-A244 ’}84
A‘ﬁm\mw\m\\m\\mm

2>

DTIC
7

& JANO7 1992 §

-—

This document has been app:oved i 92_0 177

- for public relzase and sale; its

0 |
distribution is ualimited g \m mmmmw\mm\\\

DEPARTMENT OF THE AIR FORCE
AR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio.

g9 1 ¢ 192




AFIT/GCE/ENG /91-09

4

DTIC _

P ELECTE ?
R, JAN 0719928 §

A STANDARDIZED SOFTWARE RELIABILITY
MEASUREMENT METHODOLOGY

THESIS

Joseph J. Stanko
Captain, USAF

AFIT/GCE/ENG/91-09

Approved for public release; distribution unlimited

/)




AFIT/GCE/ENG/91-09

A STANDARDIZED SOFTWARE RELIABILITY MEASUREMENT

Presented to the Faculty of the School of Engineering

METHODOLOGY

of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science i Conmputer Engineering

Joseph J. Stanko. B.S.. M.S.

Captain. USAF

Accesion For

NTIS  CRA&] X
DTiC TAR 3
Jnannouiced {k ]
Justil:caion -

. e e LT

Distrituticn)
S
Avaiahility 7

Dist |7V A

A-1] ]

December. 1991

Approved for public release: distribution unlimited




Preface

The purpose of this study was to determine if software reliability models can be applied to
the Operational Test and Evaluation (OT&E) of a weapon system and, if this was the case, to

implement a selected model.

An extensive review of current literature and research efforts was performed to identify the
candidate models for evaluation and possible implementation. Models were evaluated based on
predictive validity, capability. quality of assumptions, applicability to the finite-time environment,
simplicity of design, diversity and applicability of output, and capability to use existing mitial data.
From these, the Musa Execution Time model and Musa-Okumoto Logarithmic Poisson Execution
Time model were selected for implementation. The implementation was tested using data supplied

by Headquarters Air Force Operational Test and Evaluation Center (HQ AFOTEC).

[ would like to thank Capt Jim Cardow, my thesis advisor, for his guidance, suggestions, and
especially the recurring question “What are you trying to do?” 1 would also like to thank Lt Col
Lawlis and Maj Howatt for reviewing all the drafts and helping me to remember that there is a
forrest and not just one tree. [ also thank Dr Moore for reviewing my derivations and providing

statistical msight.

A special thank vou goes to my wife Lvnn, and children Devon. Cheryl, and Cara, for their

patience, understanding, and support throughout the past eighteen months.

Finally. I would like to give glory to the Lord Jesus Christ and thank Him for providing me

an opportunity to learn and grow during the AFIT experience.

Joseph J. Stanko
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AFIT/GCE/ENG/91-09

\ Abstract

- Current Air Force practice 1s to perform Operational Test and Evaluation (OT&E) for each
new weapon system. In support of this, Headquarters Air Force Operational Test and Evaluation
Center (HQ AFOTEC) is responsible for measuring both suitability and effectiveness. While suit-
ability 1s adequately measured, the current effort only addresses hardware effectiveness, or at best,
system effectiveness. Since tools and metrics are in place for software suitability assessments related
to OTLE (for example. software maintainability), there should be some eflective way of measuring
the operational effectiveness of software. Currently. HQ AFOTEC/LGH has a data collection tool
for collecting software failure data to analyvze software maturity. 'This thesis proposes that the LG5
software maturity database could be used as the bascline for a software reliability metric that would
map to the fimte time OTLE en\'irﬁw
R
This study does not predict software reliability, nor does it attempt to define what constitutes

reliable software. Instead, this study evaluates software reliability measurement mapped to finite

OTLE time frames (i.e.—~failures per flight hour). This evaluation is conducted for several software

reliability models, with two candidate models chosen based on the following criteria: predictive

validity; capability; quality of assumptions; applicability to the finite-time environment; stimplicity

of design: diversity and applicability of output; and capability to use existing initial data. s —
Implementation of the candidate models was accomplished for an office computer environment

to permit use by OT&E test teams at various locations. ‘Testing was performed based on actnal

OTLE software maturity data.
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A STANDARDIZED SOFTWARE RELIABILITY MEASUREMENT
METHODOLOGY

1. Introduction

The overall reliability of new and modified weapon systems is of major importance to the
United States Air Force (USAF), and is discussed in recent standards and documents that address
system reliability and maintainability [54:355]. Indeed, many authors have addressed the need
for software reliability evaluation, both in journals and in books (reference bibliography). While
hardware reliability can be virtually guaranteed at delivery, the delivery of reliable software is not
as predictable, and becomes the critical factor in determining system reliability [50:190]. This thesis
explores the possibility of implementing software reliability measurement as part of the Operational
Test and Evaluation (OT&E) of United States Air Force (USAF) weapon systems, with the goal of
identifying one model and methodology that is appropriate for use in the Initial OT&E (I0OT&E)
phase. As Headquarters Air Force Operational Test and Evaluation Center (HQ AFOTEC) is
responsible for conducting OT&E on USAF weapon systems, the results of this thesis. as well as a
proposed implementation methodology, are then submitted 1o HQ AFOTEC for possible inclusion

in their software evaluation efforts.

This chapter provides the background of software development and testing. and identifies the
problem with software operational testing. The following sections will define hardware and software
reliability, establish the scope of this thesis effort, identify applicable assumptions, and describe the

research approach.
1.1 Background

The complexity of software in future systems will be at least an order of magnitude above that
of current systems, which is even now too complex for one individual to grasp [13:3.5]. Software
complexity is one of the factors affecting the overall software cost [30:12-6).{82:522]. Henry and
Kafura state. “reducing cost and increasing quality are compatible goals which can be achieved
when the complexity of the sofiware structure is properly controlled” [37:510]. With respect 10
software cost, Myers suggests. “the high cost of software is largely due to reliability problems™
[65:12). Therefore. a software cost trend might be an indicator of the underlying complexity of the

code and development effort. which could also be closely related to the software’s reliability.




An increasing trend in software cost was first identified in a study by the Rand Corporation
for the Air Force, and reported in [11] and [77] as a substantial increase in percentage of software
cost accompanied by a corresponding decrease in percentage of hardware cost (see Figure 1.1)

[11:1227),[77:11).
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Figure 1.1. Hardware and Software Cost Trends (Reprinted with permission from IEEE)

1.1.1 A Foree Perspective. Increased software cost is inclusive of software development
and support. The Air Force has doubled its spending on software developnient and support from
$4 billion in 1985 to $8 billion in 1989 [72:71]. A recent study of 37 Air Force Mission Critical
Computer Resource (MCCR) projects evaluated five application areas: avionics: communications:
command, control, communication. and intelligence; electronic warfare: and radar systems [81:6].
The study stated the frequency and severity of change in software size contributes to cost overruns,
and for three projects the actual amount of software developed for the Air Force exceeded the

original estimate made at contract award by 100% [81:7].

