. All that is required of the network topology is

that each simulator attach to it at some point.

The exchanges among simulators are governed by a set of protocols that have been
designed with several goals in mind. Among these goals are:

« The protocols must ensure that a sufficiently consistent model of the simulated world is sharcd

among all simulators.

« The protocols must allow simulators to begin and end thcir participation in an exercise 2 any time

without disruption to the exercise.

« The protocols must be extensible in future to accommodate new types of vchicles, weapons, and
other simulated phenomcna without requiring significant changes to existing simulator

implementations.

« The protocols must minimize the amount of information to be cxchanged via the netwek, thereby

minimizing the requirement for network throughput.

« The protocols must allow an optimal balance to be achieved betwecn the amount of computation

performed by simulators, and the amount of information that must be exchanged among them.

2 Note that information about the terrain is not among the things simulators exchange via the nctwork in

the course of a simulation. Each simulator is assumed to have aceess to a description of the terrain.

BN W

BE'N Systems and Technologies Report No. 7627

« The protocols must allow the computing tasks necessary for modeling phenomena in the simulared

world 1o be distributed appropriately according to where these tasks may best be performed.

« The protocols must provide sufficient information about events in the simulated world to support

later reconstruction and analysis of those events.

A distributed simulation can enco.apass many different types of simuiators. Two quite
different types of simulators that have been developed as part of the SIMNET project
serve to illustrate the range of possibilities. The M1 tank simulator is operated by a full
crew of four who control their single, simulated tank much as they would an actual tank.
The SIMNET Semi-Automated Forces system [5] on the other hand, allows a few
individuals to direct a large number of ground and air vehicles that operate as a unit in the
simulated world. One simulates a single vehicle; the other simulates many. Simulators
of both types can cooperate together in a single, distributed simulation. In this report,
wherever we need to distinguish a simulator as being one that simulates a single vehicle

at the direction of a full crew, we will call it a crewed vehicle simulator.

One other type of simulator we refer te in this report is the SIMNE1 Management,
Command, and Control (MCC) system [6]. As a simulator, it simulates a variety of
combat support and combat service support vehicles under the direction of a few
individuals, but it also plays an administrative role by initiating other, crewed vehicle
simulators into the distributed simulation. This combination of multiple functions in a
single system is not in any way a requirement of the SIMNET protocols, but it serves as a
further example of how the protocols will accommodate various types of simulation

systems.

Most of the messages exchanged via the network are multicast so that they can be
~gceived by any system on the network. This makes possible systems that, by listening on
the network, can report or record all events happening in the simulated world. One such
system, which we call a Data Logger, simply records messages as they appear on the
network, noting the time of each one. The record produced by the Data Logger can be

used to analyze, review, or even replay all or part of an exercise.

Although the principle purpose of the network is to convey information about the
simulated world for use by simulators, it has other purposes as well. The network is used
by simulators to report supplemental information that may be useful in certain analyses of
an exercise. This information includes, for example, the status of a simulated vehicle’s

internal subsystems and stores of supplies. Computers collecting this supplemental

Report No. 7627 BBN Systems and Technologies

information from the network can aid analysts in interpreting the events taking place in

the simulated world.

1.3 Scope of this work

Three points must be made concerning the scope of the work described in this report.
First, this report addresses the problem of linking together simulators—with each
simulator modeling one or more vehicles—so that a large collr:ction of simulated vehicles
can interact in a simulated world. This problem is to be distinguisked from that of linking
multiple computer systems together to create a single vehicle simulator. The two
problems are quite different in character, and they may demand different solutions.

Second, the techniques we have specified for linking together vehicle simulators are
meant to build upon, rather than replace, standard communication services. Our intent is
not to recommend a particular choice of network service, but rather to describe how a
network meeting certain requirements can be employed for distributed simulation. To
date we have used Ethernet, a standard, local-area-networking technology. Other
network services may prove to be as appropriate or better. Alternatives include the Fiber
Distributed Data Interface (FDDI) local area network; the DoD Internet Protocol (IP) and
ISO cornectionless internetwork protocol extended to support multicasting; and the
DARPA internet stream protocol {ST) [7]. The distributed simulation protocols described
in this report could be carried by any of these.

There is another aspect to the distinction we draw between the content of information
communicated, and the mec™anism by which it is carried. We have linked together local
area networks of simulators using long haul networks and gateways so that simulators at
various sites may participate in a common exercise. The simulators themselves use the
same protocols regardless of whether they are interacting locally or over a long haul
network. The gateways allow the long haul network to be included in a manner that
makes it transparent to the simulators, and requires no change to the protocols used
among simulators. We are continuing our study of gateway-to—gateway protocols that
will provide efficient utilization of a standard internet—such as one employing IP or ST
protocols—while supporting distributed simulation. The third point to be made about the
scope of this report, therefore, is that it does not describe gateway—-to—gateway protocols.
However, the simulator—to—simulator protocols it does describe are identically effective
regardless of whether the simulators that use them are together on a single local area
network, or separated onto distinct local area networks that are linked by gateways and a

BBN Systems and Technologies Report No. 7627

long haul netwerk. Our chief aims in developing a gateway-to—gateway protocol are to
retain this sense of network transparency, and to retain the simulator—to—simulator

protocols in their present form.

Report No. 7627

BBN Systems and Technologies

BBN Systems and Technologies Report No. 7627

2 DISTRIBUTED SIMULATION CONCEPT

This chapter introduces concepts that provide a framework for the definition of

distributed simulation protocols.

2.1 Architecture

Distributed simulation operates in a particular network environment called a distributed
simulation internet. This network environment may consist of a single local area
network, or it may include a series of local area networks linked together by a long haul
network. Local area networks are referred to as sites, and the computers at each site

(attached to a local area network) are referred to as simulators. This arrangement is

illustrated in figure 2-1.

Simulator Simulator Simulator
3 Site . 3
— Simulator B — Simulator Site —{ Simulalor
Site C
A
Simulator —— Simulator —{ Simulator

Long Haul Network

Figure 2-1. Adistributed simulation spans a collection of simulators located at various sites, connected by
local area and long haul networks. The overall network environment is called a distributed simulation

internet.

Typically, each simulator may be engaged in some aspect of an overall distributc.”
simulation; it may, for example, be simulating one vehicle. However, for convenience,

Report No. 7627 BBN Systems and Technologies

the term simulator is applied to all computers participating in the distributed simulation,
including those that are only “listening” to a simulation exercise passively rather than

simulating anything

A distributed simulation is implemented using a family of related protocols, each serving

a particular need of the distributed system. These protocols include:

s A simulation protocol, used to introduce simulated elements into an exercise, remove them from

an exercise, and convey information about the simulated world for use by simulators.

« Adata collection protocol, used to report information arising from the simulation that is (a) of
interest primarily to those studying the course of an exercise, or (b) needed to restart an exercise

following an interruption.

» An association protocol providing some communication services that are both particular 1o the
application of distributed simulation, and needed to support the simulation and data collection

protocols.

Simulators engaged in a distributed simulation implement appropriate features from each
of these protocols, and participate in all of them simultaneously. For example, a
simulator that is involved in an exercise will be reporting information about its behavior
to other simulators using the simulation protocol, and reporting data for collection and
analysis using the data collection protocol Messages of both the simulation protocol and
the data collection protocol will be conveyed using the association protocol. All three

protocols are described in detail in this report.

The protocols, in turn, are based on the use of a communication service that may be
implemented in various ways. We describe in this report how one communication
network, Ethernet, may be used to provide this service. Figure 2-2 shows how the three

protocols and the underlying communication service are related to each other.

Simulators may engage in other communication protocois besides those used to achieve
distributed simulation. A simulator might implement additional protocols for functions
such as remote diagnosis or bulk transfer of data, and use the same u y
communication service to support these additional protocols. This ever, s
concerned only with the three protocols that provide distributed sim

10

BBN Systems and Technologies Report No. 7627

Simulation Data Collection
Protocol Protocol

Association Protocol

Communication Service

Figure 2-2. The simulation and data collection protocols are carried by the association protocol, which, in

turn, is supported by an underlying communication service.

The simulation protocol and the data collection protocol share many aspects of data
representation and style. Moreover, there are cases where the interactions of one protocol
are closely related to those of the other. For example, when a simulator joins an exercise
through a simulation protocol interaction, it begins to make data available through data
collection protocol interactions. The division of functions among these two protocols is
intended to provide a logical and convenient grouping of those functions rather than a

distinct separation of them.

The information exchanged by computers as part of a protocol is packaged in messages
called protocol data units (PDUs). For each of the SIMNET protocols, a particular set of

PDU types is defined according to the communication needs of that protocol.

2.2 Simulation exercises

A simulation exercise is a joint activity in which multiple simulators share a common,
simulated world. Associated with any exercise are certain things that must be known to

each participant. These things include:

11

Report No. 7627 BBN Systems and Technologies

e Information about the terrain upon which the exercise is taking place. Each simulator is assumed
to have access to any information it requires about the terrain. Of course, simulators must agree
closely on how the terrain is shaped, and how it is covered with features such as vegetation and
buildings. The SIMNET protocols impose no constraints on how terrain inforination is
represented or used by simulators. The protocols do, however, provide a mechanism for
identifying the terrain information to be used for a particular exercise. A collection of information
describing a particular area of terrain is referred to as a terrain databas:, cach terrain database is

identified by a combination of name and version number.

e The date and time in the exercise’s simulated world. Although time in the simulated world passes
at exactly the same pace as it does in the real world, clocks may be set diffcrently there. The
SIMNET protocols convey the value of timc in the simulated world so that simulators can vary

effects such as lighting and visibility according to the value of simulated date and time of day.

o The identity of the exercise.. The SIMNET protocols allew multiple exercises to occur
simultaneously using a single nctwork while treating each as though it were being supported by its
own network. The concurrent exercises are kept from interfcring with each other by the
assignment to each exercise of a distinct integer called an exercise identifier. All PDUs pertaining
to a particular exercise bear that exercisc’s identificr when transmitted over the common network.
The recipient of a PDU simply ignores the PDU if it bears the identifier of an exercise othcr than

the one in which it is currently participating.

The SIMNET protocols provide two mechanisms for distributing this information among
exercise participants. Using a feature of the data collection protocol, any simulator may
query for and obtain this information from other participants of an exercise. The
simulation protocol contains a second mechanism that allows one simulator to initiate
another into an exercise while providing it with the information. This latter process is
called activation. Either or both mechanisms may be used. It is nev.rtheless required
that a proper exercise identifier, terrain database, and simulated time be chosen prior to an
exercise, and that this information first be supplied to somie participating simulator

through a means not encompassed by the SIMNET protocols.

2.3 Simulated vehicles

The SIMNET protocols are intended to accommodate a broad variety of different types of
vehicle simulators. An individual simulator participating in an exercise may model a
single vehicle—as does the M1 tank simulator—or many vehicles—as does the MCC

system. A single vehicle may be controlled by a full complement of human crew

12

BBN Systems and Technologies Report No. 7627

members, or many vehicles may be controlled by a single person. A vehicle may be

either manned, such as a tank or aircraft, or unmanned, such as a missile.

A simulator may begin to involve its vehicle in an exercise at any time, provided that the
vehicle joining the exercise has correct values for such pararneters as the exercise
identifier. The vehicle can be introduced into the exercise v the simulator itself, with
parameters provided by its human operators. Alternatively, a simulator’s vehicle can be
introduced into an exercise by another computer, such as an MCC system, through the

process of activation.

Once a vehicle is involved in a simulation, it is said to be active. At any time that
vehicle’s simulator can terminate its involvement in the exercise while announcing the
vehicle’s withdrawal to other simulators. Alternatively, the vehicle can be removed from
the exercise by another computer—such as the MCC system that activated it. In either
case, the process is called deactivation, and it is conducted via the simulation protocol.

Every vehicle participating in an exercise has assigned to it a distinct number called a
vehic ¢ identifier. A system that simulates many vehicles must have a unique vehicle
identifier for each one, and a system that activat:s other simulators must provide them
with appropriate vehicle identifiers to use. No two vehicles in the same exercise may

have the same vehicle identifier.

In addition to a vehicle identifier, each vehicle participating in an exercise has several
attributes that its simulator makes known to all others via the simulation and data

collection protocols. These attributes include:

o Which side the vehicle is fighting for. The vehicles participating in an exercise are grouped into
collections we call forces. Typically, two forces are involved and these forces fight against each
other. However, the protocols allow vehicles to be divided among many different forces, and they
impose no restrictions as to which forces fight with or against which others. Forces are identified

by numbers in the range 1 through 255.

« What organizational unit the vehicle is allocated to. Within a force, vehicles are allocated among
various organizational units that are arranged in some hierarchy. For example, a vehicle may
belong to a certain company, of a certain battalion, of a certain brigade, etc. The protocols provide
a way for advertising a vehicle’s position within its force’s organizational hierarchy, for any of

various forms of military hierarchy.

13

Report No. 7627 BBN Systems and Technologies

14

What type of vehicle it is. A vehicle’s type identifies it as a particular kind of vehicle, such as, for
example, an M1A1 Abrams main battle tank or a Soviet HIND-E attack helicopter. There are
three vehicle types associated with each vehicle: one is the type of vehicle that is actally being
simulated; the other two are called the vehicle’s guises, and they define how the vehicle appears to
other observers. Often, all three vehicle types are the same with the result that the vehicle appears
identically to all observers. The vehicle types can be made to differ, however, to obtain a useful

effect.

Each vehicle has two guises so that it can be made to appear as one type of vehicle to those of one
force, and as another type of vehicle to those of other forces. Based on whether an observer’s
vehicle belongs to a particular force (force number 1) that observer’s simulator will display other
vehicles using one guise or the other. One application of this feature is to support a battle between
two forces, each of which views themselves as using U.S.—-type vehicles, and the other force as
using Soviet-type vehicles. All vehicles in the battle may be simulated as M1 tanks, but those of
force 1 may be disguised as T72 tanks to those of force 2, while those of force 2 are disguised as

T72 tanks to those of force 1.

Where the vehicle is, and how it is oriented. A vehicle need not always be visible during an
exercise—some vehicles may vanish from one place to later reappear at another. At all times
when a vehicle is active and visible, however, it has a location and orientation in space. These are
described in terms of a world coordinate system discussed in section 2.4. Some vehicles have
independently movable parts, such as a turret and a gun barrel, whose relative positions are also

described.

An optional vehicle marking. A vehicle may be seen by its observers as bearing a label such as a
name (e.g., “Titanic™) or a bumper number (e.g., “PltLdr/3/C”). Whether and how the label is
displayed for a particular observer may depend on which forces the vehicle and its observer belong

to.

Variations on the basic appearance of the vehicle. A vehicle’s basic appearance can be modified
in various ways. For example, it can caich fire, emit a plume of smoke, or become destroyed.
Some variations, such as those just listed, are applicable .0 almost all types of vehicles; other
variauons, such as whether an M2 infantry vehicle’s rear ramp is lowered, apply only to a specific

type of vehicle.

The vehicle's engine speed. A vehicle’s engine speed is reported via the simulation protocol to

make possible a simulation of sounds on the batdefield.

BBN Systems and Technologies Report No. 7627

« What the vehicle is capable of. One vehicle may be called upon by another to supply munitions or
perform repairs. Whether a vehicle is capable of providing these services is indicated via the

simulation protocol.

« How various subsystems of the vehicle are operating. A vehicle’s simulator may model the
vehicle to a level of detail where the operational status of various vehicle subsystems are
represented. The simulation and data collection protocols provide mechanisms for reporting the

status of a vehicle’s subsystems, and for flagging changes in subsystem status.

o What munitions, such as fuel and ammunition, the vehicle is carrying. Simulators that model the

quantities of stores of various kinds carried by their vehicles report this information via the data

collection protocoi.

A vehicle’s identifier, type, and fu:' e assignment are attributes that do not change in the
course of an exercise. Other attributes change dynamically in a manner that requires the

vehicle’s simulator to periodically inform other simulators of the changes.

A vehicle’s appearance to observers is determined by attributes such as its guises,
location, and orientation. Whenever a vehicle’s appearance changes in any significant
way, that vehicle’s simulator must inform other simulators of the vehicle’s new
appearance. The simulator does this by issuing an update message—called a Vehicle
Appearance PDU—to all of the other simulators participating in the exercise. In chapter
3 we describe these update messages, the conditions that compel simulators to send them,

and the behavior required of simulators scceiving them.

2.4 Coordinate systems

Locations in the simulated world are identified using a right-handed Cartesian coordinate
system called the world coordinate system. The axes of this system are labelled X,Y,
and Z, with the positive X axis pointing east, the positive Y axis pointing north, and the
positive Z axis pointing up. A distance of one unit measured in world coordinates
corresponds to a distance of one meter in the simulated world, and a straight line in the

world coordinate system is a straight line in the simulated world.

Since simulators express locations to each other in terms of the world coordinate system,
all must share a common definition of where the origin of that coordinate system lies.
Moreover, in order to maximize the precision with which locations can be expressed, the
origin should be chosen so that the space used by simulated vehicles lies relatively near

15

Report No. /627 BBN Systems and Technologies

the origin. These are the only constraints that the SIMNET protocols impose on the
origin of the world coordinate system. By convention, however, the origin is usually

placed at the southwest corner of the terrain area.

To describe the location and orientation in space of any particular vehicle, we introduce a
vehicle coordinate system that is fixed to that vehicle. This is also a right-handed
Cartesian coordinate system with meter—sized units; its X axis points to the vehicle’s
right, its Y axis points to the vehicle’s front, and its Z axis points up. A convention is
used for the porition of the coordinate system’s origin: the origin of a ground vehicle’s
coordinate system is at the center of the vehicle’s base; that of an air vehicle is in the

middle of its fuselage.

The location of a vehicle is specified as the position of the origin of its vehicle coordinate
system, expressed in world coordinates. The orientation of a vehicle is specified as the
relative rotation between its coordinate system and the world coordinate system. In the
context of the SIMNET protocols, this rotation is represented as a nine element rotation

matrix:3
ry N2 na
R=| 21 rz2 ro3

r31 32 Tra3

3 The rotation matrix has several equivalent interpretations. When the world and vehiele coordinate

systems share a common origin, the following are ali true:

o The three columns of the matrix correspond to unit vectors jving along each of the three

positive axes of the vehicle coordinate system, expressed in world coordinates.

« The three rows of the matrix correspcnd to unit vectors lying along each of the three positive

axes of the world coordinate system, expressed in vehicle eoordinates.

« When a vector expressed in vehicle coordinates is premultiplied by the matrix, the result is the

same vector expressed in world coordinates.

» When a vector expressed in world eoordinates is postmultiplied by the matrix, the result is the

same vector expressed in vchicle coordinates.

16

BBN Systems and Technologies Report No. 7627

2.5 Events

In the course of an exercise, various PDUs are issued by simulators to announce Zertain
events involving the vehicles they simulate. These PDUs report such occurrences as
collisions between vehicles, shots fired from vehicles, shells striking their targets, and
injuries suffered by vehicles. In studying an exercise it is often desirable to be able to
link these events, establishing associations between causes and effects. Given a PDU
describing the firing of a shell, for example, it must be possible for the analyst to locate a
later PDU describing the explosion of that shell, and any further PDUs describing how

other vehicles were damaged by the explosion.

To make these associations explicit, the various PDU's that describe a related series of
events are linked with each other by virtue of their bearing a common tag. The tag is
created by the simulator whose vehicle initiated the chain of related events, perhops by
firing at or colliding with another vehicle. The tag consists of a pair of identifiers
provided by that simulator: its vehicle’s identifier, and a unique serial number, called an
event identifier, generated by the simulator. Each time a vehicle initiates a new chain of
events, its simulator creates a new, unique event identifier on behalf of that vehicle.
From the time a vehicle enters an exercise until the time it withdraws, each event
identifier created for the vehicle must be a new, unique one. Since the event identifier is
unique among those created for the vehicle, and since the vehicle’s own identifier is
unique among all vehicles in the exercise, the combination of the two identifiers uniquely

labels the chain of events.

This is how the pair of vehicle and event identifiers serves to link the PDUs that report
the events of a weapons engagement. When a vehicle fires, its simulator generates a new
event identifier and issues a PDU containing both that event identifier and its own vehicle
identifier. When the fired round impacts, the simulator issues a second PDU bearing the
same pair of identifiers. Then any simulator whose vehicle is damaged by the exploding
round reports its damage by issuing a PDU that contains the same pair of vehicle and
event identifiers. These PDUs, and the manner in which they convey vehicle and event

identifiers, are described in chaptcrs 7 and 8.

The sequences of PDUs that describe a collision between vehicles, or a repair to a
vehicle, are also tied together by the PDUs sharing a common, unique pair of vehicle and

event identifiers.

17

Report No. 7627 BBN Systems and Technologles

3 VEHICLE APPEARANCE

Much of the information tkat must be communicated among simulators participating in a
distributed simulation is that which describes the appearance of vehicles as they move
about the simulated world. In this chapter, we describe the method used in the simulation
protocol for communicating vehicle appearance information.

3.1 Overview

As a simulator models the behavior of a vehicle in real time, that vehicle’s appearance
can be constantly changing. The vehicle rnay be changing its orientation and location,
moving its turret or gun barrel, and even catching fire and burning. The vehicle’s
simulator must inform other simulators of these changes so that all simulators

participating in the exercise can depict the vehicle correctly, at its current location.

The appearance of a vehicle is completely described by a Vehicle Appearance PDU,
which is defined as part of the simulation protocol. This PDU identifies a vehicle and
describes that vehicle’s type, location, and orientation. The PDU also describes whether
the vehicle is on fire, destroyed, or emitting a plume of smoke. If the vehicle has
independently movable parts, such as a turret and gun barrel, the PDU describes the
relative positions of those parts. Finally, for reasons we will explain, the Vehicle
Appearance PDU may contain information abouc the vehicle’s motion, such as its

velocity vector.

It would be possible for the simulator of a vehicle to issue a Vehicle Appearance PDU
describing that vehicle every single time the vehicle’s appearance changed. However,
while the vehicle was in motion, PDUs would be issued as frequently as the simulator

recomputed the location of the vehicle, which could be quite often.

The simulation protocol allows us to reduce the frequency with which Vehicic
Appearance PDUs must be issued by employing a technique called dead reckoning. The
term, borrowed from navigation, means establishing the position of a ship based on an
earlier known position and estimates of time and motion. Simulators may use dead
reckoning to extrapolate the locations of vehicles so that they need obtain less often the
actual Vehicle Appearance PDUs describing those vehicles.

18

BBN Systems and Technologies Report No. 7627

This is how dead reckoning is used. Each simulator is responsible for maintaining a
detailed model of its own vehicle’s state, including, for example, engine power, thrust,
and fuel consumption; aerodynamic forces or terrain forces; weapon systems computers,
etc. The simulator will have a precise notion of its own vehicle’s appearance over time.
Each simulator also maintains a simple dead reckoning model of the state of all other
vehicles—simulated by systems elsewhere on the network—with which it might possibly
interact. Typically, these are all the other vehicles within a particular range of the
simulator’s own vehicle. The dead reckoning mode! is maintained by extrapolating the
last reported location of each other vehicle, based on its last reported velocity vector, until

such time as a new Vehicle Appearance PDU is received.

This approach implies that each simulator is also responsible for issuing a new Vehicle
Appearance PDU whenever its vehicle changes course or speed. To do this, each
simulator must maintain, in addition to its “high fidelity” model, a dead reckoning model
that corresponds to the model that other simulators are maintaining of its vehicle. After
each update of both its high fidelity model and its dead reckoning model, the simulator
compares the exact appearance of its vehicle with the extrapolated appearance and issues
a Vehicle Appearance PDU only when a significant discrepancy has accumulated.

This approach obviously leads to a variable rate of issuing Vehicle Appearance PDUs that
will differ from one simulator to another at any given time. Each simulator transmits
these PDUs only when necessary. The principal motivation is, of course, to minimize
network communication traffic and hence the amount of incoming information that each

simulator must process.

In essence, dead reckoning achieves a trade off among three factors: the network
communication traffic, the amount of computation performed by simulators, and the
precision with which each simulator perceives the vehicles of other simulators. Network
traffic is reduced by dead reckoning because fewer Vehicle Appearance PDUs are
transmitted. Computation demands are increased for the simulators that must, as a result,
extrapolate the appearances of vehicles in the absence of any Vehicle Appearance PDUs
describing them. And precision is limited by the amount of discrepancy allowed to
accumulate between a vehicle’s high fidelity model and its dead reckoning model.

There are many parameters of the dead reckoning algorithm that may be adjusted to
establish the point at which these three factors are balanced. The thresholds against
which discrepancies are gauged must be carefully chosen, for as these thresholds are

19

Report No. 7627 BBN Systems and Technologies

increased network traffic is reduced, but so is precision. There are also choices to be
made among dead reckoning algorithms. Dead reckoning can be based on the use of
higher order time derivatives of vehicle motion—such as acceleration—with the result
that network traffic is reduced, but more computations must be performed to use these
higher order derivatives.

The optimal choice of discrepancy thresholds and dead reckoning algorithms depends on
the type of vehicle simulated. The choices that are appropriate for slow moving ground
vehicles may not be optimal for high—speed aircraft. Thus the simulation protocol allows
different thresholds and algorithms to be used for different types of vehicles, and vehicles
are classified according to the method used for dead reckoning them. These
classifications are called vehicle classes. Currently, three classes are defined:

static Vehicles of this class are always stationary while visible, and they have no
independently moving parts. The location of one of these vehicles need not be

updated through dead reckoning because its velocity is always zero.

simple Vehicles of this class may move, but they have no independently moving parts.

The location of one of these vehicles is dead reckoned using its velocity vector.

tank Vehicles of this class may move, and they have independently moving turrets
and gun barrels. The M1 tank and the M2 fighting vehicle are both in this class.

The location of onc of these vehicles is dead reckoned using its velocity vector.

3.2 Measuring discrepancies in vehicle appearance

Before defining the discrepancy thresholds and dead reckoning algorithms used for
vehicles of each of these classes, we first describe some discrepancy measures that are
appropriate to all vehicles. These are measures of the difference between a vehicle’s
appearance as determined by its high fidelity model and that determined by its dead

reckoning model.

3.2.1 Discrete appearance attributes

A vehicle’s app:arance is partly described by a series of discrete attributes indicating
such things as whether the vehicle appears destroyed, whether it 1s on fire, and whether it
is emitting a plume of smoke. The discrepancy between two versions of a vehicle’s
appearance, therefore, includes a measure of how these discrete attributes differ among

the two versions.

20

BBN Systems and Technologies Report No. 7627

3.2.2 Location

A vehicle’s location is defined as the location of its vehicle coordinate system’s origin, in
world coordinates. The discrepancy between t.vo versions of a vehicle’s location,
however, is measured in the coordinate system of that vehicle. Specifically, we measure
the discrepancy between the actual location of a vehicle and its location as predicted by
dead reckoning, simply as the dead reckoned location transformed into the vehicle’s
actual coordinate system. This is a three—element vector that describes the discrepancy
along each of the vehicle’s three axes. By using the vehicle’s own coordinate system for
this measure, we can apply ditferent thresholds to discrepancies along each of the three
vehicle coordinate system axes. We are thus able to have different tolerances for
longitudinal than for lateral departures between actual and dead reckoned locations of the

vehicle.

3.2.3 Orientation

A vehicle’s orientation is represented by a nine element rotation matrix. The discrepancy
between two versions of a vehicle’s orientation can also be represented by such a matrix,
describing the relative rotation between the two vehicle orientations. This relative
rotation matrix may be obtained by multiplying the vehicle’s actual rotation matrix by the
transpose of its dead reckoned rotation matrix. If R is a relative rotation matrix obtained

in this way,
M1 M2 N3
R=| ra1 rz ra |=(Ractual) ((Rdead reckoned)T)
r31 rsz2 I33
then we can derive from R a simple measure of the amount of rotation that matrix
represents. This measure is the rotation ex~ ‘sed as an angle measured about a single,
arbitrary axis. The direction of the axis is not significant for our application, but we use

the magnitude of the rotation as a measure of discrepancy. The magnitude of rotation is
represented by € in the equation

r1+ o+ r33-1

This scalar angle of rotation about an arbitrary axis is the measure we use to describe the
discrepancy between a vehicle’s actual orientation, and its dead reckoned orientation.

21

Report No. 7627 BBN Systems and Technologies

3.3 Dead reckoning methods and discrepancy thresholds

We now define the discrepancy thresholds and dead reckoning methods applied to the

various classes of vehicles.

3.3.1 Vehicles of the static class

A vehicle of the static class is always stationary while visible. Therefore, no dead
reckoning is performed of either its location or its orientation. The simulator of a static
class vehicle must issue a new Vehicle Appearance PDU describing the vehicle whenever

one of its discrete appearance attributes changes.

3.3.2 Vehicles of the simple class

A vehicle of the simple class is modeled using dead reckoning based on the vehicle’s
velocity vector. This vector is computed by the vehicle’s simulator and included in any
Vehicle Appearance PDUs that are issued to describe that vehicle.

The simulator of a simple class vehicle must issue a new Vehicle Appearance PDU
whenever any of the following discrepancies accumulate between the appearance of the
vehicle as determined by its high fidelity model, and its appearance as determined by

dead reckoning:

» Adifference in any of the vehicle’s discrete appearance attributes.

» Adifference in location, as measured along any of the three vehicle axes, that is greater than 10%

of the vehicle’s dimension along that axis.

« A difference in orientation that is greater than 3 degrees.

