
AD-A244 202 
IPIIIIIIIMIIIIIillllllll        ^ 111 

nr 

DTIC \ 
ELECTE f^Ar 
JAN 07 1992 

D 

. 

fSSshas brT^^d" "T .2t ■ ?c rcJ,3ase and sale-m 
ciislnbution is unlimited' m 

DEPARTMENT OF THE AIR FORCE 

AIRUNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air For^e Base, Ohio 

92 1     2   125 



AFIT/GCE/ENG/91D-11 

DUG 
ELECTE m 

% JAN071S9E| | 

Requirements Analysis for a Hardware, Discrete-Event, 

Simulation Engine Accelerator 

THESIS 

Paul J. Taylor, Jr. 
Captain, USAF 

AFIT/GCE/ENG/91D-11 

Approved for public release; distibution unlimited 



AFIT/GCE/ENG/91D-11 
UJ 

Requirements Analysis for a Hardware, Discrete-Event, 

Simulation Engine Accelerator 

THESIS 

Presented to the Faculty of the School of Engineering 

of the Air Force Institute of Technology 

Air University 

In Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science in Computer Engineering 

Paul J. Taylor, Jr., B.S.E. 

Captain, USAF 

December, 1991 

N7 'IS CR/ ■'■/ 

DT (C T it Ci 

U: J ■ i: 0;.''iC( ;d 
h- fjfi ^ -i-'l ;0i( 

t. lb::{io'-, / 

Diet 

/)i U 

i 
D 
U 

—^ 

Approved for public release; distibution unlimited 



Acknowledgments 

I would like to thank my advisor, Dr. (Major) William Hobart, for providing the 

guidance and inspiration that were indispensible during this effort. I would also like to 

thank my committee members. Dr. Thomas Hartrum and Captains Mark Mehalic and 

Keith Jones for their patience and invaluable feedback. 

I am deeply indebted to Messrs. Richard Norris and Russell Milliron. Their tolerance 

of my never-ending requests for better computer support were always cheerfully met. 

The support and encouragement provided by fellow students was critical, I would 

like to thank all of my classmates. In particular, special thanks must be extended to Kenn 

Scribner and Rod Taylor. Without the hours of listening and explaining these two so 

generously provided, I could not have made it. 

I would like to thank, and commend my son, Michael, for surviving the last eighteen 

months. The teen years are particularly trying, and he's gone it pretty much alone - I'm 

back. 

Most of all I wish to thank my wife, Jo Anne. Her ordeal was by far greater than 

mine, for she had little control over my seemingly endless struggles. It was through her 

love and understanding that "we" survived. Her presence and support, not only at AFIT, 

but in all I do is paramount. Thank you Jo, I love you. 

Paul J. Taylor, Jr. 



Table of Contents 

Page 

Acknowledgments      jj 

Table of Contents      jjj 

List of Figures     VJJ 

List of Tables       viii 

Abstract      ix 

I. Introduction      |.l 

1.1 Background  1.1 

1.2 Problem  1.2 

1.3 Summary of Current Knowledge  1-3 

1.4 Constraints  1.4 

1.5 Scope  I.5 

1.6 Standards  1.5 

1.7 i .pproach/Methodology  l.g 

II. Simulation Acceleration Issues      2-1 

2.1 Introduction      2-1 

2.2 Simulation Techniques  2-1 

2.3 Distributed Processing  2-2 

2.3.1 Taxonomy for DES Architectures  2-2 

2.3.2 Distributed Discrete Event Algorithms  2-4 

2.4 Discrete-Event Logic Simulation      2-6 

2.5 Speedup Alternatives      2-7 

111 



Page 

2.5.1 Software Acceleration  2-7 

2.5.2 Application Specific Hardware      2-7 

2.5.3 Functional Partitioning     2-7 

2.5.4 Content-Addressable Memories  2-8 

2.6    Summary  2-8 

III.      Methodology     ^-1 

3.1 Introduction      3.1 

3.2 Discrete Event Simulation Testbed  3-1 

3.2.1 SPECTRUM Interface  3-1 

3.2.2 Simulation Application      3.3 

3.2.3 Parallel Processing Architecture      3-4 

3.3 Simulation Configuration  3.5 

3.4 Data Collection and Analysis  3-6 

3.4.1 Algorithm Instrumentation  3-6 

3.4.2 Data Analysis Metrics  3-10 

3.5 Logical Process Function Ex3cution      3-12 

3.5.1 One LP per Processing Node  3-12 

3.5.2 Variable Spin with One LP per Processing Node   . . 3-14 

3.5.3 Multiple LPs per Processing Node  3-16 

3.5.4 Speedup Potential  3.17 

3.6 Summary  3_21 

IV.      DES Coprocessor Design      4-1 

4.1 Introduction      4.I 

4.2 Accelerator System Requirements      4-2 

4.2.1 Processor Utilization  4-2 

4.2.2 Memory Management  4.3 

IV 



Page 

4.3 Design Approach  4.3 

4.3.1 Hardware Implementation of DES Algorithm   .... 4.4 

4.3.2 Process Model  4.4 

4.3.3 DES Coprocessor Interface      4-6 

4.3.4 DES Coprocessor Functional Components  4-7 

4.4 Design Implementation      4.14 

4.4.1 System Packages  4.14 

4.4.2 DES Coprocessor Behavior  4-16 

4.4.3 Parallel I/O Behavior ,  4.20 

4.4.4 RAM Memory Behavior  4-20 

4.4.5 CAM Memory Behavior  4-21 

4.5 Summary  4.22 

DES Coprocessor Design Test       5-1 

5.1 Introduction      5-1 

5.2 Design Test Methodology  5-2 

5.2.1 CPU Interface     5-4 

5.2.2 General DES Algorithm Functions  5-5 

5.2.3 Simulation Initialization  5-5 

5.2.4 Post Message  5-6 

5.2.5 Get Next Event  5.7 

5.2.6 Post Event  5-8 

5.3 DES Coprocessor Design Testing  5-8 

5.3.1 CPU Interface      5.9 

5.3.2 Simulation Initialization Function      5-11 

5.3.3 Post Message Function  5-16 

5.3.4 Get Next Event Function  5-20 

5.3.5 Post Event Function  5-24 

5.4 DES Coprocessor System Performance  5-28 

v 



Page 

VI.      Results and Recommendations      54 

6.1 Introduction      g.l 

6.2 Summary of Findings      g-l 

6.3 Recommendations  5.3 

6.3.1 CAM Storage  6.3 

6.3.2 CAM Overflow  6-3 

6.3.3 Input Message Status  6-3 

6.3.4 Interface to CPU Communications Hardware   .... 6-4 

Appendix A.         DES System Packages       A-l 

A.l   Bus Resolution Package  A-2 

A.2   DES Coprocessor System Package  A-5 

Appendix B.         DES Coprocessor VHDL Design  B-l 

B.l   DES Copiocessor Structure  B.2 

B.2   DES Coprocessor Behavior  B-8 

B.3   Parallel I/O Behavior  B-37 

B.4   RAM Memory Behavior  B-40 

B.5   CAM Memory Behavior  B-44 

Appendix C.         DES Coprocessor System Test  C-l 

C.l   DES System Configuration  C-2 

C.2   DES Sytem Test Bench  C-4 

C.3   CPU Driver Behavior  C-8 

Bibliography     ßlB-l 

Vita     VITA-1 

vi 



List of Figures 

Figure page 

3.1. SPECTRUM Testbed Logical Process  3.2 

3.2. Car Wash Simulation, Logical Processes  3.3 

3.3. 8 Node Hypercube Configuration  3.4 

3.4. Carwash Configured with Two LPs per Node  3.6 

3.5. Function Hierarchy of Process Manager Level  3.7 

3.6. Function Hierarchy of Filter Level  3.8 

3.7. Function Hierarchy of Node Level  3.9 

3.8. Task Swapping Runtimes  3.11 

4.1. Process Model Graph  4.5 

4.2. DES Coprocessor System  4.8 

4.3. Coprocessor RAM Memory Organization  4.11 

4.4. CAM Event Field Entries  443 

4.5. Operation of the DES Coprocessor  4.15 

5.1. DES Coprocessor Testbench      5.3 

5.2. Opcode Read Bus Cycle of DES Coprocessor  5-11 

5.3. DES Coprocessor Registers with Sim Jnit Operands  5.13 

5.4. DES Coprocessor Write to RAM Partition     5.15 

5.5. CPU/DES Interface Signals for Post_Event Output      5-28 

va 



List of Tables 

Table page 

2.1.   DES Taxonomy Components  2-3 

3.1. Mean Relative Execution Time for Process Manager, 1 LP per node . . 3-13 

3.2. Mean Relative Execution Time for Filter, 1 LP per node  3.13 

3.3. Mean Relative Exec\^ion Time for Node Manager, 1 LP per node   . .  . 3-14 

3.4. Mean Relative Execution Time for Process Manager, 1 LP Variable Spin 3-15 

3.5. Mean Relative Execution Time for Filter, 1 LP Variable Spin  3.15 

3.6. Mean Relative Execution Time for Node Manager, 1 LP Variable Spin . 3-15 

3.7. Mean Relative Execution Time for Process Manager, 2 LPs per Node   . 3-16 

3.8. Mean Relative Execution Time for Filter, 2 LPs per Node  3-17 

3.9. Mean Relative Execution Time for Node Manager, 2 LPs per Node    . . 3-17 

3.10. Speedup Potential by Algorithm Level (1 LP per node, no spin)   .... 3-18 

3.11. Speedup Potential by Algorithm Level (1 LP per node, variable spin)   . 3-19 

3.12. Speedup Potential by Algorithm Level (2 LPs per node)  3.19 

3.13. Ratio of Simulation Execution Time hy Algorithm Level (1 LP per Node, 
no spin)  3-20 

3.14. Ratio of Simulation Execution Time by Algorithm Level (1 LP per Node, 

variable spin)  3.2Q 

3.15. Ratio of Simulation Execution Time by Algorithm Level, 2 LPs per Node 3-20 

5.1.   Function Execution Times for DES Coprocessor System  5-29 

vin 



AFIT/GCE/ENG/91D-11 

Abstract 

An analysis of a general Discrete Event Simulation (DES), executing on the dis- 

tributed architecture of an eight node Intel iPSC/2 hypercube, was performed. The most 

time consuming portions of the general DES algorithm were determined to be the functions 

associated with message passing of required simulation data between processing nodes of 

the hypercube architecture. A behavioral description, using the IEEE standard VHS1C 

Hardware Description and Design Language (VHDL), for a general DES hardware acceler- 

ator is presented. The behavioral description specifies the operational requirements for a 

DES coprocessor to augment the hypercube's execution of DES simulations. The DES co- 

processor design implements the functions necessary to perform distributed discrete event 

simulations using a conservative time synchronization protocol. r 
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Requirements Analysis for a Hardware, Discrete-Event, 

Simulation Engine Accelerator 

/.   Introduction 

1.1    Background 

Computer simulations are used in a broad range of diverse applications such as 

engineering, medicine, social sciences, and the military. Traditionally, simulations were 

designed for and executed on sequential processors. However, dramatic increases in the 

size and complexity of simulations over the past 20 years have resulted in simulation models 

"whose computational requirements cannot be reasonably satisfied with even the fastest 

sequential processors" (28:8). 

The design of electronic hardware is one area where the increased complexity of sim- 

ulation models is very evident. The rapid growth in component to chip densities requires 

simulation of ever larger circuits. Since 1960 the circuit to chip ratio has nearly doubled 

every yea^ resulting in densities greater than 500,000 transistors per chip (12:449). Al- 

though this growth rate has slowed to a doubling about every two years, the required logic 

simulation has become a major limitation in the overall design process. 

The Air Force has a large investment i electronic hardware, and the development 

costs continue to increase as the hardware becomes more complex. The Air Force's in- 

creased reliance on electronic hardware is contributed significantly to the Department of 

Defense's Very High Speed Integrated Circuit (VHSIC) program. A primary objective of 

the VHSIC program is to develop and promote the use of high-density integrated circuits 

in military systems. 

VHSIC technology is heavily dependent on simulation for the design and verification 

of these complex electronic components. Logic verification and fault analysis are essential 

in the design of VHSIC chips and must be performed extensively before chip fabrication. 

This complex testing, done through simulation, often consumes months of computer time 

and has become a bottleneck in the logic design process (12:449). 
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The VHSIC Hardware Description Language (VHDL) program was siarted in 1983 

to standardize the tools needed to design, test, and document large-scale digital electron- 

ics more efficiently. Initial imp' mentations of VHDL were developed by Intermetrics, Inc. 

under a DoD contract in 1983. Evolution and improvements in the language led to the 

IEEE Standard VHDL Language Reference Manual in 1987. VHDL has become important 

enough in recent years that the Department of Defense Advanced Research Projects Agency 

(DARPA) has spon ed the QUEST projeel One objective of the QUEST project h .em- 

ulation acceleration, specifically a thocsand-fold speedup in VHDL simulations of VHSIC 

designs is desired. 

1.2    Problem 

The limitations of traditional sequential processors have increased research in the 

area of applying parallel computer architectures and multiprocessor technology to meet the 

computational requirements of large simulations. Theoretically, if a sequential simulation 

is logically partitioned into separate processes, placed on separate processors and run in 

parallel, the amount of speedup attainable should be equal to the number of processors 

used. 

The theoretical speedup possible through parallel, or as it is more commonly known, 

distributed simulation has yet to be realized. Several obstacles inherent to distributed 

processing must be minimized to approach the theoretical speedup. Among these obstacles 

are: the communications overhead associated with the necessary exchange of information 

between logical processes; the load imbalance lelated to the static allocation of logical 

processes to processors; and the synchronization delay necessary to ensure event-driven 

simulations do not process events out of order. 

This thesis investigates possible enhancements to the discrete-event distributed sim- 

ulation process that can be realized through a hardware implementation. The purpose of 

this research is to specify the detailed requirements of such an implementation. 
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1.3   Summary of Current Knowledge 

Simulation models are classified by Pritsker as either discrete, continuous, or com- 

bined. The basis for this classifk tion is how the dependent variables of the simulation 

model change with respect to time. In discrete simulation the dependent variables change 

at specified points in simulated time known as event times and generally do not change 

values between event times. Discrete simulation is further classified by the relationship be- 

tween events, activities, and processes. Continuous simulation results when the dependent 

variables of the simulation model change continuously over simulated time. Combined sim- 

ulation occurs when dependent variables change discretely, continuously, or a combination 

of both (26:63-64). 

A time-based classification for simulation is also proposed by Neelamkavil. In this 

classification, time can be advanced in two ways. The first is a synchronous, interval- 

oriented simulation, where time is advanced from time t to t + At in uniform fixed in- 

crements of At. The racond method, event-oriented simulation, is asynchronous and time 

may advance in variable intervals. Using this approach, time is "incremented from time t 

to the next event time t', whatever the value oft'" (24:136). 

The emphasis of current research is on discrete event simulation. This approach is 

well-suited to digital logic simulation where only a small portion of the circuit, typically 

10-15 percent, is active at a given time (9:67). Hence, the inefficiency of simulating every 

element in a circuit, when only a fraction are switching, is avoided. 

Efforts to improve the performance of logic simulation fall into two categories. The 

first is a top down approach of divide and conquer. That is, divide the circuit into smaller, 

more manageable modules for which the simulation costs are not so severe. This approach 

is often plagued by difficulties in providing effective tests for the interfaces between modules 

(12:449). 

The second approach is to optimize the performance of the simulation itself through 

various speed-up techniques. One avenue considered in this approach is to identify those 

portions of the simulation software that occur frequently and are time consuming to exe- 

cute. According to Wong the operations to consider for receding are event-list manipula- 
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tion, function evaluation, and net-list searching, as they account for 85% of the execution 

time of a logic simulation algorithm (31:47). Recoding of this software attempts to improve 

efficiency through the use of hand optimized assembly language. Unfortunaity, algorithm 

optimization seldom yields more than a three fold increase in speed (4:130). 

Another prevalent approach to accelerating simulation is the use of special purpose 

hardware and digital computers tailored to logic simulation. Special purpose computers 

can have performance orders of magnitude faster than the current software simulators 

(12:449). 

Special purpose hardware architectures attempt to exploit the concurrency within 

the simulation algorithm. This concurrency results when different events are scheduled 

for the same time, which occurs frequently in logic simulation (1:84). Catlin offers two 

approaches to parallelizing this inherent concurrency in simulations, data partitioning and 

functional partitioning. Data partitioning employs several processors performing identical 

functions on different portions of the input data. However, the complex interprocessor 

communications and elaborate hardware requirements make this approach unattractive. 

Functional partitioning takes advantage of the structure of the simulation algorithm. The 

algorithm is broken into portions of approximately equal complexity and disjoint data 

structures. Each portion of the algorithm is then assigned to a separate processor for 

execution (4:130). 

Pure parallelism is not always possible. Often processes must access the same data 

as in the case of an event list maintained in one memory. Concurrency is still possible with 

multiple processing elements. Each processing element performs an individual task while 

data flows between them in a pipeline fashion (1:84). 

1-4    Constraints 

Benefits from speed-up improvements in discrete event simulation can extend not only 

to digital logic simulation but also to a variety of applications. The need to speed up digital 

logic simulation is obvious; however, this research applies to the broader area of discrete 

event simulation in general. The potential for speedup of digital logic simulation may be 
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limited by focusing on the greater objective of enhancing all discrete event simulations. 

This larger domain of discrete event simulation applications may constrain the design of 

accelerator hardware. Design options that would enhance aspects unique to digital logic 

simulation would nf essarily be dismissed in favor of more general applications. 

The majority of discrete event simulations are currently executed on the Intel iPSC/2 

hypercube. Continued use of this distributed architecture, based on the Intel 80386 CPU, 

is anticipated as it represents near state-of-the-art technology and is readily available for 

research use. 

1.5   Scope 

Implementation of a specific hardware simulation accelerator was not the goal of this 

effort. The research focused instead on a detailed requirements analysis for the design of 

specific hardware enhancements to accelerate discrete event computer simulations using 

the Intel zPSC/2. 

The detailed requirements specification was documented using VHDL. Validation 

and evaluation of the design and degree of speedup realized was conducted through VHDL 

simulations. 

The target architecture is a distributed parallel computer; however, design testing was 

performed on a single processor model, representing a single processing node of the iPSC/2 

hypercube. The effects of interprocessor communication, processor synchronization, and 

load balancing were not measured in this configuration, rather the accelerator performance, 

relative to CPU execution time, was evaluated. 

1.6   Standards 

The evaluation of simulation speed is sometimes ambiguous. Simulation performance 

is rated using different measurements throughout industry and current literature. Com- 

mon measurements include gate evaluations per second, instructions per second, and events 

per second. Each measurement provides different information about a simulation's perfor- 

mance. 

1-5 



This effort focused on the simulation execution time for a particular class of simula- 

tion modeling — discrete event. The actual run times of a specific discrete event simulation 

provided the datum for this effort. 

The proposed hardware accelerator design was evaluated with respect to to this stan- 

dard. Abramovici contends that an order of magnitude speed up is a minimum design goal 

(1:83); however, DARPA's thrust is a speedup of three orders of magnitude over tradi- 

tional simulations through the use of parallel processing, supplemented with a dedicated 

hardware accelerator. 

The objective of this effort was to determine how a general discrete event simula- 

tion might be improved through a hardware accelerator, and to design such a hardware 

enhancement. DARPA's speedup goal is not entirely dependent upon this effort. Related 

research in techniques to optimize simulation process distribution and minimize the ef- 

fects of load imbalance, communications overhead, and synchronization delay in a parallel 

implementation will add to the performance gains realized through hardware acceleration. 

1.7   Approach/Methodology 

The analysis of a general discrete event simulation model provided a definition for 

the problem space and was used as the foundation for the remainder of this effort. This 

analysis clearly defined the portions of the simulation model that exhibit the greatest 

potential for speedup through hardware enhancements. Specifically, those areas of the 

simulation model that required the greatest portion of overall execution time and relative 

frequency of execution were emphasized in the design of a hardware accelerator. 

The potential for simulation speedup via the application of special purpose hardware 

was evaluated along with the trade offs associated with the a hardware implementation. 

The hardware accelerator requirements were specified and implemented using VHDL. 

A testbed was devised to evaluate the VHDL accelerator design. A VHDL behav- 

ioral model of the Intel 80386 CPU was not available, hence a complete CPU/accelerator 

system evaluation could not be performed. Rather test vectors representing discrete event 
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Simulation instructions and data along with CPU interface and control signals were used 

for accelerator design evaluation. 

The VHDL design tests were iterative in nature and revealed both design strengths 

and shortcomings. The test evaluation and feedback process was instrumental in the de- 

sign's evolution. Portions of the design remain as VHDL behavioral descriptions; however 

the detailed requirements for a discrete event hardware accelerator are completely specified 

when considering the design as a whole. 
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//.   Simulation Acceleration Issues 

2.1    Introduction 

The use of computer simulation to predict the outcome of events or the performance 

of physical processes is not new. Computers have provided a means to simulate a broad 

range of problems in fields as diverse as engineering, economics, sociology, and weather. 

This proliferation of computer simulation has led to models of increased complexity and 

often time-consuming simulation programs. 

The Department of Defense is keenly aware of the time-consuming nature of complex 

simulations. Time delays to conduct simulations may adversely impact a commander's 

ability to make an informed decision or delay the development of a new system. 

Considering the diverse applications and increased reliance on computer simulations, 

the Department of Defense is investigating methods of speeding up the simulation process. 

The DoD's emphasis on Very-High Speed Integrated Circuit (VHSIC) technology is one 

area that requires significant improvement in simulation speed. This is readily apparent if 

one considers that simulating one second of real-time for an application specific integrated 

circuit may take days of dedicated processor time (14:42). 

This chapter is an overview of different approaches available for accelerating computer 

simulation. Various simulation methods are described and options for accelerating the 

simulation process from a hardware perspective are presented. 

2.2   Simulation Techniques 

The two main categories of simulation are continuous (time-driven) and discrete- 

event simulation. The time-driven approach cterized by regular advances, of a 

predetermined and fixed increment, of a siir. latio jck. The values of all simulation 

variables are evaluated and updated after each uock advance. If no variables are affected, 

the clock simply advances. Event-driven simulations use a clock that advances to the 

future time of the next scheduled event. In discrete-event simulation, scheduled events are 

repeatedly fetched from a queue and simulated and only those variables affected by the 

2-1 



event are updated. Each event simulation may spawn new events which are inserted into 

the event queue at the appropriate time (22:39). 

A discrete-event simulation allows the simulator to skip intervals of time where no 

events are scheduled. The modeling of complex digital circuits is well suited for discrete- 

event simulation since signal values change at discrete times and only a limited number of 

circuit elements are active at any given time. 

2.3   Distributed Processing 

Discrete-Event Simulation (DES) programs often require computational capabilities 

that exceed the fastest available machines (13:81). Parallel computer architectures have 

the potential to overcome the speed limitations of single processor computers and thus, 

have received widespread attention. 

2.3.1 Taxonomy for DES Architectures A notation similar to Flynn's for parallel 

architectures (e.g. MIMD, SIMD etc.) can be used to describe the main architectural 

features of DES machines. The basis for this taxonomy is the DES algorithm and its three 

essential elements: 

• Time control 

• Event list control 

• Event (function) evaluation 

The implementation of these components may vary between simulators but, in one 

form or another, they are all present in any DES (12:450). The time control compo- 

nent (clock control) determines the progression of simulated time. The event list control 

component schedules events in increasing time order and the event evaluation component 

processes the accessed events and determines if new events should be scheduled. 

The taxonomy has four components: two specify time control characteristics, and 

one each for specifying event list control and event evaluation components (see Table 2.1). 

The time control mechanisms define the simulation's classification with respect to time - 
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unit increment corresponding to continuous time and event based increment corresponding 

to discrete event time. In a multiprocessor system, synchronization may be provided by a 

single "global clock" or each processor may maintain a "local clock." 

Table 2.1. DES Taxonomy Components 

1. TIME CONTROL MICHANISMS 
A.    TIME ADVANCE 

1) Unit Increment (UI) 
2) Event-based Increment 

B.    TIME SYNCHRONIZATION 
(El) 

1) Global Clock 
2) Local Clock 

2. EVENT LIST ATTRIBUTES 

(GC) 
(LC) 

1) Single List 
2) Multiple List 

3. EVENT/FUNCTION EVALUATION 
1) Single Machine 
2) Multiple Machine 

(SL) 
(ML) 

(SM) 
(MM) 

Similarly, the event list can be distributed and portions maintained by each processor 

or totally by a single processor. A distributed, or multiple event list, eliminates the delay 

time to communicate the next scheduled event and is potentially faster than the single 

event list. 

The last component, event/function evaluation, indicates whether a single or multiple 

processors are used. Using this taxonomy sixteen possible machine architectures can be 

specified by the tuple: 

Time Advance/Time Synchronization/Event List Attributes/Event Evaluation 

Eight of the sixteen possible architectures are implemented with a single machine (SM) and 

represent traditional sequential architectures. The remaining eight are multiple machine 

(MM) architectures which include the Intel tPSC/2 hypercube. 

2.3.1.1    Parallel Architectures The multiple machine architectures represent 

parallel processing systems. Speedup is obtained by distributing the simulation workload 
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among several concurrent processors; however, this is not without some cost. Each parallel 

architecture has some limitation that must be considered and its effects evaluated during 

system design (12:452). 

2.3.1.2 Multiple Machines with Global Clocks - X/GC/Y/MM These archi- 

tectures take advantage of parallel function evaluation to speed up simulation. A single 

processor acts as a master and maintains the global clock. The use of a global clock min- 

imizes time synchronization problems; however, an efficient communications network is 

required and the logical processes must be partitioned for effective load balancing. Par- 

allel event list manipulation is also possible with multiple event lists. This eliminates the 

potential bottleneck of a centralized event list, but also requires distribution of event time 

information between master and slave processors to ensure global clock updating. 

2.3.1.3 Multiple Machines with Local Clocks - X/LC/Y/MM Potential speedup 

in these architectures is obtained through parallel function evaluation, parallel event list 

manipulation, and distributed time management. MIMD machines, such as the Intel 

tPSC/2 hypercube, are represented in the taxonomy as EI/LC/ML/MM. Here the sim- 

ulation is mapped as a set of autonomous communicating processes that exchange time 

synchronization and state information through asynchronous message passing (5:198). This 

distributed time management allows variable states to be evaluated as each input value 

changes. 

2.3.2 Distributed Discrete Event Algorithms In a distributed processing environ- 

ment, discrete-event simulations map one or more server/queue pairs onto the active pro- 

cessors in the network. Each processor operates with its own simulation clock and messages 

are timestamped to reflect the simulated time at the sending node. Individual processors 

may have separate processes executing on them and messages are routed between the 

processor pairs by directed channels (22:51). 

Various distributed discrete event algorithms have been proposed, but two approaches, 

the Chandy-Misra algorithm and the Time Warp algorithm, are most notable (28:8). The 

distinguishing feature between these algorithms is how they manage simulation time. 
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2.3.2.1 Optimistic Paradigm - Time Warp Algorithm The Time Warp algo- 

rithm relies on general lookahead - rollback as its fundamental synchronization mp.-hanism 

(20:404). Each local simulation clock advances independently unless conflicting informa- 

tion (i.e., a message from the past) occurs, at which point the local simulation clock;: 

are "rolled back" to a consistent state, antimessages are sent to override the erroneous 

messages, and execution advances along a revised path (28:8). 

The underlying principle of Time Warp is the concept of "virtual time." Virtual 

time is a temporal coordinate system used to measure progress and ensure synchronization. 

Each processor is updated with the global virtual time, which only progresses forward, in 

addition to its own simulation, or local virtual time. For a given real time, the global 

virtual time represents the minimum of all local virtual times and the virtual send times 

of all messages that have yet to be processed (20:417). 

The primary overhead cost of Time Warp is associated with rollbacks and the commu- 

nication of antimessages needed to implement a rollback (20:416). Additionally, previous 

state information must be maintained to allow message cancellation and rollback to the 

current global virtual time. 

2.3.2.2 Conservative Paradigm - Chandy - Misra Algorithm The Chandy- 

Misra algorithm models a physical system as a distributed network of logical processes 

communicating via messages. The event list and global simulation clock, of traditional 

sequential simulations, are replaced with an event list and local deck at each logical process. 

An effective implementation of the Chandy-Misra algorithm is dependent upon the 

following requirements (5:198-199): 

• The behavior, at time t, of the physical process being modeled must not be affected 

by messages transmitted after t. This is referred to as the realizability condition. 

• Messages between processes must increase monotonically in time {monotonicity con- 

dition). 

• Messages between logical processes must correspond exactly to the sequence of mes- 

sages between physical processes (predictability). 
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The primary difference between the Chandy-Misra algorithm and the Time Warp 

technique is the use of "null" messages. Null messages are encoded with a timestamp to 

tell the receiving node that no real message will be transmitted before the specified time. 

Hence the receiving node may process existing messages without the possibility of reversal 

at a later time (28:9). 

2.4    Discrete-Event Logic Simulation 

Digital logic circuits are simulated by modeling the circuit elements to determine 

signal values for a given sequence of input signals. The data necessary to simulate an 

element is referred to as the element record. The element record typically contains current 

input values, current output, one or more delay time values, the element type code, fan- 

out count and destination, and a set of exception flags (30:4). The major functions of a 

discrete-event logic simulator include element data management, element evaluation, event 

management, and exception handling. 

Any change in the value of an input, output, or state variable of a given element is 

referred to as an event. Events occur at discrete points in simulated time. An element 

whose input or state variable has changed is evaluated to determine its new output and 

state. Transitions of state variables and generation of new outputs must be scheduled for 

some future time as delays are usually associated with the operation of elements (1:83). 

Scheduled events are maintained on an event queue. A simulation time-flow mecha- 

nism manipulates the events and ensures that they occur in correct temporal order (1:83). 

When all events at the current simulation time are exhausted, the time is advanced to the 

next time for which events are scheduled. 

Manipulation of the event queue ensures the proper time sequencing of evaluations. 

Additionally, only those elements scheduled for an event are evaluated at a given simulation 

time. This reduction in number of elements evaluated incurs the additional overhead of 

manipulating the event queue. Comfort estimates that between 32% and 40% of all non- 

input/output computer time may be spent in event queue processing (8:117). 
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2.5    Speedup Alternatives 

Rarely content with current technology and capabilities, computer and software de- 

signers continue to investigate methods of speeding up computer operations. This section 

presents an overview of speedup efforts in the area of simulation. 

2.5.1 Software Acceleration Alternatives for accelerating the execution of logic sim- 

ulations have been proposed. The first approach often considered is recoding software for 

the most frequently occurring element routines and the event queue manager (4:130). This 

approach improves efficiency through the use of hand-optimized assembly language. Un- 

fortunately, this approach seldom realizes more than a three-fold increase in speed (4:130). 

Additionally, this implementation limits the transportability and maintainability of the 

software (30:2). 

2.5.2 Application Specific Hardware Another approach is to acquire a faster ma- 

chine or to develop hardware exclusively for simulation. This option provides the greatest 

performance increase and can be as much as 100 to 500 times the speed of software sim- 

ulations run on a sequential microprocessor (3:27-29). The disadvantage to this approach 

is that special hardware is usually difficult to modify in the field and often cannot be used 

for anything else (4:130). Direct implementation of the simulation software in hardware is 

also feasible but expensive and inflexible (3:21). 

Several design options for special purpose hardware to speed up simulation are avail- 

able. Smith suggests the use of one or more stages of microcoded hardware designed 

especially for high performance simulation (30:2). Using this approach, four processors 

could form a pipeline with stages for event queue management, evaluation routines, and 

signal change propagation. 

2.5.5 Functional Partitioning Catlin and Paseman contend that the structure of 

the simulation algorithm can be exploited through functional partitioning. The simula- 

tion algorithm is broken into three pieces of approximately equal complexity. A separate 

processor is assigned to each portion of the algorithm and its associated data structures. 

The tasks of queue management, state maintenance, and element evaluation are performed 
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in disjoint processors and therefore operate simultaneously. Communication between the 

processors is through low bandwidth First In First Out (FIFO) channels and processing is 

done in a dataflow fashion. A host microprocessor serves as the nucleus of the system and 

provides a user interface during the simulation (4:130-132). 

A network of inexpensive but powerful microprocessing elements is viewed by Com- 

fort as the best method of attaining high instruction execution rates at a moderate cost 

(7:197). Similar to Cathn and Paseman, Comfort also proposes partitioning the simula- 

tion into functional processes. The function of event set processing comprises one partition 

and is assigned a variable number or processors each having 'next,"schedule,' and 'cancel' 

functions. The remaining partition consists of all other processing associated with the 

simulation and is assigned to the host processor. The host processor polls the event set 

processors for their event notice of smallest next processing time. The host then selects 

the notice with the smallest (global) time and acts upon it (8:118). 

2.5.4    Content-Addressable Memories The use of random access memories for data 

storage and retrieval has inherent drawbacks because of its word-at-a-time, location-addressed 

implementation (6:51). Addressing by location is inefficient, particularly if data is dynam- 

ically unordered during processing. 

Content-Addressable Memories (CAMs) are capable of accessing data based on con- 

tent rather than memory location. This ability permits data searches for exact matches 

with a specified key or relative comparisons for an ordered data retrieval (25:725). 

Considerable speedup in processing time is possible with content-addressable mem- 

ories. This results from the simultaneous access of data in parallel and the elimination of 

the need to store data in sorted order (15:509,518). 

2.6    Summary 

Simulation is an integral part of decision making in various disciplines. The use of 

computers for simulation has increased dramatically over the past 20 years and simulation 

models have become more complex. The increased model complexity necessitates computer 
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enhancements to minimize the time required to run these simulations—particularly in 

digital logic simulation where simulations may take days to run. 

The dominant approach to enhancing computer simulations is to distribute the work- 

load among multiple processors working in parallel. Several options of parallelizing the 

simulation are available to the designer. Processor networks operating in a dataflow fash- 

ion are feasible as are pipelines of multiple stages. In both approaches the simulation 

algorithm is partitioned among the processors for independent processing. 

Every designer must consider the cost of design implementation. An additional 

consideration for the design of a simulation accelerator is flexibility. Application specific 

hardware is often inflexible and one must consider the tradeoffs between speedup potential 

and the opportunity for reuse in other applications. 
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///.   Methodology 

3.1    Introduction 

The design of a Discrete Event Simulation (DES) hardware accelerator requires a 

detailed analysis of a general DES algorithm. The objective of this analysis is to identify 

simulation functions and routines that are frequently invoked and/or account for a large 

portion of the overall simulation execution time. Once determined, simulation acceleration 

is possible through implementation of these functions in hardware(31:47). 

