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\ Abstract

7 An analysis of a general Discrete Event Simulation (DES), executing on the dis-
tributed architecture of an eight node Intel iPSC/2 hypercube, was performed. The most
time consuming portions of the general DES algorithm were determined to be the functions
associated with message passing of required simulation data between processing nodes of
the hypercube architecture. A behavioral description, using the IEEE standard VHSIC
Hardware Description and Design Language (VHDL), for a general DES hardware acceler-
ator is presented. The behavioral description specifies the operational requirements for a
DES coprocessor to augment the hypercube’s execution of DES simulations. The DES co-
processor design implements the functions necessary to perform distributed discrete event

simulations using a conservative time synchronization protocol.

ix



Requirements Analysis for a Hardware, Discrete-Event,

Simulation Engine Accelerator

I. Introduction

1.1 Background

Computer simulations are used in a broad range of diverse applications such as
engineering, medicine, social sciences, and the military. Traditionally, simulations were
designed for and executed on sequential processors. However, dramatic increases in the
size and complexity of simulations over the past 20 years have resulted in simulation models
“whose computational requirements cannot be reasonably satisfied with even the fastest

sequential processors” (28:8).

The design of electronic hardware is one area where the increased complexity of sim-
ulation models is very evident. The rapid growth in component to chip densities requires
simulation of ever larger circuits. Since 1960 tbe circuit to chip ratio has nearly doubled
every year, resulting in densities greater than 500,000 transistors per chip (12:449). Al
though this growth rate has slowed to a doubling about every two years, the required logic

simulation has become a major limitation in the overall design process.

The Air Force has a large investment i . electronic hardware, and the development
costs continue to increase as the hardware becomes more complex. The Air Force’s in-
creased reliance on electronic hardware is contributed significantly to the Department of
Defense’s Very High Speed Integrated Circuit (VHSIC) program. A primary objective of
the VHSIC program is to develop and promote the use of high-density integrated circuits

in military systems.

VHSIC technology is heavily dependent on simulation for the design and verification
of these complex electronic components. Logic verification and fault analysis are essential
in the design of VHSIC chips and must be performed extensively before chip fabrication.
This complex testing, done through simulation, often consumes months of computer time

and has become a bottleneck in the logic design process (12:449).
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The VHSIC Hardware Description Language (VHDL) program was started in 1983
to standardize the tools needed to design, test, and document large-scale digital electron-
ics more efficiently. Initial imp’+mentations of VHDL were developed by Intermetrics, Inc.
under a DoD contract in 1983. Evolution and improvements in the language led to the
IEEE Standard VHDL Language Reference Manual in 1987. VHDL has become important
enough in recent years that the Department of Defense Advanced Research Pro jects Agency
(DARPA) has spon-  ed the QUEST projert. One objective of the QUEST project ic sim-
ulation acceleration, specifically a thovsand-fold speedup in VHDL simulations of VHSIC

designs is desired.

1.2 Problem

The limitations of traditional sequential processors have increased research in the
area of applying parallel computer architectures and multiprocessor technology to meet the
computational requirements of large simulations. Theoretically, if a sequential simulation
is logically partitioned into separate processes, placed on separate processors and run in
parallel, the amount of speedup attainable should be equal to the number of processors

used.

The theoretical speedup possible through parallel, or as it is more commonly known,
distributed simulation has yet to be realized. Several obstacles inhereut to distributsd
processing must be minimized to approach the theoretical speedup. Among these obstacies
are: the communications overhead associated with the necessary exchange of information
between logical processes; the load imbalance 1elated to the static allocation of logical
processes to processors; and the synchronization delay necessary to ensure event-driven

simulations do not process events out of order.

This thesis investigates possible enhancements to the discrete-event distributed sim-
ulation process that can be realized through a hardware implementation. The purpose of

this research is to specify the detailed requirements of such an implementation.
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1.8 Summary of Current Knowledge

Simulation models are classified by Pritsker as either discrete, continuous, or com-
bined. The basis for this classific tion is how the dependent variables of the simulation
model change with respect to time. In discrete simulation the dependent variables change
at specified poinis in simulated time known as event times and generally do not change
values between event times. Discrete simulation is further classified by the relationship be-
tween events, activities, and processes. Continuous simulation results when the dependent
variables of the simulation model change continuously over simulated time. Combined sim-
ulation occurs when dependent variables change discretely, continuously, or a combination

of both (26:63-64).

A time-based classification for simulation is also proposed by Neelamkavil. In this
classification, time can be advanced in two ways. The first is a synchronous, interval-
oriented simulation, where time is advanced from time t to t + At in uniform fixed in.
crements of At. The s2cond method, event-oriented simulation, is asynchronous and time
may advance in variable intervals. Using this approach, time is “incremented from time ¢

to the next event time t', whatever the value of t'” (24:136).

The emphasis of current research is on discrete event simulation. This approach is
well-suited to digital logic simulation where only a small portion of the circuit, typically
10-15 percent, is active at a given time (9:67). Hence, the inefficiency of simulating every

element in a circuit, when only a fraction are switching, is avoided.

Efforts to improve the performance of logic simulation fall into two categories. The
first is a top down approach of divide and conquer. That is, divide the circuit into smaller,
more manageable modules for which the simulation costs are not so severe. This approach
is often plagued by difficulties in providing effective tests for the interfaces between modules
(12:449).