Other values of the location and orientation thresholds ni1y be chosen to meet the needs
of a particular training system or exercise. This report does not address the question of
how the location and orientation threshold values are provided to simulators.

3.3.3 Vehicles of the tank class

A vehicle of the tank class is modeled using dead reckoning based on the vehicle’s
velocity vector. This vector is computed by the vehicle’s simulator and included in any
Vehicle Appearance PDUs that are issued to describe that vehicle. Because the vehicle

22

e

BBN Systems and Technologies Report No. 7627

has an independently movable turret and gun, the Vehicle Appearance PDUs also contain

the relative positions of those parts.

The simulator of a tank class vehicle must issue a new Vehicle Appearance PDU
whenever any of the following discrepancies accumulate between the appearance of the
vehicle as determined by its high fidelity model, and its appearance as determined by

dead reckoning:
« A difference in any of the vehicle’s discrete appearance attributes.

« A difference in location, as measured along any of the three vehicle axes, that is greater than 10%

of the vehicle’s dimension along that axis.
« Adifference in orientation that is greater than 3 degrees.

» A difference in turret azimuth, as measured relative to the vehicle’s hull, that is greater than 3

degrees.

« Adifference in gun elevation, as measured relative to the vehicle’s hull, that is greater than 3

degrees.

Other values of the location, orientation, azimuth, and elevation thresholds may be chosen
to meet the needs of a particular training system or exercise. This report does not address
the question of how the values of the thresholds are provided to simulators.

3.4 The effect of delay

A description of a vehicle’s appearance passes through several hands from the time it is
first expressed as a Vehicle Appearance PDU, to the time the vehicle is displayed by an
observer’s simulator. The steps include processing by the software that provides
communication services, transmission across a network, and perhaps queuing within the
receiving simulator. Each of these steps may impose some delay, with the result that the
ohserver is always seeing the vehicle as it was at some point in the recent past.

When a Vehicle Appearance PDU incurs a delay in travelling from its sender to an
observer, the observer perceives the sending simulator’s vehicle not where it is at that
moment, but where it was when the PDU was sent. The magnitude of this discrepancy is
proportional to the speed of the vehicle described by the PDU, and to the magnitude of
the network delay. Therefore, this effect is expected to be most evident in certain
situations—such as when aircraft flying at high speed are able to observe each other

Report No. 7627 BBN Systems and Technologies

closely (e.g., they are in close formation) while being simulated by widely separated

simulators.

Nevertheless, in many distributed simulation situations a constant delay of even half a
second is not apparent. Using a network composed of Ethernets and terrestrial long—haul
circuits, we have found no evidence that the delay is a problem. More easily noticed,
however, are the effects of any variance in the delay from one Vehicle Appearance PDU
to the next. If the delay between sender and observer varies, then the motion of the
vehicle may not appear smooth. In this case, the magnitude of the efi>ct is proportional
to the speed of the vehicle, and to ti.2 variance of the delay. The effect may show up, for
example, when an air defense vehicle is tracking a fast-moving aircraft. If there exists
variance in the delay with which the air defense vehicle simulator displays its image of
the aircraft, and if the variance is not somehow compensated for, then the aircraft will be

seen to “jump” forward and backward as new Vehicle Appearance PDUs are received.

The simulation protocol includes a mechanism by which delay variance can be
compensated for. The mechanism requires some extra computation by an observer’s
simulator, but—at the discretion of that simulator—this computation need not be
performed for all vehicles. An observer’s simulator might choose to perform the extra
computation, for example, only for fast-moving aircraft that are near enough to be

tracked closely.

The mechanism uses timestamps that are reported at a millisecond scale. Each simulator
maintains its own millisecond clock, which need not be synchronized with that of any
other simulator. When issuing a Vehicle Appearance PDU, a simulator includes the
current value of its clock. A simulator receiving consecutive Vehicle Appearance PDUs
describing a single vehicle can examine the timestamps in those PDUs to measure, and

compensate for, any delay variance.
Here we prescribe one method a simulator might use to compensate for delay variance of
the Vehicle Appearance PDUs it is receiving.

» Upon receiving a Vehicle Appearance PDU describing a particular vehicle for the first time, the
simulator simply records the information contained in that PDU, including the timestamp. It uses

this information to display the vehicle.

24

BBN Systems and Technologies Report No. 7627

« Each time the simulator must use dead reckoning to extrapolate the appearance of the vehicle, it
increments its record of the vehicle’s timestamp by the period of time over which itis

extrapolating. It then uses the updated appearance information to display the vehicle.

» When a subsequent Vehicle Appearance PDU describing the same vehicle is received, the
simulator compares the timestamp in the PDU with that it has recorded (and updated while dead
reckoning). If the two are in close agreement, then the contents of the new PDU are adopted
immediately. Otherwise, the simulator either (a) extrapolates forward the appearance described in
the new PDU to the time of its recorded timestamp, or (b) sets aside the PDU until its recorded

timestamp matches that in the PDU.

The SIMNET protocols do not mandate this particular method of compensating for delay
variance, or even require the use of any delay variance compensation whatsoever.
Whether and how compensation is performed by any particular simulator will depend on
the nature of the network supporting the distributed simulation, and the use to which the
simulator will be put. The protocols do require, however, that all Vehicle Appearance
PDUs contain the timestamp that permits a method such as this to be employed by any

receiving simulator.

25

Report No. 7627 BBN Systems and Technologles

4 THE SIMNET NETWORK

The SIMNET protocols are supported by a network whose capabilities are defined in this

chapter.

In terms of the ISO Basic Reference Model for Open Systems Interconnection [8], the
SIMNET protocols are Application Layer protocols that make direct use of network or

data link layer services with no specific services required of the intermediate layers.

4.1 Network requirements

Any network will support a distributed simulation using the SIMNET protocols provided
it meets the criteria listed below. These criteria apply regardless of whether the network
is a single, local area network, or a large distributed simulation internet composed of

many subnets.

» The network must provide for connectionless data transfer, also known as a datagram service.
This means that a computer on the network must be able to to transfer data (o another computer on
the network in a single operation, without first establishing a connection with the destination

computer. The unit of data transferred in a single operation is called a datagram.
« A datagram must be able to convey at least 2048 bits (256 octets) of information.

« The network must provide either for the broadcasting of datagrams, or for the multicasting of
datagrams. A broadcast datagram will be delivered to all computers on the network (other than the
sender). A multicast datagram will be delivered to a subset of all computers on the network.

(Broadcasting is actually a special case of multicasting.)

» The network should have a low rate of non—delivery. Although the SIMNET protocols will
tolerate occasional failures by the network to deliver datagrams, these should be allowed to occur

only rarely.

« The network should maintain datagram integrity. Any transmission errors that result in the
coriuption of a datagram should be detected by the network. Corrupted datagrams should not be

delivered.

« The network must provide a certain level of performance, which is characterized in terms of

throughput and delay. These performance criteria are discussed in the following sections.

It is possible that a computer may receive from the network a datagram that has become

corrupted in transit. The network itself provides a means for detecting and reporting most

26

BBN Systems and Tecknologies Report No. 7627

instances of datagram corruption. One may wish to log these erroneous datagrams as a
measure of the network’s reliability, possibly providing early waming of any problems
with the network. Other than that, the computers participating in a SIMNET exercise can
safely ignore erroneous datagrams, discarding them without action. The protocols are
sufficiently robust that they can, in most cases, tolerate occasional network errors without
human crews participating in the simulation becoming aware of the errors.

4.2 Network throughput

The throughput of the network (the rate at which it can carry information) must be
sufficient to support the distributed simulation. However, adequate throughput is not

easily predicted, for it depends on many things.

Since Vehicle Appearance PDUs constitute almost all of the data carried by the network
during an exercise, the traffic load depends largely on the conditions that result in the
transmission of these PDUs. One factor is the manner in which simulated vehicles are
operated by their crews. A vehicle in motion usually transmits PDUs faster than one at
rest; the exact rate depends on statistics of the vehicle’s velocity and acceleration.
Another factor is the nature of the model used as a basis for dead reckoning. When a
higher order dead reckoning model is used, corrections to a vehicle’s dead reckoned state,
in the form of Vehicle Appearance PDUs, are usually required less frequently. A third
factor is the setting of the thresholds which determine how far a vehicle’s actual state is
allowed to diverge from its dead reckoned state before a Vehicle Appearance PDU is
issued. As thzse thresholds are relaxed, PDUs will be transmitted less frequently, but the
movement of a vehicle will be seen by the crews of other vehicles with less fidelity.

The use of a higher order dead reckoning model may reduce the network traffic load, but
each simulator must then perform more computation to dead reckon the state of its own
vehicle and the state of every other simulator’s vehicle. Any decrease in network traffic
load achieved by using higher order derivative information must be weighed against the
computational cost of a more complex dead reckoning algorithm, which must be
performed by each simulator in proportion to the number of vehicles it is tracking.

The traffic load on the network depends not only on the frequency with which datagrams
are transmitted, but also on the sizes of those datagrams. One trade—off concerns the
provision of redundant information in the Vehicle Appearance PDUs to save other
vehicle simulators from having to recompute it. For example, the vehicle’s orientation

27

Report No. 7627 BBN Systems and Technologies

about each of three axes is encoded in a Vehicle Appearance PDU as a nine—element
rotation matrix, rather than as simply three angles. The resulting increase in network
traffic load is more than offset by the savings resulting from simulators receiving the
PDU no longer having to compute the rotation matrix themselves to support the common

operation of displaying vehicles.

The network resources that provide the throughput necessary for a distributed simulation
should not be subject to competition from other demands on the network. In general, this
will mean guaranteeing the availability of a certain level of network capacity for a
distributed simulation even though that capacity may not be needed at all times.

We have measured the network traffic produced by SIMNET M1 tank simulators and by
close—support aircraft simulators, bc .. individually and collectively, when operated in
realistic company- and battalion—scale exercises. Although we have measured network
traffic under various assumptions of dead reckoning algorithms and discrepancy
thresnclds, the results described here were obtained using the parameters documented in
chapter 3. Each of the simulators we measured will produce up to fifteen Vehicle
Anpearance PDUs per second if operated in a certain manner (in the case of the M1

si.: . .ator, this would require slewing the turret at a high rate). This seldom occurs,
however. We have found that an M1 simulator will generate an average of two to three
Vehicle Appearance PDUs per second while being actively operated, as during a
movement to contact or an attack. Ninety percent of the time, these simulators produce
Vehicle Appearance PDUs at a rate of less than four per second. For an active close—
support aircraft, about six Vehicle Appearance PDUs per second are produced.

However, when a large population of vehicles are participating together in an exercise,
the overall network traffic in terms of Vehicle Appearance PDUs per vehicle is somewhat
lower since not all vehicles are being operated actively at any one time. We have found
that the network traffic averaged over several companic. of tanks, all participating in an
exercise at the same time, is about one Vehicle Appearance PDU per second per tank.

4.3 Network delay

By network delay, we mean the amount of time required for a datagram to be carried by
the network from one simulator to another. Two characteristics of this delay are
important to consider: the average magnitude of the delay, and the degree to which the
delay may vary from one datagram to another.

28

-_. Jl

" .

BBN Systems and Technologies Report No. 7627

The magnitude of network celay affects the quality of a distributed simulation only in
certain ways. Consider a case where a target vehicle is being observed from another
vehicle, and the network delays by a fixed amount each target Vehicle Appearance PDU
reaching the observer’s simulaior. The observer will simply always see the target as it
was a fixed time earlier. As long as he is passively observing, this delay will not be
apparent. However, if the observer is also affecting the target vehicle—such as by
striking it with weapons fire, or by acting in a way that causes it to maneuver in
response—then the observer may notice the lag due to the network delay.

How much network delay is acceptable can only be determined by considering the
application itself—no absolute rule can be given. For distributed simulations involving
only ground vehicles, we have found to be acceptable the delays of a few hundred
milliseconds that result from transmitting data via satellite channels. However, unless
somehow compensated for, this delay would not be acceptable to aircraft pilots
attempting to fly in close formation. Note that within a site, the delays experienced by
datagrams traversing a local area network are more typically a few milliseconds at most.

The level of fidelity with which a simulator’s vehicle is perceived by others is related to
the thresholds used by that simulator in d¢termining when to transmit a Vehicle
Appearance PDU. This fidelity is also affected by the variance in network delay. If the
delay incurred by PDUs travelling from one simulator to another varies widely from one
PDU to another, the receiving simulator will be able to dead reckon the sending
simulator’s vehicle with less than the accuracy dictated by the thresholds. Although the
simulation protocol allows delay variance to be somewhat compensated for (using a
mechanism described in section 3.4), it is nevertheless desirable to minimize it.

Another consequence of delay variance may be the delivery of datagrams out of
sequence. A datagram sent first may be overtaken by one sent second because it
encounters a larger delay. The timestamps included in Vehicle Appearance PDUs make
it possible to detect those for a particular vehicle that arrive out of sequence. Other
portions of the simulation and data collection protocols should not be affected by delay

variances of tens, or even hundreds, of milliseconds.

29

Report No. 7627

30

BBN Systems and Technologies

B N

BBN Systems and Technologies Report No. 7627

5 PROTOCOL DATA ELEMENTS

Communication carried out according to the governing rules of a protocol involves the
exchange of units of data called protocol data units (PDUs). Each PDU is composed of
individual data elements called fields. Among the first fields of every PDU is one that
identifies the type of the PDU; the header is usually followed by additional fields whose
format and meaning depend on the PDU’s type.

In this chapter we define data elements that are commonly used in a variety of different
types of PDUs of all three SIMNET protocols. We also define in this chapter the
concepts of rimer and counter, which are used in describing time-based and repetitive

protocol procedures.
5.1 Basic data elements

This section contains definitions of various basic data elements, including how these data
elements are represented as communicated bits. Because these elements form parts of
many different PDUs, their definitions are collected here for reference in later chapters.

A reference appears thus: (§5.1.1).

Data elements are defined in this report using a notation called Data Representation
Notation (DRN. It is described fully in appendix A.

5.1.1 Angle

represented as 32-bit values:

type Angle UnsignedInteger (32)

The 32-bit value is interpreted as a binary fixed—point fraction with an implied “binary
point” to the left of the most significant bit. The fraction expresse= the angle as a portion

of a full circle, in the range

1
01532

This method of measuring angles is referred to as Binary Angular Measure (RAM).

31

Report No. 7627 BBN Systems and Technologies

5.1.2 Battle Scheme

The battle scher«¢ identifies how force IDs (§5.1.7) and guises (§>.1.23) are beiny

applied in an exercise.

type BattleScheme enum (8) { a
battleSchemeOther (0), -- none of those listed below ‘41‘
battleSchemeAbsolute,

battleSchemeRelative

In an exercise conducted using battleSchemeAbsolute, the distinguished and
other object types in the guises field of Vehicle Appearance PDUs are assigned as

follows:
hicl i
Force ID Distinguished Other
distinguishedForcelD US US
otherForcelID Soviet Soviet
observerForcelD uUs Soviet
tarcetForcelD Soviet US

If the battle scheme is battleSchem¢ Relative, the corrzsponding assignment is:

Vehicle Guises
ForceID Distinguished Other
distinguishedForceID US Soviet
otherForcelID Soviet US
observerForcelD us US
targetForcelD Soviet Soviet

In the tables above, Force ID refers to the force field of the Vehicle Appearance Packet
containing the guise. "US" refers refers tc an object type representing equipment of US
manufacture and "Soviet" refers to an object type representing equipmert of Soviet

32

—

S - S

BBN Systems and Technologles Report No. 7627

manufacture. "US" and "Soviet" are for example only. Object types representing the

equipment used by any two other opposing forces may be used instead.

5.1.3 Boolean

A Boolean data element is a single bit:

type Boolean enum (1) {
false,

true

The value 0 is interpreted as “false”, and 1, as “true”’.

5.1.4 Burst Descriptor

A Burst Descriptor data element describes either a single round of ammunition, or several

rounds that are being fired as a burst from a machine gun:

type BurstDescriptor sequence ({

projectile ObjectType,
detonator ObjectType,
gquantity UnsignedInteger (16),
rate UnsignedInteger (16)

}

The projectile field identifies the type of projectile fired, and the detonator field
identifies the type of detonator (fuze) used. Both are instances of the Object Type data
eleaent (§5.1.10), which identifies a type of physical object. The quantity field is the
nu:uber of rounds fired in the burst (1 if only a single shot is described). If quantity is
greater than 1, the rate field is the rate of fire in rounds per second. Otherwise, when

quantity is 1, the rate field contains the following value:

constant burstRatelrrelevant 0

51.5 Event Identifier

An event identifier is a 16-bit serial number generated by a vehicle’s simulator. Itis
associated with a particular event that that vehicle is involved in, such as the firing of a
shell or a collision with another vehicle. Each event identifier is unique among all event

identifiers generated for that vehicle in the current exercise.

Report No. 7627 BBN Systems and Technologies

type EventID UnsignedInteger (16)

Some PDUs contain an event identifier field that is not used in certain cases. If unused,

the field should contain the following value:

constant eventIDIrrelevant O

5.1.6 Exercise Identifier

An exercise identifier is an 8-bit number that distinguishes one exercise from others

occurring on the same network at the same time.

type ExerciselID UnsignedInteger (8)

Some PDUs contain an exercise identifier field that is not used in certain cases. If unused,

the field should contain the following value:

constant exerciselDIrrelevant 0

5.1.7 Force ldentifier

The participants in an exercise are divided into (usually two) collections of people and
equipment, called forces. Each force has a unique, 8-bit identifier:

type ForcelD UnsignedInteger (8)

Some PDUs contain a force identifier field that is not used in certain cases. If unused, the

field should contain the following value:

constant forcelDIrrelevant O

One force identifier has special meaning: vehicles that are assigned to force 1 may view
vehicles differently than those assigned to other forces (§2.3). To distinguish this force

identifier, it is given a particular name:
constant distinguishedForcelID 1

Three other forces have been defined:
constant otherForceID

constant observerForcelD

constant targetForcelD 4

34

R W A Wn A o T O B

T am

L

BBN Systems and Technnlogies Report No. 7627

By convention, these force IDs have the following meanings:

othe:ForcelD the opponent :.“ distinguishedForcelD
ohserverForcelD appears to be friendly to both combatants
targetForcelD appears to be an enemy to both combatants

The manner in which vehicle guises (§5.1.23) are assigned to these force IDs is governed
by the battle scheme (§5.1.2).

5.1.8 Munition Quantity

An amount of some munition is represented by a Munition Quantity data element, which

defines the type of munition and the quantity of it:

type MunitionQuantity sequence {
munition ObjectType,
quantity Float (32)
}

The munition field of this data element identifies the type of munition (§5.1.10), and
the quant ity field specifies its quantity. The units in which the quantity is measured
vary according to the type of munition described. In general, ammunition is measured in

rounds and fuel is measured in gallons.

5.1.9 Object Identifie

Object identifiers serve to uniquely identify individual objects generated by simulators
using a state update procedure(§7.3.3). Object identifiers are used ir place of vehicle
identifiers(§5.1.24) for objects that are not vehicles, for example: mine fields. An object
identifier is composed of two parts: a simulation address, which identifies the simulator
modeling that object(§5.1.13) and an object number, which uniquely identifies the object .
within that simulator and exercise.

type ObjectID sequence {

simulator SimulationAddress, -- of object's simulator

object UnsignedInteger (16) ~-- unique for that simulator

}

The format of the simulator field is defined in §5.1.13.

35

Report No. 7627 BBYN Systems and Technologies

No two objects present in the same exercise may have identical object identifiers. No
rbject and vehicle present in the same exercise may share both the same simulation

address and the same object or vehicle number (see §5.1.24).

5.1.10 Object Type

Physical objects present in the simulated world include vehicles and munitions. Each
object has a particular type—for example, it is an M1 tank, or a Hellfire missile. An
object’s type is described by a 32-bit code:

type ObjectType UnsignedInteger (32)
Object type values are defined in appendices B and C.

Some PDUs contain an object type field that is not used in certain cases. If unused, the

field should contain the following value:

constant objectIrrelevant 0

5.1.11 Organizaticnai Unit

Each simulated vehicle may be associated with a series of organizational units, such as a
company, a battalion, etc. An Organizational Unit data element is used to refer to a
particular unit at any level in the organizational hierarchy, and to identify the larger units

of which it is also a member.

t-, pe OrganizationalUnit sequence {

force ForcelD,
organizationType OrganizationType,
hierarchy array (organizationallevels) of UnitIdentifier

constant organizationallevels 9

The grossest subdivision of units is into collections called forces (§5.1.7); the force
field identifies that to which the unit belongs. The organizationType field describes
how that force is organized, and determines how the hierarchy field is to be
interpreted. Currently, two values are defined for the organizationType field:

36

‘R TR mEE £ = A wmm e wmEEm GBS R

— -

R

BBN Systems and Technologies Report No. 7627

type OrganizationType enum (8) ({
organizationIlrrelevant,

organizationArmy

The organizationType value organizationIrrelevant (defined as 0) is used
when no organizational hierarchy is to be specified. In such cases, all elements of the

hierarchy array should contain zeros.

In other cases, the elements of the hierarchy array identify a succession of nested
units, beginning from the top of an organizational hierarchy. Each array element may

specify a single unit, by number and type:

type UnitIdentifier sequence {
unitNumber UnsignedInteger (8),
unitType UnitType

constant unitNumberIrrelevant O

type UnitType enum {8) {
unitTypelrrelevant (0),
unitTypeArmy,
unitTypeBattalion,
unitTypeBattery,
unitTypeBrigade,
unitTypeCompany,
unitTypeCorps,
unitTypeDivision,
unitTypeFlight,
unitTypeGroup,
unitTypePlatoon,
unitTypeRegiment,
unitTypeSection,
unitTypeSquad,
unitTypeSquadron,
unitTypeTaskForce,
unitTypeTeam,
unitTypeTroop,
unitTypeWing

Not all elements of the array are used in each case; those that are not used to specify a

unit contain zeros.

37

Report No. 7627 BBN Systems and Technologies

The organizationType value organizationArmy is specified when the
hierarchy array identifies a unit within an organizational structure that is like that of
the U.S. Army or the Soviet Army. In this case, the elements of the hierarchy array

are used in the following way tc describe the unit:

0 the army

1 the corps within that army

2 the division within that corps

3 the brigade, regiment, or group within that division

4 the battalion or squadron within that brigade

5 the company, team, battery, or troop within that battalion or squadron
6 the platoon within that company, elc.

7 the section within that platoon

8 the squad within that section

Within this framework, array elements that are not relevant contain zeros. If an entire
company is being referred to, for example, then the last three elements of the array

(corresponding to platoon, section, and squad) contain zeros.

5.1.12 Repair Type

The simulation protocol includes a mechanism for carrying out simulated repairs on
disabled vehicles. Although the types of repairs that may be performed depend on the
kind of vehicle being repaired, all repairs are identified by single, 16-bit integers:

type RepairType UnsignedInteger (16)

A particular repair code, 0, has the effect of correcting all of the repaired vehicle’s

disabilities:
constant repairEverything 0

Other repair codes are specific to the type of vehicle being repaired, and the type of
simulator modeling that vehicle. Appendix D defines repair codes for those vehicle
simulators developed under the SIMNET program.

38

-

BBN Systems and Technologles Report No. 7627

51.13 Simulation Address

Each simulator that participates in the distributed simulation internet has a globally
unique address. This address is composed of two parts: a site identifier, which specifies
the site where the entity resides; and a host number, that distinguishes the simulator’s host
computer from among other hosts at the same site.

type SimulationAddress sequence {

site SitelD,
host UnsignedInteger (16)

The Site ID data element is defined in §5.1.15. If the host field is not relevant in a

particular case, it should contain O:

constant hostIlrrelevant 0

5.1.14 Simulator Type

Each type of simulation system participating in the distributed simulation internet is
described by a simulator type code. The value O is used in cases where no other simulator

type code is applicable.

type SimulatorType enum (16) {

simulatorUnknown,

simuletor SIMNET MCC,
simulator SIMNET_ SAF,
simulator SIMNET M1,
simulator SIMNET M2,
simulator SIMNET FRED,
3imulator_ SIMNET FWA,
simulator SIMNET FAAD_LOS_H,
simulator SIMNET STEALTH,
simulator SIMNET_ DI,
simulator AGPT_ LEOZ,
simulator AGPT_ULF,
simulator AGPT_DATA_LOGGER,
simulator SIMNET LOSAT

Site Identifier

-- SIMNET MCC system

-- SIMNET SAF system

-- SIMNET M1 (Abrams) simulator
-- SIMNET M2/3 (Bradley) simulator
-- SIMNET rotary-wing simulator

-- SIMNET fixed-wing simulator

-- SIMNET FAAD-LOS-H simulator
-- SIMNET Stealth simulator

-- SIMNET Dismounted Infantry

-- AGPT Leo2 simulator

-- AGPT Stealth simulator

-- AGPT Data Logger

-- SIMNET Losat vehicle simualator

Each site of the distributed simulation internet is assigned a unique, 16-bit identifier:

39

Report No. 7627 BBN Systems and Technologles

type SitelD UnsignedlInteger (16)
The value 0 is used to indicate that this identifier is irrelevant in a particular case:

constant sitelrrelevant 0

5.1.16 Target Descriptor

A simulator issues a report when its vehicle fires upon another vehicle, or uses its laser to
range to another vehicle. Inreporting the event, the simulator includes a description of
what it knows of the vehicle being fired upon or ranged to. This description is a Target
Descriptor data element:
type TargetDescriptor sequence {
targetType TargetType,

unused (8),
vehiclelD VehiclelD

The target Type field specifies how much the simulator knows about the target:

type TargetType enum (8) {

targetUnknown, -- the target vehicle is not known
targetIsNotVehicle, -- target known, but not a vehicle
targetIsVehicle -- target known, and a vehicle

If the target is known and it is a vehicle, that vehicle’s identifier is included in the
vehicleID field (§5.1.24). Otherwise, that field contains zeros.

5.1.17 Terrain Database ldentifier

When a simulator is activated by another computer system, the terrain database it is to use

for its simulation is described by a Terrain Database ID data element:

type TerrainDatabaselD sequence {

terrainName array (maxTerrainNameLength) of Character (8),

terrainVersion; UnsignedInteger (16)

constant maxTerrainNameLength 14

40

oy R = hm o O ==

!
- - T R o T T S T T M T T T - E e

BBN Systems and Technologles Report No. 7627

The terrainName field contains a mixed—case alphabetic string, encoded in ASCII and
padded with null (0) characters to a length of 14 octets. “Knox” and “Graf” are examples
of terrain database names. The terrainversion field contains a positive version

number, or 0 if the most recent version of the database is to be used:

constant latestTerrainVersion 0O

5.1.18 Time

A Time data element represents a date and time as a count of the seconds elapsed since 0
GMT, 1 January 1970:

type Time UnsignedInteger (32)

5.1.19 Vehicle Capabilities

A simulated vehicle is advertised on the network as being capable of supplying certain
services to other simulated vehicles. These are described by a Vehicle Capabilities data

element:

type VehicleCapabilities sequence {

ammunitionSupply Boolean,

, fuelSupply Boolean,
recovery Boolean,
repair Boolean,

unused (28)
}

The ammunitionSupply field and fuelSupp.y fisld are true if the vehicle is capable
of supplying ammunition and fuel, respectively. The recovery field is true if the
vehicle is capable of recovering (towing) other vehicles. The repair field is true if the

vehicle is capable of carrying out repairs to other vehicles.

5.1.20 Vehicle Class

Each vehicle is classified according to how many independently movable parts it has
(such as turrets and gun barrels), and according to what al gorithm should be used to dead
reckon its appearance. The classifications are called vehicle classes. They are identified

by 8-bit integers:

41

Report No. 7627 BBN Systems and Technologies

type VehicleClass enum (8) {

vehicleClassIrrelevant, -- class irrelevant
vehicleClassSt .tic, -- static class
vehicleClassSimple, -- simple class
vehicleClassTank -- tank class

The value vehicleClassIrrelevant is used in cases where the value of a Vehicle

Class data element is not relevant.

5.1.21 Vehicle Component

When a vehicle is struck by weapons fire, the damage suffered may depend on what part
of the vehicle was struck. A specification of a vehicle component is one form in which
the location of a hit is communicated among simulators. A vehicle component is
identified by the following data element:

type VehicleCompcnent enum (16) {
vehicleComponentIrrelevant, -- none of those listed below

hullComponent,

turretComponent

The value turretComponent is applicable to turreted vehicles, such as tanks. The
value hullComponent is applicable to all vehicle types. Values for additional
components may be defined as needed.

5.1.22 Vehicle Coordinates

A location may be specified, with reference to a particular vehicle’s coordinate system,
by a Vehicle Coordinates data element. Each coordinate is a floating-point number,

measuring a distance in meters along one axis of the vehicle’s coordinate system.

type VehicleCoordinates array (3) of Float (32)

The three elements of the array represent, in order, the X coordinate, the Y coordinate,

and the Z coordinate.

42

BBN Systems and Technologies Report No. 7627

5.1.23 Vehicle Guises

The basic appearance of a vehicle is described by an object type code (§5.1.10) that

identifies a particular type of vehicle, such as an M1 or a T72. Some applications of
distributed simulation require that each vehicle have two alternate appearances: one
when viewed by some observers, and a different one when viewed by others. Other
applications require that each vehicle appear identical to all observers.