Corresponding to increasing software costs. the size of weapon system software has increased

dramatically, and will continue to increase. This increase was projected hy Boehm in 1976 and

-2




reported in [77] (see Figure 1.2). Current estimates of the amount of software developed for DoD

weapon systems have verified this trend (see Figure 1.3) [15:48].
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Figure 1.2.  Projected Growth in Software Memory Requirements (Reprinted with permission
from McGraw-Hill Book Company)

As software size increases, so will the task of software testing. Lieutenant Colonel Shumskas,
of the Office of the Secretary of Defense, responsible for Air Force Test and Evaluation (T&E),

suggested the following:

It is possible to reduce acquisition costs, test in particular, and provide software intensive
systems with increased reliability through the implementation of a proposed paradigm
for a balanced T&E software approach utilizing a combination of statistical process
control and test methodologies [75:1-1].

A disciplined test methodology could then help reduce, or at least stabilize. the cost of software.

With respect to software test and evaluation of a weapon system, current Air Force practice

is to perform Operational Test and Evaluation (OT&E) under the direction of Headguarters Air

1-3
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Figure 1.3. Measured Growth in Developed Software, (Reprinted with permission from the AFA)

Force Operational Test and Evaluation Center (HQ AFOTEC) for each new weapon system fielded.
This effort addresses svstem performance in an operational scenario (operational eflectiveness) and
system availability for operational use (operational suitability) [2:1}. HQ AFOTEC has tools in
place for evaluating software operational suitability. Unfortunately, the current test and evalua-

tion effort primarily addresses hardware OT&LE or. at best. system OT&E. from an operational

effectiveness standpoint.

1.1.2 Industry Perspective. Industry has also addressed the need for software reliability. In

one of the first papers on this subject, Mr. Mulock of Lockheed Missiles & Space Company wrote:

The Reliability Engineer should consider computer programming as another engineering
discipline that is analvzable by the same techniques that he has used before ...the
computer programmer is pushing the state of the art just as much as the transistor

designer was in 1955 [59:497).
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Many software reliability models were developed during the subsequent years, and recent efforts
have defined the role of reliability engineering in the “typical software development team™ [9:291].
Industry has applied several of the software reliability models to projects varving from remote
terminal firmware (as discussed by Musa in [61]) to nuclear power plant software validation [70]. In
contrast, there has been little use of software reliability measurement for military weapon systems

[50].

As recent as the late 1980’s software for major military command and control systems had
proceeded past the software critical design reviews without any assessment of software reliability
being performed [50:190]. In contrast, proposals fos an integrated software reliability program were
being presented as early as 1976, and more definitively in the context of reliability and maintainabil-
ity in 1984 [9. 65). The concept of software reliability has been in investigation for over 15 years,
and several different organizations such as Hewlett-Packard Co.. AT&T, and the Naval Surface

Weapons Center have developed and used software reliability tools [29, 34, 61]. Goel states:

Software reliability is a useful measure in planning and controlling resources during the
development process so that high quality software can be developed [34:1412].

Therefore, the use of software reliability assessment could be one of the disciplined test method-

ologies needed to curb the rising cost of software.

1.2 Problem

While the tools and metrics are in place for software assessments of operational suitability
(for example. AFOTECP 800-2 Vol 3, Software Maintainability Evaluation Guide [22]). there is no
current way of measuring the operational effectiveness of software in order to perform adequate
software OTLE. Reliability is considered a measure of operational suitability; however, software
rehability is also one possible measure of the software’s operational effectivencess. as software failures
can reflect both the suitability question of “will it be available™ as well as the effectiveness question
of “does it work™ [86:8-2].[2:8]. The purpose of this study is to determine if software reliability
models can be applied specifically to the OT&E of Air Force weapon systems and, if this is the
case, to propose a selected model implementation within a standardized methodology for use hy

HQ AFOTEC.




1.3 Definitions

Before defining software reliability, it is necessary to define both overall reliability and hard-

ware reliability. Reltability is defined as

the duration or probability of failure-free performance under stated conditions {20:8]

and also as

the ability of an item to perform a required function under stated conditions for a stated
period of time [5:29].

This definition is primarily based on the system’s hardware attributes, which are diserssed below

in the definition of hardware reliability. A comparison to software reliability terms will then follow.
1.3.1 Hardware Reliability Terms. Essentially, hardware reliability is defined as [20]:

e Mean Time to Failure (MTTF). This is a basic measure of reliability for non-repairable items.,

and indicates the average amount of time until the failure of an item.

e Mean Time to Repair (MTTR). This is a basic measure of reliability that indicates the average

amount of time necessary to repair an item once it has failed.

o Mean Time Between Failures (MTBF). This is a basic measure of reliability for repairable

items and is defined as a combination of MTTF and MTTR {20:7]

MTBF = MTTF + MTTR (1.1)

With hardware, these attributes can apply to different component, subsystem. and system
levels, all of which can both relate to each other and have discrete values. For example, testing of
components (such as integrated circuits (1Cs)) can be performed to determine the MTTF. M'TTR.
and MTBF values for each 1C. This value can then be included in the calculation of subassembly

reliability, which can have cumulative failure rates expressed as a summation of the components

Fo=3_ fil; (1.2)




where F, is the subassembly failure rate of a component i, given its failure rate f and a certain
number of like components N [10:290]. This sort of analysis is also applicable to assemblies,

subsystems, and finally the system as a whole.

1.3.2  Software Reliability Terms. Software does not permit the composition and decompo-
sition analysis that is possible with hardware. Using a software instruction (i.e.—x:=x+1) as an
analogy to the component, we find that an instruction functions perfectly 100% of the time with-
out problems on its own; however, by combining instructions it is possible to develop subroutines
that have failures (usually due to subroutine interactions) {10:291]. Therefore, software subroutine
reliability can not necessarily be derived from the corresponding instruction reliabilities. Hard-
ware assemblies are then created from subassemblies, just as software modules (discrete program
units that are “a logically separable part of a program™) are made up of subroutines (a routine,
or “computer program segment that performs a specific task.” that can be included in other rou-
tines) [5:24,30,34]. While hardware assembly reliability can be determined from subassemblies, a
guarantee does not exist that software module reliability is based on the corresponding subroutine
reliabilities. This correlation becomes even smaller as the software modules are linked together
into subsystems, and finally systems. Thus, the standard terminology used for hardware rehiability.

including equations 1.1 and 1.2, is not applicable.