The second approach is to optimize the performance of the simulation itself through
various speed-up techniques. One avenue considered in this approach is to identify those
portions of the simulation software that occur frequently and are time consuming to exe-

cute. According to Wong the operations to consider for recoding are event-list manipula-



tion, function evaluation, and net-list searching, as they account for 85% of the execution
time of a logic simulation algorithm (31:47). Recoding of this software attempts to improve
efficiency through the use of hand optimized assembly language. Unfortunate'y, algorithm

optimization seldom yields more than a three fold increase in speed (4:130).

Another prevalent approach to accelerating simulation is the use of special purpose
hardware and digital computers tailored to logic simulation. Special purpose computers
can have performance orders of magnitude faster than the current software simulators

(12:449).

Special purpose hardware architectures attempt to exploit the concurrency within
the simulation algorithm. This concurrency results when different events are scheduled
for the same time, which occurs frequently in logic simulation (1:84). Catlin offers two
approaches to parallelizing this inherent concurrency in simulations, data partitioning and
functional partitioning. Data partitioning employs several processors performing identical
functions on different portions of the input data. However, the complex interprocessor
communications and elaborate hardware requirements make this approach unattractive.
Functional partitioning takes advantage of the structure of the simulation algorithm. The
algorithm is broken into portions of approximately equal complexity and disjoint data
structures. Each portion of the algorithm is then assigned to a separate processor for

execution (4:130).

Pure parallelism is not always possible. Often processes must access the same data
as in the case of an event list maintained in one memory. Concurrency is still possible with
multiple processing elements. Each processing element performs an individual task while

data flows between them in a pipeline fashion (1:84).

1.4 Constraints

Benefits from speed-up improvements in discrete event simulation can extend not only
to digital logic simulation but also to a variety of applications. The need to speed up digital
logic simulation is obvious; however, this research applies to the broader area of discrete

event simulation in general. The potential for speedup of digital logic simulation may be
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limited by focusing on the greater objective of enhancing all discrete event simulations.
This larger domain of discrete event simulation applications may constrain the design of
accelerator hardware. Design options that would enhance aspects unique to digital logic

simulation would ne ‘essarily be dismissed in favor of more general applications.

The majority of discrete event simulations are currently executed on the Intel iPSC /2
hypercube. Continued use of this distributed architecture, based on the Intel 80386 CPU,
is anticipated as it represents near state-of-the-art technology and is readily available for

research use.

1.5 Scope

Implementation of a specific hardware simulation accelerator was not the goal of this
effort. The research focused instead on a detailed requirements analysis for the design of

specific hardware enhancements to accelerate discrete event computer simulations using

the Intel 1PSC/2.

The detailed requirements specification was documented using VHDL. Validation
and evaluation of the design and degree of speedup realized was conducted through VHDL

simulations.

The target architecture is a distributed parallel computer; however, design testing was
performed on a single processor model, representing a single processing node of the iPSC /2
hypercube. The effects of interprocessor communication, processor synchronization, and
load balancing were not measured in this configuration, rather the accelerator performance,

relative to CPU execution time, was evaluated.

1.6 Standards

The evaluation of simulation speed is sometimes ambiguous. Simulation performance
is rated using different measurements throughout industry and current literature. Com-
mon measurements include gate evaluations per second, instructions per second, and events
per second. Each measurement provides different information about a simulation’s perfor-

mance.



This effort focused on the simulation execution time for a particular class of simula-
tion modeling — discrete event. The actual run times of a specific discrete event simulation

provided the datum for this effort.

The proposed hardware accelerator design was evaluated with respect to to this stan-
dard. Abramovici contends that an order of magnitude speed up is a minimum design goal
(1:33); however, DARPA'’s thrust is a speedup of three orders of magnitude over tradi-
tional simulations through the use of parallel processing, supplemented with a dedicated

hardware accelerator.

The objective of this effort was to determine how a general discrete event simula-
tion might be improved through a hardware accelerator, and to design such a hardwure
enhancement. DARPA’s speedup goal is not entirely dependent upon this effort. Related
research in techniques to optimize simulation process distribution and minimize the ef.
fects of load imbalance, communications overhead, and synchronization delay in a parallel

implementation will add to the performance gains realized through hardware acceleration.

1.7 Approach/Methodology

The analysis of a general discrete event simulation model provided a definition for
the problem space and was used as the foundation for the remainder of this effort. This
analysis clearly defined the portions of the simulation model that exhibit the greatest
potential for speedup through hardware enhancements. Specifically, those areas of the
simulation model that required the greatest portion of overall execution time and relative

frequency of execution were emphasized in the design of a hardware accelerator.

The potential for simulation speedup via the application of special purpose hardware
was evaluated along with the trade offs associated with the a hardware implementation.

The hardware accelerator requirements were specified and implemented using VHDL.

A testbed was devised to evaluate the VHDL accelerator design. A VHDL behav-
ioral model of the Intel 80386 CPU was not available, hence a complete CPU /accelerator

system evaluation could not be performed. Rather test vectors representing discrete event
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simulation instructions and data along with CPU interface and control signals were used

for accelerator design evaluation.