The methodology used to analyze a general distributed DES is presented in this 

chapter. A description of the simulation testbed and the configuration of simulation logical 

processes is given. 

The parallel architecture of the Intel tPSC/2 hypercube is described and the different 

simulation topologies employed are presented. The methods used for collecting simulation 

data and the metrics for evaluating the data are presented along with the results of this 

analysis. 

3.2   Discrete Event Simulation Testbed 

The parallel Discrete Event Simulation (DES) environment for this effort consisted 

of an eight node Intel tPSC/2 hypercube employing the SPECTRUM simulation protocol 

interface designed by the University of Virginia. The conservative, Chandy-Misra null 

message protocol was used for parallel synchronization. 

3.2.1 SPECTRUM Interface SPECTRUM is a generic testbed designed for eval- 

uating parallel simulation protocols (29:865). Through the use of user defined protocol 

filters, SPECTRUM provides a transparent interface between the application being mod- 

eled and the parallel processing architecture used to execute the simulation. 

The application to be simulated contains one or more physical processes which are 

modeled through Logical Processes or LPs. Each simulation Logical Process (LP) is com- 

posed of three separate entities when executed under SPECTRUM. Referring to Figure 3.1, 

each LP contains an apphcation component, a process manager, and a node manager. 
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Application components are portions of the original application which may be executed 

concurrently. The process manager provides routines to support typical simulation require- 

ments such as managing simulation time and event queues. Low level system requirements, 

such as message passing between LPs and scheduling, when multiple LPs are mapped to 

a single processor, are provided by the node manager. 

Logic»! Pnccu (LP) 

filUn 

Figure 3.1. SPECTRUM Testbed Logical Process(29:868) 

The simulation protocol is implemented with SPECTRUM via a user defined fil- 

ter. The filter provides the synchronization functions necessary for effective simulation 

execution. The basic filter functions required for discrete event simulation are: initialize, 

get-next-event, post-event, advance-time, and post-message. All but the last function oc- 

cur between the application layer and the process manager. Post-message is a message 

handling function which occurs between the process and node managers(29:868). Hence 

the use of filters provides the interface between separate modules within each LP while 

providing the user easy access for modifying, or replacing, the synchronization protocol. 
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3.2.2 Simulation Application The application used for analysis and modeling a 

general Discrete Event Simulation is a simple car wash. The physical process of washing 

cars is modeled by three logical processes. A source, which generates customers for the 

system. A wash, where the customer service is simulated, and an exit where the customers 

depart from the system. 

Parallelism is achieved through multiple instances of source and wash LPs. Figure 3.2 

shows the configuration of LPs for the car wash simulation. Although different configura- 

tions are possible (i.e., more exits or fewer washes), extensive revisions of the application 

source code would be necessary. Since the multiple instances of sources and washes are 

mutually exclusive (i.e., no data dependencies) in this configuration, concurrent execution 

of these LPs is possible. 
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Figure 3.2. Car Wash Simulation, Logical Processes 

The interconnecting arcs, which provide message passing channels between LPs, are 

established during initialization and remain fixed throughout the simulation. The simula- 

tion is deterministic in that customer arrival rates are constant, although customers are 

generated at different frequencies at each source. Likewise, the service rate for a given 

wash is fixed; however, this rate also varies between individual wash LPs. The routing of 

customers from source to exit follows the interconnecting arcs and is also deterministic, 
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with the path taken at forks being a function of the customer, or car number. 

3.2.3 Parallel Processing Architecture An eight node Intel iPSC/2 hypercube pro- 

vided the parallel processing architecture for executing a gener; DES. Using Franklin's 

taxonomy from Section 2.3.1.3, this architecture can be classified as EI/LC/ML/MM, since 

the DES is event driven, uses local clocks for simulation time, multiple lists for scheduling 

next events, and multiple processors in a hypercube configuration. 

The basic architecture of each cube node is a self-contained computer with a CPU, 

local memory for programs and data, and an input/output (I/O) subsystem. The distin- 

guishing feature of the iPSC/2 is the set of bidirectional I/O channels linking each node 

to its n immediate neighbors in the hypercube. 

The number of immediate neighbors, n, also represents the dimension of the hy- 

percube. With n = 3, a three dimensional graph representation of the zPSC/2 is shown 

in Figure 3.3. This figure depicts an eight node configuration of the hypercube and the 

nearest neighbor interconnections. 

Figure 3.3. 8 Node Hypercube Configuration (17:1830) 

The distributed memory architecture of the hypercube necessitates message passing 

between nodes when information must be shared. The bidirectional I/O channels, linking 

nearest neighbors, play a central role in the hypercube's performance.  The tPSC/2 uses 
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Direct-Connect Modules (DCM) which provide the necessary routing logic in the hypercube 

interconnect topology for this purpose. 

Earlier versions of the hypercube used a store-and-forward communication scheme 

requiring approximately 1 ms to pass messages between adjacent nodes (17:1832). The 

DCM of the iPSC/2 uses a 16 bit routing probe to encode node address information. This 

allows the sending node to establish an end-to-end link with the receiving node by routing 

through intermediate nodes along the path (10:448-452). 

3.3   Simulation Configuration 

Two simulation parameters and mappings of LPs to processing nodes were varied 

during the analysis. The effects of feedback on the simulation's execution were investigated 

by either routing customers from the exit back to the source for resubmission or allowing 

a straight exit. 

Additionally, an artificial workload, referred to as a spin loop, was implemented by 

inserting varying size loops with floating point operations within each LP. This variable 

workload provided a more realistic and general simulation for analysis as compared to the 

strictly deterministic carwash. The effects on function execution frequency and overall 

function execution time were analyzed by varying the computational intensity between 

LPs. 

Figure 3.2 shows the carwash LP configuration which was fixed for all simulation 

runs. Representing the physical process with eight LPs provided a direct one-to-one map- 

ping of LPs to the eight processing nodes on the tPSC/2 hypercube. To investigate the 

effect of multiple processes executing on each node, the mapping shown in Figure 3.4 was 

used. Similar to the original mapping, the basic LP configuration of the simulation is 

unaltered; however, only four computing nodes of the hypercube, each having two pro- 

cesses, are employed. Although many mapping options of the eight LPs are possible, this 

mapping was chosen since it consolidates communication paths and minimizes off-node 

communication(21:4-2). 
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NODEO NODE! NODE 2 

Figure 3.4. Carwash Configured with Two LPs per Node 

3.4    Data Collection and Analysis 

A direct means for parallel algorithm analysis was not available during this effort, 

therefore the DES algorithm had to be instrumented for data collection. 

3.4.1 Algorithm Instrumentation Section 3.2.1 described the levels and modularity 

of the SPECTRUM testbed. Each level of SPECTRUM has a corresponding level of soft- 

ware in the DES algorithm. The carwash application level (afitwash.c) has direct visibility 

to the process manager (Ipjnan.c) for event list and time management functions. The 

process manager in turn has visibility to the synchronization protocol filter (myfilters.c) 

and the node level message passing functions (cube2.c). 

The analysis of a general DES required instrumenting the functions of the process 

manager, the protocol filter, and the node level routines. Figures 3.5-3.7 show the function 

hierarchy of each level of the DES algorithm. 

The algorithm was instrumented to gather function execution data. The relative 

function execution frequency of each logical process was calculated at each level (i.e. filter, 
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process manager, and node manager) of the DES algorithm. Therefore data was collected 

from each LP separately and then categorized based on algorithm level. 

The instrumentation was implemented by encapsulating each function with variables 

to monitor function count and execution time. The function execution count was incre- 

mented during each successive function call, while the cumulative function execution time 

was updated with the difference of each function's start and end times. Variable updat- 

ing was concurrent with simulation execution; however, the final data totals were reported 

only after the simulation had completed, thus avoiding the significant overhead of updating 

data files during simulation execution. 

3.4.2 Data Analysis Metrics The function hierarchies of Figures 3.5-3.7 show the 

interrelation between software levels and functions in the SPECTRUM testbed described 

in Section 3.2.1. The complexity of determining the portion of overall simulation execution 

time for nach level is compounded by the inter-level dependencies and function calls. To 

simplify the analysis, each level of the simulation software was considered separately with 

the knowledge that subfunction calls are an integral part of the algorithm which contribute 

to the calling function's total execution time. A relative comparison, with respect to 

the total number of function executions and total execution time, of each level's primary 

functions (i.e. top tier of the function hierarchy) was then made for each level. 

By averaging the data of each level's primary functions across all simulation LPs, a 

general view of the individual function performance was obtained. This average execution 

data reveals the primary functions and portions of the algorithm that are the most time 

consuming, and thus have the greatest need for acceleration. 

An analysis of relative simulation execution times for multiple LPs per computing 

node, as shown in Figure 3.4, was also made. The need for this analysis is based on the 

fact that the modeling of many physical processes generates more logical processes than 

the number of available processing nodes. Modeling with large complex logical processes, 

by combining smaller LPs, is possible but may not always result in a one-to-one mapping 

between LPs and processors. 
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The analysis of data for processing nodes with multiple LPs considered the addi- 

tional overhead for task scheduling and switching. The measurement of switching time 

for individual LPs is extremely difficult, and in fact, was not possible on the iPSC/2 as 

the system clock resolution is in milliseconds, while the task switching time for the Intel 

386 DX is about 17 /zs (19:5-335). Task scheduling is an operating system function on the 

hypercube that is performed in a round-robin fashion. Each LP on a given processing node 

runs for approximately 50 ms, or until it blocks to send or receive a message (18:2-56). 

Primary Function LP1 

execution bme 
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/Tuk 

L execution time 
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tune 

execution time B 

execution time A 

J 

Figure 3.8. Task Swapping Runtimes 

To get an accurate representation of relative simulation execution times, the data 

for multiple LPs per processing node had to be adjusted to account for the effects of task 

switching. Figure 3.8 is an example of two LPs whose execution times overlap as a result 

of task switching. The runtime for the second LP, (B), occurs while LP (A) is swapped out 

and the entire runtime of LP (B) is included within (A's) total execution time. Likewise, 

portions of (B's) execution time can be attributed to LP (A) regaining the CPU; therefore. 
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both LPs' overall runtimes must be adjusted accordingly. This adjustment was possible by 

tracking not only the execution start and finish times, but also the LP's processing node 

and process ID number. Once a clear distinction between LPs is made, the adjustment to 

function execution times was made by subtracting the execution time for the second LP's 

function from the first. After adjusting the LP execution runtimes, the average relative 

simulation execution times, for each level's primary functions, were calculated as described 

above for a single LP per processing node. 

3.5    Logical Process Function Execution 

The analysis of simulation test data for single and multiple LPs per processing node, 

both with and without feedback, and for various spin ujops all yielded similar results. The 

communications overhead of message passing, necessary to implement the conservative 

synchronization protocol, accounted for the largest relative portion of su^ulation execution 

time. 

The data collected during this analysis is tabularized in the following sections. The 

tables are not exhaustive in that, only those functions with the largest relative execution 

times for each level were of primary interest and thus are included. Many of the func- 

tions that were omitted required little or no measurable execution time (i.e., Ip.terminate, 

node-terminate, node.trash^vent), regardless of the simulation configuration. Although 

some primary functions have been omitted, the tables typically account for 80 percent, or 

more, of the overall simulation execution time at each level. 

3.5.1 One LP per Processing Node Tables 3.1 through 3.3 show the primary func- 

tions with the largest average relative execution times for each level of the DES algorithm 

used for the carwash simulation. These tables refiect data from simulations executed with 

one LP per processing node both without an artificial workload and with equally sized spin 

loops executed on all LPs (i.e. sources, washes, and exit) in the simulation. 

Table 3.1 indicates that the process manager level expends the greatest time, on 

average, posting events. In the conservative synchronization protocol this entails sending 
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event messages to one or more designated LPs, while null messages with a safe lookahead 

time for tnat channel are sent on all remaining output channels. 

Table 3.1. Mean Relative Execution Time for Process Manager, 1 LP per node 

Primary 
Function 

No Spin Spin (1/1/1) Overall 
Mean FDBK NOFDBK FDBK NOFDBK 

lp_post_event 
read Jp info 
lp-post_msg 

0.371 
0.343 
0.151 

0.334 
0.379 
0.150 

0.398 
0.337 
0.137 

0.379 
0.333 
0.183 

0.371 
0.348 
0.155 

The time spent executing readJpJnfo occurs only during simulation initialization. 

Although a significant portion of the overall average relative execution time, its one-time 

execution make it an unlikely candidate for a hardware accelerator. 

Table 3.2 clearly shows that a significant portion of the overall average execution time 

for the filter level is dedicated to supporting communication requirements. The overhead 

of the send-nuli function translates to idle processor time. During this idle time, the 

processor waits for a two-way request to send and acknowledgement from the receiving 

node necessary for the csend subfunction of figure 3.6. 

Table 3.2. Mean Relative Execution Time for Filter, 1 LP per node 

Primary 
Function 

No Spin Spin (1/1/1) Overall 
Mean FDBK N0FD2K FDBK NOFDBK 

send_nuU 
null-rasg_flt 
null.get_flt 

0.400 
0.253 
0.197 

0.425 
0.240 
0.194 

0.412 
0.224 
0.204 

0.429 
0.216 
0.199 

0.417 
0.233 
0.199 

The primary functions, with the largest average relative execution times, of the node 

manager level are shown in table 3.3. As in the other DES algorithm levels, a majority 

of the average execution time is directly related to communication overhead. Similar to 

the send Jiull function of the filter level, both node.btm (block-til jnessage) and node jpm 

(receive.pending-messages) are implemented with subfunctions (see fi ;ure 3.7) that require 

the processor to wait (i.e. crecv - wait to receive, and cprobe - wait for message on 

channel(18:2-17,19)). 
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This waiting for communication is an inherent requirement of the conservative Chandy- 

Misra synchronization protocol discussed in section 2.3.2.2. This waitiag again indicates 

CPU idle time which, given the opportunity, could be redirected to other simulation re. 

quirements. 

Table 3.3. Mean Relative Execution Time for Node Manager, 1 LP per node 

Primary 
Function 

No Spin Spin (1/1/1) Overall 
Mean FDBK NOFDBK FDBK NOFDBK 

node.btm 
node_rpm 
node_sm 

0.429 
0.334 
0.086 

0.344 
0.359 
0.108 

0.454 
0.292 
0.101 

0.286 
0.372 
0.140 

0.378 
o.3jq 
0.109 

3.5.2 Variable Spin with One LP per Processing Node The logical process mapping 

of figure 3.2 was used for LPs of varying artificial workloads to demonstrate a broade:- and 

more generic class of simulations than the deterministic carwash. The workloads, or spin 

loops, were implemented arbitrarily but in proportions considered to approxiir.ate the 

expected computational intensity of the particular logical process. Therefore the ratios 

shown in table 3.4 through table 3.6 represent the ratio of computational workloads of the 

sources, washes, and exit respectively. 

The effects of an increased workload on average function execution time are apparent 

at the process manager level shown in table 3.4. The sources and exit continue to gen- 

erate messages at approximately the same rate, however the washes, with a considerably 

larger workload, require more time to process a backlog of incoming messages. Hence, 

considerable time is spent posting received messages which includes a linked-list queueing 

subfunction (see figure 3.5) of time complexity 0(n). 

The time dedicated to posting events is significant but relatively constant. Since the 

workloads of the sources and exit are unchanged they continue to post events at nearly the 

same rate as without an artificial workload (see table 3.1). 

The relative execuf ion times of the synchronization protocol are shown in the filter 

level of table 3.5. The addition of spin loops had little effect on relative execution times 

of this level's primary functions. The communication overhead of sending messages again 
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Table 3.4. Mean Relative Execution Time for Process Manager, 1 LP Variable Spin 

Primary 
Function 

Spin (1/5/1) Spin (1/10/1) Spin (1/20/1) Overall 
Mean FDBK NOFDBK FDBK NOFDBK FDBK NOFDBK 

lp_post_event 
lp_post_msg 
readJpinfo 

0.340 
0.184 
0.174 

0.328 
0.201 
0.169 

0.332 
0.198 
0.138 

0.315 
0.210 
0.140 

0.335 
0.210 
0.107 

0.316 
0.221 
0.107 

0.328 
0.204 
0.139 

accounts for a significant portion of the average execution time. The slight decline in 

sendjiull execution time, relative to LPs with no spin loops (see table 3.2), is the result of 

additional computational activity   t the wash LPs, hence fewer output messages. 

Table 3.5. Mean Relative Execution Time for Filter, 1 LP Variable Spin 

Primary 
Function 

Spin (1/5/1) Spin (1/10/1) Spin (1/20/1) Overall 
Mean FDBK NOFDBK FDBK NOFDBK FDBK NOFDBK 

nulLmsg-flt 
send_null 
null.get_flt 

0.303 
0.337 
0.215 

0.302 
0.324 
0.234 

0.362 
0.256 
0.214 

0.379 
0.234 
0.237 

0.456 
0.201 
0.205 

0.467 
0.192 
0.201 

0.378 
0.257 
0.218 

As expected the node manager level of table 3.6 received the greatest impact from 

the increase in computational workload. The floating point calculations used in the spin 

loops clearly accounted for the majority of average function execution time at this level. 

Table 3.6. Mean Relative Execution Time for Node Manager, 1 LP Variable Spin 

Primary 
Function 

Spin (1/5/1) Spin (1/10/1) Spin (1/20/1) Overall 
Mean FDBK NOFDBK FDBK NOFDBK FDBK NOFDBK 

node-spin 
node-rpm 
node.btm 

0.371 
0.232 
0.249 

0.425 
0.253 
0.135 

0.443 
0.216 
0.193 

0.500 
0.236 
0.Ö97 

0.493 
0.205 
0.154 

0.549 
0.228 
0.058 

0.464 
0.228 
0.148 

Table 3.6 also shows that communication overhead accounts for significant execution 

time at the node level, in spite of the added computational workload. The bottleneck at 
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the wiish LPs requires the nodej-pm function to receive and post the the influx of messages, 

while computations in the spin loop are executed. 

5.5.5 Multiple LPs per Processing Node Tables 3.7 through 3.9 show data from 

simulations executed with two LPs per processing node. Data both with and without an 

artificial workload, and also for the wash LPs performing ten times the computational 

intensity of the sources and exit is shown. 

At the process manager level (see table 3.7) the lp_adv_time function accounted 

for the greatest average relative execution time. Although not a communications related 

function, each time advance requires a memory access to update the LP's local simulation 

time. The use of sequential random access memory and the frequency of time updates 

contributes to the average execution time for this function. 

Posting events, or sending output messages, requires over 20 percent of the average 

execution time at the process manager level. This portion of execution iime is dedicated to 

updating output LPs with new events and time information but does little, unless feedback 

is involved, to advance the local LP's simulation state. 

Table 3.7. Mean Relative Execution Time for Process Manager, 2 LPs per Node 

Primary 
Function 

Spin (1/1/1) Spin (1/10/1) Overall 
Mean FDBK NOFDBK FDBK NOFDBK 

lp_adv-time 
Ip.postjevent 

0.711 
0.214 

0.662 
0.250 

0.709 
0.220 

0.694 
0.217 

0.694 
0.225 

Prom table 3.8, approximately 60 percent of the protocol filter's average execution 

time is spent sending null messages when two LPs execute on each procossing node. Null 

messages are necessary to ensure deadlock avoidance with the conservative protocol(22:57)) 

and implementation on a distributed hypercube architecture requires the csend subfunc- 

tion, a block and wait communication procedure (see figure 3.6). 

The communication overhead associated with receiving and sending messages clearly 

accounts for the majority of average relative execution time at the node manager level. 

Table 3.9 shows that nodejrpm and send^m together, average approximately 80 percent 
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Table 3.8. Mean Relative Execution Time for Filter, 2 LPs per Node 

Primary 
Function 

Spin (1/1/1) Fpin (1/10/1) Overall 
Mean FDBK NOFDBK FDBK NOFDBK 

send_null 
nulLget.flt 
nuU_msg_fit 

0.689 
0.131 
0.152 

0.468 
0.308 
0.141 

0.587 
0.187 
0.172 

0.618 
0.179 
0.150 

0.591 
0.201 
0.154 

of the node manager level's execution time, regardless of feedback or spin loop size. Both 

functions support communication and are implemented with subfunctions which block and 

wait (see figure 3.7). Here, as with other block and wait type functions, better utilization 

of the associated processor idle time might be possible. 

Table 3.9. Mean Relative Execution Time for Node Manager, 2 LPs per Node 

Primary 
Function 

Spin (1/1/1) Spin (1/10/1) Over 01 
Mean FDBK NOFDBK FDBK NOFDBK 

node_rpm 
nodcsm 
node.btm 

0.513 
0.319 
0.168 

0.542 
0.274 
0.184 

0.510 
0.321 
0.169 

0.413 
0.301 
0.184 

0.495 
0.304 
0.176 

3.5.4 Speedup Potential The data in tables 3.1 through 3.9 does not indicate the 

portion of overall simulation execution time expended in each level of the DES algorithm. 

However, the spee» ? potential for the individual levels was approximated by considering 

each level of the DES algorithm independent of the others. 

Ideally, the addition of a hardware accelerator will reduce the average execution time 

of the most time consuming primary functions to near zero. Therefore, by representing 

each level's total execution time as 1, the speedup potential for each function, 5/, is 

approximated by: 

5/ = r 

1 

M/ 
(3.1) 

Where /i/ is the overall mean execution time for the primary function at that level. 
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Total speedup potential for each level, 5/, was approximated by considering the 

cummulative effects of reducing the average execution time of all time-consuming primary 

functions for each level to zero. Eliminating the average execution time for all primary 

functions at a given level results in the speedup potential shown in equation 3.2. 

Si 
i - E?=i nfi 

(3.2) 

The speedup potential for each DES algorithm level, and the simulation configura- 

tion analyzed, are summarized in tables 3.10-3.12. Tables 3.10 and 3.11 (i.e., 1 LP per 

node) show little potential for significant speedup in any given level of the DES algorithm. 

Assuming equal execution times for each level of the DES algorithm, averaging the sums 

of Equation 3.2, indicates the potential total speedup is only 4.83 for one LP per node 

with no spin and 3.51 times for one LP per node with added spin. 

Table 3.10. Speedup Potential by Algorithm Level (1 LP per node, no spin) 

Algorithm 
Level 

Primary 
Functions 

Mean 
Time 
Ratio 

Speedup 
Potential 

Sf 

Speedup 
Potential 

Si 
LP.MAN Ip.postjevent 

lp-post_msg 
0.371 
0.155 

1.590 
1.183 

2.110 

FILTER send_null 
nulLmsgJlt 
null-get Jit 

0.417 
0.233 
0.199 

1.715 
1.304 
1.248 

6.623 

NODE node.btm 
node_rpm 
node-sm 

0.378 
0.339 
0.109 

1,608 
1.513 
1.122 

5.747 

Considerably better speedup potential is exhibited when two LPs share a single node 

as shown in table 3.12. Using the assumption of equal execution times per algorithm level 

and Equation 3.2, the total potential simulation speedup, for two LPs per processing node, 

is 23.62 times. 

A more accurate approximatiton of potential simulation speedup was made by using 

the measured average execution times for each level of the DES algorithm. The calculation 
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Table 3.11. Speedup Potential by Algorithm Level (1 LP per node, variable spin) 

Algorithm 
Level 

Primary 
Function 

Mean 
Time 
Ratio 

Speedup 
Potential 

Sf 

Speedup 
Potential 

Si 
LP.MAN Ip .post .event 

lp-post_msg 
0.328 
0.204 

1.488 
1.256 

2.137 

FILTER nulljnsgJt 
sendjiull 

null.get.flt 

0.378 
0.25' 
0.218 

1.608 
1.346 
1.279 

6.803 

NODE nodejpm 
node.btm 

0.228 
0.148 

1.295 
1.174 

1.603 

Table 3.12. Speedup Potential by Algorithm Level (2 LPs per node) 

Mean Speedup Speedup 
Algorithm Primary Time Potential Potential 

Level Function Ratio Sf Si 
LP.MAN Ip.adv.time 0.694 3.268 12.346 

Ip.postjevent 0.225 1.290 
FILTER sendjiull 0.591 2.445 18.519 

null.get_flt 0.201 1.252 
null_nisg_flt 0.154 1.182 

NODE nodejpm 0.495 1.980 40.000 
nodcsm 0.304 1.437 

node.btm 0.176 1.214 

3-19 



of overaU speedup potential was made as a weighted average, using each level's overall mean 

portion of simulation execution time and its potential for speedup at each level. The overall 

mean portion, </i, of simulation execution time for each algorithm level is given for one LP 

per node in Tables 3.13 and 3.14, and two LPs per node in Table 3.15. 

Table 3.13.    Ratio of Simulation Execution Time by Algorithm Level (1 LP per Node, no 
spin) 

Algorithm 
Level 

No Spin Overall 
Mean (fM) FDBK NOFDBK 

LP.MAN 0.265 0.301 0.283 
FILTER 0.299 0.311 0.305 
NODE 0.436 0.387 0.412 

Table 3.14.    Ratio of Simulation Execution Time by Algorithm Level (1 LP per Node, 
variable spin) 

Algorithm 
Level 

Spin (1/5/1) Spin (1/10/1) Spin (1/20/1) Overall 
Mean (tM) FDBK NOFDBK FDBK NOFDBK FDBK NOFDBK 

LP.MAN 0.323 0.321 0.344 0.357 0.377 0.390 0.352 
FILTER 0.274 0.277 0.252 0.246 0.215 0.215 0.247 
NODE 0.403 0.402 0.404 0.396 0.409 0.395 0.402 

Table 3.15. Ratio of Simulation Execution Time by Algorithm Level, 2 LPs per Node 

Algorithm 
Level 

No Spin Spin (1/10/1) Overall 
Mean (tM) FDBK NOFDBK FDBK NOFDBK 

LP.MAN 0.419 0.287 0.292 0.205 0.301 
FILTER 0.274 0.329 0.318 0.207 0.282 
NODE 0.306 0.385 0.390 0.588 0.417 

The total potential for simulation speedup for each configuration, 5po(, was then 

calculated using the equation: 

Spot — 3    J« 
Si, EL (3.3) 
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The resulting potentials for simulation speedup are: 

• 1 LP per node, no spin = 3.97 

• 1 LP per node, variable spin = 2.13 

• 2 LP per node, combined = 19.99 

5.6   Summary 

The Intel :PSC/2 hypercube used to analyze a general discrete event simulation 

showed adequate, yet not optimum performance. Idle processor time, resulting from com- 

munication overhead during processor message passing, is clearly an area where improve- 

ment is needed. 

The potential for simulation speedup was calculated as a function of average exe- 

cution time, for each level of the simulation algorithm, and the functions, within those 

levels, that required the largest portion of that execution time. The potential for speedup 

is clearly less than desired, ranging from two times for one logical process per node, to 

nearly four times when two logical processes are executed per node. 

The greater potential for speedup, exhibited with more logical processes operating per 

node, is proportional to the increase in processor communication loaJ and its associated idle 

time. Varying the processor computation load had little effect on which functions required 

the greatest portion of simulation execution time. The communications required of the 

message intensive conservative synchronization protocol remained significant regardless of 

processor workload. 

Better utilization of idle processor time, associated with sending and receiving mes- 

sages, is clearly a viable approach to accelerating the execution of discrete event simulations 

on the Intel :PSC/2 hypercube. 
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IV.   DES Coprocessor Design 

4-1    Introduction 

When considering hardware acceleration options for the execution of discrete event 

simulations on a multiprocessor architecture, two approaches are possible. The parallel ar- 

chitecture may be viewed from a system level and alternatives for improving the efficiency 

of the system (i.e., memory bandwidth, interconnection networks, etc.) may be consid- 

ered. An alternative approach is to consider the individual processors, which make up the 

parallel system, and consider hardware alternatives for improving processor efficiency and 

utilization, thereby improving the overall system performance. 

The parallel architecture considered in this thesis was the Intel iPSC/2 hypercube. 

This second generation hypercube incorporates several advances over the earlier iPSC/l 

which improve the architecture's performance - primarily the more powerful 80386, 32-bit 

microprocessor, and the enhanced circuit-switching internode communications provided by 

the direct connect modules (17:1831). 

Currently, efforts are underway at Intel to improve the system performance via com- 

munication modules that implement a mesh interconnection network, to supplement to the 

existing hypercube configuration(27). Intel's research efforts will undoubtedly improve the 

overall performance of the parallel architecture for a wide variety of applications. This the- 

sis, however, focuses on the specific application. Discrete Event Simulation (DES), whose 

potential for accelerated execution is improved by focusing on the hardware implementa- 

tion of the primary DES algorithm functions. 

With the goal of improved performance for DES, the design appioach and require- 

ments for such an application specific accelerator are described in this chapter. This 

design focuses on the individual processor level rather than the larger parallel system, yet 

remains within the constraints of the hypercube architecture. Although higher level system 

improvements may be possible, the degree of improvement for a specific application, such 

as discrete event simulation, would be overshadowed by more general and widely applicable 

enhancements. 
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4-2   Accelerator System Requirements 

Bottlenecks to the efficient execution of Discrete Event Simulations on the iPSC/2 

hypercube are clearly evident. Although the carwash simuktion analyzed in Chapter 3 is 

but a single model, the use of artificially induced workloads and different logical process 

mappings provided an indication of general DES execution performance on the hypercube 

architecture. 

The conservative synchronization protocol in use requires continual communication 

between logical processes, and therefore requires an efficient interconnection network. Re- 

gardless of the communications efficiency, some processor idle time is expected, as logical 

processes must wait for messages at various points throughout the simulation. 

The interconnection network of the tPSC/2, incorporating the direct connect mod- 

ules, is being upgraded by Intel. Additionally, because of corporate proprietary restrictions 

(27), the lack of available hardware documentation makes the independent upgrade this of 

system virtually impossible without considerable reverse engineering. 

4-2.1 Processor Utilization While the independent improvement of the hypercube's 

communication network is unlikely, minimizing processor idle time during communications 

is possible. Increasing processor utilization is a paramount concern, since discrete event 

simulations spend as much as 50 percent of the execution time receiving or sending messages 

(see Tables 3.8 and 3.9). 

Processor idle time, associated with communication overhead, may be reduced by 

incorporating a coprocessor to handle communication, thus freeing the processor for op- 

erations that directly support of the simulation. A discrete event simulation coprocessor, 

providing support for simulation message passing, would enhance nearly every major sim- 

ulation task. Initializing the simulation requires the receipt and dissemination of logical 

process information. Posting incoming messages requires monitoring, receiving, and main- 

taining status on incoming channels. Posting outgoing events involves sending both event 

and null messages. The last major function, getting events, while not directly a communi- 

cations function, involves events that were previously received and posted via a communi- 

cation process. Relieving the processor of these synchronization protocol functions allows 
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redirection of the processing power to simulation execution and ultimately to accelerated 

simulation execution times. 

4.2.2 Memory Management The distributed parallel architecture of the iPSC/2 

was studied to investigate the requirements for a DES hardware accelerator. This platform 

incorporates technology and an architectural design that limit the enhancement options 

available for a DES accelerator. The use of an Intel 80386 microprocessor, with its inte- 

grated segmentation and paging memory management unit (MMU), reduces the likelihood 

of accelerating performance through improved hardware for memory management. 

The on-chip MMU performs all virtual-to-physical address translations, segmenta- 

tion, and paging violation checking. The MMU uses pipehning and parallel execution to 

generate physical addresses by storing the translation, segment, and page descriptors on 

chip. Additionally, the use of a translation look-aside buffer (TLB) significantly reduces 

paging translation, which is otherwise performed through a two-step table lookup. Al- 

though the TLB has a high hit -atio of 98 percent, the paging unit is supplemented with 

special purpose hardware capable of performing a page translation in nine clock cycles 

(11:18-21). Therefore, as with the hypercube's interconnection network, the potential to 

improve performance via improved memory management is small. 

4-3   Design Approach 

The design of a coprocessor specifically for distributed discrete event simulations 

using the conservative synchronization protocol has yet to be documented in the literature. 

Therefore, this initial design takes a rather abstract, chip-level, approach to defining the 

requirements necessary to implement such an application specific coprocessor. 

Using a chip-level approach, the coprocessor requirements were defined in terms 

of input/output (I/O) response and the algorithm that the chip implements(2:5). The 

necessary operations of the Discrete Event Simulation (DES) coprocessor were defined 

using a behavioral description of the coprocessor's functional components. The IEEE 

standard, VHSIC Hardware Description Language (VHDL), was used as the design tool 

to implement this behavioral description. 
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4-3.1 Hardware Implementation of DES Algorithm Based on the significant com- 

munications overhead and subsequent idle processor time associated with the DES al- 

gorithm, virtually every portion of the simulation algorithm exhibits some potential for 

acceleration through a hardware implementation. Prom Figures 3.5 and 3.6 it is clear that 

the primary functions at both the logical process manager and the filter levels require 

communications interaction through subfunction calls. 

The potential for speedup addressed in Section 3.5.4 is realizable if the processor has 

actual work pending. Pending jobs could receive processor time in lieu of the processor 

remaining idle while the currently scheduled job waits for communications. Hence the 

purpose of this design is to implemant the DES algorithm in hardware and thus reheve 

the processor from the administrative overhead associated with the conservative synchro- 

nization protocol as it exists in the SPECTRUM testbed. The hardware coprocessor will 

provide processing for incoming messages, schedule and package outgoing messages, man- 

age simulation time, monitor communication arc status and the next event list, and provide 

event inputs to the processor when requested. The coprocessor will support the simulation 

execution for all logical processes on the node, transparent to the processor's operation 

and, if a sufficient workload is available, increase overall processor utilization. 

4.3.2 Process Model As a supplemental, application-specific system for the Intel 

80386 microprocessor, the DES coprocessor was viewed as a finite state machine. State 

transitions are controlled by the processor when needed and follow the process model graph 

of Figure 4.1. 

Primarily an I/O device, the coprocessor responds to control signals from the pro- 

cessor. Figure 4.1 shows the three necessary coprocessor sU.tes- start, cpuJo, and execute. 

With power applied and no processor request pending, the coprocessor remains in the 

start, or idle state. Basic housekeeping functions, which consist primarily of maintaining 

the coprocessor's local memory, are performed while waiting for processor requests. 

Transition to the cpuJo state is controlled by the processor. The coprocessor, which 

resides in the processor's I/O address space, monitors the CPU control signals and the 

system data bus for opcodes and operands when activated by the processor. 
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Figure 4.1. Process Model Graph 

4-5 



The execution state is entered at the completion of cpuJo. All necessary DES func- 

tions are executed while in this state. Data flow within the coprocessor is controlled 

primarily from this state; however, control of parallel input and writing to local Random 

Access Memory (RAM) from the cpuio state are also supported. 

