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Summary 

The ability to predict the behavior of an aerodynamic 
decelerator during the initial opening phase is crucial to 
predicting a canopy's behavior when deployed at high speeds. 
This report develops a mathematical model that may be used to 
examine the effect of deployment velocity, line tension and 
drag coefficients on the behavior of a decelerator during the 
initial phase of the opening. 

A nonlinear partial differential equation is derived for the 
interaction of the decelerator with the external flow field. 
Using the Galerkin technique a set of low-dimensional models 
is derived. Each set consists of a finite number of ordinary 
differential equations in time. The equations are nonlinear 
and are shown to have three bifurcation parameters, the fluid 
velocity, the initial tension in the canopy and the ratio of 
the normal and longitudinal drag coefficients. The lowest 
order model is examined and it is shown that for the case 
where the fluid velocity is sufficiently small, the 
undeflected initial shape is globally stable. For the case 
were the fluid velocity exceeds a bound depending upon the 
initial tension, the decelerator's initial undeflected shape 
is still stable but will be achieved only for a narrow set of 
initial conditions. 

It is recommended that the larger finite dimensional models 
be examined and that numerical work be performed to compare 
the finite dimensional predictions with the solutions to the 
partial differential equations. It is also recommended that 
an experimental program be initiated to verify that the 
model's predictions agree with experimental results. 



DYNAMICAL SYSTEMS ANALYSIS OF AN AERODYNAMIC DECELERATOR'S 
BEHAVIOR DURING THE INITIAL OPENING PROCESS 

Introduction 

The prediction of a circular decelerator's behavior during 
the initial phase of the opening process is an important 
technical barrier for the airdrop community. As a canopy is 
expected to open successfully at nigher speeds and lower 
altitudes, the ability to predict the stability of the 
initial interaction between the decelerator and the flow 
field becomes crucial. A stability analysis of a 
mathematically rigorous model for this process would predict 
which conditions would result in various types of stable and 
unstable behavior. If under certain conditions, the unstable 
behavior caused the parachute to exhibit oscillations of 
increasing amplitude, a fabric failure might occur before the 
parachute could open. If the conditions of deployment 
resulted in a sustained oscillation of bounded amplitude, it 
is not known how the opening would be affected. The 
conjecture is that this motion might prevent the failure 
known as "squiding," where the parachute never begins to 
inflate. Conditions may also be such that the canopy assumes 
a stable deflected shape. In any of these cases, the analysis 
would provide details about the shape of the canopy just 
prior to the inflation process. Currently, all models of the 
opening process (Steeves, 1986,1989; Ross, 1970, 1971; 
Ludtke, 1986; Purvis, 1982; Reddy, 1974; Heinrich and 
Jamison, 1966) are applicable only after the decelerator has 
attained some assumed initial shape. Since this assumed shape 
is determined by the behavior of the decelerator during the 
initial phase of the opening process, an understanding of a 
decelerator's behavior just prior to the inflation phase is 
of fundamental value. 

The subject of this report is the development of a 
mathematical model of a canopy's behavior just after the 
canopy is extracted. This model requires the development of a 
partial differential equation (PDE), which governs the 
interaction of the canopy with the flow field. The derived 
model could be analyzed using dynamical system theory to 
determine the stability of the canopy as a function of the 
values of various physical parameters (e.g., airspeed and 
line tension). 

Literature Review 

There are numerous models in the open literature for the 
interaction of a flexible structure with a flow field; for an 
overview see Dowell, 1975, 1980; Bisplinghoff and Ashley, 
1962. Typically, these models were created to analyze the 
aerodynamic flutter problem of a structure in a supersonic 
flow field. While Lhe fluid structure interaction is easier 
to model using this assumption, most Army airdrops are 



performed at subsonic speeds. Thus, these models are not 
directly applicable to the decelerator problem.  Work has 
been published for problems where a pipe either conveys fluid 
or is in a flow field (Paidoussis and Issid, 1974; Thompson 
and Lunn, 1981/ Paidoussis, 1966) . These models were either 
not applicable, such as those for pipes conveying fluid, or 
too restrictive such as the linear models of Paidoussis, 
1966. Hence, the development of an applicable model was 
essential. 