The VHDL design tests were iterative in nature and revealed both design strengths
and shortcomings. The test evaluation and feedback process was instrumental in the de-
sign’s evolution. Portions of the design remain as VHDL behavioral descriptions; however
the detailed requirements for a discrete event hardware accelerator are completely specified

when considering the design as a whole.
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II. Simulation Acceleration Issues

2.1 Introduction

The use of computer simulation to predict the outcome of events or the performance
of physical processes is not new. Computers have provided a means to simulate a broad
range of problems in fields as diverse as engineering, economics, sociology, and weather.
This proliferation of computer simulation has led to models of increased complexity and

often time-consuming simulation programs.

The Department of Defense is keenly aware of the time-zonsuming nature of complex
simulations. Time delays to conduct simulations may adversely impact a commander’s

ability to make an informed decision or delay the development of a new system.

Considering the diverse applications and increased reliance on computer simulations,
the Department of Defense is investigating methods of speeding up the simulation process.
The DoD’s emphasis on Very-High Speed Integrated Circuit (VHSIC) technology is one
area that requires significant improvement in simulation speed. This is readily apparent if
one considers that simulating one second of real-time for an application specific integrated

circuit may take days of dedicated processor time (14:42).

This chapter is an overview of different approaches available for accelerating computer
simulation. Various simulation methods are described and options for accelerating the

simulation process from a hardware perspective are presented.

2.2 Simulation Techniques

The two main categories of simulation are continuous (time-driven) and discrete-
event simulation. The time-driven approach i~ . cterized by regular advances, of a
predetermined and fixed increment, of a sim bck. The values of all simulation
variables are evaluated and updated after each ciock advance. If no variables are affected,
the clock simply advances. Event-driven simulations use a clock that advances to the
future time of the next scheduled event. In discrete-event simulation, scheduled events are

repeatedly fetched from a queue and simulated and only those variables affected by the
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event are updated. Each event simulation may spawn new events which are inserted into

the event queue at the appropriate time (22:39).

A discrete-event simulation allows the simulator to skip intervals of time where no
events are scheduled. The modeling of complex digital circuits is well suited for discrete-
event simulation since signal values change at discrete times and only a limited number of

circuit elements are active at any given time.

2.3 Distributed Processing

Discrete-Event Simulation (DES) programs often require computational capabilities
that exceed the fastest available machines (13:81). Parallel computer architectures have
the potential to overcome the speed limitations of single processor computers and thus,

have received widesprzad attention.

2.3.1 Tazonomy for DES Architectures A notation similar to Flynn’s for parallel
architectures (e.g. MIMD, SIMD etc.) can be used to describe the main architectural
features of DES machines. The basis for this taxonomy is the DES algorithm and its three

essential elements:

e Time control
e Event list control

¢ Event (function) evaluation

The implementation of these components may vary between simulators but, in one
form or another, they are all present in any DES (12:450). The time control compo-
nent (clock control) determines the progression of simulated time. The event list control
component schedules events in increasing time order and the event evaluation component

processes the accessed events and determines if new events should be scheduled.

The taxonomy has four components: two specify time control characteristics, and
one each for specifying event list control and event evaluation components (see Table 2.1).

The time control mechanisms define the simulation’s classification with respect to time —
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unit increment corresponding to continuous time and event based increment corresponding
to discrete event time. In a multiprocessor system, synchronization may be provided by a

single “global clock” or each processor may maintain a “local clock.”

Table 2.1. DES Taxonomy Components

1. TIME CONTROL MT CHANISMS
A. TIME ADVANCE
1) Unit Increment (U1)
2) Event-based Increment (EI)
B. TIME SYNCHRONIZATION
1) Global Clock (GC)
2) Local Clock (LC)
2. EVENT LIST ATTRIBUTES
1) Single List (SL)
2) Multipie List (ML)
3. EVENT/FUNCTION EVALUATION
1) Single Machine (SM)
2) Multiple Machine (MM)

Similarly, the event list can be distributed and portions maintained by each processor
or totally by a single processor. A distributed, or multiple event list, eliminates the delay
time to communicate the next scheduled event and is potentially faster than the single

event list.

The last component, event /function evaluation, indicates whether a single or multiple
processors are used. Using this taxonomy sixteen possible machine architectures can be

specified by the tuple:
Time Advance/Time Synchronization/Event List Attributes/Event Evaluation

Eight of the sixteen possible architectures are implemented with a single machine (SM) and
represent traditional sequential architectures. The remaining eight are multiple machine

(MM architectures which include the Intel iPSC/2 hypercube.

2.3.1.1 Parallel Architectures The multiple machine architectures represent

parallel processing systems. Speedup is obtained by distributing the simulation workload
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among several concurrent processors; however, this is not without some cost. Each parallel
architecture has some limitation that must be considered and its effects evaluated during

system design (12:452).

2.3.1.2  Multiple Machines with Global Clocks - X/GC/Y/MM These archi.
tectures take advantage of parallel function evaluation to speed up simulation. A single
processor acts as a master and maintains the global clock. The use of a global clock min-
imizes time synchronization problems; however, an efficient communications network is
required and the logical processes must be partitioned for effective load balancing. Par-
allel event list manipulation is also possible with multiple event lists. This eliminates the
potential bottleneck of a centralized event list, but also requires distribution of event time

information between raster and slave processors to ensure global clock updating.

