
AD- A244 184 9

OTIC LSl 1ECTE
JAN 07 19921

AI 0D OF

IThis documen~t has been appJva 20 017for public relase and e; it00177
distribution is unlimitcd.

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio.

q21 . 1!2

AFIT/GCE/ENG/9 1-09

DTIC
S LECTE

D

A STANDARDIZED SOFTWARE RELIABILITY

MIEASUREMENT METHODOLOGY

THESIS

Joseph J. Stanko

Captain, UJSAF

AFIT/GGE/ENG/9 1-09

A pprov ed for ptiblic release; dlistribution uii liimited

AFIT/GCE/ENG/9 1-09

A STANDARDIZED SOFTWARE RELIABILITY MEASUREMENT

THIESIS

Presented to the Faculty of the School of Engineering

of the Air Force institute of Technology

Air University

Ini Partial Fulfillment of the FAc-,esio:i For

Requiremenis for ihe Degree of TA

Master of Science in C omiputer Enginieering L

By...........

Caplain. VSAFDL

D~ecember. 1991

AXpproved for pulhic release: (list rihut ion iliied

Preface:

The purpose of this study was to determine if software reliability models call be applied to

the Operational Test and Evaluation (OT&E) of a weapon system and, if this was the case, t~o

implement a selected model.

An extensive review of current literature and research efforts was performed to identify the

candidate models for evaluation and possible implementation. Models were evaluated based on

predictive validity, capability, quality of assumptions, applicability to the finite-time environment,

simplicit.y of design, diversity and applicability of output, and capability to use existing initial data.

From these, the M usa Execution Time model and Musa-Okumoto Logarithmic Poisson Execution

Time model were selected for implementation. The implementation was tested using data supplied

by leadquarters Air Force Operational Test and Evaluation Center (HQ AFOTEC).

I would like to thank Capt Jim Cardow, my thesis advisor, for his guidance, suggestions, and

especially the recurring question "What are you trying to do?" I would also like to thank Lt Col

Lawlis and .Ma. Howatt for reviewing all the drafts and helping me to remember that. there is a

forrest and not, just one tree. I also thank Dr Moore for reviewing my derivations and providing

statistical insight.

A special thank you goes to miy wife Lynn, and children Devon. Cheryl, and ('ara. for their

patience, understanding, and support throughout, the past. eighteen months.

Finally, I would like to give glory to the Lord Jesus Christ and thank lim for providing me

an opportunity to loarn and grow during the AFIT exl)erience.

Joseph ,J. Stanko

Table of Contents

Page

Preface........

Table of Contents.......

List of Figures iv

List of Tables. V

A bst ract. vi

1.1 Background 1-1

1.1.1 Air Force Perspective 1-2

1.1.2 Industry Perspective 1-4

1.2 Problem................. 1- 5

1.3 Definitions 1-6

1.3.1 Hardware Reliability Terms... 1-6

1.3.2 Software Reliability Terms....... 1 -

1.4 Scope 1-8

1.5 Assumptions. 1-9

1.6 Approach. 1-10

1.7 Thesis Organization. 1-10

11. Literatutre Review. 2-1

2.1 Software Reliability Model Classifications. 2-1

2.1.1 IEEE Classification. 2-1

2.1.2 NSWC Classification 2-3

2.1.3 RADC Classification 2-4

Page

2.1.4 MIL-HDBK-338-lA Classification 2-5

2.1.5 Musa and] Okumoto Classification 2-5

2.1.6 Overall Model Classification Schema 2-6

2.2 Software Reliability Model Descriptions 2-9

2.2.1 Fault Seeding Models. 2-9

2.2.2 Input Domain Models 2-10

2.2.3 Times Between Failures Models. 2-11

2.2.4 Failure Count Models. 2-13

2.3 Summary 2-17

III. Software Reliability Model Selection. 3-I1

3.1 Model Selection Criteria and Discussion 1

3.1.1 Predictive Validity. 3-1

3.1.2 Capability 3-2

3.1.3 Quality of Assumptions 3-3

3.1.4 Applicability t~o the Finite-Time Environment. 3-4

3.1.5 Simplicity of Design 5

3.1.6 Diversity and Applicability of Output 3-5

3.1.7 Capability to Use Existing Initial D)ata 3-6

3.2 Choice of a Reliability Model 3-6

3.3 Summary. 3-8

1V. Software Reliability Model Implementation...

4.1 Plan a Strategy,.......-

4.1.1 IOT&E Test Planning Strategy 4-1

4.1.2 Program Design Strategy 4-2

4.2 Determine Software Reliability Goals 4-3

4.3 Assess Existing Data. 4-5

iv

Page

4.4 Selection of Ciandidate ,Models. 4-6

4.5 Derive the Fitted Model 4-6

4.5.1 Model Parameter Estimation 4-6

4.5.2 Model Parameter D)erivation. 4-10

4.6 Assess the Models 4-11

4.7 Define and Implement Data Collection Procedures. 4-12

4.8 Assess the Software Reliabilit 4-12

4.9 Sununar 4-12

\. Finding 5-1

5.1I Initial Dat~a Analsis 5-1

5.1.1 Data Set AlI. 5-1

5.1.2 Data Set A2 5-3

5.1.3 Data Set A3 5-4

5.1.4 Data Set Sl. 5-5

5.1.5 Dat-a Set. VI 5-6

5.2 Calculated Values for Current Number of Failures Compared to Actual

Number of Failures 5-7

5.2.1 Data Set Al1.. 5-9

5.2.2 Dat~a Set. A2. 5-11

5.2:3 Dat-a Set. A3. 5- 12

5.2.4 Data Set SI.. 5-141

5.2.5 Data Set \%I.......- 16

5,.3 Assessment of Failure Intensity Values. 5- 18

.4 Calculated Values for Current Number of Failures (Based on Ur&-,E

Data) Compared t~o Actual Number of Failures 5-20

5.4.1 Data Set A2. 5-20

5.4.2 Data Set. A3 5-22

v

Page

5.4.3 Data Set, SI 5-24

5.5 Summary 5-25

VI. Conclusions and Recommendations 6-1

6.1 Conclusions (-2

6.2 Recommendations 6-3

6.2.1 Data Needed for Software Reliability Evaluation 6-3

6.2.2 Additional Analysis of the Candidate Models 6-4

6.2.3 Applicability of Software Reliability 6-7

6.3 Summa v 6-s

Appendix A. Software Definitions A-1

Appendix B. Software Maturity Data B-I

B.1 Data Set, Al B-I

B.2 Data Set A2 B-3

B.3 Data Set A3 B-.5

B.4 Data Set SI B-7

B.5 Data Set 'I 11-16

Appendix C. Detailed Analysis and Design C-I

C.1 Background C-I

C.2 Requirements Analysis ('- 1

C.2.1 Level I DFID ('-2

C.3 Requirements SpecificationC-

('.4 Software Design C-5

C.4.1 Identification of Objects and Their Attributes C-6

C.4.2 Operations Suffered by and Required of Each Object C-7

C.4.3 Establish Visibility Among Object s..(-8

C A4.4 Establish Interfaces of Objects (7-9

vi

Page

C.5 Determine Need for Abstract Data Type C-9

Appendix D. Candidate Software Reliability Model Implementation Code D-1

D.I Software Reliability Statistical Analysis Software (SRSAS) D-1

D.2 Software Reliability COUNT.DBF Module D-4

D.3 Software Reliability Print, Module D-8

D.4 Software Reliability TIME.DBF Module D-10

D.5 Software Reliability TIME.DBF Build Module D-12

D.6 Software Reliability TIME.DBF Date Module D-1-

D.7 Software Reliability TIME.DBF B-B Module D-16

D.8 Software Reliability TIME.DBF Estimate Module)-21

D.9 Software Reliability Execution Time Module D-26

D.10 Software Reliability Logarithmic Poisson Execution Time Module . . D-32

Appendix E. Proposed Software Reliability Database E-1

E.1 Semantic Data Model E-1

E.2 Objects Identified for the Proposed Software Maturity Database .. . E-3

1.3 Objects Identified from Musa Execution Time Software Reliability Model E- I

EA Objects Identified for Software System Effectiveness E-5

E.5 Logical Schema for the AIRCRAFT Class E-6

E.6 Logical Schema for the MISSION Class E-7

E.7 Logical Schema for the SOFTWAREFAILURE (-'lass E.- 8

E.8 Logical Schema for the CSC1 Class I"

E.9 Logical Schema for the RELIABILITY Class E-10

E.10 Logical Schema for Other Classes E-12

Bibliography BIB-1

Vita VITA-1

Vii

List of Figures

Figure Page

1.1. Hardware and Software Cost Trends (Reprinted with permission from IEEE) 1-2

1.2. Projected Growth in Software Memory Requirements (Reprinted with permission

from McGraw-Hill Book Company) 1-3

1.3. Measured Growth in Developed Software (Reprinted with permission from the

AFA) 1-4

2.1. Software Quality Concept Map 2-2

2.2. Musa et. al.'s Software Reliability Model Classification (Reprinted wit i periniissioii

from McGraw-Hill Book Company) 2-7

2.3. Software Reliability Concept Map 2-8

4.1. Software T&E with Software Reliability Assessment 4-2

5.1. Cumulative Failures vs Execution Time for Data Set. Al 5-2

5.2. Cumulative Failures vs Execution Time for Data Set A2 5-4

5.3. Cumulative Failures vs Execution Time for Data Set. A3 5-6

5.4. Cumulative Failures vs Execution Time for Data Set. S I................. 5-7

5.5. Cumulative Failures vs Execution Time for Data Set "AI, Initial 5-8

5.6. Cumulative Failures vs Execution Time for Data Set. XVI. 5-9

5.7. Expected Failures Using Execution Time Model for Data Set A] 5-10

5.8. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set

Al. 5-11

5.9. Expected Failures Ulsing Execution Time Model for Dat.a Set A2 5-12

5.10. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set.

A2 5-13

5.11. Expected Failures Using Execution Time Model for Data Set. A3 5-14

5.12. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set.

A3 5-15

viii

Figure Page

5.13. Expected Failures Using Execution Time Model for Data Set, SI. 5-16

5.14. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set,

S1 5-17

5.15. Expected FailureF sing Execution Time Model for Data Set Wl 5-18

5.16. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set

NVI. 5-19

5.17. Expected Failures Using Execution Time Model for Data Set A2 5-21

5.18. Expected Failures Using Logarithmic Poisson Execution Time Miodel for Data Set

A2. 5-22

5j.19. Expected Failures Using Execution Time Model for Data Set A3 5-23

35.20. Ex1>ecttvd Failures Using Logarithmic Poisson Execution Time Model for [Data Set

A3. 5-24

5.21. Expected Failures U~sing Execution Time Model for Dat~a Set. SI.........5-25

5.22. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set.

S1. 5-26

6.1. E-R. Diag-ramn for Software Reliability Database 6-5

C. I. Level 0 Context. Diagram for SRSAS C-2

C'.2. Level I DFD for SRSAS. C-3

C.:3. Level 2 DFD for Determi neExecu tion -Iime-Data. CA

CA4. Level 2 DFD for Deternine-Logarithinic-Tinme-Dat~a C-5

C. 5. Revised Level I l)FD for SRSAS.......

C-6. V'isibility Among SRSAS Objects........ -

ix

List1 of Tabks-,

Table Page

1. 1. Software Maturity Data 1-9

2.1. IEEE Software Reliability Model Classification 2-4

2.2. Comparison of Software Reliab~ility Model Classifications 2-S

4.1. Range of Software Reliability (-,oals for 500 flour 4-1

-4.2. Common Software Nltr~\Dat a Fields- 6

4.3. Specific Model A~ and 11 Fiinct ions1;.. 1- 7

5..1. Comparison of Software Reliabilityv Failure Intensities 5-20

6.1. Summary Analysis of Hi) Test. 6-2

6.2. Sumimary Analysis of Hcj Test for IDat.a Set~s Withi DTkE Based Initial Parameters 3-:3

6.3. Proposed Software Maturity Data. (3-4

C. . Listing of Objects and Implement at ion Name C-10

A FIT/GCE/EN(-/91-09

A bslracl

-- Current Air Force practice is t.o perform Operational Test an(Evaluation (OT&E) for each

iiev weapon system. In support of this, Headctmarters Air Force Operational Test, and Evaluation

Center (IQ AFOTEC) is responsible for measuring both suitability and effectiveness. While suit-

ability is adequately measured, the current, effort only addresses hardware effectiveness, or at, best.,

system effectiveness. Since tools and metrics are in place for software suitability assessments related

to OT&cE (for example, software maintainability), there should be some effective way of measuring

the operational effect.iveness of software. Currently. HtQ A FO'IE('/I [5 has a data collection tool

for collecting software failure data to analyze software mat urity. lhis thesis proposes that the IC5

software maturity database coul be Ised as the baseliile for a software reliability metric that would

map to the finite time OT1.kE environment.

This study does not predict software reliability, nor (foes it attempt to define what constitutes

reliable software. Instead, this study evaluates software reliability measurement mapped to finite

OT&kE time frames (i.e.-failures per flight hour). This evaluation is conducted for several software

reliability models, with two candidate models chosen based on the following criteria: predictive

validity; capability; quality of assumptions; applicability to the finite-time environment; simplicity

of design: diversity and applicability of outpt ; ind capability to use existing initial data. <"7

Implementation oft lie candidate models was accomlished for an office computer environment

to permit use by OT&E test. teams at. various locations. 'Jesting was performed based on actual

OTk&E software maturity data.

xi

A STANDARDIZED SOFTWARE RELIABILITY MEASUREMENT

METHODOLOGY

I. Introduction

The overall reliability of new and modified weapon systems is of major importance to the

United States Air Force (USAF), and is discussed in recent standards and documents that address

system reliability and maintainability [54:355]. Indeed, many authors have addressed the need

for software reliability evaluation, both in journals and in books (reference bibliography). While

hardware reliability can be virtually guaranteed at delivery, the delivery of reliable software is not

as predictable, and becomes the critical factor in determining syslem reliability [50:190]. This thesis

explores the possibility of implementing software reliability measurement as part of the Operational

Test and Evaluation (OTkE) of United States Air Force (USAF) weapon systems, with the goal of

identifying one model and methodology that is appropriate for use in the Initial OT&E (lOT&E)

phase. As Headquarters Air Force Operational Test and Evaluation Center (IQ AFOTEC) is

responsible for conducting OT&E on USAF weapon systems, the results of this thesis, as well as a

proposed implementation methodology, are then submitted to HQ AFOTEC for possible inclusion

in their software evaluation efforts.

This chapter provides the background of software development and testing. and identifies the

problem with software operational testing. The following sections will define hardware and software

reliability, establish the scope of this thesis effort, identify applicable assumpt.ions, and describe the

research apl)roach.

i. Bakgroiind

The complexity of software in future systems will be at least an order of niagnit tde above Ihat

of current systeiis., which is even now too complex for one individual t.o grasp [13:3.5]. Software

complexity is one of the factors affecting the overall software cost [30:12-].[82:522]. Ilenry and

Kafura state. -'reducing cost and increasing quality are compatible goals which can be achieved

when the complexity of the sofi.ware structure is properly controlled" [37:510]. With respect to

software cost, Myers suggests. "the high cost of soft-ware is largely due to reliability problems"

[65:12]. Therefore, a software cost trend might be an indicator of the underlying complexity of the

code and development effort. which could also be closely related to Ihe software's reliability.

!-1

An increasing trend1 in software cost, was first identified in a study by the Rand Corporation

for the Air Force, and reported in [il] and [77] as a substantial increase in percentage of software

cost accompanied by a corresponding dlecrease in percentage of hardware cost (see Figure 1.1)

[11:1227],[77:1 1].

so- HARDWARE

PEC CEN T
or

COST

Figure LL1 Hardware and] Software Cost Trends (Reprinted withI permission from IEEE)

1.1.1 Aoi Forr(1 rsp(chirc. Increased software cost is inclusive of software dlevelopnment

andl support. The Air Force has dIouled'(its spending on soft ware development and support from)

$4 billion in 19W8" t~o ",8 billion in 1989 (72:711. A recent stuidy of .37 Air Force Mission Critical

Computer Resource (M(CCR) proiects evaluated five application areas: avionics: communications:

command, control. comjmunication, and intelligence; electronic warfare: and radar systems [81 :6].

The study stated the frequency and severity of change in software size contributes t.o cost overruns.

and for three pro~Ject~s (lie actunal amount of software (leveloped for the Air Force exzceeded the

original estimat.e miade lat contract award by 100(7([81:71.

Corresponding to increasing software costs. t~he size of weapon system software has increased

(Irainaticall%. and will continue t~o increase. This increase was projected by Boemum in 1976 and

1-2

reported in [7-7] (see Figure 1.2). Current estimates of the amiount, of software developed for DoD

weapon systems have verified this trend (see Figure 1.3) [15:48].

B- i

500- + AWACS

0 P-3C

7, 400-

+ AIR FORCE
e NAVY

;00

'00 - -

9E-2-C
.- 3 +

F.1 I I+ 1-C-A F-itI F1

t51970 1975 1950

Calendar Year

Figure 1.2. Projected Growth in Software Memiory Requirements (Reprinted with permission
from McGraw-Il ill Book Company)

As software size increases, so will the task of software testing. Lieutenant Colonel Shuniskas.

of (lte Office of the Secretary of Defense, responsible for Air Force Test andl Evaluation (TS&E),

suggested the following:

It. Is possib~le to redlIce acqmiltion costs, test in particular, and providle software intensive
systems withI increasedl reliabiliy through the Implemientat ion of a proposed paradigmn
for a balainced T&E software approach utilizing a cominiation of statistical process
cont rol and test methodologies 178:1l- 1].

A disciplined test methodology could then hielp reduce, or at least stabilize, the cost of software.

With respect to software test and evaluiat ion of a weapon system, current Air Force practice

is 1.0 perform Operat ionial '[est. atid Evaluation (Or:-E) undIer the directioni of Hleadquarters Air

1 -3

A Manned Systems
L Manned Aircraft

10,000,000 - Manned Spacecraft
5,000,000- Space Shuttle

1,000000-B-1A(Flight Test) A B-I B

500,000- plo1 S-3A A AAWACS
Lines of Code Apo15o\I P-3C

100,000- P-3C AE-2C
50,000- Gemnini-8 A Sya-

5.000 A-7DIE

1,000- 1
1S6 1970 19 80 1990

Figure 1.3. Measured Growth in Developed Software (Reprinted with permission from the AF.A)

Force Operational Test and Evaluation (-enter (HIQ AFOTEC) for each new weapon system fielded.

This effort addresses systemi performance in aii operational scenario (operational effectiveness) and

svstemi availability for operational use (operational suitability) [2:1). HIQ AFOTEC has tools in

place for evaluating software operational suitability. Unfortunately, the current. test and evalua-

tion effort primarily addresses hardware OT& E or. at best, systemi OT& E. from an operational

effectiveness standpoint.

1.1.? Industry P rspcri. Induistry has ako addressed thie need for soft ware reliability. lIn

one of the first papers on this subject. Mr. Miilock of Lockheed Missiles k- Space Company wrote:

The Reliability Engineer should consider computer programming as another engineering
discipline that, is analyzable by the same techniques that lie has used before ... the
comp~uter programmer is pushing the state of the art just. as much as the transistor
designer was in 1955 [59:497].

Many software reliability models were developed during the subsequent years, and recent efforts

have defined the role of reliability engineering in the "typical software development team" [9:291].

Industry has applied several of the software reliability models to projects vdrying from remote

terminal firmware (as discussed by Musa in [61]) to nuclear power plant software validation [70]. In

contrast, there has been little use of software reliability measurement for military weapon systems

[50].

As recent as the late 1980's software for major military command and control systems had

proceeded past. the software critical design reviews without any assessment of software reliability

being performed [50:190]. In contrast, proposals for an integrated software reliability program were

being presented as early as 1976, and more definitively in the context of reliability and maintainabil-

ity in 1984 [9. 65]. The concept of software reliability has been in investigation for over 15 years,

and several different organizations such as hewlett-Packard Co.. AT&T, and the Naval Surface

Weapons Center have developed and used software reliability tools [29, 34, 61]. Goel states:

Software reliability is a useful measure in planning and controlling resources during the
development process so that high quality software can be developed [34:1412].

Therefore, the use of software reliability assessment. could be one of the disciplined test method-

ologies needed to curb the rising cost of software.

1.2 Problin

While the tools and metrics are in place for software assessments of operational suitability

(for example. AFOTECP 800-2 Vol 3, Soflware Maitwainability Ehalualon (,uide [22]). there is no

current way of measuring the operational effectiveness of software in order to perform adequate

software 01*k L. Reliability is considered a measure of operational suitability; however, software

reliabilily is also one possible measure of the software's operationial effectiveness, as software failures

can reflect, hot h t he suitability quest ion of "will it he available" as well as t lie effect iveness question

of "does it work" [86:8-2].[2:8]. The purpose of this study is to determine if software reliability

models can be applied specifically to the OT&E of Air Force weapon systems and, if this is the

case, to propose a selected model implementation within a standardized methodology for use by

IIQ AFOTEC.

I-5

1.3 Definitions

Before defining software reliability, it is necessary to define both overall reliability and hard-

ware reliability. Reliability is defined as

the duration or probability of failure-free performance under stated conditions [20:8]

and also as

the ability of an item to perform a required function under stated conditions for a stated
period of time [5:29].

This definition is primarily based on the system's hardware attributes, which are dis-ssed below

in the definition of hardware reliability. A comparison to software reliability terms will then follow.

1.3.1 Ilardwarc Reliability Terms. Essentially, hardware reliability is defined as [20]:

" Mean Time to Failure (MTTF). This is a basic measure of reliability for non-repairable items,

and indicates the average amount of time until the failure of an item.

* Mean Time to Repair (MTTR). This is a basic measure of reliability that indicates the average

amount of time necessary to repair an item once it. has failed.

" Mean Time Between Failures (MTBF). '[his is a basic measure of reliability for repairable

itenis and is defined as a combination of MTTF and MTTR [20:7]

MTBF = MTTF + AITTR (1.)

With hardware, thIse attributes can apply to different component. subsysten, and systlem

levels, all of which can both relate to each other and have discrete values. For example, testing of

components (stich as integrated circuits (ICs)) can be performed to determine the MTTF. NITTR,

and NITBF values for each IC. This value can then be included in the calculation of subas.sembly

reliability, which can have cumulative failure rates expressed as a summation of the components

F,= fi N (1.2)

1-6

where F, is the subassembly failure rate of a component i. given its failure rate f and a certain

number of like components N [10:290]. This sort, of analysis is also applicable to assemblies,

subsystems, and finally the system as a whole.

1.3.2 Software Reliability Terms. Software does not permit the composition and decompo-

sition analysis that is possible with hardware. Using a software instruction (i.e.-x:=x+1) as an

analogy to the component, we find that an instruction functions perfectly 100% of the time with-

out problems on its own; however, by combining instructions it is possible to develop subroutines

that have failures (usually due to subroutine interactions) [10:291]. Therefore, software subroutine

reliability can not necessarily be derived from the corresponding instruction reliabilities. Hard-

ware assemblies are then created from subassemblies, just as software modules (discrete program

units that are "a logically separable part of a program") are tiade up of subroutines (a routine,

or "computer program segment that performs a specific task." that can be included in other rou-

tines) [5:24,30,34]. While hardware assembly reliability can be determined from subassemblies, a

guarantee does not exist that software module reliability is based on the corresponding subroutine

reliabilities. This correlation becomes even smaller as the software modules are linked together

into subsystems, and finally systems. Thus, the standard terminology used for hardware reliability.

including equations 1.1 and 1.2. is not applicable.

Instead, a different view of software must be taken. This is based on the design of the

software, and not, the physical implementation usually measured by hardware reliability [64:7].

Several st udies have at tempted to combine hardware and software theory into a svsteni reliability

perspective, citing software reliability models maturing to a point common with their hardware

counterparts [31. 42]. By viewing software reliability as an integrated aspect of system reliability

from a design viewpoint, it is possible to impleinent software reliability theory in a compatible way

wit I hardware reliability I heorv [64:7]. Based on this. .softwar rliabibty is defined as:

The probability that software wvill not cause the failure of a system for a specified time
under speified conditions [.5:32],[40:14].

The probability that a softi'are system will operate without a failure for a specified
(mission) time [19:9-1].

'lhe probability of failure-free operation of a computer program for a specified time in
a specified environment [64:15].

A failur is defined (with respect to software) as:

1-7

An event in which a system or system component does not perform a required func-
tion within specified limits. A failure may be produced when a fault is encountered

[5:191,[40:14]

where a fault is:

A manifestation of an error in software. A fault, if encountered may cause a failure.

[5:19],[40:14].

Additionally a new concept, the failure rate, is defined as:

The ratio of the number of failures of a given category or severity to given period of
tinie [5:19].

These definitions permit the use of reliability constructs similar to those used with hardware. One

example of this is the failure intensity representation presented by Musa, et al. [64:11,528-529]

which indicates the number of failures per unit time expressed by the function

A(r) = A0c (1.3)

where A(r) is the current measured software reliability based on time (r), initial failure intensity

(A0) and total estimated failures (vo). The value A(r) iIs the current failure intensity, and indicates

the ratio of failures t.o operational time. A number such as this ratio could then be used to provide

the operational assessment of computer software.

1.4 Scop

Currently. HQ AFOTE(I'/LG5 has a data collection tool for collecting software failure data

to analyze and determine the software maturity. The data are identified by standard data item

descritions, and can be provided either as part of the initial contract or through a letter to the

syst em program office (SPO) requesting the data to support software test (see Table 1.1) [23:4]. The

existing software maturity databases are implemented on a format for office personal computers

(PCs). and were enhanced to permit an operational effectiveness assessment of the software based

on the candidate software reliability models. Compatibility with the maturity database and data

collection tool required the software reliability model implementation to be in the same program

development environment. This, in turn, allows for future software maturity databases to be used

1-8

Table 1.1. Software Maturity Data

Description Variable Name Format
Software Problem Number PROBNUM Character 10

Software Configuration Item CPCI Character 10
Severity of Problem SEV_CODE Character I

Date Problem Discovered DATE Date
Date Problem Fixed DATE Date

Description of Problem TITLE Character 42
Total Operating Time (minutes) TOT-TIME Character 10

Test. Identification Number TESTID Character 10
Date Test. Planned TESTPLAN Date

Date Test. Completed TESTCOM P Date

as a baseline for software reliability assessment during the finite time OT&E period. The use

of initial maturity data (collected prior to OT&E) to lay the foundation for software reliability

assessment during OT&E is supported by Ferens, who states that software reliability models "are

only useful after testing begins" [30:11-41.

A previous effort by Westgate [92] attempted to validate a predictive model of soft.ware relia-

bility. While prediction has its necessary place in software evaluation, this study does not attempt,

to predict software reliability, nor attempt to identify what number correlates to reliable soft-

ware. Instead. this study evaluates software reliability incasurc ment models-models that indicate

the current software reliability without making any determination of the overall quality of the

software-mapped to finite OT&E time frames (i.e.-failures per flight hour). This study also

attempts to determine the type of assessment such models could provide. The determination of "is

the software reliable enough' and "how much more testing is needed" can then be decided by the

decision makers based on a reporting of "where is the software right now."

1..5 .Assnnplhows

This study presents no new models for evaluating software reliability. The existing models

were assumed to he valid wit h respect. to the entire life-cycle of a software development effort.. The

main focus is on the specific mapping to a finite OT&E time frame.

Several different, categories of OT&E exist. and it is assumed that only the Initial OT&E

(IOT&E) period will be used for time constraints [2]. As IOT&E supports procurement. decisions,

and Follow-on OT&E (FOT&E) begins aftera weapon system enters production [2: 1-2]. the IOT&E

fimeframe is better suited to pre-production software assessmelit..

1-9

1.6 Approach

The first step was to conduct a literature review of the models available for software relia-

bility evaluation. Identification and classification of these was performed based on their individual

characteristics and focus. From these, models were selected for possible mapping into the IOT&E

time frame based on the following criteria: predictive validity (of the model's parameters, not the

reliability itself); capability; quality of assumptions; applicability to the finite-time environment;

simplicity of design; diversity and applicability of output; and capability to use existing initial data

[39],[64:384-3871.

Implementation of two candidate models was attempted to further validate their usefulness

for evaluating software operational effectiveness. The implementation was conducted in accordance

with the software engineering discipline approach, and encompassed a relational database design

to permit data persistence. The design environment for program development was the Clipper

programming environment. The target system is any MS-DOS office computer environment to

allow use by IOT&E test teams at, various locations.

1.7 Thesis Organization

A review of available software reliability models is reported in Chapter 2. Chapter 3 describes

the evaluation of the models and selection of the candidate model. Implementation of the candidate

model is documented in Chapter 4. with the findings and results given in Chapter .5. Finally.

conchisions and recoiiniendations are presented in Chapter 6.

1-10

II. Literature Review

The software engineering discipline itself is concerned with "the systematic application of

methods, tools and technical concepts to create complex, software-intensive systems that meet

technical, economic and social objectives" [32:32]. One such technical concept is software quality,

which is defined as "the totality of features and characteristics of a software product that bear on

its ability to satisfy given needs" [5:32]. Indeed, software reliability has been identified as one of

several software quality factors that affect the software life-cycle and its associated cost [30, 90, 91].

There are several suggested frameworks for identifying the software quality factors [52, 87, 91].

Tindell [87] investigated complexity for the maintenance of JOVIAL J73 software, and identified a

software quality framework which included complexity and reliability (see Figure 2.1). Johnson also

evaluated complexity and its metrics, in this case for use in the AFOTECP 800-2 Vol 3. Software

Maintainability Evaluation Guide [44]. These works focused on the operational suitability assess-

ments for software OT&E. In comparison, Westgate addressed the software quality of reliability in

evaluating a software reliability model for software OT&E that uses calendar time as a basis [92].

To compliment these efforts, this thesis also explores software quality; however, the focus is on

the operational effectiveness of the software based on reliability as derived from test, or execution,

time. This chapter identifies endeavors in the literature to address software reliability.

2.1 Software Reliability Model Classifications

Many attempts have been made to define the concept of software reliability and determine

some form of software reliability assessment model [10, 17, 28. 40, 43, 55, 60. 62, 65. 68, 69. 73, 74,

7 , 86, 88. 96]. Such efforts have provided excellent. insight into specific areas of software reliability

evaluation. However, software reliability models currently available are not considered "universally

appropriate** across all application donmains and system usages, and Sommerville suggests that "it

may be appropriate to use different reliability metrics for different parts of the system" [82:596].

Paralleling the efforts of model definition are consolidations of soft-ware reliability definitions

andi models into a single compendium or reference handbook [19. 27. 34. 41. 56. ;57. 64, 80. 83, 85].

Such attempts take several software reliability models and group them by some classification,

allowing the software engineer to select the appropriate method for a specific application. The

following are major efforts to classify soft-ware reliability models.

2.1.1 IEEE Classification. The Institute of Electrical and Electronics Engineers (IEEE)

classifies software reliability models in terms of product measures and process measures (see Table

2-1

Software

exhibits

can be can be cnb

<complexity
iperformance

reliability

is or

(computational
psychologica

is affected by

Software
Characteristics

are quantified by

Figure 2.1. Software Quality Concept Mlap

2-2

2.1) [41:25-27]. Process measures provide input for the processes of both development and sup-

port management, and include: using management control measures for fault removal cost trends;

coverage to ensure completeness of activities throughout the software life-cycle; and technical and

cost evaluations for software delivery decisions [41:25]. Indicators, such as testing sufficiency, are

similar to those in the Air Force Systems Command Pamphlet (AFSCP) 800-14, Software Quality

Indicators [25]. A study by Lipow [53] identifies one approach that uses a form of residual fault

count and error distribution measures [41].

Product measures, on the other hand, focus on the developed software objects and encompass

many different metrics such as fault density, failure rate, and mean-time-to-failure [41:26-27]. These

measures are applicable to both software reliability prediction and measurement models. With

respect to software reliability prcdiction models, Vilson and Shen state:

No growth model has demonstrated that it can be used with a high degree of confidence
to predict, operational reliability from data generated in the debugging phase in a general
setting [93:5].

In contrast, the focus of OTS-E is to field test and evaluate weapon systems to determine

effectiveness and suitability [2]. AFR 800-18, Air Force Reliability and Malintaiiability Policy.

requires implementing "reliability qualification and acceptance testing, .. . [which] will be tailored

for effect iveness and efficiency in terms of the management information they provide" [24:3]. Most

software reliability models require data for calibration; however, it is not possible to direct ly measure

soft ware reliability during the design and c(oding stages where such calibration data does not exist

[30, 63]. Therefore, specific product measures for OT&E assessment of software reliability should

focus on measurement of: errors. faults and failures; mean-time-to-failure and failure rates: and

remaining product faults [41:26].

2.1.2 VSI'V" ('la.s.fication. The Naval Surface \Weapons ('enter (NS\W(') Technical Report

(T-82-171) classifies software reliability models into three categories: error seeding/tagging niod-

els; data domain approach model; and lime doliain approach models [27]. Error seeding/tagging

models are "built on firm statistical grouid'" [65:336]. The original work by Mills (as described by

Myers in [65]) developed a software reliability model requiring software engineering personnel to

place, or "seed" errors intentionally in the computer software. The errors are seeded randomly, with

the assumption thai an equal probability exists of finding either seeded or original errors during

testing. Since the number of seeded errors is known a priori, the ratio of the number of found

seeded errors divided by total seeded errors would he equal to the ratio of the number of found

original errors divided by total original errors [65].

2-3

Table 2.1. IEEE Software Reliability Model Classification

Product Measures II Process Measures

Errors, Faults, Failures Management Control
Mean-Time-To- Failure,

Failure Rate Coverage
Reliability Growth and

Projection
Remaining Product Faults Risk, Benefit,

Completeness and Consistency Cost Evaluation
Complexity

Data domain approach models are similar to error seeding/tagging models in that they esti-

mate a program's current reliability from a ratio. In this case, the ratio is the number of successful

test runs completed divided by total number of test runs attempted [27:3-11. This ratio assumes

that there is an equal probability of either failure or success for each test run [19:9-21]. The test

inputs are chosen based on probability distributions estimated for operational use, and the success

of a test run is defined with respect to these inputs [27:3-1].

Time domain approach models model the error generation process based on errors and time.

The relationship between the two is based on either error occurrence times and the calculated times

between error occurrences, or the number of errors that occur (luring a specified time period [27:4-

1]. Several of these models are similar to hardware reliability models, and use major assumpt ions

concerning the probability (list ribution of software failures [65:3301.

Within the time domain approach models, there is a further distinction based on the spe-

cific mathematical method used. The NSWC report identifies three subcategories of time domaii

approach models: classical software models; Bayesian models: andl Markov models [27). Both the

classical software models and Bayesian models treat software reliability as a function of cotiinuous

events. The classical software models use probabilities derived from soft ware failure frequency anal-

ysis and software hazard (or failure) rates, the Bayesian models use a more subjective viewpoint in

,-ouIII i ng errors [3]. [27:100-101].

In contrast to these, the Markov models view software reliability as a series of discrete events

[27:116]. Nlarkov models treat each software failure event as a separate occurrence, such that an

event at time t+1 is not based on the reliability history previous to time I [38:545].

2.I..3 RADC Classification. Home Air Development Center (RADC) drew uponi an earlier

work of Goel to identify four classes of soft-ware reliabihity models: fault seeding models: inlut

2-.

domain models; times between failure models; and failure count models [56:3-351. The categories

of fault seeding models and input domain models are identical to the NSWC categories of error

seeding/tagging models and data domain approach models, respectively [27, 56].

The times between failure models category is similar to the Bayesian subclass of the NSWC

time domain approach models, while the failure count models are identical to the classical subclass

of NSWC time domain approach models [27, 56]. Goel uses this same classification again in a

later article addressing the assumptions, limitations, and applications of various software reliability

models [34].

.. 1.4 AIIL-HDBK-338-1A Classification. MIL-HDBK-338-IA defines a higher level of ab-

straction, classif'ing soft-ware reliability models into two general categories: non-failure rate based

models and failure rate based models [19].

2.1.4.1 Non-Failure Rah Based Models. The term non-failure rate implies that. the

software reliability model is independent of the software's failure rate [19, 65]. The two basic types

of non-failure rate based models are combinatorial and input domain [19]. Combinatorial models

derive their name from the mathematical formula of ratios of identified faults to expected faults

[19]. The combinatorial models include both error seeding and binomial models [19].

While the input domain category is identical to the RADC input domain category and the

error seeding combinatorial model category is identical to the RADC fault seeding category. there is

nio corresponding category for the binomial models [19. 56]. The binomial models use coinbinatoric

mathematics to calculate reliability probability from the number of errors encountered, the number

of attempted program test runs, and the probability of finding errors on any given program test

run [19:9-21]. While such a method is appealing based on its simplicity, it is more a predictor than

a measure of software reliability, and will not he considered further.

2.1.4.2 Failur Ratl Based lod(ds. In contrast. failure rate based models are con-

c'rned with the number of software failures and the frequency at. which they are experienced

during a period of time [65:330-331]. NIIL-itDBK-33S-IA identifies two categories of failure rate

based models: classical, and Bayesian [19]. These categories map directly to the subclasses of clas-

sical and Bayesian of the NS\VC time domain approach models, as well as the RAD(categories of

failure count. models and times between failure models, respectively (19. 27. 561.

2.1.5 Alt.sa and Okaimoto Classification. In the book Softwar Rdliability: .ilea.nr~mnt.

Py'cdichon. Application. Musa et. al. give a different classification scheme first pre sented by Mu.sa

2-5

and Okumoto in 1983. Model classification is based on five attributes: time domain (calendar time

or execution time); category (either a finite or infinite number of failures experienced in infinite

time); the distribution type; class (only if the model is in the finite failure category); and family

(only if the model is in the infinite failure category) [64:250-2511. The table from Musa et al. is

shown in Figure 2.2.

Musa et al. discuss models with respect to both time domains; however, execution time better

"characterizes the failure-inducing stress placed on software" [64:31]. Therefore, only the execution

time based models will be discussed. Within the Musa and Okumoto classification, a model is first

identified as either a finite or infinite failure model depending on whether the model assumes a finite

or infinite number of failures will be reached at. time I = :Q [62:235]. Next. the failure quantity

distribution for failure experienced at time I is identified [62:235].[64:250]. Three distributions

have been identified for the finite failure category, while four have been identified for the infinite

failure category [62:235],[64:250,251]. Against these, the failure intensity form is cross-referenced,

using time as a basis for the class (finite failure category) and expected number of failures as a

basis for the family (infinite failure category) [62:235],[64:250]. This type of analysis identifies the

relationships between models within both of the times between failure and failure count categories

[56, 64].

2.1.6 Ozverall Model Classification Schema. A comparison of the MIL-IIDBK-338A, NSW(',

an(RADC software reliability model classifications is shown in Table 2.2. From this. and Figure

2.1. Ih1 concept map in Figure 2.3 was derived. This software reliability concept map reflects the

overall classification as identified in the previous sections. The initial division of software reliability

into process measures and product measures is based on the IEEE classification. While the process

measures are very important to the management of the overall soft-ware life-cycle, the OT&E

effort requires an approach that evaluates the software, and not the managemelt process [2]. The

additional level of abstraction defined hy .NMIL-IIDBK-33S-IA (identifying failure and non-failure

rate) would be placed between the IEEE product, measures and the lower categories. and is omitted

for clarity. Subsequent divisions of the product measurement into soflware reliability models are

based on he categories derived from the NSWC. RADC. and Goel classifical ions. and are identified

as the model categories of fault seeding. input domain, times between failures, an(failure count.