The clock and run processes are included for completeness. Coprocessor timing is 

referenced to the main processor's system clock, while the run process is analogous to chip 

enable or connection of primary drive voltage. Similar to the Intel 80386 microprocessor, 

the DES coprocessor is designed to use an internally generated cloc it half the system 

clock frequency for instruction executions (19:5-347). 

4.3.3 DES Coprocessor Interface The DES coprocessor relies on the Intel 80386 

microprocessor for controlling state transitions and data transfers. Similar to the Intel 

80387 DX math coprocessor, this application-specific coprocessor interfaces to the system 

bus architecture for all data transfers and is connected directly to the CPU control signals 

(19:5-441,447). 

Control of the coprocessor relies on two-way communication beswesn the CPU and 

the coprocessor. Operating in the processor's addressable I/O spar., the coprocessor is 

controUed via two address lines (A15 and A2) and the M JO line from the processor. The 

choice of a specific address location for the coprocessor was arbitrary but falls within the 

general requirements specified for the Intel 80386. 

The Intel 80386 can address 16K, 32-bit ports in its I/O address space, 0H-FFFFH. 

Intel has reserved addresses 00F8H-00FFH for use with its math coprocessor (80387), 

which is activated by asserting address line A31 high and toggling address line A2 to 

distinguish data from opcodes(19:5-308,309). Intel has advised that while I/O addresses 

are available, the iPSC/2's NX operating system reserves additional I/O addresses that are 

unique to each system's configuration, and can only be identified through reference to the 

system documentation which was unavailable at this time(23). Addressing the coprocessor 

at the chosen I/O port is therefore similar to the Intel 80387, in that asserting address 

hue A15 and MJO, activates the coprocessor, while data and opcodes are distinguished 

through address line A2. 
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Additional control lines ^ e required to provide coprocessor state and to send requests 

to the CPU. The Intel 803&5 monitors a realy input, READY#, to terminate or wait on 

bus transactions with a bus slave(19;5-;J49). The coprocessor supports this requirement 

with a ready signal, READYO, which it asserts low to end bus transfer cycles, as needed 

by the Intel 80386. 

An interrupt request line is also required for the coprocessor interface. Since direct 

access to the network switching circuitry of the Direct Connect Module (DCM) is not 

possible, the coprocessor will rely on the Intel 80386 to pass outgoing messages to the 

DCM. When needed the coprocessor will assert an interrupt request for message output 

and, if not masked by the CPU, will forward the outgoing message to the DCM. 

Similar to the Intel math coprocessor, the DES coprocessor is designed with addi- 

tional control lines to indicate an active state or an error condition. When active the BUSY 

signal tells the CPU that the coprocessor is executing an instruction, while the ERROR 

signal reflects a coprocessor exception. 

4.3.4 DES Coprocessor Functional Components A block diagram of the DES co- 

processor system is shown in Figure 4.2. The design consists of five functional blocks 

needed to implement the discrete event simulation using a conservative synchronization 

protocol and parallel I/O ports to interface with the CPU's system data bus. 

As a chip-level design using VHDL behavioral descriptions, detailed hardware spec- 

ifications are not given in this design. The design objective is to specify the hardware 

characteristics and behavior necessary to implement the simulation algorithm as it ex- 

ists in the SPECTRUM testbed, whue ensuring compatibility with the Intel 80386 32-bit 

architecture used on the tPSC/2 hypercube. 

4.3.4.I Parallel Input/Output A parallel interface with the system data bus 

of the Intel 80386 requires the use of 32-bit wide buffered latches. Using this approach, 

the coprocessor can take full advantage of doubleword aligned bus transfers and be discon- 

nected via a high impedance state when no bus transaction is active. 

The parallel I/O port design closely follows that presented by Armstrong in his VHDL 
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description of the Mark II processor(2:120-123). Referencing Figure 4.2, the paraUel input 

and output blocks are designed with identical behavioral descriptions and the direction of 

data flow is determined by the I/O port mapping and mode selection for each device. 

The respective I/O port is activated by the coprocessor when needed via a device 

select line, DS2. Assertion of this line is in response to interface signals between the 

coprocessor and the CPU. Parallel input requires the additional interface of a strobe line, 

addr_strb#) from the CPU to determine when data is valid on the system bus and thus 

may be latched. 

Interfacing with slave units is not anticipated or required at this time, therefore no 

provision for an interrupt capability is included in the design of the I/O ports. 

4.3.4-2 Random Access Memory The Random Access Memory (RAM) of Fig- 

ure 4.2 supports several critical functions in the DES coprocessor design. Its primary pur- 

pose is to hold simulation information relative to each logical process simulated on the 

processing node. Additionally, it provides storage space for coprocessor required assembly 

code and swap space, if needed, to support overflow from the Content Addressable Memory 

(CAM). 

The RAM memory incorporates several fundamental design decisions. The most ob- 

vious is the use of doubleword (32-bit) alignment for all memory transactions. This allows 

a direct interface to the system data bus of the CPU and permits transfer of data with 

fewer bus cycles. Additionally, the data format currently used by the iPSC/2 for inte- 

gers, which are the predominant data type used in the simulation analyzed, is a four-byte 

doubleword. The choice of doubleword alignment also eliminates the need for two address 

lines, as the distinction between the four individual bytes that makeup the doubleword is 

no longer necessary. 

Determining the size of RAM memory required is based on several assumptions rel- 

ative to the simulations supported by the DES coprocessor. A portion of RAM is required 

by each logical process being simulated on the processor and the iPSC/2 operating sys- 

tem allows a maximum of 20 processes per computing node(18:l-37). Therefore the RAM 

design incorporates a separate partition to store each LP's simulation data. Additionally, 
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an address pointer table with 20 entries is provided to reference the base address for each 

LP's partition. 

The RAM design is organized as shown in Figure 4.3. Each logical process simulated 

on a given CPU maintains data identifying the other logical processes on vhich it is 

dependent (i.e., must communicate with). Assuming a maximum often input and output 

logical processes are to communicate with each LP on the node, 20 doubleword addresses 

are available for each LP on the node. The limit of ten inputs/outputs was chosen based 

on the fan-in and fan-out heuristic for similar electronic devices. 

Representation of the unique identities for all input/output LPs within the 20 ad- 

dresses in coprocessor RAM is contingent on the ability to represent each LP id with only 

32 bits. Each LP is identified by its processing node number and its logical process number 

on that node, both of which are 32-bit integers on the iPSC/2. The field size needed to 

represent this information however is significantly less when using an eight node hyper- 

cube, limited to 20 LPs per node. Therefore the RAM design will store LP ids as a single 

doubleword, with the node number occupying the upper two bytes and the process number 

contained in the lower two bytes. 

In addition to the above memory requirements, each LP must maintain data that 

refiects the simulation state and supports the conservative synchronization protocol. The 

local simulation time is unique for each LP and occupies a doubleword within its copro- 

cessor RAM partition. Additionally, a single doubleword location is provided for each LP 

to maintain the inherent delay time for the LP's simulation process. Storage of the LP's 

delay time is only necessary for deterministic simulations, where the LP's execution time 

is constant and can be stored during initialization. 

The number of input and output communication channels is also required to monitor 

incoming and outgoing messages. Similar to the LP ids, the memory representation for the 

number of input and output arcs is stored as a single doubleword. The number of inputs 

occupying the upper two bytes and the number of outputs in the lower two bytes. 

The last entry m each LP's RAM partition is a status register containing input 

message information. As described in Section 2.3.2.2, a message must be received on every 
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Typical 
LP Partition 

(20 partitions) 

OUTPUT_ARC_IDs 
(10) max 

TO_NODE_# I TO_LP_# 

INPUT_ARC_IDs 
(10) max 

FROM_NODE_# I FROM_LP_# 

LP_Simulation_Time 

# ARCS_IN I # ARCS_OUT 

LP_DELAY 

ARCS_IN_STATUS 

e LOCAL CODE 

CAM SWAP SPACE 

LP_RAM_PARTrnON 

POINTER TABLE 
(20 addresses) 

(1)    LP_base_addr_PTR 

(0)    LP_base_addr_PTR 

base addr 

Figure 4.3. Coprocessor RAM Memory Organization 
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input arc to ensure the next event may be safely executed. The ARCS JN.STATUS register 

reflects received messages with a '1' in the bit position that corresponds to the input LP 

and a '0' otherwise. 

To meet the above memory requirements, the DES coprocessor design requires 4Kbytes 

of dynamic RAM. This total is obtained by considering that a minimum of 2Kbytes, 

(20^)(25   Tpd&)i4Th£h) i are need to store simulation data and a working buffer of 

2Kbytes is anticipated for CAM overflow and local code storage. 

4.3.4.3 Content Addressable Memory A Content Addressable Memory (CAM) 

is included in the DES coprocessor design to store and maintain the next event lists for 

each logical process executing on the node. Although the effects of next event list manage- 

ment were not significant in the car wash simulation analyzed, the number of events stored 

requires a time complexity of 0(n) when a sequential algorithm is used for an in-order 

retrieval. The CAM provides the ability to perform searches of memory in parallel and 

thus reduce the time complexity to 0(1). 

As with the RAM memory, the size of CAM required must be justified in the design. 

Unlike the RAM however, the CAM requires data storage in compliance with a strict 

format in order to operate effectively. 

The CAM size determination and searching process are defined in terms of how each 

simulation event is stored in the CAM. Figure 4.4 shows an event list entry in the CAM. 

Although some encoding of event information will be done by the DES coprocessor, a total 

of 78 bits is necessary to completely define each event on the next event list. 

The valid bit is used by the CAM to determine the status of each entry (i.e., if 

it's been used). The remaining fields uniquely identify each event. The "TOXP" field 

identifies which LP on the node is to receive that event. This field requires five bits to 

uniquely identify which of the 20 possible LPs receives the event. The "FROM-NODE" 

and "FROM-LP" fields, which uniquely identify the sending LP, are also encoded by the 

DES coprocessor. The "FROM_NODE" is limited to eight possible nodes on the iPSC/2, 

hence it requires only 3 bits. Similarly, the "FROM.LP" is one of 20 possible LPs on that 

node and is therefore represented with five bits. 
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The "TIME.TAG" and "MEMR_PTR» are generated by the iPSC/2 and remain 

in their original 32-bit format. The "MEMRJTR" must remain unchanged as the CPU 

requires this memory reference to locate the actual event and its associated data structures, 

which are maintained in CPU local memory. 

VALID 

Ibit 

TO_LP 

5 bits 

FROM_NODE 

3 bits 

FROM_LP 

5 bits 

TIME_TAG 

32 bits 

MEMR_PTR 

32 bits 

Figure 4.4. CAM Event Field Entries 

The siza of CAM required for next event storage will vary as a function of the physical 

process being simulated and the number of events generated during the simulation. CAM 

size for a general purpose DES coprocessor is based on the following assumptions and 

median values: 

• median value: 10 LPs/node 

• median value: 5 input arcs/LP 

• assume: 10 events/input pending 

Given these median values and assuming an average of 10 events are pending at each node, 

the number of events stored in the CAM is calculated as: 

(10Ä(5^)(10^) = 500«^ 

Based on the storage requirement of 500 events/node, a CAM of 4Kbytes minimum is 

needed, since each event requires 78 bits. 

IS.4.4 DES Coprocessor The DES coprocessor's operation follows the basic 

approach envisioned by von Neumann and described by Hayes(16:179-183). A small single- 

address instruction set and a minimal number of registers are used in a fetch, decode, 

execute, and store sequence, that is initiated and controlled by the CPU. 

The operation of the DES coprocessor is depicted in Figure 4.5.  The coprocessor 

remains idle until activated with an instruction from the CPU. The instruction operands 
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are sent to the coprocessor along with the opcode during an initial fetch cycle, which occurs 

in the cpu Jo state. Instruction decoding is performed at the start of the execution state. 

Instructions requiring additional operands must repeat a fetching operation, however this is 

done from local coprocessor RAM where unique logical process information (i.e. simulation 

time, number of inputs/outputs, etc.) received from the CPU during initialization is stored. 

The execution of each instruction requires of both combinational and sequential logic 

functions within the DES coprocessor. In addition to instruction and accumulator registers, 

the DES coprocessor design incorporates a 32-bit flag register and ten general purpose 

registers to support these operations. The primary role of the flag register is to monitor 

the DES coprocessor's memory status. The flag fields reflect whether the CAM is full or 

not and the number of events temporarily stored in RAM. 

Several functions of an Arithmetic Logic Unit (ALU) are also performed by the 

DES coprocessor. A counter function for incrementing and decrementing register values is 

included to maintain the status of input message channels and to monitor the sending of 

messages to output channels. Additionally, the ability to mask specific bit fields is provided 

for combining of multiple data (i.e., LP node and LP number) into single 32-bit fields to 

limit the storage requirements and reduce the number of bus cycles needed to transfer 

information. 

4-4    Design Implementation 

The DES coprocessor system design is implemented using a VHDL behavioral de- 

scription for each of the functional blocks shown in Figure 4.2. Each block in the design 

is described using one or more VHDL processes, unctions and procedures that are per- 

formed multiple times with a given process are incorporated within the package body for 

the given functional block. Those functions that are global in nature (i.e., required by more 

than one functional block) are incorporated in the system package. A complete listing of 

the VHDL source code for the DES coprocessor system is included in the appendices. 

4.4-1 System Packages The system packages define types, constants, and functions 

that are required by all functional blocks of the DES coprocessor design. Multi-valued logic 

4-14 



r 
6 
t 

IQ 

] 

t 

1 

t 

1 1 1 

J ? 5 1, 
t ■H» t "* 8 

-a 
t 

— 1 
t 

* 1 i J J 

1 
t - 5 - — 1 

♦ 
5 
8 

■o 

♦ 
- } 

t .a, [1J t K LiJ J 1 

J 

♦ _ _ } 
♦ 

i 
.§ 

p 

1 1 

^^8 
.. J 

t 

to 
] 

♦ 

1 ? r r r s 2 1 1 |] 1 j 

o 

S 
Q. 

^ 

I 
O 

in 

s 



(i.e., MVL7), which is a standard type included with the Zycad VHDL system, was chosen 

to represent signals within the DES design, as this more closely reflects actual signal 

values(32:10:17,18). 

Resolution of the DES coprocessor data bus is necessary as there are five possible 

drivers for this bus (see Figure 4.2). The bus resolution function is a variation of the 

wiredX function provided with Zycad VHDL(32:10:84-90). The DES coprocessor design 

differs from the original Zycad by using function and argument names that reflect the DES 

coprocessor's operation. 

The need for type conversions is inherent with the VHDL design language. The 

"DWORD" subtype, which is a resolved signal, is included to avoid unnecessary type 

conversions for signals connecting the functional blocks. Several functions contained in the 

system package (see Appendix A) are provided to support the type conversions needed by 

the various processes. 

4.4-2 DES Coprocessor Behavior The behavioral description for the DES copro- 

cessor is the largest functional body of the overall system design. It incorporates the 

remaining package bodies and relies on the functions they provide to specify the total DES 

coprocessor design. 

The coprocessor's behavior (see Appandix B.2) is irapkiiieiued vthz hve separate 

processes: run, state, start, cpu.n, and execute. The run process is included as a primary 

system driver and is analogous to a chip select or drive voltage being applied to the 

coprocessor chip. The inclusion of the run process directly supports the testbench used to 

verify the coprocessor design. 

The state process provides the mechanism for state transitions as shown in Figure 4.1. 

State transitions are possible during both positive and negative clock transitions. The 

progression between states is somewhat sequential in that the coprocessor must perform 

an I/O state with the CPU prior to entering the execute state. The sequential requirements 

of the state transitions are implemented by evaluating the CPU control signal values at 

each clock transition. 
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4.4-2-1 Start Process The start process represents the DES coprocessor's state 

when not executing a CPU instruction. Required maintenance of the coprocessor's CAM 

takes place while in this state. The maintenance activity is based on the simplifying as- 

sumption that events will arrive in time sequence after the CAM overflows, thereby allowing 

an ordered storage in the DES coprocessor's RAM. 

The DES flag register is checked for CAM overflow status. If the CAM has experi 

enced an overflow, the presence and number of overflowed events (i.e., events temporarily 

in RAM) is detected in this register. 

The overflowed events temporarily in RAM are stored in a first-in-first-out (FIFO) 

queue. As simmation events are executed, space becomes available in the CAM and the 

flag register is updated. During the start process, if an event is in the RAM, and CAM 

space is available, the events are taken from the head of the FIFO queue and passed to 

the CAM for storage. 

4.4-2-2 CPU.IO Process The cpuJo process handles all incoming bus trans- 

fers from the CPU in an asynchronous cycle regulated by the system clock and the copro- 

cessor's assertion of the ready line low. Additionally, this process monitors the status of 

CPU control signals to determine if the bus transfer is an instruction (i.e., A2 = '0') or 

ope^anc (i.e., A2 = '1'). 

During the cpu Jo process, CPU bus transfers are received from the parallel input port 

through a buffer register. Opcodes are routed to the instruction register while operands are 

stored sequentially in internal, general purpose, 32-bit registers or the coprocessor RAM, 

depending on the opcode to execute. 

Additional operands, that are unique to the executing LP, are required for the ini- 

tialize simulation opcode. Using the LP's process number (i.e., 0 - 19 from register 1) to 

index the RAM partition pointer table, the base address for storing additional operands 

in memory is retrieved. 

The saving of additional operands, when required, is done during the CPU bus cycle. 

The CPU waits for the ready low assertion while the cpu Jo process stores operands at a 

sequential offset from the LP's RAM partition pointer. 

4-17 



Anticipated hardware timing delays were specified for required register transfers, 

mamory access and read/write times, and the generation of output control signals to the 

CPU. As an asynchronous process, the CPU is required to wait for the coprocessor to 

initiate termination of the bus transfer cycle. Hence, the timing delays specified (see Ap- 

pendix A) are somewhat arbitrary, while attempting to satisfy the Intel 80386 requirement 

of two clock cycles per bus transfer (19:5-358). 

At completion of this process the DES coprocessor kas all necessary operands, either 

in general purpose registers or both RAM and registers, along with the opcode to execute 

in the instruction register. 

4-4-2-3 Execute Process The execute process is entered immediately after 

every cpuJo cycle. The instruction register is decoded for one of four possible simula- 

tion instructions: initialize simulation, post message, get next event, or post an event. 

Once decoded, the appropriate procedure is called for execution. 

The execution of simulation functions follows the DES coprocessor operation outlined 

in Figure 4.5. VHDL procedure calls, within the execute process, are used to implement 

each of the required simulation functions. 

4.4-2-4 Initialize Simulation Procedure A new simulation is initialized with 

the tmf_5tm procedure. This procedure uses essential LP data (i.e., toJp, Ip.delay, number 

of inputs and outputs) stored in general purpose registers one through four, and additional 

operands (i.e., input and output LP node and process numbers) to initialize the simulation. 

The local simulation clock is reset and the minimum safe time is calculated. The 

CAM is cleared of previous entries as is the corresponding flag register. 

Null messages identifying the sending LP and containing the "TO_LP" address and 

minimum safe time are routed to the CPU for output via an interrupt request procedure. 

Null messages are sent to every output-arc LP identified in the local RAM partition. 

After all null messages have been sent, the iniLsim procedure saves LP essential data 

at the appropriate RAM location and a state transition occurs at the next system clock 

transition. 
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4.4-2-5 Post Message Procedure The post.msg procedure svpports the CPU's 

requirement to receive both event and null messages during the discrete event simulation. 

The incoming message is received in three or four bus cycles from the CPU, depending 

on the type of message. Since null messages have no real event associated with them, no 

pointer to the event storage address in CPU memory is associated with this message type. 

Simulation data, essential to the receiving LP (i.e., number of in/out arcs, arcs-in 

status, simulation time, and Ip delay), are loaded from the RAM partition into general 

purpose registers. The arcs-in status register is then updated to reflect the receipt of an 

input message for the from.lp arc. 

CAM full status is checked, via the flag register, and the received message is routed 

either to the CAM or RAM swap space for saving. Prior to actual storage of the message, 

some compression of the message fields, as described in Section 4.3.4.3, is performed to 

conserve memory storage space and minimize the number of memory write cycles. 

4.4-S-6 Get Event Procedure The geLevent procedure performs the reverse 

operation of the post message procedure. Again the essential data for the executing LP 

are loaded from RAM and the arcs-in status register is checked to determine if an event is 

ready for the CPU or if a wait for event message must be sent. 

If an event is available for execution, the coprocessor retrieves it by asserting a CAM 

read along with the toJp identifier for next event searching. The next event from the CAM 

is then routed to the CPU for execution, while the coprocessor updates the LP's arcs-in 

register and local simulation clock. Additionally, the CAM returns an extra bit with the 

next scheduled event which indicates if additional events from the same input arc remain 

in the CAM for later execution. 

4.4.2.7 Post Event Procedure The post.event procedure is executed after the 

CPU has processed an event action and the subsequent output message is ready for trans- 

mission. This procedure builds the event message for the designated toJp(s) and returns 

the message to the CPU for sending via the DCM module. In addition, this procedure 

constructs a null message containing the LP's identifier and the new safe look ahead time 
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which is routed via the DCM module to all remaining output arcs. 

4.4.2.8 Signal Multiplexing The VHDL behavioral design for the DES copro- 

cessor requires the use of several processes, often requiring access to the same data (i.e., 

general purpose registers) or status signals (i.e., the coprocessor readyO line). The need 

for additional resolution functions was avoided by using a signal multiplexing technique 

described by Armstrong (2:88,89). This approach permits multiple processes to drive sig- 

nal 'X' while the actual value assigned is that which is most recently applied (i.e., not 

signalX'quiet). 

4.4-3 Parallel I/O Behavior The behavior of the parallel I/O ports is borrowed 

from Armstrong (2:120-123), and only slightly modified for this design. The behavior of a 

buffered latch is implemented in this design. Control signals from the coprocesf or and the 

CPU are used to activate combinational logic and 'D' flip-flops, providing a bus latching 

capability as well as high impedance disconnect from the bus when not enabled. 

Output from the parallel I/O ports uses a guarded block construct, which is de- 

pendent on the device select and the clear latch inputs. Unlike Armstrong's design, the 

parallel I/O ports of the DES coprocessor system lack an interrupt capability as it is not 

necessary in the coprocessor design. Constants defining inherent hardware timing delays 

are included with the generic map (see Appendix A) and are based on bus transfer timing 

requirements of the Intel 80386. 

4-4-4    RAM Memory Behavior Enabled) 

The behavior of RAM memory is defined by a memory model process. Two pro- 

cedures, (do-read and do-write), are called to perform the basic memory functions. The 

memory functions are activated with control hues for I/O and read/write from the DES 

coprocessor while the memory location is valid on the local address bus. 

The RAM organization is shown in Figure 4.3, and this data structure is implemented 

as an array with IK entries, each of which is a 32-bit array representing a memory location. 

The RAM design incorporates a textjo read operation to load the LP base address pointer 

4-20 



table during component initialization. Therefore, when the VHDL design is executed, the 

RAM is preloaded for the necessary memory operations. 

An assertion statement is included as a safeguard with the RAM design to indicate 

if an address changes during memory read/write operations. Similar to other functional 

blocks that drive the DES coprocessor data bus, the RAM defaults to a high impedance 

state when no memory transactions are active. 

Constant hardware time delays for memory access, reads, and writes are defined in 

the DES system package of Appendix A and are established to provide a timing basis for 

functional block interaction. The timing delays were again chosen arbitrarily, as actual 

values depend on the both technology employed for the hardware implementation and 

whether or not the RAM can be included within the DES coprocessor chip package. 

44.5 CAM Memory Behavior The Content Addressable Memory behavior is also 

implemented with a VHDL process construct. No requirement for an address bus was 

anticipated nor included in the design, as operations involving specific addresses are not 

initiated by the DES coprocessor. 

The CAM event ci .rage fields shown in Figure 4.4 provide a reference for the read 

operation. The CAM algorithm to search for the next scheduled event is implemented with 

a sequential loop operation which differs from the hardware implementation which wiD be 

performed for all memory locations ir parallel. 

A read hit is guaranteed as the coprocessor checks the LP's arcs-in status register 

prior to requesting the next event. The search process is performed on all valid memory 

locations that match the requesting LP's id. The next scheduled event is determined 

through a less than comparison of the time field of all valid events that match the requesting 

LP's id. 

Once located the next event is parsed into three portions (i.e., to/from identifier, time 

tag, and memory pointer) for bus transfer to the DES coprocessor. The most significant 

bit of the first transfer is set high ('!') if additional events from the same sending LP 

remain in the CAM for future scheduling. This information allows the DES coprocessor 

to update the executing LP's arcs-in status register. 
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After sending the next event to the DES coprocessor, the CAM process clears the 

next event's valid bit, to allow storage of a received event at that location. Similarly, the 

DES coprocessor can update the flag register, if necessary, to indicate available storage 

space in the CAM. 

CAM write operations are performed in a straight forward fashion. The DES copro- 

cessor writes events to the CAM only when space is available, based on flag register status. 

The received event is inserted in the first available storage location as determined by the 

CAM's sequential (i.e., parallel in hardware) search of the event fields' valid bits. 

4-5    Summary 

The design of a DES hardware accelerator was based on the requirements of indi- 

vidual processors rather than the overall parallel system of the Intel iPSC/2 hypercube. 

Bottlenecks to the efficient execution of conservative discrete event simulations were found 

to result in significant CPU idle time. Therefore, the purpose of a DES coprocessor is to 

free the CPU from the overhead of executing discrete event simulation functions and allow 

pending jobs immediate access to CPU execution. 

Operation of the DES coprocessor is controlled by the CPU when requested. It 

functions as a finite state machine performing I/O with the CPU and executing the basic 

functions of simulation initialization, posting events, getting the next scheduled event, and 

posting output messages when generated. 

The conservative synchronization protocol is implemented by the DES coprocessor, 

hence the overhead of simulation time management, next event fist maintenance, and 

input/output message traffic are transparent to the CPU. 

The requirements for the DES coprocessor operation are specified in VHDL. This 

behavioral description of the DES coprocessor is implemented with process constructs 

and procedures necessary to support the conservative synchronization protocol for general 

discrete event simulations. 

The inclusion of timing delays for hardware modeling is somewhat arbitrary. The 

timing constraints of the Intel 80386 provided the basis for selecting these timing values. 
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Actual timing values will, of course, depend on the technology employed for a hardware 

implementation and the package size available for the coprocessor functional blocks. 
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V.   DES Coprocessor Design Test 

5.1    Introduction 

A high-level system description and the required functional behavior of a Discrete 

Event Simulation coprocessor were implemented using the VHSIC Hardware Description 

and Design Language (VHDL). A complete source code Usting of this behavioral description 

is included in the appendices. 

Testing modes for the DES coprocessor design were limited since a VHDL design for 

the Intel 2PSC/2 and the Intel 80386 were not available. Hence, a complete system test of 

the hypercube architecture incorporating the DES coprocessor was not feasible, nor was a 

comprehensive integration test with the Intel 80386 microprocessor possible. 

A VHDL test bench was designed to simulate the interface of the Intel 80386 mi- 

croprocessor and the DES coprocessor on a single hypercube processing node. Testing 

centered on verifying the DES coprocessor's implementation of the conservative synchro- 

nization protocol, discrete event, simulation algorithm. The Intel 80386 microprocessor 

was modeled as a system driver addressing the DES coprocessor as an I/O port. A de- 

tailed behavior of the Intel 80386 was not necessary as only interface control signals and 

bus transactions were required to verify the DES coprocessor's operation. 

A secondary purpose of testing the DES coprocessor design was to analyze the 

CPU/DES coprocessor interface. The DES coprocessor was designed with an asynchronous 

interface to the CPU, hence a timing analysis of device signals during data transfers was 

performed. 

The following sections describe the test methodology and DES coprocessor test con- 

figurations used to analyze the coprocessor design. Simulation test data that verify the 

DES coprocessor's implementation of the discrete event simulation algorithm are presented. 

A summary of the test data along with logic analyzer traces are included for analysis of 

the CPU/DES coprocessor interface and coprocessor performance evaluation. 
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5.2    Design Test Methodology 

The DES coprocessor design is composed of functional blocks as shown in Figure 4.2. 

The behavior of each block was designed to support the implementation of the DES copro- 

cessor operations shown in Figure 4.5. The design was tested to verify the implementation 

of a general discrete event simulation algorithm using the Chandy-Misra conservative syn- 

chronization protocol. 

Unit testing of the functional components was performed prior to overall system 

testing. The DES coprocessor component required support from all other functional com- 

ponents in the design, hence system testing encompassed the unit testing for the DES 

coprocessor. 

Implementation of the basic discrete event simulation functions of initialize, post- 

message, get-next-event, advance-time, and post-event was verified during the system test- 

ing. Additionally, DES coprocessor performance, in terms of execution time, and the 

CPU/DES coprocessor interface were analyzed during system testing. 

The DES coprocessor system testing was conducted using the carwash simulation 

configurations outlined in Section 3.2.2. A VHDL testbench (see Figure 5.1) was designed 

to test the DES coprocessor operation on a single hypercube processing node. The DES 

coprocessor was activated and exercised by a testbench driver representing an Intel 80386 

microprocessor. The DES coprocessor was addressed within the testbench as an I/O 

port connected to the microprocessor. The detailed behavior of the microprocessor was 

not necessary as the coprocessor's implementation of a general discrete event simulation 

algorithm could be verified by tracking the coprocessor state, values of internal variables, 

and bus transfers with the CPU. 

Testbench timing was provided by a system clock, similar to the system clock re- 

quired for actual hardware operation. The testbench clock was operated at a frequency 

half that of the actual Intel 80386 system clock on the iPSC/2. The testbench clock there- 

fore represented the internal clock frequencies of the Intel 80386(19:5-347) and the DES 

coprocessor. 

5-2 



o 

u 
o 
a. 
O 
U 

3 

TT 

M 

3 « 
Ji "ab c 
£5 

u 
c 
a» 

u 
<j 
o 
IM 
a, 
o 

Ü 
CO 
W 
Q 

u 

s I I 5 i H 
S H < 
fe 5 Q 
< Q 

P 
> 
2 
a 
p a. 
D 



Once activated, all testbench signals and variables were available for monitoring with 

the Zycad VHDL system. By selectively monitoring these variables and signals the DES 

system's state, internal processes, and interface activity were analyzed. Recorded simu- 

lations of the DES coprocessor testbench execution provided the necessary data to verify 

the implementation of the DES algorithm and to analyze the coprocessor's performance. 

5.2.1 CPU Interface The CPU/DES coprocessor interface was tested to verify the 

coprocessor's response to CPU requests. This testing involved tracking the status of both 

the CPU and DES coprocessor control lines and data bus activity between the two com- 

ponents. 

Operation of the DES coprocessor and subsequent state transitions were regulated 

by the CPU control lines MJO, WR, ASTR and address lines A15 and A2. The copro- 

cessor state was determined by a combination of these CPU control lines and, in turn, 

feedback was provided to the CPU via coprocessor status lines INTR, READYO, BUSY, 

and ERROR. 

The DES coprocessor was addressed when the CPU accessed the I/O port addressed 

by A15. The type of bus transaction was determined by the control line WR and address 

line A2. Writing to the coprocessor occurred when WR = '1', while WR = '0' represented 

a coprocessor read. Address line A2 was used by the coprocessor to discern between opcode 

instructions (i.e., A2 = '0') and operand data (i.e., A2 = '1') during CPU write cycles. 

Bus transfers between the CPU and DES coprocessor were performed with double- 

word aligned data (i.e., 4 bytes or 32 bits). On coprocessor writes the CPU asserted the 

address strobe line (ASTR) when bus data was valid(19:5-349). Conversely, the DES co- 

processor asserted its ready line (READYO) to acknowledge the end of both read and write 

bus cycles with the CPU. 

The asynchronous timing of the CPU/DES coprocessor interface was regulated by 

the system clock in conjunction with the address strobe and coprocessor ready line. New 

bus cycles were initiated on either positive or negative transitions of the system clock and 

ended on a clock transition when the ready line was asserted low. 
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5.2.2 General DES Algorithm Functions The primary functions of the DES al- 

gorithm were implemented as procedures within the behavioral description of the DES 

coprocessor (see Appendix B.2). The DES function to execute is determined by the op- 

code instruction issued by the CPU and function execution results from a procedure call 

within the DES coprocessor's execute process. 

The execution paths of the DES operation flow chart shown in Figure 4.5 correspond 

to unique CPU opcode instructions. Execution of the DES algorithm functions, via VHDL 

behavioral procedure calls, corresponds to these flow chart paths. 

5.2.3 Simulation Initialization Prior to execution each processing node is initialized 

with required simulation information. This process is performed by the SimJnit procedure, 

within the execute process, of the DES coprocessor (see Appendix B.2). 

Testing of this basic DES function required verification that the DES coprocessor 

stored the processing LP's configuration in Random Access Memory (RAM) and relayed 

the earliest time for subsequent messages to all output LPs via "null" messages. 

Simulation configurations with both one and two LPs per processing node, identical 

to the carwash simulation, were tested. Since the two LP configuration requires additional 

support from the DES coprocessor, and the one LP test is incorporated as a subset of this 

configuration; the remainder of this chapter will focus on the testing of the two LPs per 

processing node configuration. 

The simulation's LP configuration was stored in predetermined partitions within 

the DES coprocessor's RAM (see Figure 4.3). Access to the designated partition was 

determined via a RAM partition pointer table, which was stored prior to coprocessor 

activation, and is referenced by the LP's logical number (i.e., 0, 1, 2, ...). The stored 

data consisted of essential simulation data and the identities of the interacting input and 

output LPs (i.e., input and output arcs) of the simulation. 

The first four addresses of the LP's RAM partition store essential simulation data 

for each LP on the node. This data includes the input LP status (i.e., ARCS-IN-STATUS 

register), the LP's inherent delay time, the total number of input and output arcs, and the 

current simulation time of the LP. 
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After each LP's RAM partition is configured with simulation data, "null" messages 

are sent to each connected output LP. The sending of "null" messages requires interaction 

with the CPU for access to the interconnection circuitry of the zPSC/2. Hence, the DES 

coprocessor must issue an interrupt request (i.e., INTR asserted high) to the CPU in order 

to send these messages. Each "null" message is comprised of four doubleword fields (i.e., 

TO-LP, FROM_LP, SAFE-TIME, and a NULL) which are routed to each output arc by 

the CPU. 