Instead, a different view of software must be taken. This is based on the design of the
software, and not the physical implementation usually measured by hardware reliability [64:7].
Several studies have attempted to combine hardware and software theory into a system reliability
perspective. citing software reliability models maturing to a point common with their hardware
counterparts [31. 42]. By viewing software reliability as an integrated aspect of system reliability
frotn a design viewpoint, it is possible to implement software reliability theory in a compatible way

with hardware reliability theory [64:7]. Based on this. softwarc reliability is defined as:

The probability that software will not cause the failure of a svstem for a specified time
under specified conditions [5:32],[40:14].

The probability that a software svstem will operate without a failure for a specified
(mission) time {19:9-1].

The probability of failure-free operation of a computer program for a specified time in
a specified environment [64:15].

A failure is defined (with respect to software) as:




An event in which a system or system component does not perform a required func-
tion within specified limits. A failure may be produced when a fault is encountered
[5:19].[40:14]

where a fault is:

A manifestation of an error in software. A fault, if encountered may cause a failure.
[5:19],[40:14].

Additionally a new concept, the failure rate, is defined as:

The ratio of the number of failures of a given category or severily to given period of
time [5:19].

These definitions permit the use of reliability constructs similar to those used with hardware. One
example of this is the failure intensity representation presented by Musa, et al. [64:11.528-529]

which indicates the number of failures per unit time expressed by the function
_2e,
A(T) = Age ™ *o (1.3)

where A(7) is the current measured software reliability based on time (7), initial failure intensity
{A¢) and total estimated failures (vy). The value A(7) is the current failure intensity, and indicates
the ratio of failures to operational time. A number such as this ratio could then be used to provide

the operational assessment of computer software.

1.4 Scope

Currently. HQ AFOTEC/LG5 has a data collection tool for collecting software fatlure data
to analvze and determine the software maturity. The data are identified by standard data item
descriptions. and can be provided either as part of the initial contract or through a letter to the
svstem program office (SPO) requesting the data to support software test (see Table 1.1) [23:4]. The
existing software maturity databases are implemented on a format for office personal computers
(PCs). and were enhanced to permit an operational effectiveness assessment of the software based
on the candidate software reliability models. C'ompatibility with the maturity database and data
collection tool required the software reliability mode) implementation to be in the same program

development environment. This, in turn. allows for future software maturity databases to be uxed




Table 1.1. Software Maturity Data

Description Variable Name Format
Software Problem Number PROB_NUM Character 10
Software Configuration Item CPCl Character 10
Severity of Problem SEV_CODE Character 1
Date Problem Discovered DATE Date
Date Problem Fixed DATE Date
Description of Problem TITLE Character 42
Total Operating Time (minutes) TOT.TIME Character 10
Test Identification Number TEST.ID Character 10
Date Test Planned TESTPLAN Date
Date Test Completed TESTCOMP Date

as a baseline for software reliability assessment during the finite time OT&E period. The use
of initial maturity data (collected prior to OT&E) to lay the foundation for software reliability
assessment during OT&E is supported by Ferens, who states that software reliability models “are

only useful after testing begins™ [30:11-4].

A previous effort by Westgate [92] attempted to validate a predictive model of software relia-
bility. While prediction has its necessary place in software evaluation, this study does not attempt
to predict software reliability, nor attempt to identify what number correlates to reliable soft-
ware. Instead. this study evaluates software reliability measurement models—models that indicate
the current software reliability without making any determination of the overall quality of the
software—mapped to finite OT&E time frames (i.e.—failures per flight hour). This study also
attempts to determine the type of assessment such models could provide. The determination of “is
the software reliable enough™ and “how much more testing is needed” can then be decided by the

decision makers based on a reporting of “where is the software right now.”

1.5 Assumplions

This study presents no new models for evaluating software reliability. The existing models
were assimed 10 be valid with respect to the entire life-cyvcle of a software development effort. The

main focus is on the specific mapping to a finite OT&LE time frame.

Several different categories of OT&E exist. and it is assumed that only the Initial OT&E
(IOT&E) period will be used for time constraints [2). As IOT&E supports procurement decisions,
and Follow-on OT& E (FOT&E) begins affer a weapon system enters production [2:1-2], the IOT&E

timeframe is hetter suited to pre-production software assessment..
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1.6 Approach

The first step was to conduct a literature review of the models available for software relia-
bility evaluation. ldentification and classification of these was performed based on their individual
characteristics and focus. From these, models were selected for possible mapping into the IOT&LE
time frame based on the following criteria: predictive validity (of the model’s parameters, not the
reliability itself); capability: quality of assumptions; applicability to the finite-time environment;
simplicity of design; diversity and applicability of output; and capability to use existing initial data

[39),(64:384-387).

Implementation of two candidate models was attempted to further validate their usefulness
for evaluating software operational effectiveness. The implementation was conducted in accordance
with the software engineering discipline approach, and encompassed a relational database design
to permit data persistence. The design environment for program development was the Clipper
programming environment. The target system is any MS-DOS office computer environment to

allow use by IOT&E test teams at various Jocations.

1.7 Thesis Organization

A review of available software reliability models is reported in Chapter 2. Chapter 3 describes
the evaluation of the models and selection of the candidate model. Implementation of the candidate
model is documented in Chapter 4. with the findings and results given in Chapter 5. Finally,

conclusions and recommendations are presented in Chapter 6.




I1. Literature Review

The software engineering discipline itself is concerned with “the systematic application of
methods, tools and technical concepts to create complex, software-intensive systems that meet
technical, economic and social objectives” [32:32]. One such technical concept is software quality,
which is defined as “the totality of features and characteristics of a software product that bear on
its ability to satisfy given needs” [5:32]. Indeed, software reliability has been identified as one of

several software quality factors that affect the software life-cycle and its associated cost {30, 90, 91].

There are several suggested frameworks for identifying the software quality factors [52, 87, 91].
Tindell [87] investigated complexity for the maintenance of JOVIAL 173 software, and identified a
software quality framework which included complexity and reliability (see Figure 2.1). Johnson also
evaluated complexity and its metrics, in this case for use in the AFOTECP 800-2 Vol 3. Software
Maintainability Fveluation Guide [44]. These works focused on the operational suitability assess-
ments for software OT&E. In comparison, Westgate addressed the software quality of reliability in
evaluating a software reliability model for software OT&E that uses calendar time as a basis [92].
To compliment these eflorts, this thesis also explores software quality; however, the focus is on
the operational effectiveness of the software based on reliability as derived from test, or execution,

time. This chapter identifies endeavors in the literature to address software reliability.

2.1 Software Reliability Model Classifications

Many attempts have been made to define the concept of software reliability and determine
some form of software reliability assessment model [10, 17, 28. 40, 43, 55, 60. 62, 65. 68, 69, 73, 74,
Tu, 86, 88. 96]. Such efforts have provided excellent insight into specific areas of software reliability
evaluation. However, software reliability models cutrently available are not considered “universally
appropriate” across all application doinains and system usages, and Sommerville suggests that “it

may be appropriate to use different reliability metrics for different parts of the system”™ [82:59¢].