While the Musa et al. software reliability model classification differs from this more traditional

hierarchy, it does prove useful for relating models to each other within appropriate classifications.

This relationship is important for identifying initial models for evaluation.

2-6

TABLE 9.2

Software reliability model classification scheme

Finite biures cslegory models

____________ 1Type, _ _ _ _ _

clan,1 _Poisson Binomial Other Mipes

Exponenhial Musa 1975) iclifiski-Morands (Joel-Okumoto (19781
Moranda (1975) (1972) Musa(t979a)
Schneidewind f 19-!) Shooman (1972) Keiller-Littlewood
Croel-Okumoto (1979b) (1983)

Weibull Sclick-Wolverton
(1973)

Wasoner (1973)

C1 Scttick-Wolverion
(1978)

Pareto ILittle~vood 981)

Gamma 1Yamada;Ohba-Osaki
Infinite faihures Catesery models,

Femily.3 TI T2T3 Poisson

Geometric Moranda jMusa-Okurnoto
(1975) (1994b)

Inverse Littlewood-Venl
linuar (1973)

Inverse Lintlewood-Vernil
polynomial (1973)
(2nd delreep

Power Crow 1974)

Claoa: FwinctionaI form, of fail.,, inwiteev fin lm of fimej.
'Family: Functiand form of fail.., inenu (in catm of expecudt n.mak., of failies).

Figure 2.2. Musa el al.'s Software Reliabilityv Model Classification (Rleprin ted with permission

from NIc(raw-Hill Book CompanV)-

2-7

Table 2.2. Comparison of Software Reliability Model Classifications

RADC J NSWC JMIL-HDBK-338A
Fault Seeding Error Seeding/Tagging Non-Failure Rate

Combinatorial
Error Seeding

Input Domain Data Domnain Approach Non-Failure Rate
Input, Domain

Times Between Time Domain Approach Failure Rate Based
Failure Bayesian Subclass Bayesian

Failure Count Time Domain Approach Failure Rate Based
____________ Classical Subclass Classical

Soft--i

exhibits

copeitv performance reliability

is or

ProductProcess
MeasureMeasure

FutSeigInput Domain Times BetweenFalrCon
Moddls s Failures Modiels Mdl

Figure 2.3. Software Reliability Concept Map

2.2 Softwarf Rchabdity Moddl Descriptions

The following major models were identified for evaluation from the four model categories:

* Fault Seeding: Mill's Hypergeometric model [65]

" Input Domain: Ramamoorthy-Bastani model [69]

" Times Between Failures: Jelinski-Moranda model [43], Littlewood-Verrall model [55], Schick-

Wolverton model [73],

" Failure Count: Goel-Okunioto Nonhomogeneous Poisson Process model [35], Musa Execution

rime miodel [60], Musa-Okumoto Logarithmic Poisson Execution Time model [62], Shoonian

Exponential model [76], Yamada-Ohba-Osaki Power model [961

Other software reliability models (especially times between failures and failure count models) are

similar to these, being either more generalized or refined for specific applications [27, 34, 56, 64,

88]. The focus on evaluating older models is permissible, as there have been no significantly new

software reliability models developed in the last eight years [79]. Each model's assumptions follow

its description. Goel states the following concerning software reliability model assumptions

. . as a totality, they provide an insight into the kind of limitations imposed by them
on the tise of the software refiability models ... The ultimate decision about the appro-

priateness of the underlying assumptions aid the applicability of the models will have
to be made by the user of a model [34:1417].

Therefore, the assumptions will be identified in this chapter, and their applicability will he assessed

in the following chapter.

2.2.1 Fault Sfeding Moddls. Goel identifics the two major assimptions necessary to use

faut seding i iiodels [34:1419]:

" F-auhs are seeded randomly throughout the program.

" Ilnate faults have the same probability as the seeded faults of being discovered during lest.

A discussion with respect to the major model follows.

2-9

Mill's Hypegeon tric Mod(l.

Equation. The general equation for this model is given in Myers [651

A' = sn-/v (2.1)

where N is the maximun likelihood estimate of total number of innate errors, n is the number

of detected innate errors, s is the total number of seeded errors, and v is the number of detected

seeded errors [65:336-337]. The confidence calculation C is also given in Myers [65]

J 1 ifn> k

+ ' <

where k is an upper bound assumption of the number of innate errors in the program [65:337].

Assumptions. Although the error detection probabilities are unknown, the

Mill's model assumes both the innate and seeded errors have the same detection probability

[65:337]. Random error seeding throughout the program is another important assumption; how-

ever. seeding errors that have the same probability of detection as innate errors is a major problem

[6:12],[3,4:14191 .

2.2.2 Input Domin lodels. The major assumptions necessary for input domain models

are summarized by Goel as [34:1419]:

" Testing performed is random.

" The dis ribut lion is known a priori of the input profile for test.

" Input donmain equi valence classes can be determined.

A discussion with respect to the major model follows.

Ra ma inoorgthy- Basta ni Mod I.

Equation. The Ramalmoorthy-Bastani model is defined as [69]

PIE, In) = r '- 1 2 (22)
2-i

2-10

based on a program's continuous equivalence class specified by E = [a,a + r.] with n test cases

each having successive distances x3 for j = 1, • -., n - 1 [69:366]. Here. A is tie inverse of the mean

length of intervals for E,, and V is a determination of the number of errors [69:366]. The product

AV' is related to both the number N of elements in and degree D of an equivalence class [69]

D-1

N

Assumptions. The Ramamoorthy-Bastani model assumes the input can he

divided into equivalence classes, and then requires an assumption of the equivalence class distribu-

tion; however, the determination of the equivalence classes is very costly [34:1419],[69:367]. It also

allows the use of aniy test case selection strategy, and does not assume random sampling for test

inputs [69:367].

2.2.3 Times Between Failures Models. Goel discusses several assumptions common to the

times between failures models [34:1417-1419]:

" Faults are independent and have the same probability of exposure.

" Perfect. debugging is done immediately after the occurrence of a fault.

" Successive times between failure occurrences are independent of each other.

" The software system failure rate decreases as testing proceeds.

A discussion with respect to the major models follows.

J lInski-Moranda Model.

Equation. The Jelinski-Moranda model defines the probability of a tille

interval x belweeni the i - I and ith consecutive errors as [13]

P(.x') = 6[N - (i - I)] - O ' - 1 It]Y. (2.3)

where A' is the initial error content and o is a proportionality constant [43:473). The hazard

function :(t) is defined by the software failure rate 6[N - (i - 1)] [13:473]. Musa et al. takes this

a step further, and derives the failure intensity function with respect to time (,\(I)) based on the

constant hazard rate 6 [64]

A(1) = No(

2-11

Assuniptons. A major assumption of this and other times between failure

models is based on perfect debugging, the act of fault correction without introducing new faults

[34:1418]. Another assumption shared by models in this category is the independence of successive

failure times from each other [34:1417]. The model also assumes the failure rate between errors is

uniform [43:473]. This notion of a constant arrival rate for errors has been cited as a drawback

[73:105]. Also, testing time periods which are of equal length are assumed to represent the same

thoroughness of testing [43:477]. Musa et al. categorize the Jelinski-Moranda model as a finite fail-

ure exponential class model, which assumes that, at. infinite time the number of failures experienced

is finite [64:278-280].

Littlewood- Ierrall Model.

Equation. The equation for the Littlewood-Verrall model is [55]

t.i m l*-, e- V(.)I

q(I i.o) ' r(o) I > 0(> 0. > 0()

o I<0

where the hazard rate I is expressed as the probability density function g(I I i,o), ',(i) is the growth

function for the gamma distribution, and o is the shape parameter for the gamma distribution

[55:110]. The probability density function for time of next failure t, after repair of the previous

failure given the failure rate A is [55:110]

f{ t>OA>

.M usa et al. define the failure intensity function with respect to time (A(l)) based on these probability

density functions as [61]
A(t) -

with ; 3o and .11 being model parameters of the reliability growth f'nction v [64:294-296].

Assumptons. A major asstiiption of this and other times between fail-

ure models is based on perfect debugging, where fault correction occurs before finding tile next

fault without introducing new faults [55:109]. The independence and randomness of successive

failure times are other assumptions shared by models in this category [55:109]. As it lakts a

2-12

Bayesian approach, this model assumes "subjective attitudes to the system under consideration,

thus 'probability' means 'personal probability' or 'degree of belief' " [55:1101. Musa et al. classify

the Littlewood-Verrall model as a member of both infinite failure inverse linear and inverse poly-

nomial families, which assumes that at infinite time the number of failures experienced is infinite

[64:293-2961.

Schick- I,Volerton Model.

Equation. The original Schick-Wolverton model (as described by Schick

and Wolverton in [73]) is given by:

R(I)= e -EN -i -) (2.5)

with the hazard rate :(t,) := ON - (i - 1)]tj [73:105,112]. This hazard rate is similar to that

of equation 2.3. A modified version was subsequently proposed with a hazard rate of z(1i) =

O[N - (i - 1)][-aot + bti + c) [73:1121.

Assunptions. The error rate is not constant, and errors are corrected as

soon as they are detected-"As errors occur, the routines are stopped, the error is identified, cor-

rected, and the error nodality is reduced" [73:111]. Musa et al. classify the Schick-Volverton

models as finite failure Weibull and modified Weibull class models, which assumes that at infinite

imIe the number of failures experienced is finite [64:281-283]. Musa et al. state that for the modi-

fied model, "It does not appear to have practical applicability," and also that "it is more complex

than the other models" with "no evidence of superior properties that would justify the complexity"

[64:2831.

2.2.4 Faiur ('outit Iodl.. In contrast to the times between failures models, the failure

colin model assumptions ar- based on test, interval and not. failure interval times [34:1418-1419]:

" h'e numItber of failures discovered duritig a test. interval is independent of the number discov-

ered during a different nonoverlapping test, interval.

" Testing is similar and umiformn throughout the different test intervals.

" Each test interval is independent of the others.

* The software system failure rate decreases as testing proceeds.

A discussion with respect to the major models follows.

2-13

Goel-Okumoto Nonhomogeneous Poisson Process Model.

Equation. The general equation for the GoeI-Okumoto Nonhomogeneous

Poisson Process (NHPP) model is [35]

P{N(t) = y} = 07M)" -mCm 0, 1.2,... (2.6)

with r(t) = a(1 -e - bt) and A(t) - mi(t) = abe- bi where the cumulative number of failures at. time

I is denoted by N(t), tn(t) represents the expected number of failures at time 1, the failure rate is

A(I), a is the eventual expected number of failures, and b is the fault detection rate per fault [34].

Assumptions. The number of failures is 0 at time I = 0, and the niumber

of failures occurring during nonoverlapping time intervals are mutually exclusive [35:206]. Also.

the number of remaining faults to be discovered is considered a variable of test and environmental

factors instead of a fixed constant [34:1415]. This is considered a finite failure exponential class

model [64].

Musa Execution Time Model.

Equation. Musa's Execution Time model has a hazard rate of [60:314]

:(r) = fKNo - fKn (2.7)

where 7- is the execution time, f is linear execution frequency (instruction execution rate per number

of program instructions), K is the fault exposure ratio (as the machine state may vary, this accounts

for the probability of a fault being exposed when the related instruction is Ieing executed), No is

the number of inherent errors in the program, and n is the number of faulls corrected during time

r [60]. This concept. has also been applied t.o the determination of failures experienced (pi) for a

given execution time (r) [64:37]

P(T) = 'O [I - exp (-)7](2.8)

as well as the measurement of current failure intensity (A) based on either execution time (r) as

shown in Equation 1.3 [64:39]

A(r) = Aexp A--r (2.9)
0/

2-14

or actual failures experienced (i) [64:33]

A(P) = AO - (2.10)

Here, vo is the total expected number of failures, and A0 is the initial failure intensity (failures per

unit tine) [64:528-530].

Assumptions. The basic execution time model has been around for quite

some time, and is actually considered a Poisson process model [34, 60, 64]. This model assumes

that: program faults are independent; the "potential test space 'covers' its use space," not in a

completeness sense but rather the test sets should be representative of operational program use; test

inputs are randomly selected; all failures are observed; and discovered faults are corrected before

continuing with testing or are not counted again if rediscovered [60:313]. This model is considered

a finite failure exponential class model [64].

Musa-Okumoto Logarithmic Poisson Execution Time Model.

Equation. The Musa-Okumoto Logarithmic Poisson Execution Time model

is expressed by [62:231]

P(7) = .ln(A0Or + 1) (2.11)

Here. A0 is the initial failure intensity, and 9 is the failure intensity decay parameter, identifying

how fast. the failure intensity is changing [62]. Again, p is the number of failures expected for a

given execution time r [64:530-531]. As with the Musa Execution Time model, measurement of

current failure intensity (A) can be made from either execution time (r) [64:39]

A(r) = A0 (2.12)
A1O + 1

or act ial failures experienced (i) [64:34]

A(p) = Aoexp(-Op) (2.13)

Assumptions. This model uses the same assumption as the Goel-Okumoto

NHPP model in Equation 2.6 with respect to time r = 0: however, the Musa-Okumoto Logarithmic

Poisson Execution Time model also assumes an exponentially decreasing failure intensity based on

2-15

the number of failures experienced [62:230]. The model also uses 7 to determine the function of

the mean value of experienced failures with respect to time [62:231]. This is considered a geometric

family model [64].

Shooman Exponeidial Model.

Equation. The Shooinan Exponential model is given as [76]

p(7) = ET e - kr (2.14)

IT

where p(r) is the number of errors per total number of instructions detected per month, r is the

number of months after start of systen test, ki is the proportionality constant, ET is the total

number of errors (a constant), and IT is the number of program instructions [76].

Assumptions. The Shooman model uses the history of other similar soft-

ware programs as a basis for determining the model constants [76:486]. This model assumes "the

total number of errors in the program is fixed" and the number of errors remaining is the differ-

ence between total errors and errors encountered ["6:4871. It also assumes "all detected errors are

corrected errors," while also taking into account that "in any sizable program it is impossible to

remove all errors" [76:488]. Another assumption is both the number of debugged errors and number

of errors present. should decrease as testing proceeds [76:492]. This, taken with the initial assump-

tion that errors detected are proportional to the number present, results in an exponential error

detection rate [76:492]. Musa et al. categorize the Shooman model as a finite failure exponential

class model [64].

Yam ada- Oh bb- 0asaki Powe u' Model.

Equation. The Yamada-Ohba-Osaki Power model (also referred to as the

S-Shaped model) is a NIlPP model with the following mean value function for time 1 [96:476]

.I/(/) = ([- (1 + bt) -b] a, b > 0 (2.15)

where a is the total number of errors and b is the error detection rate [96:475]. Additionally, the

failure intensity is given by [96:476]

2-16

A(O) = 0

A(x,) = 0

with the remaining expected number of errors determined by [96:476]

n(t) = a(1 + bt)e - b'

.. ssUMiptions. This model assumes a steady-state for the error detection

rate b [96:475]. Other assumptions include random occurrence of failures, the time to failure (k - 1)

impacts the time to failure k from failure (k - 1), prompt correction of error(s) each time a failure

occurs, and perfect debugging [96:475-476]. This model is considered a gamma class Poisson finite

failure model [64].

2.3 Som mary

This chapter started with the identification of software quality as a desirable result of software

engineering. Software reliability was then described as one of several software quality factors

that affects software life-cycle cost.. Next, we proceeded to identify software reliability model

classifications within the scope of software reliability measurement. As many papers on software

reliability exist, it was necessary to define the overall framework for software reliability model

evaluation before choosing specific models. We compared and contrasted different categories of

software reliability models. The baseline framework was derived from a synthesis of categories,

primarily following the RADC and Goel categories. Within each of the framework major categories.

specific software reliability models were then identified for evaluation. The evaluation of these major

models is descri bed in (Chapter 3.

2-17

1II. Software Rliability Model Selection

This chapter identifies the selection of the candidate software reliability models. It begins

with identification and discussion of the software reliability model selection criteria. The criteria are

then applied to select candidate software reliability models for evaluation against software maturity

data.

3.1 Model Selection Criteria and Discussion

The goal of this thesis is to identify one model and methodology that is appropriate for

use in the IOT&E phase. Toward this end, the criteria defined in [39] and [64]. as well as other

implementation specific criteria defined in [16] will be used; however, an initial screening based

on model requirements eliminates the two categories of fault seeding and input, domain. Mill's

Hypergeometric model requires fault, seeding of intentional changes to the software. Such seeding

is very difficult and could be disastrous for something complex like avionics flight software. As

such intentional errors are not something to be introduced after the start of IOT&E. this model

will not be considered. Similarly, the Ramainoorthy-Bastani model will not be considered. The

IOT&E input domain for testing is based on operational usage, which is supported by the model's

lack of random sampling assumption; however, the cost of determining equivalence classes for an

integrated weapon system (such as a missile or aircraft) would be prohibitive. This leaves only

the failure count and times-between-failure models. These models are discussed below with respect

to the criteria of predictive validity, capability, quality of assumptions. applicability to the finite-

time environment. simplicity of design, diversity and applicability of output, and capability to use

existing data.

3. 1.1 Prdicrh Vahdity. This criterion concerns the accuracy of a model's paraineier esti-

mat ion. and not the predict ion of the reliability itself [64]. As such,))r(dichr(ralidty is

tIle capaIlitYv of the Inodlel to predict fit tnre failure behavior during eit(her the test or
the operational phases front present and past failure behavior in the respective phase
[39].

With respect to a "weighted parameter est irnation" of number of errors, bot Ih the Litt lewood-

Verrall model of the inverse polynomial family and the Musa-Okumoto Logarithmic Poisson Exe-

cution Time model were more accurate in the first, 60% of testing than the Musa Execution Time

model, the Yamada-Ohlba-Osaki Power model, or the Crow model (described as a power family

3-1

Poisson model in [64]) [89:9]. After this initial phase, all of these models performed satisfactorily

[89:9]. Of the models analyzed by Musa et al. in [64], the geometric and inverse polynomial families

had the best initial predictive validity. This assessment was made against the different classes and

families (the type, binomial or Poisson, made no difference), and was based on both maximum

likelihood estimation (MLE) and least squares estimation (LSE) [64:390]. Musa et al. determined

the Musa-Okumoto Logarithmic Poisson Execution Time model as being superior; however, the

Musa Execution Time model becomes just as viable after the initial 60% of testing [64:398]. The

applicability of an exponential class model is important, as software maturity data, which this

thesis suggests could be the basis for parameter estimation, has historically been exponential [94].

In another study involving 16 data sets on various hardware platfe-ms, Angus et al. found

it, difficult to estimate parameters for the Jelinski-Moranda and Schick-Wovtcrtoi, models [4:195].

\\hile the Jelinski-Moranda and Schick-Wolverton models are considered finite failure models,

both geometric and inverse polynomial families are in the infinite failure category [64:251]. Thus, it

appears that it is easier and more accurate to estimate parameters for models of the infinite failure

category, as opposed to the finite failure category. For IOT&E, such parameter estimation could

be based heavily on data previously collected prior to the start. of IOT&E (either on the system

undergoing test or from another similar system that has completed test). Initial parameters could

then be)redicted using a geometric or inverse polynomial model that is Poisson in type.

3.1.2 Capabiity. Another criterion, capability, is defined by lannino et al. as

... the ability of the model to estimate with satisfactory accuracy quantities needed by
soft ware managers, engineers, and users in planning and managing soft ware development
projects or running operational software systems [39].

Such accuracy of estimate could then be measured in the following quantities [64]:

" Present reliability. NITTFI', and failure intensity.

* Expected date to reach specified reliability. MTTF. or failure iltensity objective.

" llunin and computer resource and cost requirenlents needed to reach the failure intensity

objective.

This criterion is important for IOl&E, as the test. director needs to know both the current

quality of the software and what it will cost (in time and money) to reach an acceptable level of

quality. Musa et al. conducted an evaluation and comparison of 18 major software reliability models

[64]. Of the 18 models examined. those of the exponential class and geometric family appear to

have the best capability to be used to make quality assessments of the software under test. [64].

3-2

3.1.3 Qualiy ofAssumptions. lanninoet al. recommend that assumptions should be tested;

however, if this is not possible, the assumption's "plausibility" should be considered based on

logical consistency and the user's software engineering experience [39]. For complex systems, it

is difficult to test the validity of software reliability model assumptions. An example of this was

the Hughes Joint Surveillance System (JSS) air defense system for North America, where it was

not possible to confirm the validity or lack thereof of all software reliability model assumptions

used in evaluating the soft.ware [3:268,270]. As IOT&E is performed on weapon systems of similar

complexity to the JSS, there will he no attempt to prove or disprove all the assumptions for the

models under consideration. Instead, a comparison of only the assumptions deemed necessary

for IOT&E assessment will be performed against the models' assumptions. A model fails this

comparison if only one major IOT&7E assumption is not supported by the model's assunptions.

Both Musa et al. [64] and Goel [3-] identify many critical assumptions that are necessary for

model implementation. For application to the IOT&E environment, the major assumptions were

derived from both HQ AFOTEC requirements and the author's experience in IOT&E of weapon

system software and include [47]:

1. Operational testing is representative of the operational environment.

2. There is imperfect debugging for fault removal.

3. Errors might not, be corrected after the test interval (i.e.-just after a test flight.).

4. Execution time is used for the failure rates.

Assumption 1 allows both times between failures and failure count models to assess the soft.-

ware with respect, to operational reliability [34:1418]. The assumption is based on the operational

profiles used to assess the overall performance of system testing [2:1]. System testing is the usual

level of test for a Test. and Evaluation effort: however, there is usually insufficient test time to

thoroughly test all the software due to the tremendous combinatorics that occur from integrating

even the simplest subsystems together [48:110.114]. As a consequence, using operational profiles

for testing differs in the degree of randomness (and thus thorouighness) that is possible with module

or unit level testing. Since the test cases are then not likely t.o be independent, the test process will

not follow a true random nature [34:1417]. This eliminates times between failure models, which

assume times between failures occur independently [34:1417,1419]. In addition, this assumption

makes an important contribution to determination of end of operational testing and start of op-

erations. Since IOT&E testing is targeted for an operational environment, a final IOT&E value

of a failure intensity would then he the constant. failure intensity expected to occur throughout

operations until tie next major software release.

3-3

Assumption 2 also eliminates the Shooman model, and most, if not all, of the times between

failures category models [27:4-7],[34:1418-1419]. Ohba and Chou have assessed the validity of the

perfect debugging assumption found for the times-between-failures models, noting that "software

reliability growth models sometimes give reasonable figures (fairly accurate estimations) in con-

ditions where the perfect debugging assumption is not valid" [67:41]. They have also proposed

modifications to the Jelinski-Moranda and Goel-Okumoto models to accommodate imperfect de-

bugging; however, they cite that further study using actual project data is necessary to verify the

modified models' applicability [67:45]. Goel and Okumoto have also proposed a modified model, the

Goel-Okumoto Imperfect Debugging model, which is an extension of the Jelinski-Moranda model

based on a Markov process [34:1414]; however, this model is eliminated from consideration by As-

sumptions 1 and 3. Ohba and Chou also note the necessity of verifying the impact of an imperfect

debugging assumption on S-shaped software reliability models (such as the Yamada-Ohba-Osaki

Power model discussed in Chapter 2) before concluding that the imperfect debugging assumption

does not affect software reliability data analysis [67:46]. Until such proof exists, the Yamada-Ohba-

Osaki Power model will still be counted under the perfect debugging assumption and thus excluded

from further consideration [96:476]. In contrast, failure count models, such as the Musa Execution

Time model, can incorporate imperfect debugging through a fault reduction factor of the ratio of

net number of faults corrected per total number of faults corrected [64:120]. Musa et. al. suggest

such a ratio could be independent of specific project characteristics, and sufficient values have been

determined to provide for boundary conditions and an average [64:120-121].

Assumnptioni 3 further eliminates the times between failures models and the Yamada-Ohha-

Osaki Power model, as these models require faults to be removed as soon as they are detected

[34:1419]. [96:476]. The last one. Assumption 4, is important, as the concept of IOT&E revolves

around the time (flight, CPU, etc.) available for testing within given monetary constraints [48:114].

This assumption further eliminates fault seeding and input domain models (as neither define pa-

rameters in terlms of time), and also restricts times between failures and failure count models to

their execulion instead of calendar time components.

3.1.4 Applicabiliy to tI& Firtile-Tntne Environment. Applicability addresses five general

categories that the software reliability model should be able to deal with [39]:

* Phased integrat ion of a program during test (result. is that initial failure data is based on only

a portion of the program).

" Design changes to the program.

" Failure severity classification using different categories.

3-.1

" Ability to handle incomplete failure data or data with measurement uncertainties.

" Operation of the same program on computers of different performance.

Any model that meets these should then have the capability to be a single useful model, as

well as something that will he applicable across different IOT&E efforts/systems. Musa et al. [64]

identifies the characteristics of several models that allow for dealing with these categories. Of these

models, those of both the exponential class and geometric family apply well, as initial parameters

can be derived from data that exists prior to program testing (such as software size, machine

execution rate, etc.) [6-]. These parameters could then be further refined through data collected

on any evaluation, such as software nmaturity, done prior to the start of IOT&E.

3. 1. 5 .Stmpicily of D sign. Simplicity shou ld be present in three areas [39]:

* It must he simple and inexpensive to collect the required data.

* The model itself should be simple in concept.

* The model nst be implementable as both a useful management and engineering tool.

The Musa Execution Time model was found easy to use; however, would generally "under-

estimate the number of errors" [89:9]. In addition to this model, the Musa-Okumoto Logarithmic

Poisson Execution Time model was also identified as one of the easiest to use models [64:398]. In

contrast., the Goel-Okunioto NilPP and Jelinski-Moranda models were found to have such "numer-

ical difficulties" that

The issues concerning starting points for the iterative procedures, uniqueness of the
Iarameter estimates, and even alternative estimation techniques must be studied and
such problems solved before these models can he used by acquisition managers [3:273].

The Lit tlewood-Verrall model is very complex. very difficult to understand. and very difficult.

to apply on a computer [6 .:32]. Marko% nmodels. in general, were also found to have a "great deal

of added coniplexity' with "Imuch research still needed in this area" [27:4-116]. In contrast. the

Poisson type umodels (of tie exponential class) and the NIusa-Okumnoto Logarithnic Poisson Time

model (of the geometric family) are the two simplest models to implement [34, 64, 89].

.3.1.6 Diversty and Appizcability of Output. The ability to express data and results in differ-

ent formats is desirable considering the diversity of software systelns that undergo IOTS, E. Allowing

3- 5

the data to be presented in different formats will allow the software engineers/analysts to better

convey the meaning of reliability measurements.

While all models possess the capability to provide meaningful data to the decision makers,

the Poisson type and basic execution time models have the potential to encompass more than

just the raw data. Of all the models evaluated, only the Musa Execution Time model and the

Musa-Okumoto Logarithmic Poisson Time model have derived equations to compute current fail-

ire intensity as a function of either failures experienced or elapsed test time. No other models

have straightforward equations to determine both the number of failures or amount of time that

is expected to occur before reaching a desired failure intensity. Additionally, of the models evalu-

ated, only these two had equations to relate system characteristics to the determination of initial

parameters. Such equations allow for evaluation of a system where previous or similar failure data

do not exist. These, and the other equations, also enable presentation of data ranging in form from

engineering units vs. specific system parameters to overall trends of failures vs. system time.

-3 1. 7 Capability to Use Existing Initial Data. The criteria of simplicity of design addresses

the ease and cost of collecting data for the reliability model. In contrast, the capability to use

existing initial data evaluates a model's flexibility to be mapped to an existing database. HQ

A FOTEC is developing a database of software failure data to analyze and determine the software

maturity for different weapon systems. A software reliability model should then be able to use this

initial data as a baseline for estimating parameters. Such estimation is important, and using initial

data cani reduce errors from the use of data from other "similar" systems.

Some Poisson process models use cumulative failures per test period [341; however, the use of

time of failure occurrence and not time between failure occurrence allows for modeling the failure

occurrence as a random arrival event for those data points collected without time information. This

process has been demonstrated in [64], and can be useful for using existing maturity data where

failures per test titie are the only available data.

:1.2 Choic of a Rlliability Model

Based on the criteria and discussions above, the following models can be dismissed as possible

candidates for the following reasons:

* Mill's Hypergeometric Model. This and any other fault seeding models are not viable for

IOT&E as the introduction of faults this late in software testing would adversely impact

syste(l delivery. Seeding such faults in a manner to he representafive of the innate faults is

3-6

very difficult, and is not practical for IOT&E of programs with extensive amounts of software.

Also, the model does not support the use of execution times for failure rates.

" Ramamoorthy-Bastani Model. Input domain models are not workable due to the high cost of

determining equivalence classes. Also, the model does not support the use of execution times

for failure rates.

" Jelinski-Moranda Model. Parameter estimation was found to be difficult. The model does not

support IOT&E assumptions of imperfect debugging for fault, removal or errors not corrected

immediately after a test, interval. It. is one of the more difficult models (numerically) to use.

" Littlewood-Verrall Model. The model does not. support. IOT&E assumptions of imperfect

debugging for fault removal or errors not corrected immediately after a test interval. This

model is also very complex and difficult to understand and apply on a computer.

" Schick-Wolverton Model. Parameter estimation was found to be difficult. The model does not.

support. IOT&E assumptions of imperfect debugging for fault removal or errors not corrected

immediately after a test. interval.

* Goel-Okumoto NHPP Model. With respect to obtaining parameter estimates, it is one of the

more difficult models to use. Also, this model does not support the IOTSE assumption of

imperfect debugging.

" Shooman Exponential Model. This model does not support the IOT&,E assumption of im-

r,:.fei. debugging. The model also relies on calendar time and not execution time.

" i aiiada-Ohba-Osaki Power Model. Accuracy of parameter estimation not acceptable until

approximately 60% into testing. The model does not support IOT&E assumptions of imper-

fect debugging for fault removal or errors not corrected immediately after a test interval.

Therefore. only two models from the failure count category were selected as candidate models

for evaluation:

" Musa-Okumoto Logarithmic Poisson Execution Time Model. This model was found to have

the best initial predictive validity for parameter estimation, as well as the best. capability

to be used to make software assessments. The model supports all IOT&E assumptions and

easily accommodates diverse output. It. can also use existing program data to determine

initial model parameters.

" Musa Execution Time Model. This model was fomnd to be one of the models having the best

capability t.o be used to make software assessments. The model also supports all IOT&-E

3-7

assumptions and easily accommodates diverse output. This model can also use existing

program data to determine initial model parameters.

Although the Musa Execution Time model does not support adequate parameter estimation

until 60% of testing is complete, this assessment. is based on accumulated failure data and not

existing program data. As the model is one of the simpler ones to implement, it is hoped that the

simplicity and capability to use existing program statistics will enable closer parameter determina-

tion than is possible with using failure data alone. The Musa Execution Time model also contains

the salient points from other models, such as the Goel-Okumoto NHPP model, Jelinski-Moranda

model, and Shooman Exponential model [64:32]. One comparison even stated the Musa Execution

'rime model and Jelinski-Moralmda model were equivalent, with the Musa Execution Time model

considered to be "better developed- of the two [6:15]. Similarly, the Musa-Okumoto Logarithmic

Poisson Execution Time model is considered a combination of the Musa Execution Time model's

execution time characteristic and the "analytical ease" of the Goel-Okumoto NHPP model [58:83].

Other failure count models are similar to the candidat.e models, either being more generalized or

more refined for specific applications [34, 64, 88, 96].

The final two selection criteria have additional impact on the implementation of these can-

didate models. Several tools exist. which can assess software reliability with respect to different

models [28, 83]: however, the thrust of these tools (and hence the model implementation) is to pre-

dict, soft-ware reliability [83:1]. To fully examine the current assessment capability of the candidate

models, a fresh implementation must be considered. This implementation is discussed in ilie next

chapter.

.3.3 Sumnmary

This chapter took the models described in Chapter 2 and compared them against specific

model selection criteria, with the goal of selecting one candidate model and methodology appro-

priate for lise in the IOT&E phase of software test and evaluation. The model selection criteria

were defined, and models were either vindicated or eliminated during the discmssion of each cri-

terion. The results were two, instead of a single one, software reliability models that. should be

appropriate for software IOTkE: the Musa Execution Time model; and the Musa-Okumolo Log-

arilhmic Poisson Execution Time model. The implementation of these models is described in the

next chapter.

3-8

IV. Software Reliability Model Implementation

This chapter contains the method and actual implementation of the candidate models identi-

fied in the previous chapter. Several software reliability implementation methodologies have been

presented, including [34, 41, 64, 71]. The salient points of each have been extracted and are used

as a basis for impleinentation of the candidate models:

9 Plan a strategy [41:33-35].

e Determine software reliability goals [41:35].

e Assess existing data [34:1420].

* Select candidate model(s) [34:14201.

* Derive fitted model [34:1420],[71:50].

* Assess the model [34:1420],[71:50].

* Define and implement, data collection procedures [41:35],[64:215-220].

* Assess the software reliability [34:1421],[41:36],[71:50].

A discussion of each follows.

4.1 Plan a Strategy

This step is defined as "initiate a planning process" [41:33], and will be performed at two

levels. First., software reliability needs to be incorporated into the IOT&E test planning strategy.

After that., the design and implementation of the candidate models will follow.

4.1.1 lOTUE "T(st Planning Strategy. With respect to the overall OT&E test planning

strategy.

Operational Test and Evaluation (OT&E) is conducted to estimate the syster's opera-
tional effect ivcness, operational suitability (including'reliability, availability, maintain-
ability, logistics supportability, and training requirements) and identify needed modifi-
cat ion [21:3-41.

As the premise of this thesis is that software maturity data can be used as a basis for initial

parameters of the software reliability measurement, the candidate models must he implemented.

where possible. after software maturity data has been collected.

4-1

Evluate Sofhwm Rkehbbly I

I- I
~~Evaluate Sobwr~ Motunty l

Evlusa, Do.umenmstin E,.ktell Suff-sr

and Code Wilkbroulti$) M-mlismDmmmtmty

Esmhu,et Code .. tb Evaluate Soft..,
Automated Tools Us.0m ity

Evliuate Sub-L Ev-iu.t. Sohft-

Miumenace Fa.l.b. Mamenoc Facihon

[loI1'11Tea I tb-l Oprational
Dovndlouo..ml oO Tesl ;od FmlItuthon

Figure 4.1. Software T&E with Software Reliability Assessment

Figure 4.1 indicates one possible method for integrating software reliability measurement into

the IOT&E test effort. This figure identifies a possible relationship of software T&E during both

the developmental T&E (DT&E) and OT&E phases. This method integrates software reliability

evaluation with current HIQ AFOTEC operational suitability assessments (software maintainability.

usability, maturity, and support resources), and makes use of historical data for the same weapon

system collected by software evaluation personnel prior to the start of lOTkE. Such a combined

approach should provide a quantifiable way of assessing whether or not the soon-to-be operational

system has "good code."

4.1.2 Program Design Strategy. The development plan for this software effort involved an

analysis of the problem, specification of requirements. and development of a design based on the

re(Iuirements. After this. code development and testing followed. \Vihile the waterfall model pro-

vides file structure for this type of effort, an iterative waterfall (or "waterfountain") approach was

used Io enable further refinement of the specifications prior t.o generation of data sets [84.].

Structured analysis techniques were used for the initial analysi.,. The resultant data flow

diagrams (DFDs) were used for an object-oriented design of the software. As part of the high-

level design of the system, the possibility of using anl abstract, data type (ADT) to implement the

software was considered. Program coding was done in the Clipper programming language, which is

a dBASE compiler for any computer capable of running at least PC/MS-DOS version 2.0 [66:1-4].

The Clipper language was chosen for compatibility, as the current software maturity data base and

4-2

supporting software were all previously developed using Clipper. Testing of the code was performed

throughout the software life-cycle effort. Specific details on the analysis and design are discussed

in Appendix C.

4.2 Determine Software Reliability Goals

The software reliability goals of this thesis are not to predict software reliability at any time

in the future. Instead, the goal is to be able to define a current measure of the software such that

a decision maker (the Test Director for IOT&E testing) may be able to assess how much longer

it will take or how many more failures will be discovered to reach a failure intensity objective of

hi/her choosing. Typical values for operational reliability of critical soft-ware systems (such as air

traffic control systems, nuclear power plants, and space systems) have ranged from 10- 7 failures

per CPU hour to 10' failures per CPU hour [64:93]. Another suggested value is a reliability of

0.999999 for a mission duration of 5 hours [71:50]. Therefore, the suggested reliability goals will be

0.999999, 0.9999, 0.99, 0.95, 0.90, 0.85, and 0.80, all of which are within the range [0,1].

In order to determine which of these is the optimum reliability goal. there are two concepts

that must, be considered: failure intensity at the end of IOT&E is the same as that for beginning

of the software's operational life; and given an unchanging failure intensity during operations,

different reliability values for operational periods can be used to assess the software reliability at

end of IOT E. While this might seem like a back-door method, it does have some merit given

that engineers can not determine (with any degree of accuracy) the future reliability of software

in major weapon systems. Thus. the decision maker should be able to pick a desired operational

reliability (with respect to failure intensity), with the engineer then assessing the cost to reach that

goal. This follows the concept that an acceptable range of reliability values should be established,

given the user's requirements and needs [41:35].

hiI specifying the user's requirements, we will start with the basic reliability function, B(t),

which is given by [38:524]

R?(t) = I- F(t) = j f(x)dx

where I is the time of reliability assessment, F(I) is the cumulative distribution function for failures.

and f(.r) is the probability density function for failures [38:54,56,524]. Assuming only random

failures are used (this gives an exponential time to the failure density), the reliability function is

described in terms of a Poisson distribution with a mean occurrence rate A by [38:524,526]

=(t) -

4I-3

Musa et al. applies this to software reliability, resulting in a similar reliability function R(r) given

by [64:50]

R(r) = e -
AT (4.1)

The major assumption for this is a constant failure intensity A for the execution time period r

[64:50]. However, this works to the advantage of the decision maker. Taking the natural logarithm

of Equation 4.1 gives

ln(R(r)) = -AT (4.2)

Equation 4.2 can then be used for decision support alternatives. For example, assuming a

weapon system is projected to operate for (an average) of 500 hours per each calendar year, the

Test Director would pick the reliability goal and the required failure intensity from the range of

values derived for various A values specified above (see Table 4.1). The reliability would be defined

by the Test Director as a success criterion, and the implemented model should be able to support

analysis based on current operational assessment as well as a potentially changing success criterion.

In this case, the additional test time needed to reach the desired failure intensity (determined from

the reliability defined by the Test Director) would then be calculated.

Table 4.1. Range of Software Reliability Goals for -r = 500 Hours

A R(500)

2.00 x 10 - - Failures/Hr 0.999999
2.00 x 10- Failures/Hr 0.9999
2.01 x l0- ' Failures/Htr 0.99
1.03 x 10' Failures/Hr 0.95

2.11 x 10- 4 Failures/Hr 0.90
3.25 x 10

- 4 Failures/Hr 0.85
.1.46 x 10

- 4 Failures/Hr 0.80

This is supported by the candidate models, as predicted and measured quanlities (number

of failures remaining and mean time to fail, respectively) at. the start of operations "are constant

and equal to those at (lie end of the last test phase (unless errors are corrected. in which case Ihe

operational phase should be considered as a 'test' phase or phase of reliability growth)" [60:313].