2.3.1.3  Multiple Machines with Local Clocks - X/LC/Y/MM Potential speedup
in these architectures is obtained through parallel function evaluation, parallel event list
manipulation, and distributed time management. MIMD machines, such as the Intel
iPSC/2 hypercube, are represented in the taxonomy as EI/LC/ML/MM. Here the sim-
ulation is mapped as a set of autonomous communicating processes that exchange time
synchronization and state information through asynchronous message passing (5:198). This
distributed time management allows variable states to be evaluated as each input value

changes.

2.3.2 Duistributed Discrete Event Algorithms In a distributed processing environ-
ment, discrete-event simulations map one or more server/queue pairs onto the active pro-
cessors in the network. Each processor operates with its own simulation clock and messages
are timestamped to reflect the simulated time at the sending node. Individual processors
may have separate processes executing on them and messages are routed between the

processor pairs by directed channels (22:51).

Various distributed discrete event algorithms have been proposed, but two approaches,
the Chandy-Misra algorithm and the Time Warp algorithm, are most notable (28:8). The

distinguishing feature between these algorithms is how they manage simulation time.



2.3.2.1 Optimistic Paradigm - Time Warp Algorithm The Time Warp algo-
rithm relies on general lookahead - rollback as its fundamental synchronization me~hanism
(20:404). Each local simulation clock advances independently unless conflicting informa-
tion (i.e., a message from the past) occurs, at which point the local simulation clocks
are “rolled back” to a consistent state, antimessages are sent to override the erroneous

messages, and execution advances along a revised path (28:8).

The underlying principle of Time Warp is the concept of “virtual time.” Virtual
time is a temporal coordinate system used to measure progress and ensure synchronization.
Each processor is updated with the global virtual time, which only progresses forward, in
addition to its own simulation, or local virtual time. For a given real time, the global
virtual time represents the minimum of all local virtual times and the virtual send times

of all messages that have yet to be processed (20:417).

The primary overhead cost of Time Warp is associated with rollbacks and the commu-
nication of antimessages needed to implement a rollback (20:416). Additionally, previous
state information must be maintained to allow message cancellation and rollback to the

current global virtual time.

2.3.2.2 Conservative Paradigm - Chandy - Misra Algorithm The Chandy-
Misra algorithm models a physical system as a distributed network of logical processes
communicating via messages. The event list and global simulation clock, of traditional

sequential simulations, are replaced with an event list and local clock at each logical process.

An effective implementation of the Chandy-Misra algorithm is dependent upon the

following requirements (5:198-199):

o The behavior, at time t, of the physical process being modeled must not be affected

by messages transmitted after ¢. This is referred to as the realizability condition.

¢ Messages between processes must increase monotonically in time (monotonicity con-

dition).

o Messages between logical processes must correspond exactly to the sequence of mes-

sages between physical processes (predictability).
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The primary difference between the Chandy-Misra algorithm and the Time Warp
technique is the use of “null” messages. Null messages are encoded with a timestamp to
tell the receiving node that no real message will be transmitted before the specified time.
Hence the receiving node may process existing messages withcut the possibility of reversal

at a later time (28:9).

2.4 Discrete-Event Logic Simulation

Digital logic circuiis are simulated by modeling the circuit elements to determine
signal values for a given sequence of input signals. The data necessary to simulate an
element is referred to as the element record. The element record typically contains current
input values, current output, one or more delay time values, the element type code, fan-
out count and destination, and a set of exception flags (30:4). The major functions of a
discrete-event logic simulator include element data management, element evaluation, event

management, and exception handling.

Any change in the value of an input, output, or state variable of a given element is
referred to as an event. Events occur at discrete points in simulated time. An element
whose input or state variable has changed is evaluated to determine its new output and
state. Transitions of state variables and generation of new outputs must be scheduled for

some future time as delays are usually associated with the operation of elements (1:83).

Scheduled events are maintained on an event queue. A simulation time-flow mecha-
nism manipulates the events and ensures that they occur in correct temporal order (1:83).
When all events at the current simulation time are exhausted, the time is advanced to the

next time for which events are scheduled.

Manipulation of the event queue ensures the proper time sequencing of evaluations.
Additionally, only those elements scheduled for an event are evaluated at a given simulation
time. This reduction in number of elements evaluated incurs the additional overhead of
manipulating the event queue. Comfort estimates that between 32% and 40% of all non-

input/output computer time may be spent in event queue processing (8:117).
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2.5 Speedup Alternatives

Rarely content with current technology and capabilities, computer and software de-
signers continue to investigate methods of speeding up computer operations. This section

presents an overview of speedup efforts in the area of simulation.

2.5.1 Software Acceleration Alternatives for accelerating the execution of logic sim-
ulations have been proposed. The first approach often considered is recoding software for
the most frequently occurring element routines and the event queue manager (4:130). This
approach improves efficiency through the use of hand-optimized assembly language. Un-
fortunate'y, this approach seldom realizes more than a three-fold increase in speed (4:130).
Additionally, this implementation limits the transportability and maintainability of the
software (30:2).

2.5.2 Application Specific Hardware Another approach is to acquire a faster ma-
chine or to develop hardware exclusively for simulation. This option provides the greatest
performance increase and can be as much as 100 to 500 times the speed of software sim-
ulations run on a sequential microprocessor (3:27-29). The disadvantage to this approach
is that special hardware is usually difficult to modify in the field and often cannot be used
for anything else (4:130). Direct implementation of the simulation software in hardware is

also feasible but expensive and inflexible (3:21).