Paralleling the efforts of mmodel definition are consolidations of soltware reliability definitions
and models into a single compendium or reference handbook [19. 27. 34. 41, 56. 57. 64, 80. 83, 85].
Such attempis take several software reliability models and group them by some classification,
allowing the software engineer to select the appropriate method for a specific application. The

following are major efforts to classify software reliability models.

2.1.1 [EEFE Classification. The Institute of Electrical and Electronics Engineers (IEEE)

classifies software reliability models in terms of product measures and process measures (see Table

2-1




can be

=
=8

Figure 2.1. Software Quality Concept Map

<>

exhibits

can be

performance

.

psychological

is affected by

Software
Characteristics

are quantificd by

Merrics

%

=




2.1) [41:25-27]. Process measures provide input for the processes of both development and sup-
port management, and include: using management control measures for fault removal cost trends;
coverage to ensure completeness of activities throughout the software life-cycle; and technical and
cost evaluations for software delivery decisions [41:25]. Indicators, such as testing sufficiency, are
similar to those in the Air Force Systems Command Pamphlet (AFSCP) 800-14, Software Quality
Indicators [25]. A study by Lipow [53] identifies one approach that uses a form of residual fault

count and error distribution measures [41].

Product measures, on the other hand, focus on the developed software objects and encompass
many different metrics such as fault density. failure rate, and mean-time-to-failure [41:26-27]. These
measures are applicable to both software reliability prediction and measurement models. With

respect to software reliability prediction models, Wilson and Shen state:

No growth model has demonstrated that it can be used with a high degree of confidence
to predict operational reliability from data generated in the debugging phase in a general
setting [93:5).

In contrast, the focus of OT&E is to field test and evaluate weapon systems to determine
effectiveness and suitability [2]. AFR 800-18, Air Force Reliability and Mwmtamability Policy.
requires implementing “reliability qualification and acceptance testing, ...[which] will be tailored
for effectiveness and efficiency in terms of the management information they provide™ [24:3]. Most.
software reliability models require data for calibration; however, it is not possible to directly measure
software reliability during the design and coding stages where such calibration data does not exist
[30, 63]. Therefore, specific product measures for OT&E assessment of software reliability should
focus on measurement of: errors. faults and failures; mean-time-to-failure and failure rates: and

remaining product fanlts [41:26].

2.1.2 NSWC Classtfication. The Naval Surface Weapons Center (NSWC') Technical Report
{TR-82-171) classifies software reliability models into three categories: error seeding/tagging mod-
els; data domain approach models; and time domain approach models [27]. Error sceding/tagging
miodels are “built on firm statistical ground™ [65:336]. The original work by Mills {(as described by
Myers in [65]) developed a software reliability model requiring software engineering personnel to
place, or “seed” errors intentionally in the computer software. The errors are seeded randomly, with
the assumption that an equal probability exists of finding either seeded or original errors during
testing. Since the number of seeded errors is known a priori, the ratio of the number of found
seeded errors divided by total seeded errors would he equal to the ratio of the number of found

original errors divided by total original errors [85)].
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Table 2.1. IEEE Software Reliability Model Classification

{ Product Measures | Process Measures |
Errors, Faults, Failures Management Control
Mean-Time-To-Failure,

Failure Rate Coverage
Reliability Growth and
Projection
Remaining Product Faults Risk, Benefit,
Completeness and Consistency Cost Evaluation
Complexity

Data domain approach models are similar to error seeding/tagging models in that they esti-
mate a program’s current reliability from a ratio. In this case, the ratio is the number of successful
test runs completed divided by total number of test runs attempted [27:3-1]. This ratio assumes
that there is an equal probability of either failure or success for each test run [19:9-21]. The test
inputs are chosen based on probability distributions estimated for operational use, and the success

of a test run is defined with respect to these inputs [27:3-1].

Time domain approach models model the error generation process based on errors and time.
The relationship between the two is based on either error occurrence times and the calculated times
between error occurrences, or the number of errors that occur during a specified time period [27:4-
1]. Several of these models are similar to hardware reliability models. and use major assumptions

concerning the probability distribution of software failures [65:330j.

Within the time domain approach models, there is a further distinction based on the spe-
cific mathematical method used. The NSWC report identifies three subcategories of time domain
approach models: classical software models; Bayesian models; and Markov models [27]. Both the
classical software models and Bayesian models treat software reliability as a function of continuous
events. The classical software models use probabilities derived from software failure frequency anal-
vsis and software hazard (or failure) rates. the Bayesian iodels use a more subjective viewpoint in

counting errors [38].[27:100-101].

In contrast to these. the Markov models view software reliability as a series of discrete events
[27:116]. Markov models treat each software failure event as a separate occurrence, such that an

event at time {41 is not based on the reliability history previous to time # [38:345].

2.1.3 RADC Classification. Rome Air Development Center (RADC') drew upon an earlier

work of Goel (o identify four classes of software reliahility models: fault seeding models: input
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domain models; times between failure models; and failure count models [56:3-35]. The categories
of fault seeding models and input domain models are identical to the NSWC categories of error

seeding/tagging models and data domain approach models, respectively {27, 56].

The times between failure models category is similar to the Bayesian subclass of the NSWC
time domain approach models, while the failure count models are identical to the classical subclass
of NSWC time domain approach models {27, 56]. Goel uses this same classification again in a
later article addressing the assumptions, litnitations, and applications of various software reliability

models {34].

2.1.4 MIL-HDBK-338-14 Classification. MIL-HDBK-338-1A defines a higher level of ab-
straction, classifving software reliability models into two general categories: non-failure rate based

models and failure rate hased models [19].

2.1.4.1 Non-Failure Rale Based Models. The term non-failure rate implies that the
software reliability model is independent of the software’s failure rate [19, 65]. The two basic types
of non-failure rate based models are combinatorial and input domain [19]. Combinatorial models
derive their name from the mathematical formula of ratios of identified faults to expected faults

[19]. The combinatorial models include both error seeding and binomial models [19].

While the input domain category is identical to the RADC input domain category and the
error seeding combinatorial model category is identical to the RADC fault seeding category. there is
no corresponding category for the binomial models [19. 56]. The binomial models use combinatoric
mathematics to calculate reliability probability from the number of errors encountered, the number
of attempted program test runs, and the probability of finding errors on any given program test
run {19:9-21]. While such a method is appealing based on its simplicity, it is more a predictor than

a measure of software reliability. aud will not be considered further.

2.1.4.2 Faurc Rate Based Moddls. In contrast. failure rate based models are con-
cerned with the number of software failures and the frequency at which they are experienced
during a period of time [65:330-331). MIL-HDBK-338-1A identifies two categories of failure rate
based models: classical. and Bayesian [19]. These categories map directly to the subclasses of clas-
sical and Bayesian of the NSWC time domain approach models, as well as the RADC categories of

failure count models and times between failure models, respectively [19. 27, 56].