Thus. the desired final reliability value (AF) is determined from Equation 4.2. and the present

failure intensity during IOT&E testing (Ap) is determined from either Equations 2.9 and 2.10 or

Equations 2.12 and 2.13. The amount of additional test, time (Ar) necessary to reach the desired

-1-4

software reliability level is then determined by the Musa Execution Time model from [64:45]

u0 __pIn (4.3)
= A0 nAF

and by the Musa-Okumoto Logarithmic Poisson Execution Time model from [64:45]

AT=I(I I) (4.4)

0 A' Ap

Therefore, if the test time needed to reach a desired failure intensity objective was deemed

to be too much by the Test Director, he/she would then have to choose a lower reliability goal.

obtain additional test time, or alter some other aspect of the software development process to

compensate. Thus, the actual software reliability goals will be determined by the decision maker.

and are subject to change based on the availability of test, resources (primarily time). This means

the implementation must support some form of decision support scenario.

4.3 Assfss Existing Data.

Shaw noted

The problem in applying software metrics is to find appropriate measures and make
sense out of the data. not simply to obtain the data [75:257].

The goal of soft-ware reliability assessment is to make the data useful. thus something must be

determined from the data, even if that means discovering that nothing can be determined from

the data. From the HQ AFOTEC software maturity data. 17 initial data sets were available that

included aircraft.. comnunications, missile, radar, and space systems. For thest, data sets. the

number and type of record fields varied; however, there was a common set of fields across all 17

data sets. These fields are identified in Table 4.2.

None of the data in tie 17 different data base files contained information about test durations

or specific descriptions of the system under test (for example, number of source lines of code or

processor execution rate). Such additional information was necessary to run the models: however,

due to the very recent incorporation of software maturity assessment in the IOT&E planning

strategy. this initial data was "fragmented and incomplete" [45]. Therefore, a data assessment

strategy was devised where candidate data sets were chosen based on the availability of any test

-1-5

Table 4.2. Common Software Maturity Data Fields

Field Name Description

Date Date of Problem
CPCI Software Configuration Item

SevCode Severity of Problem

Date-Fix Date Problem Fixed

Title Description of Problem
ProbNum Software Problem Number

duration data. This limited the data sets to three types of weapon systems: aircraft. (denoted

by .\), space systems (denoted by S), and weapon system trainers (denoted by XV). These data

sets were then plotted with failure count indicated as a function of execution time [34:1420]. An

assessment, was then made as to the applicability of the candidate models based on the initial curve

of the data. The results of this, as well as the application of the models to the data. are discussed

in the next chapter.

4.4 Stlection of Candidate Models.

Assumptions for each model, evaluation of each model with respect, to specific acceptance

criteria, and selection of candidate models were discussed in the previous chapter.

4 .5 Dcriv(th(Fithd Model

This procedure involves botii estimating the parameters for the model, and then substituting

the-e parameters into the model t.o fit. the model for the data [34:1420]. An additional version

of each fitted model was derived for those models that had prior DTAcL test data. A discussion

of initial parameter estimates appears in the first section. followed by a discussion of the derived

para im let er est im Iat es.

4.5.1 .Mtod(l Parapic r Estmnalon. Musa et al. define equations for failure intensity and

mean value functions for both the Execution Time model and Logarit hmic Poisson Execution

Time model (see Table 4.3) [61:307]. From these, the parameters j3 = '0 (the total failures at. time

I = x for the Execution Time model) and O3 T1 = 9 (the failure intensity decay paraleter for the

Logarithmic Poisson Execution Time model) need to be determined [64:351]. Parameter 130, as well

as other estimated values, are a function of 31 which is defined as J31 = A0/vo for the Execution

Time model. and 31 = A09 for the Logarithmic Poisson Execution Time model [6.1:351.529]. The

4-6

Table 4.3. Specific Model A and u Functions

Model I p (t; A (t;fl

Execution Timle 13o[1 - c- "I flof 13,
Logarithmic Poisson

Execution Time ;30 ln(1 + Olt) 1to3,t

parameter 31 itself is estimated for the Execution Time model by [64:325]

711 77el - 1 i (4.5)
,31 01 1 t ~

and is estimated for the Logarithmic Poisson Execution Time model by [64:326]

Imet

1 iI-+ 31ti (I + dl 1 + 31 t.!) (4)

4.5.1.1 Nton-Raphson 1iichod. One way of estimlat-ing parameters is with the Newton-

Raphson nmethiod. which has the general form [14:48]

This is calculated based onl a simiple algorithmn, such as the one presented by Burden and Faires

[14:49]:

'ro find a solution to f(j-) =0 given anl Initial approximation po:

IN PUT initial app~lroximIation po; tolerance TOL; mnaximum i number of itera tion N'(.

oUTI~UT approxinmate soluition 1) or mnessage of failure.

St-ep I. Set. i = I

Step 2. While i < N'(do0 Steps :3 6.

Step :3. Set p =po - f(p0)/f'(po). (('onpitli pj.)

Step AI. I f 11 - 1)(1 < TOL t hen O UTPU 17T p; STO P.

Step 5. Set i i +1.

Step 6. Set. po =p1.

Step 7. OUTTPUT ('Methiod failed after N() iterations, No =',No,, STOP.

4-7

Angus et al. note a problem with the Newton-Raphson method, and state

In the actual use of the Newton-Raphson method, convergence of the estimators to
finite values could not. always be obtained. The major problem seemed to be in finding
successful starting points for the parameter estimates as inputs to the program. In

general, no real guidelines were found [4:194].

As the maximum likelihood estimation of parameters for both models is based on the single pa-

rarneter 31, this requires only one initial starting point necessary for the Newton-Raphson method

[64:526]. Musa et al. suggest an initial estimate for /3 to be t1 , the inverse of the total testing

time, and state that "this value almost always results in the initial convergence of the Newton-

Raphson procedure" [64:527]. Therefore, 17 1 will be used as the initial estimate for the parameter

.31.

Applying the Burden and Faires algorithm to equations 4.5 and 4.6 requires the first derivative

of each. Taking the first derivative of Equation 4.5, we get,

f(l) = (me) (e t - (,iele) [e" (4.7)

and taking the first derivative of Equation 4.6 gives

F/IN ~ ~ ~ ~ ~ ~ ~ ~ ~ n (m *1'I (..u.1_ -mt)I + ImI(1I + 311,)

z= (1 + 1ti)2 1 + ;311- , J -I [(1 + d3 t) IIn(l + 311,)1'2

(4.8)

4.5.1.2 .Addioloal ndiaI Paranitr Estimaiou. Equation 4.7 then is used to calcu-

late am estimated v = ;30 for the Execution Time ,uodel [6.1:325]

0, I (4.9),, - - ' k le t

Recalling that 31 = Ao/vo for the Execution Time model, the estimated initial failure intensity

value A0 is then calculated as [64:351,529]

Ao = ;3o131 (4.10)

.*-8

Similarly, Equation 4.8 is used to calculate an estimated 0' = =3 for the Logarithmic Poisson

Execution Time model [64:3261

,30 (4.11)
In(1 + 31t,)

Recalling that /
3

1 = A0 0 for the Logarithmic Poisson Execution Time model, the estimated A0 value

can also he calculated from Equation 4.10 [64:351].

4.5.1.3 Confidence Intertials. Confidence intervals for the estimated parameters were

developed based on the assumptions of a normal distribution, zero mean, unit variance, and a

desired confidence interval of 95 percent [64:316]. Such an approach allows a 100(1 - n) percent

confidence interval to be calculated for the unknown mean p from the sampling distribution of N

the sample mean [38:242]. The general form of the equation for this two-sided confidence interval

is [38:242]

5 _ +I Z<Ip<r (4.12)

For a 95 percent confidence interval a .05 with a/2 = .025. From a cumulative standard

normal distribution table, the test statistic Z.025 = 1.96 [38:243,593]. Musa et. al. apply this, as

well as the unit variance assumption of a' = 1, to Equation 4.12 and derive the following version of

the two-sided confidence interval for the estimated parameter 0k [64:316]

.-I- K -°/" (4.13)

with Kl- 0 12 being "the appropriate normal deviate" and I(W) being the "expected, or Fisher,

information" [64:315-316]. The appropriate normal deviate equates to the test statistic

-a/2., = Z. 0 25 = 1.96

and the expected informalion for I(jli) can be determined for the Execuion Time model from

[64:351] ~~

I(171 m , " - (4.14)_12 (e o 1]-

with the value for the Logarithmic Poisson Execution Time model determined from [64:334]

.I-9

=

In, ____________ 21-3 1 '13,(1 + 01 G)ln(l +fllte) 2 , In(l+,3 t,) 1 (l+ 31)1-,

t [ln(1 + 13,) + 1] }(4.15)
[(1 + 1311,)In(1 + #11,)]2

Equations 4.14 and 4.15 are then substituted into Equation 4.13 to determine the upper and lower

95 percent confidence parameters of.jI. All three values (h, i, ,,,d and i01 high) are used in Equation

4.9 to determine vo and its confidence boundary, and also in Equation 4.11 to determine 0 and its

confidence boundary. The results of these are then used in Equation 4.10 to determine A0 and its

95 percent boundary. The different values of A0 and v0 are used in Equations 2.8, 2.9, and 2.10

to evaluate the applicability of the Execution Time model, while the different values of A0 and 0

are used in Equations 2.11, 2.12, and 2.13 to evaluate the applicability of the Logarithmic Poisson

Execution Time model.

4.5.2 Model Parameter Dertvation. Applying the techniques and equations identified in the

previous section to strictly DT&E data results in a final failure intensity that can be based either

on time of last failure (A(r)) or on the number of failures experienced at that time (A(p)) [64]. As

these values are at the end of DT&E, they also represent the failure intensity values at the start

of the next phase of testing. 1OT&E. Therefore. the value of AO is known at the start of IOTkE.

Assuming additional data are not available (either with respect to failures or system characteristics).

calculation of the initial parameter 31 was based on the equations used to derive A0.

The equation for A0 for the Execution Time model is based on Equation 4.10, and in its

expalnded form is [64:351]

A0 In, (4. 16)
1 -- e : t

with the expanded form of the Logarithmic Poissoti Execution Time model also based on Equation

4.10 and given by [64:351]

Ao - 3 (4.17)

Subtracting A 0 from both sides and setting these equations equal to 0 allowed the Newton-Raphson

method to be used to determine the value of/is.

.1-10

4.5.2.1 Newton-Raphson Method. Again applying the Burden and Faires algorithm,

the first. derivative of Equation 4.16 is

f(/)=(1 - e-''~)(,me) - (rmeIh)(tee - ' t ') (.8
(1 -e-d,,)2(4.18)

and taking the first. derivative of Equation 4.17 gives

(lnI(1 + fhte))(?7i) - (7flnA)(~~(ef'(/1i) = I+3t(4.19)

(In(1 + dite))
2

Therefore, the initial derivation of d, was determined after A0 . While. these equations use typical

end-of-test variables, such as t, and ie, these variables are cumulative and can reflect even the

early stages of testing. For the purpose of this study, only final IOT&E data was used after initial

parameter derivation from DT&E data, as this was believed to provide a better description of the

mapped models.

4.5.2.2 Additional Initial Parameter Derivation. Once j was derived, other initial

values were then derived. For the Execution Time model, v0 = /o was derived from Equation 4.9,

while Equation 4.11 was used to derive 0' =

4.5.2.3 Confidence Intrrals. Confidence intervals for the derived parameters were

developed based on the assumplions and equations presented in the previous section on model

parameter estimation. Once boundary values were derived, those values along with A0 and vo were

used in Equations 2.8. 2.9, and 2.10 to evaluate the applicability of the Execution Time model,

and(the different values of A0 and 0 were used in Equations 2.11. 2.12, and 2.13 to evaluate the

applicalility of the Logarithmic Poisson Execution Time model.

4.6 Assess lIh .fodcls

Implementation and code development was conducted in accordance with the software devel-

opment lifecycle. and documented as such. A modular approach was used with the code to facilitate

changes during the experimental process. This proved useful, as an additional module was added

during the models' evaluation. The exact implementation details of the analysis code are included

in Appendix D. An assessment of the models and their performance follows in the next chapter.

•1-1 1

4.7 Define and Implement Data Collection Procedures.

As failure and date data had already been collected, the only additional effort was to locate

the test duration and time information needed for tile models. The results of this are given in tile

following chapter. Future efforts to collect software reliability data must include such test, duration

and test time as important information. This also will be discussed in the following chapters.

4.8 Assess the Software Reliability.

This is tile next logical step, and involves actual implementation of the candidate models on

a real project, with actual data. Such an assessment of the software would be based on the models'

results. As the goal of this thesis is to evaluate the software reliability models and not the reliability

of the test data software. comnments concerning the reliability of the test data software is limited

to discussion of the models' applicability and not the software systems' reliability. From this, a

proposed IOT&E software reliability methodology will be discussed in the following chapters.

4.9 Summary

This chapter identified the implementation strategy for assessing the candidate software reli-

ability models. As the integration of software reliability is new to operational test and evaluation of

weapon systems. this chapter also identified the place a software reliability model implementation

strategy would have in the IOT&E environment. Results and discussion of the candidate software

reliability models' implementation follow in the next chapter.

.1-12

1". Findings

This chapter presents the initial data analysis findings, the findings of the fitted models with

respect to the actual failure data, a comparison of the failure intensity values for each data set, and

an evaluation of each model fitted for IOT&E failure data from historical DT&E failure data.

5.1 Initial Data Analysis

The basic data fields listed in Table 4.3 were not sufficient for use with a software reliability

measurement model, as they were lacking some sort of failure time indication. Additional informa-

tion on timing and systen characteristics was identified [45, 47]: however, of tie initial 17 data sets

available. only five had sufficient supplemental information t.o make the maturity data meaningful

in a software reliability sense. Therefore. the initial data analysis was conducted using only these

five data sets. Line charts were plotted for each using cumulative total failures for the y-axis and

execution test, time for the x-axis to visually determine the trends of each curve. The results are

shown in Figures 5.1 through 5.6 and discussed below.

5.1.1 Data SOt A]. The test. durations used for this data set varied from 30 to 738 minutes.

Although tihe IOTkE dates were from July 1984 to June 1989 and test durations and dates were

available for the entire IOT&E period, the available data from the iQ AFOTEC software maturity

database (named SN"VTERR) 'ox',r, d ,nly the dates of 27 August 1987 to 30 April 1989, inclusive.

with one lone data point on 1 October 1986 (see Appendix B) [.15]. This totaled six months of data,

with a total of 1465 failures indicated. The lone data point was excluded from initial and subsequent

analysis as the test, duration time span between this and the next data point was too great for the

point to be meaningful. This assumption was based on tihe author's personal experience from

performing IOT&kE on this weapon system. Also. if the trend is statistically sound. the absence of

one data point on either end should not affect t lie overall integrity of hlie data.

Initial analysis of the cumulative failure data reveals an exponential-like trend withI respect

to execution test time (see Figure 5.1). This is encouraging. as the soft-ware maturity data is based

on calendar time (independent of execution time or test, duration). and itself has an exponential

tendency [94]. Although the exact time of each failure occurrence was not known. times were

assumed to follow a uniform distrihution, and were assigned randomly to each failure event within

the total test duration for that calendar day [64:158].

There was some difficulty mapping dates of failures to the dates of actual test durations.

In some cases. (lates listed for failures did not have a date of test duration, and conversely some

5-1

Failures (Cumulative)
1600

1400 -

1200 -

1000 F-
800 F
600

400 h
200 ~

07
0 5 10 15 20 25 30

Execution Time (Thousands of Minutes)

-Failures

Figure 5.1. Cumulative Failures vs Execution Time for Data Set Al

test durations (lid not have associated dates of failures. The software listed in Appendix D was

modlified t~o include a special m~odule t hat would ronipensate for Ithis discrepancy as follows. If test

durations did not have associated failures (or dlates had multiple test durations), the test imes were

adlded to the total test duration as an offset. Failures that had no associated test durations were

then addedl together until anl existing test duration date was reached, and all were applied against.

that date. Admittedly this approach seems unfair in t hat failures listed between test durations

should be applied ag'aiust the previous test dulrat ion (as that is likely to be where the failures were

found): howt-ver, given lie seeming raidonine,s iii association bet ween date of failure and date of

test. duration the method used] should not, unduly skew the data. The only visible instance of this

smoothing is the rat her flat. slope dIirectly in lie middle of the curve. Again. as the overall curve

tended towards exponential, t his smoothing should not have any affect. on the data or subsequent

calculations.

Thus, it appears imitiallv that both the Execution Time Model and the Logarithmic Execution

Time Model should fit this data distribution; however, as HIQ AFOTEC is involved wl,! s, veral

different types- of weapon systems. additional dlat~a sets must be analyzed for model applicability.

5- 2

5.1.2 Data Set A2. The IOT&E for this system was from December 1988 to September

1989, during which there were 512.4 hours of testing with 304 total testing periods [45]. The failure

data available ranged from 24 February 1987 through 25 July 1989. During the IOT&E timeframe,

there were eight. months of testing and a total of 47 recorded failures. An initial assumption was

made that each test duration was 1.686 hours long (512.4/304=1.686): however, there were only

37 failure dates listed from the SYSTERR database for the IOT&E period which would leave 267

test durations unaccounted (see Appendix B).

Since the number of failure dates did not correspond in any way to the number of test

periods, another way to determine the failure to test duration relationship was needed. Available

information for average test. durations of similar weapon systems was used as a starting point to

determine an approximate relationship. The average number of test flights per aircraft per month

for a fighter type aircraft. is 10 flights/aircraft/month, with the average number for a larger type

aircraft (such as a bomber) being 5 flights/aircraft/month [1:3],[48:144]. A similar test program

used four total aircraft for testing [45]. Therefore, an assumption was made that four aircraft were

used with each having 10 test flights per month. This gave an approximate total of

(4 aircrah)(10 flights/month)(10 nonths)=400 sorties (or test durations)

that would have occurred from December 1988 to September 1989. As the actual number of test

durations was less than the estimated number, and assuming a standard normal dist ribution. either

ite assumed number of test aircraft should he reduced giving

(3 aircraft)(10 flights/month)(10 months)=300 sorties

or he number of flights per month should be reduced giving

(.1 aircraft)(8 flights/month)(10 months)=320 sorties

Varying the number of test aircraft, yields the closer aplioxiniation. withi the additional time froni

the last four sorties easily applied to the last month of testing (which is acceptale. as there is no

failure data for any month past July 1989). Therefore, :10 test durations of .686 hours each (50.58

total test hours) were assumed to occur each month, with 34 test durations of 1.686 hours each

(57.32 total test hours) assumed to occur in the last. month of testing.

Cumntlative tol.al number of failures were determined for these duralions based on the fol-

lowing. Assuming a normal distribution for the dates of tes. each mont I.was treated as a total

7-3

test du:ation of 50.58 hours (57.32 for the final month). The number of failures per month were

then added, and assigned randomly within that test duration. The results are shown in Figure

5.2. By inspection, the data appears to follow some form of exponential curve. While the trend is

more .S-shaped, there appears to be enough of an exponential shape to proceed with the candidate

models on this data set as well.

Failures (Cumulative)
50,

40 -

30

20

10

0 5 10 15 20 25 30 35

Execution Time (Thousands of Minutes)

Failures

Figure 5.2. Cumulative Failures vs Execution Time for Data Set A2

5.1.3 Data SO A3. There were 219 test periods, four test aircraft, and an average test

dliration of 1.5 hours for IOTkE of this system which lasted from 2:3 May 1989 to I November

1989 [.15]. This gave 5.25 months of IOT&E and 50 recorded failures. Using the relationship (efined

above, that. gives

(4 aircraft)(10 flight.s/ionth)(5.25 months)=210 sorties

which is extremely close to the 219 actual test. flights. Varying the number of flights per month

(which is itself an average) to II gives

5-4

(4 aircraft)(11 flights/month)(5.25 montlis)=231 sorties

A closer approximation was obtained by taking the 219 sorties and dividing back by the number

of months (5.25), which yields 41.7 test, flights per month. At, 1.5 hours each (on the average) the

total test time per month is then

(41.7 test flights)(1.5 hours/test flight)=62.55 hours

with the first month of testing having only 15.6 test hours due to only 8 days of testing occurring

in the first. month.

Cumulative total number of failures were determined for these test, durations based on the

same assumptions that were used with the A2 data set.. A normal distribution was assumed for the

dates of test, with each month treated as having a total test. duration of 62.55 hours (15.6 for the

first, month). The number of failures per month were then added, and assigned randomly within

that test. duration. The results are shown in Figure 5.3. This curve exhibits more dramatic changes

in the cumulative failures than the previous data sets. Even so, the general trend should permit

the use of the candidate models.

5.1.4 Data Set SI. IOT&E for this system lasted from 3 February 1988 until 6 July 1989

[45]. A total of five two-week test, periods occurred at three different test, sites (two two-week

periods of testing at one site, two two-week periods of testing at another site. and one two-week

period of testing at. the third site), with an average of 20 hours per lay of testing for 1.1 straight

days [47].

The use of three different test sites normally requires adjusting the test durations and times

of failure occurrences. Miusa et al. provides an excellent description of how to interleave test time

aid failure occurrence for multiple le t installations [64:162-165]. Normally. on- would think to use

independent, failure intervals for each program, as with the hardware for a system: however, due to

the logical nature of software a faihlre and test time interleaving is more appropriate [64:162-165].

For this application, the exact time of each failure occurrence is not known. Therefore.

interleaving is not applicable, and it will be sufficient to take the total test duration of

(20 hours testing per system per day)(3 systems)=60 hours testing per day

and divide that by the number of failures occurring on that (lay. Since the five two-week test.

periods were well within the start an(d stop dates for 1OTkE. and there were failure data for other

5-5

Failures (Cumulative)60

50F

40 -

30

.o
0

0 5 10 15 20

Execution Time (Thousands of Minutes)

-Failures

Figure 5.3. Cumulative Failures vs Execution Time for Data Set. A3

dates inside the IOT&E tineframe, the total IOT&,E time was considered to be 1 (60 hours per

day)(number of (lays in the month) for a total of 16 months of failure data (see Appendix B). The

exact. test tine, therefore, varied with the number of clays in the month and totaled 27780 hours

(all average of 1736.25 test hours per month). There were 413 recorded failures. The results of

this are shown in Figure 5.4. This data set has, by far, exhibited the closest approximation to an

exponential curve. Therefore. the candidate models should work very well with this data set.

5. 1.5 Dilo SdI i1,. There were no IOT&E dates nor test durations given for this system

[45]. The total SYSTERR database was used, resulting in an assumed 7 months of IOTkE with

450 recorded failures. Therefore. based on the author's limited involvement with a similar system

and the frequency of failure dates, an initial assumption was made that all tests dates were valid

data points, test durations only occurred on the dates of failure identification (as determined from

the SYSTERR database), and that each test duration was six hours long. This resulted in the data

increasing in a linear fashion (see Figure 5.5).

Subsequent research indicated that. actual test, durations were 16 hours each, and another

assumption was made that testing was conducted for five working days each week [46]. At an

5-6

Failures (Cumulative)
500

400

300

200

10

0

0 500 1000 1500 2000

Execution Time (Thousands of Minutes)

-Failures

Figure 5.4. Cumulative Failures vs Execution Time for Data Set SI

average of 22 working days per month (or 4.4 weeks per month), and still using all failure dates,

that results in

(22 working days per month)(16 hours testing per day)=352 hours testing per month

or 80 hours of testing per week. The :esults of this new calculation are shown in Figure 5.6, and

the data distribution is much more exponential than under the previous asSUlitions This is not

an instance where the assumptions were changed to provide dtala that fit the models; instead, the

initial assumptions were modified as additional data became available. Based on the additional

data, the candidate models should also be applicable to this data set.

5.2 Calculated ,'Valucs for Current Number of Failures Com pared to Actual Number of Failures

After an initial model feasibility assessment of the data indicated the candidate models were

feasible for the data sets based on the data sets' apparent exponential distributions, parameter

estimates were obtained, fitted models were derived. and goodness-of-fit tests performed for each

.5-7

Failures (Cumulative)

500

400

300

200

100

0~
0 200 400 600 800 1000

Execution Time (Thousands of Seconds)

Failures

Figure 5.5. Cumulative Failures vs Execution Time for Data Set WI, Initial

model/data set combination. It is helpful al this point t.o redefine the goal of this thesis in terms

of a null hypothesis such that [38:280]

H0 0 = 0n

11 : 0 $ o

where 0o is a parameter being assessed against all [L. I '] interval with 100(1 - o) percent confidence

[38:280]. The test then leads to reiection of the null hypothesis Ho if the parameter 00 is outside

the 95 percent confidence interval [38:280].

The second assessment is concerned with the calculated values for "current' number of failures

compared to the actual number of failures for any given time during t.he entire IOT&E test period.

Therefore, 0 is the actual number of failures experienced, and the parameter 00 is expected number

of failures at time 7, or p(r). derived from Equations 2.8 and 2.11. The [L, U] boundaries are

calculated for the initial parameter /31 based on Equation 4.13 and either Equation 4.14 for the

Execution Time model or Equation 4.15 for the Logarithmic Poisson Execution Time model. The

parameter and its boundaries are ihen used in Equation 2.8 for the Execution Time model and

5-8

Failures (Cumulative)

500

400 -

300 -

200

100

I

0
0 20 40 60 80 100 120 140 160

Execution Time (Thousands of Minutes)

Failures

Figure 5.6. Cumulative Failures vs Execution Time for Data Set. WVI

Equation 2.11 for the Logarithmic Poisson Execution Time model. The results of this are shown

ill Figures 5.7 through 5.16 and discussed helow.

5.2.1 Data St A 1. 'The results of the fitted Execution Time model application to the data

are shown in Figure 5.7. Equation 2.8 was fitted with values of the initial parameters A0

0.162871611 and v) = 1628.74 to get the following equation for failures expected at time 7-

1)= 628.741 - ex(0.162871611 (5.1)
1 1 1628.74

'le act nal data lends outside tie projected 95VA confidence intervals; however, this represents

only a small part of this weapons system's entire IOTk E effort. The tendency outside the confidence

intervals could be due to the small snapshot of data used (6 months of recorded maturity data

comparedl to almost 5 years of OIT:E). or to the failure time assignment process. This process

prohibits identifying exact failure times (there was no initial correlation between maturity failures

and dates of testing). and results in reporting the failures as "lunip sums" at varying time intervals

based on a calendar (late relationship. Therefore, while we apparently reject. the null hypothesis.

5-9

additional test data on either end of the curve for a substantial amount of time would provide a

more accurate assessment of the Execution Time model.

Failures (Cumulative)
1600

1400

1200 k
1000

800

600

400

200

0-
0 5 10 15 20 25 30

Execution Time (Thousands of Minutes)

- mu - ru(tau)

-4- Upper Bound E3 Lower Bound

Figure 5.7. Expected Failures Using Execution Time Model for Data Set. Al

This same observation holds for the Logarithmic Poisson Time model, whose results are

shown in Figure 5.8. Equation 2.11 was fitted with A0 = 0.322609809 and 0 = 0.001883754 as

initial parameters to get the following equation for failures expected at time r

I= . li((0.322509809)(0.001883754)r + 1) (5.2)0.00188 3754

The Logarithmic Poisson Time model did provide a closer fit to the data: however, three

of tie five data "lump sums" were significantly outside the confidence intervals, and we therefore

reject the null hypothesis. In this case, a more accurate determination of failure times could provide

a better representation of failure times, and possibly an even closer fit of this model.

5-10

Failures (Cumulative)

1800

1600 1
1400 -

1200 -

1000 -

800 /
600

0 5 10 15 20 25 30

Execution Time (Thousands of Minutes)

mu - mu(tau)

-- W- Upper Bound E- Lower Bound

Figure 5.8. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set A]

5.2.2 Data SO A'. The fitted forni of the Execution Time model had initial parameters

A0 = 0.003096631 and v,' = 73.24 to get the following equation for failures expected at time 7

pi(r) = 73.24 1 - exp 0.003096631 (5.3)

There was a substantially betier fit of the Execution Time model to the A2 data than the

Al data, as can be seen in Figure 5.9. All but, the two initial data points were within the 95X

confidence intervals. This trend is not uncommon for the Execution Time model, which tends to

perform more satisfactorily after the first 60% of the test, time period [61. 89]. Overall, there was

a good fit of the miodel to the data, and we fail to reject the mll hypothesis.

Similarly, the Logarithmic Poisson Execution Time model performed better for this data set

than for the previous data set (see Figure 5.10). The model was fitted with A0 = 0.003267847 and

0 = 0.020626162 as initial parameters to get tie following equation for failures expected at. time r

I(7) = 0.020626162 "l((0.00326(7817)(0.02Q626162)T + 1) (5.4)

5-11

Failures (Cumulative)
70

60

50

40

30

20

10

0
0 5 10 15 20 25

Execution Time (Thousands of Minutes)

mu + nu(tau)

Upper Bound -8 Lower Bound

Figure 5.9. Expected Failures Using Execution Time Model for Data Set A2

One possible reason for the better fit could be the data set. being complete with respect

to the amount of IOT&E test time and number of failures recorded, while the previous Al data

set, contained only a portion of the overall operational testing effort. It is interesting t.o note the

Logarithmic Poisson Execution Time model does not. fit. as well to the data as does the Execution

Time model. This could be due to failures not having specific occurrence times-the combination

of using average test durations per month and assigning normally distributed random times as

failure occurrence times could produce clustering of data. While these clustered points do provide

adequat.e trend analysis, a more accurate representation of the failure time data could indicate a

much closer model fit. As it stands, we must. reject the null hypothesis for this candidate model

with the dat.a set.

5.2.3 Data SO A.3. The results for data set A3 are similar to those of dat.a set. A2, and are

shown in Figure 5.11. There appears to be a closer model fit for A3 than either of the previous two

data sets using the Execution Time model, leading us to fail to reject the null hypothesis. Again,

this could be due to this data set. being complete with respect. to the data that. was available, even

though the test times per month were derived from an average. The fitted form of the Execution

5-12

Failures (Cumulative)

60

50>

40

30

20'

0 5 10 15 20 25

Execution Time (Thousands of Minutes)

mu - mu(tau)

-W- Upper Bound B Lower Bound

Figure 5.10. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
A2

Time model had initial parameters Ao = 0.005358151 and vfJ = 82.74 to get the following equation

for failures expected at time 7

(7) =24 82.74 r (5.5)

The actual num)er of failures (1p) at any given time (r) appears to exhibit anl s-shaped

tendency. This is also true for the previous data sets A2 and AI. While this might lead to the

conclusion that a model such as the Yamada-Ohba-Osaki Power model could be feasible, there is

another possible interpretation. The shift in the curve could be due to additional software releases

during the IOT&E time frame. Musa et. al. present a method of adjusting failure times for evolving

programs 64:440-448]; however, the limited scope of |OT&E should not require such adjusting,

especially when the data are located within the confidence intervals.

The Logarithmic Poisson Execution Time model also fit well to the actual data on failures

experienced (see Figure 5.12). The model was fitted with A0 = 0.005505088 and 0 = 0.017004749

5-13

Failures (Cumulative)
80

70 V
60

50

40 1-
30

20K

0 2 4 6 8 10 12 14

Execution Time (Thousands of Mvinutes)

mu -+- u(tau)

-- X- Upper Bound ED- Lower Bound

Figure 5.11. Expected Failures Using Execution Timne Model for Data Set A3

as initial param-eters to get the following equation for failures expected at time 7

0.010074 = .-=--n1((0.005505088)(0.017004749)7T+ 1) (5.t6)

Any potential reasons for thie mninor deviations have been previously discussed for the (data sets

AlI and AT. Overall, the niodel appears to have a very good fit. Thlus, we fail to reject the niull

Ilypot hesis.

.5.2-4 1)010 SO SI. The Execution Timne miodel had a fitted formi with] initial paramleters

AO 0.0011 73416 and v() = 4117.03 which gave the following form) of the equation

p(T = 17.3 1- ep 0001173446 7) 57
(0 417.03

Figure 5.13 shows the closeness of the curve to the actual data, and while the St data curve

appears t~o he steeper than the estimiated curve, the fit is still very close. One possible reason for the

steepness of the curve and tight ness of the 95 percent, confidence intervals could be the assiinipt ion

5-li1

Failures (Cumulative)
60,

50 r

0 2 4 6 8 10 12 14

Execution Time (Thousands of Minutes)

mu --- mu(tau)

-)- Upper Bound - Lower Bound

Figure 5.12. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set,
A3

of uniform test time (60 hours per day) throughout the entire month. It is possible that actual test

lines could flatten out the curve, resulting in a closer fit of the model. Even so, we fail to reject

the null hypothesis due to the closeness of the data and actual curve.

With the exception of the steepness of the actual curve, the Logarithmic Poisson Execution

Tiliue model also fit. well to the actual data (see Figure 5.14): however. there were enough data

points outside the confidence intervals that we reject the null hypothesis. The Logarit hnilic Poissoi

Execution Tinte iodel was fit ted with the initial parameters AO = 0.001770339 and 0 = 0.007616991

to get the following formi of the equation

= 0.007616991 ln((0.001770339)(0.007616991)r + 1) (5.8)

5-15

Failures (Cumulative)

500

400 -

300

200

10

0 500 1000 1500 2000

Execution Time (Thousands of Minutes)

mu +- mu(teu)

W Upper Bound - Lower Bound

Figure 5.13. Expected Failures Using Execution Time Model for Data Set SI

5.2.5 Data Set HI. The fitted form of the Execution Time model had initial parameters

A0 = 0.001927052 and v0 = -221.00 which gave the following form of the equation

/I(7) = -221.00 1 - exp .001927052.)J (5.9)

This was by far the most interesting of the data sets to analyze. Figure 5.15 reveals an incrtasing

failure rate. Musa et al. note that if both the initial parameters '3o and 13, are less than 0. the

model will exhibit an increasing failure intensity [64:310]. Such an indication does not invalidate the

mo(lel's application, since this model is of the exponential Poisson group which "can accommodate

increasing and decreasing failure intensities." making sure that pi(t) and A(I) are hoth nonnegative

f64:310].

The reason for this increasing failure intensity could be the operational tests were designed

to exercise the easier parts of the system first., and then the more critical ones later. The rapid

flattening towards the end of testing would then be indicative of a regression test where only one

or two new failures are identified. Still, the Execution Time model does provide a fairly accurate

mapping t.o the actual failure dala for the last half of the test time. This concurs with other

5-16

Failures (Cumulative)
500

400

ii

300

200

O01

0 500 10ooo 1500 2000
Execution Time (Thousands of Minutes)

rnu -- +-- mu(tau)

-)--Upper Bound E3 Lower Bound

Figure .5.14. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
S1

observations of applications of this model [64. 89]. As the test for the null hypothesis is regardless

of an increasing or decreasing failure intensity, we fail to reject the null hypothesis.

The results of the Logarithmic Poisson Execution Time model are a little more dramatic.

As shown in Figure 5.16, the curve has a very steep incline and then a drastic flattening. This

could be based on the fact that this data set has all increasing failure intensity, and although

geometric Poisson group models can "accommnlodate decreasing and a certain type of Increasing

failure intensities," tile initial model parameter 131 still diverges [64:312]. Indeed. The Logarithmic

Poisson Execution Time model was fitted with the initial parameters A0 = 73.957034969 (which

indicates divergence in the Newton-iaphson estimation method) and 0 = 0.046388798. resulting

in the following form of the equation

= 0.•463 9 ln((73.957034969)(0.046388798)r-+ 1) (5.10)0.046388798

The level of initial parameter divergence appears to affect the slope of the curve in a pro-

portional way. One possible way to reduce the steep slope is t.o test the more failure-likely areas

5-17

Failures (Cumulative)

700[

500

400 L

300

200

100

O-
0 20 40 60 80 100 120 140

Execution Time (Thousands of Minutes)

mu --- mu(tau)

Upper Bound E3 Lower Bound

Figure 5.15. Expected Failures Using Execution Time Model for Data Set. \VI

first, before checking the least-likely failure areas of the software. With the calculated data clearly

differing from the actual data, we reject the null hypothesis.

5.3 Asscssment of Fatltre Inhisity Valuts

The previous two assessments established the models' feasibility with respect t.o the initial

data. as well as the "fit" of the model based on parameter derivation. This section addresses the

failure iltensity calculations of both models.

The initial failure intensity (AL) and final failure intensities for each data set are shown in

Table 5-1. The final failure intensity values are listed for both time (.A(r)f from Equations 2.9

and 2.12) and failures experienced (A(p)j from Equations 2.10 and 2.13). The values for data set

WI are very much skewed based on the increasing failure intensity characteristic of the data, and

provide no insight into any relationship between the failure intensities. Data set Al does not cover

its final IOT&E testing time. Therefore, the final failure intensities can not be used to determine

any operational reliability; however, it. is interesting to note the closeness of values between the

two different models' final failure intensity calculations. While there is considerable disagreement

5-18

Failures (Cumulative)
500

400

300

200

1 00

0 --
0 20 40 60 80 100 120 140

Execution Time (Thousands of Minutes)

rn MU mu1 (tag)

- Upper Bound -8 Lower Bound

Figure 5.16. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
wI

between the Execution Time model and the Logarithmic Poisson Execution Time model concerning

the final failure intensities for the test period. the basis of calculation (time vs. experienced failures)

does not seem to impact the specific calculations for each model.

Similarly, data sets A2 and A3 have final failure intensity values for each model that are

relatively close to each other regardless of calculation basis (i.e.-A(r)f , ,(p)f). There is a

substantial different, between the two candidate models for each data set.. Within each data set

the models yield close results regardless of fhe input parameter (time or failures).

Data set SI seems to exhibit, a more ideal failure intensity trend. The values for each model

are almost identical regardless of the input parameter (time or failures) and appear to decrease to

a more favorable level. Taking one of the final failure intensities, such as A(r)! = 0.000011327 for

the Execution Time model, the operating assumption can be extended to

(60 hours per day)(365 (lays per year) = 21900 hours of operations per year

5-19

Table 5.1. Comparison of Software Reliability Failure Intensities

Data Set Initial Failure Final Failure Final Failure
and Model Intensity A0 Intensity \(r)f Intensity A(p)f

Al (Exec) 0.162871611 0.010574044 0.010573845
Al (Log) 0.322609809 0.018310707 0.018310712

A2 (Exec) 0.003096631 0.001138657 0.001109443

A2 (Log) 0.003267847 0.001259321 0.001239492

A3 (Exec) 0.005358151 0.002120178 0.002120206
A3 (Log) 0.005505088 0.002352398 0.002352398

S1 (Exec) 0.001173446 0.000011327 0.000011340

S1 (Log) 0.001770339 0.000076181 0.000076181

V 1 (Exec) 0.001927052 0.005850893 0.005850914
W I (Log) 73.957034969 0.000169250 0.000000064

which can then be applied to Equation 4.1 to give a reliability assessment of

R(21900) = e-(0.0000
1 13 27)(21900)

= 0.780312109

5.4 Calculated Values for Current Number of Failures (Based on DTME Data) Compared to Actual

Number of Failures

A fourth model feasibility assessment. was made of the candidate models based oil the available

DT&E data. Parameter estimates were obtained and fitted models were derived for DT&E, from

which the final failure intensity values were determined. These values then served as initial inputs

to the models, and another evaluation similar to the second assessment was conducted. The same

null hypothesis criteria and goals apply, only the data set has been expanded to provide more

realistic values of the initial parameters. Only data sets A2, A3 and S1 had identifiable DT&E

failures as well as some measure of test durations for the DT&E timeframe. The results are given

below, and shown in Figures 5.17 through 5.22.