The application of dynamical system theory to aerodynamic 
stability problems is not new. For a good mathematical 
introduction to dynamical systems see Guckenheimer and 
Holmes, 1983; for an introduction from an engineering 
viewpoint see Thompson and Stewart, 1986. In fact, the 
supersonic flutter problem has been examined in some detail 
(Holmes and Marsden, 1978; Dowell, 1966, 1980; Marsden and 
Hughes, 1983). The stability of pipes conveying fluid has 
also been examined by Holmes, 1977. The idea is to use 
dynamical system techniques to find the "essential generic 
models" from the full system of PDEs (Holmes, 1977; Holmes 
and Rand, 1976) . 

Definitions 

Under certain conditions, i.e. wind load, line tension, the 
decelerator may attain a specific shape and remain that way 
until inflation begins. This would indicate stability. 
Sometimes, when the conditions are changed, a dramatic change 
in the behavior of the decelerator occurs. The new state may 
be one in which the decelerator is oscillating steadily with 
bounded amplitude (flutter, or sustained flutter), one in 
which the amplitudes of the oscillation grow without bound 
(divergent flutter), one in which the oscillations are 
chaotic, or one in which the tube is displaced to a new 
equilibrium position (divergence). The definitions used here 
for flutter and divergence are in accordance with nonlinear 
theory and differ from the definitions of divergence and 
flutter for linear theory (in which divergence is defined as 
a zero frequency displacement that grows without bound and 
flutter is defined as an oscillatory motion whose amplitude 
grows without bound). This rapid change as a function of the 
value of a given parameter or parameters is termed a 
bifurcation. 

Dynamical System Theory 

The advantage to applying dynamical system theory in the 
study of these complicated physical problems is that the 
parameter values for which qualitative changes in decelerator 
behavior occur may be determined by looking at a set of 
equations which are much simpler than the original PDE. This 
simpler set, or reduced set, of equations is easier to 
analyze, both mathematically and numerically, yet still 
contains all the information required to describe the 



bifurcation phenomena. In general, the reduced set of 
equations is a finite system of nonlinear ordinary 
differential equations (ODEs) in time. This set of ODEs is 
called a low dimensional model because it contains a small 
number (one, two or perhaps four) of ODEs as opposed to the 
original PDE, which was infinite dimensional. There are a 
number of techniques for making the reduction (Holmes, 1977; 
Guckenhei.ner and Holmes, 1983/ Carr, 1981) . One technique is 
to expand each of the PDE's variables as an infinite series 
of appropriate space functions with time-dependent 
coefficients, substitute the series into the original PDE and 
truncate the system to a finite number of ODEs in time. 
Another technique is to determine if a center manifold exists 
for the PDE. This would also reduce the PDE to a finite set 
of ODEs in the variables which were changing slowly in time 
on the center manifold. The local bifurcation behavior is 
then described by the set of ODEs which govern the dynamics 
on this usually low dimensional space (see Marsden and 
McCracken, 1976; Henry, 1981; Guckenheimer and Holmes, 1983; 
Carr, 1981) . 

Scop« 

The scope of this report is limited to narrow tubes with 
simple supports on each end. This model was chosen because of 
the parachute's shape and attachments during the initial 
extraction phase. Typically, the parachute has one end 
attached to the payload and is extracted by another parachute 
attached at the opposite end. While the extracting parachute 
can not perfectly fix the top of the extracted parachute, 
films of actual parachute deployments show that the 
assumption of a simple support is not unreasonable as a first 
approximation. In addition, prior to opening the canopy 
appears to assume a tube-like shape. The PDE derived in this 
report is not restricted to the assumption of simply 
supported end conditions. Other supports (such as fixed-free) 
may be used and the appropriate set of ODEs would be derived 
based upon a slightly different eigenfunction expansion. The 
tubes are assumed to be viscoelastic and may have a general 
cross-section. The flow field is parallel to the initial (at 
rest) axis of the tube and a nonlinear fluid-solid 
interaction model is derived. The extension of the fluid- 
solid interaction model to include nonlinear terms, while 
important for subsonic flows, has not been derived previously 
because the effect is small for supersonic flows (see Holmes, 
1977) . 

The section titled Physical Model contains the basic 
assumptions used in developing the PDE that describes the 
uninflated decelerator and its interaction with the external 
flow field. This section also develops the extension of the 
fluid-solid interaction model to include nonlinear terms. A 
complete PDE is then presented and compared to models already 
published, which serve as special cases of this more general 
model. 