To support both kinds of applications, two object type codes are used to report a vehicle’s
appearance. They are packaged as a Vehicle Guises data element:

type VehicleGuises sequence {
distinguished ObjectType,
other ObjectType
}

Which of the object type codes determines the basic appearance of the vehicle depends on
what force the observer is assigned to. If the vehicle is being observed by someone
assigned to force 1 (represented by the distinguishedForceID constant), then the
vehicle’s appearance is that specified by the dist inguished field. Otherwise, itis
that specified by the other field.

5.1.24 Vehicle Identifier

Every vehicle participating in an exercise has associated with it a unique vehicle
identifier. A vehicle identifier is composed of two parts: a simulation address, which
identifies the simulator modeling that vehicle (§5.1.13); and a vehicle number, which
distinguishes the vehicle from others generated by the same simulator in the same

exercise.

type VehicleID sequence {
simulator SimulationAddress,

vehicle UnsignedInteger (16)
}

The format of the simulator field is defined in §5.1.13

The two parts of the vehicle identifier, taken together, form a globally unique value: the
simulator component uniquely identifies a simulator, and the vehicle component
uniquely identifies a vehicle modeled by that simulator. Vehicle identifiers share the

43

Report No. 7627 BBN Systems and Technologies

same number space as object identifiers (§5.1.9). Thus, no object and vehicle present in
the same exercise may share both the same simulation address and the same object or

vehicle number.

Some PDUs contain a vehicle identifier field that is not used in certain cases. An
example is the vehicle identifier field of a Target Descriptor ID, which is unused if the
target is not known or is not a vehicle. In such cases, all components of the vehicle

identifier should contain zeros.

No vehicle is assigned a vehicle identifier whose vehicle component is zero.

5.1.25 Vehicle Marking

A vehicle may have a marking that is visiole when viewed from other vehicles under
certain circumstances. The marking may, for example, be ship’s name or a tank’s bumper
number. A Vehicle Marking data element describes it:
type VehicleMarking sequence {
characterSet CharacterSetType,

text array (maxVehicleMarkingLength) of
UnsignedInteger (8)

constant maxVehicleMarkinglLength 11

The charactersSet field identifies the character set according to which the text of the
marking should be interpreted and displayed. Currently, one character set is defined:

type CharacterSetType enum (8) {

asciiCharacterSet

The text field contains a string of from 0 to 11 characters, padded with null (0)
characters to a length of 11.

5.1.26 Vehicle Status

The operational status of a vehicle, the health of each of its subsystems, and the quantities
of the various munitions it carries are all represented by a single Vehicle Status data

element:

44

BBN Systems and Technologies Report No. 7627

type VehicleStatus sequence {

vehicleType ObjectType,

odometer Float (32),

age UnsignedInteger (8},
unused (24),

failures VehicleSubsystems,

specific VehicleSpecificStatus

The vehicleType field specifies the type of vehicle described by the data element
(85.1.10). The age field contains the vehicle’s age, in years, and the odometer field

contains its lifetime travel, in meters.

The failures field describes the nperational status of the vehicle (§5.1 27). It
identifies the specific subsystems of the vehicle that are simulated, and indicates : se
that have failed. A failed subsystem is represented by the value false for the appropriate
Boolean, and an operational subsystem, by the value true. The failures field also
indica‘es, by means of five Boolean fields, whether the vehicle has suffered a catastrophic

kill, or a partial kill classified as involving mobility, firepower, communication, or non—

critical subsystems.

The specific field represents additional, vehicle-specific information, including the
quantities of various kinds of munitions on board. The format of this field depends or the

type of vehicle being described, and the manner in which that vehicle is simulated:

45

Report No. 7627 BBN Systems and Technologies

type VehicleSpecificStsius sequence
category SpecificStati .«."tegor:
unused (16),

specific choice (category) £ {

when (genericVehicleStatus)

generic Gene~icVehicleStatus,

when (simnetMlStatus)
ml SIMNET_M1_Status,

when (simnetMIStatus)
m2 SIMNET M2 Status,

when (simnetFAADStatus)
faad SIMNET FAAD LOS_H_Status,

when (agptLeo2Status)
leo2 AGPT_Leo2_Status

The category field classifies the vehicle according to the format of its vehicle—specific

information. Currently, three categories are defined-

type SpecificStatusCategory enum (16) {
genericVehicleStatus,
simnetMlStatus,
simnetM2Status,
simnetFAADStatus,
agptLeo2Status

The genericvVehicleStatus category is providc Jor describing any vehicle in a
generic, but limited, manner. Other categories exist for describing specific types of
simulated vehicles in greater detail. There are presently two such categories, which are
used for describing vehicles simulated by the SIMNET M1 and the SIMNET M2/3
simulators. The SIMNET M1_Status and SIMNET _M2_Status data elements used in

these cases are defined in appendix D.

If the vehicle—specific status is being described in a generic manner (admittedly, a

contradiction of terms), then the following representation is used:

46

BBN Systems and Technologies Report No. 7627

type GenericVehicleStatus sequence {

enginePower UnsignedInteger (8),

batteryVoltage UnsignedInteger (24),

stores array (maxGenericVehicleStores) of
MunitionQuantity

constant maxGenericVehicleStores 6

The enginePower field specifies the percent of ful .r the vehicle’s engine is able
to produce. The voltage of the vehicle’s battery (in millivolts) is specified by the
batteryVoltage field. The stores array lists the quantities of various kinds of
munitions carried by the vehicle (§5.1.8). If fewer than six different kinds of munitions
are carried, then the first elements of the array are used to represent munitions, and the

remaining elements are filled with zeros.

5.1.27 Vehicle Subsystems

A Vehicle Subsystems data element specifies a set of vehicle subsystems. Itis used, for
example, to indicate those subsystems that have failed in a particular vehicle, or those that

have changed as a result of a repair.

type VehicleSubsystems sequence ({
category SubsystemsCategory,
operationalSummary Boolean,
mobilitySummary Boolean,
firepowerSummary Boolean,
communicationSummary Boolean,
noncriticalSumnary Boolean,
unused (11},
subsystems choice (category) of {
when (airVehicleSubsystems)
air AirVehicleSubsystems,
when (groundVehicleSubsystems)

ground GroundVehicleSubsystems

The subsystems of the vehicle are represented in two forms: a summary is provided by
the five Boolean fields, and detailed information is provided by the subsystems field.

The meaning of the five Boolean fields is as follows:

47

Report No. 7627 BBN Systems and Technologies

operationalSummary summarizes those subsystems that determine whether the
vehicle is at all operational. If, for example, the Vehicle
Subsystems data element is being used to indicate which
subsystems of a vehicle have failed, this bit is 1 if the

vehicle has suffered a catastrophic kill.

mobilitySummary summarizes those subsystems that provide mobility.

firepowerSummary summarizes those subsystems that provide firepower.

communicationSummary summarizes those subsystems that support
communication.

noncriticalSummary summarize other, noncritical subsystems.

More detailed information on a vehicle’s subsystems is contained in the subsystems
field, which identifies individual subsystems of the vehicle. The format of this field
depends on the category of vehicle being described. Presently, two categories of vehicle
are defined to allow the data element to be used to describe the subsystems of air and

ground vehicles in a generic manner. Other categories may be defined as necessary.

type SubsystemsCategory enum (16) {
airVehicleSubsystems (1),
groundVehicleSubsystems (2)

For a vehicle of either generic category, the Vehicle Subsystems data element includes
individual fields corresponding to many specific subsystems. No one vehicle, however, is
expected to have all of these subsystems. When the data element is used to describe a
particular vehicle, the fields used are only those that correspond to subsystems that the
vehicle actually has. For each possible subsystem, the data element indicates both (a)
whether the subsystem exists in the simulated vehicle, and (b) if it exists, the status of that

subsystem.

The set of generic subsystems is divided into logical groups: electronic subsystems,
motive power subsystems, electrical and hydraulic power subsystems, etc. Each group is
represented by a collection of up to 32 Boolean data elements, with one Boolean
representing each subsystem. A Vehicle Subsystems data element contains two instances
of each group, organized as two elements of an array. The first element indicates which
subsystems of the group exist; a Boolean in the first element is true if the corresponding

48

BBN Systems and Technologles

subsystem exists. The second element indicates the status of those that do exist; the

Report No. 7627

interpretation of these Booleans depends on the context in which the Vehicle Subsystems

data element is being used. If a Boolean of the first element indicates that a particular
subsystem does not exist, then the corresponding Boolean of the second element is

always false.

The following notation defines these data elements:

type AirVehicleSubsystems sequence (

electronic array (2) of ElectronicSubsystems,
motive array (2) of MotiveSubsystems,
power array (2) of PowerSubsystems,
weapon array (2) of WeaponSubsystems,

-- Specific to air vehicles:
airframe array (2) of AirframeSubsystems,

cockpit array (2) of CockpitSubsystems

type GroundVehicleSubsystems sequence (

N

electronic array (2) of ElectronicSubsystems,
motive array (2) of MotiveSubsystems,
power array (2) of PowerSubsystems,
weapon array (2) of WeaponSubsystems,

-- Specific to ground vehicles:

chassis array (2) of ChassisSubsystems,
turret array (2) of TurretSubsystems

define subsystemExists 0

define subsystemStatus 1

-- first element of array
-- second element of array

The constants subsystemExists and subsystemstatus are index values defined

for the two—element arrays.

The following notation defines the collections of Booleans that represent individual

subsystems:

49

Report No. 7627

50

-- Airframe components:

airframeMajor
leftWing
rightWing

-- Control surfaces:
pitchControl
rollControl
yawControl
flaps
airBrakes

-- Landing gear:
landingGearMajor
noseWheel
leftWheel
rightWheel

-- Final drive subsystems:

finalDriveMajor
leftTrack
rightTrack
leftFrontWheel
rightFroatWheel
leftRearWheel
rightRearWheel
serviceBrake

parkingBrake

-- Hull subsystems:
hullMajor

-- Driver subsystems:

type AirframeSubsystems sequence {

Boolean,
Boolean,
Boolean,

unused (5),

Boolean,
Boolean,
Boolean,
Boolean,
Boolean,

unused (3),

Boolean,
Boolean,
Boolean,
Boolean,

unused (12)

type ChassisSubsystems sequence {

Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,
Boolean,

unused (7),

Boolean,

unused (7),

driversVisionBlocks Boolean,

unused (7)

BBN Systems and Technologies

BBN Systems and Technologies

type CockpitSubsystems sequence {
cockpitMajor Boolean,
unused (31)

type ElectronicSubsystems sequence ({

-- Communication susystems:

communicationMajor Boolean,

radioAntenna Boolean,
intercom Boolean,
radio Boolean,

unused (12),
-- Sensor subsystems:
JaserRangefinder Boolean,

electroOpticalMajor Boolean,

eoFLIR Boolean,
eoDATV Boolean,
eoCtlHandle Boolean,
radarMajor Boolean,
radarTransceiver Boolean,
radarTracking Boolean,
radarNetwork Boolean,
navigationMajor Boolean,

unused (6)

type PowerSubsystems sequence {

-- Electrical power subsystems:

priElectrical Boolean,
priDistributionBox Boolean,
secElectrical Boolean,
secDistributionBox Bob>lean,
alternator Boolean,

generator Boolean,

unused (10),

-- Hydraulic power subsystems:
priHydraulic Boolean,
unused (15)

Report No. 7627

51

Report No. 7627

52

type MotiveSubsystems sequence {

-- Engine subsystems:

engineMajor Boolean,
pilotRelay Boolean,
starter Boolean,
oilFilter Boclean,
oilLeak Boolean,
airCleaner Boolean,
coolantLeak Boolean,
fuelFilter Boolean,
fuelXferPump Boolean,

unused (7),

-- Drive train subsystems:
transmissionMajor Boolean,

transFluidFilter Boolean,

transFluidLeak Boolean,
leftGearbox Boolean,
rightGearbox Boolean,
universalJoint Boolean,

unused (10)

type TurretSubsystems sequence {

turretMajor Boolean,
turretTraverse Boolean,
stabilization Boolean,
gunnersCtlHandle Boolean,
cmdrsCtlHandle Boolean,

turretPositionInd Boolean,
turretSlopelnd boolean,
gunnersPrimarySight Boolean,
gunnersSecondarySight Boolean,
gpsExtension Boolean,
gunnersVisionBlocks Boolean,
cmdrsVisionBlocks Boolean,
loadersPeriscope Boolean,
cmdrsPeriscope Boolean,

unused (18)

BBN Systems and Technologies

BBN Systems and Technologies Report No. 7627

type WeaponSubsystems sequence {

priGunMajor Boolean,
priGunMount Boolean,
priGunElevation Boolean,
priGunTraverse Boolean,
priGunMisfire Boolean,
secGunMajor Boolean,
secGunMount Boolean,
secGunElevation Boolean,
secGunTraverse Boolean,
secGunMisfire Boolean,
missileMajor Boolean,
launcherl Boolean,
launcher2 Boolean,

unused (19)

5.1.28 Velocity Vector

The velocity of a vehicle or projectile is represented by a Velocity Vector data element.
It specifies the component of the velocity that is parallel to each of the world coordinate

system’s three axes, in meters per second:
type VelocityVector array (3) of Float (32)
The three elements of the array represent, in order, the velocity components parallel to the
X axis, the Y axis, and the " axis.
5.1.29 World Coordinates

A location in the simulated world is defined by a set of three coordinates. Each

coordinate is a floating—point number, measuring a distance in meters along one axis of

the world coordinate system (§2.4):

type WorldCoordinates array (3) of Float (64)

The three elements of the array represent, in order, the X coordinate, the Y coordinate,

and the Z coordinate.

53

Report No. 7627 BBN Systems anc Technologies

5.1.30 XY Coordinates

XY Coordinates represent a location in the X-Y plane of the v-orld coordinate system
(§2.4). Each coordinate is represented as a floating-point number, measuring distance

along a coordinat:* axis in units of meters.

type XYCoordinates array (2) of Float (64)

The first element of the array represents the X coordinate and the second element of the

array represents the Y coordinate.

5.2 Timers and counters

Some protocol procedures call for the repeated, periodic transmission of PDUs. For
example, the data collection protocol requires that each crewed vehicle simulator transmit
a Vehicle Status PDU every 30 seconds. We make use of a conceptual device called a
timer to describe the periodicity of a repeated transmission. A second conceptual device,
called a counter, is used to describe how many times the transmission is repeated. The

use of counters and timers is explained in the following paragraphs.

A timer is a variable used to determine the instants at which a periodically transmitted
PDU must be sent. When the PDU is first sent, the timer is set t¢ the number of seconds
that must elapse before the PDU is sent again. The timer is then lecremented by one unit
each second. When the timer reaches zero the PDU is resent, th timer is set back to its

original value, and the cycle repeats.

Some protocol procedures call for repeating the transmission of a PDU up to a specified
maximum number of times. This is usually done when the sender is not sure that a PDU
is being correctly conveyed to its recipient, and so must resend it untl confirmation is
received. A counter is a variable used to keep track of the number of times the PDU has
been sent. When the PDU is first sent, the counter is set to the maximum number of
times tnat the PDU may be sent. When the PDU is resent {usually after a timer has
expired) the counter is decremented by one unit, and, if it hasn’t reached zero, the PDU is

sent again.

Several timers and counters are involved in the definition of the SIMNET protocols. The

durations of the timers and the initial, maximum values of the counters are given names

like t ransactionRetryTime and transactionRetryCount. The optimal values

54

BBN Systems and Technologies Report No. 7627

of these depend on factors such as the frequency with which information should be made
available for later analysis or recovery of an exercise, and the reliability and delay
characteristics of the distributed simulation internet. The values chosen for the present
applications and implementations of the SIMNET protocols are summarized in appendix
F. Where a timer or counter is mentioned in the following chapters, we specify its typical
value for readability but also include its name in parentheses for reference to appendix F.

55

Report No. 7627 BBN Systems and Technologies

6 ASSOCIATION PROTOCOL

In chapter 2 the association protocol was introduced as a protocol providing
communication services used to support both the simulation protocol and the data
collection protocol. This chapter defines the association protocol in terms of the services
it provides, and the protocol procedures used to implement those services.

6.1 Architecture

The ISO Basic Reference Model for Open Systems Interconnection [8] is the architectural
framework within which the SIMNET protocols are defined. The communication service
underlying the SIMNET protocols provides functions associated with the physical, data
link, and network layers of the OSI model. The requirements for these services are

discussed in chapter 4.

The association protocol is designed to offer a streamlined composite of the specific
transport, session, and application layer services that are required by both the simulation
and data collection protocols.4 Although pieces of the transport, session, and application
layers are included in this composite, it resides in the application layer as a sublayer.
There it is viewed, in the terms of the OSI model, as implementing common application
service elements—i.e., services that are shared among multiple application protocols.

By combining several functions into a single protocol, the association protocol

it iements those functions in the most efficient manner possible. Although the
association pi:+:ocot ca.: be ¢z sied by underlying presentation, session, and transport
protocols, those underlying protocois are not required. In its operation the association
protocol requires no services particular to the presentation, session, or transport layers,
other than connectionless—-mode transmission of data to multiple recipients. Thus, the
association protocol may be imiplemented directly from services of the network or data

link layers to obtain maximum efficiency.

The sublayer containing the association protocol is called the association sublayer, and
the service it provides is the association service. Distributed simulation is implemented

4 No services specific to the presentation layer are required by the SIMNET protocols. The presentation

of application data is defined by the Data Representation Notation documented in appendix A.

56

BBN Systems and Technologies Report No. 7627

as a pair of protocols—the simulation protocol and the data collection protocol—that
make use of the association service for their communication requirements, and reside in a
sublayer above it called the simulation sublayer. This layered structure is represented in
figure 6-1.

o Simulation Sublayer
Application Layer

=~ o~ Association Sublayer
Presentation Layer -~

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 6-1. The application layer of the OSl reference model is divided into two sublayers: an association
sublayer providing common application service elements, and a simulation sublayer implementing distributed

simulation.

The association sublayer spans all simulators at all sites to provide a communication
service among them, as shown in figure 6-2. The sublayer includes a component within
each simulator, called the association entity. The simulation sublayer, in turn, spans all '
simulators at all sites to provide a distributed simulation. The component of the
simulation sublayer within each simulator is called the simulation entity. A simulation
entity obtains services from its local association entity via a single association service
access point. The address of that service access point we call a simulation address.

57

Report No. 7627 BBN Systems and Technologies

Association Service Access Points

_— — — =

Simulation Simulation Simulation Protocol Simulation
Sublayer Entity imutation Froteco Entity
Association Association Association Protosol Association

Netwark Sarvice

Simulatar A Simulator B

Figure 6-2. The components of the simulation sublayer and the association sublayer within each simulator
are called simulation entities and association entities. Association entities communicate according to
association protocol, using the network service. Simulation entities communicate according to simulation
protocol, using the association service. The interface between a simulation entity and its local association
entity is an association service access point, it has an address called a simulation address.

6.2 Service elements

The users of the association sublayer are simulation entities, residing in the simulation
sublayer and communicating by means of the association service. These are the key

elements of the service provided to simulation entities:

Datagrams. The association service will convey a unit of data from an originator to one

or more recipients. This service element is called th-. datagram service.

Transactions. The association service will mediate an interaction that involves the
transfer of a unit of data from an originator to a recipient, and the return of an associated
unit of data from the recipient to the originator. The service must also accommodate the

58

BBN Systems and Technologies Report No. 7627

unacknowledged receipt of both data units by any number of other simulation entities.

This service element is called the transactica service’

Detecting and overcoming network failures. The association service must provide a
minimum probability of successful data transfer for the transaction service (whereas the
reliability of the underlying networks is assumed to be sufficiently high for the uses of the
datagram service). If an underlying subnetwork has an insufficient probability of
successful delivery, then the association sublayer compensates by retrying certain data

transfers.

User protocol. Along with any unit of data it transfers, the association service will
convey a user protocol number provided by the sending simulation entity. This protocol
number is conveyed so that simulation entities can indicate to each other the simulation
sublayer protocol to which a unit of data pertains. The protocol umbers are 8-bit
integers, with values that must be agreed upon by corresponding simulation entities. This
is done by assigned a unique global identifier to each protocol that uses the association

service.

Addressing. The association service provides simulation entities with a consistent
method of addressing each other, independent of the addressing schemes of the various
subnetworks employed. A single simulation entity is addressed at each simulator by an

address that consists of two components:

« A 16-bit integer that uniquely identifies the site at which the simulator resides. A unique global

site identifier must be assigned to each site in the distributed simulation internct.

« A 16-bit integer that uniquely identifics the particular simulator within that site.

5 The transaction service provided by the association sublayer is a hybrid of transport and application
layer functionality. Reliable end-to—end transfer, involving the possible retransmission of data, is a
transport layer function. Providing a reques/response transaction mechanism is an application layer
function. The association PDU conveying a response is used to efficiently provide both a transport
layer acknowledgement and an application layer transaction response. Otherwise, if separate transport

layer acknowledgements were utilized, a total of four transport PDUs would be required (or more in

the case of retransmissions).

59

Report No. 7627 BBN Systems and Technologies

Multicast groups. The association service allows simulation entities to subscribe to
multicast groups. A unit of data directed to a multicast group will be received by all of
the simulation entities currently subscribing to that group.®

Each multicast group is identified by an 8-bit integer. By convention, the value 0 is used
to designate a multicast group that includes all simulation entities. Each simulation entity
indicates to the association service those additional multicast groups to which it wishes to

subscribe.

Blocking. To make the most efficient use of the network service, the association service

may place multiple association protocol data units in a single network datagram.

6.3 Service required from lower layers

The association protocol uses the services of lower layers in order to provide enhanced
services for the simulation sublaver. The services used are those described in chapter 4.
The association protocol may be implemented on top of any protocols at any layer that
can support the service requirements of chapter 4. Appendix E defines how the
association protocol is implemented on IEEE 802 networks.

The lower layer service must provide for the transfer of at least 256 octets of user data in
a single datagram. For efficiency, a singlc « utagram may contain multiple association
protocol data units, provided all association PDUs are being addressed to the same
recipients. The recipients of a datagram must be able to unbundle the PDUs contained
therein. The association protocol allows this by including in each PDU a field from
which the length of that PDU can be determinecd. This field is used by recipients to
determine where successive PDUs lie within the datagram.

Some networks, including Ethernet, require that datagrams be of some minimum length.
To accorumodate this requirement, the association protocol allows a datagram to be filled
out to a minimum length by including in it a PDU whose sole purpose is to occupy space
in the datagram. This padding PDU, which appears as the last PDU in a datagram, is

inserted only when necessary.

6 The association of users into one or more multicast groups is a special session layer functior: provided

by the association sublayer to climinate the need for a full session service.

60

BBN Systems and Technologies Report No. 7627

6.4 Service provided by the association sublayer

The service provided by the association layer is defined here in terms of primitives that
characterize the interaction between the association layer and its users. This method
follows the descriptive conventions documented in ISO TR 8509 [9]. For a given
primitive, the presence of each parameter is described by one of the following symbols:

M The parameter is mandatory.
U The use of the parameter is a service-user option.
= The value of the parameter is identical to the corresponding parameter in the interaction

described by the preceding related service primitive.

6.4.1 Group subscription service

A simulation entity specifies to the association service those multicast groups of which it

is to be a member. This is a local interaction between the simulation entity and its related

association entity.

There are two primitives associated with this service:
A-Subscribe.req

A-Subscribe.conf

The sequence in which these primitives are used is illustrated in figure 6-3.

The simulation entity issues an A-Subscribe request to the association sublayer to
indicate that it is subscribing to a multicast group, or unsubscribing from a group

previously subscribed to. The association sublayer responds with an A-Subscribe

confirmation.

61

Report No. 7627 BBN Systems and Technologies

Assoclation Association
Sublayer User Sublayer

A-Subscribe.req

\\

era,, "

A-Subscribe.conf

Figure 6-3. The sequence of service primitives associated with the group subscription service.

The parameters associated with these primitives are:

Parameter Name Req Conf Description
multicast-group M the multicast group for which the user wishes to

change its subscription

subscribe M whether the user wishes to subscribe to, or

unsubscribe from, the multicast group

result M indicates success or failure of the association

sublayer operation

All simulation entities are members of multicast group 0, and may not withdraw from it.
The composition of other multicast groups (1 through 255), however, is determined
through the used of the A—Subscribe service element by individual simulation entities.

6.4.2 Datagram service

The datagram service is used to transfer a unit of data from an originator to a multicast

group of one or more recipients. This is a “non—confirmed” service.

There are two primitives associated with this service:
A-Datagram.req

A-Datagram.ind

62

N

BBN Systems and Technologies Report No. 7627

The sequence in which these primitives are used is illustrated below:

Originator Association Reclipient
Sublayer

A-Datagram.req

Figure 6—4. The sequence of service primitives associated with the datagram service.

The originator issues an A-Datagram request to the association sublayer to transfer a unit
of data to one or more recipients. The association sublayer issues an A-Datagram

indication to each recipient, conveying the unit of data.

The parameters associated with these primitives are:

Parameter Name Regq Ind Description

from-address M M(=) the originator’s address

muliicast—group M M(=) the group of recipients to which the unit of data
is to be conveyed

protocol-identifier M M(=) conveys from the originator to the recipients an
identification of the protocol according to which
the unit of data is to be interpreted

data U U(=) the unit of data to be conveyed

The size of the unit of data to be conveyed must be a multiple of 8 octets.

63

Report No. 7627 BBN Systems and Technologies

6.4.3 Transaction service

The transaction service is used to transfer a unit of data from an originator to a designated
recipient, and to return, in response, a unit of data from that recipient back to the

originator. This is a “confirmed” service.

The recipient providing the response to the originator is termed the respondent. The
originator specifies a multicast group of recipients, of which both the originator and
respondent must be members. All other members of that group will receive both the
originator’s unit of data, and the unit of data returned by the respondent. These other
multicast group members are called observers.
There are six primitives associated with this service:

A-Transact.req

A-Transact.ind

A-Transact.rsp

A-Transact.conf

A-Request.ind

A-Response.ind

The sequence in which these primitives are used is illustrated in figure 6-5.

The originator issues an A-Transact request to the association sublayer to transfer a unit
of data to a respondent. The association sublayer issues an A-Transact indication to the
respondent, and an A-Request indication to each observer, conveying the unit of data.
The respondent issues an A-Transact response to the the association sublayer to return a
unit of data to the originator. The association sublayer issues an A-Transact confirmation
to the originator, and an A-Response indication to each observer, conveying the returned

unit of data.

64

BBN Systems and Technologies

Report No. 7627

Originator

A-Transact.conf

Association
Sublayer

Respondent

A-Transact.ind

\

A-Transact.rsp

Observer

A-Request.ind

\

A-Response.ind.

\

Figure 6-5. The sequence of service primitives associated with the transaction service.

The parameters associated with the A-Transact primitives are:

Parameter Name
originator-address
respondent-address

multicast-group

ZZZE’

Ind Rsp Conf

M(

)

M(=)

M(

Description
the originator’s address
the respondent’s address

the multicast group that
includes the originator, the

respondent, and all observers

65

Report No. 7627 BBN Systems and Technologies
Parameter Name Reg Ind Rsp Conf Description
protocol-identifier M M(=) conveys from the originator to

the recipients an identification
of the protocol according to

which both units of data is to

be interpreted

request—data U U(=) the unit of data to be conveyed
from the originator to the
respondent

response—data U U(=) the unit of data to be conveyed

from the respondent to the

originator

cache-response M indicates whether the unit of
data retumed by the respondent
should be cachked by its
association entity so that the
entity can retransmit the

response if necessary

result M indicates success or failure of
the association sublayer

operation

The originator’s association entity can, if necessary, make several attempts to carry out
the transaction. Each time, it will attempt to transmit the request data to the respondent’s
association entity, and, as a result, the respondent’s association entity may receive the
same request data multiple times. The cache-response parameter indicates how that
association entity should respond in this situation. If the respondent has indicated that its
response should be cached, then its association entity will return the same response data
with each repeated attempt. If the response is not to be cached, the respondent’s
association entity will obtain a fresh copy of the response data with each repeated
attempt. The cache—response parameter is available for the association sublayer user to

indicate which behavior is appropriate in a particular situation.

The parameters associated with the A-Request indication have the same values as those

supplied by the originator with its A-Transact request:

66

BBN Systems and Technologies

rameter Nam
originator-address
respondent—address

multicast-group

protocol-identifier

request—data

Ind

M(=)

U(=)

Report No. 7627

Description
the originator’s address
the respondent’s address

the multicast group that includes the originator, the

respondent, and all observers

identifies the protocol according to which the unit of data

is to be interpreted

the unit of data to be conveyed from the originator to the

respondent

The parameters associated with the A-Response indication have the same values as those
supplied by the originator with its A~Transact request, and by the respondent with its A—

Transact response:
Parameter Name
originator—address
respondent-address

multicast-group

protocol-identifier

response—~data

Ind
M(::_
M(=)

M(=)

M(=)

U(=)

Description
the originator’s address
the respondent’s address

the multicast group that includes the originator, the

respondent, and all observers

identifies the protocol according to which the unit of data

is to be interpreted

the unit of data to be conveyed from the respondent to the

originator

Each unit of data conveyed by the transaction service must be multiple of 8 octets in size.

6.5 Specification of the association protocol

We define the association protocol by first describing association protocol data units, and

then describing the protocol procedures that use them.

Two protocol procedures comprise tne association protocol: one implements the
datagram service, the other, the transaction service. Each is independent of the other. No
protocol procedure is invoked by use of the group subscription service, although each

67

Report No. 7627 BBN Systems and Technologies

association entity must maintain information about which multicast groups its user is

currently subscribed to.