5.4.1 Data SO A2. In order to determine the final DT&E failure intensities, the assumption

was made that DT&E had the same test times per month as IOT&E (50.58 hrs). The final DT&E

failure intensities for both A(r) and A(p) of the Execution Time model were identical, providing

the IOTkE initial parameter A0 = 0.001687372. From this, the fitted model was derived as

P(7=)-125.65 1 - exp (0.001687372) (5.11)

5-20

The data were, for the most part, within the 95 percent confidence intervals (see Figure 5.17).

The interesting shape of this curve could be due to the initial A0 value derived from the DT&E

data. The resulting negative value for p0 is an indication of an increasing failure intensity. Since

the first two assessments demonstrated data set A2 as having a decreasing failure intensity, tie only

conclusion is the curve is affected by the initial A0 parameter. This, in turn, could be a function of

the assumptions used to determine the test times for the DT&E assessment. Thus, while there was

a good fit of the model to the data, the shape of the curve makes the initial parameters suspect;

however, we still fail to reject the null hypothesis based on the coverage the model provided.

Failures (Cumulative)
140

120

100

80

60

40

20

0 5 10 15 20 25

Execution Time (Thousands of Minutes)

rmu - rnu(tau)

W Upper Bound -E- Lower Bound

Figure 5.17. Expected Failures Using Execution Time Model for Data Set A2

The Logarithmic Poisson Execution Time model also exhibited an increasing failure intensity

trend (see Figure 5.18). The initial DT&E failure intensity estimate was A, = 15.504126266.

indicating divergence. Therefore, the model was not, able to calculate a final value of either A(r)

or A(pi) for DT&E. Instead, the IOT&E model was fitted with same initial failure intensity as the

Execution Time model: AO = 0.001687372. The corresponding 0 = -0.007139135 was derived, and

the equation for failures expected at time r was

S-0.007139135 ln((0.0016I8732)(-0.007139135)r + 1) (5.12)

5-21

Again, the same factors that affected the Execution Time model could also have affected the

Logarithmic Poisson Execution Time model, especially since both models used the same initial A0

parameter; however, in this case the model does not fit the data, and we reject the null hypothesis.

Accurate values for test times and failure times of occurrence could indicate a much closer fit of

model and data.

Failures (Cumulative)

601

50

40

30

40

0 5 10 15 20 25

Execution Time (Thousands of Minutes)

mu - riu(tau)

-*-Upper Bound --- Lower Bound

Figure 5.18. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
A2

5.4.2 Data' SO A?. The DTkE version of the fitted model had A0 = 0.002136669, and

the resultant fitted form of the Execution lime model for IOT&E data had initial parameters

A0 = 0.005729161 and vo = 75.12. This gave the following equation for failures expected at time 7

11(7) = 75.42 1 -exp (.07.2161 (5.13)

Data set, A3 had a closer fit. of the Execution Time model to data than did data set A2 (see

Figure 5.19). The results were very similar to those shown in Figure 5.11. This closeness could be

due to a closer approxilation of DT&E final failure intensity values based on a better lest Ilille

5-22

approximiation (even though tile time used was an average). Therefore, the miodel miaps well to the

failure (lata, and we fail to reject the null hypothesis.

Failures (Cumulative)

70 1
60

50

40

30

20

10

0 2 4 6 8 10 12 14

Execution Time (Thousands of Minutes)

-~ mu - u(taw)

__K Uppe. BounA L tOVeT Bound

Figure 5.19. lxpected Failures U.sing Execution Tlime Miodel for Data Set A3

]'le Logarithtnic P~oisson Execution 'ime miodel was able to calculate ai final DT& V A value

for both iie and] failures exp~erienlcedl. Both numibers were identical, with a value of'0.0001 73741;

however. when I his liuliher %was ttsed as the Initial paramieter est iiat~e for the 101k E dat a. thle

soft ware enicoutittered a miath overflow dute to the ratio of thle smiall initial value comipared to the

l01k V-' data set. Tltis, the l0Fk E intlial faltire intensity paramieter wa,;s taken froin DIk E

final failuttre i utettsit v calculations for the Execution Time lnodlel. '[he Iii al paramneter was thien

A)= 0.005729161, frottt whlichI 0 0.018319-759 was calculated. Tlils gave flie, following equaltiotn

for failures expected at inle7

0.018=397759 ln)((0.005 7 29161)(0.0183977159)7+ 1)(5)

The resuilts are shtown itt Figure 5.20, and appear t~o he idIentical t~o the second aLssessmient

(see Figure 5.12). Thle mnodel fit. is sufficient ly close that we fail to reject the null hypothesis. Thme

5-23

closeness of both the Execution Time model and the Logarithmic Poisson Execution Time model

indicate that using DT&E data to derive the initial parameters could be a feasible method.

Failures (Cumulative)
60,

40 ,

20

0 2 4 6 8 10 12 14

Execution Time (Thousands of Minutes)

- u MU--4--- nIu(tau)

-K Upper Bound E Lower Bound

Figure 5.20. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
A3

5.4.3 Data Sd Si. The Execution Time model used the DTkE final failure intensity value

AO = 0.001850621 as the initial parameter to calculate v0 = 413.26 and give the following form of

the equation

11(7)=.t13.26[1 - exp(0.0018506217)] (5.15)
1 4 13-26 ,J

In contrast to Figure 5.13, Figure 5.21 shows the data lagging behind the model throughout

Ihi elnt ire 101',k : period. The unifornity oft lie models curve and closeness oft lie estimated and 95

percent confidence valnes could be due to the assumption of uniform test time during each month

of testing. As with the second assessment, it is possible that actual test times could flatten out the

curve, resulting in a closer fit of the model: however, as it. stands now there is no fit. between the

model and the data, and we reject the null hypothesis.

As the initial failure intensity calculation for the DTk'E version of the Logarithmic Poisson

Execution Time model diverged, the l',kE version was fitted with the initial parameter A0 =

5-2.1

SoFailures (Cumulative)

400

400K

300

0 500 1000 1500 2000

Execution Time (Thousands of Minutes)

mu -+- u(tau)

-~Upper Bound -E-Lower Bound

Figure 5.21. Expected Failures Using Execution T'ime Model for Data Set SI

0.001850621, fromn which 0 =0.007764353 was derived to get the following formn of the equation

j,() ln((0.0018501)21)(0.007734353)7-t 1) (5.16)
0.00171353

The Logarithmuic Poisson Execution Time niodel had a closer fit, to the dat-a then did the

Executilon Tume uijodel (see Figure 5.22). This trend is very slimilar t~o thle one found during the

,secondl ass e-smentl (see Figure 5.14). Willethe mnodcl does soijiewliat approximiate the actutal data.

here is a sufficient nuiiiher of dlat~a points outside the 95 percent confidenice interval to reject the

null hypothesis.

.5.5 Samnary

I his chapter presented an initial assessmrent of the applicability of each candidate miodel to

trhe available data sets. Next, the results of the fitted miodels were discussed, with a comiparison

mnade between actual alid estimrated failures. The failure intensit~y values i..,. /es were alssessed

for an%- sort of trend dlata. Finally, for those sets with sufficient failure and timie data, the mnodels

5-25

50Failures (Cumulative)

400

300!

200

100 1r

0
0 500 1000 1500 2000

Execution Time (Thousands of Minutes)

mu ---- mu(tau)

-NE- Upper Bound -E- Lower Bound

Figure 5.22. Expected Failures Using Logarithmic Poisson Execution Tille Miodel for Data Set
Si

were run onl DTk&E data to determne the initial parameters for IOTr&E, and a fourth assessmient

was perforined to see if the miodels were affected by previously existing failure (data. 'Ilie next.

chmapt er contiains conclusions and recommnendations concerning these evaluat joms.

5-26

VI. Conclusions and Recommendations

Current operational test. and evaluation of weapon system software by HQ AFOTEC pri-

marily emphasizes the operational suitability of the software. There is no current measure of the

operational effectiveness of the software. In order to provide some assessment of a weapons system's

software, this thesis proposed that a software reliability model could provide the needed level of

operational effectiveness assessment.

Only existing software reliability models were considered-no new models were proposed. A

hierarchy of software reliability models was defined, with emphasis on product vs. process models.

Within this overall grouping, four categories of software reliability models were identified:

" Fault seeding

* Input domain

" Times-between-failures

" Failure count

Software reliability model evaluation criteria were established that included:

" Predictive validity

" Capability

" Quality of Assumpt ions

" Applicability to the Finite-Time Environment

" Diversity and Applicability of Output

" Capability t.o Use Existing Data

Potential software reliability models froim the four categories were evaluated against these

criteria. A final selection was made of two candidate models: the Musa Execution Time mnodel.

and the N usa-Ok umoto Logarithmic Poisson Execution Time model.

lImplementation of the candidate models was performed, and five test data sets were run to

assess t ne models" fit and applicability. Analysis was conducted both on the initial test data sets and

calculated values for number of failures and confidence intervals. An analysis was also performed

on the calculated failure intensity values. Finally, three test. data sets were run on historical DT&E

data to determine initial parameter estimates. which were then used for OT&E assessment of the

models' fit. and applicability.

fj- I

6.1 C'onclustons

The summary results of the null hypothesis test for each candidate model are shown in Table

6.1. There is a generally good mapping of the Execution Time model to the actual failure data, while

the Logarithmic Poisson Execution Time model did not map as well. The deviations outside the 95

percent confidence intervals could be attributed to the manner in which unknown time parameters

were estimated for the failure data. While the data (failure and times) were not exactly accurate

and complete on all accounts, this variation did give a chance to evaluate both candidate models'

robustness with respect to missing or incomplete data. With both models, there was sufficient

parameter estimation available to compensate for the lack of exact failure and time data; however,

the lack of data appears to have a significant impact on the Logarithmic Poisson Execution Time

model.

Table 6.1. Summary Analysis of H0 Test

Data Set Musa Execution Musa-Okumoto

I Time Model Log Model
Al Reject Reject
A2 Fail to Reject Reject
A3 Fail to Reject. Fail to Reject,

S1 Fail to Reject Reject
VI Fail to Reject Reject

There is nothing definitive that can be concluded from the comparison of failure intensity

values. Possibly. after gathering enough information from different weapon systems, it might be

possible to identify a trend in reduction of the failure intensities from start of IOT&E to end of

IOT&: E, or it ,night be possible to identify target values for final failure intensity based solely on the

category an(l type of weapon system (e.g.-fighter aircraft could have the same operational profile.

an(. tlherefore, fly roughly the same number of hours per sortie or per year). Another potential

application is in deteriniing release time for the software; however, that requires prediction of the

software's reliability, and is left to futire research for validation.

The two previous analyses were preliminary. and led to the final assessment of using DT&E

data as the basis for parameter estimation, which was then used with the models on IOTk-E data.

The results of this assessment are shown in Table 6.2. Again, the Execution Time model appears

to perform better than the Logarithmic Poisson Execution Time model; however, on data set

A3 where the execution time data was more accurate, both models performed well. This could

be (lue to (ie use of the Execution Time model DT&E final failure intensity value .A(T)f as the

6-2

Logarithmic Poisson Execution Time model IOT&E initial failure intensity parameter A0 . Another

possible explanation is the execution time data available being more complete than time data for

the other data sets. A combination of the two is also possible. Tile closeness of the fit does indicate

tile merit of using DT&E maturity data as the basis for parameter estimation of the models for

IOT&E reliability measurement; however, additional analysis with complete test data is necessary

to state this conclusively.

Table 6.2. Summary Analysis of Ho Test for Data Sets With DT&E Based Initial Parameters

Data Set Musa Executioni Musa-Okuinoto

I Time Model Log Model

A2 Fail to Reject Reject.
A3 Fail to Reject Fail to Reject
S1 Reject. Reject.

An extra evaluation criterion discussed by Mr Siefert in the recent American Society for Qual-

ity Control 1st International Conference on Software Quality was a more subjective assessment of a

software reliability model, namely "is it good" [79]. The candidate models presented in this thesis

exhibit a definite "goodness' about them, which stems from their straightforward implementation

as well as capability to use existing initial failure intensity data or derive this information from

system characteristics. These capabilities were not found in any of the other models.

6.2 Recommendations

There are three other aspects of IOT&E software reliability models that should be investi-

gated: data needed for software reliability evaluation: additional analysis of the candidate inodels:

anld applicability of software reliability. These are described in the following sections.

6.2.1 Data Ncaded for Software Reliability Eraluation. The most important aspect of soft-

ware reliability models that appeared throughout the literature was that of collecting enough accu-

rate aiid complete data. U nfort mnately. tile data sets used for this study were not that accurate nor

complete. The AFOTECP 800-2 Vol 6, Software Alaturity Eraluation Guide, does include a field

for total operating time in minutes, which is the tim of failure from the very beginning of IOT& E

[23, .16]. While such a measure is good to have (time of failure is needed), multiple testing that

can occur with weapon systems such as aircraft require a simpler approach to collecting test and

failure times. One way to simplify this is to require tracking test duration (or ltest start and -not)

times), as well as local time of failure (failure time with respect to that test, e.g.-failure I occurs

6- 3

Table 6.3. Proposed Software Maturity Data

Description Variable Name Format
Software Problem Number PROBNUM Character 10

Software Configuration Item CPCI Character 10
Severitv of Problem SEVCODE Character 1

Date Problem Discovered DATE Date
Date Problem Fixed DATE Date

Description of Problem TITLE Character 42
Test Identification Number TESTID Character 10

Date Test Planned TESTPLAN Date
Date Test Completed TESTCOM P Date
Start Time (minutes) STARTTIME Character 10

Finish (End) Time (minutes) END-TIME Character 10
Time of Failure Occurrence TIMEOCCUR Character 10

at. +2.00 minutes). The software model implementation can then calculate cumulative test times,

cumulative failure times, and any other needed statistics.

InI general, the data necessary to applying software reliability models to IOT&E would include

the current software maturity fields. with the exception of replacing the one field for total operating

time with the specific time fields described above (see Table 6.3).

iI support of data persistence, an object-oriented database (OODB) should be implemented;

however, due to the newness and complexity of OODBs. a transitional approach is acceptable where

the database is described by an object-based semantic data model (SDM) and then transformed

into an entily-relationship diagram (ER.D) for implementation at the physical level. This imple-

nientation can then be carried out, with an existing relational database model, such as the one used

by Clipper. wit It virtually no loss to the data meaning or relationships.

The cotimplete description of these models and their interrelationships is given in, Appendix

E. along with the SDM description for aircraft. reliability data. This description can easily be

expanded into a superclass that. wotld i.,clude aircraft, radar, missiles, and any other categories of

weapon systems. Tihe SDNI description includes not ontly the failure data needed for the weapon

svstem. but also the data that will be calculated by the software reliability models. From this, the

entity-relationship (E-R) diagram shown in Figure 6.1 was derived. This diagram would then be

the basis for implementing the relational model to track software reliability.

6.2.2 .4dditional Analysis of the Candidate Models. Additional analysis of the candidate

models is needed in the following areas: additional different weapon systems: use of system char-

6-4

_AIRCRAFT Base

Flown

MISSION HsCCBaeREIABILITYM On
Number ccurr nFe

Failure FAILUER E armfrofw eRei Bilt a ased

6-5

acteristics to determine initial parameters; evaluation of model adequacy based on goodness-of-fit

tests; impact of failure classification and weighting; sources of additional test time.

Additional Different W4eapon Systeins. First, as sufficient data is accumulated on

different weapon systems, the same tests performed in this thesis should be applied to see if there

is agreement on the results.

Use of System Characteristics to Determine Initial Parameters. Next, the ca-

pability to use system characteristics instead of failure data to determine initial parameter values

should also be done and compared to the results of the other tests. If there is a high correlation

between the three model implementations (using parameters determined from actual IOT&E fail-

tire data, parameters determined from previous DT&E failure data, aid parameters derived from

system characteristics), then the models should be implemented for all IOT&E test teams. The

viability of the Musa-Okumoto Logarithmic Poisson Execution Time model has already been es-

tablished by an American Institute of Astronautics and Aeronautics (AIAA) independent study.

The study was conducted by a special "Blue Ribbon Panel" consisting of such software reliability

professionals as Dr Farr, Dr tlecht. Mr Musa, Dr Shooman, Mr Siefert, and others. The AIAA

panel identified tie Musa-Okumoto Logarithmic Poisson Execution Time model as the best software

reliability model in the time domain category, non-exponential class [80:1861.

Eialuation of lodfl Adequacy Ba.sed on Goodness-of-Fit Tists. Finally. as data

on failure counts per time interval becomes more thorough, it will be possible to group the failure

data by number of sample observations. Trends could emerge that would provide an indication of

the expected number of observations for time intervals throughout IOT&E. This would then allow

X 2 and other goodness-of-fit tests to be used to test the candidate models' adequacy [95].

lmpact of Falur ('lassification and It"eighting. This study did not progress to

tie point of analyzing the individual categories of software failures. Research should continue

in that direction to see if there is some relationship between the severity of the failure and tie

cumulative test time. Also, potential acceptability thresholds could be established that allow somie

categories of failures while requiring others to be corrected prior to the end of IOTkE.

Sources of Additional Test Timoe. Should the Test Director begin to run out of

test time before reaching his/her desired failure intensity, alternative methods of testing might

increase the test time. For example. Adolph and Montgomery identified the Integration Facility

for Avionics System Test (IFAST), which was essentially a hot-mock-up of some of the aircraft

6--6

undergoing test and evaluation at Edwards AFB, CA [1]. The use of the IFAST facility provided

additional test time, without requiring additional sorties from the aircraft and crew. An installation

such as this would be included as a multiple installation, and the additional test time could help

reduce the failure intensity without creating additional operational test costs. Methods of including

such additional test time and data should be considered for integration into the model databases.

6.2.3 Applicability of Software Reliability. The candidate software reliability models can

potentially be used together with system capability assessments, combined with hardware reliability

models, applied to theoretical hardware designs, integrated with other software reliability models.

or applied to cost estimation.

Software System Effecti eness. Software reliability provides one way of measur-

ing the operational effectiveness of the weapon system software; however, a measure of the impact

of software reliability on the total weapon system effectiveness could be determined as follows. The

ratio of software up-time to total software "mission" or test time would be determined, and this

value would be the Soft-ware System Effectiveness (SSE) [8]. This number would then be mul-

tiplied against the desired Mission Capable (MC) rate of the overall weapon system, giving the

Total Veapon System Effectiveness (TWSE) [8]. This result, is actually an adjusted MC rate that

takes into account, the current effectiveness of the software. In support of this, software failure

dat.a that indicates inean-time-to-recover software (MTTRS) should also be collected, and could

be included as an additional field of either UP_TIME (time the software was available during the

test.) or DOWNTIME (time the software was not. available during the test).

Combined Hardware and Software Reliability Moddls. The concept of SSE was

somewhat suggested in [42] as part of a combined hardware/software reliability model. A combined

model unist consider such "random phenonmena" as t he "software 'repair* process" where the system

is restored "to an operational state without correcting the software fault" [-12:1-1]. Therefore. even

if a combined model is not available in the near future. MTTRS and SSE data should be collected

and calculated now to provide both an initial assessment of mission capability and also provide a

historical database for a future integrated hardware/soft ware reliability model.

Applicability to Hardware Design Reliability. With the growing use of hardware

modeling techniques such as VHDL (Very High-Speed Integrated Circuit (VHSIC) Hardware De-

scription Language), the possibility exists that software reliability measurement (witl its focus on

the design as opposed to the physical aspect) might one day be necessarily applied to hardware

designs that exist only in the memory of a computer. Toward this end, software reliability models

6-7

for IOT&E could provide the foundation for determining the lOT&E logical design reliability of

hardware from components to systems.

Integrated Software Reliability Tools. One of the current trends in software reli-

ability is to have many different reliability models integrated into one tool. Many different tools

are being identified to perform software reliability prediction, measurement, and analysis, and it

is possible that not all software reliability models are applicable to all phases of the software life-

cycle. Indeed, it may be possible or even desirable to implement a different software reliability

model during each phase of the software life-cycle [69]. This would require standardization of data

to be used between models. By having many different models in one tool. the software evaluator in

the field can become overburdened with understalnding the intricacies of each model and when they

apply, as well as possibly collecting data that could vary from one model to the next. An example

of this is the SMERFS tool, which has two different sets of niodels selectable from the main menu,

and requires different types of data for each set [29]. Clearly. having one standardized model (or at

least set.) with one basic database will make software reliability evaluation easier for the software

evaluator in the field, as well as making the data collection job easier for the data point of contact

at HQ AFOTEC.

Cost Estimation. This thesis proposes using the candidate models to determine

the time needed to reach a desired failure inteiisity objective given a current failure intensity

value. A recent, paper lies this to actual testing cost [90]. The paper demonstrated that, due

to the dependency of testing costs on software failure behavior, a quantitative cost. model can be

incorporated with the Logarithmiic Poisson Execution Time model to determine marginal costs

[90:423-424]. Additional research into the area of combining software cost models and software

reliability models could then provide a more useful tool to both engineer and manager.

6.3 Summary

This evaluation reached important conclusions about Ihe application of software reliability to

IOT&E of weapon systems. It. is clear that candidate models exist which cani work with some degree

of certainty in evaluating the software reliability. and hence. the operational effectiveness of weapon

system software. The applicability of these models extends far beyond the IOT&E of software, and

as the software evaluation process matures a better understanding and assessment of both software

and the overall weapon system will be gained. To what ever extent software reliability is pursued,

the fact that it is being considered is just one step closer to obtaining "good code" for the user.

6-8

Appendix A. Software Definitions

The following definitions were taken from multiple sources, and are included here as additional

infornat ion.

Error. human action that results in software containing a fault. Examples include: omission

or misinterpretation of user requirements in a software specification, and incorrect translation or

omission of a requirement in the design specification.

Fault. A manifestation of an error in software. A fault, if encountered, may cause a failure.

Synonym - Bug.

Failure. The inability of a system or system component to perform a required function

within specified limits. A failure may be produced when a fault is encountered.

Failure Intensity. The number of failures per unit time. Failure intensity can be identified

for average number of software failures per flight hour (SF/FH) and average number of soft.ware

faIlures per mission (SF/NI).

Maintainability. The ease with which software can be maintained. The extent to which a

component facilitates updating to satisfy new requirements or to correct deficiencies.

Maturity. The extent to which a component has been used in the development of deliverable

software by typical users and to which feedback from that use has been reflected in modifications

to the component.

Mean Time to Recover Software. The amount of time required to recover from a software

failure and restore operational capability of the software. This could be the time necessary to

-reboot" the system, or the amount of time spent by an operator clearing an error display and

selecting an alternate menu option.

Model. A representation of a real world process, device, or concept.

Requiremient. A condition or capability that, must be met. or possessed by a system or system

comnponetit to satisfy a contract., standard, specification or other formally imposed document.

Software Maintenance. Modification of a software product after delivery to correct faults.

to improve performance or other attributes, or to adapt the product, to a changed environment.

Software Maturity. An assessment of the software based on the number of faults in a

computer program. This includes known and undiscovered (latent) faults. Latent. faults might

not be discovered until several years after full scale production, if at all. Emphasis here is on

A-I

developm ent actzvities. A measure of the software's progress in its evolution toward satisfaction of

all documented user requirements.

Software Reliability. The probability of failure-free operation of a computer program for

a specified period of time. The emphasis here is ol operational activities. If the software fails, then

there could be faults that must be corrected; however, not all faults result in failures. Software

Reliability Evaluation call be divided into three distinct parts:

" Measurement. Software reliability measurement determines the present failure intensity,

additional failures that would be experienced before reaching an identified failure intensity

objective, and additional execution time necessary to reach an identified failure intensity

objective.

" Prediction. Software reliability prediction attempts to determine what the reliability of

software will be at some time t from a present software reliability measurement.

" Threshold. The level of software reliability identified or desired by the decision maker. This

can be expressed as a reliability number (which can be translated with respect to execution

time) or a failure intensity threshold or objective.

Software Systeni Effectiveness. A measure of the percentage of time tile software system

operates correctly (no failures) versus the total attempted operational time. The SSE can be

multiplied by the Mission Capable (MC) rate (o give the effect of software on Total Weapon

System Effectiveness (TWSE).

Total Weapon System Effectiveness. The Mission Capable (MC) rate for a weapon

system adjusted to account for the effectiveness of the software. The Software System Effectiveness

(SSE) can be multiplied by the MC rate to determine the TWSE.

A-2

Appendix B. Software Maturity Data

This appendix contains the reduced data set from the initial software maturity data provided

by HQ AFOTEC/LG5.

B.I Data Set A1

Database for AIRCRFT1
Date # 1 # 2 # 3 # 4 # 5 NSC Total Cum-Total

10/01/86 0 0 0 0 6 0 6 6
08/27/87 1 1 0 0 2 0 4 10
08/28/87 0 2 0 0 29 0 31 41
08/29/87 0 1 0 0 37 0 38 79
08/31/87 1 0 0 0 16 0 17 96
09/02/87 0 2 0 0 25 0 27 123
09/03/87 0 0 0 0 49 0 49 172
09/04/87 0 0 0 0 58 0 58 230
09/05/87 0 2 0 1 38 0 41 271
09/08/87 0 7 0 0 69 0 76 347
09/09/87 0 0 0 0 28 0 28 375
09/10/87 0 1 0 0 24 0 25 400
09/11/87 0 0 0 0 27 0 27 427
09/12/87 0 0 0 0 32 0 32 459
09/14/87 0 10 0 0 42 0 52 511
09/15/87 0 0 0 0 16 0 16 527
09/16/87 0 2 0 0 20 0 22 549
09/17/87 0 0 0 0 27 0 27 576
09/18/87 0 0 0 0 10 0 10 586
09/19/87 0 1 0 0 50 0 51 637
09/21/87 0 2 0 0 37 0 39 676
09/22/87 0 1 0 0 35 0 36 712
09/23/87 0 0 0 0 27 0 27 739
09/24/87 0 3 0 0 29 0 32 771
09/25/87 0 1 0 0 58 0 59 830
09/26/87 0 0 0 0 41 0 41 871
09/28/87 0 1 0 0 30 0 31 902
10/19/87 0 0 0 0 14 0 14 916
10/20/87 0 0 0 0 71 0 71 987
10/21/87 0 0 0 0 30 0 30 1017
10/22/87 0 0 0 0 18 0 18 1035
10/23/87 0 0 0 0 81 0 81 1116
10/24/87 0 0 0 0 9 0 9 1125
11/09/87 0 0 0 0 13 0 13 1138
03/05/88 0 0 1 0 0 0 1 1139
03/08/88 0 0 1 0 21 0 22 1161
03/09/88 0 0 1 0 21 0 22 1183
03/10/88 0 0 3 0 8 0 11 1194
03/11/88 0 0 1 0 5 0 6 1200
03/12/88 0 0 2 0 31 0 33 1233
03/14/88 0 0 4 0 17 0 21 1254
03/15/88 0 0 0 0 5 0 5 1259
03/16/88 0 0 1 0 22 0 23 1282
03/17/88 0 0 2 0 13 0 15 1297
03/18/88 0 0 0 0 13 0 13 1310
03/19/88 0 0 0 0 9 0 9 1319
03/21/88 0 0 1 0 14 0 15 1334
03/22/88 0 0 2 0 13 0 15 1349
03/23/88 0 0 0 0 5 0 5 1354
03/24/88 0 0 0 0 6 0 6 1360
03/25/88 0 0 0 0 6 0 6 1366
03/28/88 0 1 1 0 36 0 38 1404
03/29/88 0 0 2 0 28 0 30 1434
03/30/88 0 0 2 0 34 0 36 1470

B-I

04/26/88 0 0 0 0 2 0 2 1472
04/27/88 0 0 1 0 15 0 16 1488
04/28/88 0 0 0 0 18 0 18 1506
04/29/88 0 0 1 0 11 0 12 1518
04/30/88 0 0 0 0 11 0 11 1529

11-2

B.2 Data Set A2

Database for AIRCRFT2

Date # 1 # 2 # 3 # 4 # 5 USC Total Cum-Total

02/24/87 0 0 1 0 0 0 1 1
03/04/87 0 1 0 0 0 0 1 2
05/20/87 0 0 0 1 0 0 1 3
06/10/87 0 0 3 0 0 0 3 6
06/25/87 0 0 1 0 0 0 1 7
07/01/87 0 0 1 0 0 0 1 8
08/03/87 0 0 3 0 0 0 3 11
09/01/87 0 0 1 0 0 0 1 12
09/03/87 0 0 0 1 0 0 1 13
09/11/87 0 1 1 0 0 0 2 15
09/17/87 0 1 0 0 0 0 1 16
09/21/87 0 0 3 0 0 0 3 19
11/04/87 0 0 2 0 0 0 2 21
11/05/87 0 0 0 1 0 0 1 22
11/12/87 0 0 2 0 0 0 2 24
11/19/87 0 0 1 0 0 0 1 25
11/20/87 0 1 2 0 0 0 3 28
12/08/87 0 0 0 1 0 0 1 29
12/09/87 0 0 2 0 0 0 2 31
12/14/87 0 0 1 1 0 0 2 33
01/04/88 0 0 2 0 0 0 2 35
01/05/88 0 0 2 0 0 0 2 37
01/14/88 0 1 0 0 0 0 1 38
02/01/88 0 0 1 0 0 0 1 39
02/23/88 0 0 2 0 0 0 2 41
03/04/88 0 0 1 0 0 0 1 42
03/10/88 0 0 1 0 0 0 1 43
03/16/88 0 0 0 1 0 0 1 44
03/17/88 0 0 1 0 0 0 1 45
03/29/88 0 0 1 0 0 0 1 46
04/12/88 0 0 1 0 0 0 1 47
04/28/88 0 0 1 0 0 0 1 48
05/03/88 0 0 1 0 0 0 1 49
05/04/88 0 0 2 1 0 0 3 52
05/06/88 0 0 3 0 0 0 3 55
05/10/88 0 0 1 0 0 0 1 56
05/12/88 0 0 1 0 0 0 1 57
05/13/88 0 0 1 0 0 0 1 58
05/16/88 0 1 0 0 0 0 1 59
05/20/88 0 0 1 0 0 0 1 60
05/23/88 0 0 1 0 0 0 1 61
05/30/88 0 0 0 1 0 0 1 62
06/03/88 0 0 1 0 0 0 1 63
06/10/88 0 0 2 0 0 0 2 65
06/13/88 0 0 1 0 0 0 1 66
06/30/88 0 0 1 1 0 0 2 68
07/01/88 0 2 0 0 0 0 2 70
07/05/88 0 0 0 1 0 0 1 71
07/11/88 0 0 1 0 0 0 1 72
07/20/88 0 0 1 0 0 0 1 73
09/16/88 0 0 1 0 0 0 1 74
09/23/88 0 0 0 1 0 0 1 75
09/27/88 0 0 1 0 0 0 1 76
10/31/88 0 0 1 0 0 0 1 77
11/14/88 0 1 0 0 0 0 1 78
11/15/88 0 0 1 0 0 0 1 79
12/01/88 0 1 1 0 0 0 2 81
12/12/88 0 1 0 0 0 0 1 82
12/23/88 0 1 0 0 0 0 1 83
01/03/89 0 0 2 0 0 0 2 85
01/05/89 0 1 0 0 0 0 1 86
01/13/89 0 0 0 1 0 0 1 87
01/18/89 0 2 0 0 0 0 2 89
01/19/89 0 1 0 0 0 0 1 90

B-3

01/20/89 0 0 1 0 0 0 1 91
01/24/89 0 1 1 0 0 0 2 93
01/26/89 0 0 1 0 0 0 1 94
02/01/89 0 2 0 0 0 0 2 96
02/02/89 0 0 1 0 0 0 1 97
02/06/89 0 1 1 0 0 0 2 99
02/15/89 0 0 1 0 0 0 1 100
02/16/89 0 0 1 0 0 0 1 101
02/18/89 0 1 0 0 0 0 1 102
02/22/89 0 0 1 0 0 0 1 103
02/24/89 0 0 1 0 0 0 1 104
02/27/89 0 0 2 0 0 0 2 106
03/04/89 0 0 1 0 0 0 1 107
03/06/89 0 0 1 0 0 0 1 108
03/13/89 0 2 0 0 0 0 2 110
03/20/89 0 0 1 0 0 0 1 111
03/27/89 0 0 1 0 0 0 1 112
03/29/89 0 1 0 0 0 0 1 113
04/19/89 0 0 1 0 0 0 1 114
06/08/89 0 1 0 0 0 0 1 115
06/13/89 0 0 1 0 0 0 1 116
06/16/89 0 1 1 0 0 0 2 118
06/21/89 0 0 0 1 0 0 1 119
06/23/89 0 0 1 1 0 0 2 121
07/07/89 0 1 0 0 0 0 1 122
07/17/89 0 0 1 0 0 0 1 123
07/21/89 0 0 1 0 0 0 1 124
07/23/89 0 0 1 0 0 0 1 125
07/25/89 0 0 1 0 0 0 1 126

B-4

B.3 Data SO A3

Database for AIRCRFT3

Date # 1 # 2 # 3 # 4 # 5 NSC Total Cum-Total

12/29/87 0 1 0 0 0 0 1 1
01/12/88 0 1 1 1 0 0 3 4
02/25/88 3 2 1 0 0 0 6 10
03/17/88 4 3 1 0 0 0 8 18
03/22/88 0 1 0 0 0 0 1 19
04/06/88 0 0 0 1 0 0 1 20
04/11/88 1 0 0 0 0 0 1 21
04/20/88 2 1 0 0 0 0 3 24
04/21/88 2 0 0 0 0 0 2 26
04/26/88 0 0 1 0 0 0 1 27
04/28/88 1 2 0 0 0 0 3 30
05/25/88 0 1 0 0 0 0 1 31
06/01/88 0 3 0 0 0 0 3 34
06/02/88 0 1 0 0 0 0 1 35
06/13/88 1 1 0 0 0 0 2 37
07/01/88 1 3 0 0 0 0 4 41
07/14/88 1 0 0 0 0 0 1 42
07/20/88 1 0 0 0 0 0 1 43
07/21/88 0 3 0 0 0 0 3 46
07/28/88 1 2 0 0 0 0 3 49
08/04/88 0 1 0 0 0 0 1 50
08/05/88 2 5 1 0 0 0 8 58
08/10/88 3 3 0 0 0 0 6 64
08/12/88 0 1 0 0 0 0 1 65
08/15/88 1 1 1 0 0 0 3 68
08/17/88 2 2 0 0 0 0 4 72
08/18/88 0 0 1 0 0 0 1 73
08/24/88 1 1 0 0 0 0 2 75
08/25/88 0 2 0 0 0 0 2 77
08/26/88 2 2 0 0 0 0 4 81
08/30/88 2 7 0 0 0 0 9 90
08/31/88 1 1 0 0 0 0 2 92
09/01/88 4 0 0 0 1 0 4 96
09/02/88 2 3 0 0 0 0 5 101
09/06/88 0 2 0 0 0 0 2 103
09/09/88 1 3 0 0 0 0 4 107
09/12/88 0 1 0 0 0 0 1 108
09/13/88 4 0 0 0 0 0 4 112
09/14/88 0 3 0 0 0 0 3 115
09/15/88 1 4 2 0 0 0 7 122
09/16/88 2 2 0 0 0 0 4 126
09/19/88 1 0 0 0 0 0 1 127
09/20/88 0 1 0 0 0 0 1 128
09/21/88 0 2 0 0 0 0 2 130
09/27/88 2 0 0 0 0 0 2 132
09/29/88 0 1 1 0 0 0 2 134
10/04/88 0 2 0 0 0 0 2 136
10/07/88 2 1 0 0 0 0 3 139
11/02/88 0 2 0 0 0 0 2 141
11/03/88 1 1 0 0 0 0 2 143
11/07/88 0 0 1 0 0 0 1 144
11/15/88 1 0 0 0 0 0 1 145
11/21/88 0 1 0 0 0 0 1 146
11/22/88 1 1 0 0 0 0 2 148
11/28/88 2 0 0 0 0 0 2 150
11/29/88 1 3 0 0 0 0 4 154
12/02/88 1 1 0 0 0 0 2 156
12/05/88 0 2 1 0 0 0 3 159
12/06/88 0 2 0 0 0 0 2 161
12/12/88 4 0 0 0 0 0 4 165
12/20/88 1 3 0 0 0 0 4 169
12/22/88 0 1 1 0 0 0 2 171
12/27/88 1 0 0 0 0 0 1 172
12/28/88 6 10 1 0 0 0 17 189

B-5

01/03/89 0 0 1 0 0 0 1 190
01/04/89 0 1 0 0 0 0 1 191
01/09/89 1 0 0 0 0 0 1 192
01/13/89 1 0 0 0 0 0 1 193
01/23/89 0 1 0 0 0 0 1 194
01/30/89 2 0 0 0 0 0 2 196
02/14/89 0 1 0 0 0 0 1 197
02/17/89 3 0 0 0 0 0 3 200
02/27/89 0 1 0 0 0 0 1 201
02/28/89 0 1 0 0 0 0 1 202
03/01/89 2 0 0 0 0 0 2 204
03/09/89 0 1 0 0 0 0 1 205
03/10/89 0 2 0 0 0 0 2 207
03/14/89 0 2 1 0 0 0 3 210
03/15/89 0 2 0 0 0 0 2 212
03/16/89 3 0 0 0 0 0 3 215
03/22/89 6 4 0 0 0 0 10 225
03/27/89 0 1 0 0 0 0 1 226
04/20/89 0 1 0 0 0 0 1 227
04/26/89 0 0 1 0 0 0 1 228
04/27/89 0 1 0 0 0 0 1 229
05/04/89 0 1 0 0 0 0 1 230
05/09/89 2 2 0 0 0 0 4 234
05/10/89 1 0 0 0 0 0 1 235
05/15/89 0 1 0 0 0 0 1 236
05/16/89 1 0 0 0 0 0 1 237
05/18/89 0 1 0 0 0 0 1 238
05/23/89 0 1 0 0 0 0 1 239
05/25/89 0 1 0 0 0 0 1 240
06/01/89 0 1 1 0 0 0 2 242
06/05/89 0 2 0 0 0 0 2 244
06/06/89 0 1 0 0 0 0 1 245
06/07/89 2 1 (0 0 0 3 248
06/15/89 1 1 0 0 0 0 2 250
06/16/89 0 1 0 0 0 0 1 251
06/21/89 1 0 0 0 0 0 1 252
06/22/89 1 1 0 0 0 0 2 254
06/23/89 0 3 1 0 0 0 4 258
06/26/89 1 0 2 0 0 0 3 261
06/27/89 0 1 0 0 0 0 1 262
06/29/89 0 1 0 0 0 0 1 263
07/05/89 1 1 0 0 0 0 2 265
07/10/89 0 1 0 0 0 0 1 266
07/13/89 0 1 0 0 0 0 1 267
08/01/89 3 1 3 0 0 0 7 274
08/03/89 0 1 0 0 0 0 1 275
08/10/89 1 1 0 0 0 0 2 277
08/15/89 1 0 0 0 0 0 1 278
08/22/89 0 3 0 0 0 0 3 281
08/23/89 0 0 1 0 0 0 1 282
08/29/89 1 1 0 0 0 0 2 284
08/31/89 1 0 0 0 0 0 1 285
09/11/89 0 1 0 0 0 0 1 286
09/15/89 0 1 0 0 0 0 1 287
09/22/89 0 1 0 0 0 0 1 288