The section titled Derivation of Low Dimensional Models 
begins with the PDE derived in the previous section and 
determines a set of eigenfunctions for the nonlinear problem. 
Each of the PDE's variables is then expanded as an infinite 
series (with time-dependent coefficients) in these 
eigenfunctions. The substitution of these series 
representations into the original PDE and the use of 
standard, albeit tedious, calculations yields an infinite 
system of coupled nonlinear ODEs. Truncation of this system 
at various levels gives a sequence of low dimensional models, 
which are examined in the next section. 

The Results and Discussion present the models developed and 
the results of the stability analysis along with phase plane 
plots and time history plots for the lowest dimensional 
model. This section examines and compares the results to 
those found by previous authors for similar systems of 
equations and also describes the numerical software used. 

The Conclusions are the salient findings of the report. The 
implications of these findings to the initial opening problem 
of a decelerator are then discussed. 

The Recommendations outline a set of theoretical and 
experimental studies for the future. The course of action 
presented is based upon the results obtained in the current 
investigation and number of new approaches and extensions, 
which the author believes could prove fruitful. 

Physical Model 

The decelerator is modelled as a long thin tube, with mass 
per unit length m, which is simply supported at each end. The 
tube is immersed in a fluid which is flowing with a free 
stream velocity U parallel to the initial (undeform^-d) axis 
of the tube. The tube may also be subject to an initial axial 
load, T0, applied at the right support by displacing the 
right support. 

U 

Figur« 1. Simply Supported Tube in Axial Fluid Flow 



The boundary conditions are chosen to model the attachment of 
the decelerator to the payload at one end and to the 
extraction chute at the other end. The boundary conditions 
wherein both ends are fixed or one end is fixed with the 
other free may also be used. 

Thus far the geometrical model is the same as that used by 
Paidoussis, 1966 to construct a linear equation of motion for 
the flexible cylinder. At this point, the assumptions used to 
construct the nonlinear model analyzed in this report are 
described. 

The material is assumed to be viscoelastic and to obey the 
Kelvin-Voight model as was assumed by Holmes, 1977 and 
Paidoussis and Issid, 1974. Thus, the stress strain law for 
the material is 

ü = Ee + rje , (1) 

where a - stress, E = Young's modulus, i) = coefficient of viscosity, 

e = strain, and  ()• m     ,,}.   . 

The study is also limited to motions which result in small 
strains in the tube. Under these assumptions (see Holmes, 
1977), the axial extension, w(x), induced by the lateral 
deflection y(x) is given by 

i 

v(x)   = 7JV (x))2 dx <2) 

where ()' s .ÜLÜ 
ox 



Expression 4 and Equation 5 are used to modify the linear 
model of Paidoussis, 1966. The resulting PDE is structurally 
nonlinear. 

Before writing down the PDE for the motion of the tube, the 
extension of the fluid-structure interaction model will be 
derived. Assuming small lateral motions for the tube, 
Paidoussis, 1966 used the result of Lighthill, 1960 for the 
resultant relative velocity, v(x,t), between the tube and the 
flow. V(x,t) then has the form (see Lighthill, 1960) 

v(x, t)  = y + U y*. (3) 

By letting M be the virtual mass of the fluid for a unit 
length of tube, Paidoussis, 1966 shows that the resultant 
lateral force on the tube may be expressed as 

([_£_ + U [.$-])  (M v(x,t)) . (4) 
~3t ~3x 

In addition, Paidoussis, 1966 assumed that there were viscous 
forces acting on the tube and using the results of Taylor, 
1952 for long inclined tubes with turbulent boundary layers 
obtained 

FH = ^QDU2 (CD sin2 (i)   + C,sin(i)) (5) 

for the viscous normal force per unit length of tube. 



Paidoussis, 1966 al^o obtained 

FL = ^p£>C72Cfcos(i) 
v (6) Where 1  = arcsin(_) 
U 

for the viscous longitudinal force per unit length of tube. 

In equations 5 and 6, D is the tube diameter,  p is the 

density of the incompressible fluid, CDp is coefficient of 
form drag for a cylinder in cross flow and Cf is the 
coefficient of friction drag. Paidoussis, 1966 implicitly 
assumes that v « U which implies that sin (i) << sin2 (i) 
and cos (i) =1. 