Several design options for special purpose hardware to speed up simulation are avail-
able. Smith suggests the use of one or more stages of microcoded hardware designed
especially for high performance simulation (30:2). Using this approach, four processors
could form a pipeline with stages for event queue management, evaluation routines, and

signal change propagation.

2.5.3 Functional Partitioning Catlin and Paseman contend that the structure of
the simulation algorithm can be exploited through functional partitioning. The simula-
tion algorithm is broken into three pieces of approximately equal complexity. A separate
processor is assigned to each portion of the algorithm and its associated data structures.

The tasks of queue management, state maintenance, and element evaluation are performed
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in disjoint processors and therefore operate simultaneously. Communication between the
processors is through low bandwidth First In First Out (FIFO) channels and processing is
done in a dataflow fashion. A host microprocessor serves as the nucleus of the system and

provides a user interface during the simulation (4:130-132).

A network of inexpensive but powerful microprocessing elements is viewed by Com-
fort as the best method of attaining high instruction execution rates at a moderate cost
(7:197). Similar to Catlin and Paseman, Comfort also proposes partitioning the simula-
tion into functional processes. The function of event set processing comprises one partition
and is assigned a variable number or processors each having ‘next,”*schedule,” and ‘cancel’
functions. The remaining partition consists of all other processing associated with the
simulation and is assigned to the host processor. The host processor polls the event set
processors for their event notice of smallest next processing time. The host then selects

the notice with the smallest (global) time and acts upon it (8:118).

2.5.4 Content-Addressable Memories The use of random access memories for data
storage and retrieval has inherent drawbacks because of its word-at-a-time, location-addressed
implementation (6:51). Addressing by location is inefficient, particularly if data is dynam-

ically unordered during processing.

Content-Addressable Memories (CAMs) are capable of accessing data based on con-
tent rather than memory location. This ability permits data searches for exact matches

with a specified key or relative comparisons for an ordered data retrieval (25:725).

Considerable speedup in processing time is possible with content-addressable mem-
ories. This results from the simultaneous access of data in parallel and the elimination of

the need to store data in sorted order (15:509,518).

2.6 Summary

Simulation is an integral part of decision making in various disciplines. The use of
computers for simulation has increased dramatically over the past 20 years and simulation

models have become more complex. The increased model complexity necessitates computer



enhancements to minimize the time required to run these simulations—particularly in

digital logic simulation where simulations may take days to run.

The dominant approach to enhancing computer simulations is to distribute the work-
load among multiple processors working in parallel. Several options of parallelizing the
simulation are available to the designer. Processor networks operating in a dataflow fash-
ion are feasible as are pipelines of multiple stages. In both approaches the simulation

algorithm is partitioned among the processors for independent processinj.

Every designer must consider the cost of design implementation. An additional
consideration for the design of a simulation accelerator is flexibility. Application specific
hardware is often inflexible and one must consider the tradeoffs between speedup potential

and the opportunity for reuse in other applications.
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III. Methodology

3.1 Introduction

The design of a Discrete Event Simulation (DES) hardware accelerator requires a
detailed analysis of a general DES algorithm. The objective of this analysis is to identify
simulation functions and routines that are frequently invoked and/or account for a large
portion of the overall simulation execution time. Once determined, simulation acceleration

is possible through implementation of these functions in hardware(31:47).

The methodology used to analyze a general distributed DES is presented in this
chapter. A description of the simulation testbed and the configuration of simulation logical

processes is given.

The parallel architecture of the Intel tPSC/2 hypercube is described and the different
simulation topologies employed are presented. The methods used for collecting simulation
data and the metrics for evaluating the data are presented along with the results of this

analysis.

3.2 Discrete Event Simulation Testbed

The parallel Discrete Event Simulation (DES) environment for this effort consisted
of an eight node Intel tPSC/2 hypercube employing the SPECTRUM simulation protocol
interface designed by the University of Virginia. The conservative, Chandy-Misra null

message protocol was used for parallel synchronization.

3.2.1 SPECTRUM Interface SPECTRUM is a generic testbed designed for eval-
uating parallel simulation protocols (29:865). Through the use of user defined protocol
filters, SPECTRUM provides a transparent interface between the application being mod-

eled and the parallel processing architecture used to execute the simulation.

The application to be simulated contains one or more physical processes which are
modeled through Logical Processes or LPs. Each simulation Logical Process (LP) is com-
posed of three separate entities when executed under SPECTRUM. Referring to Figure 3.1,

each LP contains an application component, a process manager, and a node manager.
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Application components are portions of the original application which may be executed
concurrently. The process manager provides routines to support typical simulation require-
ments such as managing simulation time and event queues. Low level system requirements,
such as message passing between LPs and scheduling, when multiple LPs are mapped to

a single processor, are provided by the node manager.
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Figure 3.1. SPECTRUM Testbed Logical Process(29:868)

The simulation protocol is implemented with SPECTRUM via a user defined fil-
ter. The filter provides the synchronization functions necessary for effective simulation
execution. The basic filter functions required for discrete event simulation are: initialize,
get-next-event, post-event, advance-time, and post-message. All but the last function oc-
cur between the application layer and the process manager. Post-message is a message
. handling function which occurs between the process and node managers(29:868). Hence
the use of filters provides the interface between separate modules within each LP while

providing the user easy access for modifying, or replacing, the synchronization protocol.
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3.2.2 Simulation Application The application used for analysis and modeling a
general Discrete Event Simulation is a simple car wash. The physical process of washing
cars is modeled by three logical processes. A source, which generates customers for the
system. A wash, where the customer service is simulated, and an exit where the customers

depart from the system.