Verification of the simulation initialization function was achieved by monitoring the 

RAM partition of each LP supported by the DES coprocessor. End-to-end transmission 

of "null" messages was not possible; however, by monitoring the CPU/DES coprocessor 

interface, the required "null" message transmissions to all output arcs, via CPU interrupt 

requests and subsequent acknowledgements, were verified. 

5.2.4 Post Message The scheduling of simulation events for an LP in a distributed 

processing architecture is done through a message passing scheme. Received messages 

are not executed immediately, rather they are posted in an event list and scheduled for 

execution in a time-increasing order. 

Adding incoming messages to the event list is performed by the Post_msg procedure. 

The next-event list is maintained in a Content Addressable Memory (CAM) which provides 

an event retrieval time complexity of 0(1). 

The message to post consists of four doubleword fields containing the TO-LP, the 

FROM-LP, a TIME-TAG, and a memory pointer to the message in the CPU's primary 

memory. Receipt of the message data was verified by monitoring the bus transfer cycles 

with the CPU and ensuring the general purpose registers within the DES coprocessor were 

subsequently loaded with this data. 

Actual posting of an event to the CAM is contingent upon available storage space 

within the CAM. The CAM free space status bit of the FLAGS register must be verified 

prior to storage of the event in the CAM. Verification of event posting was accomplished 

by monitoring the CAM control lines and the DES system bus. The contents of the CAM 
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were also examined to verify event posting and updating of the event valid bit for each 

added event. 

After posting a new event, the CAM provides the DES coprocessor with an update 

of its free space status. The CAM status bit in the FLAGS register (i.e., bit 0) is then 

updated accordingly. In addition to verifying the updated FLAGS register, the receiving 

LP's input arcs status was checked to ensure it reflected an input message from the sending 

LP. 

Posting of new events, after the CAM capacity was reached, uses the DES RAM 

swap space (see Figure 4.3). The DES coprocessor was able to discern this condition by 

monitoring the CAM free space status bit in the FLAGS register. 

5.2.5 Get Next Event The DES coprocessor's ability to retrieve the next scheduled 

event for CPU processing was evaluated by initiating a request for a specific LP's next 

event from the CPU. In order to execute the Get_Event instruction, the DES coprocessor 

must first read the specified LP's RAM partition and check the arcs in status, to determine 

if all input arcs have posted an incoming message. 

Depending on the input arcs status, the DES coprocessor either responds with a 

wait for event message to the CPU or the next event for the specified LP is retrieved from 

the CAM and sent to the CPU. Next event retrieval was verified by monitoring the CAM 

control lines and examining the CAM's content to ensure the earliest valid event for the 

requesting LP was retrieved. Additionally, the valid bit for the next event in the CAM 

was checked to ensure its status was changed after providing the next event. 

The simulation time advance function is also executed when the next event is sent to 

the CPU for processing. Advancing the LP's simulation time was verified by monitoring 

the LP's previous and updated simulation times. The time advance involves the update 

of the current simulation time by advancing the simulation clock to the time of the next 

event's scheduled execution. 

If the next event to execute was null (i.e., an event memory pointer of 0) the time 

advance function still occurs and must be verified; however, with this condition the output 

of a "null" message, containing the new safe time, to all output arcs must also occur. 
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Additionally, execution of another Get_Event operation must take place to satisfy the 

CPU's outstanding request for the next event. 

5.2.6 Post Event The generation of event messages was verified by sending sim- 

ul.tion results for posting from the CPU to the DES coprocessor. The CPU result is 

composed of the executing LP's identity, the identity of the LP to receive the result, and 

a memory pointer addressing the event to post in the CPU's primary memory. 

Evaluation of the Post_Event operation required verification that an event message, 

with an updated time tag, was sent to the intended receiver, while "null" messages were 

sent to all remaining output arcs of the executing LP. Verifying the execution of this 

procedure required a check of the LP RAM partition read, for the identities of all output 

arcs connected to the executing LP. Additionally, the DES coprocessor's ability to discern 

between which LP received the event message vice those that received "null" messages was 

also verified. 

The proper time tag for event messages was verified as the sum of the current simu- 

lation time and the executing LP's inherent delay. Similarly, the "null" message safe time 

was verified to be the same value. 

5.3   DES Coprocessor Design Testing 

The VHDL behavioral üesign of the DES coprocessor system was tested as outlined 

in the previous section. Each component module of the design was tested separately, 

culminating in an overall DES coprocessor system test. Two configurations were used for 

system testing. Initially, a single LP per processing node was tested and then the DBS 

coprocessor system was tested with two LPs sharing the same CPU. 

The two LP configuration test encompassed the individual module tests and incor- 

porated the single LP configuration as an integral part of the test. Because of its broad 

scope, the two LP per processing node system test was used to evaluate the VHDL design 

and to verify the implementation of the fundamental DES simulation functions. 

The two LPs per processing node configuration is reflected in the logical process 
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mapping used for the carwash simulation of Figure 3.4. The source and wash LPs of node 

0 and their interconnections, with feedback from the wash exit, were used to verify the 

DES coprocessor design. 

Design verification was accomplished by analyzing test data provided by the Zycad 

VHDL system. Script outputs, from the testbench configuration (see Figure 5.1), provided 

signal values and event times, while showing process variables and state values throughout 

the system test. Additionally, the Zycad VHDL system's General Purpose Post processor 

(GPP) was used to generate signal traces for selected system ports. The signal traces 

provided a graphical representation of signal activity and system variable values. 

5.3.1 CPU Interface The control lines and asynchronous bus cycles interfacing the 

CPU and DES coprocessor were analyzed during execution of the DES coprocessor 

functions. One or more CPU write cycles occurred for each DES coprocessor function. 

These write cycles demonstrated the required interactions between the CPU and DES 

coprocessor. 

The initiation of an opcode transfer bus cycle is shown below. The opcode for 

the SimJnit instruction is encoded in the three most significant bits (i.e., "000") of the 

doubleword output on the data bus. The CPU control lines, WR and MJO, indicated the 

transmission of an opcode to the DES coprocessor (i.e., A2 = '0' and A15 = '1'), while the 

DES port values reflected the corresponding receive mode for this transfer. 

5 NS 
M94: 

H88 
M87 
M85 
M86 

M17 
M16 
M14 
M15 

~ CPU data.bus 
EVENT /DES_SYS_TEST_BENCH/CPU/DATAOUT (value = 
"00000000000000000000000000000000") 

— CPU control signals 
EVENT /DES_SYS_TEST_BENCH/CPU/A20UT (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/CPU/A150UT (value =   '1') 
EVENT /DES_SYS_TEST_BENCH/CPU/WROUT (value =   '1') 
EVENT /DES_SYS_TEST_BENCH/CPU/M_I00UT (value =   '0') 

— DES Coprocessor port values 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/CMD0  (value  =   '0') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/NPS2 (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/WR (value =   '1') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/NPS1 (value =   '0') 
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After one-half clock cycle (i.e., 62.5 ns for 8 Mhz), the CPU's address strobe line, 

ASTR, was asserted, indicating valid data on the bus. The coprocessor entered the I/O 

state, as shown by monitor M52, and asserted a parallel read at 139 ns. The data bus was 

latched, via the parallel I/O port (i.e., RDP = '!'), and buffered in the DES coprocessor 

at 191 ns. Loading of the instruction register with the opcode was verified at 196 ns. The 

bus cycle was then terminated by the DES coprocessor asserting the ready status line, 

READYO, low at 253 ns. 

62 NS 
M93: 

M13: 

M83: 

M52: 

M60: 
124 NS 

M83: 

139 NS 
M4: 

159 NS 
M: 

186 NS 
M83: 

191 NS 
M72: 

196 NS 
M79: 

201 NS 
M4: 

221 NS 

248 NS 
M83 
M60 
M52 

253 NS 
M20: 
M90: 

— CPU address strobe 

EVENT /DES_SYS_TEST_BENCH/CPU/ASTROUT (value = '1') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/CLK (value = '1 
EVENT /DES_SYS_TEST_BENCE/CPU/CLOCK (value = '1') 

— DES Coprocessor STATE 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/CPU_I0 (value = 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/I0WAIT (value = 
TRUE) 

'10 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value = '0') 

— DES Coprocessor read 

EVENT /DES_SYS_TEST_BENCH/COPROC/COtVRDP (value =   '1') 
— DES data_bus 

EVENT /DES_SYS_TEST_BENCH/COPROC/CDP/DATAIN (value = 
"00000000000000000000000000000000") 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value = '1') 

— DES Coprocessor input buffer 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF_I0 (value = 

"00000000000000000000000000000000") 

— DES Coprocessor instruction register 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/IR (value = 

"00000000000000000000000000000000") 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/RDP (value = '0') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATAIN (value = 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value = '0') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/I0WAIT (value = '0') 

EVENT /DES.SYS.TEST.BENCH/COPROC/COP/CPU.IO (value = FALSE) 
— DES ready line ends bus cycle 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/READY0 (value = '0') 

EVENT /DES_SYS_TEST_BENCH/CPU/RDYIN (value s '0') 

A graphical representation of the DES coprocessor opcode read bus cycle is shown in 

5-10 



Figure 5.2. This representation of the first bus transfer cycle of the simulation is somewhat 

misleading in that, the DES coprocessor, because of testbench limitations, requires a system 

clock transition at simulation startup, before entering the I/O state. Hence, the first half 

clock cycle for the DES coprocessor is idle (i.e., until B.EADYO = '1') at test startup. 

This timing diagram shows a typical CPU to DES coprocessor write cycle The CPU 

control lines access the DES coprocessor, while the address strobe, ASTR, indicated valid 

data on the system bus. After latching the data, the DES coprocessor signaled the end of 

the bus transfer cycle by tisserting the ready line, READYO, low. 

=I0C/C0P/BUFF_I0 
11 Tag No.   69 

„^    TOT NO.   75^ 
3ROC/CCP/REflDM3 A 

Tag No.   21 ^ 

Tag No.  5 ^ SCH/?MTflSa Hmmmm 

■£ OQQQQQOQ 

-^ 55555558 

j" 

acH/cpO/RSTRoar g 
3ENCH/^U5R20L? J! 
,_ Tag No.   208 =1 
BNCH/CRJ/fllSOUT ;j 

Tag No.   2137 1 
acH/cpo/N-iooar * 

Taq No.   205 ^X 
SENCH/CPU/WROLTT Af 

Taq No.   205   . 
COPROC/COP/CLK ; 

Tag No.   14 l. 
Time Scale 

I  L 

Figure 5.2. Opcode Read Bus Cycle of DES Coprocessor 

5.3.2 Simulation Initialization Function Each simulation logical process on a pro- 

cessing node was configured with essential data defining the overall simulation configura- 

tion. After sending the opcode instruction, the CPU transferred the required initialization 

operands to the DES coprocessor. An excerpt of trace data from the system test, show- 

ing the first LP's (i.e., node 0 source LP, from Figure 3.4) receipt of the fourth Sim Jnit 

operand (i.e., number of output LPs), is listed below. 

The coprocessor's general purpose registers were loaded with the operands for the 

initialization function (see monitor M68). Register 1 was loaded with the TO-LP (i.e., 

node 0, LP 0), while the deterministic LP delay, the number of input arcs, and the number 
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e of output arcs (i.e., 4, 2, and 3 respectively) were loaded into registers 2 through 4. Th 

remaining general purpose registers have yet to be used this point in the simulation, hence 

their values were unknown (i.e., 'X'). 

1131 Ns — DES Coprocessor read line 
H4: EVENT /DES_SYS_TEST_BENCH/COPROC/COP/RDP (value =   '1') 

1151  Ns — DES Coprocessor input 
M: EVENT /DES_SYS_TEST_BENCH/COPROC/COP/DATAIN (value = 

"00000000000000000000000000000011") 
1178 NS 

M83: EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '1') 
1183 NS — DES Coprocessor input buffer 

M72: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF_I0 (value = 
"00000000000000000000000000000011") 

1188 Ms — Sim.Imt operands loaded in Registers 1  to 4 
M68: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/REG_32 (value = 

~ T0_LP (i.e.. node 0. LP 0) — LP delay 
("00000000000000000000000000000000","00000000000000000000000000000100", 

~ number of input arcs — number of output arcs 

"00000000000000000000000000000010","00000000000000000000000000000011" 
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"."XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"" 
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"."XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"' 
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX","XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")) 

Figure 5.3 shows a GPP trace of the general purpose registers loaded with the primary 

Sim Jnit operands. This figure shows the register loading sequence of buffering the system 

data bus and loading the operands sequentially into the general purpose registers. This 

LP specific data was used to initialize the simulation, therefore it was maintained in local 

registers while executing the Sim Jnit procedure and stored in the LP's RAM partition 

after function execution. 

The addresses of the input and output LPs, for the SimJnit operation were also 

provided by the CPU; however, since a maximum of 20 input/output arcs are possible, these 

additional operands were stored in the LP'f RAM partition and read when needed. The 

DES coprocessor's local data bus, the DES coprocessor/RAM interface, and the LP's RAM 

partition were monitored to ensure the proper storage of the input/output arc operands. 

Test data showing the receipt and storage of the LP's first input arc in the RAM 

partition follows. Monitor, M72, shows an input to LP 0 on node 0 from itself (i.e., 

doubleword representing LP # and node #). This reflects the operation of a source LP 
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Tag No.   14 l. 
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Figure 5.3. DEJ Coprocessor Registers with SimJnit Operands 

generating a new car event in the carwash simulation. The operand was temporarily held 

in general purpose register 8, while the RAM partition base address was read from index 

'0' (i.e., LP 0) of the RAM partition pointer table. After reading the RAM partition base 

address (i.e., 54410), it is temporarily held in general purpose register 9 and the RAM write 

cycle followed. 

1431 NS 

H7?: 

1436 NS 

M68: 

( 

1441 NS 
M4: 

1451 NS 
Mil: 

M12: 

1461 NS 
M: 

1466 NS 
M2: 

— LP's 1st input arc 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF_I0 (value = 
"00000000000000000000000000000000") 

EVENT /DES_SYS_TEST_BENCH/C0PRDC/C0P/REG_32 (value = 

"00000000000000000000000000000000","00000000000000000000000000000100", 

"00000000000000000000000000000010","00000000000000000000000000000011", 

"xxxxxxxxxxxxxxxxmxxxmmxxxx". "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"', 
— operand in (Register 8) 

"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"."00000000000000000000000000000000", 

"XXXX-. —aXXXXXXXXXXXXXXXXXXXXXXX". "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")) 

EVENT /DES_SYS_TEST_BENCH/C0PRUC/C0P/RDP (value = '0') 
— DES RAM read signals 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/I0 (value = '1') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/RW (value = '0') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATAIN (value = 
"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 

— RAM read address 

EVENT /DES_SYS_TEST_BENCH/CQPR0C/C0P/MA (value = "CO00O0O0OOO") 
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— LP RAM partition base_address 
M: EVENT /DES_SYS_TEST_BENCH/COPROC/COP/DATAIN  (value = 

"00000000000000000000001000100000") 
1488 NS 

M83: EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '0') 
1501 NS — base_address to input buffer 

M72: EVENT /DES_Sys_TEST_BENCH/C0PR0C/C0P/BUFF_I0  (value = 
"00000000000000000000001000100000") 

1506 NS 

M68: EVENT /DES_SYS_TEST_BENCH/C0PR0C7C0P/REG_32  (value = 
("00000000000000000000000000000000","00000000000000000000000000000100", 
"00000000000000000000000000000010","00000000000000000000000000000011", 
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"."XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"\ 

"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX","00000000000000000000000000000000", 
— LP's base_address 

"00000000000000000000001000100000","XXXXXXXXXXXXXXXXX1.XXXXXXXXXXXXXX")) 

The RAM write cycle, storing the first input arc for LP 0, is reflected in the following 

excerpt of test data. The received operand is put onto the DES system data bus at 1541 ns 

while the RAM partition address and read control line are asserted at 1551 ns and 1566 ns 

respectively. As designed, the first input operand was stored at an offset of four (i.e., 548io) 

from the RAM partition base address, leaving space for the operands remaining in general 

purpose registers one through four. The RAM partition address was then incremented by 

one and saved in general purpose register six for additional write cycles. 

1516 NS 

Mil: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/I0 (value = '0') 

H: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATAIN (value = 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 
1521 NS — buffer data for RAM 

M72: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF_I0 (value = 

"00000000000000000000000000000000") 

M12: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/RW (value = 'Z') 

1536 NS — DES Coprocessor 1/0 operation 

Mil: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/I0 (value = '1') 
1S41 NL ~ DES Coprocessor data.bus 

Ml: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATA0UT (value = 
"00000000000000000000000000000000") 

1550 NS 

M13: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/CLK (value = '1') 
1551 NS — RAM write address 

M2: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/MA (value = "01000100100") 
1566 NS — RAM write signal 

M12: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/RW (value = '1') 
1581 NS 
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1596 NS 
M2: 

Mil: 

M68: EVENT /DES_SYS_TEST_BE1ICH/C0PR0C/C0P/REG_32  (value = 

("00000000000000000000000000000000","00000000000000000000000000000100", 
"00000000000000000000000000000010","00000000000000000000000000000011"! 

— next RAM partition addr 
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "00000000000000000000001000100101", 
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"."00000000000000000000000000000000"[ 

— LP's base_addr 

"00000000000000000000001000100000","XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")) 

EVENT /DES_SYS_TEST_BENCH/COPROC/COP/MA (value =  "ZZZZZZZ22ZZ") 
EVENT /DES_SYS_TEST_BENCH/COPROC/COP/IO (value =   '0') 

Figure 5.4 is a GPP logic diagram of the DES coprocessor write operation described 

above. The assertion of the read control line occurs after both data and the RAM memory 

address are stable, allowing the RAM to read and store the input arc identity for later 

retrieval. Storage was performed in consecutive RAM partition locations by incrementing 

the memory address between successive write operations. 

Tag No.  21(? 
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Tag No.  3 = 
3/C0PR0C/C0P/RW n 

Teg No.   13 « 
a/C0PR0C/COP/IO 

Tog No.   12 

-{ 0000(3000" 

Tag No.   235 ^ 
3C/NEri/P/M<551) = 
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nc/nEM/p/noso) 

Tag No.   233 

3C/NEN/P/M<548) A 
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-< 00Q   X^JT 
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XM 

U 

HCOPR0C/C0P/CLK ; 
Tag m.   14 1 

T i me Sc M I e 
       1 

Figure 5.4. DES Coprocessor Write to RAM Partition 

The sending of "null" messages to all output arcs was the final action of the Sim Jnit 

function. This operation was verified by monitoring the DES coprocessor/CPU interface 

to ensure complete messages, with accurate safe times, were routed through the CPU to 

each output arc. 

A sample of one portion (i.e., sending of the TO-LP field) of a typical "null" message 

send is reflected in the following test data excerpt.   The DES coprocessor asserted an 
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interrupt request to send the first of four "null" message fields (i.e., TCLLP, FROM.LP, 

Safe.Time, Null) at 3154 ns. The CPU, in turn, serviced the interrupt with a coprocessor 

read (i.e., LP 1 on node 1 at 3217 ns) which was terminated by the coprocessor asserting 

the READYO line low at 3247 ns. After receiving all required inputs, the CPU is able to 

build an output message and route it accordingly, via the interconnection circuitry of the 

Intel iPSC/2 hypercube. 

3154 NS 
M3 

M89 
3162 NS 

M83 
3172 NS 

H85 
M87 
N86 
M14 
H16 
M15 

3187 NS 
M5. 
M3: 
Ml: 

M89: 

3217 NS 
M95: 

3224 NS 
M83: 

3247 NS 
MS: 

M20: 

M90: 

— CPU interrupt request 
EVENT /DES_SYS_TEST_BENCH/COPROC/COP/INTR (value =   '1') 
EVENT /DES_SYS_TEST_BENCH/CPU/INTIN (value =   '1') 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   »1») 
— CPU acknowledge via control  signals 

EVENT /DES.SYS.TEST.BENCH/CPU/WROUT (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/CPU/A150UT (value =   '!') 
EVENT /DES_SYS_TEST_BENCH/CPU/M_IOOUT (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/WR (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/NPS2 (value =   '1') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/COP/NPSl  (value =   '0') 

— DES Coprocessor write 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/WTP (value =   '1') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/INTR (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATA0UT (value = 
"00000000000000010000000000000001")  ~ T0_LP 
EVENT /DES_SYS_TEST_BENCH/CPU/INTIN (value =   '0') 

EVENT /DES_SYS_TEST_BENCH/CPU/DATAIN (value = 
"00000000000000010000000000000001") 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '0') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/WTP  (value =   '0') 
— DES Coprocessor ends bus cycle 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/READY0 (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/CPU/RDYIN (value =   '0') 

5.3.3 Post Message Function The posting of an incoming message involved all com- 

ponents of the DES coprocessor design. The parallel I/O ports received the necessary 

operands from the CPU, while related LP data, stored during initialization, was held in 

the coprocessor's RAM, and the next event fist was maintained in the coprocessor's CAM. 

For testing, several messages, both "null" and real, were posted to each LP's next 

event list in the CAM. The CPU memory pointers used for testing were arbitrarily cho- 
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sen to monitor message field changes. Therefore, the memory pointers have no direct 

correspondence to actual memory addresses. Loading of the opcode instruction for this 

procedure, and all DES coprocessor simulation functions, is identical to that of the Sim Jnit 

instruction previously described. 

Operands for the Post-Msg function included the four fields of the message to post 

(i.e., TO_LP, FROM_LP, Time.Tag, and a memory pointer to the event). Therefore, four 

CPU bus write cycles were required to load the message fields. The last bus transfer cycle, 

containing the CPU memory pointer to the event, is shown below. 

9920 NS — CPU address strobe 
M93: EVENT /DES_SYS_TEST_BENCH/CPU/ASTROUT (value =   '1') 
M83: EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '0') 

9935 NS — DES Coprocessor read 
M4: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/RDP  (value =   '1') 

9955 NS — DES Coprocessor input 
M: EVENT /DES.SYS.TEST.BENCH/COPROC/COP/DATAIN (value = 

"11101011101011101011101011101011") 
9982 NS 

M83: EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '1') 
9987 NS — DES Coprocessor input buffer 

M72: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF_I0  (value = 
"11101011101011101011101011101011") 

9992 NS 

M68:    EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/REG_32 (value = 

— T0_LP — FROM.LP Node 3 & LP 1 (exit) 

("00000000000000000000000000000000","00000000000000110000000000000001", 
event Time_Tag — event memory pointer 

"00000000000000000000000000001111","11101011101011101011101011101011", 
— current data in remaining registers 

"00000000000000000000000000000000","00000000000000000000001000111110", 
"00000000000000110000000000000001","00000000000000110000000000000001"' 

"00000000000000000000001000111000^,"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")) 
9993 NS 

H72:    EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF_I0 (value = 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 
9997 NS 

M4:    EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/RDP (value = '0') 
10017 NS 

M:    EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATAIN (value = 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 
10044 NS 

M83 
M60 

H52 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value = '0') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/I0WAIT (value = '0') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/CPU_ID (value = FALSE) 
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10049 NS 

M20 

M90 

M94 

— DES Coprocessor ends bus cycle 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/READY0 (value 

EVENT /DES.SYS.TEST.BENCH/CPU/RDYIN (value = '0') 

EVENT /DES_SYS_TEST_BENCH/CPU/DATAOUT (value = 
"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 

'0') 

The DES coprocessor has read and buffered the fourth field of the message to post 

at 9987 ns. After transfer to a general purpose register, the complete message to post was 

contained in general purpose registers one through four as reflected in monitor M68. 

Prior to storing the event, the DES coprocessor compared the FROM.LP identity, 

in register two, with the input arc identities maintained in the RAM partition, to update 

the LP's arcs-in status. This was accomplished through a sequential read of the input arcs 

from the RAM partition, until a match was found. 

Reading of input LPs from RAM is shown below. The test data indicated that 

the second input arc, stored at RAM address 549io, was the sending LP for the received 

message. Monitor M68 at 10666 ns, reflects the TO-LP's arcs-in status in general purpose 

register six. The status was updated, by setting the second least significant bit, as a result 

of the input LP match. Following the arcs-in status update, the new arcs-in status was 

saved in the LP's RAM partition for later use with the Get_Event function. 

10601 NS 
Mil: 

10602 NS 
M83: 

10616 NS 
H2: 

VM0N5: 

10651 NS 
M72: 

10664 NS 
M83: 

10666 NS 
M64: 

M2: 

— DES Coprocessor 1/0 operation 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/I0  (value =   '1') 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '1') 
— RAM read address  (549) 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/MA (value =  "01000100101") 
— RAM data equals input arc ID 

READ /DES_SYS_TEST_BENCH/C0PR0C/MEM/P/M(549)   (value = 
"00000000000000110000000000000001") 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATAIN (value = 
"00000000000000110000000000000001") 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF_I0 (value = 
"00000000000000110000000000000001") 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '0') 
— RAM matches input_arc ID 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/MATCH (value = TRUE) 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/MA (value =  "ZZZZZZZZZZZ") 
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Mil: EVEl'T /DES_SYS_TESr_BENCH/COPROC/COP/IO (value =   '0') 
M68: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/REG_32  (value = 

("00000000000000000000000000000000"."00000000000000110000000000000001", 
"00000000000000000000000000001111","11101011101011101011101011101011"! 

— 2nd ARC_IN updated 
"00000000000000000000001000100000","00000000000000000000000000000010", 
"00000000000000000000000000000100","00000000000000100000000000000011"! 
"00000000000000000000000000000000","XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")) 

M: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATAIN  (value = 
"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 

10671 NS — DES Coprocessor ends RAM read 
M12: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/RW (value =   'Z') 

10686 NS 

Mil: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/I0 (value =   'I') 
10691 NS — update ARCS_IN_STATUS in LP RAM partition 

Ml: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATA0UT (value = 
"00000000000000000000000000000010") 

Posting of the message to the next event list involved three bus transfers to the CAM. 

During the first cycle the TO and FROM_LP fields of the event were sent to the CAM (see 

CAM fields in Figure 4.4). The event Time.Tag and pointer to CPU memory followed in 

subsequent doubleword bus transfer cycles. 

Test data verifying the third CAM write bus cycle is shown below. The event memory 

pointer from register four was written to the CAM and appended to the to the previous 

data to complete the next event. 

11001 NS — Event memr.ptr assigned by CPU 
M72: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF„I0  (value = 

"11101011101011101011101011101011") 
11016 NS — DES Coprocessor data_bus 

Ml: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATA0UT (value = 
"11101011101011101011101011101011") 

11031 NS — CAM write signal 
MS: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/WTC (value =   '1') 

— NOT get_next_event 
M9: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/NE (value =   '0') 

VM0N15: READ/DES_SYS_TEST_BENCH/C0PR0C/CAM/CAM_PR0C/EVENT(1)   (value = 
"10000001100001 — T0/FR0M_LP 
00000000000000000000000000001111 -- Time Tag 
11101011101011101011101011101011") — Memr.Ptr 

The most significant bit of the posted event in the CAM was set to indicate a valid 

event. The posted event represents a feedback message from the carwash exit (i.e., node 3 
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LP 1 from Figure 3.4), scheduled for the simulation time of 15 units. The event memory 

pointer indicates the event data structure is stored in CPU main memory at address 

EBAEBAEBh. 

After posting the new event to the next event list, the CAM returned a free-space 

status to the DBS coprocessor. The DES coprocessor maintains the CAM free-space status 

in the FLAGS register, bit (0), which is read to determine if CAM overflow has occurred. 

5.3.4 Get Next Event Function The Get.JEvent function was verified by monitoring 

the DES coprocessor's use of the requested LP's arcs Jn.status register and ensuring the 

proper action (i.e., wait message or retrieval of next event) was taken. To verify the proper 

next event was provided, the contents of the CAM were checked both before and after 

event retrieval. 

The time advance of the LP's simulation clock was also verified during this portion 

of system testing by ensuring the LP's simulation clock was updated with the next event 

ti ne. Additionally, the sending of "null" messages to all output arcs, which is required 

when the next scheduled event contains a "null" memory pointer, was verified. 

The DES coprocessor's execution of the Get-Event instruction requires additional 

operands (i.e., arcsin-status and simulation time) which were read from the LP's RAM 

partition. Below is test data that verifies the RAM partition was accessed to retrieve the 

necessary LP data for Get_Event execution. 

The LP requesting the next event was provided by the CPU along with the opcode 

instruction and was maintained in general purpose register one. Using the LP number as an 

index, the DES coprocessor accessed the proper RAM partition, via the partition pointer 

table. The contents of four RAM addresses, starting with the partition base address, were 

read and used to update registers three through six with the essential LP data (i.e., arcs-in 

status, LP-Delay, number of input/output arcs, and Simulation-Time). 

An excerpt of the system test results below, show the coprocessor reading the LP's 

simulation time from the RAM partition (i.e., memory address 547io) and updating the 

general purpose registers. The contents of register three indicated that all input arcs (i.e., 
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two for LP 0 on node 0) have posted messages; therefore, the next event for LP 0 may be 

retrieved from CAM memory. 

— LP 0 executing Get_Event 

16978 NS — RAM address of LP simulation time 

M2:    EVENT /DES_SYS_TEST„BENCH/COPROC/COP/MA (value = "01000100011") 

VM0N3:     READ /DES_SYS_TEST_BENCH/C0PR0C/MEM/P/M(547) (value = 

"00000000000000000000000000000000") 

Mr    EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATAIN (value = 

"00000000000000000000000000000000")     ~ LP simulation time 
16988 NS 

M83:    EVENT /DES..?'iS_TEST_BENCH/CPU/CLOCK (value = '0') 
17013 IS 

M72:    EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF..ID (value = 

"00000000000000000000000000000000") 
17018 NS 

M58r    EVENT /DES_SYS_TE£T_BEriCH/CÜPROC/C0P/REG_32 (value = 
Lp 0 -- RAM partition base.addr (544) 

("00000000000000000000000000000000","OOOC00000000000000000010C0100000", 
-- ARCS_IN_STATUS register ~ LP delay (4) 

"OOC00000000000000000000000000011","00000000000000000000000000000100", 
— #  input I # output arcs        — LP simulation time 

"OOOOOOOOOnOOOOlOOOOOOOOOOOOOOOll","00000000000000000000000000000000", 

"00000000000000000000000000000100". "00000000000000100000000000000011",' 
"OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO","XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")) 

17028 NS 

M2:    EVENT /DES_SYS_TEST_BENCH/COPROC/COP/MA (value = "ZZZZZZZZZZZ") 

Mil:    EVENT /PES_SYS_TEST_BENCH/COPROC/COP/IO (value = '0') 

M:    EVENT /DES_SYS_TEST_BENCH/COPROC/COP/DATAIN (value = 
"zzzzzzzzzmzzzzzzzzzzzzzzzzzzzz") 

The DES copwcessor then retrieved the next even^ from the CAM, via a CAM read 

cycle; however, the CAM was first given the identity if the requesting LP to perform a 

search for the earliest sehcualed event for that LP. 

The system test data i^iat verifies a mxi. cvsnt read from CAM is shown below. 

Initially, the CAM was given tls* identity of the LP requesting the next event. The 'NE' 

control line alerted the CAM that a nt v event request was initiated, vice appending a new 

event to the next event list. 

The contents of the CAM were checked, via monitors 15 through 17, which indicated 

three valid events, two of which were for LP 0. At time 17113 ns, the CAM selected the 

next event for LP 0 by toggling the valid bit of the third event in the CAM. The first CAM 
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event (i.e., VM0N15) is also scheduled for LP 0; however, the scheduled time of 15 units 

occurs later than the selected next event which is scheduled for 10 units. 