6.5.1 Association protocol data unit format

The formats of association protocol data units (APDUs) are defined here using the data

representation notation documented in appendix A.

All APDUs have a length that is an integral multiple of 64 bits, and all begin with a
common 64-bit header. Included in this header is a code indicating the kind of APDU
present. Four kinds of APDUs are used by the association protocol:

» A Datagram APDU is used for the datagram service to convey a unit of data from the originator to

the recipient(s).

« A Request APDU is used for the transaction service to convey a unit of data from the originator to

the recipient(s).

« A Response APDU is used for the transaction service to convey a unit of data from the respondent

to the originator and to other recipients.

« APadding APDU is used to pad a datagram to some minimum length, as required by the network

service.

APDUs are of the following form:

68

BBN Systems and Technologies Report No. 7627

type AssociationPDU sequence (

version AssociationProtocnlVersion,
kind AssociationPDUKind,
datalength UnsignedInteger (8),

group MulticastGroupID,
userProtocol AssoclationUserProtocol,
originator SimulationAddress,

variant choice (kind) of (

when (datagramAPDUKind} datagram segquence (
data array (datalength} of AssociationDataUnit

},

when (requestAPDUKind) request sequence (
respondent SimulationAddress,
transactionID Transactionldentifier,
unused (16),

data array (datalength) of AssociationDataUnit

},

when (responseAPDUKind) response seguence (
respondent SimulationAddress,
transactionID TransactionIdentifier,
unused (16),
data array (datalength) of AssociationDataUnit

).

when (paddingAPDUKind) padding sequence (
data array (datalength) of AssociationDataUnit

The version field identifies the version of association protocol to which the APDU
pertains. This allows new versions of the association protocol to be introduced without
disruption to existing implementations. The association protocol described in this report

has version number 2:

type AssociationProtocolVersion enum (4) {
protocolVersionAug89 (1),
protocolVersionJan90 (2}

The kind field identifies the kind APDU present:

69

Report No. 7627 BBN Systems and Technologies

type AssociationPDUKind enum (4) {
datagramAPDUKind (1),
requestAPDUKind (2),
responseAPDUKind (3),
paddingAPDUKind (4)

All four kinds of APDUs contain a dat a field whose length is an integral multiple of 64
bits. The dataLength field of the APDU header specifies the length of the data field,
in multiples of 64 bits.

The data field contains the user's PDU. It is represented by data elements of the

following form:

type AssociationDataUnit array(8) of Un=ignedInteger (8)

Each APDU is directed to a particular multicast group. identified by the group field of
the APDU header. The userProtocol field conveys a code describing the user

protocol to which the dat a field content pertains.
type MulticastGrouplID UnsignedInteger (8}

type AssociationUserProtocol UnsignedInteger (8)

A Datagram APDU is produced when an originator requests the datagram service of the
association sublayer. The Request and Resporse API3Us are produced when an
originator requests the transaction service. In all three cases, the originator field of
the APDU header identifies the originator by its sirmiation address.

Recuc«t and Response APDUs incliue sore Laditional fields required to implement the
transz.ction service. The respondernt field identifies the respondent as specified by the
originator. The transactionID fields contain sequence numbers generated by the

originatci’s association entity.
type TransactionIdentifier UnsignedInteger (16)

A Padding APDU may be inserted at the end of a network datagram in order to pad it to
some minimum length, as required by the network service. The contents of the data

field of a Padding APDU are not interpreted.

70

LS

BBN Systems and Technologies Report No. 7627

If an association entity receives from the network layer an APDU that is in error, it
discards the APDU.

6.5.2 Datagram protocol procecure
The datagram protocol procedure implements the datagram service.

In response to an A-Datagram.req service primitive from its user, an application entity
issues a Datagram APDU. The APDU contains the originator address, multicast group
number, protocol identifier, and user data supplied by the user. Itis delivered to all

association entities by the network layer.

Upon receiving a correct Datagram APDU from the network layer, an association entity
determines whether the APDU pertains to a multicast group to which its user has
subscribed. If so, it issues an A-Datagram.ind service primitive to its user. The contents
of the APDU are decoded to obtain the from—address, multicast—group, protocol—
identifier, and data parameters of the service primitive. A Datagram APDU specifying a

multicast group not subscribed to is discarded.

6.5.3 Transaction protocol procedure
The transaction protocol procedure implements the transaction service.

Figures 6-6 and 6-7 represent the behavior of the association entities representing the
originator and the respondent. Initially, both entities are in their respective idle states.

For each transaction it initiates, the originator’s association entity chooses a 16-bit value
called a transaction identifier. Consecutive transaction identifiers are assigned to
consecutive transactions; transaction identifier 65535 is followed by transaction identifier
0. The combination of the originator’s simulation address and the transaction identifier

serves to distinguish a transaction from among other transactions that may be at the same

time.

The originator’s association entity maintains the following state information for an active

transaction during the transaction protocol procedure:

« The values of the parameters supplicd with the A-Transact.req service primitive that initiated the

transaction.

71

Report No. 7627 BBN Systems and Technologies

« The transaction identificr chosen for the transaction.

« A timer and a counter used to perform retries.

The recipient’s association entity maintains the following state information for an active

transaction during the transaction protocol procedure:
+ The simulation address of the transaction’s originator.

o The transaction identifier.

« If the user has specified that the response be cached, then the association entity maintains a timer

and a copy of the response~data supplied by the user.

On receiving an A-Transact.req from its user, the originator’s association entity prepares
a Request APDU using parameters supplied by the user and a newly chosen transaction
identifier. It then makes up to 3 attempts (transactionRet ryCount) to send the
Request APDU and receive a matching Response APDU. A received Response APDU
matches tile Request APDU if it bears the same originator and response simulation
addresses, user protocol identifier, multicast group number, and transaction identifier.
The retries are separated by a wait of 3 seconds (transactionRetryTime). Upon
receiving a matching Response APDU, the association entity issues an A-Transact.conf
to i, user indicating success. Upon timing out after the last retry, it issnes one indicating

failure.

On receiving a Request APDU frora the network service, an association entity determines
whether it’s own user subscribes to the multicast group under which the Request APDU
was issued. If not, the Request APDU is discarded. Otherwise, the association entity
then determines whether its own user is identified as the transaction’s respondent. If not,
it issues an A—Request.ind to its user with parameters obtained from the Request APDU.

If an association entity receives a Request APDU with an appropriate multicast group
number and its user identified as the respondent, it determines whether it has cached a
response matching the request. If so, it creates a Response APDU from the cached
information and reissues it to the network service. Otherwise, it issues an A-Transact.ind
to its user (the respondent) with parameters obtained from the Request APDU. From the
A—Transact.rsp returned by the respondent, the association entity creates a Response
APDU, which it issues to the network service. If the respondent specifies that the

response is to be cached, the association entity retains the response and enters its caching

72

Lo —_ AL L

BBN Systems and Technologles

Report No. 7627

state for a period of 10 seconds (t ransactionCa cheTime) before returning to idle
state. Otherwise, when the response is not to be cached, it returns directly to idle state.

Idle
State

Send Request

Requesting Retry

Receive Res e
eceive Respons State

Abandon

Send Request

Receive Response

Retry

Abandon

Condition and Action

When an A-Transact.req service primitive is received from the user,
create a Request APDU and send it to all association entities using the
network service. Set a timer to 3 seconds
(transactionRetryTime) and a counter to 3

(transactionRetryCount).

When a Response APDU related o the transaction is received from the
network service, issue an A-Transact.conf service primitive to the user

indicating that the transaction has succceded. Cancel the timer.

When the timer expires, decrement the counter. 1f it is nonzero, resend
the Request APDU and reset the timer to 3 seconds

(transactionRetryTime).

When the timer expires, decrement the counter. If it is zero, issue an
A-Transact.conf service primitive to the user indicating that the

transaction has failed.

Figure 6-6. Behavior of the association entity serving the originator of a transaction.

73

Report No. 7627 BBN Systems and Technologies

Feceive Request —{ Ressaoa?gmg
-’

Send Response
(Not Cachecdl)

Send Response

wdle (Cached)
State

T.meout

Y

Caching
State

1

Resend Response

Iransition Condition and Action
Receive Request When a Request APDU identifying the user as respondent is reccived

from the nciwork service, and the requcst does not match a response

already cached, issuc an A-Transact.ind service primitive to the user.

Send Response When an A-Transact.rsp service primitive is received from the user,
create a Response APDU and send it to all association entities using the
network scrvice. If response caching is specified, sct a timer to 10
seconds (t ransact ionCacheTime) and cnter caching state.

Othcrwisc, enter idle state.

Resend Response When a Request APDU identifying the user as respondent is received
from the network servicc, and the rejuest matches a response already

cached, resend the Response APDU.

Timeout When the timer expires, discard the cached rcsponse.

Figure 6-7. Behavior of the association entity serving the respondent of a transaction.

On receiving a Response APDU from the network service, an association entity
determines whether the APDU pertains to an active transaction 7or which the entity is
representing the originator. If so, the procedure is as described above. If not, the entity

determines whether its own user subscribes to the multicast group under which the

74

)

BBN Systems and Technologles Report No. 7627

Response APDU was issued. If not, the Response APDU is discarded. Otherwise, the
entity issues an A—Response.ind to its user with parameters obtained from the Response
APDU.

75

Report No. 7627 BBN Systems and Technologies

7 SIMULATION PROTOCOL

The simulation protocol is used by simulators to communicate with each other
information about the simulated world. The protocol serves to initiate vehicles into an
exercise, withdraw them from an exercise, describe the externally visible appeararce of
vehicles, report the firing and impact of projectiles, transfer supplies between vehicles,

and effect repairs to vehicles.

7.1 Simulation protoco! data units

The simulation protocol makes use of several kinds of protocol data units. All simulation
PDUs have a length that is an integral multiple of 64 bits. In some cases, this may require
padding to be included at the end of the PDU. All simulation PDUs begin with a
common 64-bit header. Included in this header is a code indicating the kind of PDU

present:

type SimulationPDUKind enum (8) {

activateRequestPDUKind (1), -- Activate Reque: PDU

}

activateResponsePDUKind (2), -- Activate Response PDU
deactivateRequestPDUKind (3), -- Deactivate Request PDU
deactivateResponsePDUKind (4), -- Deactivate Response PDU
vehicleAppearancePDUKind (5), -- Vehicle Appearance PDU
radiatePDUKind (6), -- Radiate PDU
firePDUKind (7), -- Fire PDU
impactPDUKind (8), -- Impact PDU
indirectFirePDUKind (9), -- Indirect Fire PDU
collisionPDUKind (10), -- Collision PDU
serviceRequestPDUKind (11), -- Service Request PDU
resupplyOfferPDUKind (12), -- Resupply Offer PDU
resupplyReceivedPDUKind (13), -- Resupply Received PDU
resupplyCancelPDUKind (14), -- Resupply Cancel PDU
repairRequestPDUKind (15), -- Repair Request PDU
repairResponsePDUKind (16) -- Repair Response PDU
markerPDUKind (17), -- Marker PDU
breachedLanePDUKind (18), -- Breached Lane PDU
minefieldPDUKind (19), -- MineField PDU

PDUs containing an unknown k ind field should be ignored. Kind values in the range of

129 to 255 are reserved for temporary or experimental use.

76

‘AN 4VENE 4 . ¥
Sy R NS T T -

BBN Systems and Technologies Report No. 7627

Followin, «he PDU header is a portion whose format depends on the kind of PDU. The

overall content of a PDU is:

77

Report No. 7627

type SimulationPDU seqguence {

version SimulationProtocolVersion,
kind SimulationPDUKind,
exercise ExerciselD,

unused (40),

variant choice (kind) of {

78

when (activateRequestPDUKind)

activateReg ActivateRequestVariant,

when (activateResponsePDUKind)

activateRsp ActivateResponseVariant,

when (deactivateRequestPDUKind)

deactivateReq DeactivateRequestVariant,

when (deactivateResponsePDUKind)

deactivateRsp DeactivateResponseVariant,

when (vehicleAppearancePDUKind)

appearance VehicleAppearanceVariant,

when (radiatePDUKind)

radiate RadiateVariant,

when (firePDUKind)

fire FirevVariant,

when (impactPDUKind)

impact ImpactVariant,

when (indirectFirePDUKind)

indirectFire IndirectFireVariant,

when (collisionPDUKind)

collision CollisionVariant,

when (serviceRequestPDUKind)

serviceReg ResupplyVariant,

when (resupplyOfferPDUKind)
resupplyOffer ResupplyVariant,

when (resupplyReceivedPDUKind)
resupplyReceived ResupplyVariant,

BBN Systems and Technologies

N Ny T Em N

BBN Systems and Technologies Report No. 7627

when (resupplyCancelPDUKind)
resupplyCancel ResupplyCancelVariant,

when (repairRequestPDUKind)

repairReq RepairReqguestVariant,

when (repairResponsePDUKind,

repairRsp RepairResponseVariant

when (markerPDUKind)

marker MarkerVariant,

when (breachedLanePDUKind)

breachedLane BreachedLaneVariant,

when (minefieldPDUKind)
minefield MinefieldVariant

The version field specifies the version of simulation protocol to which the PDU
pertains. The use of this field allows new versions of the simulation protocol to be
introduced without disruption to existing implementations. The simulation protocol

described in this report has version number 3:

type SimulationProtocolVersion enum (8) {
simProtocolVersionAug89 (1)
simProtocolVersionJan%0 (2),

simProtocolVersionJan90Corrected (3)

)

The exerciselID field identifies the exercise to which the PDU pertains (§5.1.6).

7.2 Use of association sublayer services

Simulation PDUs are conveyed among simulators using the services of the association

sublayer defined in chapter 6. A single PDU is issued through a single invocation of

either the A-Datagram.req service primitive or the A-Transact.req service primitive. The

discussion of protocol procedures, below, specifies which of these two service primitives

is used in each case.

79

Report No. 7627 BBN Systems and Technologles

To distinguish the simulation protocol from other protocols using the association
sublayer, the simulation protocol is assigned a unique association sublayer user protocol

number. This number is 1:

constant simulationProtocolNumber 1

Every simulation protocol interaction among simulation entities takes place within the
context of a particular simulation exercise. Associated with an exercise is an exercise
identifier, which distinguishes it from other, concurrent exercises. With but one
exception noted below, the interactions associated with a particular exercise are carried
by the association service using a multicast group number that is identical to the
exercise’s identifier. This allows simulation entities to receive information only about the

exercises of interest to them by subscribing only to selected multicast groups.

The one exception to the rule stated above on the use of exercise identifiers as multicast
group numbers occurs with the protocol interaction used to introduce a simulation entity
into an exercise. That protocol interaction is performed using the multicast group number
0 (a group that includes all simulation entities) to ensure that a simulation entity may be

communicated with regardless of which multicast groups it has already subscribed to.

Some protocol interactions call for using the transaction service to issue a PDU to the
simulation entity that is modeling a particular vehicle, x. Use of the transaction service
requires knowing the simulation address of the respondent—in this case, the address of
the simulation entity modeling x. That address is discovered through the process of
receiving PDUs that describe x: the A-Datagram.ind service primitives that deliver these
PDUs also specify the simulation address of their originator. This simulation address

should be used for directing transactions to the simulation entity modeling x.

An alternate method of obtaining the address of a vehicle’s simulation entity, by
extracting the simulation component of its vehicle identifier (§5.1.24), must not be
relied upon since it precludes transferring the simulation of a vehicle from one entity to

another.

The transaction service of the association sublayer allows a respondent to specify whether
a particular response should be cached for retransmission. This service element is chosen
using the cache-response parameter of the A-Transact.rsp service primitive. Use of this

feature for simulation protocol interactions is optional in all cas:s.

80

:

. Ty W

BBN Systems and Technologies Report No. 7627

7.3 Protocol procedures

The simulation protocol is logically divided into several distinct protocol procedures,
each of which provides a related set of functions. These procedures are defined

individually in the following subsections.

All protocol procedures involve the exchange of PDUs among simulation entities using
services of the association sublayer. For brevity, we sometimes use the term simulator in
this section when referring to simulation entities. When describing use of the association
sublayer, however, we generally revert to the more correct term, simulation entity.
Moreover, we usually shorten “the transaction service of the association sublayer” to “the

underlying transaction service”.

7.3.1 Activation

One simulator may prompt another to begin simulating a vehicle through a procedure

called activation.

The activation procedure is commonly used by MCC systems to start crewed vehicle
simulators such as the M1 Abrams main battle tank simulator. An active vehicle can also
be re-activated through this same process, in effect resetting the simulation of that
vehicle. Activation is used for this purpose when an MCC system that has simulated the
towing (recovery) of a vehicle repositions that vehicle on the terrain at its towing

destination.

The simulation entity requesting the activation uses the underlying transaction service to
convey an Activate Request PDU to the entity that is to perform the simulation. The
Activate Request PDU includes information describing the vehicle to be simulated. An
Activate Response PDU is then returned to indicate whether the activation request has

been accepted.

This transaction is performed using the association sublayer’s multicast group O (the
broadcast group) to ensure that the transaction will be received by the respondent

regardless of which multicast groups it has subscribed to.

An Activate Request PDU includes the following fields in addition to its PDU header:

81

Report No. 7627

82

type ActivateRequestVariant sequence {

-- Purpose of the activation:

reason ActivateReason,

-- Identity of the activated vehicle:

vehicleClass VehicleClass,
vehiclelD VehiclelD,

unit OrganizationalUnit,
marking VehicleMarking,
guises VehicleGuises,

-- Information about the simulated world:

simulatedTime Time,
terrain TerrainDatabaselD,
battleScheme BattleScheme,

-- Status of the vehicle:

onSurface Boolean,
unused (23),

status VehicleStatus,

location WorldCoordinates,

-- Depending on vehicle class:
specific choice (vehicleClass) of

-- A static vehicle:

{

when (vehicleClassStatic) static sequence

hullZzimuth Angle,
unused (32)

},

-- A simple moving vehicle, without a turret:

whon (vehicleClassSimple) simple sequence {

hullAzimuth Angle,
unused (32)

},

-- A tank:

when (vehicleClassTank) tank sequence {
hullAzimuth Angle,
turretAzimuth Angle

BBN Systems and Technologies

i O Sy TN I s T Sm Em

A

I I

BBN Systems and Technologies Report No. 7627

-~ These fields are optional:
—-- Initial velocity and freeze ctate
velocity VelocityVector,
freezeState Boolean,

unused (31),
-- More information about the simulated world:
VLVisibility Float (32), -- visibility in visible light in meters

simulatedSkyColor SkyColor,
unused (24)

The reason field indicates the purpose of the activation:

type ActivateReason enum (8) {

activateReasonOther, -- none of those listed below
exerciseStart, -- initial entry into new exercise
arerciseRestart, -- restart of exercise
vehicleReconstitution, -- restoration of vehicle status
towinghrrival -- towing destination reached

When a vehicle is first introduced into a new exercise, the activation reason is specified
as exerciseStart. If the erercise is being resumed after some interruption, a reason
of exeroiseRestart is specified. If the vehicle is being activated to provide it a new
location, operational status, or supply of munitions, a reason of
vehicleReconstitution is specified. In all three cases, and in the case where the
reason is specified as act ivateReasonOther, the remaining fields of the Activate
Request PDU are interpreted as completely specifying the new state of the activated

vehicle.

After a vehicle has been tswed to a new destination, and up on reaching that destination, it
may be activated using an A.tivate Request PDU in which the reason field is specified

as towingArrival. In this case, only he vehicleClass, location, onSurface,
and specific fields are interpretea us specifying a new .ocatian and orientation for the
vehicle. The vehicle will retain other state attribeies it had prior 1 towing.

The vehicleID field is relevant when the reason for the activation is
exerciseRestart, vehicleRecinstitncicr.or towingArrival. Inthese
cases, the field identifies the particular ehicle be 1 178 jsclivated by referring to a
vehicle that has already been participating in the exercise (§5.1 .24). In all other cases, the

Report No. 7627 BBN Systems and Technologies

vehicleID field contains zero, and the activated simulator is responsible for selecting a

new, unique identifier for the activated vehicle.

The organizational unit to which the vehicle is assigned it described by the unit field
(85.1.11). The marking field describes a label on the vehicle, such as a bumper number,

that may be visible from other vehicles under certain circumstances (8§5.1.25).

The guises field supplies two object type codes, specifying how the activated vehicle is
to appear when viewed from other vehicles (§5.1.23). Both object type codes are to be
included in the Vehicle Appearance PDUs subsequently issued for the vehicle.

The simulatedTime field specifies the simulated time at which the PDU is issued
(§5.1.18). Its purpose is to provide the receiving simulator with information necessary
for modeling a particular time of day or time of year. Because the PDU may be subject to
delay and retransmission by the association service and its underlying network, the time it

carries should be interpreted as being accurate to at most £10 seconds.

The terrain field identifies the terrain database to be used by the activated simulator

(§5.1.17).

The vehicle’s status—the health of its various subsystems and the quantities of supplies it
has on board—will be as described by the status field (§5.1.26). For a vehicle newly
introduced into an exercise, the odometer component of the status field will be zero;
for one that is being re-activated, perhaps as an exercise is being restarted, the

odometer component will reflect the distance travelled earlier by that vehicle in the

same exercise.

The onSurface and 1ocat ion fields provide the activated vehicle’s initial location.
If onSurface is false, the vehicle will exist at the location in space specified by the
world coordinates (§5.1.29). Otherwise, when onSurface is true, the vehicle will exist
upon the terrain’s surface at the location specified by the % and y components of the

world coordinates. (In this case, the z component is ignored.)

The latter portion of the PDU contains vehicle-specific information whose formai vavies
with the class of vehicle being activated. The correct interpretation of this por.ion i
determined by the contents of the PDU’s vehicleClass field (§5.1 20). The dirciiion
the vehicle is to face initially is represented by the hullAzimuth field as an m e

measured counterclockwise from north (i.e., a value of 230 (90 degrees) me.n: facio,

84

el W K 3

i B BEE N E 2 == I

. =‘ Vi' m’ :

fi

s 7 U - | R P

JI E Ty AN I T O aaae

L4
[\

- .. .

g 9

&

i 4
[

BBN Systems and Technologies Report No. 7627

west). If the vehicle is of the tank class, the azimuth of its turret relative to its hull is

represented by the turretAz imuth field, which measures the angle counterclockwise

from the front of the hull (§5.1.1).

The final portion of the PDU contains optional fields. The presence of these fields may
be determined by the length returned by the association protocol. As with any PDU, a
simulator that receives an Activate Request PDU that includes unknown fields at the end

should ignore these unknown fields.

The first set of optional fields suvpports the activation of a simulator with an initial
velocity and freeze state. These fields may be particularly useful for initializing aircraft
simulators. The velocity field specifies the vehicle's initial velocity vector (§5.1.28).

If freezeState field is true, the vehicle should be initialized in a "frozen" or

suspended state.

The second set of optional fields supports the initialization of visibility and sky state. It
may only be present if the fist set of optional fields is also present. The VLVisibility
field specifies the visible light visibility in meters. The simulatedSkyColor field is

represented by SkyColor data element which is defined as follows:

type SkyColor enum (8) {

skyColorClear, -~ No cloud cover
skyColorPartlyCloudy, -- 0-50% cloud cover
skyColorPartlySunny, -- 50-100% cloud cover
skyColorOvercast, -- total, light colored cloud cover
skyColorRainy -- total, dark colored cloud cover

}

A simulator that correctly receives an Activate Request PDU must immediately respond
by returning an Activate Response PDU. This PDU is simply an acknowledgement of
receipt; it does not represent that the simulator has successfully completed the activation

process.

An Activate Response PDU includes the following fields in addition to its PDU header:

85

Report No. 7627 BBN Systems and Technologies

type ActivateResponseVariant sequence {
vehiclelD VehiclelD,
result ActivateResult,
unused (8),
timeLimit UnsignedInteger (16),
unused (48)

type ActivateResult enum (8) {
activateRequestAccepted,
invalidActivateParameter,
unexpectedActivateReason,
invalidVehicleldentifier,

terrainDatabaseUnavailable

The result field indicates whether the activation request has been accepted, and, if not,

why not.

If the activation request has been accepted, then the vehicleID field contains the
vehicle identifier of the activated vehicle (§5.1.24). Otherwise, it contains zeros.

The responding simulator may require some period of time before it is able to issue
Vehicle Appearance PDUs for the newly activated vehicle. This will be the case, for
example, if the simulator must perform considerable processing in order to initialize
itself. If the simulator accepts the activation request, and therefore returns a result of
activateRequestAccepted, then it must specify an upper limit for this period of
time. The limit is specified in the t imeLimit field, in units of seconds. If the simulator
does not accept the activation request, and therefore returns a result other than
activateRequestAccepted, then the timeLimit field should contain 0.

7.3.2 Deactivation

A simulator may withdraw its own vehicle from an exercise at any time, or it may be
requested by another simulator (such as an MCC system) to withdraw it through a process
called deactivation. In either case, the withdrawal of the vehicle is announced using a
Deactivate Request PDU. This PDU is used in two ways:

« If a simulation entity is withdrawing its own vehicle, it will eonvey the Deaetivate Request PDU to
all other exercise participants using the underlying datagram service. Those receiving the

Deaetivate Request PDU then eease to dead reckon and display the withdrawn vehicle.

86

- 3
\

B ek G

BBN Systems and Technologies Report No. 7627

« If one simulation entity is requesting that another cease simulating a vchicle, it will convey the
Deactivate ikcquest PDU to the simulating entity using the underlying transaction service. That
entity responds with a Deactivate Response PDU, and ceases simulating its vehicle. Other
simulation entities receiving the same Deactivate Request PDU simply ceasc to dead rcckon and

display the deactivated vehiclc.

In both cases, a multicast group number identical to the exercise identifier is used to

invoke the association service.
A Deactivate Request PDU includes the following fields in addition to its PDU header:

type DeactivateRequestVariant sequence |{
vehiclelD VehiclelD,
reason DeactivateReason,

unused (8)

The vehicleID field contains the identifier of the vehicle withdrawing (§5.1.24).

The reason field indicates the purpose of the deactivation:

type DeactivateReason enum (8) |

deactivateReasonOther, -- none of those listed below
exerciseEnd, -- end of exercise
vehicleWithdrawn, -- vehicle withdrawn from exercise
vehicleDestroyed, -- vehicle no longer exists
towingDeparture -- start of towing operation

A Deactivate Response PDU includes the following fields in addition to its PDU header:

type DeactivateResponseVariant sequence {
vehicleID VehiclelD,
result DeactivateResult,

unused (8)

type DeactivateResult enum (8) {
deactivateRequestAccepted,
invalidDeactivateParameter,
unexpectedDeactivateReason,

vehicleNotActive

87

Report No. 7627 BBN Systems and Technologies

The vehicleID field is identical to that in the corresponding Deactivate Request PDU.
The result field indicates wnether the deactivation request has been accepted, and, if

not, why not.

7.3.3 Appearance and other state updates

State updates are issued periodically by simulators to describe some element of the state
of the system they simulate. A simulator learns of the existence of another simulated
systems when it first receives on of these updates, which may be at any point during an
exercise. State updates are used to describe vehicles, minefields, and radar emissions.
When an update for a given system has not been received for an defined interval of time,
the system is no longer considered to exist (or in the case of radar, to no longer be

emitting).
Vehicle Appearance PDU

A simulator periodically reports information about a vehicle it simulates so that other
simulators may correctly depict that vehicle. Information about the visual appearance of
a vehicle is issued as a Vehicle Appearance PDU describing the vehicle at the moment of
issue. For some types of vehicles, this PDU contains additional information used by
other simulators to dead reckon the vehicle’s appearance from that moment forward.

The underlying datagram service is used to issue a Vehicle Appearance PDU.

A simulator will issue a new Vehicle Appearance PDU for its vehicle whenever the
discrepancy between the vehicle’s actual appearance and its dead reckoned appearance
exceeds one of the discrepancy thresholds defined in chapter 3. It will also issue a new
Vehicle Appearance PDU if 5 seconds (vehicleAppearanceTime) have elapsed
since it issued the last one, to ensure that new simulators joining an exercise will

promptly learn of all existing vehicles.

If a simulator ceases to receive Vehicle Appearance PDUs describing a particular vehicle,

and none are received for a period of 12 seconds (vehicleDisappearanceTime),

hen the simulator may assume that that vehicle no longer exists. (A Deactivate Request
MU also serves to indicate that a vehicle no longer exists.)

A Vehicle Appearance PDU includes the following fields in addition to its PDU header:

88

-r .

BBN Systems and Technologies

type VehicleAppearanceVariant sequence {

-- Identity of the vehicle:

vehiclelD VehiclelD,
vehicleClass VehicleClass,
force ForcelD,

-- Appearance of the vehicle:

guises VehicleGuises,

location WorldCoordinates,

rotation array (3,3) of Float (32),
appearance UnsignedInteger (32),
marking VehicleMarking,

timestamp UnsignedInteger (32),
capabilities VehicleCapabilities,
engineSpeed UnsignedInteger (16),
stationary Boolean,

unused (7).,

-- Reason for issuing the PDU:
reason AppearanceUpdateReason,

-- Depending on vehicle class:

specific choice (vehicleClass) of {

-- A simple moving vehicle, without a turret:
when (vehicleClassSimple) simple sequence {
velocity VelocityVector,

unused (32)
i

-- A tank:

when (vehicleClassTank) tank sequence ({
velocity VelocityVector,
turretAzimuth Angle,

gunElevation Angle,
unused (32)

The vehicleID field identifies the vehicle described by the Vehicle Appearance PDU
(§5.1.24). The force field identifies the force to which it has been assigned (§5.1.7).