2.1.5 Musa and Okumoto Classification. In the book Software Reliability: Measurement.

Prediction. Application. Musa et al. give a different classification scheme first presented by Musa




and Okumoto in 1983. Model classification is based on five attributes: time domain (calendar time
or execution time): category (either a finite or infinite number of failures experienced in infinite
time); the distribution type; class (only if the model is in the finite failure category); and family
(only if the model is in the infinite failure category) [64:250-251]. The table from Musa et al. is

shown in Figure 2.2.

Musa et al. discuss models with respect to both time domains; however, execution time better
“characterizes the failure-inducing stress placed on software” [64:31]. Therefore, only the execution
time based models will be discussed. Within the Musa and Okumoto classification, a model is first
identified as either a finite or infinite failure model depending on whether the model assumes a finite
or infinite number of failures will be reached at time t = o [62:235]. Next. the failure quantity
distribution for failure experienced at time t is identified [62:235].[64:250]. Three distributions
have heen identified for the finite failure category, while four have been identified for the infinite
failure category [62:235],(64:250,251]. Against these, the failure intensity form is cross-referenced,
using time as a basis for the class (finite failure category) and expected number of failures as a
basis for the family (infinite failure category) [62:235],[64:250]. This type of analysis identifies the
relationships between models within both of the times between failure and failure count categories

(56, 64).

2.1.6 Ouverall Model Classification Schema. A comparison of the MIL-HDBK-338A, NSWC(,
and RADC software reliability model classifications is shown in Table 2.2. From this. and Figure
2.1. the concept map in Figure 2.3 was derived. This software reliability concept map reflects the
overall classification as identified in the previous sections. The initial division of software reliability
into process measures and product measures is based on the 1IEEE classification. While the process
measures are very important to the management of the overall software life-cycle, the OT&E
effort requires an approach that evaluates the software. and not the management process [2]. The
additional level of abstraction defined by MIL-IDBK-338-1A (identifving failure and non-failure
rate) would be placed between the IEEE product measures and the lower categories. and is omitted
for clarity. Subsequent divisions of the product measurement into software reliability models are
based on the categories derived from the NSWC. RADC. and Goel classifications. and are identified
as the model categories of fault seeding. input domain. times between failures, and failure count.
While the Musa et al. software reliability model classification differs from this more traditional
hierarchy, it does prove useful for relating models to each other within appropriate classifications.

This relationship is important for identifving initial models for evaluation.
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TABLE 9.2

Software reliability model classification scheme

Finite failures category models
Type'

Class? Poisson Binomial Other types
Exponential Musa (1975) Jelinski-Moranda Guoel-Okumoto (1978)

Moranda (1975) (1972 Musa (197932)

Schneidewind ( 1975) Shooman (1972) Keiller-Littlewood

Goel-Okumoto { 1979b) (1983)
Weibull Schick-Wolverton

(1973
Wagoner (1973}
Ct Schick-Wolvenion
(1978)
Pareto Littlewood (1981)
Gamma Yamada-Ohba-Osaki
(1983)
Infinite failures category models
: Type'
. Family® pg ! T2 £ Poisson
* Geometric Moranda Muss-Okumoto
(1975) (1984

Inverse Littlewood-Verrall
linear (1973)
Inverse Littlewood-Vermall
polynomial (1973)
(2nd degree)
Power Crow (1973)

"Type: Distribution of number of faitures experienced.
Class: Functional form of Failure intensity (in terms of time).
‘Famuly: Functional form of failure intensity (in terms of expected number of failures).

Figure 2.2. Musa et al.’s Software Reliability Model Classification (Reprinted with permission
from McGraw-Hill Book Company)




Table 2.2. Comparison of Software Reliability Model Classifications

[ RADC | NSWC | MIL-HDBK-338A |
Fault Seeding Error Seeding/Tagging Non-Failure Rate
Combinatorial
Error Seeding
Input Domain | Data Domain Approach Non-Failure Rate

Input Domain
Times Between | Time Domain Approach | Failure Rate Based

Failure Bayesian Subclass Bayesian
Failure Count | Time Domain Approach | Failure Rate Based
Classical Subclass Classical
exhibits
m&

é?
S

is quantified by

Fauh Seeding
Models

Times Between
Failures Models

Input Domain
Models

Figure 2.3. Software Reliability Concept Map
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Software Reliability Model Descriptions

The following major models were identified for evaluation from the four model categories:

o Fault Seeding: Mill's Hypergeometric model [65]
e Input Domain: Ramamoorthy-Bastani model [69]

e Times Between Failures: Jelinski-Moranda model [43], Littlewood-Verrall model [55]. Schick-

Wolverton model [73],

e Failure Count: Goel-Okumoto Nonhomogeneous Poisson Process model [35], Musa Execution
Time model {60], Musa-Okumoto Logarithmic Poisson Execution Time model [62], Shooman

Exponential model {v6], Yamada-Ohba-Osaki Power model [96]

Other software reliability models (especially times between failures and failure count models) are
similar to these, being either more generalized or refined for specific applications [27, 34, 56, 64,
83]. The focus on evaluating older models is permissible, as there have been no significantly new
software reliability models developed in the last eight years [79]. Each model’s assumptions follow

its description. Goel states the following concerning software reliability model assumptions

...as a totality, they provide an insight into the kind of limitations imposed by them
on the use of the software reliability models ... The ultimate decision about the appro-
priateness of the underlying assumptions and the applicability of the models will have
to be made by the user of a model |34:1417].

Therefore, the assumptions will be identified in this chapter, and their applicability will be assessed

m the following chapter.

221 Fault Seeding Models. Goel identifies the two major assumptions necessary (o use

fault sceding models [34:1419]:

o Faults are seeded randomly throughout the program.

o lunate faults have the same probability as the seeded faults of heing discovered during test.

A discussion with respect to the major model follows.
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Mul's Hypergeometric Model.

Equation. The general equation for this model is given in Myers [65]
N = snfv (2.1)

where N is the maximum likelihood estimate of total number of innate errors, n is the number
of detected innate errors, s is the total number of seeded errors, and v is the number of detected

seeded errors [65:336-337]. The confidence calculation C is also given in Myers [65]

1 ifn>k

s . R
i fn <A

where k is an upper bound assumption of the number of innate errors in the program [65:337].

Assumptions. Although the error detection probabilities are unknown, the
Mill’s model assumes both the innate and seeded errors have the same detection probability
[65:337]. Random error seeding throughout the program is another important assumption; how-
ever. seeding errors that have the same probability of detection as innate errors is a major problem

[6:12],[34:1419].

2.2.2 Input Domam Models. The major assumptions necessary for input domain models

are summarized by Goel as [34:1419]:

o Testing performed is random.
o The distribution is known a prieri of the input profile for test.

o Input domain equivalence classes can be determined.