17093 NS 
Ml: 

17108 NS 
M8 
M9 

VM0N15 

VM0N16: 

VM0N17: 

17112 NS 
M83: 

17113 NS 
VM0N15: 

VM0N16: 

VM0N17; 

— LP 0 executing Get_Event 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATA0UT (value = 
"00000000000000000000000000000000") 

— LP 0 requesting next_event 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/WTC (value =   '1') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/NE (value =   '1') 
READ/DES_SYS_TEST_BENCH/C0PR0C/CAM/CAM_PR0C/EVENT(1) 
(value = "10000001100001 ~ T0/FR0M_LP 
00000000000000000000000000001111 — Time.Tag 
11101011101011101011101011101011") — Memr.Ptr 
READ/DES_SYS_TEST_BENCH/C0PR0C/CAM/CAM_PR0C/EVENT(2) 
(value = "10000100000000 — T0/FR0M_LP 
00000000000000000000000000010100 — Time.Tag 
11001100110011001100110011001100") ~ Memr.Ptr 
READ/DES_SYS_TEST_BENCH/C0PR0C/CAM/CAM_PR0C/EVENT(3) 
(value = "10000000000000 — T0/FR0M_LP 
00000000000000000000000000001010 — Time_Tag 
11110011110011110011110011110000") — Memr.Ptr 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '0') 

READ/DES_SYS_TEST_BENCH/C0PR0C/CAM/CAM_PR0C/EVENT(1) 
(value =  "10000001100001 
00000000000000000000000000001111 
11101011101011101011101011101011") 
READ/DES_SYS_TEST_BENCH/C0PR0C/CAM/CAM_PR0C/EVENT(2) 
(value =  "10000100000000 
00000000000000000000000000010100 
11001100110011001100110011001100") 
READ/DES_SYS_TEST_BENCH/C0PR0C/CAM/CAM_PR0C/EVENT(3) 
(value =  "00000000000000 ^ — toggle "valid1, bit 
00000000000000000000000000001010 
11110011110011110011110011110000") 

The CAM event, which consists of 77 bits, was then parsed into th.-«^ :,i'gm»Ms a '. 

sent to the DES coprocessor for submission to the CPU. The vimt sifrak.s'aal bit ■ . • 

first segment (i.e., TO/FROM-LP identities) is used by th* CAM KomWl th»J additioiiaJ 

events, received from the same LP, still remain in the CAM. Si.-ve po adcli*i0aal eve, 

from the same LP, remain in the CAM, this bit h not set which ale;»,, ihr UES coprocessor 

to update the arcs-in status register of the requesting LP. 
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17168 NS 

H7 

M9 

M8 

M: 

17174 NS 

M83: 

17223 NS 

M68: 

(' 

17233 NS 

M7: 

M: 

17236 NS 

M83: 

17248 NS 

M7: 

M: 

17298 NS 

M72: 

M33: 

17303 NS 

H68: 

( 

17313 NS 

M7; 

H: 

17328 NS 

M7: 

M: 

17360 NS 

M83: 

17378 NS 

M72: 

— CAM read signal 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/RDC (value = '1') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/NE (value = 'Z') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/WTC (value = '0') 

— event T0/FR0M_LP (source generates car) 

EVENT /DES_SYS_TEST_BENCH/COPROC/COP/DATAIN (value = 
"00000000000000000000000000000000") 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value = '1') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/REG_32 (value = 

"00000000000000000000000000000000","00000000000000000000001000100000", 

"00000000000000000000000000000011","00000000000000000000000000000100", 

"00000000000000100000000000000011","00000000000000000000000000000000", 
— event to/from_lp 

"OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'V'OOOOOOOOOOOOOOlOOOOOOOOOOOOOOOll", 

"00000000000000000000000000000000"."XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")) 

EVENT /DES_SYS_TEST_BENCH/COPROC/COP/RDC (value = '0') 

EVENT /DES_SYS_TEST_BENCH/COPROC/COP/DATAIN (value = 
"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value = '0') 

EVENT /DES_3YS_TEST_BENCH/C0PR0C/C0P/RDC (value = '1') 

EVENT /DES_SYS_TEST_BENCH/CUPROC/COP/DATAIN (value - 
"00000000000000000000000000001010") 

EVENT /DES_SYS_TEST_BENCH/COPROC/COP/BUFF_IO (value = 

"00000000000000000000000000001010") ~ event Time_Tag 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value = '1') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/REG_32 (value = 

"00000000000000000000000000000000","00000000000000000000001000100000", 

"00000000000000000000000000000011","00000000000000000000000000000100", 

"00000000000000100000000000000011"."00000000000000000000000000000000", 
— event to/from_lp — event time.tag 

"00000000000000000000000000000000","00000000000000000000000000001010", 

"00000000000000000000000000000000","XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")) 

EVENT /DES_SYS_TEST_BENCH/COPROC/COP/RDC (value = '0') 

EVENT /DES_SYS_TEST_BENCH/COPROC/COP/DATAIN (value = 
"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 

EVENT /DES_SYS_TEST_BENCH/COPROC/COP/RDC (value = '1') 

EVENT /DES_SYS_TEST_BENCH/COPROC/COP/DATAIN (value = 

"11110011110011110011110011110000") 

EVENT /DES_SYS_TEST_BENCH/CPU/CLDCK (value = '0') 

— Event memory pointer assigned by CPU 

EVENT /DES_SYS_TEST_BENCH/COPROC/COP/BUFF_IO (value = 
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"11110011110011110011110011110000") 
17383 NS 

M68: EVENT /DES_SYS_TEST_BElfCH/C0PR0C/C0P/REG_32 (value = 
("00000000000000000000000000000000","00000000000000000000001000100000", 
"00000000000000000000000000000011","00000000000000000000000000000100", 
"00000000000000100000000000000011","00000000000000000000000000000000", 

— event to/from_lp — event time_tag 
"00000000000000000000000000000000","00000000000000000000000000001010", 

— event memr„ptr 

"11110011110011110011110011110000","XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")) 

Updating of the arcs-in status register was accomplished by a sequential read of the 

input arc identities from RAM and searching for the LP that provided the next event. At 

17393 ns, general register 10 has been loaded with the next event's input LP identity. This 

was extracted from the first event segment sent by the CAM, and was used as a reference 

for the LP identities read from RAM. 

17393 NS 
M7: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/RDC  (value =   '0') 

H: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATAIN (value = 
"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 

M68: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/REG_32  (value = 
("00000000000000000000000000000000","00000000000000000000001000100000", 
"00000000000000000000000000000011","00000000000000000000000000000100", 
"00000000000000100000000000000011","00000000000000000000000000000000", 

— event to/lrora_lp — event time_tag 
"00000000000000000000000000000000","00000000000000000000000000001010", 

— event memr_ptr — next  event  input LP 
"11110011110011110011110011110000","00000000000000000000000000000000")) 

17422 NS 
M83: EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '1') 

5.5.5 Post Event Function The Post-Event function was verified by checking that 

the DES coprocessor received the event to post from the CPU and combined the simulation 

time with the inherent LP delay to schedule the event's occurrence. To verify posting of 

the event, the CPU/DES coprocessor interface was monitored to ensure that all output 

arcs received a message. The designated TO-LP was verified to receive the event message 

while all other LPs received a "null" message (i.e., memory pointer to event was 0). 

Similar to all other DES functions, the opcode instruction and primary operands 

were received from the CPU. The primary operands for the PostJEvent instruction were 
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the FROM-LP (i.e., the LP to post the event), a pointer to the event data structure in CPU 

memory, and the TO_LP (i.e., designated LP to receive the event). After receipt, these 

operands were stored in the first three general purpose registers by the DES coprocessor. 

The additional operands for the PostJEvent function (i.e., LP_DELAY, number of 

input/output arcs, and the LP's simulation time) were read from RAM, which was refer- 

enced by the partition pointer corresponding to the LP posting the event, and leaded in 

registers five through seven. 

Test data verifying the DES coprocessor's implementation of the required register 

loading for the Post_Event function are shown below. Monitor, M68, at 23890 ns, reflects 

the DES coprocessor's registers loaded with the CPU provided operands and the additional 

operands fetched from LP 0's RAM partition. At time 23895 ns, the sum of registers five 

and seven (i.e., LP_DELAY and simulation time) was stored in register eight. This sum 

is the new simulation time which was updated to account for the occurrence of the next 

event and will be used to time tag the output messages. 

23855 NS — RAM address with LP simulation time 
M2: EVENT /DES_SYS_TEST_BENCH/COPROC/COP/MA (value =  "01000100011") 

VM0N3: READ /DES_SYS_TEST_BENCH/C0PR0C/KEM/P/M(547)   (value s 
"00000000000000000000000000001010") 

M: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATAIN  (value  = 
"00000000000000000000000000001010") — LP simulation time 

23870 NS 
M83: EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '1') 

23890 NS 
M72: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF_I0 (value = 

"00000000000000000000000000001010") 
M68: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/REG_32 (value = 

— LP to post event — memr_ptr to event 
("00000000000000000000000000000000","01110111011101110111011101110111", 
"00000000000000010000000000000001"."00000000000000000000001000100000", 

— LP delay — # of  input   I   # output  arcs 
"00000000000000000000000000000100","00000000000000100000000000000011", 

— LP simulation time 
"00000000000000000000000000001010","00000000000000000000000000001010", 
"11110011110011110011110011110000","00000000000000000000000000000000")) 

23895 NS 
M68: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/REG_32  (value = 

("OOOOOOOOOC/'OOOOOOOOOOOOOOOOOOOOO","01110111011101110111011101110111", 
"00000000000000010000000000000001","00000000000000000000001000100000", 
"00000000000000000000000000000100"."00000J00000000100000000000000011" 
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— post event time_tag 
"00000000000000000000000000001010"."00000000000000000000000000001110", 
"11110011110011110011110011110000","00OOOOOO0OOOOOOOOC0OOO0O0OOOOOOO")) 

Sending messages was performed by the DES coprocessor reading each of the IP's 

output arc identities from RAM and building the output message (i.e., "null" or event) 

by comparing with the designated receiving LP's identity held in register three. The test 

data below shows the output arc, read from RAM, that matches the designated receiving 

LP identity in register three. The LP identity read from RAM is loaded into register nine. 

If it does not match the identity of the LP to receive the event, a null message is sent to 

this output arc. 

24105 NS — RAM address of output.arc 
M2: EVENT /DES_SYS_TEST_BENCH/COPROC/COP/MA (value »  "01000101000") 

— output LP (node 1.  LP 1) 
VM0N8: READ /DES_SYS_TEST_BENCH/C0PR0C/MEM/P/M(552)   (value = 

"00000000000000010000000000000001") 
M: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATAIN  (value = 

"00000000000000010000000000000001") 
24118 NS 

M83: EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '1') 
24140 NS 

M72: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF_I0  (value = 
"00000000000000010000000000000001") 

24145 NS 

M68: EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/REG_32  (value = 
("00000000000000000000000000000000"."01110111011101110111011101110111", 

— T0_LP for message 
"00000000000000010000000000000001"."00000000000000000000001000100000", 
"00000000000000000000000000000100","00000000000000100000000000000011". 
"00000000000000000000000000001010". "00000000000000000000000000001110".' 
"00000000000000010000000000000001"."00000000000000000000000000000000")) 

Both event and "null" messages are composed of four fields. The CPU/DES copro- 

cessor interface activity is similar for both "null" and real messages; the only difference 

being the message's memory pointer, which is set to zero for "null" messages. System 

test data, verifying the required interface to send an event message is shown below. The 

test data verifies a CPU read of the first field (i.e., TO-LP) of the output message. The 

CPU read cycle was initiated by an interrupt request (i.e., INTR = '1') from the DES 

coprocessor and also terminated by the DES coprocessor by asserting the ready line low at 
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24313 ns. The remaining message fields in the DES coprocessor registers were subsequently 

transferred to the CPU, where the message is packaged and routed over the hypercube's 

interconnection circuitry. 

24215 NS 

M3 
M89 

24238 NS 

N85 

M87 

M86 

M14 

M16 

MIS 

24242 NS 

M83: 

242S3 NS 

MS: 
M3; 

Ml: 

M89: 

24283 NS 

M95: 

24304 NS 

M83: 

24313 NS 

MS: 

M20: 
M90: 
M72: 

— CPU interrupt request 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/INTR (value =   '1') 
EVENT /DES_SYS_TEST_BENCH/CPU/INTIN (value =   '1') 

— CPU acknowledges with control lines 
EVENT /DES_SYS_TEST_BENCH/CPU/WROUT (value =   '0') 
EVENT /DES_Sys_TEST_BENCH/CPU/A150UT (value =   '1') 
EVENT /DES_SYS_TEST_BENCH/CPU/M_IOOUT (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/WR (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/NPS2 (value  =   '1') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/NPS1  (value =   '0') 

EVENT /DES_SYS_TEST_BENCH/CPU/CLOCK (value =   '1') 
— DES begins write 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/WTP  (value =   '1') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/INTR (value  =   '0') 

— T0_LP lor message 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/DATA0UT (value = 
"00000000000000010000000000000001") 
EVENT /DES_SYS_TEST_BENCH/CPU/INTIN (value =   '0') 

EVENT /DES_SYS_TEST_BENCH/CPU/DATAIN (value = 
"00000000000000010000000000000001") 

EVENT /DES_SYS_TEST_BENCH/CPU/CLDCK (value =   '0') 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/WTP (value =   '0') 
— DES Coprocessor ends bus  cycle 

EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/READY0  (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/CPU/RDYIN (value =   '0') 
EVENT /DES_SYS_TEST_BENCH/C0PR0C/C0P/BUFF_I0 (value = 
"00000000000000000000000000000000") 

The DES coprocessor relies on the CPU for access to the interconnection circuitry 

of the iPSC/2 hypercube, hence an interrupt request (i.e., INTR = '!') was used to route 

the message fields to the CPU for message output. The CPU/DES coprocessor interface 

signals, shown in Figure 5.5, provided the control needed to transfer message fields between 

the DES coprocessor and the CPU. The individual bus transfer cycles were asynchronously 

regulated via the interrupt request and ready lines from the DES coprocessor. 
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Figure 5.5. CPU/DES Interface Signals for Post-Event Output 

5-4    DES Coprocessor System Performance 

Implementation of the general DES algorithm was done through the VHDL behav- 

ioral description of the DES coprocessor system. In addition to verifying the algorithm's 

operation, an overall timing analysis was made, using the Zycad VHDL system and the 

associated general purpose post processor. 

Timing data was collected during testbench simulation of the DES coprocessor sys- 

tem. Using this data, the average execution times of the primary DES functions and the 

CPU/DES coprocessor bus transfer cycle times were obtained. 

Table 5.1 is a summary of DES coprocessor system execution times. Timing data 

used to compile this table was gathered from testbench simulations of the DES coprocessor 

system supporting two logical processes per computing node. 

Thf significant variance in execution times of several DES functions is evident, but 

not unexpected. The average execution times for the DES functions will vary, depending 

on the LP configuration of the simulation. 

The large variance in execution times for the SimJnit and Post _Event functions is at- 

tributed to the difference in number of output arcs associated with the two executing LPs. 

The conservative synchronization protocol requires a message transmission, to each out- 
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Table 5.1. Function Execution Times for DES Coprocessor System 

DES 
Function 

Time (ns) 
min max M a 

SimJnit 1118 2468 1793 675.0 
Post_Msg 962 1060 996 38.0 
Get-Event 1355 1355 1355 0.0 
Post-Event 1113 2313 1713 600.0 
CPUJO 201 325 212 29.8 
Intr.CPU 93 105 103 3.4 
Serd.CPU 65 65 65 0.0 

put arc of the LP, every time these functions are executed. Since the two logical processes 

analyzed (i.e., node 0 Oi Figure 3.4) have one and three output arcs respectively, a con- 

siderable difference in execution times was expected for functions requiring comprehensive 

communications to output arcs. 

The variance in execution time for the Post-Msg function is also a function of the 

simulation's LP configuration. Unlike the SimJnit and Post-Event functions, the variance 

in Post-Msg execution times is related to the number of input arcs passing messages to 

the LP. The sequential reading of RAM, to update the arcs-in status during execution of 

the Post_Msg function, has a variable execution time. Given n input arcs to an LP, the 

Post-Msg function will require 0(n/2) time, on average, to match the input LP, using a 

sequential read of RAM. The LPs simulated have one and two inputs faspectively hence, 

the variance in Post-Msg execution time is attributed to the difference in average RAM 

read times required to update the LP's input arcs status. 

The variance in CPU bus cycle transfers, reflected in the CPUJO function, are a 

function of RAM access by the DES coprocessor and a limitation of the testbench design. 

The DES coprocessor requires one-half clock cycle, at test startup, prior to a transition 

to the CPUJO state. The significance of this idle time diminishes as the number of CPU 

writes increases. 

The RAM access time affects average CPUJO execution time when operands for 

the SimJnit function are writter to the DES coprocessor. The limited number of general 
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purpose registers available to the DES coprocessor, requires RAM storage of a portion of the 

SimJnit operands. The inclusion of RAM write cycles, particularly the initial write, which 

involves a read of the partition pointer table, has a significant impact on average CPU JO 

time. The effect of RAM write cycles is also diminished as the simulation execution time 

is increased, since the only function requiring RAM access is SimJnit, which is executed 

only once per simulation for each LP. 

Average bus transfer cycle times, between the CPU and DES coprocessor, comply 

with the two clock cycle standard of the Intel 80386 (19:5-353). However, strict compliance 

to this standard is not required with an asynchronous interface, as the CPU inserts wait 

states, when needed, to complete longer bus cycles. 
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VI.   Results and Recommendations 

6.1    Introduction 

A general distributed Discrete Event Simulation (DES) was analyzed to determine 

the system requirements for a hardware accelerator. A two-phased approach was used 

in this effort. Initially, a generic DES, represented by a carwash model was analyzed 

to determine algorithm bottlenecks that exhibited a potential for acceleration through a 

hardware implementation. 

A behavioral description of a hardware coprocessor, implementing the general DES 

functions, was then specified using the IEEE standard VHSIC Hardware Description Lan- 

guage (VHDL). The coprocessor behavioral description was then simulated using a test- 

bench representation of the carwash model. 

The results of this effort are summarized in this chapter. Additionally, specific topics 

and related issues that merit further consideration are presented. 

fi.2    Summary of Findings 

Test data collected from simulations of the carwash model, executed on the eight node 

Intel iPSC/2 hypercube, led to results that are not surprising. The most time consuming 

portions of this general DES algorithm are those requiring communications support in the 

distributed hypercube architecture. 

The conservative time synchronization protocol, used in distributed computing ar- 

chitectures, requires a signific?at amount of message passing, with its associated com- 

munications overhead, to ensure simulation progress and deadlock avoidance. The basic 

functions of a distributed Discrete Event Simulation (DES) algorithm were implemented 

with the SPECTRUM simulation testbed. These basic functions (i.e., initialization, post- 

message, get-event, advance-time, and post-event) were found to require varying degrees 

of communications support. 

The communication requirements were of two types: sending and receiving messages. 

In both cases, the required communications resulted in significant time spent waiting to 
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complete the communications operation. During this waiting time, the processor remained 

idle and minimal progress, toward simulation completion was accomplished. 

Acceleration of general DES simulations is possible by eliminating this processor idle 

time. One approach to freeing the processor from idle wait time is to implement the basic 

discrete event simulation functions in a separate coprocessor. Ideally, this will allow the 

processor to focus on computational activity, with little idle time, while the coprocessor 

executes the basic simulation functions. 

Assuming such a coprocessor is possible and a sufficient workload is available to keep 

the processor active, the potential for speedup was calculated. A factor of four speedup 

is possible when a single logical process is executed on each processing node, while the 

speed-up potential for two logical processes per node approaches twenty. Both estimates 

assume ideal coprocessor support in that the processor is relieved of all communications 

idle time associated with the discrete event simulation execution. 

The behavioral description of a DES coprocessor was presented. A state machine 

representation, using a conventional von Neumann architecture, was used to define the 

system requirements for the design of this discrete event simulation coprocessor. 

The coprocessor architecture employs a set of general purpose working registers, 

a local random access memory for operand and code storage, and a content addressable 

memory for next event list management. The DES coprocessor system was designed with a 

32-bit architecture to provide direct compatibility with proven microprocessor technology. 

Simulations of the DES coprocessor behavioral description verified the implementa- 

tion of the basic DES algorithm functions and confirmed the compatibility with the Intel 

80386 32-bit microprocessor. Low-level interfacing with the communications circuitry of 

the Intel :PSC/2 hypercube was not included in this behavioral description as proprietary 

restrictions limited access to the operation of this hardware. 

The importance of simulating physical systems continues to increase in many fields. 

The size and complexity of the simulation models employed is also increasing, making 

the need for improved techniques for executing these simulations paramount. The use 

of a discrete event simulation coprocessor, has potential for overcoming the problem of 
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Communications overhead and accelerating the execution of discrete event simulations, in 

a distributed hypercube architecture. 

6.3   Recommendations 

Several issues concerning the design and implementation of a discrete event simula- 

tion accelerator were discovered during the course of this effort. Consideration should be 

given to the further investigation of these issues to determine their merit and potential for 

enhancing the current coprocessor design. 

6.3.1 CAM Storage As designed the coprocessor relies on the superior memory 

management capability of the Intel 80386 processor for actual event storage. Hence, the 

coprocessor is forced to maintain a 32-bit pointer to the address in physical memory where 

the event and associated data structures are maintained. 

The maintenance of this 32-bit pointer in CAM memory is unnecessary as it pro- 

vides no information the CAM can utilize in searching for the next scheduled event. The 

potential to double the CAM storage capacity exists, if this physical memory pointer can 

be maintained outside the CAM and still bi associated with the next event search fields. 

6.3.2 CAM Overflow The issue of potential CAM overflow and a mechanism to 

handle such an event was not thoroughly addressed by this thesis. Eventually, the limited 

CAM capacity will be reached and exceeded as simulations get larger and more events are 

generated. 

The use of multiple CAMs in tandem or a hierarchical structure of multiple CAMs 

could be employed to delay this eventual overflow. However, the time required to swap 

in previously overflowed events from main memory, and the best swap in paradigm (i.e., 

number of events/block size) requires further consideration. 

6.3.3 Input Message Status Knowledge of which input arcs have satisfied the mes- 

sage received requirement is paramount to implementing the Chandy-Misra conservative 

synchronization protocol. Tiie design requirements specify a sequential search algorithm, 

for the receiving logical process, to update an input arcs status register. 
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For a small number of input arcs (e.g., 10 was assumed for the design) this technique 

is sufficient. However, as the number of arcs is increased, the time spent updating this 

necessary status register may be unacceptable. The possibility of using a second CAM, or 

a portion of the next event CAM, to update the input arc status has potential for further 

acceleration as the number of input channels is increased. 

6.3.4 Interface to CPU Communications Hardware Incorporation of the direct con- 

nect module in the iPSC/2 represents a major improvement in the hypercube's message 

passing efficiency. However, the DES coprocessor design must rely on the CPU to ac- 

cess the DCM module to send and receive messages. In both cases this involves either 

interrupting the current process or delaying the next process' activation. 

Access to DCM hardware documentation was not available, yet the potential for 

even greater simulation acceleration is present by allowing the DES coprocessor to access 

the DCM directly. A direct coprocessor to DCM interface would eliminate CPU delays in 

routing the event and null messages of the simulation and deserves further consideration. 
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opendix A.   DES System Packages 

The appendices that follow provide the source code listings of the VHDL files that 

comprise the DES coprocessor system design and testbench. This first appendix contains 

the system packages which define the types, subtypes, constants, and functions required 

by the remaining files to implement the DES coprocessor design. 
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A.l    Bus Resolution Package 

This following appendix presents the bus resolution function used in the DES copro- 

cessor design. The source code listing is taken from the Zycad VHDL Reference Manual 

(32:10-17,18), and tailored for this application. The Bus-sys package provides the r 'que 

bus type (i.e., sys.bus) used to define the DES coprocessor and the necessary resolution 

function, in terms of the Zycad defined multi-valued logic, to avoid bus conflicts. Ad- 

ditionally, type conversion functions, allowing MVL7.Vector-to-Sys_bus and Sys.bus-to- 

MVL7_Vector is provided. 
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— FILE:  bus_sys.vhd 

— AUTHOR:  Paul J. Taylor 

— PURPOSE: Package for declaring types, subtypes, and 

functions necessary to provide bus resolution 

for the DES coprocessor system. 

~ REFERENCE: Zycad Reference Manual pp. 10-17.18; 10-78..84 

library ZYCAD; 

library DESIGN; 

use ZYCAD.ATTRIBUTES.all; 

use ZYCAD.TYPES.all; 

use ZYCAD.BV_ARITHMETIC.all; 

use WORK.all; 

package Bus_sys is 

 BUS RESOLUTION TYPES ft FUNCTIONS  

type SYS.BUS is array (INTEGER range <>) of MVL7; 

function BUS_FUNC(INPUT : SYS.BUS) return MVL7; 
subtype BUS.BIT is BUS_FUNC MVL7; 

type BUS.TYPE is array (INTEGER range <>) of BUS.BIT; 

 BUS RESOLUTION with ZYCAD  

— truth table for "BUS.FUNC" function 

constant tbl_BUS_FUNC: MVL7_TABLE := 

I  X H I 

(('X'. 'X'. 'X'. 'X', 'X'. 
('X'. '0', 'X' 

('X', 'X', '1' 

('X'. '0'. '1' 

('X', 'O', '1' 

Cx', 'O', 'i' 
('X', '0', '1' 

»o» 
'1' 
'Z' 

'W, 

'L', 

'H', 

'0' 

•1' 

'W 

'W 

'W 

'W 

'X' 

'0' 

'1' 

'L' 

'W 

'L' 

'W 

'X'), 

'0'), 

'1'), 

'H'), 

'W'), 

'WO, 
•H')); 

function BUS_FUNC(INPUT: MVL7_VECT0R) return MVL7; 

attribute REFLEXIVE of BUS.FUNC: function is TRUE; 

attribute RESULT_INITIAL_VALUE of BUS.FUNC: function is MVL7'P0S('Z'); 

attribute TABLE_NAME of BUS.FUNC: function is "BUS_SYS.tbl_BUS_FUNC"; 

subtype BUS.BIT is BUS.FUNC MVL7; 

type SYS.BUS is array (NATURAL range <>) of BUS.BIT; 

 TYPE CONVERSION FUNCTIONS  

function CHANGE(INPUT : MVL7_VECT0R) return SYS.BUS; 

function CHANGE(INPUT : SYS.BUS) return MVL7_VECT0R; 

attribute CLOSELY_RELATED_TCF of CHANGE: function is TRUE; 

ZYCAD drives overloaded 

ZYCAD drives overloaded 

ZYCAD drive attribute 

end Bus.sys; 
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package body Bus_sys is 

-- BUS.FUNC 

— Purpose: Resolution function for MVL7 signals. Used 
with the DATA_BUS for multiple driver processes. 
Zycad versi-  (WiredX) from VHDL reference manual 
(10-84) 

function BUS.FUNC(INPUT : MVL7_VECT0R) return MVL7 is 

variable RESOLVED : HVL7 := 'Z'; 

begin 

for i in INPUT'range loop 

RESOLVED := tbl_BUS_FUNC(RESOLVED. INPUT(i)); 
end loop; 
return RESOLVED; 

end BUS.FUNC; 

conversion functions for driving various types 

function CHANGE (INPUT:SYS_BUS) return MVL7_VECT0R is 
begin 

return MVL7_VECT0R(INPUT); 
end CHANGE; 

function CHANGE (INPUT: MVL7_VECT0R) return SYS.BUS is 
begin 

return SYS.BUS(INPUT); 
end CHANGE; 

eM Bus_sys; 
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A.2   DES Coprocessor System Package 

This appendix contains the system package containing the necessary type and con- 

stant declarations for the DES coprocesbor design. The generic time delays used in the 

DES VHDL behavior pre defined in this package. Functions that provide type coversion 

operations and bit vector manipulation required by the DES coprocessor behavior are 

included in this package. 
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— FILE: system.vhd 

— AUTHOR: Paul J. Taylor 

— PURPOSE: Package for encapsulating types and constants 

for the DES Coprocessor Design. 

library ZYCAD; 

library DESIGN; 

use ZYCAD.ATTRIBUTES.all; 

use ZYCAD.TYPES.all; 

use ZYCAD.BV.ARITHMETIC.all; 
use WORK.all; 

use WORK.BUS.SYS.all; 

package System is 

-CONSTANT TIME DELAYS- 
constant 

constant 

constant 

constant 

constant 

constant 

constant 

constant 

constant 

constant 

ODEL 

RDEL 

WDEL 

ALUDEL 

MADEL 

PER 

DISDEL 

GDEL 

FFDEL 

BUFDEL 

TIME 

TIME 

TIME 

TIME 

TIME 

TIME 

TIME 

TIME 

TIME 

TIME 

:= 15 ns; 

:= 60 ns; 

:= 60 ns; 

:= 60 ns; 

:= 30 ns; 

:= 125 ns; 

:= 20 ns; 

:= 5 ns; 

:= 5 ns; 

:= 10 ns; 

DES output delay 

RAM/DES read delay 

DES write delay 

ALU function delay (PER/2) 

DES memr access delay 

clock period (16 MHz) 

RAM disable delay 

Parallel 1/0 gate delay 

Parallel I/O F-F delay 

Parallel I/O buffer delay 

-MISC CONSTANTS- 
constant IRsize 

constant MAsize 

constant Ndata 

constant Naddr 

constant N 

POSITIVE 

POSITIVE 

POSITIVE 

POSITIVE 

POSITIVE 

:= 32; 

:= 11; 

= 32; 

= 11; 

= 32; 

Bits in Instr Reg 

Bits in RAM address 
RAM Data bus size 

RAM Addr bus size 

Parallel I/O port size 

 SUBTYPES FOP, BIT_VECTORS- 

subtype DWORD is SYS_BUS(31 downto 0); 

subtype ADDR is MVL7_VECT0R(31 downto 0); 

subtype M_ADD is MVL7_VECT0R(10 downto 0); 

— resolved data_bus 

— 4K RAM (4 byte/Addr) 

 GENERAL PURPOSE REGISTERS  

type REG32 is array (NATURAL range <>) of DWORD; -- GP (32 bit) registers 

 MISC FUNCTIONS  

function DWORD_to_MADD(DBL: DWORD) return M_ADD; 

function JCIN_DWORDS(HI, LO: DWORD) return DWORD; 

function MAP_FIELDS(TO_LP, FROM.LP: DWORD) return DWORD; 
function HI_LO_ADD(DBL_WORD :DWDRD) return DWORD; 

end System; 
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package body System is 

DWORD_to_MADD 

— Purpose: Converts (32) bit DWORD to (MAsize) bit 
RAM memory address (32 bit -> 11 bit) 

function DWORD_to_MADD(DBL: DWORD) return M_ADD is 

variable ADDRESS : M_ADD; 

betjin 
for I in MAsize-1 downto 0 loop 

if DBL(I) = '0' then 
ADDRESS(I) := '0'; 

elsif DBL(I) = '1' then 
ADDRESS(I) := »1»; 

else ADDRESS(I) := '1'; 
end if; 

assert (DBL(I) = '0' or DBL(I) = '1') 
report "Invalid Memory Address"; 

end loop; 
return ADDRESS; 

end DWORD_to_MADD; 

~ JOIN.DWORDS 

— Purpose: joins "hi" WORD (1st DWORD) with "lo" 
WORD (2nd DWORD) for return DWORD 

function JOIN.DWORDS(HI, LO: DWORD) return DWORD is 

variable JOINED : DWORD; 

begin 
for I in 31 downto HI'LENGTH/2 loop 

if HI(I - (HI'LENGTH/2)) = '0' then 
JOINED(I) := '0'; 

tlsif HI(I - (HI'LENGTH/2)) = '1' then 
JOINED(I) := '1'; 

else 
JOINED(I) := '1'; 

end if; 
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assert (HI(I - (HI'LENGTH/2)) = '0' or HI(I - (HI'LENGTH/2)) = '1') 
report "Invalid DWORD splicing"; 

end loop; 

for I in (L0'LENGTH/2 - 1) downto 0 loop 
if L0(I) = '0' then 

JOINED(I) := '0'; 
elsif L0(I) = '1' then 

JOINED(I) := '1'; 

else 

JOINED(I) := '1'; 

end if; 

assert (L0(I) = '0' or L0(I) = '1') 

report "Invalid DWORD splicing"; 
end loop; 

return JOINED; 

end JOIN.DWORDS; 

MAP.FIELDS 

~ Purpose: maps valid fields of (2) input DWORDs to 

construct return DWORD 

function MAP_FIELDS(TO_LP, FROM.LP: DWORD) return DWORD is 

variable COMPACT : DWORD; 

begin 

for I in 31 donnto 13 loop 

COMPACT(I) := '0'; 
end loop; 

for I in 12 downto 8 loop 

if T0_LP(I - 8) = '0' then 

COMPACT(I) := '0'; 

elsif T0_LP(I - 8) = '1' then 

COMPACT(I) := '1'; 

else 

COMPACT(I) := '1'; 
end if; 

assert (T0_LP(I - 8) = '0' or T0_LP(I - 8) = '1') 

report "Invalid Event Address Mapping"; 
end loop; 

for I in 7 downto 5 loop 

if FR0M_LP(I + 11) = '0' then 
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COMPACT(I) := '0' 

elsif FROM_LP(I +11) = '1' then 

COMPACT(I) := '1' 
else 

COMPACT(I) := '1' 
end 11; 

assert (FROM_LP(I + 11) = '0' or FROM_LP(I + 11) = 'l') 

report "Invalid Event Address Mapping"; 
end loop; 

for I in 4 donnto 0 loop 

it  FR0M_LP(I) = '0' then 

COMPACT(I) := '0'; 

r'     i  FR0M_LP(I) = '1' then 

COMPACT(I) := '1'; 

else 

COKPACT(I) := '1'; 
end it; 

assert (FR0M_LP(I) = '0' or FR0M_LP(I) = '1') 

report "Invalid Event Address Mapping"; 
end loop; 

return COMPACT; 

end MAP.FIELDS; 

HI_L0_ADD 

~ Purpose: Add high and low WORDS of DWORD to return 
a DWORD "SUM" 

function HI_LO_ADD(DBL_WORD : DWORD) return DWORD is 

variable HI.WORD. LO.WORD. SUM : DWORD; 

begin 

HI_W0RD(15 downto 0) := DBL_W0RD(31 downto 16); 
L0_W0RD(15 downto 0) 

HI_W0RD(31 dounto 16) 

L0_W0RD(31 dosnto 16) 

= DBL_W0RD(15 downto 0); 

= "0000000000000000"; 

= "0000000000000000"; 

SUM := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(HI_W0RD))) + 

BVtoI(MVL7VtoBV(CHANGE(L0_WÜRD)))))) 

return SUM; 

end HI_L0_ADD; 

end System; 

A-9 



Appendix B.   DES Coprocessor VHDL Design 

This appendix contains the chip level architecture for the DES coprocessor system 

as shown in Figure 4.2. The entity declaration and components that make up the DES 

coprocessor system is given. VHDL behavioral descriptions, as described in Chapters 3 

and 4, for each component are included in the following appendices. 
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B. 1    DES Coprocessor Structure 

This appendix contains the architectural body of the DES coprocessor. The en- 

tity declaration defines the DES coprocessor in terms of sytem input and output ports. 