Report No. 7627

89

Report No. 7627

BBN Systems and Technologies

The guises field contains two cbject type codes describing the appearance of the

vehicle as viewed from other vehicles (§5.1.23). Which of the two codes ap;lies depends

on what force the observing vehicle has been assigned to. The dependency is explained

in section 2.3.

The vehicle’s position and orientation in the world coordinate system are described by the
location and rotation fields. The location field contains the position, in world
coordinates, of the vehicle’s own coordinate system origin (§..1.29). The elements of the
rotation field, which is a nine element rotation matrix as defined in section 2.4, appear

in the order rq1, r12, 13, r21, ..., r33 (i.e., in row—major order).

The appearance field contains 32 bits describing modifications to the vehicle’s basic

appearance. The convention for assigning bits within this field is to use the low-order 16
bits for vehicle appearance attributes that may apply to many types of vehicle, and to use

the high—order 16 bits for attributes that are specific to certain types of vehicles.” The
bits within this field are presently used as follows (with bit O being the least—significant,

or rightmost, bit’

Name Bits
vehDestroyed 0
vehSmokePlume 1
vehFlaming 2
vehDustCloudMask 3-4
vehMobilityDisabled h]

Purpose
is 1if the vehicle is destroyed, and 0 otherwise

is 1 if a plume of smoke is rising from the vehicle,

and O otherwise

is 1 if flames are rising from the vehicle, and 0

otherwise

describes any dust cloud being raised by the vehicle:

0: no dust cloud

I: small dust cloud

2 medium dust cloud
3 large dust cloud

is 1 if the vehicle appears unable to move

7 If many additional appearance modificr bits are required for newly defined types of vehicles, itis

expected that certain bits will have to bear different meanings according to what type of vehicle they

describe.

90

BBN Systems and Technologles Report No. 7627
vehFirepowerDisabled 6 is 1 if the vehicle appcars unable to shoot
vehCommunicationDisabled 7 is 1 if the vehicle appears unable o communicate
vehShaded 8 is 1 if the vehicle is in shadow
vehTOWLauncherUp 30 is 1 if the vehicle is an M2 or M3 with its TOW

missile launcher raised, and O otherwise

vehEngineSmoke 31 is 1if the vehicle is a T72 emitting engine smoke, and

0 otherwise

1fPositionMask 30-31 represents a soldier stance, if the "vehicle" is
dismounted infantry
0: unknown
3 standing
2 kneeling

3 lprone
All other bits of the appearance field should remain zero.

The marking field describes a vehicle label, such as a bumper number, that may be

visible on the vehicle for some observers (§5.1.25).

The t imestamp field allows a determination of the relative timing of consecutive
Vehicle Appearance PDUs describing the same vehicle. The value of this field is such
that, for any two consecutive Vehicle Appearance PDUs describing the vehicle at times x
milliseconds apart, the t imest amp field of the latter Vehicle Appearance PDU is greater
than that of the earlier by the amount x. In the first Vehicle Appearance PDU produced
for a vehicle in an exercise, the t imestamp field may have an arbitrary value. Section

3.4 explains how the timestamp may be used by a receiving simulator.

The capabilities field describes the vehicle’s capabilities for resupplying,

recovering, and repairing other vehicles (§5.1.19).

91

Report No. 7627 BBN Systems and Technologies

The engineSpeed field contains the vehicle’s engine speed, in revolutions per seconds.
It is present in the Vehicle Appearance PDU to allow simulators to synthesize the sounds

prcduced by nearby vehicles.®

The stationary field, a Boolean, is true if the vehicle’s velocity is zero, and false

otherwise.

The format of the remaining portion of the Vehicle Appearance PDU depends on the

class of vehicle it describes, as represented by the vehicleClass field (§5.1.20). Fora
vehicle of the static class, there are no additional fields. Vehicles of the simple and tank
classes are further described by their velocity vectors, expressed relative to the world
coordinate system in meters per second (§5.1.28). For tank class vehicles, turret azimuth
and gun elevation angles are also present (§5.1.1). The turret 2 zimuth is zero when the
turret is aligned with the front of tiie t2nk, and it increases as the turret rotates
counterclockwise (as viewed when looking down on the tank). The gun elevation is zero

when the gun is parallel with the tank chassis, and it increases as the gun elevates.

A series of consecutive Vehicle Appearance PDUs describes a single vehicle at
consecutive points in time, for the period of time that that vehicle is active. The series
ends when a Deactivate PDU is issued for the vehicle, or when no Vehicle Appearance
PDUs have been issued for 12 seconds (vehicleDisappearanceTime). Only
certain Vehicle Appearance PDU fields are permitted to change from one PDU in the
series to the next. The appearance, rotation, timestamp, engineSpeed, and
speci fic fields may change from one PDU to the next. The location and
stationary fields may only chenge from one PDU to the next if the vehicle is of the
simple class or of the tank class. The vehicleID, vehicleClass, force, guises,
marking, and capabilities fields do not change from one PDU to the next within
the same series. However, these fields may change between one series and the next—i.e.,
between two series of Vehicle Appearance PDUs that refer to the same vehicle identifier,
but tha. are separated by a Deactivate PDU or by a silence of at least 12 seconds

(vehicleDisappearanceTime).

8 At present no discrepancy thresholds are applied to the engine speed attribute of a vebicle's
“appearance”. Fence, changes in engine speed alone do not result in the issuanc~ vi Yehicle

Apnpcarance PDUs.

92

.

BBN Systems and Technologies Report No. 7627

Radar

A Radiate PDU is periodically issued by the simulator of a vehicle possessing a radar. It
reports the set of target vehicles illuminated by the radar—allowing the implementation
of radar warning receivers—and it identifies the subset of those targets that were actually
detected by the radar to aid analysis of an exercise. The Radiate PDU also describes the

location of the radar emitter, and certain characteristics of its signal.

The rate at which Radiate PDUs are issued depends on the type of radar simulated, and
the number of targets illuminated by the radar. If a search radar is simulated, it is
expected that each scan of the radar will result in the issue of a single Radiate PDU—or
several PDUs if all targets cannot be described in a single PDU. If a tracking radar is
simulated, the simulator will issue Radiate PDUs at a fixed rate as long as the radar

continues to track a target; this rate is not currently specified.

A Radiate PDU is issued using the underlying datagram service. In addition to its PDU
header, it includes the following fields:

type RadiateVariant sequence {

vehiclelID VehiclelD,

mode RadarMode,

dutyCycle RadarDutyCycle,

location WorldCoordinates,
carrierFrequency SignalFrequency,

signalPower SignalPower,

antennaGain Float (32),

pulseEnergy Float (32), -- joules
numberIllumed UnsignedInteger (8),
numberDetected UnsignedInteger (8),

targetlID array (numberIllumed) of VehicleID

The vehicleID field includes the identifier of the vehicle containing the radar
(§5.1.24).

Two fields, mode and dut yCycle, characterize the type of radar:

93

Report No. 7627 BBN Systems and Technologies

type RadarMode enum (8) ({
radarModeOther, -- none of those listed below

radarModeSearch,
radarModeAcquisition,

radarModeTracking

type RadarDutyCycle enum(8) {
radarDutyCycleOther, -- none of those listed below

radarDutyCycleContinuous,
radarDutyCyclePulsed

The location of the radar emitter, in world coordinates, is supplied in the 1ocat ion field
(§5.1.29).

The carrierFrequency, signalPower, antennaGain, and pulseEnergy
fields describe the radiated signal. The carrier frequency is specified in hertz:

type SignalFrequency Float (32) -- hertz

The power and energy of the radiated signal are characterized by three values. The power

input to the antenna is specified in watts by the signalPower field:
type SignalFower Float (32) -- waltts

The antenna’s efficiency is specified by the antennaGain field, as a fraction. The
energy of a radar pulse is specified by the pulseEnergy field, in joules.

The t arget ID field contains from O to 33 identifiers of vehicles illuminated by the
radar (§5.1.24).

constant maxRadiateTargets 33

The exact number of vehicle identifiers present is specified by the value of the
numberIllumed field. The vehicle identifiers are ordered so that those vehicles
actually detected by the radar are placed at the front of the list, and the
numberDetected field specifies how many targets there are in this first part of the list.
Of course, the value of the numberDetected field will never exceed the value of the

numberIllumed field.

94

BBN Systems and Technologies Report No. 7627

If necessary, the target ID field is followed by 32 unused bits so that the Radiate
PDU’s overall size is a multiple of 64 bits.

Mine fields

The SIMNET simulated battlefield supports mine fields. These minefields may be
created, cleared, and marked with flags. Three distinct PDUs are used to support
minefields: the Mine Field PDU, Breached Lane PDU, and the Marker PDU. Mine fields
represent the actual mine fields. They are not necessarily detectable without special
equipment. Breached lanes represent areas from which mines have been cleared. Mine
field markers are flags that may be used by troops to mark the boundaries of a mine field.

They are visible to the crews of simulators.

Mine Field PDU

The Mine Field PDU describes an emplaced mine field. A simulator receiving a Mine
Field PDU may use the information to depict the mine field. A Mine Field PDU is issued
whenever a mine field is created and once every 30 seconds (mineFieldTime)
thereafter A simulator may assume a mine field no longer exists if it has not received
any Mine Field PDUs from that particular mine field for a period of 66 seconds

(mineFieldTimeOut).
The Mine Field PDU is issued using the undei'ving datagram service .

A Mine Field PDU includes the following fields in addition to its PDU header:

type MinefieldVariant sequence ({
mines array (maxMineDescriptors) of MineDescriptor,

vertices array (maxMinefieldVertices) of XYCoordinates,
numberOfVertices UnsignedInteger (8),
numberOfMineTypes UnsignedInteger (8},

minefieldID ObjectlID,
emplacementTime Time, -- When the minefield was placed
force ForcelD,

unused (56)
}

The mines field identifies the type and density of mines that make up the mine field.
Each type of mine in the mine field is described by a M1 neDescriptor dataelement of

the following form:

95

Report No. 7627 BBN Systems and Technologies

type MineDescriptor sequence {
mineType ObjectType,
density Float (32}
}

The mineType field identifies the type of mine (§5.1.10) The density field identifies
the areal density of the mineType type of mine in the mine field in units of mines per

square meter.

A maximum of 3 different types of mines may exist in a single mine field:
constant maxMineDescriptors 3

The vert ices field describes the geometry of the mine field. The mine field is
represented as a two-dimensional polygon. Each vertex is described by an
XYCoordinates data element (§5.1.30). The polygon representing the mine field does not
cross itself and no vertex is repeated. The mine field's location in the simulated world is
determined by the projection of the specified polygon onto the surface of the terrain along

the Z axis of the world coordinate system (§2.4).

The numberOfVertices field specifies the number of vertices actually used to
describe the polygon. The polygon may have a maximum of thirteen vertices:

constant maxMinefieldVertices 13

The numberOfMineTypes field specifies the number of different mine types actually
described by the mines field.

The minefieldID field uniquely identifies the mine field described by the Mine Field
PDU (§5.1.9).

The emplacement T ime field indicates the time the mine field was originally
emplaced(§5.1.18). This time corresponds to the time the {irst Mine Field PDU was
issued for this mine field. The emplacement time is required to interpret the effect of

multiple overlapping mine fields and breached lanes.

The force field identifies the force which originally emplaced the mine field (§5.1.7).

96

Soo

[

BBN Systems and Technologies Report No. 7627

Breached Lane PDU

The Breached Lane PD: cribes a path that has been cleared through a mine field. It
may be used by simulators i:apable of sensing mines to indicate this cleared path. A
Breached Lane PDU is issued whenever a breached lane is created and once every 30
seconds (mineFieldTime) thereafter. A simulator may assume a breached lane no
longer exists if it has not received any Breached Lane PDUs from that particular breached

lane for a period of 66 seconds (mineFieldTimeOut).

The Breached Lane PDU is issued using the underlying datagram service. In addition to
its PDU header, it includes the following fields:

type BreachedlaneVariant sequence {

vertices array (4) of XYCoordinates, -- a "lane"
breachedLanelID ObjectlID,

numberOfVertices UnsignedInteger (8},

force ForcelD, -- the force of the breachers
breachTime Time -- when the lane was breached

}

The vertices field specifies the geometry of the breached lane as follows: The
vertices define a three or four sided polygon in the X-Y plane of the world coordinate
system (§5.1.29). The location of the breached lane in the simulated world is the
projection of this polygon onto the surface of the terrain along the Z-axis of the world

coordinate system (§2.4).

The breachedLaneID field uniquely identifies the breached lane described by the
Breached Lane PDU (§5.1.9). The id need only be unique within the exercise specified

in the PDU header.

The numberOfVert ices field specifies the number of vertices in the vertices field.

It must be either three or four.
The force field identifies the force which created the breach lane (§5.1.7).

The breachTime field identifies the time the at which the breach lane was originally
created. This time corresponds to the time the first Breached Lane PDU was issued for
this breachedLaneID. The breach time is required to interpret the effect of multiple

overlapping mine fields and breached lanes.

97

Report No. 7627 BBN Systems and Technologies

Marker PDU

The Marker PDU is used to introduce a static collection of objects (§5.1.10) into the
simulated world. Its primary purpose is to represent the collection of marker flags that
may be used to mark a mine field. A Marker PDU is issued whenever a collection of
markers is created and once every 5 seconds (vehicleAppearanceTime) thereafter.
A simulator may assume a collection of markers no longer exists if it has not ceived any
Marker PDUs from that particular collection of markers for a period of 12 seconds

(vehicleDisappearanceTime).

The Marker PDU is issued using the underlying datagram service. In addition to its PDU
header, it includes the following fields:

type MarkerVariant sequence {

guises VehicrleGuises,

simulator SimulationAddress,

variantNumber MarkerVariantNumber,

numberOfMarkers UnsignedInteger (8),

force ForcelD,

markers array (numberOfMarkers) of MarkerDescriptor

The guises field contains two object type codes(§5.1.23). These object type codes
specify the appearance of all the markers described by the Marker PDU. Which of the
two type codes applies depends on the force (§5.1.7) to which the observer belongs. This
dependency is explained in section 2.3.

The simulator field uniquely identifies the simulator which issued the Marker PDU
(§5.1.13).

The variantNumber field logically groups and orders the markers listed in this Marker
PDU with those in other Marker PDUs issued by the same simulator. The
variantNumber field has the following form:

tyre MarkerVariantNumber sequence {
number UnsignedInteger (8), -- tlLe number of this one

total UnsignedInteger (8) -— out of this many

}

The number field identifies this Marker PDU as the nth member of a group of Marker
PDUs. The total field identifies the total pumber of members of the group. Each

98

BBN Systems and Technologies Report No. 7627

member of the group is uniquely identified by a numb<r field in the range from 1 to the

number of members of the group.

The numberOfMarkers field specifies the number of markers that follow in the

markers field.

The force field identifies the force associated with the markers in this Marker PDU
(85.1.7).

Finally, each individual marker is described by a MarkerDescriptor data element in the

markers field. The MarkerDescriptor data element has the following form:

type MarkerDescriptor sequence {

location WorldCoordinates,
orientation Angle,
identifier UnsignedInteger (16),

unused (16)
}

The location field specifies the location of the marker in world coordinates (85.1.29).

Ths orientation field specifies the orientation of the marker, measured counter-

clockwise with respect to North. The angle is measured in units of BAMs (§5.1.1).

The identifier field uniquely identifies the marker within this simulator. When
combined with the simulator field of the Marker PDU, it uniquely identifies the
marker within the exercise specified in the PDU header. This combination of
simulator and identifier is also unique over 1l vehicle identifiers (§5.1.24) and

object identifiers (§5.1.9) in the same exercise.

7.3.4 Weapons fire

When a simulated vehicle fires its weapon, its simulator will usually issue two PDUs:

« The first, a Firc PDU, is issued when the shell or missile is fired.

« The second, an Impact PDU or Indirect Fire PDU, is issued later, when the projectile detonates.

The Fire PDU describes the type of projectile fired, the location of the muzzle or launcher
from which it is fired, and the velocity of the projectile. This information is used by
simulators receiving the PDU to display a muzzle flash near the appropriate point on the

99

Report No. 7627 BBN Systems and Technologies

firing vehicle. Also present in the Fire PDU to aid analysis of the exercise is information
such as the rate of slew of the turret at the time of firing, the target range used for the fire
control solution, and the kind of ammunition selected by the gunner.

In the case of direct fire where the projectile is either ballistic or it is guided in flight by
the firing soldier or his simulator, the determination of what the projectile hits is done by
the Jring simulator. That simulator then issues an Impact PDU that describes the location
of the projectile’s impact and identifies any vehicle struck. Simulators receiving this
PDU can display the impact and, if ir vehicle is the one siruck, assess a=y resulting

damage.

In the case of indirect fire, the system simulating the howitzer or mortar issues an Indirect
Fire PDU announcing the location of the projectile’s detonation. In contrast with direct
fire, no determination is made by the firing simulator as to which vehicles are hit by the
indirect fire. Instead, each simulator computes its own vehicle’s distance from the
detonation and assesses any damage. Indirect Fire PDUs are also used to describe the

detonations of bombs dropped by aircraft.

Although the Impact PDU and Indirect Fire PDU are optimized for describing the
behavior of direct fire and indirect fire projectiles respectively, either PDU may be used
with any given projectile type. The principle difference between the PDUs is in how a
determination is made of what target vehicles are affected by a projectile. It may be
desirable, for example, to issue an Impact PDU describing the detonation of a missile if it
actually strikes a target vehicle, but to issue an Indirect Fire PDU instead if the detonati.n
occurs some distance from any vehicle. In the former case, the target vehicle’s simi:lator
can assess its vehicle’s damage most accurately, while in the latter case, the detonation

can have an effect on several nearby vehicles.

Sometimes the protocol for a weapons engagement involves an Indirect Fire PDU but no
preceding Fire PDU. This case arises, for example, when bombs are released by an
imaginary aircraft that is not included in the simulation. When the bombs detonate, an
Indirect Fire PDU is produced to describe them.

It is also possible for a round to be fired, yet never impact. This occurs, for example,
when a round is fired outside the area of defined terrain. In such a case, an Impact PDU
or Indirect Fire PDU is used to report the “nonimpact” of the round so that its disposition

is never ambiguous.

100

NE 0N N TN T B BE G B B T B e

-~

BBN Systems and Technologies Report No. 7627

Fire PDU

A Fire PDU describes the firing of a shell, a burst of machine gun fire, or a missile. It is
issued by the firing simulator, and may be used by the simulators that receive it to display

a muzzle flash at a location specified in the PDU.

A Fire PDU is issued us’ .g the underlying datagram service. In addition to its PDU
header, it includes the following fields:

type FireVariant sequence {

-- Common to all shell and missile firings:

attackerlID VehiclelD,
eventID EventID,

burst BurstDescriptor,
target TargetDescriptor,
velocity VelocityVector,
muzzle WorldCoordinates,
projectilelID VehiclelD,

unused (8),

fireType FireType,

-- Depending on whether a shell or a missile is fired:

specific choice (fireType) of {

-- If a shell is fired:
when (fireTypeShell} shell sequence {
range Float (32},
slewRate Float (32),
ammoSelected ObjectType,
unused (32)

).
-- If a missile is fired:
when (fireTypeMissile) missile sequence {

tube UnsignedInteger (8),
unused (56)

The attackerID field identifies the firing vehicle (§5.1.24).

101

Report No. 7627 BBN Systems and Technologies

The event ID field contains an event identifier generated by the firing vehicle’s
simulator (§5.1.5). It must be unique among all such identifiers generated for that vehicle
since it joined the exercise. This same identifier is repeated in the subsequent Impact
PDU or Indirect Fire PDU that reports the impact of the fired round.

The burst field identifies the kind of projectile and detonator fired, the number of

rounds contained in a machine gun burst, and the rate of fire (§5.1.4).

The target field describes what the firing simulator knows about the target being fired
upon (§5.1.16). It indicates whether the target is known, and, if so, whether itisa
vehicle. If the target is known and it is a vehicle, the identifier of that vehicle is included
in the field.

The muz zle field contains the location of the gun or missile launcher muzzle in world
coordinates (§5.1.29). The velocity of the projectile icaving that muzzle is specified by
the velocity field, in units of meters per second (§5.1.28). The vector is expressed in

world coordinates (§2.4).

While modeling the flight of a projectile such as a missile, a simulator may produce
Vehicle Appearance PDUs describing the appearance of the projectile. The
projectilelD field allows the firing simulator to specify a vehicle identifier it will be
associating with the projectile in order to report its appearance as a vehicle (§5.1.24). If
the firing vehicle’s simulator will not be producing Vehicle Appearance PDUs describing

the travelling projectile, it places zeros in the projectileID field.

The fireType field classifies the kind of ammunition fired as a shell or a missile. The

values of this field are:

type FireType enum (8) {
fireTypeShell (1),
fireTypeMissile (2)
}

A machine gun burst is classified as fireTypeShell.

The format of the remaining portion of the PDU depends on whether the fireType field
indicates that a shell or a missile is being fired. If a shell is being fired, the range,
slewRate, and ammoSelected fields are present. The range field specifies the

range (in meters) that the vehicle’s fire control system has assumed in computing its

102

BBN Systems and Technologies Report No. 7627

ballistic solution. The M1 tank simulator, for example, reports the range displayed in the
gunner’s sight. The slewRate field specifies the rate at which the vehicle’s gun is
slewing relative to the world coordinate system, in revolutions per second. The
ammoSelected field specifies the type of ammunition that the vehicle’s fire control
system has assumed is being fired (§5.1.10). The M1 tank simulator, for example, reports
the setting of the gunner’s ammunition select switch.

Alternatively, if a missile is being fired, the tube field is present in the PDU. It specifies
the tube from which the missile is being launched.

Impact PDU

An Impact PDU is issued by a simulator when the flight of a projectile it is simulating,
ends. It may or may not describe an impact between the projectile and a particular, target

vehicle. The PDU serves two purposes:

« Itinforms other simulators of the projectile’s detonation so that they may produce the appropriate

visual and aural effects.
+ It may identify a specific target vehicle struck by the projectile so that the target vehicle’s

simulator can nodel the resulting damage.

There are two alternate ways in which the Impact PDU may be issued:

If the projectile did not strike a target vehicle, or if it struck a target vehicle being simulated by the
same simulator as that simulating the projectile, then the Impact PDU is issued using the
underlying datagram service.

« Otherwise, (when the projectile struck a target vehicle being simulated by another simulator) the
Impact PDU is issued using the underlying transaction service. The target vehicle’s simulator is
identified as the transaction’s respondent. The response returned through via the transaction

service contains no simulation PDU.

An Impact PDU includes the following fields in addition to its PDU header:

103

.

Report No. 7627 BBN Systems and Technologies

type ImpactVariant seguence {

-- For any round fired:

attackerID VehiclelD,
eventID EventID,

burst BurstDescriptor,
projectilelID VehiclelD,
result FireResult,

unused (8},

-- For projectiles that impact somewhere:

momentum Float (32), -- newtoneseconds
energy Float (32), -- joules
directiorality Float (32), -- steradians
location WorldCoordinates,

range Float (64),

-- For shots that strike a particular vehicle:

targetID VehiclelD,
component VehicleComponent,
impact VehicleCocrdinates,
trajectory VehicleCoordinates

The attackerID field identifies the firing vehicle (§5.1.24).

The event ID field contains the same event identifier as that supplied by the firing
simulator in the preceding Fire PDU (§5.1.5). This identifier, in conjunction with the
firing vehicle’s identifier, serves to associate corresponding pairs of Fire PDUs and
Impact PDUs.

The burst field identifies the kind of projectile and detonator fired, the number of
rounds contained in a machine gun burst, and the rate of fire (§5.1.4). It is identical to the

burst field of the corresponding, preceding Fire PDU.

If the appearance of the fired projectile was described during its flight by a series of
Vehicle Appearance PDUs, then the projectilelID field contains the vehicle identifier
used for the projectile (§5.1.24). Otherwise, the projectileID field contains zeros.

The result field indicates what has become of the fired round:

104

Ex¥

BBN Systems and Technologies Report No. 7627

type FireResult enum (8) {

nonImpact (1), -- the projectile did not impact
groundImpact (2), -- the projectile struck terrain
vehicleImpact (3), -- the projectile struck a vehicle
proximateImpact (4) -- the projectile "struck” a vehicle

-- in proximity fused detonation

If the projectile was “lost” (e.g., it flew outside the area of defined terrain), then the
result field will have the value nonImpact, and the remaining fields of the PDU are

unused.

Otherwise, the 1ocat ion field specifies the point at which the projectile impacted either
a vehicle or the terrain (§5.1.29), and the range field specifies the straight-line distance
from muzzle to impact. The moment um and energy fields specify the impact
momentum and explosive energy of the projectile, in newton-seconds and joules
respectively. The directionality of the projectile’s explosion is described by the
directionality field, which specifies a solid angle in steradians. For a highly
directional explosion, directionality will be small; for a spherically symmetrical

explosion, directionality will be 4m.

Only if the projectile impacted a vehicle are the target ID, component, impact, and
trajectory fields used. The t arget ID field identifies the vehicle struck (§5.1.24).
The compor.ent field specifies which component of the target vehicle was struck. The
impact field specifies the location at which the vehicle was struck, represented in its
own vehicle coordinate system, as determined by the simulator producing the Impact
PDU (§5.1.22). The trajectory field specifies the incident velocity of the projectile,
also represented in the target vehicle’s own coordinate system, in meters per second.

Indirect Fire PDU

The impacts of shells fired by howitzers or mortars, or the detonations of bombs dropped
from aircraft, are described by Indirect Fire PDUs that are issued by the simulators
modeling those artillery pieces or aircraft. A single Indirect Fire PDU can describe
several bomb or shell detonations, specifying a location and time for each detonation. In
contrast to the Impact PDU, this PDU does not idéntify the particular vehicle/s) affected
by tlie detonations; every simulator computes its own vehicle’s distance from the

explosions in order to assess any damage.

Report No. 7627 BBN Systems and Technologies

Each detonation is described within the PDU by an Indirect Fire Detonation data element

of the following form:

type IndirectFireDetonation sequence {

location WorldCoordinates,
attackerlID VehiclelD,

eventID EventlID,

delay UnsignedInteger (16),

unused (40)

The location field of this object specifies the location of the detonatinn in world
coordinates (§5.1.29). The use of the other two fields depends somewhat on the type of
detonation being described. If the detonation is that of a shell fired by a moriar or
howitzer, the attackerID field identifies the firing vehicle (§5.1.24), andi the

event ID field contains the event identifier used in the Fire PDU that previously reported
the firing (§5.1.5).

Alternatively, if the detonation is that of a bomb, the at tackerID field contains the
vehicle identifier of the aircraft dropping the bomb. As there will be no preceding Fire
PDU, the event ID field will be a new event identifier generated by the simulator

modeling that aircraft.

In either case, the vehicle component of the attackerID vehicle identifier may
instead contain zero if that firing vehicle or aircraft is purely notional (as is the case for
close air support aircraft simulated by an MCC system).

A delay value is associated with each of the detonations described in the PDU. It
specifies the amount of time, in milliseconds, by wkhich that detonation follows the
previous detonation. (The first delay value is the amount of time by which the first
detonation follows issuance of the PDU.)

An Indirect Fire PDU is issued using the underlying datagram service.

Several detonations of the same kind may be described in a s ct Fire PDU,
which includes the following fields in addition to its PDU heu

LS

BBN Systems and Technologies Report No. 7627

type IndirectFireVariant sequence {

burst BurstDescriptor,
unused (32),
detonations array (burst.quantity) of

IndirectFireDetonation

The burst field identifies the kind of projectile and fuze fired, and the number of
detonations described by this PDU (§5.1.4). The rate component of the Burst
Descriptor data element is not used and should contain the value

burstRatelrrelevant.

A single Indirect Fire PDU may describe up to five detonations.

constant naxIndirectFireDetonations 5

7.3.5 Collisions

A Collision PDU is used to report collisions between vehicles. It serves two purposes: it
ensures that when two vehicles collide, both are aware of the collision; and it allows the

cause of vehicle damage to be identified.

There are two ways in which the Collision PDU is used:

« When any simulator becomes aware of a collision between its vehicle and a vehicle simulated
elsewhere, it notifies the other simulator by using the underlying transaction service (o convey a

Collision PDU.

e When a simulator simulates a collision between two vehicles that it is both simulating, it reports

the event by using the underlying datagram service to issue a Collision PDU.

Of course, only moving vehicles may cause collisions. The simulator of a moving
vehicle must constantly check for collisions between its vehicle and either features of the
terrain or other vehicles around it. However, the simulator of a vehicle that does not
move (such as an MCC system simulating only static class vehicles) need not perform
this processing. Instead it can learn of collisions involving its vehicle by listening for

Collision PDUEs.

A Collision PDU includes the following fields in addition to its PDU header:

107

Report No. 7627 BBN Systems and Technologies

type CollisionVariant sequence ({

vehiclelID VehiclelD,
eventID EventID,
targetID VehiclelD,

unused (16)

The vehicleID field identifies the vehicle whose simulator detected the collision
(85.1.24). That simulator will generate a unique event identfier and report it in the
eventID field (§5.1.5). The target ID field identifies the other vehicle involved in the

collision.