Thus, Paidoussis, 1966 obtains 

FN - ipDU2sin(i) 
7  , (7a,b) 

and FL = ^pU2Cf . 

Equations 7a and 7b represent the linearization by 
Paidoussis,  1966. 

If no approximation is made in equations 5 and 6,  one 
obtains 

IF        fD (8a, b) 
FN*  4PÜ2(C0^ ♦ C,^) 

and FL  = ^pDUC({U2-v2) n2 _,.2\ 1/2 

Using equations 3,8a, and 8b the normal drag force may be 
written as 

**, - iiCW+cy  ♦ CD{y)7+2CDyy'+CDU
1(y')1]   .      (9) 

Also, noting that for v/U << 1, one may make the 
approximation 

[\-{v/U)2)in  - 1-J-— . (10) 
2 U2 



Thus, the longitudinal drag force may be written as 

FL = ±pDC{[U
2-±(y)2-Uyy'-±U2{y')7]   . (11) 

Define 

£ = I <1. (12) 
U 

Then, assuming that 0(CD ) ~ 0(Cf ) one can easily show that 

(13) FN - 0(£ + E2) 
and FL - 0(l-e

2)1/2 

Equations 9 and 11 are quite complex and a simple estimate of 
the relative importance of the nonlinear terms in each leads 
to a simpler form. Let EN  and Ev  be the fractional errors due 
to neglecting the nonlinear terms in FN and FL  respectively. 
Then 

(14: 
and 

Then the ratio of these errors is easily seen to be 

£«    4£2-1    -2 

E„ = 

E,  = 

1   +  E 
J£2 
7*- 

i 
1-:E2 1    7 

,._r, - .—       - — . (15) 
^  ^£(1 + E)   e 



Let e = .1 

then " « -20 

5l\  »1 

The estimate given above is actually quite good. Using 
MACSYMA the actual expansion of EN / ED when evaluated 
gives -18.045. Also, using MACSYMA a Taylor series expansion 
about zero gives 

fü = _£ + 2-o(e) . (16) 

Hence, for e small, equation 16 agrees with both equation 15 

and the MACSYMA results. Since the effect of neglecting the 
nonlinear terms in FN is 20 times greater than the effect of 
neglecting the nonlinear terms FL,   FN  is retained in the form 
given by equation 9 but FL  is simplified to the linear form 
used by Paidoussis, 1966 and given here as equation 7b. 

Using equations 2, 3, 4,7b, and 9, the equation of motion may 
be written as (see Paidoussis, 1966; Holmes, 1977) 

ay""  + y""  ♦ [u?(l-4Ccr(j-x))-r-tcf(/)2 dx-o(yJy/ dx)y" 

♦ 2ß1/2uy/ ♦ C^r"2/ + 7ß1/2Cc-uy 

♦ y ♦ ±cTuR[Wf + 2^l/2yy/ + ^iy*)1) = 0   . (17) 

The boundary conditions for equation 17 are 

y . y" « 0   at   x = 0,1 .       (I8a,b) 

10 



Equation 17 is in dimensionless form. The nonriimensional 
variables are defined as 

y.x/L, y-ylL, x. £<_«,)«•. p = _^, 

a= ^   I           J    >1/2 rr ^      *1AL 
I» fi(m + W)   ' (EI(m + M))1'2' 

D2 CD 
cr = ^-pCf, R = -^-',              <19a-l) 

where A is the cross-sectional area of the tube, I is the 
cross-sectional moment of inertia of the tube, and all other 
terms are as define previously. In equation 17, the bars have 

been dropped from the x and y variables and ()• H _li  for 

convenience. If only the linear terms in equation 17 are 
retained, the resulting equation is equivalent to the linear 
PDE examined by Paidoussis, 1966. If the last nonlinear term 
on the left hand side (LHS) of equation 17 is eliminated (by 
taking R = 0), the resulting equation is similar to that 
derived in Holmes, 1977. 

Based on physical reasoning, the ranges of the parameters 
defined in equations 19a -1 are restricted. One sets the 

structural damping parameters a, ö > 0,  and fixes ß, K > 0. 

Also, it is typically assumed (see Holmes, 1977) that viscous 
damping terms such as cT and R are fixed at some positive 

value. This then leaves the rondimensional tension  T  (which 

may be either positive, negative or zero) and the 

nondimensional fluid velocity u t 0,     as the parameters 

which may be varied. Hence, equation 17 would represent a 
two-parameter family of PDEs with the so-called control 
parameters (see Holmes, 1977; Holmes and Marsden, 1978; 

Guckenheimer and Holmes, 1983)  p" = (u,r)eR:. 