B-6

B.4 Data Set SI

Database for SPACE1

Date # 1 # 2 # 3 # 4 # 5 NSC Total Cum-Total

01/10/86 0 1 0 0 0 0 1 1
01/15/86 0 1 0 0 0 0 1 2
01/30/86 0 1 0 0 0 0 1 3
02/10/86 0 1 0 0 0 0 1 4
02/20/86 0 1 0 0 0 0 1 5
03/03/86 0 1 0 0 0 0 1 6
03/05/86 0 4 0 0 0 0 4 10
03/11/86 0 1 0 0 0 0 1 11
03/24/86 0 1 0 0 0 0 1 12
03/26/86 0 1 0 0 0 0 1 13
03/28/86 0 1 0 0 0 0 1 14
03/31/86 0 1 0 0 0 0 1 15
04/02/86 0 1 0 0 0 0 1 16
04/07/86 0 1 0 0 0 0 1 17
04/08/86 0 2 0 0 0 0 2 19
04/09/86 0 1 0 0 0 0 1 20
04/10/86 0 1 0 0 0 0 1 21
04/11/86 0 1 0 0 0 0 1 22
04/12/86 0 2 0 0 0 0 2 24
04/14/86 0 1 0 0 0 0 1 25
04/17/86 0 1 0 0 0 0 1 26
04/22/86 0 1 0 0 0 0 1 27
04/28/86 0 2 0 0 0 0 2 29
04/30/86 0 1 0 0 0 0 1 30
05/06/86 0 1 0 0 0 0 1 31
05/07/86 0 1 0 0 0 0 1 32
05/08/86 0 1 0 0 0 0 1 33
05/12/86 0 3 0 0 0 0 3 36
05/13/86 0 2 0 0 0 0 2 38
05/18/86 0 4 0 0 0 0 4 42
05/19/86 0 1 0 0 0 0 1 43
05/20/86 0 2 0 0 0 0 2 45
05/21/86 0 1 0 0 0 0 1 46
05/28/86 0 1 0 0 0 0 1 47
05/29/86 0 1 0 0 0 0 1 48
05/30/86 0 1 0 0 0 0 1 49
06/02/86 0 3 0 0 0 0 3 52
06/04/86 0 1 0 0 0 0 1 53
06/05/86 0 1 0 0 0 0 1 54
06/06/86 0 1 0 0 0 0 1 55
06/11/86 0 2 0 0 0 0 2 57
06/13/86 0 1 0 0 0 0 1 58
06/14/86 0 9 0 0 0 0 9 67
06/18/86 0 1 0 0 0 0 1 68
06/24/86 0 5 0 0 0 0 5 73
06/25/86 0 2 0 0 0 0 2 75
06/29/86 0 2 0 0 0 0 2 77
07/03/86 0 1 0 0 0 0 1 78
07/07/86 0 4 0 0 0 0 4 82
07/08/86 0 1 0 i 0 0 1 83
07/09/86 0 1 0 0 0 0 1 84
07/10/86 0 1 0 0 0 0 1 85
07/11/86 0 5 0 0 0 0 5 90
07/14/86 0 1 0 0 0 0 1 91
07/15/86 0 2 0 0 0 0 2 93
07/16/86 0 7 0 0 0 0 7 100
07/18/86 0 1 0 0 0 0 1 101
07/22/86 0 2 0 0 0 0 2 103
07/23/86 0 1 0 0 0 0 1 104
07/29/86 0 3 0 0 0 0 3 107
08/01/86 0 2 0 0 0 0 2 109
08/02/86 0 1 0 0 0 0 1 110
08/04/86 0 11 0 0 0 0 11 121
08/05/86 0 3 0 0 0 0 3 124

B- 7

08/06/86 0 2 0 0 0 0 2 126
08/07/86 0 2 0 0 0 0 2 128
08/09/86 0 1 0 0 0 0 1 129
08/12/86 0 1 0 0 0 0 1 130
08/13/86 0 2 0 0 0 0 2 132
08/14/86 0 1 0 0 0 0 1 133
08/15/86 0 2 0 0 0 0 2 135
08/19/86 0 3 0 0 0 0 3 138
08/20/86 0 2 0 0 0 0 2 140
08/21/86 0 8 0 0 0 0 8 148
08/22/86 0 6 0 0 0 0 6 154
08/25/86 0 1 0 0 0 0 1 155
08/26/86 0 1 0 0 0 0 1 156
09/02/86 0 2 0 0 0 0 2 158
09/03/86 0 3 0 0 0 0 3 161
09/04/86 0 3 0 0 0 0 3 164
09/05/86 0 1 0 0 0 0 1 165
09/08/86 0 2 0 0 0 0 2 167
09/09/86 0 15 0 0 0 0 15 182
09/10/86 0 1 0 0 0 0 1 183
09/11/86 0 1 0 0 0 0 1 184
09/12/86 0 1 0 0 0 0 1 185
09/15/86 0 3 0 0 0 0 3 188
09/16/86 0 1 0 0 0 0 1 189
09/17/86 0 6 0 0 0 0 6 195
09/18/86 0 2 0 0 0 0 2 197
09/19/86 0 4 0 0 0 0 4 201
09/22/86 0 6 0 0 0 0 6 207
09/23/86 0 1 0 0 0 0 1 208
09/25/86 0 1 0 0 0 0 1 209
09/26/86 0 2 0 0 0 0 2 211
09/29/86 0 1 0 0 0 0 1 212
09/30/86 0 5 0 0 0 0 5 217
10/01/86 0 1 0 0 0 0 1 218
10/02/86 0 2 0 0 0 0 2 220
10/03/86 0 2 0 0 0 0 2 222
10/05/86 0 1 0 0 0 0 1 223
10/06/86 0 4 0 0 0 0 4 227
10/07/86 0 2 0 0 0 0 2 229
10/09/86 0 1 0 0 0 0 1 230
10/13/86 0 5 0 0 0 0 5 235
10/14/86 0 6 0 0 0 0 6 241
10/15/86 0 9 0 0 0 0 9 250
10/16/86 0 1 0 0 0 0 1 251
10/20/86 0 1 0 0 0 0 1 252
10/21/86 0 3 0 0 0 0 3 255
10/22/86 0 1 0 0 0 0 1 256
10/23/86 0 6 0 0 0 0 6 262
10/24/86 0 1 0 0 0 0 1 263
10/27/86 0 1 0 0 0 0 1 264
10/28/86 0 6 0 0 0 0 6 270
10/29/86 0 2 0 0 0 0 2 272
10/30/86 0 1 0 0 0 0 1 273
11/03/86 0 10 0 0 0 0 10 283
11/04/86 0 9 0 0 0 0 9 292
11/05/86 0 3 0 0 0 0 3 295
11/06/86 0 2 0 0 0 0 2 297
11/07/86 0 3 0 0 0 0 3 300
11/08/86 0 1 0 0 0 0 1 301
11/10/86 0 22 0 0 0 0 22 323
11/11/86 0 3 0 0 0 0 3 326
11/12/86 0 3 0 0 0 0 3 329
11/13/86 0 3 0 0 0 0 3 332
11/14/86 0 3 0 0 0 0 3 335
11/17/86 0 1 0 0 0 0 1 336
11/18/86 0 2 0 0 0 0 2 338
11/19/86 0 5 0 0 0 0 5 343
11/20/86 0 2 0 0 0 0 2 345
11/21/86 0 3 0 0 0 0 3 348
11/24/86 0 21 0 0 0 0 21 369

B-S

11/25/86 0 6 0 0 0 0 6 375
11/26/86 0 1 0 0 0 0 1 376
12/02/86 0 3 0 0 0 0 3 379
12/03/86 0 4 0 0 0 0 4 383
12/04/86 0 3 0 0 0 0 3 386
12/05/86 0 1 0 0 0 0 1 387
12/08/86 0 4 0 0 0 0 4 391
12/09/86 0 6 0 0 0 0 6 397
12/10/86 0 2 0 0 0 0 2 399
12/11/86 0 5 0 0 0 0 5 404
12/12/86 0 2 0 0 0 0 2 406
12/15/86 0 8 0 0 0 0 8 414
12/16/86 0 3 0 0 0 0 3 417
12/17/86 0 4 0 0 0 0 4 421
12/19/86 0 3 0 0 0 0 3 424
12/22/86 0 6 0 0 0 0 6 430
12/23/86 0 8 0 0 0 0 8 438
01/05/87 0 4 0 0 0 0 4 442
01/07/87 0 4 0 0 0 0 4 446
01/09/87 0 7 0 0 0 0 7 453
01/12/87 0 2 0 0 0 0 2 455
01/13/87 0 2 0 0 0 0 2 457
01/16/87 0 2 0 0 0 0 2 459
01/19/87 0 4 0 0 0 0 4 463
01/20/87 0 1 0 0 0 0 1 464
01/21/87 0 4 0 0 0 0 4 468
01/22/87 0 5 0 0 0 0 5 473
01/23/87 0 5 0 0 0 0 5 478
01/25/87 0 1 0 C 0 0 1 479
01/26/87 0 12 0 0 0 0 12 491
01/27/87 0 2 0 0 0 0 2 493
01/28/87 0 5 0 0 0 0 5 498
01/29/87 0 6 0 0 0 0 6 504
01/30/87 0 5 0 0 0 0 5 509
02/01/87 0 1 0 0 0 0 1 510
02/02/87 0 6 0 0 0 0 6 516
02/03/87 0 12 0 0 0 0 12 528
02/04/87 0 5 0 0 0 0 5 533
02/05/87 0 17 0 0 0 0 17 550
02/06/87 0 9 0 0 0 0 9 559
02/10/87 0 3 0 0 0 0 3 562
02/11/87 0 5 0 0 0 0 5 567
02/12/87 0 11 0 0 0 0 11 578
02/13/87 0 4 0 0 0 0 4 582
02/15/87 0 1 0 0 0 0 1 583
02/16/87 0 1 0 0 0 0 1 584
02/17/87 0 10 0 0 0 0 10 594
02/18/87 0 3 0 0 0 0 3 597
02/19/87 0 4 0 0 0 0 4 601
02/20/87 0 6 0 0 0 0 6 607
02/22/87 0 2 0 0 0 0 2 609
02/23/87 0 7 0 0 0 0 7 616
02/24/87 0 6 0 0 0 0 6 622
02/25/87 0 5 0 0 0 0 5 627
02/26/87 0 2 0 0 0 0 2 629
02/27/87 0 5 0 0 0 0 5 634
03/01/87 0 4 0 0 0 0 4 638
03/02/87 0 6 0 0 0 0 6 644
03/03/87 0 8 0 0 0 0 8 652
03/04/87 0 11 0 0 0 0 11 663
03/05/87 0 4 0 0 0 0 4 667
03/06/87 0 5 0 0 0 0 5 672
03/09/87 0 11 0 0 0 0 11 683
03/10/87 0 8 0 0 0 0 8 691
03/11/87 0 8 0 0 0 0 8 699
03/12/87 0 2 0 0 0 0 2 701
03/13/87 0 8 0 0 0 0 8 709
03/16/87 0 5 0 0 0 0 5 714
03/17/87 0 6 0 0 0 0 6 720
03/18/87 0 2 0 0 0 0 2 722

B-9

03/19/87 0 4 0 0 0 0 4 726
03/20/87 0 8 0 0 0 0 8 734
03/23/87 0 1 0 0 0 0 1 735

03/24/87 0 9 0 0 0 0 9 744
03/25/87 0 4 0 0 0 0 4 748

03/26/87 0 1 0 0 0 0 1 749
03/27/87 0 3 0 0 0 0 3 752
03/30/87 0 11 0 0 0 0 11 763
03/31/87 0 15 0 0 0 0 15 778
04/01/87 0 4 0 0 0 0 4 782
04/02/87 0 6 0 0 0 0 6 788

04/03/87 0 5 0 0 0 0 5 793
04/05/87 0 1 0 0 0 0 1 794

04/06/87 0 3 0 0 0 0 3 797

04/07/87 0 7 0 0 0 0 7 804
04/08/87 0 1 0 0 0 0 1 805
04/09/87 0 6 0 0 0 0 6 811
04/10/87 0 7 0 0 0 0 7 818
04/13/87 0 4 0 0 0 0 4 822
04/14/87 0 4 0 0 0 0 4 826
04/15/87 0 3 0 0 0 0 3 829
04/16/87 0 2 0 0 0 0 2 831
04/17/87 0 3 0 0 0 0 3 834
04/20/87 0 8 0 0 0 0 8 842
04/21/87 0 3 0 0 0 0 3 845
04/22/87 0 1 0 0 0 0 1 846
04/24/87 0 8 0 0 0 0 8 854
04/27/87 0 1 0 0 0 0 1 855
04/28/87 0 1 0 0 0 0 1 856
04/30/87 0 9 0 0 0 0 9 865
05/01/87 0 3 0 0 0 0 3 868
05/02/87 0 1 0 0 0 0 1 869
05/04/87 0 13 0 0 0 0 13 882
05/05/87 0 17 0 0 0 0 17 899
05/06/87 0 2 0 0 0 0 2 901
05/07/87 0 2 0 0 0 0 2 903

05/08/87 0 5 0 0 0 0 5 908
05/09/87 0 1 0 0 0 0 1 909
05/11/87 0 15 0 0 0 0 15 924
05/12/87 0 1 0 0 0 0 1 925
05/13/87 0 2 0 0 0 0 2 927

05/14/87 0 5 0 0 0 0 5 932
05/15/87 0 3 0 0 0 0 3 935

05/18/87 0 2 0 0 0 0 2 937

05/19/87 0 2 0 0 0 0 2 939

05/20/87 0 5 0 0 0 0 5 944
05/21/87 0 11 0 0 0 0 11 955
05/22/87 0 1. 0 0 0 0 1 956

05/24/87 0 1 0 0 0 0 1 957

05/26/87 0 8 0 0 0 0 8 965
05/27/87 0 7 0 0 0 0 7 972
05/28/87 0 1 0 0 0 0 1 973

05/29/87 0 2 0 0 0 0 2 975

06/01/87 0 3 0 0 0 0 3 978

06/02/87 0 5 0 0 0 0 5 983
06/04/87 0 9 0 0 0 0 9 992
06/05/87 0 14 0 0 0 0 14 1006
06/08/87 0 3 0 0 0 0 3 1009

06/09/87 0 8 0 0 0 0 8 1017

06/10/87 0 8 0 0 0 0 8 1025
06/11/87 0 7 0 0 0 0 7 1032
06/12/87 0 10 0 0 0 0 10 1042
06/13/87 0 1 0 0 0 0 1 1043
06/15/87 0 3 0 0 0 0 3 1046
06/16/87 0 8 0 0 0 0 8 1054

06/17/87 0 8 0 0 0 0 8 1062

06/18/87 0 16 0 0 0 0 16 1078

06/19/87 0 7 0 0 0 0 7 1085

06/21/87 0 2 0 0 0 0 2 1087

06/22/87 0 12 0 0 0 0 12 1099

B-10

06/23/87 . 14 0 0 0 0 14 1113
06/24/87 . 6 0 0 0 0 6 1119
06/25/87 0 9 0 0 0 0 9 1128
06/26/87 0 12 0 0 0 0 12 1140
06/27/87 0 4 0 0 0 0 4 1144
06/28/87 0 3 0 0 0 0 3 1147
06/29/87 0 17 0 0 0 0 17 1164
06/30/87 0 7 0 0 0 0 7 1171
07/01/87 0 11 0 0 0 0 11 1182
07/02/87 0 6 0 0 0 0 6 1188
07/06/87 0 4 0 0 0 0 4 1192
07/07/87 0 17 0 0 0 0 17 1209
07/08/87 0 5 0 0 0 0 5 1214
07/09/87 0 8 0 0 0 0 8 1222
07/10/87 0 13 0 0 0 0 13 1235
07/13/87 0 14 0 0 0 0 14 1249
07/14/87 0 13 0 0 0 0 13 1262
07/15/87 0 9 0 0 0 0 9 1271
07/16/87 0 2 0 0 0 0 2 1273
07/17/87 0 5 0 0 0 0 5 1278
07/20/87 0 7 0 0 0 0 7 1285
07/21/87 0 4 0 0 0 0 4 1289
07/22/87 0 1 0 0 0 0 1 1290
07/23/87 0 3 0 0 0 0 3 1293
07/24/87 0 1 0 0 0 0 1 1294
07/27/87 0 8 0 0 0 0 8 1302
07/28/87 0 5 0 0 0 0 5 1307
07/29/87 0 12 0 0 0 0 12 1319
07/30/87 0 10 0 0 0 0 10 1329
07/31/87 0 2 0 0 0 0 2 1331
08/03/87 0 17 0 0 0 0 17 1348
08/04/87 0 32 0 0 0 0 32 1380
08/05/87 0 11 0 0 0 0 11 1391
08/06/87 0 11 0 0 0 0 11 1402
08/07/87 0 4 0 0 0 0 4 1406
08/08/87 0 3 0 0 0 0 3 1409
08/10/87 0 3 0 0 0 0 3 1412
08/11/87 0 13 0 0 0 0 13 1425
08/12/87 0 6 0 0 0 0 6 1431
08/13/87 0 11 0 0 0 0 11 1442
08/14/87 0 8 0 0 0 0 8 1450
08/17/87 0 12 0 0 0 0 12 1462
08/18/87 0 18 0 0 0 0 18 1480
08/19/87 0 4 0 0 0 0 4 1484
08/20/87 0 19 0 0 0 0 19 1503
08/21/87 0 7 0 0 0 0 7 1510
08/22/87 0 9 0 0 0 0 9 1519
08/24/87 0 9 0 0 0 0 9 1528
08/25/87 0 11 0 0 0 0 11 1539
08/26/87 0 7 0 0 0 0 7 1546
08/27/87 0 14 0 0 0 0 14 1560
08/28/87 0 10 0 0 0 0 10 1570
08/29/87 0 3 0 0 0 0 3 1573
08/30/87 0 1 0 0 0 0 1 1574
08/31/87 0 3 0 0 0 0 3 1577
09/01/87 0 2 0 0 0 0 2 1579
09/02/87 0 4 0 0 0 0 4 1583
09/03/87 0 13 0 0 0 0 13 1596
09/04/87 0 8 0 0 0 0 8 1604
09/07/87 0 2 0 0 0 0 2 1606
09/08/87 0 17 0 0 0 0 17 1623
09/09/87 0 13 0 0 0 0 13 1636
09/10/87 0 19 0 0 0 0 19 1655
09/11/87 0 1 0 0 0 0 1 1656
09/13/87 0 2 0 0 0 0 2 1658
09/14/87 0 5 0 0 0 0 5 1663
09/15/87 0 27 0 0 0 0 27 1690
09/16/87 0 10 0 0 0 0 10 1700
09/17/87 0 4 0 0 0 0 4 1704
09/18/87 0 12 0 0 0 0 12 1716

B-Il

09/20/87 0 13 0 0 0 0 13 1729
09/21/87 0 7 0 0 0 0 7 1736
09/22/87 0 7 0 0 0 0 7 1743
09/23/87 0 4 0 0 0 0 4 1747
09/24/87 0 2 0 0 0 0 2 1749
09/25/87 0 2 0 0 0 0 2 1751
09/28/87 0 2 0 0 0 0 2 1753
09/29/87 0 8 0 0 0 0 8 1761
09/30/87 0 2 0 0 0 0 2 1763
10/01/87 0 8 0 0 0 0 8 1771
10/02/87 0 2 0 0 0 0 2 1773
10/03/87 0 1 0 0 0 0 1 1774
10/04/87 0 2 0 0 0 0 2 1776
10/05/87 0 11 0 0 0 0 11 1787
10/06/87 0 8 0 0 0 0 8 1795
10/07/87 0 5 0 0 0 0 5 1800
10/08/87 0 6 0 0 0 0 6 1806
10/09/87 0 3 0 0 0 0 3 1809
10/12/87 0 6 0 0 0 0 6 1815
10/13/87 0 5 0 0 0 0 5 1820
10/14/87 0 3 0 0 0 0 3 1823
10/15/87 0 12 0 0 0 0 12 1835
10/16/87 0 1 0 0 0 0 1 1836
10/19/87 0 3 0 0 0 0 3 1839
10/20/87 0 6 0 0 0 0 6 1845
10/21/87 0 5 0 0 0 0 5 1850
10/22/87 0 5 0 0 0 0 5 1855
10/23/87 0 6 0 0 0 0 6 1861
10/26/87 0 14 0 0 0 0 14 1875
10/27/87 0 2 0 0 0 0 2 1877
10/28/87 0 3 0 0 0 0 3 1880
10/29/87 0 2 0 0 0 0 2 1882
10/30/87 0 3 0 0 0 0 3 1885
11/02/87 0 2 0 0 0 0 2 1887
11/03/87 0 7 0 0 0 0 7 1894
11/04/87 0 5 0 0 0 0 5 1899
11/05/87 0 3 0 0 0 0 3 1902
11/06/87 0 6 0 0 0 0 6 1908
11/09/87 0 6 0 0 0 0 6 1914
11/10/87 0 5 0 0 0 0 5 1919
11/11/87 0 6 0 0 0 0 6 1925
11/12/87 0 2 0 0 0 0 2 1927
11/13/87 0 1 0 0 0 0 1 1928
11/16/87 0 6 0 0 0 0 6 1934
11/17/87 0 6 0 0 0 0 6 1940
11/18/87 0 1 0 0 0 0 1 1941
11/19/87 0 14 0 0 0 0 14 1955
11/20/87 0 4 0 0 0 0 4 1959
11/23/87 0 7 0 0 0 0 7 1966
11/24/87 0 1 0 0 0 0 1 1967
11/25/87 0 4 0 0 0 0 4 1971
11/30/87 0 7 0 0 0 0 7 1978
12/01/87 0 7 0 0 0 0 7 1985
12/02/87 0 1 0 0 0 0 1 1986
12/03/87 0 5 0 0 0 0 5 1991
12/04/87 0 1 0 0 0 0 1 1992
12/07/87 0 6 0 0 0 0 6 1998
12/08/87 0 1 0 0 0 0 1 1999
12/09/87 0 3 0 0 0 0 3 2002
12/10/87 0 6 0 0 0 0 6 2008
12/11/87 0 3 0 0 0 0 3 2011
12/12/87 0 2 0 0 0 0 2 2013
12/14/87 0 5 0 0 0 0 5 2018
12/16/87 0 2 0 0 0 0 2 2020
12/17/87 0 1 0 0 0 0 1 2021
12/18/87 0 1 0 0 0 0 1 2022
12/19/87 0 1 0 0 0 0 1 2023
12/21/87 0 1 0 0 0 0 1 2024
12/22/87 0 5 0 0 0 0 5 2029
12/23/87 0 2 0 0 0 0 2 2031

11-12

01/01/88 0 2 0 0 0 0 2 2033
01/04/88 0 2 0 0 0 0 2 2035
01/05/88 0 1 0 0 0 0 1 2036
01/06/88 0 7 0 0 0 0 7 2043
01/07/88 0 4 0 0 0 0 4 2047
01/08/88 0 1 0 0 0 0 1 2048
01/09/88 0 4 0 0 0 0 4 2052
01/11/88 0 2 0 0 0 0 2 2054
01/12/88 0 13 0 0 0 0 13 2067
01/13/88 0 6 0 0 0 0 6 2073
01/14/88 0 1 0 0 0 0 1 2074
01/15/88 0 2 0 0 0 0 2 2076
01/18/88 0 1 0 0 0 0 1 2077
01/19/88 0 4 0 0 0 0 4 2081
01/20/88 0 2 0 0 0 0 2 2083
01/22/88 0 3 0 0 0 0 3 2086
01/23/88 0 2 0 0 0 0 2 2088
01/25/88 0 2 0 0 0 0 2 2090
01/26/88 0 7 0 0 0 0 7 2097
01/27/88 0 2 0 0 0 0 2 2099
01/28/88 0 3 0 0 0 0 3 2102
01/29/88 0 9 0 0 0 0 9 2111
01/31/88 0 1 0 0 0 0 1 2112
02/03/88 0 5 0 0 0 0 5 2117
02/05/88 0 10 0 0 0 0 10 2127
02/09/88 0 15 0 0 0 0 15 2142
02/10/88 0 1 0 0 0 0 1 2143
02/11/88 0 10 0 0 0 0 10 2153
02/12/88 0 20 0 0 0 0 20 2173
02/15/88 0 2 0 0 0 0 2 2175
02/16/88 0 2 0 0 0 0 2 2177
02/17/88 0 5 0 0 0 0 5 2182
02/18/88 0 3 0 0 0 0 3 2185
02/19/88 0 3 0 0 0 0 3 2188
02/21/88 0 1 0 0 0 0 1 2189
02/22/88 0 2 0 0 0 0 2 2191
02/23/88 0 2 0 0 0 0 2 2193
02/24/88 0 4 0 0 0 0 4 2197
02/25/88 0 2 0 0 0 0 2 2199
02/26/88 0 3 0 0 0 0 3 2202
02/29/88 0 4 0 0 0 0 4 2206
03/01/88 0 2 0 0 0 0 2 2208
03/02/88 0 3 0 0 0 0 3 2211
03/03/88 0 8 0 0 0 0 8 2219
03/04/88 0 1 0 0 0 0 1 2220
03/05/88 0 1 0 0 0 0 1 2221
03/07/88 0 1 0 0 0 0 1 2222
03/08/88 0 2 0 0 0 0 2 2224
03/09/88 0 5 0 0 0 0 5 2229
03/10/88 0 3 0 0 0 0 3 2232
03/11/88 0 3 0 0 0 0 3 2235
03/12/88 0 2 0 0 0 0 2 2237
03/15/88 0 3 0 0 0 0 3 2240
03/16/88 0 9 0 0 0 0 9 2249
03/17/88 0 13 0 0 0 0 13 2262
03/18/88 0 3 0 0 0 0 3 2265
03/19/88 0 1 0 0 0 0 1 2266
03/20/88 0 3 0 0 0 0 3 2269
03/21/88 0 2 0 0 0 0 2 2271
03/22/88 0 1 0 0 0 0 1 2272
03/23/88 0 3 0 0 0 0 3 2275
03/24/88 0 3 0 0 0 0 3 2278
03/25/88 0 2 0 0 0 0 2 2280
03/28/88 0 1 0 0 0 0 1 2281
03/30/88 0 4 0 0 0 0 4 2285
03/31/88 0 2 0 0 0 0 2 2287
04/01/88 0 7 0 0 0 0 7 2294
04/05/88 0 6 0 0 0 0 6 2300
04/06/88 0 4 0 0 0 0 4 2304
04/07/88 0 7 0 0 0 0 7 2311

1- 13

04/08/88 0 9 0 0 0 0 9 2320
04/11/88 0 2 0 0 0 0 2 2322
04/12/88 0 4 0 0 0 0 4 2326
04/13/88 0 1 0 0 0 0 1 2327
04/14/88 0 2 0 0 0 0 2 2329
04/15/88 0 1 0 0 0 0 1 2330
04/16/88 0 1 0 0 0 0 1 2331
04/17/88 0 1 0 0 0 0 1 2332
04/19/88 0 4 0 0 0 0 4 2336
04/21/88 0 3 0 0 0 0 3 2339
04/22/88 0 2 0 0 0 0 2 2341
04/25/88 0 6 0 0 0 0 6 2347
04/26/88 0 2 0 0 0 0 2 2349
04/27/88 0 3 0 0 0 0 3 2352
04/28/88 0 2 0 0 0 0 2 2354
04/29/88 0 2 0 0 0 0 2 2356
05/01/88 0 5 0 0 0 0 5 2361
05/02/88 0 2 0 0 0 0 2 2363
05/03/88 0 2 0 0 0 0 2 2365
05/05/88 0 3 0 0 0 0 3 2368
05/06/88 0 1 0 0 0 0 1 2369
05/07/88 0 2 0 0 0 0 2 2371
05/09/88 0 3 0 0 0 0 3 2374
05/11/88 0 3 0 0 0 0 3 2377
05/13/88 0 1 0 0 0 0 1 2378
05/15/88 0 1 0 0 0 0 1 2379
05/19/88 0 4 0 0 0 0 4 2383
05/20/88 0 1 0 0 0 0 1 2384
05/25/88 0 2 0 0 0 0 2 2386
05/26/88 0 2 0 0 0 0 2 2388
05/27/88 0 2 0 0 0 0 2 2390
06/01/88 0 3 0 0 0 0 3 2393
06/02/88 0 2 0 0 0 0 2 2395
06/06/88 0 4 0 0 0 0 4 2399
06/09/88 0 1 0 0 0 0 1 2400
06/10/88 0 1 0 0 0 0 1 2401
06/14/88 0 2 0 0 0 0 2 2403
06/15/88 0 1 0 0 0 0 1 2404
06/16/88 0 2 0 0 0 0 2 2406
06/17/88 0 1 0 0 0 0 1 2407
06/20/88 0 2 0 0 0 0 2 2409
06/21/88 0 1 0 0 0 0 1 2410
06/22/88 0 2 0 0 0 0 2 2412
06/24/88 0 1 0 0 0 0 1 2413
06/27/88 0 4 0 0 0 0 4 2417
06/28/88 0 7 0 0 0 0 7 2424
06/29/88 0 3 0 0 0 0 3 2427
07/01/88 0 1 0 0 0 0 1 2428
07/04/88 0 2 0 0 0 0 2 2430
07/05/88 0 1 0 0 0 0 1 2431
07/06/88 0 1 0 0 0 0 1 2432
07/07/88 0 2 0 0 0 0 2 2434
07/08/88 0 1 0 0 0 0 1 2435
07/11/88 0 3 0 0 0 0 3 2438
07/12/88 0 3 0 0 0 0 3 2441
07/14/88 0 4 0 0 0 0 4 2445
07/15/88 0 4 0 0 0 0 4 2449
07/18/88 0 2 0 0 0 0 2 2451
07/20/88 0 2 0 0 0 0 2 2453
07/21/88 0 2 0 0 0 0 2 2455
07/22/88 0 1 0 0 0 0 1 2456
07/25/88 0 3 0 0 0 0 3 2459
07/26/88 0 1 0 0 0 0 1 246u
07/27/88 0 2 0 0 0 0 2 2462
07/29/88 0 2 0 0 0 0 2 2464
08/03/88 0 3 0 0 0 0 3 2467
08/05/88 0 1 0 0 0 0 1 2468
08/09/88 0 1 0 0 0 0 1 2469
08/12/88 0 1 0 0 0 0 1 2470
08/15/88 0 1 0 0 0 0 1 2471

B-1.1

08/17/88 0 1 0 0 0 0 1 2472
08/18/88 0 2 0 0 0 0 2 2474
08/19/88 0 2 0 0 0 0 2 2476
08/24/88 0 2 0 0 0 0 2 2478
08/25/88 0 2 0 0 0 0 2 2480
08/26/88 0 1 0 0 0 0 1 2481
08/29/88 0 1 0 0 0 0 1 2482
08/30/88 0 4 0 0 0 0 4 2486
09/01/88 0 1 0 0 0 0 1 2487
09/02/88 0 2 0 0 0 0 2 2489
09/08/88 0 2 0 0 0 0 2 2491
09/11/88 0 1 0 0 0 0 1 2492
09/12/88 0 1 0 0 0 0 1 2493
09/13/88 0 1 0 0 0 0 1 2494
09/14/88 0 1 0 0 0 0 1 2495
09/15/88 0 1 0 0 0 0 1 2496
09/16/88 0 1 0 0 0 0 1 2497
09/19/88 0 1 0 0 0 0 1 2498
09/20/88 0 1 0 0 0 0 1 2499
09/21/88 0 1 0 0 0 0 1 2500
09/23/88 0 2 0 0 0 0 2 2502
09/28/88 0 1 0 0 0 0 1 2503
10/05/88 0 3 0 0 0 0 3 2506
10/11/88 0 1 0 0 0 0 1 2507
10/14/88 0 1 0 0 0 0 1 2508
10/18/88 0 1 0 0 0 0 1 2509
11/08/88 0 1 0 0 0 0 1 2510
11/16/88 0 2 0 0 0 0 2 2512
11/17/88 0 1 0 0 0 0 1 2513
11/22/88 0 1 0 0 0 0 1 2514
12/12/88 0 1 0 0 0 0 1 2515
12/13/88 0 1 0 0 0 0 1 2516
01/30/89 0 1 0 0 0 0 1 2517
02/06/89 0 1 0 0 0 0 1 2518
02/13/89 0 3 0 0 0 0 3 2521
04/01/89 0 1 0 0 0 0 1 2522
04/18/89 0 1 0 0 0 0 1 2523
05/10/89 0 2 0 0 0 0 2 2525

B-15

B.5 Data SO WI

Database for WST1

Date # 1 # 2 # 3 # 4 # 5 NSC Total Cum-Total

02/12/90 0 0 0 2 0 0 2 2
03/26/90 0 0 35 0 0 0 35 37
03/29/90 0 0 0 1 2 0 3 40
03/30/90 0 0 0 2 4 0 6 46
04/02/90 0 0 0 3 0 0 3 49
04/03/90 0 0 0 7 0 0 7 56
04/05/90 0 0 0 5 0 0 5 61
04/10/90 0 0 0 7 0 0 7 68
04/11/90 0 0 0 1 0 0 1 69
04/12/90 0 0 0 1 0 0 1 70
04/18/90 0 0 0 15 0 0 15 85
04/19/90 0 0 0 10 0 0 10 95
04/20/90 0 0 2 10 0 0 12 107
04/23/90 0 0 3 3 1 0 7 114
04/24/90 0 0 0 6 0 0 6 120
04/25/90 0 0 0 14 0 0 14 134
04/26/90 0 0 0 3 0 0 3 137
04/27/90 0 0 0 3 0 0 3 140
04/30/90 0 0 0 7 0 0 7 147
05/01/90 0 0 0 1 0 0 1 148
05/02/90 0 0 0 9 1 0 10 158
05/03/90 0 0 1 20 0 0 21 179
05/04/90 0 0 0 3 0 0 3 182
05/08/90 0 0 0 8 0 0 8 190
05/09/90 0 0 2 9 0 0 11 201
05/22/90 0 0 1 7 0 0 8 209
05/23/90 0 0 0 7 0 0 7 216
05/29/90 0 0 1 0 0 0 1 217
05/30/90 0 0 0 21 0 0 21 238
05/31/90 0 0 0 5 0 0 5 243
06/01/90 0 0 0 5 0 0 5 248
06/04/90 0 0 0 9 0 0 9 257
06/05/90 0 0 0 6 0 0 6 263
06/06/90 0 0 0 12 0 0 12 275
06/07/90 0 0 0 12 0 0 12 287
06/14/90 0 1 3 15 1 0 20 307
06/15/90 0 0 0 22 3 0 25 332
06/18/90 0 0 0 19 2 0 21 353
06/19/90 0 0 1 2 0 0 3 356
06/21/90 0 0 3 31 4 0 38 394
06/22/90 0 0 1 0 0 0 1 395
06/27/90 0 0 0 6 0 0 6 401
06/28/90 0 0 3 7 0 0 10 411
06/29/90 0 0 2 28 6 0 36 447
07/31/90 0 0 1 0 0 0 1 448
08/01/90 0 0 2 0 0 0 2 450

B-16

Appendix C. Detailed Analysis and Design

This appendix contains the detailed analysis and design of software to implement the candi-

date software reliability models.

C.1 Background

Five categories of software failures exist, ranging from critical to noncritical, each one de-

scribed in terms of mission success [86:8-2]. These categories have been applied to IOT&E. with

the following software failure severity levels applied [23:14]:

" System Abort. Severity Level 1. Software or firmware problem that results in a
system abort.

" System Degraded No Workaroind. Severity Level 2. Software or firmware
problem that degrades the system and no alternative workaround exists (program
restarts not acceptable).

" System Degraded Workaround. Severity Level 3. Software or firmware prob-
lem that degrades the system and there exists an alternative workaround (e.g.,
system rerouting through operator switchology: program restart not acceptable).

" System Not Degraded. Severity Level 4. An indicated software or firmware
problem that does not degrade the system or any essential system function.

" Minor Fault. Severity Level 5. All other minor nonfunctional software deficien-
cies.

Currently, most software reliability models assume either all errors have the same weight (or

severity level) or the weighting is based on observations with respect. to time, e.g.-the most current

observations will have more weight than older ones [34, 64, 89]. This thesis effort focuses on the use

of constant weighting for all software failures; however, the implementation design must be such

that a weighting scheme based on severity levels can be implemented in the future.