The components that make the DES coprocessor system are declared and defined with 

generic parameters and port descriptions. The signal mapping that connects the system 

components is also given. 
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— FILE:  des_structure.vhd 
— AUTHOR:  Paul J. Taylor 

— PURPOSE: Structural architectural body of the DES 

coprocessor. Entity declaration defining the inputs and 
011tPllt;s *or the DES Coprocessor is given.  Components and 
signals for the DES coprocessor system are declared and 
then instantiated. 

library ZYCAD; 

library DESIGN; 

use ZYCAD.TYPES.all; 

use ZYCAD.COMPONENTS.all; 

use ZYCAD.BV.ARITHMETIC.all; 
use WORK.SYSTEM.all; 

use WORK.BUS.SYS.all; 

entity DES_sys is 

port( 
RUN : in MVL7; 
CLK : in BIT; 
RESETIN : in MVL7 
WR : in MVL7 
NPS1 : in MVL7 
NPS2 : in MVL7 
CMDO : in MVL7 
INTR out MVL7 
READYO inout MVL7; 
BUSY out MVL7 
ERROR out MVL7 
ADD.STR in MVL7, 
SYSIN in DWORD; 
SYSOUT out DWORD); 

d DES_sys; 

— status enable/run (Vcc) 

— System CLK2  (1/2 CPU sys) 
~ RESET from CPU 

~ W/R* from CPU 

— ¥1/10*  from CPU 
— A15 from CPU 

— A2 from CPU ('1'- data, '0'- opcode) 

— interrupt request to CPU 

— wait state cntrl sig (xfer acknowledge) 

— coprocessor status signal 

— coprocessor error signal 

— ADS* address valid strobe 

-- CPU data bus 

~ CPU data bus 

architecture CHIP.LEVEL of DES_sys is 

— DES Synchronization Coprocessor component 

component DES 

generic(RDEL, WDEL, ODEL. MADEL. PER: TIME); 

port(  DATAin 

DATAout 

MA 

INTR 

: in DWORD; 

: out DWORD; 
: out M_ADD; 
: out MVL7; 

— data_bus port 

— data_bus port 

— ram address port 

— int request to CPU 
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RDP. WTP : out MVL7; 
HINTin : in MVL7; 
RDC, WTC, NE, RST  : out MVL7; 
10. RW : out HVLT; 
CLK : in BIT; 
WR, NPS1, NPS2, CMDO: in MVL7; 
RESETIN. RUN : in MVL7; 
READYO : inout MVL7; 
BUSY, ERROR : out MVL7); 

end component; 

Memory component 

parallel i/o control 

parallel i/o request 

CAM i/o control 

RAM i/o control 
1/2 CPU system clock 

CPU control input 

CPU control input 

DES status/control 

DES status/control output 

component RAM_MEM 

generic (Ndata: Positiv; := 32; 

Naddr: Positive := 11; 

RDEL, DISDEL. TIME); 

port   (DATAI: in DWORD; 

DATAO: out DWORD; 

ADDR: in MVL7_VECT0R(Naddr-1 downto 0); 
CE: in MVL7; 

RW: in MVL7); 

end component; 

# of data lines 

# of address lines 

read and disable delay 

data in lines 

data out lines 

address lines 

chip enable (high) 

read (low) and 

write (high) 

Parallel I/O Latch component 

component PAR 

generic(GDEL. FFDEL. BUFDEL: TIME); 

port(  DI : in DWORD; 

DO : out DWORD; 

NDS1, DS2, MD, NCLR : in MVL7; 
STB : in MVL7; 

NINT : out MVL7); 

end component; 

delay times 

data input 

data output 

I/O control 

addr latch enable 

interrupt request 

— Content Addressable Memory (CAM) component 
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component C_MEM 

generic(RDEL, WDEL, DISDEL: TIME); — delay times 

port(  DATAinto : in DWORD; — data in 

DATAoutof : out DWORD; — data ouput 
CLK : in BIT; __ DES clock 

DS1. NDS2. MODE, N_CLR : in MVL7);     — CAM control 

end component; 

— Signal declarations connecting chip_level 
— components in DES coprocessor. 

signal DATA.BUS : DWORD; - DES data bus 
signal DATAin, DATAout : DWORD; 
signal MA : M.ADD; 

signal DATAI, DATAO : DWORD; 

signal NINTin, 10, RW, RDP, WTP : MVL7; 

signal RDC, WTC, NE, RST : MVL7; 

signal ADDR : MVL7_VECT0R(10 downto 0); 

signal DATAinto, DATAoutof : DWORD; 
signal CE : MVL7; 

signal DS1, NDS2, MODE, N.CLR : MVL7; 

signal NDS1. DS2, MD, NCLR, STB, NINT : MVL7; 
signal ZERO : MVL7 := '0'; 

signal ONE : MVL7 := '1'; 

— Component instantiations. 

begin 

COP: DES 

generic map(RDEL, WDEL, ODEL, MADEL, PER) 

port map( 

DATAin => DATAin, 

DATAout => DATAout, 
MA => MA, 

IFTR => INTR, 

10 => 10, 

RW => RW, 

RDP => RDP, 

WTP => WTP, 

NINTin => NINTin, 

RDC => RDC, 

WTC => WTC, 
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NE => NE. 

RST => RST, 

RESETIN => RESETIN, 

RUN => RUN, 

CLK => CLK. 
WR => WR. 

NPS1 => NPS1, 

NPS2 => NPS2. 

CMDO => CMDO, 

READYO => READYO, 
BUSY => BUSY, 

ERROR => ERROR); 

MEM: RAM.MEM 

generic mapCNdata, Naddr, RDEL, DISDEL) 

port map( 

DATAI => DATAI, 

DATAO => DATAO, 
ADDR => ADDR, 

CE => CE, 

RW => RW); 

PARIN: PAR 

generic map(GDEL, FFDEL, BUFDEL) 

port inap(  DI => SYSIN, 

DO => DATA.BUS, 

NDS1 => ZERO. 

DS2 => RDP, 

MD => ZERO, 

NCLR => ONE, 

STB => ADD.STR, 

NINT => NINT); 

PAROUT: PAR 

generic map(GDEL, FFDEL, BUFDEL) 

port map(  DI => DATA„BUS, 

DO => SYSOUT, 

NDS1 => ZERO. 

DS2 => WTP, 

MD => ONE, 

NCLR => ONE, 

STB => ZERO, 

NINT => open); 

CAM: C_MEM 

— Logic delays 

~ CPU input 

— out to DES 

— low device select 

— variable dev. sei. 

— Read Mode 

— no clear 

— CPU strobe (high) 

— low interrupt 

— Logic delays 

— DES output 

— out to CPU 

— low device select 

— variable dev. sei. 

— Write Mode 

— no clear 

— no strobe 

— no interrupt 
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generic map(RDEL, WDEL, DISDEL) 

port mapC 

DATAinto => DATAinto, 

DATAoutof => DATAoutol, 

CLK => CLK, 
DS1 => DS1, 

NDS2 => NDS2. 

MODE => MODE, 

N_CLR => N_CLR); 

— Signal mapping between components 

DATAin <= DATA.BUS; 
DATA.BUS <= DATAout; 
DATAI <= DATA.BUS; 
DATA.BUS <= DATAO; 
DATAinto <= DATA.BUS; 
DATA.BUS <= DATAoutof; 
ADDR <= MA; 
NINTin <= NIMT; 
CE <= 10; 
DS1 <= RDC; 
NDS2 <= WTC; 
MODE <= NE; 
N_CLR <= RST; 

cop input 

cop output 

ram input 

ram output 

cam input 

cam output 

end CHIP.LEVEL; 
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B.2    DES Coprocessor Behavior 

The DES coprocessor architectural behavior is given in this appendix. Each of the 

states of the DES coprocessor, shown in Figure 4.1, is implemented by a dedicated VHDL 

process within this behavior. The primary DES simulation operations (i.e., initialize, post- 

message, get-next-event, and post-event) are included as procedures that are called in the 

execute process. 

Additional procedures, that implement frequently needed operations (i.e., interrupt 

CPU and send null message) are also included in this behavior. The signal multiplexing, 

used to resolve signals driven by multiple processes, is also included at the end of the 

behavior. 
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~ FILE,  des.beh.vhd 
— AUTHOR:  Paul J. Taylor 

~ PURPOSE: Architectural BEHAVIOR of the DES Coprocessor 
Implements four (4) basic operations (Initialize, 
Post-Message, Get_Next_Event, and Post.Event for 
a conservative synchronization protocol, discrete 
event simulation. 

library ZYCAD; 
library JESIGN; 
use ZYCAD.TYPES.all; 
use ZYCAD.BV.ARITHHETIC.all; 
use WORK.all; 
use WORK.SYSTEM.all; 
use WORK.BUS.SYS.all; 

— ENTITY declaration for DES coprocessor 

entity DES is 

generic(RDEL. WDEL, ODEL, MADEL, PER: TIME); 

port(DATAin : in DWORD; 
DATAout : out DWORD: 
"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' 
HA 
INTR 
RDP, WTP 
NINTin 
RDC, WTC. NE, RST 
10. RW 
CLK 
WR, NPS1, NPS2. CMDO 
RESETIN. RUN 
READYO 
BUSY. ERROR 

out M_ADD; 
out MVL7; 
out MVL7; 
in MVL7; 
out MVL7; 
out MVL7; 
in BIT; 
in MVL7; 
in MVL7; 
inout MVL7; 
out MVL7); 

-- DATA.BUS PORT 

- DATA.BUS PORT 
■- RAM ADDRESS PORT 
- Int request to CPU 
- PAR I/O CONTROL 
- PAR I/O STATUS REQUEST 
- CAM I/O CONTROi & Mstr CLR 
- RAM CONTROL 
- 1/2 CPU SYSTEM CLOCK 
- CPU CONTROL INPUT 
- CPU CONTROL INPUT (RUN=STEN) 
- CPU CONTROL OUTPUT 
- CPU CONTROL OUTPUT 

end DES; 

~    ARCHITECTURAL BEHAVIOR of DES coprocessor 

architecture BEHAVIOR of DES is 

signal STOP: BIT; 
signal BUSYB, BUSYC, BUSYS. BUSYE: MVL7; 
signal RDY, RDYC, RDYE: MVL7; 
signal BRW. RWS. RWC, RWE: MVL7; 
signal BIO. I0S. IOC, IDE: MVL7; 
signal BMA. MAS. MAC. MAE: M_ADD; 
signal RDCB. RDCS, RDCE: MVL7; 
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Signal WTCB, WTCS, WTCE: MVL7; 
signal NEB, NES, NEE: MVL7; 

signal CPU.IO, CPU.IOS, CPU.IOC. START, EXECUTE: BOOLEAN; 
signal DONE, DONEC, DONEE: BOOLEAN; 
signal IOWAIT, IOWAITS. IOWAITC, IOWAITE: BIT; 
signal MATCH : BOOLEAN := false;   — update ARCS.IN^STAT 
signal LOADED: BOOLEAN := false;   — GP Regs have next event 
signal HAD.EVENT: BOOLEAN := false; — have event for CPU 
signal SEND.NULL: BOOLEAN := false; — Get.Event was "null" 

— General purpose REGISTERS are declared as signals. 
~ Receive inputs from START, CPU_I0_PR0C, and EXECUTE.PROC which are mux'd 
— and the most recent process assertion is new value of Reg_32(X). 

signal Reg_32, Reg_32S, Reg_32C, Reg_32E : REG32(1 to 10); 
signal BUFF.IO, BUFF.IOS, BUFF.IOC, BUFF_I0E: DWORD:= 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; 
signal FLAGS, FLAGSS, FLAGSE: DWORD; 
signal IR, ACC: DWORD; 

signal OPCODE: MVL7_VECT0R(31 downto 0);       — temp for OPCODE 

begin 

~ Run (STEN) Process  (Chip select circuitry or Vcc) 

RUN.PROC: process(RUN) 

begin 
if RUN = '1' then 
STOP <= '0'; 

else 
STOP <= '1'; 

end if; 

end process RUN_PR0C; 

~ State Process       (CURRENT STATE and state transitions) 

STATE: process(RUN. STOP, IOWAIT, CLK, START, CPU.IO, EXECUTE) 

begin 

if (not RUN'STABLE) and (RUN = '1') then 
START <= true; 

elsif ((RUN'STABLE) and (STOP = '0') and (IOWAIT = '0') 

and (not CLK'STABLE)) then 
if (START and (NPS1 = '0') and (NPS2 = '1') and (WR = '1')) then 
CPU.IOS <= true; 

else 
CPU_I0S <= false; 

end if; 
if (START and (WR /= '1')) then 
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EXECUTE <= true; 
else 

EXECUTE <= false; 
end if; 

end if; 

end process STATE; 

- Start Process       (Housekeeping and Oper?itir,g in Idle state) 

- CAM overflow snapping and memory management (garbage collection). 

- Checks for CAM overflow events stored in RAM.  Uses a circular queue to 
- take events (one per cycle) from head and move to CAM. 

— Check FLAGS register: 

— bit(O): '1' = CAM full; '0' = CAM not full 

~ bits(28->23): Qty of events in RAM 

~ bits(22->12): start addr (head) of events in RAM 
— (3)♦DWORD per event in RAM 

START_PR0C: process 

- variable/constants to manage circular queue of CAM overflow events 

constant First_Q_Addr : DWORD 

constant Last_Q_Addr : DWORD 

variable Next.Addr   : DWORD 

begin 

wait on START until START; 

BUSYS <= '0'. 

'1' after ODEL; 

= "00000000000000000000001000011111"; 

= "00000000000000000000000110111111"; 

= "00000000000000000000000000000000"; 

unassert "busy" signal 

reset/initialization 

if RESETIN = '1' then 

I0WAITS <= '1'; 

FLAGSSdl downto 0) <= "010000111110";    — tail of RAM queue 

— and CAM status bit 
FLAGSS(22 downto 12) <= "01000011111";    — head of RAM queue 

FLAGSS(28 downto 23) <= "000000"; — # events in RAM 
I0WAITS <= '0'; 

end if; 

— if CAM not full and events in RAM -> move to CAM 

if (FLAGS(O) = '0' and 

BVtoI(MVL7VtoBV(CHANGE(FLAGS(28 downto 23)))) > 0) then 
I0WAITS <= »1«; 

Hext_Addr(10 downto 0) := FLAGS(22 downto 12);     — head of queue 
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— loop to read RAM and load GP registers with event to move to CAM 
~ Reg_32(2) <= T0/FR0M_LP ids 

~ Reg_32(3) <= event TimcTag 

~ Reg_32(4) <= Hemr_Ptr to event 

L0AD_REG_L00P: 

for I in 2 to 4 loop -- 2 to 4: indx regs 

MAS <= DWORD_to_MADD(Next_Addr) alter MADEL;   — RAM address 
RWS <= '0' after ODEL; - RAM read cycle 
IDS <= '1' after ODEL; 

wait for RDEL; 

BUFF_I0S <= DATAin after FFDEL; — event data 
wait for FFDEL; 

RWS <= 'Z' after ODEL + GDEL; 

IDS <= '0' after ODEL; 

MAS <= "ZZZZZZZZZZZ" after ODEL; 

Reg_32S(I) <= BUFF.IOE after FFDEL; — load event data 

Next.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Next_Addr))) + 1))); 
wait for ODEL; 

end loop L0AD_REG_L00P; 

~ CAM write loop (event.id, event time.tag, memr.ptr to rasg) 

CAM_SAVE_EVENT: 

for I in 2 to 4 loop __ use Gp reg illdx 

BUFF.IOS <= Reg_32(I) after FFDEL; - next event field 
wait for FFDEL; 

DATAout <= BUFF_I0E after ODEL, — pUt data on bus 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after 2+ODEL + WDEL; 
wait for ODEL; 

NES <= '0' after ODEL; 

WTCS <= '1' after ODEL; 

wait for WDEL; 

WTCS <= '0' after ODEL; 

NES <= 'Z' after ODEL; 

wait for ODEL; 

end loop CAM_SAVE_EVENT; 

- Update CAM.FULL bit (FLAGS(O)) with automatic reading of CAM status 

RDCS <= '1' after ODEL; __ CAM read 
wait for RDEL; 

BUFF.IOS <= DATAin after FFDEL; 

RDCS <= '0' after ODEL; 

wait for ODEL; 

if BUFF.IOS(0) = '1' then - CAM is full 
FLAGSS(O) <= »I'j 

end if; 

I0WAITS <= '0'; 
end if; 
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end process START.PRDC; 

~ CPU_I0 Process      (Get instruction and data from CPU) 

— Pseudo code 

-- If INPUT (WR = '1') 

read parallel (RDP = '1') and load into BUFF.IO register 
End bus_cycle (READYO = '0') 

If OPCODE (A2 = '0') 

load instruction register (IR <= BUFF.IO) 
If OPERAND (A2 = '1') 

load operand(s) into gen purpose register (REG_32(X) <= BUFF_IÜ) 
— Transition to execute state at end of last bus xfer cycle 

CPU_I0_PR0C: process 

variable num : INTEGER := 1; 

variable Next.Addr : DWORD; 

begin 

wait on CPU_I0 until CPU_I0; 

-- register counter 

— another GP register 

CPU writes only!! 

— reinitialize num counter if previous opcode was executed 

if DONE then 

num := 1; 

DONEC <= false; 

BUSYC <= '1' after ODEL; 
end if; 

prompt for Test_Bench 

— no state changes 

— new bus cycle 

— synchronization 

— read in data bus 

— DES reads (after STRB) 

— DATA.BUS into BUFF.IO 

IOWAITC <= »1»; 

RDYC <= '1' after ODEL; 

wait until not CLK'stable; 

RDP <= '1' after ODEL; 

wait until not CLK'stable; 

RDP <= '0' after ODEL; 

BUFF.IOC <= DATAin after FFDEL; 
wait for FFDEL; 

- opcode was read from data_bus 

if (CMDO = '0') then 

III <= BUFF.IOC after FFDEL; - load inst reg w/opcode 
wait for FFDEL; 

OPCODE <= CHANGE(IR); .. ease of reading 

BUFF.IOC <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after 1 ns; 

— clears buff (resolve) 
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- operand was read from data_bus 

elsil (CMDO = »1») then — data.bus was operand 

- (4) essential operands to store in GP registers 

il (nmn <= 4) then 

Reg_32C(nuin) <= BUFF.IOC after FFDEL;    — load essential registers 

wait for FFDEL; -- reg xfer delay 

BUFF.IOC <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after 1 ns; 

— resolve buff 
num := num +1; — next GP register 

store additional operands in LP's RAM partition 

elsif (num > 4) then 

Reg_32C(8) <= BUFF.IOC after FFDEL;      — temp for next operand 
wait for FFDEL; 

— get pointer to LP's RAH partition (this is first add'l operand) 

if (num =5) then 

MAC <= DW0RD_to_MADD(Reg_32(l)) after MADEL; 

— LP RAM partition tbl addr 
RWC <= '0' after ODEL; — RAM read cycle 
IOC <= '1' after ODEL; 

wait for RDEL; 

BUFF.IOC <= DATAin after FFDEL;       ~ LP RAM base addr ptr 
wait for FFDEL; 

Reg_32C(9) <= BUFF.IOC after FFDEL;    ~ for future use (Init.Sim) 
RWC <= 'Z' after ODEL + GDEL; 

IOC <= '0' after ODEL; — must chg before RW 
wait for ODEL; 

LP's data b^se_addr in RAM + offset 

Next.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(BUFF IOC))) + num - 1))) 
BUFF.IOC <= Reg.32(8) after FFDEL; 
wait for FFDEL; 

DATAout <= BUFF.IOC after FFDEL + ODEL. — put operand on data_bus 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after 2*0DEL + WDEL; 
MAC <= DWORD_to.MADD(Next.Addr) after MADEL;  ~ RAM address 
RWC <= '1' after 3+ODEL; — RAM write cycle 
IOC <= '1' after ODEL; 

wait for WDEL; 

RWC <= 'Z' after ODEL + GDEL; 

IOC <= '0' after ODEL; — must chg before RW 
MAC <= "ZZZZZZZZZZZ" after ODEL; 

num := num +1; — next GP register 

— next RAM address 
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Kext.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(HVL7VtoBV(CHANGE(Next_Addr))) + 1))), 
Reg_32C(6) <= Next.Addr; — needed in future (Init.Sim) 

— already have LP's RAM address: store add'l operands in RAM 

elsil (num > 5) then 

wait lor FFDEL; __ xfeT ot  bull_ioc to reg 32(8) 
BUFF.IOC <= Reg_32(8) after FFDEL; 
wait for FFDEL; 

DATAout <= DUFF.IOC after FFDEL + ODEL, - put operand on data bus 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after 2*0DEL + WDEL; 

MAC <= DWORD_to_MADD(Next_Addr) after MADEL;  ~ RAM address 
RWC <= '1' after 3*0DEL; - RAM write cycle 
IOC <= '1' after ODEL; 

wait for WDEL; 

RWC <= 'Z' after ODEL + GDEL; 

IOC <= '0' after ODEL; — must chg before RW 
MAC <= "ZZZZZZZZZZZ" after ODEL; 
num := mun + 1; — next Gp register 

— next RAM address 

Next.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Next_addr))) + 1))); 
Reg_32C(6) <= Next.Addr; — needed in future (Init Sim) 

end if; 

end if; 

end if; 

— toggle state for multiple CPU.IO state operations in succession 

wait until not CLK'stable; - synchronization 
CPU.IOC <= false; __ caa return t0    io 
IDWAITC <= '0'; __ allog state ch  ", 

RDYC <= '0>  after GDEL, - delay for syilch 
'1' after PER/2 + GDEL; 

nait for ODEL; 

end process CPU_I0_PR0C; 
--♦♦♦♦♦»♦♦♦♦♦♦»^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

~ Execute Process     (DES operation execution) 

EXECUTE.PROC: process 

variable ARCS_IN_STAT : DWORD;        — status for LPs in 

variable Next.Addr   : DWORD;        — next RAM addr for r/w 

-- same as CPU_I0_PR0C 

— PROCEDURES AND FUNCTIONS required for EXECUTE process 
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— INTR_CPU_SEND procedure (output to CPU with Interrrupt Request) 

— Intr_CPU_Send pseudo/algorithm 

— Assert Tnterrupt request to CPU 

busy wait for CPU to acknowledge request (i.e. control signals) 
— Register (DWORD) to send to CPU is put on data.bus 
— Ensure ready line "RDY" is high lor CPU bus xfer cycle 
— Assert parallel I/O (write) 
~ Pull ready line "RDY" low to end CPU bus xfer cycle 

procedure Intr_CPU_Send (OUTPUT : in DWORD) is 

variable MSG.OUT : DWORD; 

begin 

MSG.0ÜT := OUTPUT; - output to CPU 
BUFF.IOE <= MSG.OUT; 
INTR <= '1' after ODEL; 

wait until ((NPS1 = '0') and (NPS2 = '1') and (WR = '0')); 
INTR <= '0' after ODEL; 

output MSG.OUT 

DATAout <= BUFF.IOE after ODEL. 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after 2*0DEL + RDEL; 
WTP <= '1' after ODEL; - parallel i/o write 
wait for RDEL; 
WTP <= '0' after ODEL; 

RDYE <= '0' after ODEL. - end bus cycle 
'1' after PER/2 + ODEL; 

end Intr_CPU_Send; 

- SEND_CPU procedure (output to CPU without Interrupt Request) 

- Send_CPU pseudo/algorithm 

- Register (DWORD) to send to CPU is put on data.bus 
- Ensure ready line "RDY" is high for CPU bus xfer cycle 
- Assert parallel I/O (write) 
- Pull ready line "RDY" low to end CPU bus xfer cycle 

procedure Send.CPU (OUTPUT : in DWORD) is 

variable MSG_0UT : DWORD; 

begin 
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RDYE <= '1' after ODEL; - bus cycle strb 
HSG.OUT := OUTPUT; ._ output to cpu 
BUFF.IOE <= MSG_OUT; 
wait for FFDEL; 

output MSG_OUT 

DATAout <= BUFF.IOE after ODEL. 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after 2*0DEL + RDEL- 
WTP <= '1' after ODEL; - parallel write 
wait for RDEL; 

WTP <= '0' after ODEL; 

RDYE <= '0' after ODEL, - end bus cycle 
'1' after PER/2 + ODEL; 

end Send_CPU; 

— SE!rD_NULL_MSG procedure (send "null_msg" to all output arcs) 

— SEND_NULL_MSG pseudo/algorithm 

procedure Send_null_msg(RAM_Addr : DWORD; Outputs : INTEGER) is 

constant NULL.MSG : DWORD := "00000000000000000000000000000000"; 
variable Next_Addr: DWORD; 

variable Num.out  : INTEGER; 

begin 

Next_Addr := RAM.Addr; — Lp)s ARCS 0UT 
Num.out := Outputs; __ # of arcS_out 

Send_Null_Loop: 

while (Num.out > 0) loop 

— get next LP..0UT from RAM (TO.LP for "null.msg") ft store (Reg_32(7)) 

MAE <= DWORD_to_MADD(Next_Addr) after MADEL;   — addr for next LP.OUT 
RWE <= '0' after ODEL; - RAM read cycle 
IDE <= '1' after ODEL; 

wait for RDEL; 

BUFF.IOE <= DATAin after FFDEL; — next LP.OUT 
wait for FFDEL; 

Reg_32E(7) <= BUFF.IOE after FFDEL; — next TO.LP 
I0E <= '0' after ODEL; 

RWE <= 'Z' after ODEL + GDEL; - must be after 10 
MAE <= "ZZZZZZZZZZZ" after ODEL; 
wait for ODEL; 

— decrement Hext.Addr in LP.RAM.Partition (reading top down) 
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Next_Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE 
(Next.Addr))) - 1))); 

wait for ALUDEL; 

— output T0_LP for "null.msg" to CPU 

RDYE <■ '1' after ODEL; 
wait for ODEL; 

Iiitr_CPU_Send(Reg_32(7)); 
wait until READYO = '0'; 

— output FR0M_LP for "null_msg" to CPU 

RDYE <» »i» after ODEL; 

wait for ODEL; 

Intr_CPU_Send(Reg_32(1)); 
wait until READYO = '0'; 

~ output SAFE_L00KAHEAD_TIME for "null.msg" to CPU 

RDYE <= '1' after ODEL; 

wait for ODEL; 

Intr_CPU_Send(Reg_32(8)); 
wait until READYO = '0'; 

— output NULL.MSG (null value) to CPU 

RDYE <= '1' after ODEL; 

wait for ODEL; 

Intr_CPU_Send(NULL_MSG); 
wait until READYO = '0'; 

Num.out := Num.out - 1; 

end loop Send_Iifull_Loop; 

out_node|out_LP 

— FROM.LP (this LP) 

-- load Safe_Time 

— delay to next out 

— next output LP 

end Send_null_msg; 

- INIT.SIM procedure (initialize simulation) 

- Init_Sim pseudo code 

GP registers loaded during CPU_I0_PR0C 

— REG_32-1 <= T0_LP 

— REG_32-2 <= T0_LP(DELAY) 

— REG_32-3 <= # ARCS_IN 

~ REG_32-4 <= # ARCS.OUT 

— RAM.XXXX <= IN_1_N0DE# I IN_1_LP# 

— RAM.XXXX <= 0UT_1_K0DE# | 0UT_1 LP# 

— initialize "this" LP 
— this LPs delay 

— (2) data in (1) reg 

— add'l arcs.in 

— (2) data in (1) reg 

— add'l arcs_out 
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— assert in_clr 

— DWORD 

— local sim clock 
— dynamic 

— xmit bus cycles 

— assert clear/reset for CAM storage 

— reset and store sim_clock lor lp_id 

— REG_32-5 reserved for Local_Sim_Time 
— calculate inin_safe_time (sim.clock + LP_delay) 
— send null.msg to all ARCS.OUT LPs 

~ REG_32-6 <= Next.Addr (next free (D top of LP RAM partition) 

-- store LP significant data (regs) in LP_RAM_Partion (Reg_32(l—4)) 

procedure Init.Sim is — init Lps for sim 

variable NUH_0UT : INTEGER; 

begin 

NUM.DUT := BVtoI(MVL7VtoBV(CHANGE(Reg_32(4)))); 

RST <= '0' after ODEL, 

'1' after PER/2 + ODEL; 

Next.Addr := Reg_32(6); 

initialize the FLAGS reg 

FLAGSEdl downto 0) <= "010000111110"; 

FLAGSE(22 downto 12) <= "01000011111"; 

FLAGSE(28 downto 23) <= "000000"; 

reset LP's simulation clock (i.e. start) 

Reg_32E(5) <= "00000000000000000000000000000000" after FFDEL; 
wait for FFDEL; 

— # ARCS_0UT (loop indx) 

— mstr_clr for CAM 

— saved in CPU_I0_PR0C 

— tail of RAM queue 

— and CAM "full" stat 

— head of RAM queue 

— # events in RAM 

— add LP delay to sim_clk for safe.time 

ACC <= CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Reg_32E(5)))) + 

Bftol(MVL7VtoBV(CHANGE(Reg_32(2))))))) 
after ALUDEL; 

wait for ALUDEL; — PER/2 

Reg_32E(8) <= ACC after FFDEL; - safe.time ree 

~ top entry in LP RAM 

Next.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE 
(Next_Addr))) - 1))); 

wait for FFDEL; 

LOOP for "null.msg" to all ARCS_0UT 

I0WAITE <= '1'; no state changes 
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BUSYE <= '1' alter ODEL; __ prompt lor Test Bench 
Send_null_msg(Next_Addr, NUM.OUT); 
RDYE <= '1' after ODEL; - ready for next proc 

— store essential LP data (4 registers) lor future operations 

~ use LP_RAM_Partition starting address (base_addr) -> done earlier 
— align data in GP registers lor RAM write LOOP 

— NOTE: Reg_32(2) already contains LP.Delay 

-- Reg_32(3) : combine # ARCS_IN ft # ARCS.OUT in single DWORD 

Next.Addr := Reg_32(9); — LP_RAH_Partition (base.addr) 

Reg_32E(l) <= "00000000000000000000000000000000" after FFDEL; 

— init ARCS_IN_STATUS 
Reg_32E(3) <= J0IN_DW0RDS(Reg_32(3). Reg_32(4)) alter ALUDEL; 
wait for ALUDEL; 

Reg_32E(4) <= Reg_32(5) after FFDEL; - LP.Simulation.Time 

— Loop to write registers to LP_RAM_Partition 

IDWAITE <='!'; __ no state changes 
SAVE_LP_DATA: 

for I in 1 to 4 loop 

BUFF.IOE <= Reg_32(I) after FFDEL; - next reg to store 
wait for FFDEL; 

DATAout <= BUFF.IOE after FFDEL + ODEL,        — put data on bus 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ'ZZ" after 2*0DEL + WDEL; 
MAE <= DWORD_to_MADD(Next_Addr) after MADEL;   — RAM address' 

RWE <= '1' after 3*0DEL; - RAM write cycle 
I0E <= '1' after ODEL; 

wait for WDEL; 

I0E <= '0' after ODEL; 

RWE <= 'Z' after ODEL + GDEL; 

MAE <= "ZZZZZZZZZZZ" after ODEL; 

wait for ODEL; __ ensure valid M.addr 

Next.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE 
(Next.Addr))) + 1))); 

end loop SAVE_LP_DATA; 
I0WAITE <= '0'; .. alloH state chgs 

BUSYE <= '0' after ODEL; - prompt lor Test.Bench 

end Init_Sim; 

~ POST.MSG procedure (process received event/null messages) 

— Post_Msg pseudo code 

— CPU_I0_PR0C has loaded he following registers 

— REG_32-1 <= T0_LP — rcvd (8 this LP 

— REG_32-2 <= IN.NODE # | IN_LP # — FROM.LP 
— REG_32-3 <= EVENT TIME.TAG 

— REG_32-4 <= MEMR.PTR to msg — null.msg : ptr = 0 
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- load GP registers with T0_LP essential data from RAM — read (4+DWORD) 
- update ARCS.IN status (toggle FROM.LP bit) 

- check CAM_FULL bit in FLAGS register 

if not FULL -> store message ft update FLAGS reg 
(T0_LP, FROM.LP, TIME.TAG, MEMR.PTR) 

update CAM.FULL bit in FLAGS reg by receiving CAM status msg 
else -> store in RAM temporarily -> START/IDLE will handle 

procedure Post.Msg is — rcv EVENT/NULL msE 

constant Last_Q_Addr : DWORD 

variable STAT_BIT : ^TEGER 

begin 

"00000000000000000000000110111111"; 
0; — array index bit 

— for ARCS_IN_STAT 

load LP_GP_working registers with essential data from RAM Partition 
must get pointer to LP_RAM_Partition base_addr first 

I0WAITE <= '1'; 

BUSYE <= '1' after 0DEL; 

MAE <= DW0RD_to_MADD(Reg_32(l)) after MADEL; 

RWE <= '0' after ODEL; 

I0E <= '1' after ODEL; 

»ait for RDEL; 

BUFF.IOE <= DATAin after FFDEL; 
wait for FFDEL; 

RWE <= 'Z' after ODEL + GDEL; 

I0E <= '0' after ODEL; 

MAE <= "ZZZZZZZZZZZ" after ODEL; 

Reg_32E(5) <= BUFF.IOE after FFDEL; 
Next.Addr := BUFF.IOE; 
wait for ODEL; 

no state changes 

prompt for Test_Bench 
part tbl r'vr to 
base ada.. 