11 



This choice of control parameters is a function of the 
particular physical problem being analyzed. In the system of 
equations examined in this report, equations 17 and 18a,b, 
the ratio of drag coefficients R is a new parameter, which 
may be varied in conjunction with the previously mentioned 
tension and velocity parameters. Thus, one may consider 
equation 17 as a three-parameter family with 

v = (u,r,j?)e R3. 

12 



Derivation of Low Dimensional Models 

The equilibrium states may be found by setting all time 
derivatives to zero in equation 17. The resulting ODE is 

y"" + [u2(l-^cr(4-x))-r-«f(y/)2 dx]y" 

+ CcruV + |cru^(y)
2 = 0 (20) 

with the boundary conditions given by equations 18a, b. 

Following Holmes, 1977, it is observed that for c7 = 0, 

equation 20 reduces to a nonlinear equation examined by 
Reiss, 1969. This representation will allow one to extract a 
complete set of eigenfunctions for the equation 20 by solving 
for the eigenfunctions of the linearized ODE 

wf'"  + \}wj>  = 0 , 

<u2-r-Ju (21) 

w , .        .-        ..y 

For simple supports, equations 18a, b, the resulting 

eigenfunctions are w}{x)  = a_jSin(j7ix) .  Thus, using Galerkin 

averaging (see Dowell, 1966; Holmes, 1977) and the 
eigenfunctions from equation 21, let 

v(x,T) « V rAl)w}(x)   . (22) 

Of course, the use of equation 22 assumes that the series 

approximation for v converges to v as « —►«> . 

13 



Now, substitute equation 22 into equation 17 (and note that 
as expected the boundary conditions given by equations 18a, b 
are satisfied because equation 22 is a linear combination of 
functions, each of which satisfies these boundary conditions) 
to obtain 

n 

j ■ i J • i J -1 

♦ 2ß"2u£ ^ + Ccru2 f «/,r, + 4ß1/2Ccru £ „/, 
j ■ i jTi j« i 

i      „ 

jvi T5   * - i j . i 

-    [aj( £ wir,) ( £ *irk) dx] J} <r, 
T5    A - 1 Jk - 1 j - 1 

+ 4cruÄCß( E v^)2 - cru«Cß1/2(r "***>< E wir,) 
j • i * - "i j. i 

(23) 

n 

+ 4crCuK(E "irj2 = 0 
* • 1 

The Galerkin procedure then requires that equation 23 be 
multiplied by ws (x) and integrated from x = 0 to x = 1. The 
resulting equation is then reduced using the standard 
orthonormality relationships. The result is a set of n second 

order ODE in the coefficients rs(x)   . 

By truncating the series at n = 1, 2, and 3, three low 
dimensional models are developed. They are 

for   n » 1: 

f; + A:tx ♦ b,r, + K* r,3 (24) T 
n<   i 4cru^ßR  ,      2KC,.UCR 

* °Tr;^ * —JT-« * —T^~r- - °   ' 
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for   n = 2: 

f> ♦ A,A + B& ♦ ^cru2r2-^ß"2ur2 

+ KJt*t^rJ + 2r|]r1 + aJ^. [r^+^AK 

+ TCC^l^r2 + .gr2
2]   = 0    , 

(25a) 

f2 + A2r2 + B2r2 + ^Ccru2r1-i^ß1/2ur1 

+ KK*[2rt + 8rf]r2 + 0^(4^*, + 16r2K2]r2 T 

♦ fijSEl»^,]  ♦ uÄCß^'lr^l 
71 

+ nc^Rl^r^]  = 0    , 

(25b) 

for   n = 4: 

-2ß"2u[^2 ♦  *tt]   ♦ «MjW ♦ 2rl ♦  »r,1 * 8r2]r; 

♦ ciyl/jr, ♦ 4r2r2 ♦ 9r3r3 ♦ 16r,*,]r, 

♦ cr*uK;ß'/2[-2^r2 -  rsr2-3/2r3 ♦ 2r?f3-4^3r4 ♦ 3r3/4] 