C.2 Requireients Analysis

Structured analysis techniques were used to determine requirements. The initial requirements

definition was then expressed as a requirements specification through the use of a context diagram

C-I

or bjct rinte Dsig (OD)[1]. heiniia cotet (iaramfo th SftwreReliability

~~~~~~~~~~~~~~~~~~~~StatisticalAalssSse(SASissoniFiue.I.TeIQAOEsowaeatrt

duatosnut Soecesary.e SuptysteSfta& ibltstamis i em f alrs

C.2.~ ~ igr CA.iII E. h Level 0 Conex issoninga fgre S..ThRRSSAaSecm

poed rsi ng~ thecfoi ctionsnb apid Dtat~e A sgn tre dies ig (wter ithfuncutional dcmpoitiond

DeorinjetOaritdDeign im&D[3. Teuea~ ssthe in com cnex igao YTheR daftwar ba t. en

eratestial reduceds sete fS faiur count data Fsigures uCAs Tis daa Aotput swel as atn

dadtial tme, du ratoiddatae fromtia iusr ito atsig execut iontiesdtonfalurses and lu

duaton ipu a ncesry T e utut i te otwreRelailtyStti(Ic, n ers(f'aiurs



User

I SYSTERR
Tt-Times

Software_
Reliability_ Reduce
Statistics Data

Determine_
Execution_
Time_
Data Assign_~Times

ReducedeData

Software_
Reliability- Data
Statistics 7

Poisson
Time-

Figure C.2. Level 1 |)FD for S1SAS

late time statistics, such as total test time. This information is used by the other two functions

DeternineExecutioni_TineData and DetermineLogarithniicTimeData. The functions Deter-

mineExecut ioiTiineData and DetermineLogarit Ih micTitleDat a are based on examples and

equiations in Musa et al.; however, no further decomposition of the functions ReduceData and

AssignTimes is possible without making design decisions.

C.2.1.1 Level 2 DFD: DcterminExecutioTimfData. The Level 2 DFD for Deter-

mineExecutionTimeData is shown in Figure C.3. The time and failure information is taken

and applied against the program structure identified in Musa et al. for a tabular software re-

C-3



RM.&.dDm

Sotw i-

Fiur .. LeeEuF o Dtriexctiiiii.a

liailtyprora [ .1:8-59. h oupt oaf ti hnge h sriitefr fSf.

ware.Reliailit~v.Sta istc

(.2. .2 hd 2 DD: Dlermi LogrtthiicT~e~aC. TeLee dDDfo-e

tenie.oai iiclmDt~ sshw n iue .. Aswt teDtemnExctiokae.a
moIle m I~lfilr nfraliuistke n apieiagis, h pornisrutnc dntfe

in Misaet. l. or atablar oftare elibiliy pogra [6:588589. Th ouput.of his lsogoe

gram. andgur th3. Loe evel 2 DFID fic def riiine e I xec and funtions ofthessem hs

spebifiction frorame t6:58-8he alefo pt sof tre d enge oteue tef o ot



Ue

NSb$luu

Figure ('.4. Level 2 DFD) for DetermineLogarithmic.TimleData

C.4 Software Dsg

The software design effort was at two levels: high-level design effort (which included transition

from structured analysis to OOD). and abstract data type (ADT) selection and low-level design

effort. The waterfountain approach allowed a chance to revisit, the different design levels, as well as

the initial analysis. throughout the design process (84]. The discussion in the following paragraphs

reflects that. iterative nial ire, and will present the design effort.

The front end of the analysis was based on structured analysis techniques; however, there

is a need to establish historical data from previous software reliability analysis t.o enable future

validation efforts of ot her software reliability models [26:200]. rowvardl this end. the concept of

data persistence will be encorporated into the design effort, specifically in the development of data

stores for the dliffe'rent fiindionis to use. In order to optimize the design and inipleinentat ion oft lie

dlata base and the accompanying software, a selection of the most appropriate dlata model must be

made. The model itself is simply a collection of conceptual tools that can be used t.o describe the

actual data, data semantics, data relationships, and existing consistency constraints between data

[49:6].

('*-5



While there have been many data models proposed and implemented for databases, they fall

into four basic categories: physical data models; record-based logical models; object-based logical

models: and object-oriented models [49:6],[97:7]. Of the first three, object-based logical models are

the best. suited for the logical and external schemas of describing data at both the conceptual and

view levels [49:6]. The physical design of the data base would then be done in a relational model

for the internal schema. Object-oriented models include the aspects of object-based models (object

identity and type hierarchy), as well as data abstraction and user defined operations [97:92]. This

makes the object-oriented models better suited for schema description at all three levels (internal.

logical, and external); however, the Clipper programming language supports a more relational

implementation of the data base at the internal schema level [66:3-7]. This requires at least an

object.-based model, if not, an object-oriented model. In support of this, a transformation to the

method of OOD was done using the following steps [12:17]:

" ldentify objects and their attributes from all sources and destinations of data as well as data

stores.

" Identify all operations suffered by and required of each object.

* Establish visibility among objects.

" Establish interfaces of objects.

C.4.1 ld(lWificllotw of Objecls anid Thfir Afltbidhs. The initial Level 1 DFD was revised.

taking into account. the design decision to incorporate data persistence (Figure C.5). From this

final DFD, the following objects and attributes were identified:

" SYSTERR Data, with attributes Date, Severity Level, Software Problem Report Number.

and Description.

" Failure.Count, with attributes of Date and Number of Failures for each Severity Level.

• TestTime. with attributes of Test Duration. 'TineGroulping,

C-6



ReliaRidite
StatiData

SSoftware
RReliability
SStatistics

and TtaL~ie.0f.cciTremee

N u iberL~a lur&Expcte, an Fal iure Tes

C.4.2 Opera teinsSfere- yadRqie fEc bec.Oeain htietf h

behavior f each obectweideo fedanolos

Time-7



" SYSTERR Data: none.

" Failure-Count: add up data common to the same Date, sort the data in chronological order.

" TestTime: none.

" FailureTime: determine LocaLTimeOLOccurrence. TestDuration, TotalTime. and To-

talTimeOLOccurrence.

o SoftwareReliabilityStatistics: determine N umberOfFailuresExperienced. FailureIntensity,

and Nu mberOLFailuresExpected.

Operations that are required of each object were identified as follows:

" SYSTERR Data: provide Date and Severity Level.

" FailureCount: provide Date and TotalFailures-toDate.

" TestTime: provide TestDuration and TimeGrouping.

" FailureTime: provide LocalTi meOOccu rrence. TestDuration. TotalTimeOLOccurrence,

and TotalTime.

" SoftwarelReliabilityStatistics: provide NumberOfFailuresExperienced, FailureIntensity.

and NumberOfFail ures.Expected.

C.4.3 Estabihsh I."sibility Aniong Obfrcts. The visibility among objects is based on the re-

lationships between the databases, and is shown in Figure C.6. The module diagram is the basis

for transformation of the design information into an implementation (in this case, Clipper code).

The objects come directly from those identified above. As naming conventions for an MS-DOS en-

vironment are limited to eight characters, with Clipper supplying the .PRG extension, and Clipper

is more functional than object-oriented, the objects were broken out into program modules and

databases with a basic naming convention (see Table C.I).

c-8



SYSTERR D~u __________

Deiantneu Failure.

C.5 dcriIu Numd e for Absrac Data Typ

IC I



Table C. 1. Listing of Objects and Implementation Name

Object [Prograni Modtil-e ] Database
FAILURE-&OUNT COUNT.PRGC COUNT.DBF
FAILURE-TIME SRTINIE.PRG

SRTBUIlLD.PRC. TINIE.DBF
sRTi)ATE.PR(; TIME.DBF

SIITB1.PlC [I1DA'A.DI3F
COU NT. DBF

TI NIE.DB F
SRTEST.PR(; C----OtNT.DBF

TlIE. DBF
TIM EDTE.D13F

SOFTWVARE-RELIABILITY- SHEXE 1PHRG TlIE.DBF
STATIsTrICS

SIlOGC.PI3G TINME.DBIF

only t~o manipulate the data in thie (database, and not perform the database implementat ion it-

self. Thus, no specific ADI was necessary or would provide additional capabilities for software

dlevelopmlent.



Appendix D. Candidate Software Reliability Model Implementation Code

This appendix contains the code that was developed in order to perform evaluation of the

candidate software reliability models.

D.I Software Reliability Statistical Analysis Sofiwarc (SRSAS)

* Title Software Reliability Statistical Analysis System (SRSAS) *
* Version 3.3 *
* Date 15 Oct 91 *
* Author Capt Joseph J. Stanko *
* Security Unclassified *
* Purpose This program does three things: *
* 1.) Calculate initial statistics from existing SYSTERR *
* software maturity database for use in software reliability *
* model evaluation *
* 2.) Generate a database of failure times based on average test *
* times, actual test time times, or estimated test times. *
* 3.) Perform calculations on data to determined goodness-of-fit *
* for each candidate software reliab"' ty model. *

* Theory 1.) The program checks for the ex.stence of a summary database *
* and if one does not exist, one is constructed solely from *
* the SYSTERR fields of the software maturity database *
* 2.) Next, the program prompts for data not in the SYSTERR *
* database (such as total test time or test durations) and *
* generates a database of failure t.imes. *
* 3.) Finally, the program takes the failure time information *
* and calculates estimates of model parameters and their *
* confidence intervals. Outputs are given (in tabular form) *
* of actual and estimated data. *

* NOTE: *
* This is the initial transition from existing SYSTERR databases *
* to the software reliability database for the Reliability *
* Analysis System (RAS). Future SYSTERR database configuration *
* based on the 1 Oct 1990 AFOTECP 800-2 Vol 6 will have *
* fields that will be handled by RAS itself as an integrated *
* package. *

* Database: This program uses three databases: *

* SYSTERR.DBF - There were several different "versions" of this *
* database done by each test team. The following *
* are the fields found common to each that might *
* be useful for software reliability analysis: *

* Name Type Length Decimal Description *
*----------------------------------------------- ---- ------ ------- ----------- -------- *

* DATE Date Date of occurrence of failure *
* CPCI C 10 CPCI associated with failure *
* SEVCODE C 1 Severity Code (1-5) of failure *
* DATE-FIX Date Date failure fixed *
* TITLE C 42 Description of failure *
* PROBNUM C 10 Software Problem Number (SPR) *

* While this data is available from the existing SYSTERR database *
* it does not include the time values necessary for reliability *
* evaluation. This data must be prompted for from the user. *

* COUNT.DBF - This is an intermediate summary database of *
* dates and number of failures: *

D-I



* Name Type Length Decimal Description *
*------------------------------------------------ ---- ------ ------- ---- -------------- *

* CAL-DATE Date Date of occurrence of failure *
* SEVCODE_1 N 4 # of Severity Code I failures *
* SEVCODE_2 N 4 # of Severity Code 2 failures *
* SEVCODE_3 N 4 # of Severity Code 3 failures *
* SEVCODE_4 N 4 # of Severity Code 4 failures *
* SEVCODE_5 N 4 # of Severity Code 5 failures *
* NOSEVCODE N 4 # of failures not coded *
* TOTNUM N 4 Total Number for this date *
* TOTAL N 4 Overal total of failures *

* TIME.DBF - This is a final database of dates and estimated *
* failure times and test durations: *

* Name Type Length Decimal Description *
*--------------------------------- ----- -------------- -------------------------

* CAL-DATE Date Date of occurrence of failure *
* LTIMEOCC N 10 2 "Local" time of failure occur *
* (wrt to start of that test) *
* TESTDUR N 10 2 Duration of test for that day *
* TTIMOCC N 10 2 "Total" time of failure occur *
* (wrt to all total test time) *
* TOTAL N 4 Total failures to that point *

* Modules : Calls the following modules for operation: *
* SRCOUNT.PRG - Initializes the database COUNT.DBF, reduces *
* the SYSTERR.DBF entries into a count summary *
* form, and puts in ascending chronological order.*
* SRPRINT.PRG - Prints the COUNT.DBF. *
* SRTIME.PRG - Initializes and generates the database TIME.DBF.*
* SREXEC.PRG - Perform calculations on the TIME.DBF data with *
* Musa Execution Time Model. *
* SRLOG.PRG - Perform calculations on the TIME.DBF data with *
* Musa-Okumoto Logarithmic Exection Time Model. *

clear screen

*-----------------------------------------------------------------------------------------------
-- Variable Section:

option = "C" U memvar for main menu
*--------------------------------------------------------------------------------------------------

* Set Section:

set decimal to 9 && set decimal length beyond default (2)

---------------------------------------------------------------------------------------------------

* Main Loop:

do while upper(option) <> "X"
set color to w+/b,g/n
C 0,0 clear
0 3,12 say "Software Reliability Statistical Analysis System (SRSAS)"
0 4,12 say " Version 3.3, Oct 1991"
0 6,20 say "C - Create Count Data Base"
C 8,20 say "P - Print Count Data Base"
C 10,20 say "T - Create Time Data Base"
0 12,20 say "E - Execution Time Model"
0 14,20 say "L - Logarithmic Poisson Execution Time Model"
C 16,20 say "X - Exit"
0 20,20 say "Please Enter Option:";

get option picture "OK !" valid(option$"CPTELX")
read

do case && Call sr programs based on menu input:
case upper(option)="C"
do srcount

case upper(option)=P"
do srprint

case upper(option)="T"
do srtime

case upper(option)="E"

1)-2



do srexec
case upper(option)="L"
do srlog

case upper(option)"X"
6 24,20 say "Exiting This Program ...

otherwise && standard exception handling
o 23,20 say "Invalid Entry - Please Use C,PT,E,L, or X"

endcase

enddo
*---------------------------------------------------------------------------------------------------

clear all
clear screen
quit

I)-3



D.2 Software Reliability COUNT.DBF Module

* Title Software Reliability COUNT.DBF Module (SRCOUNT.PRG) *
* Version 3.3 *
* Date 2 Oct91 *
* Author Capt Joseph J. Stanko *
* Security Unclassified *
* Purpose This program: *
* 1.) Calculates initial summary statistics from the SYSTERR *
* software maturity databases for use in software reliability *
* model evaluation. *
* Theory : One pass module. The program checks for the existence of a *
* summary database and if one does not exist, one is constructed *
* solely from the SYSTERR fields of the software maturity *
* database. *
* Database: This program uses two databases: *

* SYSTERR.DBF - There were several different "versions" of this *
* database done by each test team. The following *
* are the fields found common to each that might *
* be useful for software reliability analysis: *

* Name Type Length Decimal Description *
*----------------------------------------------- ---- ------ ------- ----- -------------- *

* DATE Date Date of occurrence of failure *
* CPCI C 10 CPCI associated with failure *
* SEVCODE C 1 Severity Code (1-5) of failure *
* DATEFIX Date Date failure fixed *
* TITLE C 42 Description of failure *
* PROBNUM C 10 Software Problem Number (SPR) *

* While this data is available from the existing SYSTERR database *
* it does not include the time values necessary for reliability *
* evaluation. This data must be prompted for from the user. *

* COUNT.DBF - This is an intermediate summary database of *
* dates and number of failures: *

* Name Type Length Decimal Description *
*----------------------------------------------- ---- ------ ------- ---- -------------- *

* CAL-DATE Date Date of occurrence of failure *
* SEVCODE_1 N 4 # of Severity Code I failures *
* SEVCODE_2 N 4 # of Severity Code 2 failures *
* SEVCODE_3 N 4 # of Severity Code 3 failures *
* SEVCODE_4 N 4 # of Severity Code 4 failures *
* SEVCODE_5 N 4 # of Severity Code 5 failures *
* NOSEVCODE N 4 # of failures not coded *
* TOTNUM N 4 Total Number for this date *
* TOTAL N 4 Overal total of failures *
* Modules : None. *

--------------------------------------------------------------------------------------------------

Check for COUNT.DBF or create if it does not exist:

if .not. file("COUNT.DBF")

0 23,20 say "Building COUNT.DBF Database
create template
use template
append blank
replace field-name with "Cal-Date", field-type with "DATE"
append blank
replace field-name with "SevCode-l", field-type with "N",

field-len with 4
append blank
replace field-name with "SevCode_2", field-type with "N",

field-len with 4
append blank
replace field-name with "SevCode_3", field-type with "N",

D-4



fieldlen with 4
append blank
replace field-name with "SevCode_4", field-type with "N",

field-len with 4
append blank
replace field-name with "SevCode_5", field-type with "N",

field-len with 4
append blank
replace fieldname with "NoSewCode", fieldtype with "N",

fieldlen with 4
append blank
replace field-name with "Tot_Nm", field-type with "N",

field-len with 4
append blank
replace field-name with "Total", field-type with "N",

fieldlen with 4
go top
close all
file = "COUNT.DBF"
create &file. from template
erase template.dbf

*------------------------------------------------------------------------------------------------
Now reduce the SYSTERR.DBF data into the COUNT.DBF database:

use COUNT alias COUNT && Aliases sure do help disambiguate vars:
select 2
use SYSTERR alias MATURITY

store 0 to mtot &A Initialize counts for total and all
store 0 to mscl && severity codes (sc's 1-5)
store 0 to msc2
store 0 to msc3
store 0 to msc4
store 0 to msc5
store 0 to mnsc U Just in case some are "no severity code"
store DATE to mdate

0 0,0 clear
0 5,20 say "Tabulating Count Data
do while .not. eof() ft Since each entry in the SYSTERR database
mtot = mtot + I && is a single and separate failure, all
store SEVCODE to msevcode ft must be added up by date with summary
do case &A information on all severity codes

case msevcode = "1"
mscl = mscl + 1

case msevcode = "2"
msc2 = msc2 + I

case msevcode = "3"
msc3 = msc3 + I

case msevcode = "4"
msc4 = msc4 + I

case msevcode = "5"
msc5 = msc5 + 1

otherwise
mnsc = mnsc + 1

endcase
skip
if DATE <> mdate U Check to see if we've moved to another date

select COUNT &I If we have, save off the summary data
append blank
replace CAL-DATE with mdate
replace SEVCODE_1 with mscl
replace SEVCODE_2 with msc2
replace SEVCODE.3 with msc3
replace SEVCODE_4 with msc4
replace SEVCODES with msc5
replace NO-SEVCODE with musc
replace TOTNUM with mtot
replace TOTAL with 0

store 0 to mscl && reinitialize the summary variables
store 0 to msc2
store 0 to msc3
store 0 to msc4
store 0 to msc5

D-5



store 0 to mnsc

store 0 to mtot

select MATURITY && and do it again for the new date
store DATE to mdate

endif
enddo
*-------------------------------------
* Since many of the entries in the SYSTERR database were not
* in straight chronological order, the data needs to be sorted
* and then compressed so that only one entry exists for any given date:

0 7,20 say "Sorting the Tabulated Data ... "
select COUNT
sort on CAL-DATE to templ
select 3
use templ

0 9,20 say "Compressing Tabulated Data ... "
store I to recnum
store CAL-DATE to mdate
store SEVCODE_1 to mscl
store SEVCODE_2 to msc2
store SEVCODE_3 to msc3
store SEVCODE-4 to msc4
store SEVCODE_5 to msc5
store NOSEVCODE to mnsc
store TOTNUM to mtot
skip
do while .not. eofo)

rec-mum = rec-num + 1
if CALDATE = mdate
mscl = SEVCODE_1 + mscl
msc2 = SEVCODE_2 + msc2
msc3 = SEVCODE_3 + msc3
msc4 = SEVCODE_4 + msc4
msc5 = SEVCODE_5 + msc5
mnsc = NOSEVCODE + mnsc
mtot = TOTNUM + mtot
replace SEVCODE_1 with mscl
replace SEVCODE_2 with msc2
replace SEVCODE_3 with msc3
replace SEVCODE_4 with msc4
replace SEVCODE_5 with msc5
replace NOSEVCODE with mnsc
replace TOTNUM with mtot
goto rec-num - 1
delete
goto rec-num

endif
store CAL-DATE to mdate
store SEVCODEI to mscl
store SEVCODE_2 to msc2
store SEVCODE_3 to msc3
store SEVCODE_4 to msc4
store SEVCODE_5 to msc5
store NOSEVCODE to mnsc
store TOTNUM to mtot
skip

enddo
*-------------------------------------

Now sum the totals and include in the COUNT.DBF:
go top
mtot = 0
do while .not. eofo)

store TOTNUM + mtot to mtot
replace TOTAL with mtot
skip

enddo
*-------------------------------------

And close up shop:

pack

D-6



close all
erase COUNT.DBF
rename templ.dbf to COUNT.DBF

else
C 23,20 say "COUNT.DBF Database Already Exists ...
wait "Hit any key to continue

endif
*----------------------------------------------------------------------------------------------------

return k to SESAS main menu

D-7



D.3 Software Reliability Prvint Module

* Title Software Reliability Print Module (SRPRINT.PRG) *
* Version 3.3 *
* Date 2 Oct 91 *
* Author Capt Joseph J. Stanko *
* Security Unclassified *
* Purpose This program: *
* Prints the contents of the COUNT.DBF to either a screen, *
* printer, or data file. *
* Currently only the COUNT.DBF is useful for output--the TINE.DBF *
* has one entry for each failure recorded, and that would use *
* a lot of paper to print. However, it would be simple to modify *
* this program to print the TIME.DBF information to a file if *
* needed. *

* Theory : User is given option of where to print the COUNT.DBF database. *
* It's a one pass, with default values initialized for screen *
* output (saves on paper!). *

* Database: This program uses one database: *

* COUNT.DBF - This is an intermediate summary database of *
* dates and number of failures: *

* Name Type Length Decimal Description *
*-------------------------------------------------- ---- ------ ------- -------------- *

* CALDATE Date Date of occurrence of failure *
* SEVCODE_1 N 4 # of Severity Code I failures *
* SEVCODE_2 N 4 # of Severity Code 2 failures *
* SEVCODE_3 N 4 # of Severity Code 3 failures *
* SEVCODE_4 N 4 # of Severity Code 4 failures *
* SEVCODE_5 N 4 # of Severity Code 5 failures *
* NOSEVCODE N 4 # of failures not coded *
* TOTNUN N 4 Total Number for this date *
* TOTAL N 4 Overall total of failures *

* Modules : N/A *

*------------------------------------------------------------------------------
Variable Section:

prvar = "S" && Variable for print option
store I to LOC && Line of Code--used for printing information
store " " to dbname && Name of database for output header
*---------------------------------------------------------------------------------------------------

* First, see if COUNT.DBF exists:

if file("COUNT.DBF")
---------------------------------------------------------------------------------------------------

* If it does then do print, etc.

0 23,10 say "Print Data to (S)creen, (P)rinter, (F)ile, or (R)eturn:";
get prvar picture "OK !" valid(prvar$"SPFR")

read
0 23,10 clear

if upper(prvar) <> "R" && Make sure we don't want to return to SRSAS

* 0,0 clear
use COUNT
replace TOTAL with TOTNUM
* 5,20 say "Data Base Name for Header:" get dbname picture "!!U!!!!!"
read

if upper(prvar) = "F" && Specific parameters for file output
* 7,20 say "Sending Data to File SRCOUNT.PRN ... "
set printer to SRCOUNT.PRN
set device to print
pagelength = 4000 & Pagelength large so header info used once

elseif upper(prvar) = "P" U Specific parameters for printer output



0 7.20 say "Printing Results .

set device to print
pagelength = 56

else kk Specific parameters f or screen output
clea~r
pagelength = 20

endif

do while .not. eof()
if LOC = I && Output header information
C LOC,20 say "Database for
0 LOC,33 say dbname
store LOC+2 to LOC
* LOC,1 say "Date"
0 LOC,10 say #1"'

0 LOC,15 say "#2"

0 LOC,20 say "#3"

0 LOC,26 say "#4"

* LOC,30 say #51'

* LOC,35 say "NSC"1
C LOC,40 say "Total"
* LOC.50 say "Cum Total"
0 LOC+1.1 say -- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

store LOC + 2 to LOC
endif

* LOC,1 say CALDATE && Output summary database information
* LOC,10 say SEVCODE_1
0 LOCiS5 say SEV_CODE_2
C LOC.20 say SEVODE-3
C LOC,25 say SEV_.CODE-4
0 LOC,30 say SEV_.CODE-.5
0 LOC,35 say NO_.SEVCODE
0 LOC,40 say TOTNUN
0 LOC,50 say TOTAL
store LOC + 1 to LOC

if LOC = pagelength && Reset for beginning of new page
store 1 to LOC
if upper(prvar) = "S"

wait "Hit any key to continue ...

clear
endif

end if

skip
enddo

if upper(prvar) = 11P11 k Reset all parameters for printer and file
eject
set device to screen

elseif upper~prvar) = "1F"#
set device to screen
set printer to &&reset if used for file output

else &&If screen output, pause for one last look
wait "Hit any key to continue

endif

close all

endif
---------------------------------------------------------------------------------------------------

* If COUNT.DBF did not exist:
else

0 23,10 say "COUIT.DBF Does Not Exist."
wait "Hit any key to continue .

endi f
*---------------------------------------------------------------------------------------------------

return &k to SRSAS.PRG main menu

D-9



D.4 Softwart Rcliability TIME.DBF Module

* Title Software Reliability TIME.DBF Module (SRTIME.PRG)
* Version 3.3 *
* Date 2 Oct 91 *
* Author Capt Joseph J. Stanko *
* Security Unclassified *
* Purpose This program: *
* Creates a TIME.DBF data base if needed. *
* Determines the initial time statistics from the summary *
* COUNT.DBF and either average test durations, actual test *
* durations, or estimated test durations. *

* Theory : This module allows the user to create the time database, if it *
* does not exist, from both COUNT.DBF and other user/file input *
* information. *

* Database: This module uses two databases (see note below): *

* COUNT.DBF - This is an intermediate summary database of *
* dates and number of failures: *

* Name Type Length Decimal Description *
*------------------------------------------- ---- ------ ------- ----------------------------- *

* CAL-DATE Date Date of occurrence of failure *
* SEVCODE_1 N 4 # of Severity Code 1 failures *
* SEVCODE_2 N 4 # of Severity Code 2 failures *
* SEVCODE_3 N 4 # of Severity Code 3 failures *
* SEVCODE_4 N 4 # of Severity Code 4 failures *
* SEVCODE_5 N 4 # of Severity Code S failures *
* NOSEVCODE N 4 # of failures not coded *
* TOTNUM N 4 Total Number for this date *
* TOTAL N 4 Overal total of failures *

* TIME.DBF - This is a final database of dates and estimated *
* failure times and test durations: *

* Name Type Length Decimal Description *
*-------------------------------------------------------- ---- ------ ------- --- *

* CALDATE Date Date of occurrence of failure *
* LTIMEOCC N 10 2 "Local" time of failure occur *
, (wrt to start of that test) *
* TESTDUR N 10 2 Duration of test for that day *
* TTIMEOCC N 10 2 "Total" time of failure occur *
, (wrt to all total test time) *
* TOTAL N 4 Total failures to that point *

* Note: An additional database is used to input the B-IB flight *
* test data: *

* BIDATA.DBF - This is a summary database of B-IB flight test *
* hours and dates: *

* Name Type Length Decimal Description *
*------------------------------------------------ ---- ------ ------- ---- -------------- *

* DATE Date Date of mission flown *
* FLTHRS N 7 2 Mission duration in hours *
* FLT C 6 Mission identifier *

* Modules: This program calls the following modules: *
* SRTBUILD.PRG - Creates the structure for the TIME.DBF if one *
* does not already exist. *
* SRTDATE.PRG - Generates the TIME.DBF based on the assumption *
* that failure dates from COUNT.DBF are the only *
* test dates, and uses an average test duration *
* input from the user. *
* SRTB1.PRG - Generates the TIME.DBF from specific B-1B *
* flight test data and the COUNT.DBF. *
* SRTEST.PRG - Generates the TIME.DBF from estimates of total *
* test time per month and the COUNT.DBF. *

clear screen

D-10



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

* Variable Section:

timeoption = "C" && memvar f or main menu
*--------------------------------------------------------------------------------------------------

* Main Loop:

do while upper~timeoption) <> "R"
0 0,0 clear
* 3,12 say "Software Reliability Statistical Analysis System CSRSAS)'
* 4,12 say " Generate TIME.DBF Module"
* 6,20 say "1C - Create Time Data Base Structure"*
* 8,20 say "D - Use Failure Dates & Average Test Duration for Data"
O 10.20 say "B - Use B-lB Flight Test Data for Data"
* 12,20 say "E - Use Estimated Test Time per Month for Data"
0 14.20 say "R - Return"
* 20,20 say "Please Enter Option:";

get timeoption picture "OK !" valid~timeoption$"CDBER")
read

do case U& Call srt programs based on menu input:
case upper(timeoption)="C"
do srtbuild

case upper(timeoption)="D"
do srtdate

case upper(timeoption)="B"
do srtbl

case upper~timeoption)="E"
do srtest

case upper(timeopti- ) R."
note : returning to main program ...

otherwise && standard exception handling
* 23,20 say "Invalid Entry - Please Use C,D,B,E, or R"

endcase

enddo
*---------------------------------------------------------------------------------------------------

return

D)-11



D.5 Software Reliability TIAIE.DBF Build Module

* Title Software Reliability TIME.DBF Build Module (SRTBUILD.PRG) *
* Version 3.3 *
* Date 25 Oct 91 *
* Author Capt Joseph J. Stanko *
* Security Unclassified *
* Purpose This program: *
* Creates the structure for both TIME.DBF and TIMEDTE.DBF. *

* Theory : The program creates the necessary database structure if it does *
* not already exist. *

* Database: This program creates the following database structure: *

* TIMEDTE.DBF - This is the DTE version of TIME.DBF to find the *
* initial failure intensity for OT&E calculation. *
* It has the identical structure to TIME.DBF. *

* TIME.DBF - This is a final database of dates and estimated *
* failure times and test durations: *

* Name Type Length Decimal Description *
*-------------------------------------------------- ---- ------ ------- -------------- *

* CAL-DATE Date Date of occurrence of failure *
* LTIMEOCC N 10 2 "Local" time of failure occur *
* (wrt to start of that test) *
* TESTDUR N 10 2 Duration of test for that day *
* TTIMEOCC N 10 2 "Total" time of failure occur *
* (wrt to all total test time) *
* TOTAL N 4 Total failures to that point *

* Modules Calls procedure DBBUILD (see below). *

store "0" to dbvar

0 23,20 say "(D)T&E or (O)T&E Database?"
get dbvar picture "OK !" valid(dbvar$"DO")

read
if upper(dbvar) = "D"
if .not. file("TIMEDTE.DBF")
0 23,20 say "Building DT&E TIME Database ...
do dbbuild
file = "TIMEDTE.DBF"
create &file. from template
delete file template.dbf

endif
else
if .not. file("TIME.DBF")
* 23,20 say "Building TIME Database ...
do dbbuild
file = "TIME.DBF"
create &file. from template
delete file template.dbf

endif
endif
*---------------------------------------------------------------------------------------------------

return && to srtime.prg module

* Procedure Section:

* Procedure: Database Build Procedure (DBBUILD) *
* Version 3.3 *
* Date 23 Oct 91 *
* Author Capt Joseph J. Stanko *
* Security Unclassified *
* Purpose This module has the implementation code for creating *
* the structure for either TIMEDTE.DBF or TIME.DBF *
* Database : This program creates the following database structure: *

D-12



* TIME.DBF - This is a final database of dates and estimated *
* failure times and test durations: *

* Name Type Length Decimal Description *
*-------------------------------------------------- ---- ------ ------- -------------- *

* CAL-DATE Date Date of occurrence of failure *
* LTIMEJOCC N 10 2 "Local" time of failure occur *
* (wrt to start of that test) *
* TESTDUR N 10 2 Duration of test for that day *
* TTIMEOCC N 10 2 "Total" time of failure occur *
* (wrt to all total test time) *
* TOTAL N 4 Total failures to that point *

* Modules : N/A *

procedure dbbuild

create template
use template
append blank
replace fieldname with "Cal-Date", field-type with "DATE"
append blank
replace fieldname with "LTimeOccur", field-type with "N",

field_len with 10, fielddec with 2
append blank
replace field-name with "TestDur", field-type with "N",

fieldlen with 10, fielddec with 2
append blank
replace field-name with "TTimeOccur", field-type with "N",

field-len with 10, fielddec with 2
append blank
replace fieldname with "Total", field-type with "N",

fieldlen with 4
go top
close all

return && to procedure SRTBUILD

D- I:



D.6 Software Reliabzlty TIME.DBF Date Aodale

* Title Software Reliability TIME.DBF Date Module (SRTDATE.PRG) *
* Version 3.3 *
* Date 2 Oct 91 *
* Author Capt Joseph J. Stanko *
* Security Unclassified *
* Purpose This program: *
* Generates the data for the TIME.DBF database from average test *
* times. *

* Theory : The program generates TIME.DBF data from the use of average test*
* times assumed to occur ONLY ON THE DATES OF FAILURES as found *
* in the COUNT.DBF and SYSTERR.DBF databases. This assumption is *
* valid if testing occurred only on the dates that failures were *
* identified; however, as failures are often "boarded" by a panel *
* and recognized at dates that could be different than actual *
* test dates, another option should be used. *

* This module was used for initial analysis of data until more *
* definitive test times and durations were available. *

* Database: This program uses the following database: *

* TIME.DBF - This is a final database of dates and estimated *
* failure times and test durations: *

* Name Type Length Decimal Description *
*------------------------------------------- ---- ------ ------- ----------------------------- *

* CAL-DATE Date Date of occurrence of failure *
* LTIMEOCC N 10 2 "Local" time of failure occur *
* (wrt to start of that test) *
* TESTDUR N 10 2 Duration of test for that day *
* T_TIMEOCC N 10 2 "Total" time of failure occur *
* (wrt to all total test time) *
* TOTAL N 4 Total failures to that point *

* Modules : N/A *

---------------------------------------------------------------------------------------------------
First, check to see if the TIME.DBF exists:

if file("TIME.DBF")
*------------------------------------------------------------------------------------------------

* Variable Section:

use COUNT alias COUNT && Database of failure COUNT data
select 2
use TIME alias TIME && Database of failure TIME data
select COUNT

store 0 to doffset && Day offset to determine total test time
store 3600 to day-val && Day value for test duration (minutes)
store 0 to me && Total number of failures
store 0 to maxdur && Max partition for assigning failure times
store 0 to mtestdur && Local value for test duration
store 0 to my-tot && Local total number of failures
store 0 to numsec && Number of seconds from system clock
store 0 to p-offset && Partition offset for local failure times
store CAL-DATE to mdate && Local date for failure occurrence
store CALDATE to strtdate && Starting date for data analysis
go bottom
store CAL-DATE to enddate && Ending date for data analysis
go top
-------------------------------------------------------------------------------------------------

* Data Entry Section:
set confirm on
* 0,0 clear
* 3,10 say "Enter Starting Date for Data :" get strtdate picture "99/99/99"
C 5,10 say "Enter Ending Date for Data :" get enddate picture "99/99/99"
* 7,10 say "Enter Daily Test Duration (min):" get day-val picture "999999"

D-I.-



read
set confirm off

*----------c---a----o----------------------------------------------------------------------------* Data Calculation Section:

locate for CAL-DATE = strtdate
do while (.not. eofo)) .and. (CALDATE <= enddate)

0 9,10 say "Generating data ...
store CALDATE to mdate
store TOTNUM to my-tot
store 0 to p.offset
store day-val to mtestdur
max-dur = (mtestdur) / my-tot
select TIME
for loop-var = 1 to my-tot
Q 15,10 say "Data Point #
0 15,24 say loop.var
append blank
replace CALDATE with mdate
replace TESTDUR with mtestdur

-------------------------------------
* My version of a random number generator.
* Takes the system time and finds a value for
* the local offset of failure occurrence within
* a time "window" by using sqrt() and modulo:

numsec = secondso)
do while num-sec > max-dur
numsec = num-sec % sqrt(num-sec) && % is the modulus operator

enddo
*-------------------------------------
* Estimate time of failure from number of partitions, duration
* of partitions, and time offset:
failtime = (p-offset*max-dur) + (numsec)

replace LTIMEOCCUR with failtime && Local Time of Occurrence

replace TTIMEOCCUR with failtime + doffset && Total Time of Occurrence

m-e = m-e+1
replace TOTAL with m-e && Total Failures

p-offset = p.offset +1 && Move to next partition
next
d-offset = doffset + day.val && Move to next test period
select COUNT
skip

enddo
close all

------------------------------------------------------------------------------
* Else, database does not exist:

else
0 23,10 say "TIME.DBF Does Not Exist."
wait "Hit any key to continue

endif
*--------------------------------------------------------------------------------------------------

return && to srtime.prg module.

D- 15



D.7 Software Reliability TIME.DBF B-lB Module

* Title Software Reliability TIME.DBF B-IB Module (SRTBI.PRG) *
* Version 3.3 *
* Date 2 Oct 91 *
* Author Capt Joseph J. Stanko *
* Security Unclassified *
* Purpose This program: *
* Generates TIME.DBF data from the summary COUNT.DBF database *
* and the specific B-IB flight test database B1DATA.DBF. *
* BIDATA.DBF. *
* As this uses a specific database, it also allows the user to *
* print the BISDATA.DBF (sorted version of BIDATA.DBF). *

* Theory This is a one pass program that generates failure times from *
* actual test durations. It was a little involved, as there were *
* instances of COUNT.DBF dates that had no corresponding flight *
* test times, as well as BIDATA.DBF dates that had no *
* corresponding failure occurrences. This required a "running *
* summation" of either failures or test times until one caught up *
* with the other. Once dates for both failures and times were *
* the same, that was considered the date of failure (for this *
* database only) with the time of failure assigned within the *
* total test time for that date. While this might not take into *
* account the possibility that failures were discovered on *
* previous flights, it does preserve the relationship of test *
* durations and intervals to occurrence of failures (in a *
* relative manner). *

* Database: This program uses three databases: *

* BIDATA.DBF - This is a summary database of B-1B flight test *
* hours and dates: *
* Name Type Length Decimal Description *

*----------------------------------------------- ---- ------ ------- ---- -------------- *
* DATE Date Date of mission flown *
* FLTHRS N 7 2 Duration of mission (in hours)*
* FLT C 6 Mission identifier *

* COUNT.DBF - This is an intermediate summary database of *
* dates and number of failures: *
* Name Type Length Decimal Description *

*----------------------------------------------- ---- ------ ------- ----------- ------- *
* CALDATE Date Date of occurrence of failure *
* SEVCODE_1 N 4 # of Severity Code 1 failures *
* SEVCODE_2 N 4 # of Severity Code 2 failures *
* SEVCODE_3 N 4 # of Severity Code 3 failures *
* SEVCODE_4 N 4 # of Severity Code 4 failures *
* SEVCODE_5 N 4 # of Severity Code 5 failures *
* NOSEVCODE N 4 # of failures not coded *
* TOTNUM N 4 Total Number for this date *
* TOTAL N 4 Overal total of failures *

* TIME.DBF - This is a final database of dates and estimated *