Parallelism is achieved through multiple instances of source and wash LPs. Figure 3.2
shows the configuration of LPs for the car wash simulation. Although different configura-
tions are possible (i.e., more exits or fewer washes), extensive revisions of the application
source code would be necessary. Since the multiple instances of sources and washes are
mutually exclusive (i.e., no data dependencies) in this configuration, concurrent execution

of these LPs is possible.

Figure 3.2. Car Wash Simulation, Logical Processes

The interconnecting arcs, which provide message passing channels between LPs, are
established during initialization and remain fixed throughout the simulation. The simula-
tion is deterministic in that customer arrival rates are constant, although customers are
generated at different frequencies at each source. Likewise, the service rate for a given
wash is fixed; however, this rate also varies between individual wash LPs. The routing of

customers from source to exit follows the interconnecting arcs and is also deterministic,



with the path taken at forks being a function of the customer, or car number.

3.2.83 Parallel Processing Architecture An eight node Intel iPSC/2 hypercube pro-
vided the parallel processing architecture for executing a gener: DES. Using Franklin’s
taxonomy from Section 2.3.1.3, this architecture can be classified as EI/LC/ML/MM, since
the DES is event driven, uses local clocks for simulation time, multiple lists for scheduling

next events, and multiple processors in a hypercube configuration.

The basic architecture of each cube node is a self-contained computer with a CPU,
local memory for programs and data, and an input/output (I/0) subsystem. The distin-
guishing feature of the iPSC/2 is the set of bidirectional I/O channels linking each node

to its n immediate neighbors in the hypercube.

The number of immediate neighbors, n, also represents the dimension of the hy-
percube. With n = 3, a three dimensional graph representation of the iPSC/2 is shown
in Figure 3.3. This figure depicts an eight node configuration of the hypercube and the

nearest neighbor interconnections.

Figure 3.3. 8 Node Hypercube Configuration (17:1830)

The distributed memory architecture of the hypercube necessitates message passing
between nodes when information must be shared. The bidirectional I/O channels, linking

nearest neighbors, play a central role in the hypercube’s performance. The iPSC /2 uses
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Direct-Connect Modules (DCM) which provide the necessary routing logic in the hypercube

interconnect topology for this purpose.

Earlier versions of the hypercube used a store-and-forward communication scheme
requiring approximately 1 ms to pass messages between adjacent nodes (17:1832). The
DCM of the iPSC/2 uses a 16 bit routing probe to encode node address information. This
allows the sending node to establish an end-to-end link with the receiving node by routing

through intermediate nodes along the path (10:448-452).

3.3 Simulation Configuration

Two simulation parameters and mappings of LPs to processing nodes were varied
during the analysis. The effects of feedback on the simulation’s execution were invesiigated
by either routing customers from the exit back to the source for resubmission or allowing

a straight exit.

Additionally, an artificial workload, referred to as a spir loop, was implemented by
inserting varying size loops with floating point operations within each LP. This variable
workload provided a more realistic and general simulation for analysis as compared to the
strictly deterministic carwash. The effects on function execution frequency and overall

function execution time were analyzed by varying the computational intensity between

LPs.

Figure 3.2 shows the carwash LP configuration which was fixed for all simulation
runs. Representing the physical process with eight LPs provided a direct cne-to-one map-
ping of LPs to the eight processing nodes on the iPSC/2 hypercube. To investigate the
effect of multiple processes executing on each node, the mapping shown in Figure 3.4 was
used. Similar to the original mapping, the basic LP configuration of the simulation is
unaltered; however, only four computing nodes of the hypercube, each having two pro-
cesses, are employed. Although many mapping options of the eight LPs are possible, this
mapping was chosen since it consolidates communication paths and minimizes off-node

communication(21:4-2).



Figure 3.4. Carwash Configured with Two LPs per Node

3.4 Data Collection and Analysis

A direct means for parallel algorithm analysis was not available during this effort,

therefore the DES algorithm had to be instrumented for data collection.

3.4.1 Algorithm Instrumentation Section 3.2.1 described the levels and modularity
of the SPECTRUM testbed. Each level of SPECTRUM has a corresponding level of soft-
ware in the DES algorithm. The carwash application level (afitwash.c) has direct visibility
to the process manager (Ip-man.c) for event list and time management functions. The
process manager in turn has visibility to the synchronization protocol filter (myfilters.c)

and the node level message passing functions (cube2.c).

The analysis of a general DES required instrumenting the functions of the process
manager, the protocol filter, and the node level routines. Figures 3.5-3.7 show the function

hierarchy of each level of the DES algorithm.

The algorithm was instrumented to gather function execution data. The relative

function execution frequency of each logical process was calculated at each level (i.e. filter,
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Figure 3.5. Function Hierarchy of Process Manager Level
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process manager, and node manager) of the DES algorithm. Therefore data was collected

from each LP separately and then categorized based on algorithm level.

The instrumentation was implemented by encapsulating each function with variables
to monitor function count and execution time. The function execution count was incre-
mented during each successive function call, while the cumulative function execution time
was undated with the difference of each function’s start and end times. Variable updat-
ing was concurrent with simulation execution; however, the final data totals were reported
only after the simulation had completed, thus avoiding the significant overhead of updating

data files during simulation execution.