♦ Itr  lifPf 2r2   ♦    bir}-12rr     *    ,04 r2    *°8 r   r *»? r-2 1    -H ♦ ncrn,Ki7r:  ♦ ^r2-^.rlri * -^.r3-^^r2r4 ♦ Tj-r4 ]   = u (26a) 
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*, + A2r2 + B2r2 + (,cTu2 [£ri+£r3] 

-2ß1/2u[4A + %r3]   + KJT4[2ri  + 8r2
2 + 18r| + 32rf] 

+ o_[4r1r1 + 16r2r2 + 36r3Jr3 + 64r4r4]r2 

+ c  uR^ß r 32r r   +  32f- r - 6" t r   +  "frl 

+ cr^u^ß1/2[^1r1-3r1r3 + r^j-^r« + 2r4r2] 

+ nc^Rl^z, + ^r2r3-^rir4 + ^r3r4]  = 0  . (26ib) 

i*3 ♦ A3r3 + B3r3 ♦ Ccru
2[^r: 
2 r 216 _   ,   432 

-2T-t2 + -7Tr< 

-2ß^2u[^r2 +  «*J   + m«[4W ♦ 18r2
2 +  »rf ♦ 72r2]r3 

,r + O—t«^.^ + 36r2r2 + 81r3r3 + 144r4f-4]r3 

+ cr^uÄCß1/J[2Ar2 ♦ Jf,rrr4*, <• /4rJ 

+ ncTu^R[£r2-£r! ♦  »^r, + 2r3
2 ♦ ^r2r4 * ^r2]  = 0 (26c) 

r4 ♦ A4**4 ♦ B<r< * Ccru»["Jr,*.™r,] 

-2ßl/2u[^A  ♦  "*,]   * K7l4[8r2 + 32r?
2 ♦ 72r3

? ♦ 128r4
2] 

♦ 8oR4[*«r, + 4r2f-2 ♦ 9r3f3 ♦ 16r4r4]r4 

Ui^Cß f.  «  *  *     +    «*   *     +    12»^.  ^ 126  .    .   , 

♦ cr*u*Cßl/2[rsf2 ♦ 3fir, ♦ 2r2J>2] 

♦ ncruCR[^r,r2-£r2r3 ♦ £r2r4 ♦ i£r3r4]  -- 0  . (26d) 
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In equations 24,   25,   and 26a-d the coefficients As and B, are 
defined as 

As = n4s4[a + ^ß1/2Ccru] 
(27a,b) 

B, = n4s4 + [r-u2]7t2s 

Any one of the systems given by equations  24,   25a,b or 26a-d 

may be written as a first order ODE on    R2n .     For example 

equation 24 may be put  in the form 

where 

x = Attx + JT(x)    ;   x(0)  = x0 € R2 , 

x = 

and 

(   \ 
x 

I **u     - 

W(x)   = 

'0     P 
-Bx   -A, 

(28a-e) 

Kit*   3      on4   2 4cru^ßÄ   j   27icru^ß   2 

3TC     
X
^ 3 Xl 

Clearly, for a given set of initial conditions, equations 
28a-e may be numerically integrated using standard 
techniques. In fact, all of the low dimensional models may be 
put in the form of equations 28a-e with the only change being 
that the entries in equation 28d become matrices of order n x 
n . Holmes, 1977 points out that the accuracy with which the 
numerical solutions to any particular low dimensional model 
agree with the solution to the PDE is dependent upon the 
speed of convergence as the number of modes goes to infinity. 
Dowell, 1966 showed that for similar systems n « 4 or 6 was a 
good approximation. This (see Holmes, 1977) is probably due 
to a concentration of the energy at the low frequencies. 
Following Holmes, 1977, as the current report is primarily 
concerned with the qualitative behavior of solutions, the 
assumption is made that the convergence is rapid enough for 
the low dimensional models to be physically reasonable. This 
assumption will have to be examined later in this research, 
either analytically or experimentally. 
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Results and Discussion 

This section describes the use of dynamical system theory to 
investigate the bifurcation behavior of the low dimensional 
model given by equation 28a-e. It also describes the software 
which is used to provide the phase plane plots and compute 
the stable and unstable manifolds associated with the 
equilibrium points. 