A discussion with respect to the major model follows.
Ramamoorthy- Bastant Model.

Equation. The Ramamoorthy-Bastani model is defined as [69]

n-1
P{E;|n} = ¢ H [1—4%?] (2.2)
j=1

2-10




based on a program’s continuous equivalence class specified by £; = [a,¢ + tv]. with n test cases

each having successive distances z; for j = 1.---,n— 1 [69:366]. Here. X is the inverse of the mean

length of intervals for E;, and V is a determination of the number of errors [69:366]. The product

AV is related to both the number N of elements in and degree D of an equivalence class [69]
D-1

MW ——

N

Assumplions. The Ramamoorthy-Bastani model assumes the input can bhe
divided into equivalence classes, and then requires an assumption of the equivalence class distribu-
tion; however, the determination of the equivalence classes is very costly [34:1419].[69:367]. It also
allows the use of any test case selection strategy, and does not assume random sampling for test

inputs [69:367).

2.2.3 Times Belween Failures Models. Goel discusses several assumptions common to the

times between failures models [34:1417-1419]:

e Faults are independent and have the same probability of exposure.
e Perfect debugging is done immediately after the occurrence of a fault.
e Successive times between [ailure occurrences are independent of each other.

The software system failure rate decreases as testing proceeds.

A discussion with respect to the major models follows.
Jelmski-Moranda Model.

Equation. The Jelinski-Moranda model defines the probability of a time

interval &y between the i — 1 and ith consecutive errors as [13]
Plr;) = 6[N — (i = 1))~ el¥ =N (2.3)

where A is the initial error content and ¢ is a proportionality constant [43:473]. The hazard
function :(1;) is defined by the software failure rate ¢[N — (i — 1)] [43:1473]. Musa et al. takes this
a step further, and derives the failure intensity function with respect to time (A(1)) based on the

constant hazard rate ¢ [64]
A1) = Noe™ '
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Assumptions. A major assumption of this and other times between failure
models is based on perfect debugging, the act of fault correction without introducing new faults
[34:1418]. Another assumption shared by models in this category is the independence of successive
failure times from each other [34:1417]. The model also assumes the failure rate between errors is
uniform [43:473]. This notion of a constant arrival rate for errors has been cited as a drawback
[73:105]. Also, testing time periods which are of equal length are assumed to represent the same
thoroughness of testing [43:477). Musa et al. categorize the Jelinski-Moranda model as a finite fail-
ure exponential class model, which assumes that at infinite time the number of failures experienced

is finite [64:278-280].
Littlewood- Verrall Model.

Equation. The equation for the Littlewood- Verrall model is [55]

el e VN
Tta)

1>0,¢v>0.a0>0

gl |ia)= (2.4)

0 <0
where the hazard rate ! is expressed as the probability density function g({ | i,a), v(i) is the growth
function for the gamma distribution, and a is the shape parameter for the gamma distribution
[55:110]. The probability density function for time of next failure #; after repair of the previous

failure given the failure rate A is [55:110]

Ae™? £>0,A>0
fitfa) =
0 1 <0

Musa et al. define the failure intensity function with respect to time (A(?)) based on these probabhility

density {unctions as (6]
1

NEEREN

with 4y and .J; being model parameters of the reliability growth function v [64:294-296].

Aty =

Assumptions. A major assumption of this and other times between fail-
ure models is based on perfect debugging, where fault correction occurs before finding the next
fault without introducing new faults [55:109]. The independence and randomness of successive

failure times are other assumptions shared by models in this category [55:109]. As it takes a
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Bayesian approach, this model assumes “subjective attitudes to the system under consideration,
thus ‘probability” means ‘personal probability’ or ‘degree of belief’ ” [55:110). Musa et al. classify
the Littlewood-Verrall model as a member of both infinite failure inverse linear and inverse poly-
nomial families, which assumes that at infinite time the number of failures experienced is infinite

[64:293-296].
Schick- Wolverton Model.

Equation. The original Schick-Wolverton model (as described by Schick

and Wolverton in [73]) is given by:
R(t;) = e~ dIN-G-DIF (2.5)

with the hazard rate =(t;) = [N — (7 — 1)]t; [73:105,112]. This hazard rate is similar to that
of equation 2.3. A modified version was subsequently proposed with a hazard rate of z(1;) =

[N — (i = 1)][—at? + bt; + ] [73:112].

Assumptions. The error rate is not constant, and errors are corrected as
soon as they are detected-“As errors occur, the routines are stopped, the error is identified, cor-
rected. and the error modality is reduced” [73:111]. Musa et al. classify the Schick-Wolverton
models as finite failure Weibull and modified Weibull class models, which assumes that at infinite
time the number of failures experienced is finite [64:281-283). Musa et al. state that for the modi-

»

fied model, *It does not appear to have practical applicability,” and also that “it is more complex
than the other models™ with “no evidence of superior properties that would justify the complexity”

[64:283].

2.2.4 Failure Count Models. In contrast to the times between failures models, the failure

count model assumiptions are based on test interval and not failure interval times [34:1418-1419]:

The number of failures discovered during a test interval is independent of the number discov-

ered during a different nonoverlapping test interval.

Testing is similar and uniform throughout the different test intervals.

Each test interval is independent of the others.

The software system failure rate decreases as testing proceeds.

A discussion with respect to the major models follows.
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Goel-Okumoto Nonhomogeneous Poisson Process Model.

Fquation. The general equation for the Goel-Okumoto Nonhomogeneous

Poisson Process (NHPP) model is [35]
P{N(t) =y} = (—'"—:,',)—)ye"““’ y=0,1.2,.. (2.6)

with m(t) = a(1 —e~%") and A(t) = m/(t) = abe~?* where the cumulative number of failures at time
t is denoted by N(t), m(t) represents the expected number of failures at time {, the failure rate is

(1), a is the eventual expected number of failures, and b is the fault detection rate per fault [34].

Assumptions. The number of failures is 0 at time ¢ = 0, and the number
of failures occurring during nonoverlapping time intervals are mutually exclusive [35:206]. Also.
the number of remaining faults to be discovered is considered a variable of test and environmental
factors instead of a fixed constant [34:1415]. This is considered a finite failure exponential class

model [64].
Musa Ezecution Time Model

Equation. Musa’s Execution Time model has a hazard rate of {60:314]
() =fKNg = fRn (2.7)

where 7 is the execution time, f is linear execution frequency (instruction execution rate per number
of program instructions), K is the fault exposure ratio (as the machine state may vary, this accounts
for the probability of a fault being exposed when the related instruction is being executed), Ny is
the number of inherent errors in the program, and n is the number of faults corrected during time
T [60]. This concept has also been applied to the determination of failures experienced (u) for a

given execution time (1) [64:37]

Ao
u(7) = vy [l — exp (—U—;T)] (2.8)

as well as the measurement of current failure intensity (A) based on either execution time (1) as

shown in Equation 1.3 [64:39]
A
A7) = Agexp (-——ET) (2.9)

Vo
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or actual failures experienced (p) [64:33]

M) = Ao (1 - ﬂ) (2.10)
Vg

Here. g i1s the total expected number of failures, and Ag is the initial failure intensity (failures per

unit time) [64:528-530).