RAM read cycle 

LP RAM base.addr 

after I0E 

temp for base_addr 

increment in loop 

loop to read RAM and load LP_GP registers 

~ Reg_32(6) <= ARCS_IN_STAT   Reg_32(8) <= # ARCS.IN | # ARCS.OUT 

— Reg_32(7) <= LP.DELAY      Reg_32(9) <= LP_Simulation_Time 

L0AD_REG_L00P: 

for I in 6 to 9 loop 

MAE <= DWORD_to_MADD(Next_Addr) after MADEL; 
RWE <= '0' after ODEL; 

IDE <= '1' after ODEL; 
oait for RDEL; 

BUFF_I0E <= DATAin after FFDEL; 
wait for FFDEL; 

RWE <= 'Z' after ODEL + GDEL; 

I0E <= '0' after ODEL; 

MAE <= "ZZZZZZZZZZZ" after ODEL; 

Reg_32E(I) <= BUFF.IOE after FFDEL; 

6 to 9: indx rags 

RAM address 

RAM read cycle 

-- LP data 

load LP data 

Kext.Addr := CHAKGE(BVtoMVL7V(ItoRV(BVtoI(MVL7VtoBV(CHANGE(Next_Addr))) + 1))); 
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wait for ODEL; 

end loop L0AD_REG_L00P; 

update ARCS_IN_STATUS (i.e. set FROM.LP bits (9->0) high) 

Read ARCS.IN addresses (loop 0 to (# ARCS_IN - 1) times) 

base_addr + offset (4 ess. data) in RAM Partition to LP_IN 

Compare FR0M_LP address to LP..IN addresses (same loop iteration) 
find match then EXIT 

Set ARCS_IN_STAT bit (bit # to set = loop iteration #) 

start of ARCS.IN addresses in LP_RAM_Partition 

Next.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Reg_32(5)))) + 4))); 

ARCS_Loop; 

loop 

MAE <= DWORD_to_MADD(Next_Addr) after MADEL;     — RAM address 
RWE <= '0' after ODEL; - RAM read cycle 
I0E <= '1' after ODEL; 
wait for RDEL; 

BUFF.IOE <= DATAin after FFDEL; — IN_LP id 
wait for FFDEL; 

RWE <= >Z,  after ODEL + ODEL; 
JOE <= '0' after ODEL; 

MAE <= "ZZZZZZZZZZZ" after ODEL; 
wait for ODEL; 

if (Reg_32(2) = BUFF.IOE) then 

MATCH <= trne; __ exit. IN_LP=FRÜM_LP 
exit; 

end if; 

Next.Addr := CHANGE(BVtöMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Next_Addr))) + I)))- 
STAT.BIT := STAT.BIT +1, - ARCS_IN_STAT(X) 

end loop ARCS.Loop; 

wait on MATCH until MATCH; - find FRoM Lp iT,  RAM 
Reg_32E(6)(STAT.BIT) <='!•; _. Set STATUS.BIT 
MATCH <= false; __ reset MATCH signal 
wait for FFDEL; 

Update ARCS_IN_STATUS stored in LP's RAM partition base.addr 

DATAout <= Reg_32(6) after FFDEL + ODEL, 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after 2*0DEL + WDEL; 
MAE <= DW0RD_to_MADD(Reg_32(5)) after MADEL;       - base.addr 
RWE <= '1' after 3*0DEL; _. RAM Hrite   le 
IDE <= '1' after ODEL; 
wait for WDEL; 

RWE <= 'Z' after ODEL + GDEL; 

I0E <= '0' after ODEL; 

MAE <= "ZZZZZZZZZZZ" after ODEL; 

B-22 



wait for ODEL; 

- post message -> store event/null in CAM 

-- CAM event has (5) fields lTO_LP|FROM_NODE_#|FROM_LP_#|TIME_TAG|MEM_PTR| 
^il*61, first (3) fields for compact representation 

- TO.LF (32 bits)      -> 5 bits  (20 LPs/node max) 

- FRDM_N0EE_# (16 bits) -> 3 bits  (8 nodes max in cube) 

- FR0M_LP_# (16 bits)  -> 5 bits  (20 LPs/node max) 

- (3) CAM write cycles: (13 'valid' bits), (32 bits), (32 bits) 

- MM IF CAM IS NOT FULL -> STORE EVENT MM 

- else store temporarily in RAM and let START/IDLE handle 

Reg_32E(2) <= HAP_FIELDS(Reg_32(l), Reg_32(2));    - compact event id 
wait for ALUDEL; 

- CAM write loop (event.id, event time_tag, memr.ptr to msg) 

if FLAGS(0) = '0' then - CAM is NOT full 
CAM_SAVE_EVENT: 

for I in 2 to 4 loop — use Gp reg indx 

BUFF.IOE <= Reg_32(I) after FFDEL; - next event field 
wait for FFDEL; 

DATAout <= BUFF.IOE after ODEL, — pUt data on bus 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after 2*0DEL + WDEL; 
wait for ODEL; 

NEE <= '0' after ODEL; 

WTCE <= '1' after ODEL; 

wait for WDE^; 

WTCE <= '0' after ODEL; 

NEE <= 'Z' ^fter ODEL; 

wait for ODEL; 

end loop CAM..SAVE_EVENT; 

- Update CAM_FULL bit (FLAGS(O)) with automatic reading of CAM status 

RDCE <= '1' after ODEL; - CAM read 
wait for RDEL; 

BUFF.IOE <= DATAin after FFDEL; 

RDCE <= '0' after ODEL; 

wait for ODEL; 

if BUFF.,I0E(0) = '1' then - CAM is full 
FLAGSE(O) <= '1'; 

end i:f: — else NOT full 
elsif FLAGS(O) = '1' then - CAM is full 

Store Post.Msg in RAM ('.emporarily): START/IDLE will got cut 
Tail of RAM queue is in FLAGS(11 downto 1) 

Next_Addr(10 downto 0) := FLAGS(11 downto 1);    — Tail of RAM queue 
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— store in RAM 

— use GP reg indx 

— next event field 

RAH_SAVE_EVENT: 

lor I in 2 to 4 loop 

BUFF.TOE <= Reg_32(I) alter FFDEL; 
wait lor FFDEL; 

DATAout <= BUFF.IOE alter FFDEL + ODEL,        — put data on bus 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" alter 2*0DEL + WDEL; 
MAE <= DWORD_to_MADD(Next_Addr) alter MADEL;   — RAM address' 
RWE <= '1' alter 3*0DEL; - p,AM vrite cycle 
IDE <= '1' alter ODEL; 

wait lor WDEL; 

RWE <= 'Z' alter ODEL + GDEL; 

IOE <= '0' alter ODEL; 

MAE <= "ZZZZZZZZZZZ" alter ODEL; 

Neit_Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(HVL7VtoBV(CHANGE(Next_Addr))) - l))); 
wait lor ODEL; 

end loop RAM_SAVE_EVENT; 

~ Update FLAGS to show events stored in RAH 

FLAGSE(23) <= '1'; 

— Update RAM queue tail address in FLAGS 

— circular Q 

— back to top of Q 

il Next.Addr = Last_Q_Addr then 

FLAGSE(11 downto 1) <= "01000011111"; 
else 

FLAGSECll downto 1) <= Next_Addr(10 downto 0);  ~ incremented by 1 
end il; 

end il; 

I0WAITE <= '0'; 

BUSYE <= '0' alter ODEL; 
— allow state change 

- prompt lor Test.Bench 

end Post_Msg; 

~ GET.EVENT procedure (get NEXT.EVENT for specilied LP) 

— Get_Event pseudo code 

~ read lp_id (T0_LP stored in Reg_32(l) Irom cpu_io_proc) 

~ il ARCS.IN lor lp_id satislied (msg on all ARCS_IN) 

assert rdc (read cam - next lp_id event) 

- update ARCS.IN register 

- update lp_id sim.clk (sim_clk + time_tag) 
- read event memr_ptr 

- update CAM (reset available bit) 

- send NEXT.EVENT to CPU - xmit bus cycles 
il NEXT.EVENT = NULL 

send null with updated sim.time to all output arcs 
do Get.Event again 

— else 

send wait signal to CPU (no next.event) — xmit bus cycles 
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procedure Get.Event is — get NEXT.EVENT from CAM 

constant WAIT_HSG   : SYS_BUS := 

"11110000111100001111000011110000"; 
INTEGER; 

INTEGER; 

BOOLEAN := false; — consider FLAGS bit (31-29) 

BOOLEAN := false; ~ consider FLA5S bit (31-29) 

DWORD; — start of arcs.out for null 
INTEGER := 0;   ~ ARCS_TN_STAT(#) 

variable NUMARCS_IN 

variable NUMARCS.OUT 

variable HAVE.EVENT 

variable HAD.NULL 

variable RAM.ADDR 
variable STATBIT 

begin 

THIS IS WHERE WE ADVANCE THE LOCAL SIMULATION CLOCK!!! 
CONTIGENT UPON HAVING A NEXT EVENT/NULL MESSAGE!!! 

load LP_GP_0orking registers with essential data from RAM Partition 

must get pointer to LP_RAM_Partition first 

I0WAITE <■'!'; — no state changes 
BUSYE <■ »1» after ODEL; 
MAE <= DW0RD_to_MADD(Reg_32(l)) after MADEL;       ~ part tbl ptr to 

— base addr 
RWE <= '0' after ODEL; — RAM read cycle 
I0E <= '1' after ODEL; 
wait for RDEL; 

BUFF.IOE <= DATAin after FFDEL; — LP RAM base.addr 
wait for FFDEL; 

RWE <= 'Z' after ODEL + GDEL; 

IDE <= '0' after ODEL; 

MAE <= "ZZZZZZZZZZZ" after ODEL; 

Reg_32E(2) <= BUFF.IOE; — temp for base.addr 

Next.Addr := BUFF.IOE; — increment in loop 

loop to read RAH and load LP_GP registers 

— Reg_32(3) <= ARCS.IN.STAT   Reg_32(5) <= # ARCS.IN I # ARCS.OUT 

~ Reg_32(4) <= LP.DELAY      Reg_32(6) <= LP_Simulation_Time 

L0AD_REG_L00P: 

lor I in 3 to 6 loop __ 3 to 6: iridx regS 

MAE <= DWORD_to_MADD(Next_Addr) after MADEL;   — RAM address 
RWE <= '0' after ODEL; — RAM read cycle 
IDE <= '1' after ODEL; 

wait for RDEL; 

BUFF_I0E <= DATAin after FFDEL; — LP data 
wait for FFDEL; 

RWE <= 'Z' after ODEL + GDEL; 

IDE <= '0' after ODEL; 

MAE <= "ZZZZZZZZZZZ" after ODEL; 

Reg_32E(I) <= BUFF.IOE after FFDEL; — load LP data 
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Next.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CiiANGE(Next_Addr))) + 1))); 

— determine number oi  input ARCS 

if I = 5 then 

wait lor 2*FFDEL; __ load Reg 32(5) 

NUMARCS.IN := BVtoI(MVL7VtoBV(CHANGE(Reg_32(I)(31 downto 16)))); 
end if; 

if I = 6 then 

LOADED <= true; ._ Gp RegS loaded 
end if; 

end loop L0AD_REG_L00P; 

check for ARCS.IN satisfied (logical AND of ARCS_IN_STAT input bits) 

wait on LOADED until LOADED; — GP Regs loaded 
LOADED <= false; __ reset fl&g 
for I in 0 to (NUMARCS.IN - 1) loop 

if Reg_32(3)(I) = '0' then - No next event 
HAVE_EVENT := false; 
exit ; 

elsif Reg_32(3)(I) = '1' then — still checking 
HAVE.EVENT := true; 

end if; 

assert (Reg_32(3)(I) = '0' or Reg_32(3)(I) = '1') 

report "Invalid ARCS_IN_STAT"; 
end loop; 

wait for ALUDEL; __ do bit check above 

either tell CPU to "wait -> no next.event" or get next_event from CAM 
tell CAM "who" needs Next.Event 

if HAVE.EVEKT then __ CAM for next'event 

BUFF.IOE <= Reg_32v.  after FFDEL; - tell CAM for "who" 
wait for FFDEL; 

DATAout <= BUFF_I0E after ODEL, 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after 2*0DEL + WDEL; 
wait for ODEL; 

NEE <= '1' after ODEL; - init Next Event 

WTCE <= '1' after ODEL; - CAM write cycle 
wait for WDEL; 

WTCE <= '0' after ODEL; 

NEE <= 'Z' after ODEL; 

read Next_Event from CAM 

READ.CAM.LOOP: __ read 3+DW0RD 
for I in 7 to 9 loop __ Reg_32(Indx) 

RDCE <= '1' after ODEL; - CAM read cycle 
wait for RDEL; 
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BUFF.IOE <= DATAin after FFDEL; 
wait for FFDEL; 
RDCE <= '0' after ODEL; 
Reg_32E(I) <= BUFF.IOE after FFDEL; 
wait for ODEL; 

end loop READ_CAM_L00P; 
LOADED <= true; ._ have next event 
HAD.EVENT <= true; 

~ tell CPU to wait 

else 
Send_CPU(WAIT_MSG); __ output WAIT MSG 

end if; 

-- REMAINING CODE EXECUTED ONLY WHEN CAM HAS NEXT.EVENT (including "nulls") 

-- update ARCS_IN_STAT -> conditional on ADD'L_LP_EVENT_PENDING bit 
-- bit 31 of first DWORD returned from CAM: IF = '!'-> add'l events pending 
-- and no update of ARCS_IN_STAT is required 

- IF UPDATE: must determine which INPUT.LP provided next.event 
- read LP_IDs of INPUT.ARCS from LP_RAM_Partition and compare with 
- the FR0M_:,P field of next_event from CAM 

wait on HAD.EVENT until HAD_EVENT; 
if (not LOADED'stable and LOADED) then 

LOADED <= false; _. reset fl 
HAD.EVENT <= false; _. reset ^ 

™BJ!ill_<Z2'ji ■"got eveiit ->not Fl,LL 

- unmask TO t  FROM.LP id from CAM next_event (Reg_32(7)(12 downto 0)) 

for I in 0 to 4 loop 
Reg_32E(10)(I) <= Reg.32(7)(I); - FROM.LP # 

end loop; 

for I in 5 to 15 loop 
Reg.32E(10)(I) <= '0'; __ rest of FR0M_Lp # 

end loop; 

for I in 5 to 7 loop 
Reg_32E(10)(I+ll) <= Reg_32(7)(I); - FR0M_Lp node # 

end loop; 

for I in 19 to 31 loop 
Reg_32E(10)(I) <= '0'; ._ rest of FR0M Lp node # 

end loop; 

wait for ALUDEL; »K^,,« K* * ^t • — above bit twiddle 
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for I in 0 to 4 loop 

Reg_32E(7)(I) <= Reg_32(7)(I+8); 
end loop; 

for I in 5 to 30 loop 

Reg_32E(7)(I) <= '0'; 
end loop; 

-- TOLP 

— 31 is stat bit 

— rest of T0_LP 

Reg_32E(7)(31) <= Reg_32(7)(31); 

wait for ALUDEL; 

if (Reg_32(7)(31) = '0') then 

start of ARCS.IN ids in LP_RAM_Partition 

Next_Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Re6_32(2)))) + 4))); 

— above bit twiddle 

— DO UPDATE 

— RAM address 

— RAM read cycle 

— IN_LP id 

ARCS.Loop: 

loop 

MAE <= DWORD_to_MADD(Next_Addr) after MADEL; 
RWE <= '0' after ODEL; 

IDE <= '1' after ODEL; 

wait for RDEL; 

BUFF.IOE <= DATAin after FFDEL; 
wait for FFDEL; 

RWE <= 'Z' after ODEL + GDEL; 

I0E <= '0' after 0D3L; 

MAE <= "ZZZZZZZZZZZ" after ODEL; 

if (Reg_32(10) = BUFF.IOE) then 
MATCH <= true; 

exit; 

end if; 

Hext.Addr := CHAIfGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Next_Addr))) + I)))- 
STAT.BIT := STAT.BIT +1; - ARCS_IN_STAT(#) 
wait for ODEL; 

end loop ARCS_Loop; 

wait on MATCH until MATCH; 

Reg_32E(3)(STAT_BIT) <= '0'; — set STATUS.BIT 
MATCH <= false; __ reset flag 

- IN_LP=FROM_LP? 

end i:f; ~ if (Reg_32(7)(31) = 'C')    — DO UPDATE 

update LP_Sim_Time -> jump local clock to next_event scheduled time 

— update LP_SIM_Time Reg_32E(6) <= Reg_32(8) after FFDEL; 
wait for FFDEL; 

check next.event for "null": IF NULL -> do Get.Event again 

Also: build "null.msg" for later transmission to arcs_out 
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safe_look_aliead = Reg_32(8) = sim.time + lp_delay 
number of output arcs = Reg_32(5)(15 downto 0) 
ARCS.,0UT in RAM = base.addr + (sum arcs in/out) + 3) 

if (BVtoI(MVL7VtoBV(CHANGE(Reg_32(9)))) = 0) then  - Next.Event = NULL 
HAD.NULL := true; __ send nuii_mSg later 
ACC <= CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Reg_32(6)))) + 

BVtoI(MVL7VtoBV(CHANGE(Reg..32(4))))))) 
after ALUDEL; 

wait for ALUDEL; 

Reg_32E(8) <- ACC after FFDEL; — null safe.time 

NUMARCS.OUT := BVtoI(MVL7VtoBV(CHANGE(Reg_32(5)(15 downto 0)))); 
wait for ALUDEL; 

ACC <= CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Reg_32(2)))) + 
BVtoI(MVL7VtoBV(CHANGE(Reg_52(5)))) + 
3))) after ALUDEL; 

wait for ALUDEL; 

RAM.ADDR := ACC; __ ARcs OUT in LP RAM 
if (Reg_32(7)(31) = '1') then - multiple events 
Get.Event; __ try again 

else 
Send_CPü(WAIT_MSG); 
wait until READYO = '0'; 

_ ********************  MUST SEND NULL MESSAGES OUT TOO!!! ******************** 
using RAM part base_addr 

get number of ARCS_0UT from RAM 
loop through ARCS.OUT and send "null.msg" 
end loop SEND_NULLS; 

During subsequent "Get.Event" in above "if" we retrieved a "real" 
neit_event —> we currently update the sim_time and pass the "real" 
event to the CPU.  Must deal with the fact that a "null" was processed 
first —> i.e., must send "nulls" to all output arcs to update 
LP safetimes for the rest of the simulation. 

end if; 

elsif (BVtoI(MVL7VtoBV(CHANGE(Reg_32(9)))) > 0) then -- sen! CPU Next.Event 

— T0_LP for Next_Event 

Reg_32E(7)(31) <= '0' after FFDEL; - clear multiple bit 
BUFF.IOE <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after FFDEL; 
wait for 0DEL; 

Send_CPU(Reg_32(7)); __ Send TO LP 
wait until READYO = '0'; 

-- FR0M_LP for Next.Event 

BUFF.IOE <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after FFDEL; 
wait for ODEL; 
Send_CPU(Reg_32(10)); - load FR0M Lp 
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— Memr.PTR for Next.Event 

wait until READYü = '0'; 
wait lor ODEL; 

BUFF.IOE <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" alter FFDEL; 
Send_CPU(Reg_32(9)); — load MEM.PTR 
wait until READYO = '0'; 

end il;    ~ il Next.Event = NULL 

~ UPDATE LP's RAM Partition with new ARCS_IN_STATUS and new SIM.TIME 

~ currently in Reg_32(3) and Reg_32(6) respectively ft base.addr = Reg_32(2) 

Next_Addr := Reg_32(2); — RAM Part base.addr 
wait lor FFDEL; 

RAM.UPDATE: — update RAM partition 
lor I in 1 to 2 loop — USe GP reg indx 

BUFF.IOE <= Reg_32(I*3) alter FFDEL; — next event field 
wait lor FFDEL; 

DATAout <= BUFF_I0E alter FFDEL + ODEL,        — put data on bus 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" alter 2*0DEL + WDEL; 

MAE <= DWORD_to_MADD(Next_Addr) alter MADEL;   — RAM address 
RWE <= '1' alter 3*0DEL; - RAM Hrite cycle 
IDE <= '1' alter ODEL; 

wait lor WDEL; 

RWE <= 'Z' alter ODEL + GDEL; 

I0E <= '0' alter ODEL; 

MAE <= "ZZZZZZZZZZZ" alter ODEL; 
wait lor ODEL; 

~ ollset address by '3' lor SIM.TIME location in LP's RAM partition 

Next.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Next Addr))) +3))) 
il HAD.NULL then 

HAD.NULL := lalse; 

SEND.NULL <= true alter WDEL + FFDEL;        — linish RAM.UPDATE 
end il; 

end loop RAM.UPDATE; 

— il Get.Event was "null" we now send null_irsg to all arcs_out 

il (not SEND_NULL'stable and SEND.NULL) then 

Send_null_msg(RAM_ADDR, NUMARCS.OUT); 
end il; 

end il;    ~ il HAVE.EVENT 
I0WAITE <= '0'; 

BUSYE <= '0' alter ODEL; 

end Get_Event; 
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''***♦******♦*♦*♦♦***♦***♦***♦♦***♦♦♦**♦*****♦*♦***♦♦♦***♦+♦*♦♦♦*♦*♦***** 
- POST.EVENT procedure (send EVENT &/or NULL messages) 

- Post_Event pseudo code 

- Registers loaded during CPU_I0_PR0C 

~ REG.32-1 <= T0_LP (will be sender) — LP with event 

- REG_32-2 <= MEMR.PTR to event — with CPU result 

~ REG_32-3 <= 0UT_N0DE # | OUT.LP # — T0_LP for msg 
- update event_time (SIM.TIME + delay) — add DWORD 
- read ARCS_0UT reg (send output to) 

- if ARCS.OUT = T0_LP  (cycle all out arcs) 
send EVENT.MSG 

- (from„lpl to_lp, time.tag, event) — 4*DW0RD 
- else 

send NULL.MSG 

- (from_lp, to_lp, safe_time) — 3+DWORD 

procedure Post.Event is — send EVENT/NULL msg 

variable NUMARCS.OUT : INTEGER; 

begin 

■ load LP_GP_working registers with essential data from RAM Partition 
• must gat pointer to LP_RAM_Partition first 

IOWAITE <='!'; ._ no 8'tlte"Ranges 

MAE <= DW0RD_to_MADD(Reg.32(l)) after MADEL;       - part tbl ptr to 

— base addr 
RWE <= '0' after ODEL; .. RAM read   le 
JOE <= '1' after ODEL; 

wait for RDEL; 

BUFF.IOE <= DATAin after FFDEL; - Lp RAM base addr 
wait for FFDEL; 

RWE <= 'Z' after ODEL + RDEL; 

I0E <= '0' after ODEL + RDEL; 

MAE <= "ZZZZZZZZZZZ" after ODEL; 

Reg_32E(4) <= BUFF.IOE; - temp for base.addr 

don't need ARCS_IN_STATUS -> Next.Addr := base.addr + (1) offset 

Hext.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVI,7VtoBV(CHANGE(BUFF I0E))) + I)))- 
wait for ALUDEL; ._ time to incrernent 

loop to read RAM and load LP_GP registers 

" Reg_32(S) <= LP.DELAY      Reg_32(7) <= LP.Simulation Time 
~ Reg_32(6) <= # ARCS.IN I # ARCS.OUT 

L0AD_REG_L00P: 

for I in S to 7 loop - 5 to 7: indx rags 
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MAE <= DWORD_to_MADD(Next_Addr) after MADEL;   — RAM address 
RWE <= '0' after ODEL; - MM read cycle 
I0E <■ »1« after ODEL; 

wait for RDEL; 

BUFF.IOE <= DATAin after FFDEL; — LP data 
wait for FFDEL; 

KWE <= 'Z' after ODEL + GDEL; 

I0E <= '0' after ODEL; 

MAE <= "ZZZZZZZZZZZ" after ODEL; 

Reg_32E(I) <= BUFF.IOE; - load LP data 

Next.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Next_Addr))) + 1))): 
wait for FFDEL; 

end loop L0AD_REG_L00P; 

Calculate event/iiull_msg time.tag (LP_Siin_Tiine + LP.Delay) 

Reg_32E(8) <= CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Reg_32(7)))) + - Time Tag 

BVtoI(MVL7VtoBV(CHANGE(Reg_32(5))))))); 
wait for ALUDEL; 

Output event/null_msg loop with # ARCS_0UT iterations 

-- # ARCS.OUT is LO.WORD of Reg_32(6)->(15 downto 0) 

Calculate base.addr + offset for 0UT_LP_ARC entries in RAM 

~ already have base_addr in Reg_32(4) 

— offset = tot # IN/OUT ARCS + 3 (4 - essential LP data 0:3) 

~ Bext.Addr := Reg_(4) + suin(HI ft LO WORDS in Reg_32(6)) + 3 

Read LP 0UT_ARC from RAM and send EVENT/NULL.msg as required 

Reg_32E(9) <= HI_L0_ADD(Reg_32(6)); - sum # IN/OUT ARCS 

NUMARCS.OUT := BVtoI(MVL7VtoBV(CHANGE(Reg_32(6)(lS downto 0)))); 
wait for ALUDEL; 

ACC <= CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Reg_32(4)))) + — LP.Part base.addr 
BVtoI(MVL7VtoBV(CHANGE(Reg_32(9)))) + 
3^^; --   (4)  reserved RA 

wait for ALUDEL; 
Next.Addr  := ACC; 

LOOP through OUT.ARCS in RAM. read ft send EVENT or NULL_msg 

I0WAITE <= '1'; 

Send_Msg_Loop: 

while NUMARCS.OUT > 0 loop 

get next LP_0UT from RAM (T0_LP for "msg") ft store (Reg_32(9)) 

MAE <= DWORD_to_MADD(Next..Addr) after MADEL; -- addr for next LP OUT 
RWE <= '0' after ODEL; - RAM read cycle 
IDE <= '1' after ODEL; 
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wait lor RDEL; 

BUFF_I0E <= DATAin after FFDEL; — next LP.OUT 
wait lor FFDEL; 

RWE <= 'Z' alter ODEL + GDEL; 
I0E <= '0' alter ODEL; 

MAE <= "ZZZZZZZZZZZ" alter ODEL; 

Reg_32E(9) <= BUFF.IOE alter FFDEL; — temp for T0_LP 

-- decrement Next_Addr in LP_RAM_Partition 

Next.Addr := CHANGE(BVtoMVL7V(ItoBV(BVtoI(MVL7VtoBV(CHANGE(Next.Addr))) - 1))): 
wait lor ALUDEL; 

T0_LP output lor msg 

Intr_CPU_Send(Reg_32(9)); — T0_LP 

wait until READYO = '0'; — end bus cycle 
RDYE <= '1' alter ODEL; 

~ FROM.LP output lor msg 

Intr_CPU_Send(Reg_32(l)); — FR0M_LP (this LP) 

wait until READYO = '0'; — end bus cycle 
RDYE <= '1' alter ODEL; 

— TIMEJTAG output lor msg (sale_lookahead_time lor null_msg) 

Iiitr_CPU_Send(Reg_32(8)); — Time_Tag 

wait until READYO = '0'; — end bus cycle 
RDYE <= '1' alter ODEL; 

— condition (Is T0_LP the designated LP.OUT lor event?) 

— II YES -> send event else "null" -> loop to next OUT.ARC 

il (Reg_32(3) = Reg_32(9)) then — send EVENT_MSG 

Iiitr_CPU_Send(Reg_32(2)); — PTR to EVENT 

wait until READYO = '0'; — end bus cycle 
RDYE <= '1' alter ODEL; 

else __ send ■■nuii" 

Intr_CPU_Send("00000000000000000000000000000000"); 
wait until READYO = '0'; 

RDYE <= '1' alter ODEL; 
end il; 

NUMARCS.OUT := NUMARCS.OUT - 1; 

end loop Send..Msg_LooT ; 

BUSYE <= '0' after 01 EL; 

I0WAITE <= '0'; — aiiow state changes 

end Post_Event; 
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- Decode procedure (Instr from CPU: tLIC^'O'; A15='l'; A2='0') 

- Decode and call identified procedure for execution 

procedure DECODE (signal Opcode : MVL7_VECT0R(2 downto 0)) is 

begin 

— INITIALIZE SIMULATION 

— PGST.'ISG (RCV from CPU) 
— GET.EVENT 

— POST.EVENT (SEND to.LPs) 

case Opcode is 

when "000" => Init.Sim; 

when "001" => Post_Msg; 

when "010" => Get.Event; 

when "Oil" => Post.Event; 

when others => assert FALSE report "Invalid DES opcode" 

severity FAILURE; 
end case; 

end DECODE; 

begin 

wait on EXECUTE until EXECUTE; 

DEC0DE(0PC0DE(31 downto 29)); 
DONEE <= true; 

end process EXECUTE.PROC; 

— decode & exec DES funcs 

— opcode executed 

— Process Output Multiplexing 
-****************i|i«********«*i»**i|ii»****##**»***##**,tl>##,4l+#+###+%+lt#)|l4l,,,,,, 

I0WAIT <= IGWAITC when not IOWAITC'quiet else 

I0WAITE when not I0WAITE'quiet else 

I0WAITS when not I0WAITS'quiet else 
I0WAIT; 

FLAGS <= FLAGSE when not FLAGSE'quiet else 

FLAGSS when not FLAGSS'quiet else 
FLAGS; 

BUSYB <=       BUSYS when no^ BUSYS'quiet else 
BUSYC when not BUSYCquiet else 
BUSYE when not BUSYE'quiet else 
BUSYR; 

— WAIT for state change 

FLAGS register 

-- BUSY signal 

BUSY <= BUSYB; 

RDY <= RDYC when not RDYCquiet else 

RDYE when not RDYE'quiet else 
RDY; 

READYO <= RDY; 

BMA <= MAS when not MAS'quiet else 

MAC wh^n not MAC'quiet else 

-- end CPU bus cycle 

-- RAM address 
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KAE when not MAE'quiet else 
BMA; 

MA <= BMA; 

BRW <= RWS when not RWS'quiet else 
RWC when not RWCquiet else 
RWE when not RWE'quiet else 
BRW; 

RW <= BRW; 

BIO <= IOS when not XOS'quiet else 

IOC when not IOC'quiet else 

IOE when not I0E'quiet else 
BIO; 

RAM Read/Write 

- RAM I/O 

10 <= BIO; 

RDCB <= RDCS when not RDCS'quiet else 

RDCE when not RDCE'quiet else 
RDCB; 

RDC <=  RDCB; 

WTCB <= WTCS when not WTCS'quiet else 

WTCE when not WTCE'quiet else 
WTCB; 

WTC <= WTCB; 

NEB <= NES when not NES'quiet else 

KEE when not NEE'quiet else 
NEB; 

CAM read 

~ CAM write 

CAM new event 

NE <=  NEB; 

BUFF.IO <= 

CPU.IO <= 

BUFF_I0C when not BUFF_IOC'quiet else 
BUFF.IOE when not BUFF.IOE'quiet else 
BUFF.IOS when not BUFF.IOS'quiet else 
BUFF.IO; 

CPU.IOC when not CPU.IOCquiet else 

CPU_I0S when not CPU_I0S'quiet else 
CPU.IO; 

DONE <= DONEC when not DONECquiet else 

DONEE when not DONEE'quiet else 
DONE; 

10 buffer register 

— CPU ID state 

DONE flag 

Reg_32(l) <= Reg_32S(l) when not Reg_32S(l)'quiet else — GP registers 
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Reg_32C(l) when not Reg_32C(l)'quiet else 

Reg_32E(l) when not Reg_32E(l)'quiet else 
Reg_32(l); 

Reg_32(2) <= Reg_32S(2) when not Reg_32S(2)'quiet else 

Reg_32C(2) when not Reg_32C(2)'quiet else 

Reg_32E(2) when not Reg_32E(2)'quiet else 
Reg_32(2); 

Reg_32(3) <= Reg_32S(3) Hhen not Reg_32S(3)'quiet else 
Reg_32C(3) when not Reg_32C(3)'quiet else 
Reg_32E(3) when not Reg_32E(3)'quiet else 
Reg_32(3); 

Reg_32(4) <= Reg_32S(4) when not Reg_32S(4)'quiet else 
Reg_32C(4) ^her, not Reg_32C(4)'quiet else 
Reg_32E(4) when not Reg_32E(4)'quiet else 
Reg_32(4); 

Reg_32(5) <= Reg_32S(5) when not Reg_32S(S)'quiet else 
Reg_32C(5) when not Reg_32C(5)'quiet else 
Reg_32E(S) when not Reg_32F(5)'quiet else 
Reg_32(5); 

Reg_32(6) <= Reg_32S(6) when not Reg_32S(6)'quiet else 

Reg_32C(6) »hen not Reg_32C(6)'quiet else 
Reg_32E(6) when not Reg_32E(6)'quiet else 
Reg_32(6); 

Reg_32(7) <= Reg_32S(7) when not Reg_32S(7)'quiet else 
Reg_32C(7) when not Reg_32C(7)'quiet else 
Reg_32E(7) when not Reg_32E(7)'quiet else 
Reg_32(7); 

Reg_32(8) <= Reg_32S(8) when not Reg_32S(8)'quiet else 
Reg_32C(8) when not Reg_32C(8)'quiet else 
Reg_32E(8) when not Reg_32E(8)'quiet else 
Reg_32(8). 

Reg_32(9) <= Reg_32S(9) when not Reg_32S(9)'quiet else 

Reg_32C(9) when not Reg_32C(9)'quiet else 

Reg_32E(9) when not Reg_32E(9)'quiet else 
Reg_32(9); 

Reg_32(10) <= Reg_32S(10) when not Reg_32S(10)'quiet else 
Reg_32C(10) when not Reg_32C(10)'quiet else 
Reg_32E(10) when not Reg_32E(10)'quiet else 
Reg_32(10); 

end BEHAVIOR; 
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B.3   Parallel I/O Behavior 

This appendix provides the source listing c: the VHDL architectural behavior of 

the parallel I/O ports ujed in the DES coprocessor system. The behavior is taken from 

Armstrong's chip-level model of the Mark II processor (2:120-123). The parallel I/O com- 

ponent instantiation of the DES coprocessor does not use the interrupt line provided with 

this behavior. 
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— FILE: par_port_beh.vhd 

— AUTHOR: Paul J. Taylor 

— PURPOSE: Architectural BEHAVIOR ol the PARALLEL PORT 
— REFERENCE: Chip-Level Modeling with VHDL 

(James Armstrong pp. 120-123) 

library ZYCAD; 

library DESIGN; 

use ZYCAD.TYPES.all; 

use ZYCAD.BV.ARITHMETIC.all; 
use WORK.all; 

use WORK.SYSTEM.all; 

entity PAR is 

generic(GDEL, FFDEL, BUFDEL: TIME); 
port( DI: in DWORD; 

DO: out DWORD:= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; 
NDS1, DS2, MD, NCLR: in MVL7; 

STB: in MVL7; 

NINT: out MVL7); 
end PAR; 

architecture BEHAVIOR ol PAR is 

signal SO. SI. S2, S3: MVL7; 

signal SRQ: MVL7; 

signal Q. Ql. q2: DWORD:= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; 

begin 

S: block (SI = '1' and NCLR = '1') 
begin 

Ql <= guarded DI alter FFDEL; 

q2 <= "00000000000000000000000000000000" alter FFDEL when (NCLR='0') 
else Q2; 

DO <= q alter BUFDEL when (S3 = '1') 

else "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" alter BUFDEL; 
end block; 

50 <= not NDS1 and DS2 alter GDEL; 

51 <= (SO and MD) or (STB and not MD) alter (2+GDEL); 
52 <= SO or not NCLR alter GDEL; 

53 <= SO or MD alter GDEL; 

SERVRq: process (S2. STB) 
begin 

il (S2 = '0') then 

SRq <= '1' alter FFDEL; 

elsil (S2 = '1') and (not STB'STABLE) and (STB = '0') then 
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SRQ <= '0' alter FFDEL; 
else 

SRQ <= SRQ; 
end if; 

end process SERVRQ; 

HINT <= not SRQ nor SO after GDEL; 
Q  <= Ql when not Ql'QUIET else 

Q2 when not Q2,QUIET else 
Q; 

end BEHAVIOR; 
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B.4    RAM Memory Behavior 

The RAM memory behavior is shown in this appendix. The basic operation follows 

that of an example RAM memory included with the Zycad VHDL system (32:10-51, 10- 

53). The behavior includes procedures for both read and write operations and is initialized 

with the RAM partition pointer table via a file read operation provided by the standard 

textio package. 
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— FILE:    rain_mein_beh. vhd 
— AUTHOR:   JT,  PH,   GWH 
~ PURPOSE: Architectural BEHAVIOR of  the RAM_MEM 
~ DATE:  27 Aug 91 

— SOURCE: ZYCAD User's Manual pp. 10-51 — 10-53 
— HISTORY:  None 

library ZYCAD; 

library DESIGN; 

use ZYCAD.TYPES.all; 

use ZYCAD.BV.ARITHMETIC.all; 
use WORK.all; 

use WORK.SYSTEM.all; 

use WORK.BUS.SYS.all; 

use STD.TEXTIO.all; 

entity RAM.MEM is 

generic(Ndata: Positive; — # ol data lines 

Naddr: Positive; — # of addr lines 
RDEL. DISDEL: TIME); — delay times 

port(DATAI: in DWORD; — data in lines 
DATAO: out DWORD:= 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; — data out lines 

ADDR: in MVL7_VECT0R(Naddr-l dovmto 0);   — address lines 
CE: in MVL7; __ chip enable (high) 

RW: in MVL7); — read (low) and 

~ write (high) 
end RAM_MEM; 

architecture BEHAVIOR of RAM.MEM is 
begin 

assertion for changes in address lines 

Assertion: process 

begin 

assert not(RW='l' and CE = '1' and ADDR'EVENT) 

report "Address lines changed while RAM is Write Enabled" 
severity WARNING; 

wait on CE, RW, ADDR; 

end process Assertion; 

the memory model 

process 

subtype ETYPE is DWORD; 

type MEMTYPE is array (Natural range <>) of ETYPE; 

variable m: MEMTYPE(0 to 2**ADDR'length-l); 

variable TEMP : BIT_VECT0R(31 downto 0); — for init only 

file RAMDEF : TEXT IS IN "ram.text"; — memory deidae file 
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variable STARTUP : BOOLEAN := true; — memory need init? 

variable L : LINE; — current input line from file 
variable J : INTEGER; — RAM index 

procedure do_read is 
begin 

for i in ADDR'RANGE loop 

ii ADDR(i) - 'X' or ADDR(i) = >Z'  then 
DATAO <= (others => 'Z'); 
return; 

end if; 

end loop; 

DATAO <= m(BVtoI(MVL7VtoBV(ADDR))); 
end do_read; 

procedure do_write(data: ETYPE) is 
begin 

for i in ADDR'RANGE loop 

if ADDR(i) = 'X' or ADDR(i) = >Z>  then 
assert false 

report "Attempted write to bad RAM address" 
severity WARNING; 

DATAO <= (others => 'Z'); 
return; 

end if; 

end loop; 

m(BVtoI(MVL7VtoBV(ADDR))) := data; 
DATAO <= data; 

end do.write; 

begin 

— The variable m and the port DATAO are initialized correctly 

— at elaboration time. This makes it best to wait at the top 
— of the process. 

if STARTUP then __ initialize the RAM only once 
for J in 0 to 19 loop 

readline(RAMDEF. L); 
read(L. TEMP); 

m(J) := CHANGE(BVtoMVL7V(TEMP)); — Loading RAM 
end loop; 

STARTUP := false; 
end if; 

wait on CE, RW, DATAI. ADDR; 

if (CE = '1') then 

if DATAI'EVENT and RW = '1' then 

do.write(DATAI); 

elsif ADDR'EVENT and RW /= 'X' and RW /= 'Z' then 
if RW = '1' then 
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do_Hrite(DATAI); 
else 

do_read; 
end if; 

elsif RWEVENT then 
if RW = '1' then 

do_Hrite(DATAI); 
elsif RW = '0' then 

do_read; 
else 

do_Hrite((DATAI'RANGE => 'X')); 
end if; 

end if; 
else 

DATAO <= (others => 'Z'); 
end if; 

end process P; 

end BEHAVIOR; 
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B.5    CAM Memory Behavior 

The source code listing for the behvior of the CAM memory, described in Section 

4.3.4.3, is included in this appendix. A single CAM process is regulated by control signals 

from the DES coprocessor. The CAM's operation is sensitive to both read and write control 

lines, which are constantly monitored for changes. 