As stated previously, one may consider equation 28a-e as a 

three-parameter family with v = (u,r,R) e R3.  Equation 28a-e 

has equilibrium points given by 

x, = 0 , 

Kjr4 3 2ncTuC.R  , (29) 

For R = 0, the results agree with these obtained by Holmes, 
1977. They are reproduced here for comparison. If R = 0 and 
Bj > 0 , (0,0) is a unique fixed point and it is a sink, see 
figure 2, which means that the undeflected shape is stable. 
If R = 0 and Bj < 0 , there exist three equilibrium points 

given by (0,0) and    (+y(-2B1/K7r4 , 0)  • The tube is now 

unstable since the center fixed point is a saddle and the 
other two are sinks as shown in figure 3 (see Holmes, 1977). 
Note also that The change in sign of Bj from positive to 

negative takes place when T-u2 -  -JtJ ,  (this is the Euler 

buckling mode). 

18 



■4        -3        -2        -1 

X1 (Position) 

Figure 2. Holmes' One Mode Model with El > 0, R = 0 

I- 

-3 

STABLE MANIFOLD 

SINKS «1(-1.0).(1.0) 

UNSTABLE MANIFOLD 

■3        -*        .1 0 1 2 3 4 

X1 (Position) 

Figure 3. Holmes' One Mode Model with Bl < 0, R = 0 
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For the case where R > 0 , which is the model derived in this 
report, different results are obtained. Let R > 0 , then 
equation 29 gives 

x2 = 0 , 

and 

xx - 0 

or 
(30) 

*i = " 
2cTu^R Ac7

Tu%2R2 _2BX 

3K713    - \       9K
2
TI

6
       "icF 

Equation  30  shows  that  for Bz  >  0  there may not  exist  a 
unique  fixed point  at   (Xj,x2)   =   (0,0)    .   If B:  >  0  and 

2c^2ß2        4 (31) 
—2   + 7t4 

9lc 

then there is a unique fixed point at (0,0). The phase plane 
plot for this case is shown in figure 4. Note, that all 
points in phase space are attracted to (0,0). Thus, the 
undeflected shape is stable provided that the three 
bifurcation parameters satisfy equation 31. Physically, this 
means that as the fluid velocity, u, is increased, the 
in-plane load must be increased to maintain the stability of 
the undeflected shape. 

If 

,i^ JtMr + n2] u' 
2c^R: ^ ' (32) 
 LZ  ♦ n4 

5K 

then there are three fixed points, regardless of the sign of 
Bj. The phase plane plot for this case is shown in figure 5. 

While the undeflected position, (0,0), is still stable, the 
basin of attraction, which is bounded by the stable manifold, 
is very narrow. Thus ?ny small initial deviation may move the 
tube off its undeflected position. 



X1 (Position) 

Figure  4.  New One Mode Model with Bl  >  0  and Eq.   31 
Satisfied. 

a.i 

STABLE MANIFOLD 

SINKS at 

(-3.73,0), (0,0) 

SADDLE 

at (-.288.0) 

UNSTABLE MANIFOLD 

-4-4-3 2 1 0 1 

X1 (Position) 

Figure 5. New One Mode Model with Bl > 0 and E< 
Satisfied. 

7 ■- 
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If 

t2 _ nur**2] u< 
2ZF&      Z    ' (33) 

1K~ 
K* 

then there are two distinct fixed points at (0,0) and at 

2CTUCR 
(-_L_L_ . 0) .  The fixed point at (0,0) is a sink and the 

3KK
3 

other is not hyperbolic. 

At this point, the dynamical system software used to examine 
the low dimensional model  is described. The specific 
software is "kaos'™';  Dynamical System Toolkit with 
Interactive Graphic Interface" and was developed by J. 
Guckenheimer and S. Kim. The package is a collection of 
numerical and graphical routines which are quite helpful in 
computing equilibrium points, stable and unstable manifolds 
and other dynamical system phenomena, such as limit cycles. 
The program runs on a SUN SPARC1™1 workstation and is easy to 
compile and easy to use. (For a detailed description of the 
package see J. Guckenheimer and S. Kim; 1990.)Figure 6 is an 
example of the display produced on screen for the user. 

The program allows the users to examine the behavior of their 
own system of equations in a interactive mode. The grapnical 
output is supplemented by data written to a file. These data 
may include locations in phase space of equilibrium points, 
types of fixed points (i.e., saddles, sinks, sources) and 
eigenvalues und eigendirections for the stable and unstable 
manifolds. The toolkit also computes time series and allows 
users to construct Poincare maps.  The user may also choose a 
particular integration algorithm. 