Assumptions. The basic execution time model has been around for quite
some time, and is actually considered a Poisson process model [34, 60, 64]. This model assumes
that: program faults are independent; the “potential test space ‘covers’ its use space,” not in a
completeness sense but rather the test sets should be representative of operational program use; test
inputs are randomly selected; all failures are observed; and discovered faults are corrected before
continuing with testing or are not counted again if rediscovered [60:313]. This model is considered

a finite failure exponential class model [64].
Musa-Okumoto Logarithmic Poisson Erecution Time Model.

Egquation. The Musa-Okumoto Logarithmic Poisson Execution Time model
is expressed by [62:231]
1
u(r) = 7 -In(AgbT + 1) (2.11)

Here. Ag is the initial failure intensity. and 6 is the failure intensity decay parameter, identifying
how fast the failure intensity is changing [62]. Again, y is the number of failures expected for a
given execution time r [64:530-531]. As with the Musa Execution Time model, measurement of

current failure intensity (A) can be made from either execution time () [64:39]

Ao
M7)= t——— 2.12
( ) /\()0T + 1 ( )
or actual failures experienced () [64:34]
Mu) = Ao exp(—6p) (2.13)

Assumptions. This model uses the same assumption as the Goel-Okumoto
NHPP model in Equation 2.6 with respect to time 7 = 0: however. the Musa-Okumoto Logarithmic

Poisson Execution Time model also assumes an exponentially decreasing failure intensity based on




the number of failures experienced [62:230]. The model also uses 7 to determine the function of
the mean value of experienced failures with respect to time [62:231]. This is considered a geometric

family model [64].
Shooman Exponential Model.
Equation. The Shooman Exponential model is given as [76]

klETe—k,r

i (2.14)

p(r) =
where p(7) is the number of errors per total number of instructions detected per month, 7 is the
number of months after start of system test, ky is the proportionality constant, Er is the total

number of errors (a constant), and It is the number of program instructions [76).

Assumptions. The Shooman model uses the history of other similar soft-
ware programs as a basis for determining the model constants [76:486]. This model assumes “the
total number of errors in the program is fixed” and the number of errors remaining is the differ-
ence between total errors and errors encountered [76:487]. It also assumes “all detected errors are
corrected errors,” while also taking into account that “in any sizable program it is impossible to
remove all errors™ [76:488]. Another assumption is both the number of debugged errors and number
of errors present should decrease as testing proceeds [76:492]. This, taken with the initial assump-
tion that errors detected are proportional to the number present, results in an exponential error
detection rate [76:492]. Musa et al. categorize the Shooman model as a finite failure exponential

class model [64].
Yamada-Ohba-Osaki Power Model.

Fquation. The Yamada-Ohba-Osaki Power model (also referred to as the

S-Shaped model) is a NHPP model with the following mean value function for time  [96:476]

M) = a1l = (14 bt)e"*] ab>0 (2.15)

where a is the total number of errors and b is the error detection rate [96:475]. Additionally, the

failure intensity is given by [96:476)
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with the remaining expected number of errors determned by [96:476)

n(t) = a(l+bt)e™ ™

Assumptions. This model assumes a steady-state for the error detection
rate b [96:475]. Other assumptions include random occurrence of failures, the time to failure (k ~1)
impacts the time to failure & from failure (k — 1), prompt correction of error(s) each time a failure
occurs, and perfect debugging [96:475-476]. This model is considered a gamma class Poisson finite

failure model [64].

2.3 Summary

This chapter started with the identification of software quality as a desirable result of software
engineering. Software reliability was then described as one of several software quality factors
that affects software life-cycle cost. Next, we proceeded to identify software reliability model
classifications within the scope of software reliability measurement. As many papers on software
reliability exist. it was necessary to define the overall framework for software reliability model
evaluation before choosing specific models. We compared and contrasted different categories of
software reliability models. The baseline framework was derived from a synthesis of categories,
primarily following the RADC and Goel categories. Within each of the framework major categories.
specific software reliability models were then identified for evaluation. The evaluation of these major

models is described in Chapter 3.
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1. Software Reliability Model Selection

This chapter identifies the selection of the candidate software reliability models. It begins
with identification and discussion of the software reliability model selection criteria. The criteria are
then applied to select candidate software reliability models for evaluation against software maturity

data.

3.1 Model Selection Criteria and Discussion

The goal of this thesis is to identify one model and methodology that is appropriate for
use in the IOT&E phase. Toward this end, the criteria defined in [39] and [64]. as well as other
implementation specific criteria defined in [16] will be used; however, an initial screening based
on model requirements eliminates the two categories of fault seeding and imput domain. Mill's
Hypergeometric model requires fault seeding of intentional changes to the software. Such seeding
is very difficult and could be disastrous for something complex like avionics flight software. As
such intentional errors are not something to be introduced after the start of IOT&E. this model
will not be considered. Similarly, the Ramamoorthy-Bastani model will not be considered. The
[OT&LE input domain for testing is based on operational usage, which is supported by the model’s
lack of random sampling assumption; however, the cost of determining equivalence classes for an
integrated weapon system (such as a missile or aircraft) would be prohibitive. This leaves only
the failure count and times-between-failure models. These models are discussed below with respect
to the criteria of predictive validity, capability, quality of assumptions. applicability to the finite-
time environment. simplicity of design, diversity and applicability of output, and capability to use

existing data.

3.1.1 Predictive Vahdity. This criterion concerns the accuracy of a model’s parameter esti-

mation. and not the prediction of the reliability itself {64]. As such, predictive ralidity is

the capahility of the model to predict future failure behavior during either the test or
the operational phases from present and past failure behavior in the respective phase
[39}.

With respect to a “weighted parameter estimation”™ of number of errors, both the Littlewood-
Verrall model of the inverse polynomial family and the Musa-Okumoto Logarithmic Poisson Exe-
cution Time model were more accurate in the first 60% of testing than the Musa Execution Time

model, the Yamada-Ohba-Osaki Power model, or the Crow model (described as a power family
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Poisson model in [64]) [89:9]. After this initial phase, all of these models performed satisfactorily
[89:9]. Of the models analyzed by Musa et al. in {64], the geometric and inverse polynomial families
had the best initial predictive validity. This assessment was made against the different classes and
families (the type, binomial or Poisson, made no difference), and was based on both maximum
likelihood estimation (MLE) and least squares estimation (LSE) [64:390]. Musa et al. determined
the Musa-Okumoto Logarithmic Poisson Execution Time model as being superior; however. the
Musa Execution Time model becomes just as viable after the initial 60% of testing [64:398]. The
applicability of an exponential class model is important, as software maturity data, which this

thesis suggests could be the basis for parameter estimation, has historically been exponential [94].