The CAM maintains an array of events, each 78 bits in width, by writing DES 

coprocessor inputs in the first available cell and provides the next event when read by the 

DES coprocessor. Reads require both an identical match (i.e., designated TO_LP) and a 

"less than" comparison (i.e., earliest time) of valid entries to retrieve the next event for 

CPU execution. Additionally, the CAM provides a free-space status to the DES coprocessor 

after each write and a multiple message indication, if the next event was provided by an 

LP that has additional messages waiting for execution in the CAM. 
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— FILE: CAM.BEH.vhd 
~ AUTHOR: Paul J. Taylor 
~ PURPOSE: Architectural BEHAVIOR of the DES CAM 

— Overview of CAM operation: 

— Must store all events for all LPs (20 max per node) 
— Each LP is limited to 10 Input_Arcs max 

~ Using "median" values: (10 LP/node)(5 input/LP) = 50 inputs/node 

— Assuming an average of 10 events/LP pending => CAM capacity >= 500 events 

— Constraints: 

Event fields/CAM row (or row) " 80 bits = 8 bytes 
I valid bit  | T0_LP I FR0M_N0DE I FR0M_LP | TIME.TAG I MEMR_PTR | 
'  ! bit   15 bits I  3 bits  | 5 bits  I 32 bits  I  32 bits | 
I    77    |76  72171      69168    64163     32131      0 

1024 bytes => 128 events      2048 bytes => 256 events 
4096 bytes => 512 events      8192 bytes => 1024 events 

512 addresses => 10 address bits (to store 512 events) 

— Considerations: 

~ VALID BIT: set "high = '1'" as event is read/stored by CAM 
Toggle "low = '0'" when event is written/sent by CAM 
Logical "AND" of all valid bits will determine when CAM is full 

~ MULTIPLE BIT: set "high = '1'" if. during search for Next.Event. multiple 
matches of both T0_LP and FR0M_LP fields occurs. 
Bit 31 of first DWORD sent to DES coprocessor during Get_Evert 
Doesn't require extra field in CAM row; rather, it's a fill 
bit for the first DWORD sent to DES coprocessor. 

— Determine CAM full status after storing new event 

— DES coprocesor will read CAM status after event store (to update DES flags) 
~ Might consider adding "control" line to distinguish "status" from "event" read 
--♦♦♦»»♦♦♦»♦♦♦♦»♦♦♦♦♦^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

library ZYCAD; 
library DESIGN; 
use ZYCAD.TYPES.all; 
use ZYCAD.BV.ARITHMETIC.all; 
use WORK.all; 
use WORK.SYSTEM.all; 
use WORK.BUS_SYS.all; 

CAM ENTITY 

entity C_MEM is 

generic(RDEL, WDEL, DISDEL: TIME); 
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port(DATAinto : in DWORD; 

DATAoutof : out DWORD:= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; 
CLK : in BIT; 

DS1. TOSS, MODE, N.CLR : in MVL7); 
end C_MEM; 

~ CAM Pseudo/Algorithm 

— Write to CAM:  (DES Post.Msg) 

Read DATA.BUS for (3) successive DWORDS 

Traverse array of CAM rows till first "invalid" (i.e. bit 77 = '0') 
set bit 77 = '1' (i.e. valid) 

save this location (address) for successive writes/stores 

Mask least significant 13 bits of 1st DWORD in, and store in 76 downto 64 
Store 2nd DWORD in 63 downto 32 

Store 3rd DWORD in 31 downto 0 

Check CAM.FULL status 

logical "AND" of all CAM row "valid" bits ('1' => FULL) 

lor loop (size of CAM) exit on any "not FULL" 

Send CAM.STATUS to DES coprocsssor : write immediately after read 

~ Read from CAM: (DES Get.Event) 

Read DATA.BUS and buffer "who" (T0_LP) requires Next.Event 
Traverse array of CAM rows 

search for match on "T0_LP" field ("valid" bit 77 = '1') 

Traverse array of matches for earliest TIME.TAG (Next.Event): NOTE ADDRESS 

NOTE: additional pass searching for FR0M_LP matches with Next.Event 

if multiple matches -> set MULTIPLE bit "high = '1'" 

Save Next.Event Address (send this row) -> Toggle "valid" bit to '0' 
Send Next.Event (3*DW0RD) to DES coprocessor 

construct 1st DWORD: bit31 = MULTIPLE bit; bits 12 downto 0 = ro/FROr" LP 

2nd DWORD: TIME.TAG;   3rd DWORD: KEME...PTR (fi^1;„Erent) 

— CAM ARCHITECTURE 

architecture BEHAVIOR of C_MEM is 

begin 

CAM.PROC : process 

subtype ADDR is MVL7_VECT0R(9 downto 0); — 512 event addr 

subtype ROW is MVL7_VECT0R(77 downto 0); — event store 

type MEMTYPE is array (Natural range <>) of ROW; 

variable EVENT: MEMTYPE(0 to 2**ADDR'length-l):= 
MEMTYPE'(0 to 2**ADDR'length-l => 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ") 
variable Next.Event   : ROW; __ Send to DES 
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variable FULL BOOLEAN := false; 
variable SEKD_STAT BOOLEAN := false; 
variable EVENT.ID.REG DWORD; 
variable HAVE.ADDR BOOLEAN := false; 
variable ROW.LOC INTEGER := 0; 
variable EARLIEST.TIME INTEGER: = 2147483647; 
variable EARLIEST.ADDR INTEGER; 
variable EVENT.SEG INTEGER :• l; 
variable HAVE.EVENT BOOLEAN := false; 
variable MULTIPLE BOOLEAN :- false; 

begin 

wait on DS1, NDS2, MODE, N_CLR; 

— Clear CAM by reseting bit 77 in all event 

if N_CLR = '0' then 

for I in 0 to 2**ADDR'length-l loop 

EVENT(I)(77) := '0'; 
end loop; 

end if; 

- Write EVENT into CAM 

if (NDS2 = '1' and MODE = '0') then 

if not HAVE.ADDR then 

FREE_SPACE_L00P: 

for I in 1 to 2**ADDR'length-l loop 

R0W_L0C := R0»_L0C + I; 

if EVUT(R0W_L0C)(77) = '0' then 

EVENT(R0W_L0C)(77) := '1'; 
HAVE.ADDR := true; 

exit; 

end if; 

end loop FREE_SPACE_L00P; 
end if; 

hold T0_LP 

new event location 

event addr index 

7FFFFFFF (max time) 

event segment index 

have next event 

have multiple? 

-- clear CAM 

reset "valid" bits 

— WTC = >1'  and WE = '0' 

traverse all CAM rows 

"FREE" event space 

use this address 

HAVE.ADDR for event 

— Wait for event address then Read data.bus for 3+DW0RD event and store in CAM 

if HAVE.ADDR then 

case EVENT.SEG is 

— Store first event field (event.id) and toggle "HAVE.ADDR" 

when 1 => EVENT(R0W.L0C)(76 downto 64) := CHANGE(DATAinto(12 downto  ■; 
EVENT.SEG := EVENT.SEG +1; 

— Store second event field (time.tag) 
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when 2 => EVENT(ROV_LOC)(63 downto 32) := CHANGE(DATAinto); 
EVENT.SEG := EVENT.SEG + 1; 

Store third event field (memr_ptr) 

when 3 => EVENT(R0W_L0C)(31 downto 0) ;= CHAri,;E(DATAinto); 
EVEKT_SEG 
SEND.STAT 
HAVE.ADDR 

= i; 
= true; 
= false; 

report status to coprocessor 

— EVENT is stored, must check CAM.FULL status 

— done in paral]al 

— row not in use 

-- row In use 

CHECK_CAM_FULL_L00P: 

for I in ROVLLOC to 2**ADDR'length-l loop — full to ROW LOC 
if EVENT(I)(77) = '0' then 
FULL := false; 
exit; 

elsif EVENT(I)(77) = '1' then 
FULL := true; __ keep checking 

end if; 
end loop CHECK_CAM_FULL_L00P; 

when others => assert FALSE report "Invalid CAM Write" 
severity FAILURE; 

end case; 
end if; — if HAVE_ADDR 

end if; — if (NDS2 = 'I'  and MODE = '0') 

- Report CAM.FULL status out to DES coprocessor 

if SEND_?TAT then 
wait until DSi = '1';   RDC = >^> 
if FULL then __ send FULL stat msg 
DATAoutof <= "00000000000000000000000000000001" after FFDEL, 

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after RDEL; ' 
else ~ send NOT FULL stat msg 
DATAoutof <= "00000000000000000000000000000000" after FFDEL, 

"ZZZZZZZZZZZZZZZZZZZZ7ZZZZZZZZZZZ" after RDEL;' 
end if; 
SEND.STAT := false; 

end if; 

READ EVENT from CAM 

- wait on MODE until MODE = '1'; - „ad event coming 
if (NDS2 = '1' and MODE = '1') then — WTC= '1' and NE= '1' 

EVENT. TD.REG := 'JATAinto; - TO.LP for Next .Event 

- traverse array of CAM rows (actually done in parallel!) 
• Match Conditions: 

must be valid event - bit (77) = '1' 
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must be lor T0_LP - bits (76 downto 72) match T0_LP's (count matches) 

must be earliest time - bits (63 downto 32) are smallest 

KEXT_EVENT_L00P: 

lor I in 0 to 2**ADDR,length-l loop 

il (EVENT(T)(77) = '1' and (EVENT(I)(76 donnto 72) = 

CHANGE(EVENT_ID_REG(4 downto 0)))) then 
il EARLIEST.TIME > BVtoI(MVL7VtoBV(EVENT(I)(63 downto 32))) then 

EARLIEST.TIME := BVtoI(MVL7VtoBV(EVENT(I)(63 downto 32))); 
EARLIEST.ADDR := I; 

end il; 

Kext_Event := EVENT(EARLIEST_ADDR); 
end il; 

il I = 2**ADDR,length-l then 

HAVE.EVENT := true; 

EVENT(EARLIEST_ADDR)(77) := '0'; — "used" 

Next_Event(77) := '0'; — assume "NO" multiples 
end il; 

end loop NEXT_EV'iNT_L00P; 

wait lor FFDEL; — toggle bit(77) above 

- Search matches Irom above looking lor multiple occurences ol same FROM.LP 
- lor updating ARCS_IN_STATUS 

il (MODE = '1' and HAVE_EVENT) then 

MULTIPLE_EVEKT_L00P: 

lor I in 0 to 2**ADDR'length-l loop 

il (EVENT(I)(77) = >X>  and (EVENT(I)(76 downto 64) = 

Next.Event(76 downto 64))) then 

-- Multiple FROM.LP events 
DATAoutolCSl downto 13) <= "1000000000000000000"; 
exlt; — toggle multiple event 

else 

DATAoutol(31 downto 13) <= "0000000000000000000"; 
elld ^f; — no multiple events 

end loop MULTIPLE_EVENT_L00P; 

wait lor FFDEL; — toggle MSB bit above 
end il; — il (MODE -• '1' and EAVE.EVENT) 

end il; — il (WTC" '1' and NE= '1') 

- Send Next_Event to DES (to include MULTIPLE status) 

il (DS1 = '1' and HAVE.EVENT) then — RDC = '1' 

■ MUST LOdP FOR 3*DW0RD OUTPUT 

case EVENT.SEG is 

• send 1st part ol Next_Event (event_id) 

when 1 => DATAoutol(12 downto 0) <= CHANGE(Next_Event(76 downto 64)); 
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wait lor FFDEL; 

-- send 2nd part o'. Next.Event (time_tag) 

when 2 => DATAoutof <= CHANGE(Next_Event(63 downto 32)); 
wait l&r FFDEL; 

— send 3rd part of Next.Event (memory pointer) 

when 3 => DATAoutol <= CHANGE(Next_Event(31 doanto 0)); 
wait for FFDEL; 
EVENT.SEG := 0; — reset for next 
HAVE.EVENT := false; ii   ii 

when others => assert FALSE report "Invalid CAM Read" 
severity FAILURE; 

end case; 
EVENT.SEG := EVENT.SEG + i; 

DATAoutof <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" after RDEL; 
end if; 

end process CAM_PR0C; 

end BEHAVIOR; 
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Appendix C.  DES Coprocessor System Test 

This appendix contains the DES coprocessor system configuration, the system test- 

bench used to verify the DES coprocessor operation, and the CPU driver for testbench 

stimulation. 

C-l 



C.l    DES System Configuration 

The DES coprocessor system configuration is given in this appendix. The configura- 

tion encapsulates the entity behviors required by the testbench. The source code listings 

for the entity behaviors is included in Appendix B. 
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library ZYCAD; 
use ZYCAD.TYPES.all; 
use WORK.all; 
use WORK.SYST2M.all; 
use WORK.BUS_SYS.a.l3h 

configuration Des_system of Des_sys_test_bench is 
for test 
for CLOCK.CKT: Sys.clk 
use entity WORK.CLOCK_CKT(BEHAVIOR); 

end for; 
for CPU: CPU.driver 

use entity WORK.CPU_driver(BEHAVIOR); 
end for; 
for COPROC: DES.sys 
use entity WORK.DES_sys(CHIP_LEVEL); 

end for; 
end for; 

end Des_system; 
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C.2   DES Sytem Test Bench 

The testbench entity for the DES coprocssor system is contained in this appendix, 

The three components making up the testbench (i.e., DES system, CPU driver, and Clock) 

are declared in the architectural body. The signal mapping between components is included 

to provide the testbench interconnections shown in Figure 5.1. A stopping process is also 

included to prevent simulation runaway. Simulation runtimes can be varied by adjusting 

the stop^im time accordingly. 
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— FILE: Des_sys_test_bench.vhd 
— AUTHOR: Paul J. Taylor 
— PURPOSE: The test,.beiich lor the DES coprocessor system 

library ZYCAD; 
library DESIGN; 
use ZYCAD.TYPES.all; 
use WORK.all; 
use WORK.SYSTEM.all; 
use WORK.BUS.SYS.all; 

— THE ENTITY DECLARATION: 

entity des_sys_test_bench is 
end   des_sys_test_bench; 

— THE ARCHITECTURAL BODY: 

architecture test of des_sys_test_bench is 

component DES.sys 
port(RUN 

CLK 
RESETIN 
WR 
NPS1 
NPS2 
CMDO 
INTR 
READYO 
BUSY 
ERROR 
ADD.STR 
SYSIN 
SYSOUT 

end component; 

in MVL7; 
in BIT; 
in MVL7; 
in MVL7; 
in HVL7; 
in MVL7; 
in MVL7; 
out HVL7; 
inout MVL7; 
out MVL7; 
out MVL7; 
in MVL7; 
in DWORD; 
out DWORD); 

component CPU_dri 
port(RUN 

CLOCK 
RESETout 
WRout 
M_I0out 
AlSout 
A2out 
INTin 
RDYin 
BUSYin 
ERRin 
ASTRout 

ver 
in MVL7; 
in BIT; 
out MVL7 
out HVL7 
out MVL7 
out MVL7 
out MVL7 
in MVL7 
in MVL7 
in MVL7 
in MVL7 
out MVL7; 
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DATAout 
DATAin 

end component; 

out DWORD; 
in DWORD); 

component Sys_clk 
generic(PER: TIME := 125 ns); 
port(CLK2: inout BIT; RUN: in HVL7); 

end component; 

signal STOP.SIM : BOOLEAN := ; 
signal RUN :  MVL7; 
signal CLK, CLOCK. CLK2 •  BIT; 
signal RESETIN. RESETout MVL7 
signal WR, WRout MVL7 
signal NPS1. M.IOout MVL7 
signal NPS2. AlSout MVL7 
signal CMDO, A2out MVL7 
signal INTR, INTin MVL7 
signal READYO, RDYin MVL7 
signal BUSY, BUSYin MVL7 
signal ERROR. ERRin MVL7 
signal ADD.STR. ASTRout  . HVL7 
signal SYSIN. DATAout   : DWORD; 
signal SYSOUT. DATAin   : DWORD; 

begin 

false; 

CLOCK.CKT: Sys.clk port map (CLK2. RUN); 

CPU: CPU.driver port map (RUN. CLOCK. RESETout. WRout, M.IOout. A15out. A2out, 
INTin. RDYin. BUSYin. ERRin, ASTRout. DATAout, DATAin); 

COPROC: DES.sys port map (RUN. CLK. RESETIN. WR. NPS1. NPS2, CMDO, INTR, 
READYO. BUSY. ERROR, ADD.STR, SYSIN, SYSOUT); 

~ CPU.driver to DES.Sys signal correspondence 

CLK <= CLK2; 
CLOCK <= CLK2; 
RESETIN <= RESETout; 
WR <= WRout; 
NPS1 <= H_I0out| 
NPS2 <= A15out; 
CMDO <= A2out; 
INTin <= INTR; 
RDYin <= READYO; 
BUSYin <= BUSY; 
ERRin <= ERROR; 
ADD.STR <= ASTRout; 
SYSIN <= DATAout; 
DATAin <= SYSOUT; 
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RUN_TEST: process 
begin 
RUN <= '1'; 
STOP.SIM <= true after 30_000 ns; 
wait for 100_000 ns; 

end process RÜN_TEST; 

— STOP.CONTROL process 

— Purpose: Terminates the simulation 

STOP.COHTROL: process 
begin 

wait until STOP.SIM = truo; 
assert false report "Simulation Done" severity failure; 

end process ST0P_C0NTR0L; 

end Test; 
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C.3    CPU Driver Behavior 

The testbench stimulus is provided by the CPU driver contained in this appendix. 

The following source code activates a DES coprocessor test with one logical process per 

computing node. Multiple LP configurations are implemented with an extension to this 

driver. 

The CPU control signals and system bus are activated by the test process from thd 

CPU driver entity. Procedures are included for frequently used operations such as loading 

opcode instructions and operands for the DES coprocessor system. An operate procedure is 

also included to simulate CPU's operation when not directly driving the DES coprocessor. 

The CPU driver process is sensitive to the DES coprocessor's READYO status line 

and. bus cycles are initiated on both negative and positive system clock transitions. 
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~ FILE: CPU_driver.vhd 
— AUTHOR: Paul J. Taylor 

— PURPOSE: CPU driver for DES coprocessor test_bench 
—♦****************++************* + **** + *** + *++++ +++:t,4t+++ + + + 

library ZYCAD; 
library DESIGN; 
use ZYCAD.TYPES.all; 
use WORK.all; 
use WORK.SYSTEM.all; 
use WORK.BUS.SYS.all; 

-- THE ENTITY DECLARATION: 

entity CPÜ_driver is 
port(RUN : in MVL7; 

CLOCK : in BIT; 
RESETout : out MVL7 
WRout : out MVL7 
M.IOout : out MVL7; 
A15out : out MVL7; 
A2out : out MVL7; 
INTin : in MVL7; 
RDYin : in MVL7; 
BUSYin : in MVL7; 
ERRin : in MVL7; 
ASTRout : out MVL7; 
DATAout : out DWORD; 
DATAin : in DWORD); 

end CPU.driver; 

~ THE ARCHITECTURAL B0D\: 

architecture BEHAVIOR of CPU_driver is 

begin 

~ ONE.LP process 

PURPOSE:  Exercise the DES coprocessor.  Run the fundamental 
Procedures (Initialize, Post.Message, Get_Event, 
and Post_Event) on Discrete Event Simulation with 
one (1) LP on CPU node (i.e. carwash config #1). 

0NE_LP: process 

variable SET_UP 
variable LOADED 
variable DO_INIT_SIM 
variable L0AD_P0ST_MSG 

BOOLEAN 
BOOLEAN 
BOOLEAN 
BOOLEAN 

= false; 
= false; 
= false; 
= false; 
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variable DO_PDST_MSG   : BOOLEAN := false; 
variable LOAD_GET_EVENT : BOOLEAN := false; 
variable DO_GET_EVENT  : BOOLEAN := false; 
variable L0AD_P0ST_EVENT: BOOLEAN := false; 
variable D0_P0ST_EVENT : BOOLEAN := false; 

~ LOAD.INSTR procedure 

~ PURPOSE:  Send OPCODE to DES Coprocessor 

procedure LOAD_INSTR (INPUT : DWORD) is 

variable OPCODE : DWORD; 

begin 

OPCODE := INPUT; 
M.IOout <= 'Z', '0' after 5 ns; 
WRout  <= >1> ,   'l' after 5 ns; 
AlSout <= >2> ,   'V  after S ns; 
A2out  <= 'Z', '0' after 5 ns; 
DATAout <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ". 

OPCODE after S ns; 
ASTRout <= '0', '1' after PER/2; 

end LOAD.INSTR; 

— LOAD.DATA procedure 

~ PURPOSE:  Send OPERAND to DES Coprocessor 

procedure LOAD.DATA (INPUT : DWORD) is 

variable OPERAND : DWORD; 

begin 

OPERAND := INPUT; 
K.IOout <= 'Z', '0' after 5 ns; 
WRout  <= >2',   »V  after 5 ns; 
AlSout <= 'Z'. •!' after 5 ns; 
A2out  <= >Z',   '1' after 5 ns; 
DATAout <= "ZZZZZZZZZZZZZZZZZ7ZZZZZZZZZZZZZZ", 

OPERAND after 5 ns; 
ASTRout <= '0'. '1' after PER/2; 
wait for PER/2; 

end LOAD.DATA; 

- IHT.SERV procedure 
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— PURPOSE:  Service interrupt requests from Coprocessor. 

Acknowledges by changing status of control lines 

to address the coprocessor (A15) in 10 space (M_I0) 
and setting mode to read (WRout). 

Alter bus cycle (RDYin = '0'), disconnect COP by 
resetting control lines. 

—♦♦♦♦♦♦*♦♦*♦♦♦♦♦♦♦*♦*♦♦♦*♦♦♦*♦♦♦+♦*♦♦♦♦♦♦♦♦♦++++++4[++++++++ 

procedure INT_SERV is 

begin 

-- COP interrupts CPU 

assert (RDYin = '1') report "not RDYin during INT Request" 
severity WARNING; 

if (RDYin = '1') then — and (RDYin = '1')) then 

M_I0out <= '0' after ODEL; — I/O address space 

AlSout <= '1' after ODEL; — cop address 

WRout <= '0' after ODEL; — cpu read cycle 
wait for ODEL; 

wait until (RDYin = '0'); — ends cop write cycle 
end if; 

end INT_SERV; 

 ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦:M*********.M I ♦♦♦♦•M********♦♦♦♦♦*♦♦♦ 
— OPERATE procedure 

— PURPOSE: Perform CPU operations. Wait until interrupt 

received from DES Coprocessor, then service it. 
—*********************************,************************ 

procedure OPERATE is 

begin 

WOSK-Loop: — CPU "on" with RUN 
while ((RUN = '1') and (BUSYin = '1')) loop 

DATAout <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";    — Release bus 

M.IOout <= 'Z' after ODEL; — Release Coprocessor 
WRout <= 'Z' after ODEL; 

AlSout <= '0' after ODEL; 

A2out <= '0' after ODEL; 

wait for ODEL; 

if (INTin = '1') then — service int rqst 
INT.SERV; 

end if; 

end loop W0RK_Loop; 

end OPERATE; 
—********************************************************************** + }t;++:)l 

— BEGIN 0NE_LP PROCESS 
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begin 

--♦♦**♦,♦♦♦♦♦«♦♦♦♦***++*»+^*++++^++#++##^#t+^%+!(i](i+!([:([++it[])[!tt])tit[#j(ti)c+i[})[i4:^ + + + + + + + ^ 

— Load OPCODE and OPERANDS for INIT_SIM procedure 

if not LOADED then __ send instr & data 

if not SET.UP then _. init coprocessor 
RESETout <= '1'. '0' after PER/2; 
SET.UP := false; 

end if; 

L0AD_INSTR("00000000000000000000000000000000"); 
wait until ((RDYin = '0') and (not CLOCK'stable)); 

L0AD_DATA("00000000000000000000000000000000"); 
wait until ((RDYin = '0') and (not CLOCK'stable)); 

L0AD_DATA("00000000000000000000000000000100"); 
wait until ((RDYin = '0') and (not CLOCK'stable)); 

L0AD_DATA("00000000000000000000000000000010"); 
uait until ((RDYin = '0') and (not CLOCK'stable)); 

LOAD_DATA("00000000000000000000000000000011"); 
wait until ((RDYin = '0') and (not CLOCK'stable)); 

L0AD_DATA("00000000000000000000000000000000"); 
wait UT'til ((RDYin = '0') and (not CLOCK'stable)); 

L0AD_DATA("00000000000001110000000000000000"); 

— Init_Sini opcode 

— DES ends bus cycle 

— TQ_LP 010 

— DES ends bus cycle 

— LP.DELAY 4 units 

— DES ends bus cycle 

— # ARCS.IN 

— DES ends bus cycle 

— # ARCS.OUT 

— DES ends bus cycle 

— INJI0DE 01 IN_LP 0 

— DES ends bus cycle 

— IN.NODE 71 IN.LP 0 
wait until ((RDYin = '0') and (not CLOCK'stable));  — DES ends bus cycle 

L0AD_DATA("00000000000000000000000000000000"); 
wait until ((RDYin = '0') and (not CLOCK'stable)); 

L0AD_DATA("00000000000000110000000000000000"); 
wait until ((RDYin = '0') and (not CLOCK'stable)); 

— OUT.NODE 01 0UT_LP 0 

— DES ends bus cycle 

— OUT.NODE 31 0UT_LP 0 

— DES ends bus cycle 

- OUT.NODE 41 OUT.LP 0 

- DES ends bus cycle 

L0AD_DATA("00000000000001000000000000000000"); 
wait until (RDYin = '0'); 
LOADED := true; 

D0_INIT_SIM := true; 

- Test Init_Sim function 

if DO_INIT_SIM then 

OPERATE; 

if (BUSYin = '0') then 
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DO_INIT_SIM := false; 

LOAD.POST^MSG := true; 

wait until (not CLOCK'stable); — next test synch 
end if; 

end if; 
--♦♦♦«+******++*+***+*++*+++++++++++++^++++^++++ ++++++1(i++i)ti|ti(i++ijti(i])i](t](i%+;(ii(i + + ]ji + + + 

— Load opcode and operands to run Post_Msg 

if (LOAD_PDST_MSG and (BUSYin = '0')) then — load POST.MSG test 

wait until (not CLOCK'stable); — start on clock 

LOAD_IISTR("00100000000000000000000000000000");   — Post_Msg opcode 
wait until ((RDYin = '0') and (not CLOCK'stable)); — DES ends bus cycle 

LOAD_DATA("00000000000000000000000000000000");    — T0_LP (NODE 01 LP 0) 
wait until (RDYin = '0' and (not CLOCK'stable));  — DES ends bus cycle 

L0AD_DATA("00000000000001110000000000000000");    — FR0M_LP (NODE 7 I LP 0) 
wait until (RDYin = '0' and (not CLOCK'stable));  — DES ends bus cycle 

LOAD_DATA("00000000000000000000000000001111");    — TIME.TAG (IS units) 
Bait until (RDYin = '0' and (not CLOCK'stable));  — DES ends bus cycle 

LOAD_DATA('01010101010101010101010101010101");    - MEMR.PTR (CPU mem.addr) 
Bait until (RDYin = '0'); — DES ends bus cycle 
D0_P0ST_MSG := true; 

end if; 

-- Test Post.Msg 

if D0_P0ST_MSG then 

D0_P0ST..MSG := false; 

OPERATE; 

if (BUSYin = '0') then 

L0AD_GET_EVENT := true; 

Bait until (not CLOCK'stable); — synch for next test 
end if; 

end if; 

— Load opcode and operands to run GET_EVENT 
— ***************************+**********««******++***+^^ ++*++tt++ + + t++ + + +++ifi(: 

— All input arcs must have message in CAM 

~ ARCS_IN_STAT must be verified as good 

— Retrieve and send CPU a "real" event 

— Request event but return "wait" message 

if (L0AD_GET_EVENT and (BUSYin = '0')) then        ~ load GET_EVENT test 

— Satisfy message on all input arcs requirement for Ip: 0 node; 0 
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LOAD_GET_EVENT := false; 

wait until not CLOCK'stable; 

LOAD_INSTR("00100000000000000000000000000000");   — Post.Msg opcode 
wait until ((RDYin = '0') and (not CLOCK'stable)) ; — DES ends bus cycle 

LOAD_DATA("00000000000000000000000000000000");    — T0_LP (NODE 0| LP 0) 
wait until (RDYin = '0' and (not CLOCK'stable));  ~ DES ends bus cycle 

LOAD_DATA("00000000000000000000000000000000");    — FR0M_LP (NODE 01 LP 0) 
wait until (RDYin = '0' and (not CLOCK'stable)) ;  — DES ends bus cycle 

LOAD_DATA("00000000000000000000000000001010");    — TIME.TAG (10 units) 
wait until (RDYin = '0' and (not CLOCK'stable));  — DES ends bus cycle 

L0AD_DATA("01001111010011110100111101001111");    — MEMR_PTR (CPU mem_addr) 
wait until (RDYin = '0'); — DES ends bus cycle 
D0_P0ST_MSG := true; 

if D0_P0ST_HSG then 

DO.POST.MSG := false; 

OPERATE; 

if (BUSYin = '0') then 

LOAD_GET_EVENT := true; 

wait until (not CLOCK'stable); 
end if; 

end if; 

— Test GET_EVENT 

if (LOAD_GET_EVENT and (BUSYin = '0')) then 
LOAD_GET_EVENT := false; 

wait until not CLOCK'stable; 

LOAD_INSTR("01000000000000000000000000000000");  — Get.Event opcode 
wait until ((RDYin = '0') and (not CLOCK'stable)) ; 

LOAD_DATA("00000000000000000000000000000000");   — T0_LP (NODE 0| LP 0) 
wait until (RDYin = '0'); 

— CPU releases bus and receives NEXT_EVENT from DES Coprocessor 

DATAout <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; 
EVENT_Loop: 

while ((RUN = '1') and (BUSYin = '1')) loop 

M.IOout <= '0' after 0DEL; — Read event 
WRout <= '0* after 0DEL; 
A15out <= '1' after 0DEL; 

wait for 0DEL; 

end loop EVENT_Loop; 

L0AD_P0ST_EVENT := true; 
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end if; 

end if; — if LOAD_GET_EVENT 

— Load opcode and operands to run Post_Event 

if (L0AD_P0ST_EVENT and LUSYin = '0') then — load Post Event 
L0AD_P0ST_EVENT := fal.e; 

wait until not CLOCK'stable; 

LOAD_INSTR("011OOOOOOO0000C000000ÜOOOO00000O");   — Post.Event opcode 
wait until ((RDYin = '0') and (not CLOCK'stable)); 

L0AD_DATA("00000000000000000000000000000000");    — node 0 I LP 0 
wait until ((RDYin = '0') and (not CLOCK'stable)); — "FR0M_LP ' 

L0AD_DATA("01110111011101110111011101110111");    — Memory Pointer 
wait until ((RDYin = '0') and (not CLOCK'stable)); — to EVENT 

LOAD_DATA("00000000000001000000000000000000");    — node 4 I LP 0 
wait until (RDYin = '0'); -- "TO LP" 

D0_P0ST_EVENT := true; 

— Test Post.Event 

if D0_POST_EVENT then 

OPERATE; 

if (BUSYin = '0') then 

D0_P0ST_EVENT := false; 

wait until (not CLOCK'stable); — next test synch 
end if; 

end if; 

— D0_N0THING (included for extra time in simulation) 
--♦♦♦♦♦♦♦»♦♦♦♦♦.4.+* + + % + + *1(c + + + + + + + + + + + + + t + + + + + + + % + + + + + + + + + + + + t + + + + + ](ij)[](cijiHt+ + + + ]ji + + 

BUSY_L00P2: loop 

wait until (not CLOCK'stable); — next test synch 

exit BUSY_L00P2 when (RUN = 'O'); 
end loop BUSY_L00P2; 

end if; — if L0AD_P0ST_EVENT 
end if;      — CHECK FOR STATE TRANSITIONS! 

end process 0NE_LP; 

end BEHAVIOR; 
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