The program was obtained free of charge by anonymous ftp. The 
package contained detailed instructions and appropriate 
Makefiles to enable one to build a working version on their 
machine in a very short period of time. For someone well 
versed in dynamical system theory, this toolkit can greatly 
reduce the routine calculations one previously had to perform 
and can provide visualization capability with little or no 
effort. 
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Concluding Remarks 

A new nonlinear partial differential equation is derived to 
model the behavior of a simply supported tube immersed in a 
viscous fluid flowing parallel to the support axis. The new 
model extends the linear fluid-structure interaction model 
used by Holmes, 1977 and Paidoussis, 1966. Using this model, 
a sequence of low dimensional models is constructed. Each 
finite dimensional model is a set of time-dependent nonlinear 
ODES. 

Analysis of the smallest low dimensional model shows that the 
extension of the linear fluid-structure interaction model to 
include nonlinear effects has a stabilizing effect. 
Previously (see Holmes, 1977), the undeflected shape could be 
made to become unstable by a suitable choice of parameters. 
In the model examined in this report, while the basin of 
attraction for the sink characterizing the undeflected shape 
is small, the equilibrium point is stable. It is also shown 
that a simple relationship exists, equations 31 and 32, 
relating the fluid velocity to the in-line tension required 
for global stability of the initial, undeflected shape. 



Recommendations 

The results presented in this report are preliminary. Only 
the smallest low-dimensional model was examined and it is 
well known (see Holmes, 1977) that the larger models, which 
allow modal coupling, can present more interesting behavior, 
such as flutter. It is ..therefore recommended that the 
two-mode and four-mode models be analyzed. 

The low-dimensional models were derived using the assumption 
that the series representation for each variable converged to 
the true solution sufficiently rapidly for a small number of 
terms to yield good results. It is recommended that the 
actual PDE be examined using center manifold theory to 
produce a low-dimensional model and that it be compared to 
the set of models produced in this report. The PDE should 
also be directly integrated for specific parameter values 
and the results compared with the predictions of the 
low-dimensional models. 

Finally, the value of any model is determined by its ability 
to predict. Therefore, experimental work should be performed 
to verify that the qualitative behavior predicted by the 
model agrees with the behavior observed in the laboratory. 

Thi» document report» re»«arch undertaken at the 
OS Arav Natick Research, Developoer.t and Enrinetrinä 
Center and hai been assigned No. KATICX, 7.<-%0/7' 
in the aerie» of repor:» approved for publication. 
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Equation 17 is in dimensionless form. The nondimensional 
variables are defined as 

x = x/L,      y = y/L,      x  = * ( "f ) »>, ß =  *-, 
Lz   m + M m + M 

r -   ro1,2          t -  L          11 - m i M \v* K - ALl 
r " TT'        <*     15'        U"C7L(-BI)    ' K~TT' 

D2 CD cr = J^pC,,                         R = -£, (19a-l) 

where A is the cross-sectional area of the tube, I is the 
cross-sectional moment of inertia of the tube, and all other 

Ä^"        terms are as define previously. In equation 17, the bars have 

^S^       been dropped from the x and y variables and ()• ■ _JLL  for 

v* convenience. If only the linear terms in equation 17 are 
^J^ retained, the resulting equation is equivalent to the linear 
^. PDE examined by Paidoussis, 1966. If the last nonlinear term 
P^ on the left hand side (LHS) of equation 17 is eliminated (by 
JO taking R = 0), the resulting equation is similar to that 
^^ derived in Holmes, 1977. 

Based on physical reasoning, the ranges of the parameters 
defined in equations 19a -1 are restricted. One sets the 

structural damping parameters a, a > 0,  and fixes ß, K >  0. 

Also, it is typically assumed (see Holmes, 1977) that viscous 
damping terms such as cT and R are fixed at some positive 

value. This then leaves the nondimensional tension T     (which 

may be either positive, negative or zero) and the 

nondimensional fluid velocity u £ 0,  as the parameters 

which may be varied. Hence, equation 17 would represent a 
two-parameter family of PDEs with the so-called control 
parameters (see Holmes, 1977/ Holmes and Marsden, 1978; 

Guckenheimer and Holmes, 1983) JI = (u,f)6R2. 
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