3.4.2 Data Analysis Metrics The function hierarchies of Figures 3.5-3.7 show the
interrelation between software levels and functions in the SPECTRUM testbed described
in Section 3.2.1. The complexity of determining the portion of overall simulation execution
time for cach level is compounded by the inter-level dependencies and function calls. To
simplify the analysis, each level of the simulation software was considered separately with
the knowledge that subfunction calls are an integral part of the algorithm which contribute
to the calling function’s total execution time. A relative comparison, with respect to
the total number of function executions and total execution time, of each level’s primary

functions (i.e. top tier of the function hierarchy) was then made for each level.

By averaging the data of each level’s primary functions across all simulation LPs, a
general view of the individual function performance was obtained. This average execution
data reveals the primary functions and portions of the algorithm that are the most time

consuming, and thus have the greatest need for acceleration.

An analysis of relative simulation execution times for multiple LPs per computing
node, as shown in Figure 3.4, was also made. The need for this analysis is based on the
fact that the modeling of many physical processes generates more logical processes than
the number of available processing nodes. Modeling with large complex logical processes,
by combining smaller LPs, is possible but may not always result in a one-to-one mapping

between LPs and processors.
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The analysis of data for processing nodes with multiple LPs considered the addi-
tional overhead for task scheduling and switching. The measurement of switching time
for individual LPs is extremely difficult, and in fact, was not possible on the tPSC/2 as
the system clock resolution is in milliseconds, while the task switching time for the Intel
386 DX is about 17 us (19:5-335). Task scheduling is an operating system function on the
hypercube that is performed in a round-robin fashion. Each LP on a given processing node

runs for approximately 50 ms, or until it blocks to send or receive a message (18:2-56).

Primary Function LP}

execution time

Figure 3.8. Task Swapping Runtimes

To get an accurate representation of relative simulation execution times, the data
for multiple LPs per processing node had to be adjusted to account for the effects of task
switching. Figure 3.8 is an example of two LPs whose execution times overlap as a result
of task switching. The runtime for the second LP, (B), occurs while LP (A) is swapped out
and the entire runtime of LP (B) is included within (A’s) total execution time. Likewise,

portions of (B’s) execution time can be attributed to LP (A) regaining the CPU; therefore,
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both LPs’ overall runtimes must be adjusted accordingly. This adjustment was possible by
tracking not oaly the execution start and finish times, but also the LP’s processing node
and process ID number. Once a clear distinction between LPs is made, the adjustment to
function execution times was made by subtracting the execution time for the second LP’s
function from the first. After adjusting the LP execution runtimes, the average relative
simulation execution times, for each level’s primary functions, were calculated as described

above for a single LP per processing node.

3.5 Logical Process Function Ezecution

The analysis »f simulation test data for single and multiple LPs per processing node,
both with and without feedback, and for various spin .00ps all yielded similar results. The
communications overhead of message passing, necessary to implement the conservative
synchronization protocol, accounted for the largest relative portion of .. ulation execution

time.

The data collected during this analysis is tabularized in the following sections. The
tables are not exhaustive in that, only those functions with the largest relative execution
times for each level were of primary interest and thus are included. Many of the func-
tions that were omitted required little or no measurable execution time (i.e., lp-terminate,
node.terminate, node-trash_event), regardless of the simulation configuration. Although
some primary functions have been omitted, the tables typically account for 80 percent, or

more, of the overall simulation execution time at each level.

3.5.1 One LP per Processing Node Tables 3.1 through 3.3 show the primary func-
tions with the largest average relative execution times for each level of the DES algorithm
used for the carwash simulation. These tables reflect data from simulations exec:ited with
one LP per processing node both without an artificial workload and with equally sized spin

loops executed on all LPs (i.e. sources, washes, and exit) in the simulation.

Table 3.1 indicates that the process manager level expends the greatest time, on

average, posting events. In the conservative synchronization protocol this entails sending
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event messages to one or more designated LPs, while null messages with a safe lookahead

time for tnat channel are sent on all remaining output channels.

Table 3.1. Mean Relative Execution Time for Process Manager, 1 LP per node

Primary No Spin Spin (1/1/1) Overall
Function FDBK | NOFDBK | FDBK | NOFDBK | Mean
Ip-postevent | 0.371 | 0334 | 0.398 | 0379 | 0371
read lp_info 0.343 0.379 0.337 0.333 0.348
lp_post_msg 0.151 0.150 0.137 0.183 0.155

The time spent executing readlp.info occurs only during simulation initialization.
Although a significant portion of the overall average relative execution time, its one-time

execution make it an unlikely candidate for a hardware accelerator.

Table 3.2 clearly shows that a significant portion of the overall average execution time
for the filter level is dedicated to supporting communication requirements. The overhead
of the send-nuli function translates to idle processor time. During this idle time, the
Processor waits for a two-way request to send and acknowledgement from the receiving

node necessary for the csend subfunction of figure 3.6.