* failure times and test durations: *

* Name Type Length Decimal Description *
*------------------------------------------ ---- ------ ------- ----------------------------- *

* CAL-DATE Date Date of occurrence of failure *
* LTIMEOCC N 10 2 "Local" time of failure occur *
* (wrt to start of that test) *
* TESTDUR N 10 2 Duration of test for that day *
* TTIMEOCC N 10 2 "Total" time of failure occur *
* (wrt to all total test time) *
* TOTAL N 4 Total failures to that point *

* Modules : N/A *

---------------------------------------------------------------------------------------------------
First, make sure the data is sorted:

D-16



clear screen

if .not. file("BISDATA.DBF")
0 3,10 say "Sorting the BI Data
use BiDATA
sort on DATE to tempi
close all
rename templ.dbf to B1SDATA.dbf

endif
III--------------------------------------------------------------------------------------------------
AN Then, check to see if user wants the data printed:
store "IN" to prvar
0 5,10 say "Would you like to print sorted B-lB data CYIN)?"

get prvar picture "OK !" valid(prvar$1YN".)
read
if upper(prvar) "Y

use BISDATA
store 1 to LOC
store " " to dbname
store 'Is" to printvar
* 9,10 say "What is DB name?" get dbname picture "''''

read
* 11,10 say "Send to (S)creen, CP)rinter, or (F)ile?"

get printvar picture "OK "'valid~printvar$"SPF")

read
if upper(printvar) = iI

set device to print
pagelength =56

elseif upper~printvar) = "IF"
set printer to SRB1DATA.PRN
set device to print
pagelength =4000

else
clear
pagelength =20

endif

* 13,10 say "Printing results
do while .not. eofoC

if LOC =
0 LOC,20 say "Database for
* LOC,33 say dbname
store LaC+2 to LOC
* LOC,10 say "Date"
0 LOC,21 say "Flt Hrs"
* LOC,30 say "Fit Hum"
Q LOC+1,iO say --------------------
store LOC + 2 to LOC

endif

* LOC,10 say DATE
0 LOC,21 say FLT-HS
C LOC,30 say FLIGHT
store LOC + 1 to LOC

if LOC =pagelength
store 1 to LOC
if upper(printvar) "5"se

wait "Hit any key to continue
clear

endif
endif

skip
enddo

if upper(printvar) ="P
set device to screen

elseif upper Cprintvar) = "IF"
set device to screen
set printer to

D- 17



else
wait "Hit any key to continue

endif
close all

endif
---------------------------------------------------------------------------------------------------

* Now generate TIME.DBF data:
clear screen

---------------------------------------------------------------------------------------------------
First, check to see if the TIME.DBF exists:

if file("TIME.DBF")

*------------------------------------------------------------------------------------------------
Variable Section:

use COUNT alias COUNT && Database of failure COUNT data
select 2
use TIME alias TIME && Database of failure TIME data
select 3
use B1SDATA alias BI && Database of test time and duration data
select COUNT

store 0 to d-offset && Day offset to determine total test time
store 0 to m-e && Total number of failures
store 0 to max-fail && Test var for failures with no test times
store 0 to mtestdur && Local value for test duration
store 0 to my-tot && Local total number of failures
store 0 to num-sec && System time (sec) for random failure times
store 0 to p-offset && Partition offset for failure times
store CALDATE to mbldate && Local date for flt test occurrence
store CALDATE to mdate && Local date for failure occurrence
store CAL-DATE to strtdate && Starting date for data analysis
go bottom
store CALDATE to enddate && Ending date for data analysis
go top
*------------------------------------------------------------------------------------------------

Data Entry Section:

set confirm on
* 3,10 say "Enter Starting Date for Data :" get strtdate picture "99/99/99"
S4,10 say "Enter Ending Date for Data :" get enddate picture "99/99/99"
read
set confirm off
*------------------------------------------------------------------------------------------------
* Data Calculation Section:

locate for CALDATE >= strtdate
select B1
locate for DATE >= strtdate
select COUNT
do while (.not. eof()) .and. (CALDATE <= enddate)

0 7,10 say "Generating data
store CAL-DATE to mdate
store TOTNUM to my-tot
select BI

store 0 to mtestdur
store 0 to max-fail
*-------------------------------------
* The order of these next conditionals acts like a filter to
* synch the test dates and failure dates.

* First, check to see if there is a flt record for corresponding
* failure date. If not, then add up total failures until we
* get to or pass the next flt record:

if (DATE > mdate)
store DATE to mbldate
select COUNT
do while (CALDATE < mbldate) .and. (.not. eof()

skip
store (TOTNUM + my-tot) to my-tot

D)-1I8



enddo
store CAL-DATE to mdate
select BI

endif
*-------------------------------------
* Then, check to see if the failure date is past the fit record.
* If so, add up flight times for interval offset value until
* we get to or pass the next failure date record:

do while (DATE < mdate) .and. (.not. eofo))
store (FLTHRS*60)+doffset to doffset
skip

enddo
*-------------------------------------

If we pass the failure date again, use the previous flt record
* test time for test duration (must decrement the day offset
* by the test duration so it's not used twice):

if (DATE > mdate)
skip -1
store (doffset - (FLTHRS*60)) to d-offset
store (FLT_HRS*60)+mtestdur to mtestdur
skip

endif
*-------------------------------------

If we did not pass the failure date again, than the dates
* must be equal.

Add up multiple test durations for the same day to make sure
* the entire same day test duration is used for failure times:

do while (DATE = mdate) .and. (.not. eof())
store (FLTHRS*60)+mtestdur to mtestdur
skip

enddo
*-------------------------------------
* This is an error check to make sure there are test times for
* the failures:

max-fail = (mtestdur) / my-tot
if max-fail = 0
0 20,10 say "******* TEST DURATION = 0 *******"

endif
--------------------------------------

* Now that we've made it this far, assign the failure times randomly
* (assuming a normal distribution for ease of calculation) within
* the test duration:

select TIME
store 0 to p-offset
for loopvar = 1 to my-tot
* 15,10 say "Making Entry
0 15,24 say loop.var picture "99"
0 15,27 say "of "
0 15,31 say my-tot
append blank
if mdate =" / / "
replace CAL-DATE with enddate k& We exceeded the end of file

else
replace CAL-DATE with mdate

endif
replace TESTDUR with mtestdur

---------------------------------
* My random number generator:

num-sec = seconds()
do while (num-sec/60) > maxfail

num-sec num-sec % sqrt(num-sec) && % is the modulus operator
enddo

failtime = (p.offset*maxfail) + (num-sec/60)
replace LTIMEOCCUR with failtime kk Local Occurrence Time

D-19



replace TTIMEOCCUR with failtime + d-offset && Total Occurrence Time

m_e = m-e + 1
replace TOTAL with me Uk Total Failures

p-offset = poffset +1
next
d-offset = doffset + mtestdur
select COUNT
skip

enddo
---------------------------------------------------------------------------------------------------

* If TIME.DBF does not exist:

else
C 23,10 say "TIME.DBF Does Not Exist."
wait "Hit any key to continue ...

endif
*---------------------------------------------------------------------------------------------------

return & to srtime.prg module.

D-20



D.8 Software Reliability TIME.DBF Estimate Module

* Title Software Reliability TINE.DBF Estimate Module (SRTEST.PRG) *
* Version 3.3 *
* Date 25 Oct 91 *
* Author Capt Joseph J. Stanko *
* Security Unclassified *
* Purpose This program: *
* Generates TIME.DBF data from the summary COUNT.DBF database *
* and estimated test times for monthly periods. Generates *
* TIMEDTE.DBF data the same way (used to determine the failure *
* intensity at end of DT&E/start of OT&E). *

* Theory This is a one pass program that generates failure times from *
* estimated test durations. The user is prompted for number of *
* months, then the program iterates for each month asking the *
* user for the estimated test time for that month. The program *
* then accesses the COUNT.DBF database, and locates the records *
* for failures occurring during that month. The estimated test *
* time is divided by the number of days in the month, and the *
* times are summed up to each date of failure data for local *
* values of test duration. For example, if there were 30 hrs *
* estimated for September, that would be (assuming the standard *
* normal distribution again) an average of 1 hr a day testing. *
* While this is probably not that accurate, taking the COUNT.DBF *
* data of failures and summing up to the failure dates (in this *
* case, they could be 09/11/89, 09/15/89, and 09/22/89) that *
* would give us 3 test durations of 11 hours. 4 hours, and *
* 7 hours, with the additional 8 hours rounded into the offset *
* for the following month's first test duration. *
* This is the best I can do as I am working with summary data. *
* Praise the Lord Jesus Christ! *
* Database: This program uses two databases: *

* COUNT.DBF - This is an intermediate summary database of *
* dates and number of failures: *
* Name Type Length Decimal Description *

*----------------------------------------------- ---- ------ ------- ------ ------------ *
* CAL-DATE Date Date of occurrence of failure *
* SEVCODE_1 N 4 # of Severity Code 1 failures *
* SEVCODE_2 N 4 # of Severity Code 2 failures *
* SEV_CODE_3 N 4 # of Severity Code 3 failures *
* SEVCODE_4 N 4 # of Severity Code 4 failures *
* SEVCODE_5 N 4 # of Severity Code 5 failures *
* NOSEVCODE N 4 # of failures not coded *
* TOTNUM N 4 lotal Number for this date *
* TOTAL N 4 Overal total of failures *
* TIMEDTE.DBF - This is DT&E database of failure time. Used *
* as basis for OT&E failure intensity. Same *
* structure as TIME.DBF. *

* TIME.DBF - This is a final database of dates and estimated *
* failure times and test durations: *
* Name Type Length Decimal Description *

* CAL-DATE Date Date of occurrence of failure *
* LTIMEOCC N 10 2 "Local" time of failure occur *
* (wrt to start of that test) *
* TESTDUR N 10 2 Duration of test for that day *
* TTIMEOCC N 10 2 "Total" time of failure occur *
* (wrt to all total test time) *
* TOTAL N 4 Total failures to that point *

* Modules : N/A *

------------------------------------------------------------------------------

1)-21



* Determine the TIME.DBF needed:

store " 0 " to dbvar
* 23,20 say "(D)T&E or (O)T&E Database?"

get dbvar picture "OK !" valid(dbvar$"DO")
read
* 23,20 say t "

---------------------------------------------------------------------------------------------------
* First, check to see if either TIME.DBF or TIMEDTE.DBF exists:

if (file("TIME.DBF") .and. upper(dbvar)="O") .or.
(file("TIMEDTE.DBF") .and. upper(dbvar)="D")

----------------------------------------------------------------------------
* Variable Section:

use COUNT alias COUNT && Database of failure COUNT data
select 2
if upper(dbvar)="O"
use TIME alias TIME && Database of OT&E failure TIME data

else && upper(dbvar)="D"
use TIMEDTE alias TIME &k Database of DT&E failure TIME data

endif

select COUNT

store 0 to avg-time && Average test time per month for OT&E (hrs)
store 0 to d-offset && Day offset to determine total test time
store 0 to day-val U Day value for test duration (minutes)
store 60 to hour U Number of minutes in an hour
store 0 to last-month U Carry over time from previous test month
store 0 to m-e U Total number of failures
store 0 to m-offset Uk Month offset to determine total test time
store 0 to max-dur U& Max partition for assigning failure times
store "A" to mode-var && Mode for diagnostic write output
store 0 to month-end U Last day of month (varies from 28 to 31)
store 0 to mtestdur U Local value for test duration (min)
store 0 to my-tot U Local total number of failures
store 0 to num-days U Number of days used to calculate mtestdur
store 0 to num-month U Total number of months for OT&E test
store 0 to num-sec U Number of seconds from system clock
store 0 to p-offset && Partition offset for local failure times
store CAL-DATE to mdate U& Local date for failure occurrence
store CALDATE to strtdate U& Starting date for data analysis
go bottom
store CAL-DATE to enddate U Ending date for data analysis
go top
*------------------------------------------------------------------------------------------------
* Data Entry Section:

clear screen
set confirm on
* 3,10 say "Enter Number of Months for Test:" get num-month picture "99"
* 4,10 say "Enter Starting Date for Data :" get strtdate picture "99/99/99"
* 5,10 say "Enter Ending Date for Data :" get enddate picture "99/99/99"
read
* 6,10 say "(A)uto or (S)ingle Step Mode?" get modevar picture "I"
read
set confirm off
*------------------------------------------------------------------------------------------------
* Data Calculation Section:

locate for CAL-DATE = strtdate && Go to the first applicable record
store CAL-DATE to mdate U Update mdate to match strtdate
for loop.var = I to num-month k I assume the first month is in COUNT.DBF

* 10,10 say to
* 7,10 say "Working on Test Month #"
* 7,33 say loop-var
if loop.var < num-month & Get appropriate input

set confirm on
* 8,10 say "Enter Avg Test Time/Month (hrs):";

get avgEtime picture "9999.99"
read

D-22



set confirm off &&Put this inside both or get 2 in fields
0 8,8 clear to 8,78

else
* clear gets &&Remove get from above

set confirm on
* 8.10 say "Enter Final Month's Test Time (hrs):";

get avg-.time picture "9999.99"1
read
set confirm off

endif
a 10,10 say "Generating data .

-------------------------------------
* Check to see if the next month in COUNT.DBF is a consecutive
* month of testing, including wrap-around C0 is reset condition):

m-offset = monthCCAL..DATE)-month~mdate)
if Cm-offset=O) .or. Cm-offsetl) .or.

C(month(CAL-.DATE)-1) .and. Cmonth(mdate)=12))
-------------------------------------

* Determine the average daily test time and perform all
* calculations for the TIME.DBF database:

do case && Assign daily average test time
case CmonthCCAL-.DATE)=4) .or. CmonthCCAL..DATE)=6)
.or. CmonthCCAL..DATE)=9) .or. CmonthCCAL-.DATE)=11)
month-end = 30 && April, June, September, and November

case (monthCCAL..DATE)=2)
if CyearCCAL.DATE)%4=0 && Check for Leap Year
month-end = 29 U& February has 29 days

else
month-.end =28 U February has 28 days

endif
otherwise

month-.end =31 U& All the others have 31 days
endcase
day-.val =(avg-time*hour) /month-end

C 16,10 say "Daily Test Time = &Echo the information
0 16,28 say day-val
*------------------------------------

* For each entry in COUNT.DBF within the same month:

store dayCCAL-DATE) to num-days && Number days used for mtestdur
store CAL-.DATE to mdate U Reset date for failure occurrence
store 0 to prev-.days U Initialize each month

do while Cmonth(CAL-.DATE) =month~nidate));
.and. C.not. eofo)

if C(dayCCAL..DATE)-nuni~days)<>0) Uk Determine # of days of test
nwn..days = dayCCAL-DATE)-prev-days

endif
store day CCAL..DATE) to prev-.days

mtestdur = (day..val * num.Aays) A&+ lastmomth
store CAL-DATE to mdate U Update for change in day
store TOT-K.UM to my-.tot
max-dur = mtestdur / my-.tot &&Set maximums partition time duration

C 17,10 say "Num Days =" U Output the calculation data
C 17,21 say num-.days U to verify that it works
C 18,10 say "Prey Days=
C 18,21 say prev-days
C 19,10 say "MTESTDUR =
C 19,21 say mtestdur
* 20,10 say "Max Dur =
* 20,21 say max-dur
* 21,10 say""
if mode-var ="S

wait "Hit any key to continue ...
end if
-------------------------------------

D-23



* Now that we've got the test duration and number of failures,
* assign times (assuming normal distribution for ease of calculation)
* within the test duration:

select TIME
store 0 to p-offset
for loop2_var = 1 to my-tot

0 15,10 say "Making Entry
0 15,24 say loop2_var picture "99"
* 15,27 say "of "
* 15,31 say my-tot
append blank
replace CAL-DATE with mdate
replace TESTDUR with mtestdur
*---------------------------------

* My random number generator:

num-sec = secondso)
do while (num-sec/60) > max-dur
num-sec = num-sec % sqrt(num-sec) && % is the modulus operator

enddo
if numsec = 0 && Check for 0 time interval
num-sec = 60 U and set to a min value

endif

failtime = (poffset*max.dur) + (num-sec/60)
replace LTIMEOCCUR with failtime & Local Occurrence Time

replace TTIMEOCCUR with failtime+d-offset U& Total Occurrence Time

m-e=m-e+I
replace TOTAL with me && Total Failures

p-offset = p.offset +1

next

d-offset = d_offset + mtestdur
select COUNT
skip

enddo
-------------------------------------

* Check for time at end of month after last COUNT entry:

if .not. eofo)
skip -1
if (day(CALDATE) < month-end)
num-days = month-end - day(CALDATE)
d-offset = (num.days*day-val) + d-offset

endif
skip

endif
*-------------------------------------

* If the months are not consecutive, then include the "between-test"
* time as part of the offset:

else

if (month(CALDATE)>month(mdate)) U& ie, 11 > 9
moffset=month(CALDATE)-month(mdate)-I

else U& ie, 2 /> 12
m-offset=(12-month(mdate))+(month(CALDATE)-l)

endif
d_offset = (m_offset*avgtime*hour) + d-offset
loop-var = loop-var+moffset-I
store CAL-DATE to mdate && Reset for new month's data

endif

* 21,10 say "DOffset " & Echo the information
* 21,21 say d-offset
if mode-var = 'S"
wait "Hit any key to continue

endif

next

D-21



close all && Saves off the database data
---------------------------------------------------------------------------------------------------

* Else, neither TINE.DBF nor TIMEDTE.DBF does not exist:
else
6 23,20 say "TIME Database Does Not Exist.
wait "Hit any key to continue .

endif
*---------------------------------------------------------------------------------------------------

return && to srtime.prg module.

D-2-5



D.9 Software Reliability Execution Tine Module

* Title Software Reliability Execution Time Module (SREXEC.PRG) *
* Version 3.3 *
* Date 25 Oct 91 *
* Author Capt Joseph J. Stanko *
* Security Unclassified *
* Purpose This program: •
* 1.) Performs calculations on data to determine initial *
* parameters for the fitted model. *
* 2.) Performs calculations on data to determine goodness-of-fit *
* for the Execution Time model. *

* Theory : In order to apply the Execution Time model to the failure data, *
* initial parameter estimation must be accomplished from the *
* overall data. Once the parameters are calculated, they are *
* then used in the model to calculate estimated values (such as *
* current number of failures and failure intensity) along with the*
* 95% percent confidence intervals. These estimations are then *
* compared against the actual data to determine the *
* goodness-of-fit. *

* Database: This program uses one database: *

* TIME.DBF - This is a final database of dates and estimated *
* failure times and test durations: *
* Name Type Length Decimal Description *

*------------------------------------------ ---- ------ ------- ----------------------------- *
* CALDATE Date Date of occurrence of failure *
* L_TIME_OCC N 10 2 "Local" time of failure occur *
* (wrt to start of that test) *
* TESTDUR N 10 2 Duration of test for that day *
* TTIMEOCC N 10 2 "Total" time of failure occur *
* (wrt to all total test time) *
* TOTAL N 4 Total failures to that point *

* Modules : Calls internal procedures BHATOTE and BHATDTE. *

store "0" to dbvar
0 23,20 say "(D)T&E or (O)T&E Database?"

get dbvar picture "OK !" valid(dbvar$"DO")
read
0 23,20 clear

if upper(dbvar) = "0"
use TIME alias TIME

else
use TIMEDTE alias TIME

endif
---------------------------------------------------------------------------------------------------

Variable Section (Note: muls and lambda's are defined later on):
go bottom
store " " to dbname && Name of database for output headers
store 0.0000001 to delta && Accuracy difference for parameters
store "M" to intervar && Data output intervals (monthly or daily)
store 0.000 to lambda_0 && Initial failure intensity value
store TOTAL to m-e && Total number of failures
store 30 to max-iter && Max iterations to perform Newton-Raphson
store 1 to num-iter && Current iteration number for Newton-Raphson
store "S" to printvar && Default print option (screen)
store T-TIMEOCCUR to t-e && Total test time

*--------------------------------------------ec-ti-on-:-------------------------------------------------------* Data Entry Section:

* 0,0 clear
set confirm on
V 3,10 say "Enter Total Test Time:" get t-e picture "9999999.99"
* 4,10 say "Enter Max # Iteration:" get max-iter picture "999"

D-26



* 5,10 say "Enter MLE Delta :" get delta picture "9.99999999"
if upper(dbvar)="O"
0 6,10 say "Enter Initial Failure
0 7,10 say "Intensity (0 for none):" get lambda_0 picture "9.999999999"

endif
read
0 9,10 say "What is DB Name for Output?" get dbname picture "!!!!!'"
read
set confirm off
0 11,10 say "Data Output Interval: CM)onthly or CD)aily:"

get intervar picture "OK !" valid(intervar$"MD")
read
0 13,10 say "Send Data to (S)creen, (P)rinter, or (F)ile:"

get printvar picture "OK !" valid(printvar$"SPF")
read
*-------------------------------------------------------------------------------------------------

Data Direction Section:

if upper(printvar) ="F"
if upper(dbvar) = "0"
0 15,10 say "Sending Data to File SREXEC.PRN ..."
set printer to SREXEC.PRN

else && upper(dbvar) = "D"
0 15,10 say "Sending Data to File SREXECD.PRN ...
set printer to SREXECD.PRN

endif
set device to print
pagelength = 4000

elseif upper(printvar) = "P"
0 15,10 say "Printing Data ..
set device to print
pagelength = 55

else
C 0,0 clear
pagelength = 20

endif
*--------------------------------------------------------------------------------------------------

Data Calculation Section: Maximum Likelihood Estimation

0 3,7 say "MLE Calculations for"
0 3,31 say dbname
0 3,40 say "using Musa Execution Time Model:"

-------------------------------------
* Make initial model parameter estimation, and sum failure occurance
* times to make calculations easier:
b-hat = 1/(t-e)
go top

0 5,10 say "Total Failures: m-e =
0 5,43 say m-e picture "99999.99"
C 6,10 say "Failure Data End Time: t-e =
Q 6,43 say t-e picture "99999999.99"
* 7,10 say "Initial Model Param Est: b-hat =
C 7,43 say b-hat picture "99.999999999"

-------------------------------------
* Determine a better estimation for b-hat by making f-stat as close
• as possible to 0 (uses Newton-Raphson method):

if upper(printvar) = P"

set device to screen
0 17,10 say "Refining b.hat Estimate, Please Wait ...
set device to print

elseif upper(printvar) = "S"
* 8,10 say "Refining b-hat Estimate, Please Wait ...

endif
-------------------------------------

Iterate while out of tolerance or within allotted looping time:

num-iter = I

D-27



notintol = .T.

do while (notintol) .and. (numiter <= max-iter)
---------------

* Determine the f(b-hat) and f'(b-hat) for Newton-Raphson method
* based on known initial value of failure intensity (lambda_O):

if upper(dbvar) = "0" .and. ; && Different equation set for OT&E using

lambda_0 <> 0.0 && previous DT&E failure intensity #

f_stat = ((m-e*b-hat)/(l-exp(-bhat*t-e))) - lambda_0

fp-stat = (((1-exp(-b-hat*t-e))*m-e)-((m-e*b-hat)*(t-e*exp(-b-hat*t-e))));
/ ((l-exp(-b-hat*t.e))-2)

* Determine the f(b-hat) and f'(b-hat) for Newton-Raphson method
* with no clues at all:

else && We're either looking at DT&E data
&& or OT&E data without a priori info

go top

t_i = 0 && Summation of failure occur times
do while .not. eofo)

t_i = t_i + TTIMEOCCUR
skip

enddo

f-stat = (m.e/b-hat) - ((m-e*t-e)/(exp(b-hat*t-e)-l)) - t_i

fp-stat (m-e * (-I/bhat-2)) -
(m-e*t.e)*((-l*t-e*exp(b_hat*t-e))/(exp(b-hat*t-e)-)2)

endif
*------------------

The rest is the same for both cases from above:

bp.hat = bhat - (f_stat/fpstat) && Burden and Faires Step #3

if abs(bphat-b_hat) < delta && Check for within tolerance delta
not-in-tol = .F.

endif

if upper(printvar) = "P" && Output the data as it is calculated
set device to screen && to verify convergence
0 19,0 clear
C 19,10 say "b-hat =
0 19,20 say b-hat
0 20,10 say "bp.hat =
0 20,20 say bp.hat
Q 21,10 say "FStat =
C 21,20 say f-stat
C 22,10 say "FpStat =
C 22,20 say fpstat
0 17,10 say "Refining b-hat Estimate, Please Wait .
set device to print

elseif upper(printvar) = "S" && Same thing here, but must use
Q 9,0 clear && different screen output positions.
C 9,10 say "bhat =
C 9,20 say bhat
C 10,10 say "bphat =
C 10,20 say bp.hat
C 11,10 say "FStat =
C 11,20 say fstat
C 12,10 say "FpStat =
C 12,20 say fp-stat
C 8,10 say "Refining b-hat Estimate, Please Wait ...

endif

b-hat = bp-hat

num-iter = numiter + 1

enddo

D-28



* Output additional data on refined values:

if upper(printvar) = P"
set device to screen
0 19,0 clear
* 19,10 say "Printing Data ...
set device to print

elseif upper(printvar) = "S"
0 9,0 clear

endif
if num-iter > maxiter
* 9,10 say "Method Failed After
0 9,30 say max_iter picture "999"
C 9,34 say "Iterations."

endif

0 10,10 say "Final Model Param Est: bhat
0 10,43 say bhat picture "99.999999999"
0 11,10 say " "

---------------------------------------------------------------------------------------------------
* Data Calculation Section: Parameters and Confidence Intervals
* Determine the Expected (Fisher) Information, and then
* Calculate 95. Confidence Intervals:

0 12,10 say "Parameter Calculations: nu_O, lambda_0, and 95th Percentile:"

fisher = me * ( (1/b-hat-2) - ( (t-e'2*exp(b-hat*t-e))
/ (exp(b-hat*te)-)Y2 ))

&& Initial model parameter
b-hatlow = bhat - (1.96/sqrt(fisher)) && From Z statistic
b-hathi = bhat + (1.96/sqrt(fisher))

&& Derived model parameter
b_O = (me) / (1-exp(-(b-hat*t-e))) && Calculated from parameter
bOlow = (m-e) / (1-exp(-(b.hat-low*t-e))) & b-hat.
b_0hi = (me) / (1-exp(-(b_hathi*t_e)))

& Total Failures at t=infinity
nuO = bO && By Definition
nu_0_low = bOjlow
nu_0_hi = b_0hi

&& Initial Failure Intensity
if lambda_0 = 0 && If we don't have a user
lambda_0 = b_O * b-hat && input, calculate it

endif
lambda_0_low = b_0_low * b_hatlow && Varying b-hat effects both
lambda_0_hi = b_0.hi * bhathi && b_hat and b_0, etc.

C 14,10 say "Expected (or Fisher) Value =
C 14,48 say fisher picture "9999999999.999999999"
C 16,10 say "95 Boundary: nuOjlow =
C 16,48 say nu_O_low picture "99999999.99"
0 17,10 say "Total Estimated Failures: nu_0 =
0 17,48 say nu_0 picture "99999999.99"
0 18,10 say "95% Boundary: nu0-hi =
C 18,48 say nuOjhi picture "99999999.99"

C 20,10 say "95% Boundary: lambda_0_low
C 20,48 say lambda_0-low picture "99.999999999"
C 21,10 say "Initial Failure Intensity: lambda_0 =
C 21,48 say lambda_0 picture "99.999999999"
0 22,10 say "95% Boundary: lambda_0-hi
* 22,48 say lambda_0hi picture "99.999999999"
C 23,10 say ".
*--------------------------------------------------------------------------------------------------

* Output of Model Results:

if upper(printvar) = t°P"

D-29



set print on
eject
set print off

elseif upper(printvar) = "S"'
wait "Hit any key to continue -

cl ear
endif
go top
LOC = I
do while .not. eof()

if LOC = 1 && Header information:
0 LOC,1O say "Generating Plot Data for"
0 LOC,35 say dbname
* LOC+1 ,5 say "--------------------------------

* LOC+1 ,51 say "----------------9

LOC = LOC + 3
endif
store CAL-DATE to mdate
store TTIME-.OCCUR to tau
store TOTAL to mu
*-------------------------------------

* Calculate this info for each pass in the loop:
* Failures Experienced at time ttau

mu-.tau =nu_0 * (I - expC-(lambda-0/Onu-o)*tau))
mu-tau-low =nu_0_low ( I- expC-Clambda-0./nu..O.low)*tau))
mu-tau-hi =nu_0_hi *(1 expC-Clambda_0/nu0.hi)*tau))

* Failure Intensity at time ttau
lambda-tau = lambda-0 * expC-Clambda-.0nu-S)*tau)
lambda-t-low = lambda-O..low *exp(-Clambda-0_low/nu-0Ojow)*tau)
lambda-t-hi = lambda-0-hi *exp(-ClambdaS...hi/nu-0-hi)*tau)

* Failure Intensity at mu failures experienced
lambda-mu = lambda-.0 * (1-(mu/nu-.0))
lambda-m-low = lambda_0_low *(1-(mu/nu0-ow))
lambda-.m..hi = lambda-.0..hi *(1-(mulnu..0..hi))

*-------------------------------------

* Now output the info for each pass in the loop:
C LOC,10 say "Day
* LOC,16 say mdate
* LOC,30 say "mu~tau) low
0 LOC,44 say mu..taulow picture "9999.99"
LOC=LOC+1
* LOC,10 say "mu
* LOC,16 say mu picture "9999.99"
* LOC,30 say "mu~tau) = o
* LOC,44 say mu..tau picture "9999.99"
LOC=LOC+1
C LOC,i0 say "tau
* LOC,16 say tau picture "*9999999.99"
0 LOC,30 say "mu~tau) hi="
* LOC,44 say mu~tau-.hi picture "9999.99"
LOC=LOC+1
* LOC,10 say "lambda~tau) low -I
* LOC,28 say lambda-.t-.low picture "99.999999999"1
* LOC,43 say "lambda~mu) low ="
* LOC,60 say lambda-.m-.low picture "99.999999999"1
LOC=LOC+ 1
0 LOC,10 say "lambda(tau)=
0 LOC,28 say lambda-.tau picture "99.999999999"
* LOC,43 say "lambda(mu) = 0
* LOC,60 say lambda-.mu picture "99.999999999"
LOC=LOC+ 1
* LOC,1O say "lambda(tau) hi=
* LOC,28 say lambda-.t-hi picture "99.999999999"1
* LOC,43 say "lambda(mu) hi-

D)-30



C LOC,60 say lambda-m-hi picture 1199.999999999'1
LaC=LOC+2
-if LOC > pagelength

LOC = I
if upper Cprintvar) = 14S.4

wait "Hit any key to continue .. 1
clear

endif
endif

-------------------------------------

* Skip for either every entry or for first entry of each month:

skip
if upper~intervar)="M"

do while (monthCCAL-.DATE) =month~mdate)) .and. (.not. ef C)
skip

enddo
end if

enddo
*--------------------------------------

if upper(printvar) ="FT
set device to screen
set printer to
? chr(7) && Wake me up when done!

elseif upper(printvar)="F
set device to screen
set print on
eject
set print off

else
wait "Hit any key to continue .

endif
*---------------------------------------------------------------------------------------------------

close all
return Uto SRSAS

D-3~ I



D.10 Software Reliability Logarithmic Poisson Executi Tini Module

* Title Software Reliability Logarithmic Poisson Module (SRLOG.PRG) *
* Version 3.3 *
* Date 15 Oct 91 *
* Author Capt Joseph J. Stanko *

* Security Unclassified *
* Purpose This program: *
* 1.) Performs calculations on data to determine initial *
* parameters for the fitted model. *
* 2.) Performs calculations on data to determine goodness-of-fit *
* for the Logarithmic Execution Time model. *

* Theory : In order to apply the Logarithmic Execution Time model to the *
* failure data, initial parameter estimation must be *
* accomplished from the overall data. Once the parameters *
* are calculated, they are then used in the model to calculate *
* estimated values (such as current number of failures and *
* failure intensity) along with the 95 confidence intervals. *
* These estimations are then compared against the actual data to *
* determine the goodness-of-fit. *

* Database: This program uses one database: *

* TIME.DBF - This is a final database of dates and estimated *
* failure times and test durations: *

* Name Type Length Decimal Description *
*-------------------------------------------------------- ---- ------ ------- --- *

* CAL-DATE Date Date of occurrence of failure *
* LTIMEOCC N 10 2 "Local" time of failure occur *
* (wrt to start of that test) *
* TESTDUR N 10 2 Duration of test for that day *
* TTIMEOCC N 10 2 "Total" time of failure occur *
* (wrt to all total test time) *
* TOTAL N 4 Total failures to that point *

* Modules : N/A *

store "0" to dbvar
0 23,20 say "(D)T&E or (O)T&E Database?"

get dbvar picture "OK " valid(dbvar$"DO")
read
0 23.20 clear

if upper(dbvar) = "0" && Use OT&E version of time database
use TIME alias TIME

else
use TIMEDTE alias TIME && Use DT&E version of time database

endif
--------------------------------------------------------------------------------------------------

Variable Section (Note: mu's and lambda's are defined later on):
go bottom
store " " to dbname && Name of database for output header
store 0.0000001 to delta && Accuracy difference of parameters
store "M" to intervar && Data output intervals (monthly or daily)
store 0.000 to lambda_0 && Initial failure intensity value
store TOTAL to me && Total number of failures
store 30 to max-iter && Max iterations to perform Newton-Raphson
store "S" to printvar && Default print option (screen)
store TTIMEOCCUR to t-e & Total test time

------------------------------------------------------------------------------
* Data Entry Section:

* 0,0 clear
set confirm on
* 3,10 say "Enter Total Test Time:" get te picture "9999999.99"
* 4,10 say "Enter Max # Iteration:" get max-iter picture "999"
* 5,10 say "Enter MLE Delta :" get delta picture "9.99999999"

D-32



if upper~dbvar) " '0"
* 6,10 say ''Enter Initial Failure
* 7,10 say ''Intensity (0 for none):'' get lambda-O picture "'9.999999999"'

endif
read
* 9,10 say "'What is DB Name for Output?"' get dbname picture "''!'

read
set confirm off
C 11,10 say "'Data Output Interval: MNonthly or (D)aily:"'

get intervar picture "OK !" valid(intervar$MD"')
read
* 13,10 say ''Send Data to (S)creen, CPrinter, or MFile:"

get printvar picture "'OK !" valid~printvar$"'SPF"')
read

---------------------------------------------------------------------------------------------------

* Data Direction Section:

if upper~printvar) = "F"
if upper(dbvar) ="0"4

C 15,10 say "'Sending Data to File SRLOG.PRN..
set printer to SRLOG.PRJ

else && upper(dbvar) = "D"
C 15,10 say "'Sending Data to File SRLOGD.PRN ...
set printer to SRLOGD.PRN

endif
set device to print
pagelength =4000

elseif upper~printvar) ="P
0 15,10 say "'Printing Data
set device to print
pagelength = 55

else
C 0,0 clear
pagelength =20

end if

---------------------------------------------------------------------------------------------------
* Data Calculation Section: Maximum Likelihood Estimation

C 3,7 say "MLE Calculations for"'
C 3,31 say dbname
0 3,40 say "'using Logarithmic Poisson Model:"
---------------------------------

* Make initial model parameter estimation, and sum failure occurrance
* times to make calcuations easier:

b-.hat = 1I(t..e) && Musa's recommended guess
go top

C 5,10 say "'Total Failures: m-e =
C 5,43 say m-e picture "'99999.99"'
C 6,10 say "'Failure Data End Time: t- e
C 6,43 say t-.e picture "'99999999.99"'
C 7,10 say "'Initial Model Param Est: b..hat =
C 7,43 say b-.hat picture "'99.999999999"'
*-------------------------------------

* Determine a better estimation for b-.hat by making f-.stat as close
* as possible to 0 (uses Nevton-Raphson method):

num-.iter 1
not-.in..tol =.T.

if upper~printvar)= '*
set device to screen
C 17,10 say "'Refining b-hat Estimate, Please Wait ...
set device to print

elseif upper(printvar) ="S
C 8,10 say "'Refining b-.hat Estimate, Please Wait .

end if
*-------------------------------------

D)-33



* Iterate while out of tolerance or within alloted looping time:

do while (not-in-tol) .and. Cnum-iter <= max..iter)
-----------

* Determine the f~bhat) and f'Cb.hat) for Newton-Raphson Method
* based on a known initial value of failure intensity Clambda.0):

if upper(dbvar)="O" .and. ;&& Different equation set for OT&E using
lambda_0 <> 0.0 && previous DTUE failure intensity #

b..one =(1 + (b..hat*t..e)) && Shortens equation notation

f..stat ( (m.e*b-.hat) / logb..one)) - lambda-0

fp-.stat ((CClog~b-one))*m-e)-(Cm.e*b-hat)*t.e/b-one))) / (Clog(b.one))-2)
*------------------

* Determine the f(b..hat) and f'(b-.hat) for Newton-Raphson Method
* with no initial clues at all:

else && We're either looking at DTUE data
&& or OT&E data without a priori info

go top && Requires looping thru database again

t-i-sum = 0 && Summation of failure occur times Cti)
t-i2_sum = 0 && Sum of square of fail occur times (ti)
do while .not. eofo)

t_ i-sum = t-i-sum + C1/ (1+ Cb-.hat*TTIME-OCCUR)))
t-i2_sum = t-i2sum, + C-T_.TIME.OCCUR / (I + (b-.hat*TTIMEOCCUR))y2)
skip

enddo
b~one (IC + Cbhat*t.e)) && Shortens equation notation

f-stat (1Clb-.hat)*Ct...tsum) - C(m-e*t.e)/(b-.one * log~b..one)))

fpstat = (1/b~hat) * t..i2_.sum) + C(t...Lsum) * C-Ib-hat-2))
- (-Cm-e*t-e-2) * (1+ log(b.one)))
/(b-.one * log(b-.one))Y2)

endif
*------------------

*The rest of this is the same for either case from above:

bp-.hat = b-hat - Cf-stat/fp.stat) && Burden & Faires Step #3

if abs(bp hat-b_hat)<delta && Check for within tolerance delta
not-in-tol = .F.

endif

if upper Cprintvar) = $spit && Output the data as it is calculated
set device to screen U& to verify convergence.
C 19,0 clear
0 19,10 say "b-hat
C 19,20 say b-hat
* 20.10 say 'bp..hat
C 20,20 say bp..hat
C 21,10 say 'F-Stat
C 21,20 say f-.stat
C 22.10 say "Fp-.Stat
C 22,20 say fp..stat
C 17,10 say "Refining b-hat Estimate, Please Wait..
set device to print

elseif upper(printvar) 'I"S" && Same thing here, but must use
* 9,0 clear && different screen position for output.
C 9.10 say "b-.hat =s
C 9.20 say b-.hat
C 10.10 say 'bp.hat
* 10,20 say bp-hat
* 11,10 say 'F-Stat =
C 11,20 say f..stat
* 12.10 say "Fp..Stat =
C 12,20 say ip-stat
C 8.10 say "Refining b-hat Estimate, Please Wait..



endif

b_hat = abs(bphat)
num-iter = numiter + 1

enddo

* Output additional data on refined values:

if upper(printvar) = "P"
set device to screen
* 19,0 clear
0 19,10 say "Printing Data .
set device to print

elseif upper(printvar) = "S"
* 9,0 clear

endif

if num-iter > max-iter
2 9,10 say "Method Ended After
* 9,29 say maxiter picture "999"
* 9,33 say "Iterations."

endif

* 10,10 say "Final Model Param Est: b-hat =
0 10,43 say b-hat picture "99.999999999"
* 11,10 say "..

---------------------------------------------------------------------------------------------------
* Data Calculation Section: Parameters and Confidence Intervals
* Determine the Expected (Fisher) information, and then
* Calculate 95% Confidence Intervals:

* 12,10 say "Parameter Calculations: theta, lambda_0, and 95th Percentile:"

b-one = (I + (b-hat*t-e))

fisher = m_e * ((2*t-e)/(b-hat*b-one*log(b-one)))
- (1/(2*b.hat-2*log(b-one)))

* (I - (1/b-one-2)))
- C(t-e'2*(log(b-one)+1))

/ ((bone*log(b.one))-2))
)

b_hat-low = b-hat - (1.96/sqrt(fisher)) &I From Z statistic.
b_hat-hi = b-hat + (1.96/sqrt(fisher))
b-0 = (m.e) / log(l+(b-hat*t.e)) && Calculated from parameter
b_0Olow = (m-e) / log(l+(b_hatlow*te)) && b-hat.
b_0-hi = (m-e) / log(l+(b_hathi*t-e))

theta = 1/bO && By definition.
theta-low = 1/bOlow
theta-hi = 1/bOhi

lambda_0 = bO * b-hat U Varying b-hat affects both
lambdaO low b_0_low * bhatlow && b hat and b_0, etc.
lambda_0Ohi = b_0hi * b-hat-hi

0 14,10 say "Expected (or Fisher) Value =
0 14,48 say fisher picture "9999999999.999999999"
0 16,10 say "95% Boundary: theta-low =
0 16,48 say theta-low picture "99.999999999"
* 17,10 say "Failure Intensity Decay: theta =
* 17,48 say theta picture "99.999999999"
* 18,10 say "95% Boundary: theta-hi =
* 18,48 say theta-hi picture "99.999999999"

* 20,10 say "95% Boundary: lambda_0-low =
* 20,48 say lambda_0-lov picture "99.999999999"
* 21,10 say "Initial Failure Intensity: lambda_0 =
0 21,48 say lambda_0 picture "99.999999999"
C 22,10 say "95% Boundary: lambda_0hi =
* 22,48 say lambda_0hi picture "99.999999999"

1)-35



0 23, 10 say"

*--------------------------------------------~deI-Resu1t-:--------------------------------------------------

if upper(printvar) ="P
set print on
eject
set print off

elseif upper(printvar) = "S"
wait "Hit any key to continue ..

clear
endif
go top
LOC = 1
do while .not. eofo)

if LOC = 1 && Header information:
* LOClO0 say "Generating Plot Data for"
* LOC,35 say dbname