When a Collision PDU is issued using the supporting transaction service, it is issued as a
transaction request; no simulation PDU is returned with the correspording transaction

response.

7.3.6 Transfer of munitions

The simulation protocol provides a mechanism for transferring munitions, such as fuel or
ammunition, between vehicles that are being modeled by separate simulators. For
example, the protocol allows ammunition carriers and fuel tankers to resupply combat
vehicles, and it allows combat vehicles to cross-level their ammunition loads among

themselves.

The two vehicles participating in a transfer of munitions are referred to as the supplier
and the receiver. The behavior of each is described by the state diagrams shown in
figures 7-1 and 7-2. Briefly, the procedure is carried out as follows. At the beginning of
the procedure, both the supplier and the receiver are in their respective ready states when
the receiver notices a nearby vehicle capable of supplying it. The receiver transitions to
requesting state upon requesting some munitions from the supplier, and it remains in that
state while awaiting a reply to its request. When the reply arrives with an offer of
munitions the receiver transitions to receiving state, and remains in that state for whatever
time is required to load some portion of the offered munitions. After that time has
elapsed, the receiver returns to ready state and sends an acknowledgement to the supplier
for the portion of munitions taken. The supplier, meanwhile, waits in offering state from
the time it offers the munitions until the time an acknowledgement is received from the

receiver for some portion of those munitions.

We now describe this procedure in greater detail.

108

BBN Systems and Technologies

Report No. 7627

The procedure is initiated by a simulator (that of the receiver) issuing a Service Request
PDU when it finds that the following conditions are all true:

» The receiver is in ready state.

Requesting
State

Reguest Munitions

Cancal Requast Rejact Offer

A

Repeat Request

Transition

Request Munitions

Cancel Request

Repeat Request

Receive Offer

Reject Offer

Accept Munitions

State

(Ready
A

\ Accept Munitions

Raceive Offar Receiving
State

Condition and Action
When eonditions for resupply are met, issue a Serviee Request PDU
and set a timer to 5 seconds (serviceRequestTime).

When eonditions for resupply are no longer met, eaneel the timer.

When the timer expires, re-issue the Service Request PDU and reset the

timer to 5 seconds (serviceRequestTime).

When a Resupply Offer PDU is received, set the timer to the period

required for receiving some increment of munitions.

When conditions for resupply are no longer met, issue a Resupply

Caneel PDU and cancel the timer.

When the timer expires, increment the count of munitions on board and

issue a Resupply Reeeived PDU.

Figure 7-1. Receiver behavior during a transfer of munitions

109

Report No. 7627 BBN Systems and Technologles

Offer Munitions

Offering
State

Ready
State

Transter Complste

\— Transfer Cancsled

Transter Abandoned

FEISELY

ansiti Condition and Action
Offer Munitions When a Service Request PDU is received, issue a Resupply Offer PDU

and set a timer to 1 minute (resupplyTime).

Transter Complete When a Resupply Received PDU is received, cancel the timer and

decrement the count of munitions on board.
Transfer Canceled When a Resupply Cancel PDU is received, cancel the timer.

Transfer Abandoned When the timer expires.

Figure 7-2. Supplier behavior during a transfer of munitions.

110

e The receiver has the capacity for additional munitions, and it has identified a nearby vehicle
capable of providing those munitions. For example, the receiver nceds ammunition and a nearby
vehicle has identified itself as an ammunition supplier by setting the ammunitionSupplier bit

in the capabilities field of its Vehicle Appearance PDU (§5.1.19).

» The potential supplier is within an appropriaie distance. For example, a fuel or ammunition truck

must be within 30 meters of the M1 tank in order to supply it.
» Bothreceiver and supplier are stationary.

» Neither receiver nor supplier are destroyed.

E R = N E EE PE N e

BBN Systems and Technologies Report No. 7627

« The transfer of munitions has been enabled by any necessary crew action appropriate to the
receiver. For example, the transfer of ammunition to the M1 main battle tank is enabled when its

crew sel an ammunition resupply/distribution switch to a position labelled RECV.

Any of the above conditions pertaining to the supplier can be tested using information
made available by the supplier’s simulator in the form of Vehicle Appearance PDUs.
When all conditions are satisfied, the receiver’s simulator issues a Service Request PDU
identifying the receiver, the potential supplier, and the kinds of munitions desired. Upon

issuing the PDU, the receiver transitions to its requesting state.

A simulator that receives the Service Request PDU, and notices that its own vehicle is
identified as the supplier, may respond by offering some portion of whatever munitions
are currently loaded on that venicle. In figure 8, this is shown as a transition from ready
state to offering state. Meanwhile, the receiver’s simulator re—issues its Service Request
PDU every 5 seconds (serviceRequestTime) until such an offer is forthcoming. The
offer takes the form of a Resupply Offer PDU issued by the supplier’s simulator. It
identifies the supplier, the receiver, and the quantities of various munitions offered. The
munitions offered will be a subset of those possessed by the supplier, and a subset of

those requested by the receiver.

Upon receiving the offer of munitions, the receiver changes from requesting state 1o
receiving state. The receiver then has up to 1 minute (resupplyTime) to acknowledge
the receipt of those munitions by returning to the supplier a Resupply Received PDU
listing the exact munitions taken. The receiver need not accept all of the munitions
offered, but instead can indicate in its receipt just how much it did accept. After delaying
for up to 1 minute, the receiver issues its Resupply Received PDU and returns to ready
state. When the supplier receives the Resupply Received PDU it also returns to ready

state, and the procedure is complete.

The time required for the receiver to return the Resupply Received PDU, and the amount
of munitions reported by that PDU as taken, determine the rate at which the supplier and
receiver are able to transfer munitions. For example, an M1 tank obtaining 105 mm
shells from an ammunition supply truck will acknowledge receipt of a single round after
40 seconds; this results in a simulated rate of resupply for the M1 tank of one round every

40 seconds.

111

Report No. 7627 BBN Systems and Technologies

Throughout the transfer process, botl: the receiver’s and the supplier’s simulators
continue to monitor the conditions necessary for the transfer. If any of these conditions
ceases to hold, either simulator can abort the transfer by issuing a Resupply Cancel PDU
with the result that no munitions are transferred. Alternatively, the receiver can terminate
the transfer early but accept some of the munitions offered by issuing a Resupply
Received PDU for the partial load. Finally, if the supplier waits in offering state for a full
minute (resupplyTime) but receives no Resupply Received PDU (perhaps because the
receiver has withdrawn from the exercise), it should return to ready state and assume that

no munitions were taken.?

The Service Request PDU, Resupply Offer PDU, and Resupply Received PDU are all of
the same format. They identify the two participants in the transfer of munitions, and they
list the munitions requested or transferred. These PDUs include the following fields in
addition to their PDU headers:

type ResupplyVariant sequence {

receiverlD VehiclelD,
supplierID VehiclelD,
vehicleType ObjectType,
simulatorType SimulatorType,

unused (40),
numberMunitions UnsignedInteger (8),
munitions array (numberMunitionsj of MunitionQuantity

The receiverID and supplierID fields identify the receiving and supplying
vehicles (§5.1.24). The vehicleType and simulatorType fields are used only for Service
Request PDUs, where they identify the type of the receiving vehicle and the type of its
simulator (§5.1.10 and §5.1.14). In Resupply Offer PDUs and Resupply Received PDUs,
these fields contain zeros.

9 With the supply transfer protocol we have defined it is possible—although unlikcly—that the supplicr
and receiver may disagree as to whether any suppiies have been transferred. This situation will occur
if a Resupply Received PDU becomes corrupted in transit, or if the supplier sends a Resupply Cancel
PDU at the moment the receiver sends a Resupply Received PDU. These occurrences are too

improbable to warrant the use of the morc complex protocol that is necessary (o prevent them.

112

BBN Systems and Technologies Report No. 7627

The remaining portions of these PDUs list quantities of various types of “aunitions,
representing each with a Munition Quantity data element (§5.1.8). The
numberMunitions field reports the number of different types of munitions in this list,
which may range from 0 to 28. Note that in a Service Request PDU soliciting munitions,
there should always be at least one Munition Quantity data element present.

constant maxResupplyMunitions 28
The Resupply Cancel PDU includes the following fields in addition to its PDU headcr:

type ResupplyCancelVariant sequence {
receiverID VehiclelD,
supplierID VehiclelD,
unused (32)

}

The receiverID and supplierID fields identify the receiving and supplying
vehicles (§5.1.24).

The Service Request PDU, Resupply Offer PDU, Resupply Received PDU, and Resupply

Cancel PDU are all issued using the underlying datagram service.

7.3.7 Repairs

The simulation protocol allows one vehicle to be repaired by the crew of another. This
feature is used to simulate maintenance teams that can reach disabled combat vehicles

and carry out repairs to them under the direction of maintenance personnel. For a repair
to be successfully performed, the maintenance team must remain with the disabled
vehicle for a period of time determined by the nature of the repair. Once that period has
elapsed, the repair is entirely accomplished. However, if the process is aborted before the
necessary period has elapse.!—perhaps due to the departure of the maintenance team— ‘
then no repair is performed and the combat vehicle is left in its initial state. There are no

partial repairs.

We call the vehicle being repaired the receiver, and the vehicle whose crew is performing
the repair, the supplier. The receiver’s simulator is responsible for recognizing a nearby,
potential supplier of repairs, and for identifying the times during which repairs can be

113

Report No. 7627 BBN Systems and Technoiogies

carried out. It does this by checking, every 5 seconds (serviceRequestTime),

whether the following conditions are all true:

» The potentiaj supplier is within an appropriate distance. For example, a maintenance team’s

vehicle must be within 30 meters of the M1 tank in order to repair it.
» Both receiver and supplier are stationary.
s Neither receiver nor supplier are destroyed.
» The performance of repairs has been enabled by any necessary crew action appropi:ate to the

receiver. For example, the crew may be required to shut off their vehicle.

Any of the above conditions pertaining to the supplier can be tested using information
made available by the supplier’s simulator in the form of Vehicle Appearance PDUs.

If all conditions are satis{ied, the receiver’s simulator issues a Service Request PDU using
the underlying dataram service. This PDU, whose format is defined in the previous

section, carries the following information:
» The receiverID field identifies the vehicle soliciting service (the receiver).
» The supplierID field identifies the vehicle from which service is sought (the supplier).
» The vehicleType field identifies the type of vehicle soliciting service.
*» The simulatorType field idzutific the type of simulator modeling that vehicle.

» The numberMunitions field is 0, and the PDU contains no Munition Quantity data elements.

The receiver’s simulator repeats its test of conditions every 5 seconds
(serviceRequestTime), and each time it reissues the Service Request PDU if all

conditions hold.

A simulator that receives the Service Request PDUs and notices that its own vehicle is
identified as the supplier can allow tne crew of its vehicle to perforn» a repair on the
receiver. Any repair should be consistent with both the type of the receiver, and the type
of the simulator modeling the receiver. As long as Service Request PDUs continue to be
received, the repair process may be allowed to proceed. However, if Service Request
PDUs cease to be received and are not seen for a period of 12 seconds
(serviceCancelTime), the supplier’s sinulator must assume that the conditions listed

above are no longer all true. It must therefore abort the repair process.

114

BBN Systems and Technologies Report No. 7627

If the repair process successfully runs to completion, the supplier may then accomplish
the repair by issuing a Repair Request PDU to notify the receiver of the repair. The
receiver’s simulator acknowledges receipt of the Repair Request PDU by returning a
Repair Response PDU. (This acknowledgement simply indicates that the repair was
performed, not that the repair was appropriate or that the disabled vehicle has become

well because of the repair.) These two PDUs are exchanged using the underlying

transaction service.
The Repair Request PDU includes the following fields in addition to its PDU header:

type RepairRequestVariant sequence {

receiverlID VehiclelD,
supplierID VehiclelID,
eventID EventlID,

repair RepairType

}

The receiverID field identifies the disabled vehicle, and the supplierID field
identifies the maintenance team (§5.1.24). A unique event identifier is generated by the

supplier’s simulator and reported in the event ID field (§5.1.5).

The repair field identifies the type of repair performed (§5.1.12). The value of this
field is interpreted according to the type of vehicle repaired, and the type of simulator
modeling that vehicle. Repair codes appropriate to various types of vehicles and

simulators are listed in appendix D.
The Repair Response PDU includes the following fields in addition to its PDU header:

type RepairResponseVariant sequence ({

receiverlD VehiclelD,
supplierlID VehiclelD,
result RepairResult,

unused (24)

type RepairResult enum (8) {
repairRequestAccepted,

invalidRepairType

115

Report No. 7627 BBN Systems and Technologies

The contents of the receiverID and supplierID fields are identical to those of the
corresponding Repair Request PDU. The result field indicates whether the repair
request has been accepted, and, if not, why not.

116

i Ik EE W N BN IS BN W D BN By NG O Ee B ey

BBN Systems and Technciogies

Report No. 7627

117

Report No. 7627 BBN Systems and Technologies

8 DATA COLLECTION PROTOCOL

The data collection protocol is used to report, via the network, information about the
simulated world. Whereas the simulation protocol conveys information of interest to
simulators, the data collection protocol conveys additional information that is primarily of

use to:

» Analysts who may be studying an exercise.

< Systems that must monitor the state of an exercise in order to restart it or resume it after some

interruption.

8.1 Data collection protocol data units

The data collection protocol makes use of several kinds of protocol data units. All data
collection PDUs have a length that is an integral multiple of 64 bits, and all begin with a
common 64-bit header. Included in this header is a code indicating the kind of PDU

present:

type DataCollectionPDUKind enum (8) {

exerciseStatusPDUKind (1), -- Exarcise Status PDU
simulationStatusPDUKind (2), -- Simulation Status PDU
vehicleStatusPDUKind (3), -- Vehicle Status PDU
statusQueryPDUKind (4), -- Status Query PDU
statusResponsePDUKind (5), -- Status Response PDU
statusChangePDUKind (6), -- Status Change PDU
laserRangePDUKind (7), -- Laser Range PDU
eventFlagPDUKind (8) -- Event Flag PDU

PDUs containing an unknown kind field should be ignored. Kind values in the range of

129 to 255 are reserved for temporary or experimentnl use.

Following the PDU header is a portion whose format depends on the kind of PDU. The

overall content of a PDU is;

118

BBN Systems and Technologies Report No. 7627

type DataCollectionPDU sequence {

version DataCollectionProtocolVersion,
kind DataCollectionPDUKind,
exercise ExerciselD,

unused (40),

variant choice (kind) of {

when (exerciseStatusPDUKind)

exerciseStatus ExerciseStatusVariant,

when (simulationStatusPDUKind)

simulationStatus SimulationStatusVariant,

when (vehicleStatusPDUKind)
vehicleStatus VehicleStatusVariant,

when (statusQueryPDUKind)
statusQuery StatusQueryVariant,

when (statusResponsePDUKind)

statusResponse StatusResponseVariant,

when (statusChangePDUKind)
statusChange StatusChangeVariant,

when (laserRangePDUKind)
laserRange LaserRangeVariant,

when (eventFlagPDUKind)
eventFlag EventFlagVariant

The version field specifies the version of data collection protocol to which the PDU
pertains. Use of this field allows new versions of the data collection protocol to be
introduced without disruption to existing implementations. The data collection protocol
described in this report has version number 3:
type DataCollectionProtocolVersion enum (8) {
dcProtocolVersionAug89 (1),

dcProtocolVersionJan90 (2),

dcProtocolVersionJan90Corrected (3)

The exerciselID field identifies the exercise to which the PDU pertains (§5.1.6).

119

Report No. 7627 BBN Systems and Technologies

8.2 Use of association sublayer services

Data collection PDUs are conveyed among simulators using the services of the
association sublayer defined in chapter 6. A single PDU is issued through a single
invocation of either the A-Datagram.req service primitive or the A-Transact.req service
primitive. The discussion of protocol procedures, below, specifies whuch of these two

service primitives is used in each case.

To distinguish the data collection protocol from other protocols .'sing the association
sublayer, the data collection protocol is assigned a unique association sublayer user

protocol number. This number is 2:

constant dataCollectionProtocolNumber 2

Most data collection protocol interactions among simulation entities take place within the
context of a particular simulation exercise. Associated with an exercise is an exercise
identifier, which distinguishes it from other, concurrent exercises. With but one
exception noted below, the interactions associated with a particular exercise are carried
by the association service using a multicast group number that is identical to the
exercise’s identifier. This allows simulation entities to receive information only about the

exercises of interest to them by subscribing only to selected multicast groups.

The one exception to the rule stated above on the use of exercise identifiers as multicast
group numbers occurs with the protocol interaction used to query simulation entities
about the exercises they are participating in. That protocol interaction may be performed
using the multicast group number O (a group that includes all simulation entities) to
ensure that a simulation entity may be queried regardless of which multicast groups it has

already subscribed to.

The transaction service of the association sublayer allows a respondent to specify whether
a particular response should be cached for retransmission. This service element is chosen
using the cache-response parameter of the A—Transact.rsp service primitive. Use of this
feature for data collection protocol interactions is optional in each case, unless specified

otherwise in the following description of that protocol interaction.

120

e

BBN Systems and Technologies Report No. 7627

8.3 Protocol procedures

The data collection protocol is logically divided into two distinct protocol prozedures,
each of which provides a related set of functions. One protocol procedure provides for
reporting information about the internal state of simulators. Another provides for
reporting interesting events. The two sets of protocol functions are described in separate

sections, below.

All protocol procedures involve the exchange of PDUs among simulation entities using
services of the association sublayer. For brevity, we sometimes use the term simulator in
this section when referring to simulation entities. When describing use of the association
sublayer, however, we generally revert to the more correct term, simulation entity.
Moreover, we usually shorten “the transaction service of the association sublayer” to “the

underlying transaction service”.

8.3.1 Status reports

One purpose of the data collection protocol is to allow information to be obtained about
the conditions of an exercise and the state of simulators to supplement that which is
already available via the simulation protocol. The data collection protocol requires
simulators to periodically report internal state information, as well as to report this

information in response to certain prompting PDUs.

In the following sections, we first describe the PDUs that are used by simulators to report

information. We then describe the conditions under which these PDUs are issued.

Exercise Status PDU

An Exercise Status PDU describes the conditions being simulated in an exercise. In
addition to its PDU header, the PDU includes the following fields:

121

Report No. 7627 BBN Systems and Technologies

type ExerciseStatusVariant sequence {

-- Times:
realTime Time,
simulatedTime Time,

-- The terrain database chosen for the exercise:

terrain TerrainDatabaselD,

-- The battle scheme chosen for the exercise:
battleScheme BattleScheme,

-- Weather conditions:
simulatedSkyColor SkyColor,
unused (16),

VLVisibility Float (32), -- visibility in visible light in meters

The PDU’s header identifies the exercise described by the PDU (§5.1.6).

The realTime and simulatedTime fields report the real (actual) time, and the
simulated time, as of the moment the PDU is issued (§5.1.18). The terrain upon which
the exercise is taking place is identified by the terrain field (§5.1.17). How force
identifiers and guises are being used is identified by the batt leScheme field (§5.1.2).
The weather conditions are described by the simulatedSkyColor and
VLVisibility fields. These two fields are used in the same manner as in the Activate
Request PDU (§7.3.1).

Simulation Status PDU

A Simulation Status PDU describes the role a particular simulator is performing in an
exercise, and the parameters according to which it is conducting its simulation.

A Simulation Status PDU includes the following fields in addition to its PDU header:

122

N - BN N A N N B B B DN e e T W

BBN Systems and Technologies Report No. 7627

type SimulationStatusVariant sequence {
simulator SimulatorType,
numberUnits UnsignedInteger (8),

unused (8),

-- Times:

exerciseEntryTime Time,
realTime T.ime,
simulatedTime Time,

-- The terrain database used by the simulator:

terrain TerrainDatabaselD,

-- The organizational units simulated.
units array {(numberUnits) of OrganizationalUnit,

-- Simulator-specific information:

specific choice {(simulator) of {

when (simulator SIMNET MCC)
simnetMCC SIMNET_ MCC_Status,

The simulator field describes the type of simulator (§5.1.14), and the PDU’s header
identifies the exercise in which it is participating (§5.1.6). Three fields are included for
reporting tiines (§5.1.18):

exerciseEntryTime is the real time at which the simulator became a

participant in the exercise.

realTime is the rcal time at which the PDU is issued.

simulatedTime is the simulated time at which the PDU is issued.

Any of these three fields may contain 0 if its correct value cannot be determined by the

simulator.

The terrain field identifies the terrain database being used by the simulator, by name
and version number (§5.1.17). In this use of the Terrain Database ID data element, the
version number reported in the terrainvVersion field of that data element may not be

the value latestTerrainVersion (defined as 0).

123

Report No. 7627 BBN Systems and Technologies

The units field is an array that lists the organizational vnits being modeled by the
simulator. Each array entry is an Organizational Unit data element that identifies one unit
and specifies the force to which the unit is assigned (§5.1.11). If individual components
of a unit are assigned to different forces, the force field of its Organizational Unit data
element contains the value forceIDIrrelevant (defined as 0). The number of units
described is specified by the numberUnits field.

The last portion of the PDU may contain information specific to the type of simulator
reporting. At present one variant is defined, for use by the SIMNET MCC system:

type SIMNET MCC Status sequence |{

-- Whether various optional elements are being simulated:

optienTOC Boolean, -- Tactical Operations Center
optionAdminLog Boolean, == Admin/Log Center
optionBnHQTanks Boolean, -- Bn HQ tank section
optionScoutPlt Boolean, ~- scout platoon

optionFSE Boolean, -- fire support element
optionALO Boolean, -- air liaison officer
optionCSsSs Boolean, -- combat service support
optionCE Boolean, -- combat engineering

unused (56)

The Boolean fields labelled opt 1onTOC through opt i onCE specify whether various
optional elements that the MCC system can simulate are actually enabled for use in the

exercise. A bitis 1 if its corresponding element is enabled, and 0 otherwise.
Vehicle Status PDU

The status of an individual vehicle is reported using a Vehicle Status PDU. In addition to
its PDU header, the PDU includes the following {iclds:

type VehicleStatusVariant sequence {
vehiclelD VehiclelD,
unused (16),
unit OrganizationalUnit,
status VehicleStatus,
unused (32)

124

BBN Systems and Technologies Report No. 7627

The PDU’s header identifies the exercise in which the vehicle is participating (§5.1.6).

Its vehicle identifier is contained in the vehicleID field, and the unit field specifies
the force and organizational unit to which the vehicle has been assigned (§5.1.11). The
operational status of the vehicle, the health of each of its subsystems, and the quantities of

various supplies it carries are all represented in the status field (§5.1.26).

When status is reported

Certain status PDUs (Exercise Status, Simulation Status , and Vehicle Status PDUs)
contain information that is essential for restarting a simulator after an equipment failure,
or for restoring an exercise to earlier conditions. These PDUs are issued at regular
intervals chosen according to the volatility and quantity of the information represented.
They are also issued in response to queries, as described later in this section. All
simulators respond to the appropriate queries, but some also issue status PDUs at regular

intervals according to the following conventions:

« Acrewed vehicle simulator that models its vehicle’s individual munitions stores and subsystems
issues a Vehicle Status PDU every 30 seconds (vehicleStatusTime) toreport the state of that
vehicle.

« A simulator that does not model the internal stores and subsystems of a vehicle need not

periodically issue Vehicle Status PDUSs for that vehicks,

« A simulator that models an entire organizational unit issues a Simulation Status PDU every 5

minutes (simulationStatusTime) to identify its role.

« A simulator that does not model an entire organizational unit need not periodically issue

Simulation Status PDUs.
e Exercise Status PDUs are not issued periodically by any simulator (they arc issued only in

response to queries).

A status PDU is also issued by a simulator in response to an appropriate query in the form:
of a Status Query PDU. A Status Query PDU includes the following fields in addition to

its PDU header:

125

Report No. 7627 BBN Systems and Technologies

type StatusQueryVariant sequence {

-- Specifying the type of response sought:
responseKind DataCollectionPDUKind,

-- Specifying the desired respondents:

unitRelation UnitRelation,
simulatorType SimulatorType,
vehiclelD VehiclelD,

unused (.'6),

unit Organizati»nalUnit

type UnitRelation enum (8) {
unitRelationlrrelevant,
unitSpecified,
unitIncluded,

unitIncluding

The fields of the Status Query PDU allow the querying simulator to specify the typs -
status information sought, and to identify, by various means, the simulators that shouid
provide it. By using appropriate values in these fields, a simulation entity can issue a
Status Query PDU using the underlying datagram service and discover what other
simulation entities are present by the status PDUs they return. Alternatively, a simulation
entity can send a Status Query ¥DU to a particular other simulation entity using the
underlying transaction service in order to solicit a status PDU only from that simulator.

The responseKind field indicates the type of information sought by specifying a kind
of data collection PDU. It contains one of the values exerciseStatusPDUKind,
simulationStatusPDUKind, or vehicleStatusPDUKind.

Other fields of the Status Query PDU allow any of five conditions to be specified. Each
condition may be specified or not, at the discretion of the simulator issuing the query. A
simulator responds only if it meets all of the conditions specified in the query.

1. The exerciselID field of the Status Query PDU’s header provides one mechanism by which
respondents are sclected (§5.1.6). If the exerciseID ficld has the value
exerciseIDIrrelevant (defined as 0), and the PDU isissucd o the association sublayer
using multicast group 0, then a simulator involved in any exercisc may respond. Otherwise, the
exerciselD field specifics a particular exercise, the PDU is issued using the corresponding

multicast group, and only simulators participating in that cxercise will respond.

126

BBN Systems and Technologies Report No. 7627

2. The vehicleID ficld ailows the query to be directed to the simulator modeling a particular
vehicle (§5.1.24). If the vehicleID field contains zeros, then a simujator may respond

regardless of which vehicles it models. Otherwise, a simulator may respond only if it models the
specified vehicle.

3. The simulatorType field allows the query to be directed to a particular type of simulator
(85.1.14). If the simulatorType field has the value simulatorUnknown (defined as 0),
then any type of simulator may respond. Otherwise, a simulator may respond only if it is of the
specified type.

4, The force component of the unit field (§5.1.11) allows the query to be directed to simnulators
of vehicles assigned to a particular force. If the £orce component has the value
forcelDIrrelevant, then a simulator may respond regardless of what forces its vehicles are
assigned to. Otherwise, a simulator may respond only if it simulates a vehicle assigned to the
specified force.

S. TheunitRelation and unit fields allow the query to select respondents based on the

organizational units they simulate. The unitRelation field specifies one of these four cases:

unitRelationlrrelevant asimulator may respond regardless of what unit it

simulates.
uritSpecified a simulator may respond if it simulates the specified unit.
unitIncluded a simulator may respond if it simulates a unit that is

included within that specified by the unit field.

unitIncluding a simulator may respond if it simulates a unit that includes

that specified by the unit field.

If a query specifies that a response is to be in the form of a Vehicle Status PDU, and the
conditions specified in the query include those that pertain to individual vehicles
(selecting on the basis of vehicle identifier, force, or organizational unit), then a

responding simulator issues Vehicle Status PDUs only for those v~hicles that meet the

query’s conditions.

If a Status Query PDU is issued using the association sublayer’s datagram service, then
any response is also issued using the datagram service. A response is issued with the
same multicast group number as the query. The simulator issuing the query waits up to 5

seconds (statusQueryTime) for any responses to be received.

127

Report No. 7627 BBN Systems and Technologies

If a Status Query PDVJ is issued using the association sublayer’s transaction service, then
the only simulator that may return a response is that selected as the tra.isaction’s
respondent. In this case, if the conditions specified in the Status Query PDU are met,
then the respondent returns the appropriate status PDU. In doing so, the responding
simulation entity does not permit its association entity to cache its response, but rather, it
generates a new, fully current status PDU whenever its response must be reissued. If the
conditions specified in the Status Query PDU are not met, the respondent returns a Status
Response PDU. In addition to its PDU header, the Status Response PDU includes the
following field:

type StatusResponseVariant sequence {
result StatusResult,
unused (56)

type StatusResult enum (8) {
invalidQueryParameter (1),

queryConditionFailed (2)

The exerciseID field of the PDU’s header contains the cxercise identifier that was
included in the corresponding Status Query PDU. The result field of this PDU
contains the value invalidQueryParameter if the Status Query PDU contained an
invalid parameter, and the value queryCondit ionFailed otherwise.

8.3.2 Event reports

The data collection protocol includes provisions for reporting various types of events that
may be of interest to those studying an exercise. Changes in a vehicle’s operational status
are reported by the vehicle’s simulator using Status Change PDUs. These PDUs allow an
analyst to follow the fortunes of an individual vehicle, and attribute changes in its
operational status to specific causes. The use of a vehicle’s laser range finder is reported
by a Laser Range PDU whose contents may allow an analyst to determine what target
was examinew and what result was obtained. Another PDU, the Event Flag PDU, is
available to the analyst for annotating a recording of an exercise (such as that produced
by the Data Logger) to flag any event that may be of interest.

128

M AN S E B

E ‘ -

BBN Systems and Technologies Report No. 7627

Reporting a change of status

At the time that the operational status of a vehicle or any of its subsystems changes, the
vehicle’s simula:or issues a Status Change PDU describing what has changed, and why.

This PDU is issued when any of the following events occurs:

+ A vehicle’s subsystem fails for any rcason, including wear-and-tear, a collision, crew error,

interaction with the terrain, or combat damage.

« A vehicle’s subsystem returns to operation for any reason, including crew repair or repair by a

maintenance team.
* A vehicle is desiroyed by any cause.