Table 3.2. Mean Relative Execution Time for Filter, 1 LP per node

Primary No Spin Spin (1/1/1) Overall
Function FDBK | NOFD2X | FDBK | NOFDBK | Mean
send-null 0.400 0.425 0.412 0.429 0.417
null.msg fit | 0.253 0.240 0.224 0.216 0.233
null_get fit 0.197 0.194 0.204 0.199 0.199

The primary functions, with the largest average relative execution times, of the node
manager level are shown in table 3.3. As in the other DES algorithm levels, a majority
of the average execution time is directly related to communication overhead. Similar to
the send_null function of the filter level, both node_btm (block-til_message) and node_rpm
(receive_pending.messages) are implemented with subfunctions (see fi ;ure 3.7) that require
the processor to wait (i.e. crecv - wait to receive, and cprobe - wait for message o1

channel(18:2-17,19)).
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This waiting for communication is an inherent requirement of the conservative Chandy-
Misra synchronization protocol discussed in section 2.3.2.2. %his waiting again indicatas
CPU idle time which, given the opportunity, could be redirected to otuer simulation re-

quirements.

Table 3.3. Mean Relative Execution Time for Node Manager, 1 LP per node

Primary No Spin Spin (1/1/1) Overall
Function | FDBK | NOFDBK | FDBK | NOFDBK | Mean
node_btm | 0.429 0.344 0.454 0.286 0.278
node.rpm | 0.334 0.359 0.292 0.372 0.329
node._sm 0.086 0.108 0.101 0.140 0.109

3.5.2  Variable Spin with One LP per Processing Node The logical process mapping
of figure 3.2 was used for LPs of varying artificial workloads to demonstrate a broade~ and
more generic class of simulations than the deterministic carwash. The workloads, or spin
loops, were implemented arbitrarily but in proportions considered to approxiriate the
expected computational intensity of the particular logical process. Therefore the ra‘jos
shown in table 3.4 through table 3.6 represent the ratio of computational workloads of the

sources, washes, and exit respectively.

The effects of an increased workload on average function execution time are apparent
at the process manager level shown in table 3.4. The sources and exit continue to gen-
erate messages at approximately the same rate, however the washes, with a considerably
larger workload, require more time to process a backlog of incoming messages. Hence,
considerable time is spent posting received messages which includes a linked-list queueing

subfunction (see figure 3.5) of time complexity O(n).

The time dedicated to posting events is significant but relatively constant. Since the
workloads of the sources and exit are unchanged they continue to post events at nearly the

same rate as without an artificial workload (see table 3.1).

The relative execution times of the synchronization protocol are shown in the filter
level of table 3.5. The addition of spin loops had little effect on relative execution times

of this level’s primary functions. The communication overhead of sending messages again
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Tabie 3.4. Mean Relative Execution Time for Process Manager, 1 LP Variable Spin

Primary Spin (1/5/1) Spin (1/10/1) Spin (1/20/1) Overall
Function FDBK | NOFDBK | FDBK | NOFDBK | FDBK | NOFDBK | Mean

lIp_post_event | 0.340 0.328 0.332 0.315 0.335 0.316 0.328
lp_post_msg 0.184 0.201 0.198 0.210 0.210 0.221 0.204
read Ip_info 0.174 0.169 0.138 0.140 0.107 0.107 0.139

accounts for a significant portion of the average execution time. The slight decline in
send null execution time, relative to LPs with no spin loops (see table 3.2), is the result of

additional computational activity t the wash LPs, hence fewer output messages.

Table 3.5. Mean Relative Evecution Time for Filter, 1 LP Variable Spin

Primary Spin (1/5/1) Spin (1/10/1) Spin (1/20/1) Overall
Function FDBK | NOFDBK | FDBK | NOFDBK | FDBK | NOFDBK | Mean
null-msgfit | 0.303 0.302 0.362 0.379 0.456 0.467 0.378
send _null 0.337 0.324 0.256 0.234 0.201 0.192 0.257
null_get fit 0.215 0.234 0.214 0.237 0.205 0.201 0.218

As expected the node manager level of table 3.6 received the greatest impact from
the increase in computational workload. The floating point calculations used in the spin

loops clearly accounted for the majority of average function execution time at this level.

Table 3.6. Mean Relative Execution Time for Node Manager, 1 LP Variable Spin

Primary Spin (1/5/1) Spin (1/10/1) Spin (1/20/1) Overall
Function | FDBK | NOFDBK | FDBK | NOFDBK | FDBK | NOFDBK | Mean
node._spin | 0.371 0.425 0.443 0.500 0.493 0.549 0.464
node_rpm | 0.232 0.253 0.216 0.236 0.205 0.228 0.228
node_btm | 0.249 0.135 0.1593 0.097 0.154 0.058 0.148

Table 3.6 also shows that communication overhead accounts for significant execution

time at the node level, in spite of the added computational workload. The bottleneck at
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the wash LPs requires the node_rpm function to receive and post the the influx of messages,

while computations in the spin loop are executed.

3.6.3 Multiple LPs per Processing Node Tables 3.7 through 3.9 show data from
simulations executed with two LPs per processing node. Data both with and without an
artificial workload, and also for the wash LPs performing ten times the computational

intensity of the sources and exit is shown.

At the procers manager level (see table 3.7) the lp_adv.time function accounted
for the greatest average relative execution tirme. Although not 2 communications related
function, each time advance requires a memory access to update the LP’s local simulation
time. The use of sequential random access memory and the frequency of time updates

contributes to the average execution time for this function.

Posting events, or sending output messages, requires over 20 percent, of the average
execution time at the process manager level. This portion of execution iime is dedicated