0 LOC+ 1,5 say "---------------------------------

0 LOC+1,51 say "1--------------

LOC = LOC + 3
endif
store CALDATE to mdate
store T..TIMEOCCUR to tau
store TOTAL to mu
*-------------------------------------

* Calculate this info for each pass in the loop:

mu-tau = Cl/theta) * logC(lambda-.O*theta*tau)+1)
mu-tau-hi = (1/theta-.hi) * log(Clambda_..*theta.hi*tau)+1)
if ((lambda_0*theta-low*tau)+1) > 0
mu-tau-low = C1/theta-.low) *log(Clambda.0*theta-low*tau)+1)
brackets = .F.

else
mu-.taulow = abs Cmu..tau-.hi -mu..tau) + mu-.tau
brackets = .T.

endif

lambda-.tau = lambda-0 / C(lambda-..*theta*tau)+1)
lambda-.t..low =lambda_0_low / (lambda-.0.low*theta.low*tau)+1)
lambda-t-.hi = lambdaO..-hi / Clambda-0-..hi*theta.hi*tau)+l)

lambda-.mu = lambda-.0 * expC-theta*mu)
lambda-m-low= lambda-0..low exp(-theta.low*mu)
lambda-m-hi = lambda.0-hi *exp-theta-hi*mu)

*-------------------------------------

* Now output the info for each pass in the loop:

0 LOClO0 say "Day
* LOC,16 say mdate
* LOC,30 say "mu~tau) low
0 LOC,44 say mutau-low picture "9999.99"
LOC=LOC+l
0 LOC,10 say "mu
* LOC.16 say mu picture "9999.99"
* LOC.30 say "mu(tau) =.
* LOC.44 say mu-.tau picture "9999.99"
LOC=LOC+ 1
* LOClO0 say "tau
* LOC,16 say tau picture "9999999.99"
0 LOC.30 say "uutau) hi="
* LOC.44 say mu..tau.-hi picture "19999.99"1
LOC=LOC+I
* LOClO0 say "lambda(tau) low
* LOC,28 say lambda..t-low picture "99.999999999"
0 LOC,43 say "lambda(mu) low
if brackets
* LOC,60 say "C"
* LOC,61 say lambdaii..low picture "99.999999999"
* LOC.73 say "91"



else
0 LOC,60 say lambda-m-low picture "99.999999999"

endif
LOC=LOC+1
* LOC,1O say "lambda(tau) "
0 LOC,28 say lambda-tau picture "99.999999999"
0 LOC,43 say "lambda(mu) = "

* LOC,60 say lambda-mu picture "99.999999999"
LOC=LOC+1
0 LOC,10 say "lambda(tau) hi
0 LOC,28 say lambda-t-hi picture "99.999999999"
* LOC,43 say "lambda(mu) hi = "

* LOC,60 say lambdaimnhi picture "99.999999999"
LOC=LOC+2

if LOC > pagelength
LOC = 1
if upper(printvar) = S"

wait "Hit any key to continue ... "
clear

endif
endif

-------------------------------------
* Skip for either every entry or for first entry of month:

skip
if upper(intervar)="M"
do while (month(CAL_DATE) = aonth(mdate)) .and. (.not. eofC))

skip
enddo

endif

enddo
*---------------------------------------------------

if upper(printvar) = "F"
set device to screen
set printer to
? chr(7) && Wake me up when done!

elseif upper(printvar) = "P1
set device to screen
set print on
eject
set print off

else
wait "Hit any key to continue

endif
*---------------------------------------------------------------------------------------------------

close all
return

D-37



Appendix E. Proposed Software Reliability Database

This appendix contains a description of the semantic data model, and tile representation of

a proposed software reliability database using this model.

E.1 Semantic Data Model

Korth identifies the entity-relationship (E-R) data model and the semantic data model (SDM)

as two of the more widely known object-based models [49:61. The E-R data model is very appro-

priate as the "front. end" logical design that would then be implemented by a relational database

model for the physical design: however, the E-R model requires users to explicitly define relation-

ships between entities, even if the relationship itself has no data [51:228]. Additionally, the abstract

concept. of aggregation must be used by E-R models to express relationships among relationships,

being handled by the concept of a virtual relation or "view" mechanism [49:40], [18:231].

SDM does not have these limitations, as it permits the meaning of the database to be specified

in a more natural way [36:124]. This moves one step away from the physical implementation

description toward the real-world description of the data. A recent study evaluated usability of the

semantic models (in this case, the extended entity relationship model) versus that for a relational

model by non-expert database users [7:126,137]. The results indicated that the users performed

a conceptual representation task better with the semantic dat-a model than the relational model.

Applying a -bridge" approach, SDM could then be used as the initial logical design to capture as

much of the meaning and representation of the real-world as possible. Tile database designer would

then use E-R diagrams as an intermediate step to put the data in a format for the physical design

[51:2281 Finally, the E-R diagram would then be used for the internal schema, which would most

likely be an implementation of the relational model.

1- 1



The following sections provide SDM descriptions of proposed software maturity database

objects, Musa Execution Time model objects. software system effectiveness objects, and logical

schemas for the different classes.

E-2



E.2 Objects ldentified for the Proposed Software Maturity Database

Mission Number - Flight Number
Date of Mission - Calendar Date
Tail Number - Aircraft Tail Identification Number
OFP Suite Number - Unique number for the suite of

Operational Flight Programs on this specific
mission

CSCI - Computer Software Configuration Item
Start Time - Aircraft Start Time (military time, no

seconds)
Shut Down Time - Aircraft Shut Down Time (military time,

no seconds)
Time of Occurrence - Military time when failure occurred.

Note: if time is not available, it can be
estimated using random arrival event
calculation.

Severity - Mission Impact due to failure:
1 System Abort. Software or firmware
failure that results in a system abort.

2 System Degraded, No Workaround.
Software or Firmware failure that
severely degrades the system and no
alternative workaround exists.
Note: Program restarts are not an
acceptable workaround.

3 System Degraded, With Workaround.
Software or firmware failure that
severely degrades the system and there
exists a workaround (ie.--system
rerouting through operator switchology).
Note: Program restarts are not an
acceptable workaround.

4 Software Failure, System Not Degraded.
Software or firmware failure that does
not severely degrade the system or any
essential system function.

5 Minor Failure. All other minor or non-
functional failures.

SPR Number - This number will be different for each
separate problem/failure, but will be the
same for each occurrence of the same problem/
failure.

Problem Description - Brief description of the software problem.

E-3



E.3 Objects Identified from Alusa Execution Time Software Reliability Model

Reliability - Probability of failure free operation.
Failure Intensity - Failures per unit time; the derivative with

respect to time of the mean value function
of failures.

Execution Time - Processor time spent executing the program.
Initial Failure Intensity - Initial value for failure intensity at start

of operational assessment.
Present Failure Intensity - Current value of failure intensity during

operational assessment.
Failure Intensity
Objective - Desired value for failure intensity at end

of operational assessment.
Expected Failures - Expected number of failures experienced by

time t.
Expected Total
Failures - Expected number of failures experienced in

infinite time.
Additional Failures
to Failure Intensity
Objective - Increment of expected failures associated

with reaching failure intensity objective.
Additional Execution
Time to Failure
Intensity Objective - Increment of execution time associated with

reaching failure intensity objective.
Inherent Faults - A fault associated with the original software

product at completion of coding.
Fault Reduction
Factor - Net reduction in faults per failure

experienced.
Fault Exposure
Ratio - Fraction of time the program passage results

in failure.
Inherent Faults per
Developed Source
Instruction - Ratio: inherent faults / source instructions.
Developed Executable
Source Instruction - The amount of developed code measured in

executable source instructions.
Executable Object
Instructions - Amount of code measured in object

instructions.
Instruction Execution
Rate - Speed at which instructions are executed
Linear Execution
Frequency - The number of times the program wold be

executed per unit time if it had no branches
or loops.

E-4



E.4 Objects Ideutified for Software System Effectiveness

Total Weapon Syster
Effectiveness - Total measure of the weapon system's

effectiveness (includes software ystem
effectiveness).

Software System
Effectiveness - Ratio of the non-failure operational time o

a software system to its total operational
time.

Mission Capable
Rate - Percentage of time the weapon system
Total Operational
Test Time - Total time spent in operational test of a

weapon system.
Total Failure
Duration Time - Total time duration of the software system

failure.
Mean Time to
Restore Software - Average time between occurrence f a software

failure and when the software system has been
returned to an operational state.

E-5



E.5 Logical Schema for the AIRCRAFT Class

AIRCRAFTdescription: all aircraft that participate in the flight test of

a particular weapon system.
member attributes:

Tail-Number
value class: IDNUMBER
may not be null
not changeable

Mission
value class: MISSION-NUMBER
may not be null

NumberOfACUs
value class: NUMBEROFCOMPUTERS
multivalued with size between 1 and 4
may not be null

FlightTestTime
value class: TIME-AMOUNT
may not be null

Failure-Time
value class: TIME-DURATION
match: Failure-Duration of SOFTWAREFAILURE on

MISSION-NUMBER
may not be null

class attributes:
TotalFlightTestTime

description: Total of all flight test hours from all
missions for all aircraft.

value class: TIME-AMOUNT
derivation: Sum of FlightTestTime over members of this

class.
TotalFailureTime

description: Total of all failure time from all missions
for all aircraft.

value class: TIME-DURATION
derivation: Sum of Failure-Time over members of this

class.
MissionCapableRate

description: The percentage of time an aircraft is
capable of performing its mission; this
value is user input and not derived.

value class: PERFORMANCE-RATE
SoftwareSystemEffectiveness

description: Percentage of time the software system
operates correctly vs. the total attempted
operational time.

value class: PERFORMANCE-RATE
derivation: (TotalFlight-TestTime - TotalFailureTime)

/ TotalFlightTestTime
TotalWeaponSystemEffectiveness

description: The effect of software performance on
mission accomplishment.

value class: PERFORMANCE-RATE
derivation: (SoftwareSystemEffectiveness) * (MissionCapableRate)

identifiers:
TailNumber

E-6



E.6 Logical Schema for th MISSION Class

MISSION
description: A single flight test activity of at least one

aircraft for a specified length of time.
member attributes:

Number
value class: MISSION-NUMBER
may not be null

Date
value class: DATES
may not be null

FlownBy
value class: AIRCRAFT
match: TailNumber of AIRCRAFT on MissionNumber
may not be null

OFPSuite
value class: CSCINAME
match: Name of CSCI on Mission-Number
may not be null

StartTime
value class: TIME-AMOUNT
may not be null

Stop-Time
value class: TIME-AMOUNT
may not be null

Duration
value class: TIME-AMOUNT
derivation: (Stop-Time) - (Start_Time)

identifiers:
Number

E-7



E. 7 Logical Schema for the SOFTI I4REAtILURE Class

SOFTWARE-FAILURE
description: The inability of a software system or system component

to perform a required function within specified limits.
member attributes:

Mission-Number
value class: MISSION-NUMBER
may not be null

Time-ofOccurrence
value class: TIMEAMOUNT
may not be null

OFPSuite
value class: CSCINAME
match: Name of CSCI on Mission-Number
may not be null

Failure-Duration
value class: TIMEDURATION
may not be null

Severity-Level
value class: SEVERITY-NUMBER
multivalued with size between 1 and 5
may not be null

SPRNumber
value class: SPRNUMBERS

Problem-Description
value class: TEXT

class attributes:
TotalFailures

description: The total number of software failures.
value class: FAILURENUMBERS
derivation: Number of members in this class.

TotalFailureTime
description: The total time of all software failures.
value class: TIMEAMOUNT
derivation: Sum of all software Failure-Durations from

all missions for all aircraft.
identifiers:

Mission-Number + TimeOfOccurrence + OFPSuite

E-8



E.8 Logical Schema for the CSCI Class

CSCI
description: Computer software configuration item--a specific

software program.
member attributes:

Name
value class: CSCINAME
may not be null

Mission-Number
value class: MISSION-NUMBER
may not be null

SourceLinesOfCode
value class: KSLOC
may not be null

FaultDensity
description: OMEGA_I
value class: DECIMAL-NUMBER
may not be null

FaultReductionFactor
description: B
value class: DECIMALNUMBER
may not be null

TotalFailuresExpected
description: NU_0
value class: DECIMAL-NUMBER
derivation: (SourceLinesOfCode) * (FaultDensity) I

(FaultReductionFactor)
InstructionExpansionRatio

description: Qx
value class: DECIMALNUMBER
may not be null

Number-ofObjectInstructions
description: I
value class: DECIMAL-NUMBER
derivation: (Source-LinesofCode) * (Instruction_

Expansion-Ratio)
InstructionExecutionRate

description: r
value class: DECIMALNUMBER
may not be null

LinearExecutionFrequency
description: f
value class: DECIMAL-NUMBER
derivation (InstructionExecutionRate) / (Numberof_

Object-Instructions)
FaultExposureRatio

description: K
value class: DECIMAL-NUMBER
may not be null

Initial-FailureIntensity
description: LAMBDAO
value class: DECIMAL-NUMBER
derivation: (LinearExecutionFrequency) * (Fault_

Exposure-Ratio) * (Fault-Density) *
(SourceLinesOfCode)

identifiers:
Name

E-9



E.9 Logical Schena for the RELIABILITY Class

RELIABILITY
description: Values for measured reliability of software.
member attributes:

CSCIName
value class: CSCINAMES
may not be null

TailNumber
value class: IDNUMBER
may not be null

InitialFailureIntensity
value class: DECIMAL-NUMBER
match: InitialFailure-Intensity of CSCI on Name
may not be null

TotalFailuresExpected
value class: DECIMALNUMBER
match: Total-FailuresExpected of CSCI on Name
may not be null

Failures-Experienced
value class: FAILURE-NUMBERS
match: Total-Failures of SOFTWARE-FAILURE on OFPSuite
may not be null

FlightTestTime
value class: TIME-AMOUNT
match: TotalFlightTestTime of AIRCRAFT on Tail-Number

FailureIntensityObjective
description: A user-defined value; future version could

derive this from an operational profile
of the failure intensity.

value class: DECIMALNUMBER
ExpectedFailuresExperienced

description: MUTAU
value class: DECIMAL-NUMBER
derivation: (TotalFailuresExpected) * (1 -

exp(-((Initial_FailureIntensity) /
(TotalFailuresExpected)) * (FlightTestTime)))

PresentFailureIntensityfromTime
description: LAMBDATAU
value class: DECIMAL-NUMBER
derivation: (InitialFailureIntensity) * exp(-((Initial_

Failure-Intensity) / (TotalFailuresExpected))
* (FlightTest_Time))

PresentFailureIntensity-fromFailures
description: LAMBDAMU
value class: DECIMALNUMBER
derivation: (InitialFailureIntensity) * (1 -

((FailuresExperienced) / (TotalFailuresExpected)))
AdditionalFailurestoFailureIntensityObjective

description: DELTAMU
value class: DECIMAL-NUMBER
derivation: ((TotalFailuresExpected) / (InitialFailureIntensity))

* (PresentFailureIntensity -
FailureIntensityObjective)

AdditionalExecutionTime-toFailureIntensityObjective
description: DELTA-TAU
value class: DECIMAL-NUMBER
derivation: ((TotalFailuresExpected) / (InitialFailureIntensity))

* ln((PresentFailureIntensity) I
(FailureIntensityObjective))

Current-Reliability
description: RTAU
value class: DECIMAL-NUMBER
derivation: exp(-(PresentFailureIntensity) * (FlightTestTime)

class attributes:
TotalExpectedFailuresExperienced

description: MUTAUTot

E-10



value class: DECIMAL-NUMBER
derivation: Sum of all ExpectedFailuresExperienced.

TotalPresentFailureIntensity.fromTime
description: LAMBDATAUTot
value class: DECIMAL-NUMBER
derivation: Average of PresentFailureIntensities-fromTime.

TotalPresentFailureIntensity-fromFailures
description: LAMBDAMUTot
value class: DECIMAL-NUMBER
derivation: Average of PresentFailureIntensitiesfromFailures.

TotalAdditionalFailures-toFailureIntensityObjective
description: DELTAMUTot
value class: DECIMAL-NUMBER
derivation: Sum of all AdditionalFailurestoFailure_

Intensity-Objective.
TotalAdditionalExecutionTimetoFailureIntensityObjective

description: DELTATAUTot
value class: DECIMAL-NUMBER
derivation: Sum of all AdditionalExecutionTimeto_

FailurelIntensityObjectives.
TotalCurrentReliability

description: RTAUTot
value class: DECIMAL-NUMBER
derivation: Multiplicative specification of CurrentReliability

that includes all members.
identifiers:

CSCIEame + Tail-Number

E-11



E.10 Logical Schema for Other Classes

CSCINAME
description: Computer System Configuration Item name.

interclass connection: subclass of STRINGS where length is
less than or equal to 8 alphanumeric characters.

DATES
description: Day of the year.
interclass connection: subclass of STRINGS where value is DDMMMYY;

DD is a positive integer between I and 31 inclusive;
MMM has value 'JAN','FEB','MAR','APR','MAY','JUN',

'JUL','AUG','SEP','OCT','NOV','DEC';
YY is a positive integer with format 99.

DECIMAL-NUMBER
description: A decimal number for arithmetic computations.
interclass connection: subclass of STRINGS where format is

number 99.99999999.

FAILURENUMBERS
description: The number of software failures.
interclass connection: subclass of STRINGS where format is

number 9999.

IDNUMBER
description: Aircraft tail identification number.
interclass connection: subclass of STRINGS where length is less than

or equal to 8 alphanumeric characters.

KSLOC
description: The number of source lines of code in thousands.
interclass connection: subclass of STRINGS where format is

number 9999.

MISSIONNUMBER
description: Specific flight/mission number identifier.
interclass connection: subclass of STRINGS where length is less than

or equal to 5 alphanumeric characters.

NUMBEROFCOMPUTERS
description: Integer number of computers on-board the aircraft.
interclass connection: subclass of STRINGS where positive integer

is between I and 4 inclusive.

PERFORMANCE-RATE
description: A ratio of time values: non-failure operational time

per total operational time.
interclass connection: subclass of STRINGS where format is

number 9.99.

SEVERITY-NUMBER
description: Integer number of severity of the software failure.
interclass connection: subclass of STRINGS where positive integer

is between 1 and 5 inclusive.

SPRNUMBER
description: Software Problem Report Number.
interclass connection: subclass of STRINGS where length is less than

or equal to 8 alphanumeric characters.
TEXTdescripion: Narrative text describing the software failure.

interclass connection: subclass of STRINGS where length is less than
or equal to 80 alphanumeric characters.

TIME-AMOUNT
description: An amount of time expressed in hours and minutes.
interclass connection: subclass of STRINGS where value is HH:MM;

HH is a positive integer between 0 and 23 inclusive;
MM is a positive integer between 0 and 69 inclusive.

TIMEDURATION
description: An amount of time expressed in minutes.
interclass connection: subclass of STRINGS where format is

number 99.9.

E- 12



Bibliographty

I. Adolph, Charles E. and Phillip Montgomery. "Cost- Effective Testing of Soft ware- In tensi ve
Systems," Paper presented at Society of Flight Test Engineers Sixteenth Annual Symiposi.umn.
Seattle, Washington, 29 July-2 August 1985.

2. Air Force Operational Test and Evaluation Center. An Introduction to AFOTEC: Miission,
History, and Programs. Albuquerque, New Mexico: HQ AFOTEC, 1990.

3. Angus, John E. "The Application of Software Reliabilityv Models to a Major C31 System,"
Proceedings of the 1984 Annual Reliability and Afaintarnabilify Symposium. Sail Francisco,
C'alifornia, January 24-26. 1984: IEEE, 1984.

4. Angus, John E. et. al. "Software Reliabilityv Model Evaluation," Proceedings of the 1980 .Annual
Reliability and M1ain tai,, ability Symposium. Sanl Francisco. California, J anuary 22-24. 1980:
IEEE, 1980.

5. American Natiotial S~indards Institute and Institute of Electrical and Electronics Engineers.
"ANSI/IEEE Standard 729-1983, Glossary of Software Engineering Terminology," Software
Engineering Standards. Third Printing. New York: The Institute of Electrical and Electronics
Engineers, Inc. 1987.

(6. Bastain, F. B. and C. V. Rarnamoortlv. "Software Reliability," Handbook of Statistics, Vol. 7.
edited by P. R. lKrishinalah and C. R. Rao. New York: Elsevier Science Publishers. 1988.

7.Batra, Dinesh et al. "Comnparing Representations with Relational and EER Models," Commit-
vications of the .4CM. 33(2)i 126-139 (February 1990).

8. Baumann, Maj James. Proposalfor New Operational Soft ware Evaluation Afethod. Unpublished
paper. 1990.

9. Behun, Davidl J. -Software Reliability-Let's Start Doing It," Proceedings oft/& 1984 Annual
Ru'iability and Miaintainability Symposium. San Francisco. California, January 24-26. 1981
IEEE, 1984.

10. Belzer, Boris. Softwvare System Testing and Quality Assurance. New York: 'anl Nost-aiud
Reinhold Conmpany. 1984.

11. Boehm, Barry IV. "Software Engineering,'* IEEE Transactions onl Computers. C'-2.5(12): 1226-
1241 (December 1976).

12. Booch. Grady. Softwrare ('omponn with Ada. Mienlo Park. C'alifornia: Benjanlit/(Iunmings.
1987.

1:3. Hooch, Grady. Objcct Oriented Dcsigii with .Applications. Menlo Park. C'alifornia: Benl-
jamin/Cuuniings, 1991.

14. Btirden, Richard L and J. Douglas Faires. umerical Analysis (Fourthu Edit ion). Boston: PXVS-
KENT Publishing Company, 1989.

15. Callan, James W. "The Software Crisis," Air Force M'lagazinf: 46-53 (May 1986).

16. ('ardow, Jaines E. and Joseph J. Stanko. "A Standardized Softw'are Reliability Measurement
Methodology.~ Proceedings of the 1991 International Software Quality Conferencf. Dayton,
Ohio, October 7-9. 1991: American Society for Quality Control, 1991.

17. ('allas, Gerard. "Prediction for System Reliability and Availability," Proceding% of the 1989
An nual Reliabilit and AlainItitnability Symmposium. Atlanta, Georgia. J anuary 24-26. 1989:
IEEE. 1989.

B IB- I



18. Date, C. J. An Introduction to Database Syshms. Volume I1. United States: Addison-Wesley,
1983.

19. Department of Defense. Electronic Reliability Design Handbook. MIL-HNDBK-338-1A. Depart-
ment of Defense, 1988.

20. Department of Defense. Definitions of Terms for Reliability and Maintainability. MIL-STD-
721C. Department of Defense, 1981.

21. Department of the Air Force. Software Operational Test and Evaluation Guidelines. Manage-
ment of Software Operational Test and Evaluation. AFOTEC Pamphlet 800-2, Vol. 1. Albu-
querque: HQ AFOTEC, 1 August 1986 (AD-A178234).

22. Department of the Air Force. Software Maintainability Evaluation Guide. AFOTEC Pamphlet
800-2, Vol. 3. Albuquerque: IQ AFOTEC, 31 October 1989 (AD-A218934).

23. Department of the Air Force. Software Maturity Evaluation Guide. AFOTEC Pamphlet 800-2,
Vol. 6. Albuquerque: HQ AFOTEC, 1 October 1990 (AD-A228445).

2-1. Department of the Air Force. Air Force Reliability and Maintaitnability Policy. AFR 800-18,
20 January 1987.

25. Department of the Air Force. Software Quality Indicators. AFSC Pamphlet 800-14, Andrews
Air Force Base, Maryland: AFSC, 20 January 1987.

26. Duvall, Lorraine et al. "Data Needs for Software Reliability Modelling," Proceedings of the
1980 Annual Reliability and Maintainability Symposium. San Francisco, California, January
22-24, 1980: IEEE, 1980.

27. Farr, William H. .4 Survey of Software Reliability Modeling and Estimation. Naval Surface
Weapons Center Technical Report NSWC TR 82-171. Dahlgren, Virginia: Naval Surface
\Weapons Center, September 1983 (AD-AI54874).

28. --. "A PC Tool for Software Reliability Measurement," National Conference Proceedings
on Software Reliability and Testing. Presented by The National Institute for Software and
Productivity, Washington. D. C. November 16-17, 1988.

29. Farr, William H. and Oliver D. Smith. Statistical Modeling and Estimation of Reliability Func-
tions for Software (SMERFS) Utr's Guide. Naval Surface We:tpons ('enter Technical Report
NSWC TR 84-373 (Revision 1). Dahlgren. Virginia: Naval Surface Weapons Center, December
1988 (AD-B101292).

30. Ferens, Daniel V. Mission Critical Computer Softwar Support Management. Wright-Patterson
Air Force Base, Ohio: Air Force Institute of Technology. 1987.

31. Ferrara. K. C. et al. "Software Reliability from a System Perspective." Proce(dings of th 1989

Annual Reliability and Mf aintainability Symposiun. Atlanta, Georgia. January 24-26. 1989:
IEEE, 1989.

32. Freeman, Peter A. and Marie-Claude Gaudel. "Building a Foundation for the Future of Soft-
ware Engineering." Communications of the ACM.. 34(5): 30-33 (May 1991).

33. Furtado, Antonio L. and Erich J. Neuholh. Formal Techniques for Data Base Design. Germany:
Springer-Verlag, 1986.

34. Goel, Amrit L. "Software Reliability Models: Assumptions. Limitations. and Applicability,"
IEEE Transactions on Software Engineering. SE-I1(12i: 1411-1423 (December 1985).

35. Goel, Amrit L. and Kazu Okumoto. "Time-Dependent Error-Detection Rate Model for Soft-
ware Reliability and Other Performance Measures," IEEE Transactions on Reliability. R28(3):

206-211 (August 1979).

BIB-2



36. llamnier, Michael and Dennis McLeod. "Database Description with SDM: A Semantic
Database Model," reprinted in Readings in Object-Oriented Database Systems. United States:
Morgan Kaufmann, 1990.

37. Henry, Sallie and Dennis Kafura. "Software Structure Metrics Based on Information Flow,"
IEEE Transactions on Software Engineering, SE-7(5): 510-518 (September 1981).

38. Hines, William W. and Douglas C. Montgomery. Probability and Statistics in Engineering and
Management Science (Second Edition). New York: John Wiley & Sons, 1980.

39. lannino, Anthony et al. "Criteria for Software Reliability Model Comparisons," IEEE Trans-
actions on Software Engineering, SE-10(6): 687-691 (November 1984).

40. Institute of Electrical and Electronics Engineers. IEEE Standard 982.1-1988, IEEE Standard
Dictionary of Measures to Produce Reliable Software. New York: The Institute of Electrical
and Electronics Engineers, Inc. 1989.

41. Institute of Electrical and Electronics Engineers. IEEE Standard 982.2-1988, IEEE Guide for
the Use of IEEE Standard Dictionary of Measures to Produce Reliable Software (Corrected
Edition). New York: The Institute of Electrical and Electronics Engineers, Inc. 1989.

42. James, L. E. et al. Combined HIVISI" Reliability Models. Rome Air Development Center
Technical Report RADC-TR-82-68. New York: Rome Air Development Center, April 1982
(AD-A 116566).

4I3. Jelinski, Z. and P. Moranda. "Software Reliability Research," Statistical Computer Perfor-
mance Evaluation, edited by Walter Freiberger. New York: Academic Press, 1972.

44. Johnson, Capt Stephen K. Modifying AFOTECs Software Maintainability Evaluation Guzde-
lines. MS Thesis AFIT/GCS/ENG/88D-10. School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson Air Force Base OH, December 1988 (AD-A203381).

45. Johnson, Capt Stephen K. Personal Correspondence. HQ AFOTEC/LG5. Kirtland Air Force
Base, New Mexico. 14 August 1991.

416. Johnson. Capt Stephen K. Telephone interview. IIQ AFOTEC/LG5, Kirtlanid Air Force Base.
New Mexico, 16 August 1991.

47. Johnson. Capt Stephen K. Personal Correspondence. IIQ AFOTEC/LG5. Kirtland Air Force
Base, New ,Mexico, 13 September 1991.

48. Kilp, Stephen G. Management of A vionics Software During Flight Test. MS Thesis. College of
Engineering, West Coast University, Los Angeles. California, July 1987.

49. Korth. Ilenry F. and Ahraham Silberschatz. Database System Concepts. United States:
McGraw-lill. 1986.

50. Koss, W. Edwards. "Software Reliability Metrics for Military Systems," Proceedings of the
1988 Annual Reliability and Alaintainability Symposium. Los Angeles, California, January 26-
28. 1988: IEEE, 1988.

51. Kroenke, David. Database Processing: Fundamntnals, Modeling. Applications (Second Edi-
tion). United States: Science Research Associates, 1983.

52. Lawlis. Maj Patricia K. Supporting Selection Decisions Based on the Technical Evaluation of
Ada Environments and Their Components. PhD Dissertation. Arizona State University, Tempe

AZ, 1989.

53. Lipow, M. "Quantitative Demonstration and Cost. Considerations of a Software Fault Removal
Methodology," Quality and Reliability Engineering International, 1(1): 27-35 (1985).

BIB-3



54. Lipow. Myron and Erwin Book. "Implications of R&M 2000 on Software," IEEE Transactions

on Reliability, R36(3): 355-361 (August 1987).

55. Littlewood, Bev and John L. Verrall. "A Bayesian Reliability Model with a Stochastically
Monotone Failure Rate," IEEE Transactions on Reliability, R23(2): 108-114 (June 1974).

56. McCall, J. et al. Methodology for Software Reliability Prediction. Rome Air Development Cen-
ter Technical Report RADC-TR-87-171, Vol 1. New York: Rome Air Development Center,
November 1987 (AD-A190018).

57. McCall, J. et al. Methodology for Software Reliability Prediction. Rome Air Development Cen-
ter Technical Report RADC-TR-87-171, Vol 2. New York: Rome Air Development Center,
November 1987 (AD-A 190019).

58. Mazzuchi, Thomas A. and Nozer D. Singpurwalla. "Software Reliability Models," Handbook
of Statistics, Vol. 7. edited by P. R. Krishnaiah and C. R. Rao. New York: Elsevier Science
Publishers, 1988.

59. Mulock, Richard B. "'Software Reliability," Proceedings of the 1969 Annual Reliability Sympo-

siuni. Chicago, Illinois, January 21-23, 1969: IEEE, 1969.

60. Musa, John D. "A Theory of Software Reliability and its Application," IEEE Transactions on

Software Engineering, SE-I(3): 312-327 (September 1975).

61. --. "Tools for Measuring Software Reliability," IEEE Spectrum, 26(2): 39-42 (February 1989).

62. Musa. John D. and K. Okumoto. "A Logarithmic Poisson Execution Time Model for Soft-
ware Reliability Measurement," Proceedings of the 7th International Conference on Software
Engineering. Orlando, Florida, March 26-29, 1984: IEEE, 1984.

63. Musa, John D. and William W. EVerett. "Software-Reliability Engineering: Technology for
the 1990's," IEEE Softwar: 36-43 (November 1990).

64. Musa, John D. et al. Software Reliability: Measurement, Prediction, Application. New York:
McGraw-Htill Book Company. 1987.

65. Myers. Clenford J. Software Reliability. New York: John Wiley & Sons. 1976.

66. Nantucket Corporation. (Tipper User Manual. United States: Nantucket Corporation. 1988.

67. Ohba, M itsurn and Xiao-Mei Chou. "Does Imperfect Debugging Affect Software Reliability

Growth?'" reprinted in Software Reliability Models: Theoretical Developments, Evaluation if
Application, edited by Yashwant K. Malaiya and Pradip K. Srimani. Los Alamitos, California:
IEEE Computer Society Press. 1991.

68. Parnas. David L. el al. "Evaluation of Safety-Critical Software," Communications of th ACM.
:3(6): 636-6,18 (June 1990).

69. Ramamoorthv, C. V. and Farokh B. Bastani. "Software Reliability-Status and Perspectives."

IEEE Transactions on Software Engineering, SE-8(4): 354-371 (July 1982).

70. Ramamoorthy. C. V. et al. "A Systematic Approach to the Development and Validation of
Critical Software for Nuclear Power Plants," Proceedings of the 4th International Conference
on Softwar Engintfring. Munich, Germany, September 17-19, 1979: IEEE, 1979.

71. Reibman, Andrew L. and Malathi Veeraraghavan. "Reliability Modeling: An Overview for
System Designers," Computer, 24(4): 49-57 (April 1991).

72. Rhea, John. "'The Next Generation of Avionics," Air Force Maga:ine: 68-72 (January 1990).

73. Schick, George J. and Ray W. Wolverton. "An Analysis of Competing Software Reliability

Models," IEEE Transactions on Software Engineering. SE-4(2): 104-120 (March 1978).

BIB-4



74. Selby, Richard W. "Empirically Based Analysis of Failures in Software Systems," IEEE Trans-
actions on Reliability, R39(4): 444-454 (October 1990).

75. Shaw, Mary. "When is 'Good' Enough? Evaluating and Selecting Software Metrics," Software
Metrics: An Analysis and Evaluation, edited by Alan Peris, et al. Cambridge, Massachusetts:
MIT Press, 1981.

76. Shooman, Martin L. "Probabilistic Models for Software Reliability Prediction," Statistical
Computer Performance Evaluation, edited by Walter Freiberger. New York: Academic Press,
1972.

i. -. Software Engineering: Design, Reliability, and Management. New York: McGraw-Hill
Book Company, 1983.

78. Shumskas, Anthony F. "Wh, ' Higher Reliability Software Should Result from Reduced Test
and Increased Evaluation," National Conference Proceedings on Software Reliability and Test-

ing. Arlington, Virginia, November 16-17, 1988: The National Institute for Software and
Productivity, 1988.

79. Siefert, David M. NCR Corporation. "Achieving Reliable Software: The Software Reliabil-
ity Handbook." Presentation to the American Society for Quality Control, 1st International
Conference on Software Quality, Dayton Convention Center, Dayton, Ohio, 6-9 October 1991.

80. --. "Software Reliability Handbook: Achieving Reliable Software," Proceedings of the 1991
International Software Quality Conference. Dayton, Ohio, October 7-9, 1991: American Soci-
ety for Quality Control, 1991.

81. Siegel, Jane A. L. et al. National Software Capacity: Near-Term Study. Software Engineering
Institute Technical Report CMU/SEI-90-TR-12, ESD-TR-90-13. Carnegie Mellon University:
Software Engineering Institute, 1990.

82. Sommerville, lan. Software Engineering (Third Edition). Wokingham, England: Addison-
Wesley Publishing Company, 1989.

83. Stark, George E. "A Survey of Software Reliability Measurement Tools," Paper presented at
the Symposium on Software Retiability Engineering, Austin, Texas, 1991. Paper received from
author.

81. Stytz, Maj Martin. ('lass lecture for CSCE 594, Software Design. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson Air Force Base OH, November 1990.

85. Sukert, Alan and Amrit L. Goel. "A Guidebook for Software Reliability Assessment," Proceed-
ings of the 1980 Annual Reliability and Maintainability Symposium. San Francisco, California,
January 22-24, 1980: IEEE, 1980.

86. Thayer, T. A. et al. Softcare Reliability Study. Rome Air Development Center Technical Report
RADC-TR-76-238. New York: Rome Air Development Center, August 1976 (AD-A030798).

87. Tindell, Capt Douglas R.. Maintenance Metrics for JOVIAL (J73) Software. MS Thesis
AFIT/GE/ENG/88D-57. School of Engineering, Air Force Institute of Technology (AU),

Wright-Patterson Air Force Base OH, December 1988 (AD-A202713).

88. Trachtenberg, Martin. "A General Theory of Software-Reliability Modeling." IEEE Transac-
tions on Reliability. R39(1): 92-96 (April 1990).

89. Verma, Pradeep and Yashwant K. Malaiya. "In Search of the Best Software Reliability Model,"
7th Annual Softwar Reliability Symposium. IEEE Denver Section. Colorado Springs: IEEE
Reliability Society Denver Chapter, 1989.

90. Vienneau, Robert ,. "'The Cost of Testing Software," Proceedings of the 1991 Annual Relability
and Maintainability Symposium. Orlando, Florida. January 29-31, 1991: IEEE, 1991.

BIB-5



91. Walters, Gene F. and James A. McCall. "Software Quality Metrics for Life-Cycle Cost-
Reduction," IEEE Transactions on Reliability, R28(3): 212-219 (August. 1979).

92. Westgate, Capt Charles J. IllI. Validation of an Exponentially Decreasing Failure Rate Software
Reliability Model. MS Thesis AFIT/GLM/LSY/89S-71. School of Systems and Logistics, Air
Force Institute of Technology (AU), Wright-Patterson Air Force Base OH, September 1989
(AD-A215546).

93. Wilson, Larry and Wenhui Shen. Software Reliability Perspectives, Final Report. For the Pe-
riod Ending March 31, 1988. NASA-CR-181523. Research Grant NAG 1-750. Norfolk Virginia:
Department of Computer Science, Old Dominion University, December 1987.

94. Wiltse, J. D. and M. McPherson. A Software Reliability Prediction Method Using Software
Maturity Data. Unpublished paper. HQ AFOTEC, Kirtland AFB, New Mexico.

95. Woodruff, B. W. and A. H. Moore. "Application of Goodness-of-Fit Tests in Reliability,"
Handbook of Statistics, Vol. 7, edited by P. R. Krishnaiah and C. R. Rao. New York: Elsevier
Science Publishers, 1988.

96. Yamada, Shigeru et al. "S-Shaped Reliability Growth Modeling for Software Error Detection,"
IEEE Transactions on Reliability, R32(5): 475-478 (December 1983).

97. Zdonik, Stanley B. and David Maier editors. Readings in Object-Oriented Database Systns.
United States: Morgan Kaufmann, 1990.

BIB-6



Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

1. AGENCY LOSE ONLY (Leav'e blank_ I 2.REPORT DATE 3RPORT TYPE ANDl DATES COVERED

Decemiber 1991 M7Naster's Thesis
4. TITLE AND SUBTITLE .5. FUND.NG NUMBERS

A Standardized Software Reliability Mleasuremient Mlethodology

6. AUTHOR(S)
Joseph J. Stanko, Captain, USAF

7 PERFORMING OPCG-NIZATION NAMEk'S) AND ADDRESS(ES) 8, PER~-~'N CIRCG NZATION

Air Force institute of Technology, ANPAF3 011 45433-6583 REPOR.7 NLIMBER

AFIT/GCE/ENG/911)-09

9. SPONSC'P,' V,.'T0F!NG AGENCY NAME(S) AND ADORESS(ES) 1G. SP0NSC;RNG .3iN4TORING

IIQ AFOTEC'/LG5, Kirtland AF13 NM. 71770 AGENCY 'n-POR7 NUMBER

11. SUPPLEMENTARY NOTES

12a 7XSrRIF!UT10N AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release: dlistribuition unlimited

13. ABSTRACT (M3.krnui'fl2907 words)

Current. Air Force practice is to )erforin Operat total Test awl Evaluation (OTkE) for each new weapoii systeml-.

In support of this. Hleadq(uarters Air Force Operational Test. and Evaluation Center (IIQ AFOTEC) is responsible

for mneasuring bothI suit ability and effectiveness. While suitability is adequately measured, the current effort only
adldresses hardware effeciveness, or at. best. svsteni ifrectiveiiess. Since tools and mnetrics are in place for software

suiitaltl(% vassmnsi-latedl to 01lk-F (for example, soft ware mnaintainability), there should be some effecive
way of ileas il ring thle opieratijonlI efffect ieness of s-oft"are. ('iirrent ly, IIQ A FOT E(C/ LC5 hias a data collect ion

tool lbr collecting soft ware failuire (dat a to- atialze software mnaturiy. Thlis thlesis proposes that thle IA. software

mat uritv (fat abase coulId be uised as 1he b aselinie for a softw~~are reliabilitv mietric that wouild liiap to (lie finite
mine 01Fk F environminut . Th is sittidlv does t ot pred ict software reliability, nor does it at tempt to dlefi ne what

cosittie reliale softwre Instead. ilstidy evaluates software reliability measurenn npe ofnt

OT& Eliiime frameifs (I -e.- fail ires per flight hou1r ). 'lThis evaluation is conducted for several sof'tware rel iambilt

models, withI two candidate mlodlels chosen based oti selection criteria. Imiplemnentat ion of the canldidate illodels
was accomplishled for anl office compiuter emnvironment to permlit, use hv OTk E test team., at varliu locations1.

Testing "as performned ba.-ed oil actuial 01'kE software miatumrit~y data.

14, SUBJECT TERNMS 15. NUMBER OF PAGES

Software ieliabilit v. Softw'are, Tfest ing, P~eliability, Software. Software Engineeriing 177

16. PRICE CODE

17. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF THIS PAGE I OF ABSTRACT

I III
NSN 7540-01-280-5500 S"arcaard Formn 298 (Rev 2-89)

1-1 t~ b, 4N "d I' A9 ' 8
1W