* A vehicle is reconstituted by any cause.

In addition to its PDU header, the Status Change PDU includes the following fields:

129

Report No. 7627 BBN Systems and Technologies

type StatusChangeVariant seguence (

vehicleID VehiclelD,

unused (8),
effect StatusChangeEffect,
cause choice (effect) of (

when (effectVehicleDestroyed) destroyed sequence (
kind DamageCause,

unused (24)
}e

when (effectVehicleReincarnated) reincarnated sequence (
kind RepairCause,

unused (24)
}I

when (effectSubsystemsDamaged) damaged sequence (
kind DamageCause,

unused (24)

}e
when (effectSubsystemsRepaired) repaired sequence (

kind RepairCause,

unused (24)

},

eventID EventID,
agentID VehiclelD,
subsystems VehicleSubsystems

type StatusChangeEffect enum (8) {
effectVehicleDestroyed (1},
effectVehicleReincarnated (2),
effectSubsystemsDamaged (3),
effectSubsystemsRepaired (4)

130

BBN Systems and Technologies Report No. 7627

type DamageCause enum (8) (
damageCauseOther (0), -- none of those listed below

damageCauseBreakdown (1),

damageCauseCollision (2),

damageCauseCrewError (3),

damageCauseDirectFire (4),

damageCauseIndirectFire (5),

damageCauselntervention (6),

damageCauseTerrain (7),

damageCauseBattlemaster (8)

type RepairCause enum (8) {
repairCauseOther (0), -- none of those listed below

repairCauseCrew (1),

repairCauselntervention (2),

repairCauseMaintTeam (3),

repairCauseBattlemaster (4)

The vehicleID field identifies the affected vehicle (§5.1.24), and the effect field

describes how it was affected:

effectVehicleDestroyed the vehicle was destroyed.

effectVehicleReincarnated
effectSubsystemsDamaged

effectSubsystemsRepaired

the vehi:le was restored to complete operation.
some vehicle subsystems have been damaged.

some vehicle subsystems have been repaired.

In the case of vehicle subsystems becoming damaged or repaired, the particular
subsystems involved are . mtified by the subsystems field (§5.1.27). That field
contains a single Boolean data element for each of the vehicle subsystems whose
operational status is being modeled by the simulator. A Boolean is true if the
corresponding subsystem has been affected (damaged or repaired), and faise otherwise.
Also present in the field are Boolean data elements that summarize groups of subsystems.
If a vehicle loses or gains its firepower ability, for example, the firepowerSummary
component of the Vehicle Subsystems data element will contain the value true (defined as

I).

The cause field describes what caused the change of operational status reported by the
PDU. If the effect is one of effectVehicleDestroyedor

131

Report No. 7627

BBN Systems and Technologies

effectSubsystemsDamaged, then the cause field contains one of the following

values:

damageCauseOther
damageCauseBreakdown
damageCauseCollision
damageCauseCrewError
damageCauseDirectFire
damageCauseIndirectFire
damageCauseIntervention

damageCauseTerrain

damageCauseBattlemaster

none of the causes listed below.

the breakdown was due to random failure,

the vehicle collided with another.

the damage was caused by crew error.

the vehicle was struck by direct fire.

the vehicle was damaged by indirect fire.

the change was due to intervention by a technician.

the vehicle collided with a terrain feature, such as a

building.

the change was due to intervention by the Battlemaster

(exercise controller)

If the effect is one of eFfectVehicleReincarnated or
effect SubsystemsRepaired, then the cause field contains one of the following

values:

repairCauseOther
repairCauseCrew
repairCauseIntervention

repairCauseMaintTeam

repairCauseBattlemaster

none of the causes listed below.
the damage was repaired by the vehicle’s own crew.
the change was due to intervention by a technician.

the damage was repaired by a simulated maintenance

team.

the change was due to intervention by the Battlemaster

(exercise controller)

Some changes in the operational status of a vehicle may be attributed to an event reported
by an earlier simulation protocol PDU. If the vehicle is damaged in a collision with
another, there will have been a Collision PDU issued by either or both vehicles’
simulators, reporting that collision. If a vehicle is damaged by a missile or shell, there
will have been a Vehicle Impact PDU or Indirect Fire PDU produced, describing the
impact or explosion. A simulated repair to a vehicle that succeeds in fixing any of its
subsystems will have been described by a Repair PDU. In all of these cases, the

132

BBN Systems and Technologies Report No. 7627

preceding PDU reporting the causal event contains a unique combination of vehicle and
event identifiers, distinguishing that event from all others. The Status Change PDU
specifies that event by repeating the vehicle and event identifiers in its agent ID and
event ID fields (§5.1.24 and §5.1.5). ‘

In other cases, where no preceding PDU can be said to represent the cause of the status
change, the agent ID field contains zeros and event ID field contains the value

eventIDIrrelevant.

Laser range finding

The Laser Range PDU reports a vehicle’s use of its laser range finder. The M1 tank
simulator, for example, issues an instance of this PDU whenever one of the simulator’s
laser range finder buttons is pressed by a crew member. In addition to its PDU header,
the PDU includes the following fields:

type LaserRangeVariant sequence {

vehicleID VehiclelD,

result LaserRangeResult,
returnSwitch ReturnSwitch,

target TargetDescriptor,
muzzle WorldCoordinates,
location WorldCoordinates,
whichLaserRange LaserRangeFinder (8},

unused (56)

type LaserRangeResult enum (8) {
laserRangeMalfunction (1),
laserRangeMultipleReturns (2),
laserRangeNoReturn (3),

laserRangeSingleReturn (4)

The vehicleID field identifies the vehicle using its range finder (§5.1.24), and the
result field describes the effect of using it. The result field’s interpretation is:

laserRangeMalfunction an attempt was made to obtain a range, but the rangefinder
malfunctioned.
laserRangeMultipleReturns multiple returns were received by the laser rangefinder;

one is reported in this PDU.

133

Report No. 7627 BBN Systems and Technologies
laserRangeNoReturn no acceptable returns were received by the laser
rangefinder.
laserRangeSingleReturn a single return was received by the laser rangefinder; it is
reported in this PDU.

If the vehicle has a switch for selecting whether the range finder should report the first or
the last return it receives, the position of this switch is indicated in the returnSwitch

field. It contains one of these values:

type ReturnSwitch enum (8) {

noReturnSwitch, -- no ‘first/last return” switch
firstReturn, -- switch set to “first return”
lastReturn -- switch set to “last return”

The location of the laser’s “muzzle”, in world coordinates, is described by the muzzle
field (§5.1.29).

The whichLaserRange field identifies which of the vehicle's laser range finders was

employed. The laser range finders are enumerated as follows:

type LaserRangeFinder enum (8) {
gunnerlaser, -— gunner's laser
citvlaser —- Commander's Independent Thermal Viewer laser

If the range finder was able to deduce a range (in which case the PDU’s result field
contains either laserRangeSingleReturn or laserRangeMultipleReturns)
then two other fields of the PDU will also contain information. The target field will
specify whether the lased target is known, and if so, what it is (§5.1.16). The location
field will specify the point, in world coordinates, whose range was reported by the range
finder (§5.1.29).

Flagging events of interest

The Event Flag PDU may be used to insert an annotation at a particular point in a
recording of an exercise being made by a Data Logger. Typically, the PDU marks an
event that is of interest to an analyst studying an exercise, such as the transmission of an

134

BBN Systems and Technologies Report No. 7627

order by voice radio. Upon hearing the transmission, the analyst may cause an
appropriate Event Flag PDU to be issued. The PDU will be recorded by the Data Logger
in sequence with other PDUs related to the exercise, thereby identifying that event in the

context of the overall exercise.

An Event Flag PDU includes the following fields, in addition to its PDU header:

type EventFlagVariant sequence (

number Integer (32},

sequenceNumber UnsignedInteger (32),

vehiclelD VehiclelD,

textLength UnsignedInteger (16},

text array (textLength) of Character (8)

}

The number field contains an integer, assigned by the analyst, identifying the type of
event being flagged. The sequenceNumber field contains consecutive integers in
consecutive Event Flag PDUs produced by the same simulation entity. It permits the
detection of cases where Event Flag PDUs may have been lost. The vehicleID field
may be used to specify a vehicle (§5.1.24); if not used for that purpose, it contains zeros.

The text field may contain any ASCII character string, up to a maximum of 228
characters. If necessary, the text field is followed by up to 56 unused bits so that the
overall size of the PDU is a multiple of 64 bits.

135

Report No. 7627 BBN Systems and Technologies

136

BBN Systems and Technologies Report No. 7627
9 REFERENCES
[1] James Chung, Alan Dickeus, Brian O’Toole, and Carol Chiang. SIMNET M1

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]

Abrams Main Battle Tank Simulation: Software Description and Documentation
(Revision 1). BBN Report Number 6323. BBN Systems and Technologies Corp.
Cambridge, Mass., August 1988.

James Chung, Alan Dickens, Carol Chiang, Brian O’Toole, Warren Katz, and
Bryant Collard. SIMNET M2/3 Bradley Fighting Vehicle Simulation: Software
Description and Documentation. BBN Report Number 6892. BBN Systems and
Technologies Corp. Cambridge, Mass., August 1988.

Arthur Pope. The SIMNET Network and Protocol. BBN Report Number 6369.
BBN Laboratories, Inc. Cambridge, Mass., February 1987.

Arthur Pope. The SIMNET Network and Protocols. BBN Report Number 6787.
BBN Laboratories, Inc. Cambridge, Mass., May 19§8.

A. Ceranowicz, S. Downes—Martin and M. Saffi. SIMNET Semi—-Automated Forces
Version 3.0: A Functional Description (Revised). BBN Report Number 6939.
BBN Systems and Technologies Corp. Cambridge, Mass., March 1989.

Arthur Pope, Tim Langevin, Linda Lovero and Andrew Tosswill. The SIMNET
Management, Command and Control System. BBN Réport Number 6473
(Revised). BBN Systems and Technologies Corp. Cambridge, Mass., July 1988.

C. Topolcic, Ed, Experimental Internet Stream Protocol, Version 2 (ST-11), REC
1190. CIP Working Group, October 1990.

International Standards Organization. Information processing systems — Open

Systems Interconnection— Basic Reference Model. 1SO 7498-1984.

International Standards Organization. Technical Report 8509 — Information

Processing Systems Open Systems Interconnection — Service Conventions. 1985.

The Institute of Electrical and Electronics Engineers, Inc. Standard for Binary
Floating—Point Arithmetic. ANSI/IEEE Standard 754-1985. The Institute of
Electrical and Electronics Engineers, Inc. New York, New York, 1985.

137

Report No. 7627 BBN Systems and Technologies

[11]

[12]

[13]

[14]

[15]

[16]

[17]

138

The Ethernet: A Local Area Network: Data Link Layer and Physical Layer
Specifications. Digtal Equipment Corporation, Intel Corporation, and Xerox
Co.poration; Version 2.0; November 1982.

The Institute of Electrical and Electronics Engineers, Inc. IEEE Standards for
Local Area Networks: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications. ANSI/IEEE Std
802.3-1985. The Institute of Electrical and Electronics Engineers, Inc. New York,
New York, 1985.

Dan Friedman and Varda Haimo. SIMNET Network Performance. BBN Report
Number 6711. BBN Communications Corporation. Cambridge, Mass., 1988.

The Institute of Electrical and Electronics Engineers, Inc. /EEE Standards for
Local Area Networks: Logical Link Control ANSI/IEEE Std 802.2-1985. The
Institute of Electrical and Electronics Engineers, Inc. New York, New York, 1984

The Institute of Electrical and Electronics Engineers, Inc. Project 802: Local and
Metropolitan Area Network Standard - Overview and Architecture 1EEE
P802.1A/D10. The Institute of Electrical and Electronics Engineers, Inc. New
York, New York, 1990.

J K. Reynolds and J. B. Postel. Assigned numoers, Request For Comments 1060,
Internet Activities Board. March, 1990.

Arthur Pope. The SIMNET Network and Protocols. BBN Report Number 7102.
BBN Laboratories, Inc. Cambridge, Mass., July 1989.

.

BBN Systems and Technologies Report No. 7627

APPENDIX A: DATA REPRESENTATION NOTATION

A formal notation is used in this report to define the format of communicated data. This

appendix describes that notation, which we call Data Representation Notation (DRNM).

In the following description of DRN, fragments of the notation are displayed in a
“typewriter” font like this: sequence. Within a fragment of notation, a name displayed
in italics (e.g., f1eldName) is a placeholder for which another fragment of notation is to

be substituted.

A.1 Overview

A DRN specification consists of a series of type definitions and constant definitions. A
type definition describes how a unit of data is represented as a sequence of bits, and it
associates a name with that representation. A constant definition associates a name with a
particular value. The type definitions and constant definitions published in this report

constitute a single DRN specification.

The notation employs these kinds of lexical tokens: reserved words, names, numbers,

and delimiters.

The reserved words are: array, choice, constant, enum, of, sequence,
type, unused, when, Character, Float, Integer,

UnsignedInteger.

A name consists of a letter followed by zero or more letters, digits, and “_* characters.

Both uppercase and lowercase letters may be used. A name must differ from any

reserved word.

A number is a series of oiie or more digits. It is interpreted as a decimal value.

" u) 2w & AR
..

The delimiters are: “ (”, , s

The “~-* delimiter is used to mark the presence of a comment, which lies between the “~
-# delimiter and the end of the line. Apart from their roie in terminating comments,
ends of lines are of no significance. Blanks (spaces) may appear anywhere, and are only
required in certain places to delimit reserved words, names, and numbers. The other

delimiters will be described in the context of their usage.

139

Report No. 7627 BBN Systems and Technologies

The “@” character is reserved for the purpose of annotating DRN specifications with
control information intended to direct automated software tools. A line beginning with
“@” followed by a name is interpreted as such a directive. This report does not define

specific directives of this form.

A.2 Constant definition

A constant definition associates a names with a numeric value. It is of the form:
constant name number

The name must be one not defined elsewhere in the DRN specification by either a
constant definition or a type definition. By convention, constant names begin with

lower—case letters.

A.3 Type definition

A type describes a data representation as a way of encoding information in a series of
bits. A type definition, which associates a name with a particular type, is of the form:

type name typeSpec

The name must be one not defined elsewhere in the DRN specification by either a
constant definition or a type definition. By convention, type names begin with upper—

case letters.

The typeSpec specifies a particular type. There are three ways in which a type may be
specified: through the use of a primitive type, through the use of & type constructor, or by
reference to a name defined elsewhere in a type definition. Primitive types and type

constructors are described in the following sections.

A.4 Primitive types

Primitive types are the basic data elements out of which other, more elaborate data
elements may be constructed. There are five kinds of primitive type. Four of these are
specified by a particular reserved word, followed by a number in parentheses:

140

BBN Systems and Technoiogies Report No. 7627

Character (bits)
Float (bits)

Integer (bits)
UnsignedInteger (bits)

In each case, the number, bits, specifies the quantity of consecutive bits to be used to
represent the data element. The octets of data elements larger than 8 bits are represented
in order, with the most-significant octet first and the least—significant octet last.

The Character primitive type represents a printable character. Its size is always specified
as 8 bits. The character is represented using ASCII encoding, with the high-order bit

always 0.

The Float primitive type represents a floating point number encoded in ANSI/IEEE
standard format [10]. Its size is always specified as either 32 bits or 64 bits.

The Integer primitive type represents a signed integer encoded in twos—complement

binary format. It never exceeds 32 bits.

The UnsignedInteger primitive type represents an unsigned binary integer. It never

exceeds 32 bits.

The fifth kind of primitive tyre, called an enumerated type, specifies a list of possilie

values and the number of bits used to represent them. It is written:
enum (bits ' { valuelist }

As before, bits specifies the quantity of consecutive bits to be used to represe: t the data
element. This number never exceeds 32. The data element represents a value ‘s a

unsigned binary integer. The possible values of the data element are enumerated by the
valueList, which is a series of comma-separated items. Each item may be either of the

form:

valueName (number)
or just:

valueName

Each item in the series associates a name, valueName, with a numeric value. By

convention, value names begin with lower—case letters. These names must be unique,

141

Report No. 7627 v BBN Systems and Technologies

and not defined elsewhere in the DRN specification by either a constant definition or a
type definition. If anitem specifies both a2 and a aunbe:, then the name is
associated with the specified number. Otherwise, the name is associated with a number
one larger than that associated with the previous nim= in the series. If no number is
specified for the first name in the series, then that name is associated with the value 0.

A5 Sequence type constructor

A sequence is one kind of type constructor. It specifies an ordered collection of various

types of data elements called fields, and it is written:
sequence { fieldList }

where fieldList is a series of comma-separated items. Each item may be either of the

form:

fieldName typeSpec

or of t'.e form:
unused (bits)

An item of the first form specifies that a data element of a particular type is present, and it
associates a name with that data element. The frypeSpec may be a primitive type, a type
constructor, or a name defined by a type definition. The name must be unique among
those included in the fieldList. By convention, field names begin with lower—ase letters.

The second form of field list item is used to specify that some bits of the sequence remain
unused. These bits appear in the representation, but no data is encoded by them.

The successive fields of a structure occupy sucte: sive bits in the representation. The bits
of a particular field will precede all other bits of fic.ds defined later in the same structure.
Within an octet, bits are allocated to fields in order from most-— to least-significant bit.10

10 Do not confuse the order in which bits are allocated to the fields of a structure, with the order in which
bits are transmitted on a network. The Ethernet, for example, conveys the bits of an octet in the order

least-significant bit to most-significant bit.

142

BBN Systems and Technoiogies Report No. 7627

The overall size of a sequence constructor type is the sum of the sizes of its component
fields.

DRN allows one to describe a sequence field whose form depends on the contents of
another field that occurs earlier in the same sequence. The earlier field, which determines
the form of the later one, is called the determinant. A determinant must be an Integer, an
UnsignedInteger, or an enumerated type data element. The specification of the later field
will make reference to the determinant. This reterr~ 5 in the form of a series of
period—separated field names, which refer to fields n consecutively nested
sequences. The manner of specifying a determinant is best illustrated with an example;

one is presented in the next section.

A.6 Array type constructor

An array is another kind of type constructor. It specifies an ordered collection of data

elements of the same type, and it is written:

array (boundsList) of typeSpec

The boundsList is a series of comma-separated items, specifying the dimensions of an
array of data elements of type typeSpec. Each item of boundsList has one of these forms:

number
valueName

determinant

If the item is a number, or a name that has been associated with a constant value, then the

corresponding dimension of the array is fixed at that value.

If the array is being specified as a field within a sequence, then a determinant can be used
to define an array dimension that is variable. Here is an example of a sequence that

includes an array of variable dimension:
sequence {

size UnsignedInteger (8),

data array (size) of Character (8)

143

Report No. 7627 BBN Systems and Technologles

In this example, the number of elements in the array data is determined by the contents
of the size field, for any particular instance of the sequence. In the following example,

the determinant refers to a field within a field:

sequence {
parameters sequence {
max Float (32),
count UnsignedInteger (32)

e
data array (parameters.count) of Float (32)

Array elements are represented in order, with the last array subscript varying most
frequently. Successive elements occupy consecutive octets. The overall size of an array

is the size of an array element times the number of elements.

A.7 Choice type constructor

A choice is the third kind of type constructor. It describes a selection of alternate data

elements, and the conditions under which each alternate will be represented.

A choice type constructor is written:

choice (determinant) of { whenList }
where whenlList is a series of clauses separated by commas. Each clause has the form:

when (choiceValue)} choiceName typeSpec

A choice may appear only as a field within a sequence. The determinant specifies a data
element that occurs earlier in the same sequence according to the conventions described

in the previous section on sequences.

Each clause specifies one alternate representation of the choice that corresponds to a
particular value of the data element specisied by the determinant. That value,
choiceValue, may be specified in the clause as a number, as a name that has been
associated with a constant value by a constant definition, or as a name that has been
associated with a constant value by the definition of an enumerated type. The typeSpec
describes the representation corresponding to that value. The choiceName is a name
included as a convenient way of referring to the representation alternative. By

144

DA TE BN P WS W I O IS NN W B e me

BBN Systems and Technoiogies Report No. 7627

convention, such names begin with lower—case letters. Each must be unique among those

of the same whenList.
There may be no duplicates among the values specified in clauses.

If, for any particular instance of the choice, the fieldSpec data element has a value not
listed among the clauses, then the choice is not represented (i.e., it occupies no bits of the
representation). Otherwise, the size of the choice is the size of whichever alternate data

element it represents.

A.8 Bit alignment of data elements

Many computers require that certain data elements always be aligned in memory on a
certain multiple of their basic byte or word size. Correspondingly, DRN imposes
restrictions on the sizes of some data elements and the arrangement of sequence fields to

ensure that certain alignment constraints will always apply.

Here we define these restrictions by associating a notional attribute, alignment, with each
data element. A data element with an alignment attribute of n must start a multiple of n
bits from the beginning of the PDU. The value of a data element’s alignment attribute is

determined as follows:

» Ifthe data element is of a primitive type, and its size is 8, 16, 32, cr 64 bits, then its alignment

attribute is 8, 16, 32, or 64, respectively.

s If the data element is of a primitive type, and its size is not 8, 16, 32, or 64 bits, then its alignment

attribute is 1.

« If the data element is a sequence then its alignment attribute is the maximum of the alignment

attributes of the sequence’s fields, and 8.
» If the data element is an array then its alignment attribute is that of its array element.
» Ifthe data element is a choice then its alignment attribute is the maximum of the alignment
attributes of its alternate components.
These restrictions are imposed on sequences:

+ The size of a sequence, measured in bits, must be a multiple of its alignment attribute, and a

multiple of 8.

+ The bit offset of a field within a sequence must be a multiple of the field’s alignment attribute.

145

Report No. 7627 BBN Systems and Technologies

e Ifafield has an alignment attribute of 1, then the following must hold:

L bit offset of flrsl bit of ﬁe]d_' L bit offset of]asl bit of field

This restriction is imposed on arrays:

» The size of an array element, measured in bits, must be both a multiple of its alignment attribute,

and a multiple of 8 bits.

This restriction is imposed on choices:

= The size of choice must be a multiple of its alignment attribute.

146

BBN Systems and Technologies

Report No. 7627

147

Report No. 7627 BBN Systems and Technologies

APPENDIX B: OBJECT TYPE NUMBERING SCHEME

Objects in the simulated world include vehicles, buildings, bridges, projectiles, portions
of fuel, plants, soldiers, etc. It is necessary, for the purposes of communication, to be
able to describe an object in a succinct manner. This is done by using codes to refer to
the types of objects, and by communicating these codes. This appendix describes the
scheme according to which object type codes are defined. The following appendix lists
the codes that are presently defined for specific types of objects.

An object type code is represented in 32 bits. The value 0 is reserved; it is used in
particular cases to mean that an object type code is not applicable, or has not been
defined.

The 32 bits are interpreted as a series of fields, each spanning some number of
consecutive bits. The interpretation must be performed by examining the fields from left
(most-significant bit) to right (least—significant bit). This is because, at each point in the
series, fields to the left may determine the format of fields to the right.

The first field always occupies the leftmost 3 bits of the 32 bit code. This field is called the domain field.

The values of this field, as presently defined, are:

0 Other (miscellaneous)

1 Vehicle (e.g., tank, submarine)

2 Munition (c.g., projectile, detonator, fucl, repair part)
3 Structure {e.g., building, bridgc)

4 Life Form (e.g., tree, soldier, Martian)

The following subsections describe how the remaining 29 bits of the object type code are
interpreted for the values of the domain field representing vehicles, munitions and life

forms. Object type codes for other domains have not been defined.

Values of all fields are ¢=/ined sequentially, starting from 1. 0 is reserved for

"miscellaneous”.

148

BBN Systems and Technologles Report No. 7627

B.1 Vehicle type scheme

The domain of vehicles includes platforms that operate on land, in the air, on or below the
sea, and in space. It includes both towed and self—propelled platforms. Guided missiles

and rockz=ts have been classified as munitions rather than vehicles.

The object type code describing a vehicle is divided into these fields, listed here from left

to right:

domain 3 bits contains the value 1, denoting a vehicle

environment 3 bils describes the environment in which the vehicle operates (ground,
air, water)

class 3 bits organizes vehicles within a particular environment into broad
classes (e.g., wheeled vs. tracked, fixed wing vs. rotary wing)

country 6 bits describes the country to which the vehicle’s design is attributed
(e.g., USA, USSR)

series 6 bits identifies a particular vehicle chassis (e.g., M1, M113)

model 6 bits identifies a particular model of vehicle (e.g., M1, M1A1, M1AI
Block II)

function 5 bits identifies the function of the vehicle (e.g., main battle tank,

armored personnel carrier, reconnaissance vehicle)

The value of the class field is interpreted within the context of a particular
environment field value. For example, if the environment field is “air”, the class
field specifies whether the vehicle is a fixed wing or a rotary wing vehicle; if the

environment fieldis “ground”, class specifies wheeled or tracked.

The chart below shows the environment and class €=ld values that are presently

defined, and the relationship among them. Field values are indicated in parentheses.

Environment Class

Air (1) Fixed Wing (1)
Lighter Than Air (2)
Rotary Wing (3)

149

Report No. 7627 BBN Systems and Technologies

Ground (2) Self-Propelled, Armored, Tracked (1)
Self-Propelled, Armored, Wheeled (2)
Self-Propelled, Unarmored, Tracked (3)
Self-Propelled, Unarmored, Wheeled (4)
Towed (5)

Space (3)

Water (4) Amphibious Warfare (1)
Auxiliary (2)
MaterialSupport {3)
Mine Warfare (4)
Submarine (5)
Surface Combat (6)

The interpretation of the country field value is fixed, regardless of the environment
and class fields. This interpretation is defined below, in the section entitled “Country
Codes”.

The series field is interpreted within the context of the country, class and function
fields, and the mode1 field is interpreted within the context of those fields plus the
series field. Appendix C lists currently defined vehicle typr codes, along with their
series and model field values.

The interpretation of the function field is dependent only on the environment field.

For air vehicles, the values of the function field are:
0 Miscellaneous
I Air Combat
2 Ground Attack
3 Reconnaissance
4 Bomber

For ground vehicles, the values of the function field are:

0 Miscellaneous

1 Anti-Aircraft Gun or Surface~to-Air Missile

150

BBN Systems and Technologies Report No. 7627
2 Armored Personnel Carrier
3 Command Post
4 Howitzer or Anti-Tank Gun
5 Mortar
6 Muttiple Rocket Launcher
7 Reconnaissance
8 Recovery
9 Supply Truck

10 Tank Destroyer
11 Tank, Light
12 Tank, Main Battle
13 Combat Engineering
14 Surface to Surface Missile Launcher
For vehicles of other environments, one function field value is presently defined:

0 Miscellaneous

B.2 Munition type scheme

The domain of munitions includes military suppiies othor than venizle - am. anior,

petroleum, oil, and lubricants; repair par:;; medical supplies; e'c.

The object type code describing a munitiui has these as its leftmost fields:
domain 3 bits contains the value 2, denoting a munition

class 4 bits describes the class of munition: projectile, fuel, repair part, etc.

The values of the class field, as presently defined, are:

0 Miscellancous

1 Detonator

2 Missile

3 Pctroleum, Oil, and Lubricants

151

Report No. 7627 BBN Systems and Technologies
4 Projectile
S Propellent
6 Bomb
7 Mine

Of these classes of munition, the detonator, projectile, and propellent classes are treated
in a similar manner. This is described in the next subsection, entitled “Ammunition type
scheme”. Object type codes for missiles and bombs are described separately in two
following subsections. Object type code schemes for the other classes of munitions have

not been defined.

B.2.1 Ammunition type scheme

For the classes detonator, projectile, and propellent, the entire object type code is divided

into these fields:

domain 3 bits contains the value 2, denoting munition

class 4 bits describes the class of munition: projectile, propellent, or dztonator
caliber S bits describes the caliber of munition

subclass 4 bits organizes munitions within a class into smaller subclasses (c.g.,

time detonator vs. percussion detonator, or training projectile vs.

high explosive projectilc)

country 6 bits describes the country to which the ammunition’s design is

attributed (e.g., USA, USSR)
series S bits identifies a particular serics of munition

model S bits identifics a particular model of munition

The value of the subclass field is interpreted within the context of a particular ciass
field valae, but independently of the cal iber field value. The chart below shows the
relationship between class and subclass field values, for those subclasses that are

presently defined. Field values are indicated in parentheses.

Class Subclass

152

BBN Systems and Technologies Report No. 7627
Detonator (1) Percussion (1)
Proximity (2)
Time (3)
Projectile (3) Biological (1)
Bomblets (2)
Chemical (3)

High Explosive (4)

High Explosive, Plastic (5)
High Explosive, Incendiary (6)
Illumination (7)

Kinetic (8)

Nuclear (9)

Practice (10)

Shaped Charge (11)

Smoke (12)

Propellent (4) Bagged (1)
Canistered (2)

The caliber field has a common interpretation for all three classes of ammunition—

detonator, projectile, and propellent. Its values each represent a range of ammunition

caliber:
0 caliber not applicable
1 caliber > 0 mm, but <10 mm
2 caliber > 10 mm, but £20 mm
3 caliber > 20 mm, but < 30 mm

31 caliber > 3u0 mm

The interpretation of the country field value is fixed, regardless of the class of
ammunition or of the content of the subclass field. This interpretation is defined

below, in the section entitled “Country codes”.

The series field is interpreted within the context of the country, subclass, and
caliber fields, and the inodel field is interpreted within the context of those fieids plus
the series field. Appendix C lists currently defined munition type codes, along with

their series and model field values.

153

Report No. 7627

BBN Systems and Technologies

B.2.2 Missile type scheme

For the missile class of munitions, the entire object type code is divided into these fields:

domain 3 bits
class 4 bits
target 5 bits
warhead 4 bits
country 6 bits
series 5 bits
model 5 bire

contains the value 2, denoting munition

contains the value 2, denoting missile

describes the intended target of the missile

indicates the type of warhead that the missile carries

describes the country to which the ammunition’s design is
attributed (e.g., USA, USSR)

identifies a particular series of munition

identifics a particular model of munition

The target field indicates the type of target that the missile is intended to be used

against. The values presently defined for this {ield are:

0 Miscellaneous

1 Anti-Aircraft

2 Anti-Armor

3 Anti-Missile

4 Anti-Radar

5 Anti-Satellite

6 Anti-Ship

7 Anti-Submarine
8 Anit-Surface

The warhead field indicates the type of warhead carried by the missile. The valuec«

presently defined for this field are:

0 Miscellaneous
1 Biological

2 Bomblets

3 Chemical

154

BBN Systems and Technologies

£

9

11

High Explosive

Report No. 7627

High Explosive, Plastic

Kinetic
Nuclear

Shaped Charge

The interpretation of the country field value is fixed, regardless of the contents of the
target and warhead fields. This interpretation is defined below, in the section

entitled “Country codes”.

The series field is interpreted within the context of the country, warhead, and
target fields, and the model field is interpreted within the context of those fields plus
the series field. Appendix C lists currently defined missile type codes, along with their

series and model field values.

B.2.3 Bomb type code scheme

For the bomb class of munitions, the entire object type code is divided into these fields:

domain 3 bits
ciass 4 bits
weight 5 bits

subclass 4 bits

country 6 bits
series 5 bits
model 5 bits

contains the value 2, denoting munition
contains the value 6, denoting bomb
specifics the bomb’s nominal weight

organizes bombs into various subclasses (e.g., general purpose,

cluster, demoiition)

describes the country to which the bomb’s design is attributed (e.g.,

USA, USSR)
identifies a particular series of bomb

identifies a particular model of bomb

The weight field represents the nominal weight of the bomb, using the following

encoding:
0

1

nominal weight not applicable

nominal weight > 0 1b., but <100 b,

Report No. 7627

BBN Systems and Technologies

2 nominal weight > 100 Ib., but <200 1b.

3 nominal weight > 200 Ib., but < 300 Ib.

31 nominal weight > 3000 1b.

The value of the subclass field is interpreted independently of the weight field. It is

one of these values:

0 Miscellaneous Bomb

1 General Purpose Bomb

The interpretation of the count ry field value is fixed, regardiess of the contents of the

weight and subclass fields.
entitled “Country codes”.

This interpretation is defined below, in the section

The series field is interpreted within the context of the country, subclass, and
weight fields, and the mode 1 {ield is interpreted within the context of those fields plus
the series field. Appendix C lists currently defined bomb type codes, along with their

series and model field values.

B.2.4 Mine type code schem~

For the mine class of munitions, thie entire object type code is divided into these fields:

domain 3 bits
class 4 bits
target 5 bits

environment 4 bits

country 6 bits
series 5 bits
model Sbits

contains the value 2, denoting munition

contains the value 7, denoting mine

specifies the mine’s nominal target

specifies the medium in which the mine is designed to operate

describes the country to which the mine's design is attributed (e.g.,
USA, USSR)

identifies a particular series of mine

identifies a particular model of mine

The target field indicates the principal type of target that the mine is designed to be
used against. The values presently defined for this field are:

156

BBN Systems and Technologies Report No. 7627
0 Miscellaneous
1 Tank
2 Person

The environment field indicates the environment in which the mine is intended to

operate. The values presently defined for this field are:

0 Miscellaneous
1 Land
2 Water

The interpretation of the country field value is fixed, regardless of the contents of the
target and environment fields. This interpretation is defined below, in the sectinn

entitled “Country codes”.

The series field is interpreted within the context of the country, target, and
environment fields, and the model field is interpreted within the context of those
fields plus the series field. Appendix C lists currently defined mine type codes, along

with their series and model field values.

B.3 Life form type scheme
The domain of life forms includes any living organism.

The object type code describing a life form consists of the following fields:
domain 3 bits contains the value 4, denoting a life form

type 29 bits identifies the type of life form

Appendix C lists currently defined life forms.

B.4 Country codes

Object type codes for both vehicles and munitions include a field specifying the country
of origin of the vehicle or munition type. This is used, for example, to subdivide types of
tanks into those originating in the U.S.A., those originating in the U.S.S.R,, etc.

T::c values of the country field, as presently defined, are:

157

Report No. 7627

158

Other
US.A.
US.S.R.

Germany

BBN Systems and Technologies

BBN Systems and Technologies Report No. 7627

APPENDIX C: DEFINED OBJECT TYPE CODES

This appendix enumerates the object type codes that are presently defined for various

types of vehicles and munitions.

Wherever a number appears in parentheses in this appendix, it is defining a value for a
field of an object type code. The value 0 is defined for fields whose contents, in a
particular case, are not presently used to distinguish among types of objects. For
example, in the subsection below defining object type codes for U.S. vehicles, it is
specified that an M109 howitzer is referred to by a series field value of 4, and a
model field value of 0; no codes for distinct models of the M109 are presently defined.

C.1 Object type codes for vehicles

Each of the following subsections lists object type codes defined for vehicles of a
particular country. Within each subsection, the lists are organized by other fields of the
vehicle type code: environment, class, and function. All object type codes for

vehicles have a doma in field value of 1.

C11 U.S. vehicles

All object type codes for U.S. vehicles have a country field value of 1. The following
list defines valid series and model field values for particular values of the

environment, class, and function fields.

Environment; Class Series Model Function
Air; Fixed Wing A-10(1) © Ground Attack
F-16 (2) A(l) Air Combat
B(2) Air Combat
C(3) Air Combat
D @4) Air Combat
F-14(3) AQ) Air Combat
D (2) Air Combat
Air; Rotary Wing AH-64 (1) (V) Ground Attack
OH-58D(2) (1)) Air Reconnaissance
Ground; SP, Armored, Tracked M1 Abrams (1)) Tank, Main Battle
M2 Bradley (2) M2 (1) APC
M3 (2) Reconnaissance

159

Report No. 7627 BBN Systems and Technologies
M113 (3) M113A2(1) APC
M577 (2) Command Post
M106A1 (3) Mortar
M109 155mm (4) ©0) Howitzer
M88 (5) Al (1) Recovery
ADATS (6)) Anti-Aircraft
LOSAT (7) 0) Tank Destroyer
Ground; SP, Unarmored, Wheeled M352.5ton (1) M35A2 (1) Supply Truck
HEMTT (2) M977 (1) Supply Truck
M978 (2) Supply Truck
Ground; Towed, MS57 Mine layer (1) (0) Combat Engineering
M128 GEMSS (2) (0) Combat Engineering
M58A1 (3)) Combat Engineering
Towed pallet (4) ©) Supply Truck

C.1.2 Soviet vehicles

All object type codes for Soviet vehicles have a country field value of 2. The
following list defines valid series and model field values for particular values of the

environment, class and function fields.

Environment; Class Series Model Function

Air; Fixed Wing Su-25 (1) (O] Ground Attack
MiG-23C (2) ©) Air Combat
MiG-27 D (3) © Air Combat
MiG-21 C 4) (o)) Air Combat
MiG-25 A (5) () Air Combat
MiG-29 (6) () Air Combat
MiG-31 (7) ()] Air Combat

Air; Rotary Wing Mi-24 (1) ()] Ground Attack
Mi-28 (2)) Ground Attack
Mi-8 (3) (V)] Ground Attack
Mi-17 (4)) Ground Attack

160

BBN Systems and Technologies Report No. 7627
Ground; SP, Armored, Tracked T-72(1) M(1) Tank, Main Battle
BREM-1 (1) 2) Recovery
BMP-1(2) 1) APC
K(2) Command Post
251 122mm (3)) Howitzer
BMP-2 (4) 0) APC
ZSU-23/4M (5) 0) Anit-Aireraft
ACRY (6)) Command Post
T-80 (7 ©0) Tank, Main Battle
BRM (8)) Ground Reconnaissance
T-64 (9)) Tank, Main Battle
T-62 (10) ©) Tank, Main Battle
T-55(11) ©0) Tank, Main Battle
T-54 (12) ()] Tank, Main Battle
Ground; SP, Armored, Wheeled BDRM (1)) APC
BRDM-2 (9)) Ground Reconnaissance
Ground; SP, Unarmored, Wheeled Mine layer (0) ©0) Combat Engineering
GAZ-66 (1)) Supply Truck
BM-21(1) 1) Rocket Launcher
Ural-375 (2) Cargo (1) Supply Truek
Fuel (2) Supply Truck
BTR-80 (3) ©) APC
Ground; Towed PMR-3 (0) ©) Combat Engineering
MICLIC (1) 0) Combat Engineering
155mm (1)) Howitzer
M-1943 (1) ©) Mortar
Towed pallet (1) ©) Supply Truck

C.1.2 German vehicles

All object type codes for German vehicles have a country field value of 3. The
following list defines valid series and model field values for particular values of the

environment. class and function fields.

161

Report No. 7627 BBN Systems and Technologles
vi ent; s Series Model Function
Ground; SP, Armored, Tracked Leo-2 (1) (1)) Tank, Main Battle
Marder (2) (1)) APC

C.2 Obiject type codes for munitions

There is presently one munition type code defined for fuel. It has a domain field value
of 2 (denoting a munition) and a class field value of 3 (denoting POL); the remaining

fields are zero.

Each of the following subsections lists object type codes defined for ammunition or
missiles of a particular country. Within each subsection, the lists are organized by other
fields of the munition type code: class, caliber, and subclass in the case of
ammunition; or target and warhead in the case of missiles. All object type codes for

munitions have a domain field value of 2.

c.21 U.S. ammunition

All object type codes for U.S. ammunitions have a country field value of 1. The
following list defines valid series and model field values for particular values of the

class, caliber and subclass fields.

ass; Caliber: Subclass Series Model
Detonator; Mine; Proximity M603 (1))
Detonator; 107mm; Percussion M557 (1))
Detonator; 107mm; Proximity M513 (1) ©)
Detonator; 155mm; Percussion M739 (1) ()}
Detonator; 155mm; Timed M728 (1) (1))
Detonator; Bomb; Percussion M904(1))
Projectile; 5.56 mm; Kinetic M855 (1) (1)
M856 (1) (2)
Projectile; 25mm; Kinetic M791 (1) 0)
Projectile; 25mm; High Explosive M792 (1) 0)
Projectile; 105mm,; Kinetic M392(1) M392A2(1)

162

- s WE a R S W B En

Gk U S ap =

BBN Systems and Technologies Report No. 7627
Projectile; 105mm; Shaped Charge M456 (1) M456A1 (1)
Projectile; 107mm; High Explosive M329 (1) 0)
Projectile; 155mm; High Explosive M107 (1))

C.2.2 U.S. missiles

All object type codes for U.S. missiles have a count ry field value of 1. The following
list defines valid series and model field values for particular values of the target

and warhead fields.

Target; Warhead Series Model

Anti—armor; Shaped Charge TOW (1) 0)
M47 Dragon (2))
Hellfire (3) 0)
Maverick (4) 0)

Anti-air; High Explosive Sidewinder (1) 0)
ADATS (2) 0)
Stinger (3) 0)

C.23 U.S. bombs

All object type codes for U.S. missiles have a country field value of 1. The following
list defines valid series and model field values for particular values of the weight

and subclass fields.

Weight: Subclass Series Model
500 1b.; General Purpose Mk82 (1) 0)

C.23 U.S. mines

All object type codes for U.S. mines have a country field value of 1. The following list
defines valid series and model field values for particular values of the target and

environment fields.

et; Environment Series Model
Tank; Land M15(1) 1)
M19 (2) (1)
Mz21 (3) 1)

163

Report No. 7627

Person; Land

M741 (4)
M718 (5)
M75 (6)
M14 (1)
MI8A1 (2)
M16A2 (3)
M731 (4)
M692 (5)

M74 (6)

C.3 Object type codes for life forms

8y
8y
0y
(o))
(M
8y
o))
M
8y

BBN Systems and Technologies

All tvpe codes for life forms have 2 domain field value of 4. There are two life forms
defined. The type field value of 1 represents a U.S. infantryman. The t ype field value

of 2 represents a Soviet infantryman.

164

o I s W EE =l

BBN Systems and Technologies Report No. 7627

APPENDIX D: VEHICLE-SPECIFIC PROTOCOL.

This appendix defines those aspects of the SIMNET protocols that are specific to a
particular type of vehicle simulator.

D.1 SIMNET M1 Abrams main battle tank

This section defines those aspects of the SIMNET protocols that are specific to the
SIMNET M1 Abrams Main Battle Tank simulator [1].

D.1.1 Repairs

The SIMNET M1 simulator recognizes the following values of the Repair Type data

element:

type SIMNET Ml RepairType enum (16) {
mlReplaceAlternator (1),
mlReplaceBattery (2},
mlReplaceEngineOilFilter (3),
mlReplaceTransOilFilter (4),
mlReplacePrimaryFuelFilter (5),
mlReplacePilotRelayStarter (6),
mlReplacePowerPack (7),
mlRepairServiceBrake (8),
mlRepairParkingBrake (9),
mlRepairTurretTraverseDrive (10},
mlRepairTurretMountInterface (l1},
mlRepairGunElevationDrive (12},
mlRepairStabSystem (13},
mlRepairLRF (14),
mlRepairFuelTransferPump (15),
mlRepairGPS (16),
mlRepairCdrExtGPS (17)

These values are interpreted as follows:

mlReplaceAlternator replace alternator
mlReplaceBattery replace battery
mlReplaceEngineOilFilter replace engine oil filter
mlReplaceTransOilFilter replace transmission oil filter

Report No. 7627

mlReplacePrimaryFuelFilter

mlReplacePilotRelayStarter

mlReplacePowerPack
mlRepairServiceBrake

mlRepairParkingBrake

BBN Systems and Technologies

repla. ¢ 1 imary fuel filier
replace pilot relay and starter
replace engine and transmission
repair service brake

repair parking brake

mlRepairTurretTraverseDrive repair turret traverse drive

mlRepairTurretMountInterface repair turret mount interface

mlRepairGunElevationDrive

mlRepairStabSystem

mlRepairLRF

mlRepairFuelTransferPump

mlRepairGPS

mlRepairCdrExtGPS

repair gun elevation drive

repair gun stabilization system
repair laser rangefinder

repair fuel L-anster pump

repair guuner’s primary sight (GPS)

repair co'nmander’s extension to the GPS

D.1.2 Vehicle specific status

The following structure describes M 1-specific status information, including the quantities

of fuel and ammunition stowed in various com;i.rments of the M1:

type SIMNET Ml _Status sequence (

enginePower
Fattery
frentleticner
frontRightFuel
rearFuel
apdsReadyAmmo
apdsSemiReadyAmmo

Float (32)

Fhonk. W5y,

F.oeL (32),

Float (32),

Float (32),
UnsignedInteger (8;,

UnsignedInteger (8),

apdsHullTurret¥FloorAmmo UnsignedInteger (8),

heatReadyAmmo
heat SemiReadyAmmo

UnsignedInteger (8),
UnsignedInteger (8),

heatHullTurretFloorAmmo UnsignedInteger (8),

unused (208)

The enginePower field specifies the fraction of full power the vehicle’s engine is able
to produce. The voltage of the vehicle’s battery (in volts) is specified by the battery

166

L ___En _ -}

BBN Systems and Technologies Report No. 7627

field, and the quantity of fuel in each tank (in gallons) is specified by the
frontLeftFuel, frontRightFuel, and rearFuel fields.

The vehicle carries ammunition of two types (APDS and HEAT) distributed among three
places (the ready rack, the semi-ready rack, and the hull or turret floor stowage). The last
six fields of the SIMNET_M1_Status data element specify the number of rounds of each

type in each of these places.

D.2 SIMNET M2/3 Bradley fighting vehicle

This section defines those aspects of the SIMNET protocols that are specific to the
SIMNET M2/3 Bradley Fighting Vehicle simulator [2].

D.2.1 Repairs

The SIMNET M2/3 simulator recognizes the following values of the Repair Type data

element:

type SIMNET_M2 RepairType enum (16) {
m2ReplaceGenerator (1),
m2ReplaceBattery (2),
m2ReplaceEngine (3),
m2ReplaceStarter (4),
m2ReplaceEngineFuelFilter (5),
m2ReplaceRirCleaner (6),
m2ReplaceTransmission (7),
m2ReplaceTurretDistBox (8),
m2ReplaceGunnersCtlHandle (9),
m2ReplaceCmdrsCtlHandle (10),
m2ReplaceTurretPositionlInd (11),
m2ReplaceTurretSlopelnd (12),
m2RepairCoolantLeak (13),
m2RepairTransOilLeak (14),
m2RepairEngineOilleak (15),
m2RepairServiceBrake (16),
m2RepairParkingBrake (17),
m2RepairGunnersSight (18),
m2RepairGunElevationDrive (19),
m2RepairTurretTraverseDrive (20),
m2RepairCannonMountInterface (21),

m2RepairTOWLauncher (22),

167

Report No. 7627

These values are interpreted as follows:

168

m2RepairIntercom (23)

m2ReplaceGenerator
m2ReplaceBattery
m2ReplaceEngine
m2ReplaceStarter
m2ReplaceEngineFuelFilter
m2ReplaceAirCleaner
m2ReplaceTransmission
m2ReplaceTurretDistBox
m2ReplaceGunnersCtlHandle
m2ReplaceCmdrsCtlHandle
m2ReplaceTurretPositionInd
m2ReplaceTurretSlopeInd
m2RepairCoolantlLeak
m2RepairTransOilLeak
m2RepairEngineOilLeak
m2RepairServiceBrake
m2RepairParkingBrake
m2RepairGunnersSight
mZ2RepairGunElevationDrive

m2RepairTurretTraverseDrive

m2RepairCannonMountInterface

m2RepairTOWLauncher

m2RepairIntercom

BBN Systems and Technoiogies

replace generator

replace battery

replace engine

replace engine starter

replace engine fuel filter
replace air cleaner

replace transmission

replace turret electrical distribution box
replace gunner’s control handle
replace commander’s control handle
replace turret position indicator
replace turret slope indicator
repair engine coolant leak
repair transmission oil leak
repair engine oil leak

repair service brake

repair parking brake

repair gunner’s sight

repair gun elevation drive
repair turret traverse drive
repair cannon mount interface
repair TOW missile launcher

repair Crew intercom

-

| . .
;
- N N BN

i 2m M am

BBN Systems and Technologies

D.2.2

Vehicle specific status

Report No. 7627

The following structure describes M2/3-specific status information, including the
quantities of fuel and ammunition stowed in various compartments of the vehicle:

type SIMNET_M2_ Status sequence {

enginePower Float (32),

hullBattery Float (32),

turretEmergencyBattery Float (32),
topFuel Float (32),

bottomFuel Float (32),

apCanAmmo UnsignedInteger
apCanAmmeType UnsignedInteger
heCanAmmo UnsignedInteger
heCanAmmoType UnsignedInteger
apStowedAmmo UnsignedInteger
heiStowedAmmo UnsignedInteger
towStowedAmmo UnsignedInteger
dragonStowedAmmo UnsignedInteger
towlLoaded UnsignedInteger
tow2Loaded UnsignedInteger
towLauncherUp UnsignedInteger
m3Configuration UnsignedInteger
rampDown UnsignedInteger

unused (179)

(8),
(8),
(8},
(8),
(1€),
(16),
(47,
(4),
(1),
(1) -
(1),
(1),
(1),

The enginePower field specifies the fraction of full power the vehicle’s engine is able
to produce. The voltage of the vehicle’s two batteries (in volts) is specified by the
hullBattery and turretEmergencyBattery fields, and the quantity of fuel in its
two tanks (in gallons) is specified by the t opFuel and bot tomFuel fields.

Severa! fields are used to describe the vehicle’s ammunition load as modeled by the M2/3
simulator. Twenty—five millimeter rounds are stored in three places within the vehicle:

in a bin called the AP can attached to the turret, in a similar bin called the HE can, and in
stowage compartments within the floor of the vehicle. Although the two cans are labelled
AP and HE, they do not necessarily contain just APDS and HEI rounds respectively.
Ammunition is loaded into the cans in strings of 30 rounds, and either bin may contain a
mix of both APDS and HEI strings.

The SIMNET_M2_Status data element describes the quantity and mix of ammunition in
each can using the following scheme. The apCanAmmo and heCanAmmo fields indicate

169

Report No. 7627 BBN Systems and 1echnologies

how many rounds of either type are in each of the two cans. The apCanAmmoType and
heCanAmmoType fields indicate what types of ammunition the cans contain. This type
information is encoded as a series of bits, with a single bit corresponding to each string in
the series of ammunition strings contained in a can. If a bit is 0, the corresponding string
contains APDS ammunition; if it is 1, the string contains HEI ammunition. The low—
order bit of the 8-bit field corresponds o the first string of ammunition leading into the
gun breach; this string may contain fewer than 30 rounds if some have been fired.
Higher—order bits represent successive strings in the series, each of 30 rounds. If a can
contains 210 rounds or less (seven strings or less), then some highest—order bit(s) of its

type field are unused, and they should be 0.

The apdsStowedAmmo, heiStowadAmmo, towSt owedAmmo, and
dragonStowedAmmo fields specify the number of rounds of various types of
ammunition stowed in the vehicle’s floor compartments. The remaining bit fields of the
SIMNET_M2_Status data element indicate whether each of the two TOW missile
launchers is loaded, whether the launcher is raised or lowered, whether the simulated
vehicle is the M2 or the M3 variant of the Bradley Fighting Vehicle, and whether the

vehicle’s rear ramp is raised or lowered.

170

-

‘R NN EE =R

- \.-

S R e - N e e

AN G B Wy S e s

R By TS = E A B Az By A =S oW

BBN Systems and Technologies Report No. 7627

APPENDIX E: ETHERNET IMPLEMENTATION

This appendix specifies how the data link layer services required by the SIMNET
association protocol are provided by either of the two popular Ethernet standards. The
preferred standard is IEEE 802.3 [12] (aka ISO 8802/3). Use of the older Ethernet
Version 2.0 [11] standard is discouraged. Both of these local area networks meet all of

the requirements described in chapter 4.

E.1 Overview

A full description of Ethernet may be found in the referenced documents [11] [12]. What
follows is a brief summary of this network. An Ethernet provides a single physical
channel operating at a fixed data rate of 10 Megabits per second. Ethernet may carry
datagrams ranging in size from 368 to 12,000 bits. Several types of physical media are
supported, but sliielded coaxial cable is perhaps the most common. |

We have modeled the behavior of an Ethernet supporting a distributed simulation of 500
simulators, each producing updates at the rate of five per second (somewhat more than
the typical rate actually measured), and found that the Ethernet is easily capable of
carrying the resulting network traffic with negligible delay. This model is described in a
separate report, SIMNET Ethernet Performance [13].

E.2 Use of Ethernet Addresses

Ethernet supports 48-bit source and destination addresses. The association protocol

places no requirements on the Ethernet source address. All association protocol PDUs
are transmitted using a multicast destination address. The multicast address is formed
from the multicast-group and protocol-identifier parameters of the association protocol

datagram and transaction services as follows:
« The first transmitted bit of the destination address is 1, identifying it as a logical or group address.

« The second transmitted bit of the destination address is 1, identifying it as a locally administered

address.
« The third through 327 bits of the destination address are 0.

« The 33" through 40t bits of the destination address arc the association protocol multicast-group

number, transmitted on the Ethernet in sequence from low—order bit to high—order bit.

171

Report No. 7627 BBN Systems and Technologies

« The 415t through 48 bits of the destination address are the association protocol protocol-identifier

number, transmitted on the Ethernet in sequence from low—order bit to high—order bit.

Note that an Ethernet transmits data least significant bit first. Note also that the protocol-
identifier parameter is carried by the userProtocol field of the Association PDU(see
§6.5.1). It is not to be confused with the kind field of the same PDU or the SIMNET
Association Protocol Identifier described below.

An Ethernet datagram may contain one or more association PDUs. All PDUs in a
datagram must pertain to the same association protocol multicast-group and association

protocol protocol-identifier.

E.3 SIMNET Association Protocol Identifier

Ethernet Version 2.0 and and IEEE 802.3 support different mechanisms for specifyirng the
kind of higher level protocol which is carried by a data link layer PDU. The following
sections describe how the SIMNET association protocol is identified for each of the two

Ethernet standards.

E.3.1 Ethernet Version 2.0

The Ethernet Version 2.0 specification defines datagrams that include a 16-bit type field.
In accordance with this specification, a datagram containing SIMNET association
protocol information should have a type field whose value is 21,000 decimal or 5208
hexadecimal [16]. That value labels all datagrams containing SIMNET association PDUs
and distinguishes them from any other types of datagrams traversing an Ethernet Version
2.0 network. The essential subset of Ethernet Version 2.0 Data Link Layer PDU is
illustrated in figure E-1.

172

-

.

N

‘. ..

"y e 2an

\ b
Vi]

BBN Systems and Technologies Report No. 7627

i Destination
| Address
DLL L 2
Header 1 i I i |
Source
Address
[] | | g '}
i | | |
Type
}
Data

Figure E-1: Ethernet Version 2.0 Data Link Layer header.

E.3.2 IEEE 802.3

IEEE 802.3 splits the data link layer into two sublayers, the Media Access Control
(MAC) sublayer and the Logical Link Control (LLC) sublayer. These are illustrated in
figure E-2. The Media Access Control PDU is identical to thc Ethernet Version 2.0 Data
Link Layer PDU, except that the Ethernet Version 2.0 "Type" field has become a
"Length” field. The "Length"” field specifies the number of octets of data that follow.

The Logical Link Control PDU is encapsulated within the MAC PDU. The length in
octets of the LLC PDU, including all headers, is the value of the length field of the MAC
PDU. The Logical] ink Control PDU contains four fields: DSAP, SSAP, Control, and
Information. The Conirol field contains the value 3, indicating the LLC "Unnumbered
Information" command (see [14]). The DSAP and SSAP specify the LLC's destination
and source service access points. Because DSAP and SSAP are only eight bit fields, only
a very limited number of global SAPs are permitted. Consequently, Project 802 has
developed the "sub-network access protocol” (SNAP)[15]. SNAP allows a much larger
number of protocols to be supported. Use of the SNAP protocol is indicated by DSAP
and SSAP hexadecimal values of AA. When this is the case, the LLC Information field

contains a SNAP PDU.

173

Report No. 7627 BBN Systems and Technologies
i
Destination
Address
MAC, Header i i i } i
Source
Address
| | | IS 'l
1 I | |
Length
—
ﬁ—
Lu:,l Header DSAPI|SSAP|CNTL
']
|
SNAP,Header PROTOCCL ID
l 1 1
|
Data
1

Figure E-2: IEEE 802 Ethernet Data Link Layer: Media Access Control, Logical Link Control and SNAP

headers.

The SNAP PDU contains two fields: Protocol Identification and Protocol Data. The
SIMNET association protocol has been assigned the unique protocol identifier 08-00-08-
52-08 (hexadecimal). When this value in found in the Protocol Identification field of the
SNAP, the SNAP Protocol Data field contains a SIMNET Association PDU.

174

W a wr R on 6 e W m

- 4B u= I =

SR Gh =P E» Gy @G G SR Gy EN A ae

BBN Systems and Technologies

Report No. 7627

APPENDIX F: TIMERS AND COUNTERS

The following timers are used in defining the SIMNET protocols:

Timer

mineFieldTime

mineFieldTimeOut

resupplyTime

serviceCancelTime

serviceRequestTime

simulationStatusTime

statusQueryTime

transactionCacheTime

transactionRetryTime

vehicleAppearanceTime

Seconds

30

60

12

300

10

riplion
The maximum time between any two Mine Field

PDUs issucd by any mine field.

How long a simulator waits without receiving a
Mine Field PDU describing a particular mine field
before concluding that that mine field no longer

exists.

How long a supplier waits for a response 10 a

Resupply Offer PDU.

How long a supplier waits without receiving a
Service Request PDU from a receiver before
concluding that the receiver is no longer requesting

service.

The period between successive Service Request
PDUs issued by a simulator requesting service for

its vehicle.

The maximum time between successive Simulation

Status PDUs issued by a simulator.

The period a simulator waits to receive responses 10
a Status Query PDU issued using the datagram

service.

The period a cached transaction response is

retained by an association entity.

The period between successive transmissions of a

Request APDU by an association entity.

The maximum time between successive Vehicle

Appearance PDUs issued for any vehicle.

175

Report No. 7627 BBN Systems and Technologies

vehicleDisappearanceTime 12 How long a simulator waits without receiving a
Vehicle Appearance PDU describing a particular
vehicle before concluding that that vehicle no

longer exists.

vehicleStatusTime 30 The maximum time between successive Vehicle

Status PDUs issued by a simulator.

The following counters are used in defining the SIMNET protocols:

Counter Repetitions Description
transactionRetryCount 3 The maximum number of times a Request APDU is

transmitted by an activation entity for one

transaction.

176

- e ud e A s e W W ae