In another study involving 16 data sets on various hardware platforms, Angus et al. found
it difficult to estimate parameters for the Jelinski-Moranda and Schick-Wolverton models [4:195).
While the Jelinski-Moranda and Schick-Wolverton models are considered finite failure models,
both geometric and inverse polynomial families are in the infinite failure category [64:251]. Thus, it
appears that it is easier and more accurate to estimate parameters for models of the infinite failure
category, as opposed to the finite failure category. For IOT&E, such parameter estimation could
be based heavily on data previously collected prior to the start of IOT&E (either on the system
undergoing test or from another similar system that has completed test). Initial parameters could

then be predicted using a geometric or inverse polvnomial model that is Poisson in type.

3.1.2 Capabtlity. Another criterion, capability, is defined by lannino et al. as

... the ability of the model to estimate with satisfactory accuracyv quantities needed by
software managers, engineers, and users in planning and managing software development
projects or running operational software svstems [39].

Such accuracy of estimate could then be measured in the following quantities [64]:

e Present reliability. MTTF, and failure intensity.
e Expected date to reach specified reliability, MTTF. or failure intensity objective.

e Human and computer resource and cost requirements needed to reach the failure intensity

objective.

This criterion is important for IOT&E, as the test director needs to know both the current
quality of the software and what it will cost (in time and money) to reach an acceptable level of
quality. Musa et al. conducted an evaluation and comparison of 18 major software reliability models
[64]. Of the 18 models examined. those of the exponential class and geometric family appear to

have the best capability to be used to make guality assessments of the software under test. [64].
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3.1.3 Qualily of Assumptions. lannino et al. recommend that assumptions should be tested;
however, if this is not possible, the assumption’s “plausibility” should be considered based on
logical consistency and the user’s software engineering experience {39]. For complex systems, it
1s difficult to test the validity of software reliability model assumptions. An example of this was
the Hughes Joint Surveillance System (JSS) air defense system for North America, where it was
not possible to confirm the validity or lack thereof of all sottware rehiability model assumptions
used in evaluating the software [3:268,270]. As IOT&E is performed on weapon systems of similar
complexity to the JSS, there will be no attempt to prove or disprove all the assumptions for the
models under consideration. Instead, a comparison of only the assumptions deemed necessary
for IOT&E assessment will be performed against the models™ assumptions. A model fails this

comparison if only one major IOT&E assumption is not supported by the model’s assumptions.

Both Musa et al. [64] and Goel [34] identify many critical assumptions that are necessary for
model implementation. For application to the IOT&E environment, the major assumptions were
derived from both HQ AFOTEC requirements and the author’s experience in IOT&E of weapon

system software and include {47):

1. Operational testing is representative of the operational environment.
2. There is imperfect debugging for fault removal.
3. Errors might not be corrected after the test interval (i.e.—just after a test flight).

4. Execution time is used for the failure rates.

Assumption 1 allows both times between failures and failure count models to assess the soft-
ware with respect to operational reliability [34:1418). The assumption is based on the operational
profiles used to assess the overall performance of system testing [2:1]. System testing is the usual
level of test for a Test and Evaluation effort: however, there is usually insufficient test time to
thoroughly test all the software due 10 the tremendous combinatorics that occur from integrating
even the simplest subsystems together [48:110.114]. As a consequence, using operational profiles
for testing differs in the degree of randomness (and thus thoroughness) that is possible with module
or unit level testing. Since the test cases are then not likelyv to be independent, the test process will
not follow a true random nature [34:1417]. This eliminates times between failure models, which
assnme times between failures occur independently [34:1417,1419]. In addition, this assumption
makes an important contribution to determination of end of operational testing and start of op-
erations. Since IOT&E testing is targeted for an operational environment, a final IOT&E value
of a failure intensity would then be the constant failure intensity expected to occur throughout

operations until the next major software release.
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Assumption 2 also eliminates the Shooman model, and most, if not all, of the times between
failures category models [27:4-7],[34:1418-1419]. Ohba and Chou have assessed the validity of the
perfect debugging assumption found for the times-between-failures models, noting that “software
reliability growth models sometimes give reasonable figures (fairly accurate estimations) in con-
ditions where the perfect debugging assumption is not valid” [67:41]. They have also proposed
modifications to the Jelinski-Moranda and Goel-Okumoto models to accommodate imperfect de-
bugging; however, they cite that further study using actual project data is necessary to verify the
modified models” applicability [67:45]. Goel and Okumoto have also proposed a modified model, the
Goel-Okumoto Imperfect Debugging model, which is an extension of the Jelinski-Moranda model
based on a Markov process [34:1414]; however, this model is eliminated from consideration by As-
sumptions 1 and 3. Ohba and Chou also note the necessity of verifving the impact of an imperfect
debugging assumption on S-shaped software reliability models (such as the Yamada-Ohba-Osaki
Power model discussed in Chapter 2) before concluding that the imperfect debugging assumption
does not affect software reliability data analysis [67:46]. Until such proof exists, the Yamada-Ohba-
Osaki Power model will still be counted under the perfect debugging assumption and thus excluded
from further consideration [96:476]. In contrast, failure count models, such as the Musa Execution
Time model, can incorporate imperfect debugging through a fault reduction factor of the ratio of
net number of faults corrected per total number of faults corrected [64:120]. Musa et al. suggest
such a ratio could be independent of specific project characteristics, and sufficient values have been

determined to provide for boundary conditions and an average [64:120-121].

Assumption 3 further eliminates the times between failures models and the Yamada-Ohba-
Osaki Power model, as these models require faults to be removed as soon as they are detected
{34:1419], [96:476]. The last one. Assumption 4, is important, as the concept of IOT&E revolves
around the time (flight, CPU, etc.) available for testing within given monetary constraints [48:114].
This assumption further eliminates fault seeding and input domain models (as neither define pa-
rameters in terins of time), and also restricts times between failures and failure count models 10

their execution instead of calendar time components.

3.1.4 Applicability to the Finite-Time Environment. Applicability addresses five general

categories that the software reliability model should be able to deal with [39):

o Phased integration of a program during test (result is that initial failure data is based on only

a portion of the program).
e Design changes to the program.

e Failure severity classification using different categories.
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o Ability to handle incomplete failure data or data with measurement uncertainties.

e Operation of the same program on computers of different performance.

Any mode] that meets these should then have the capability to be a single useful model, as
well as something that will be applicable across different IOT&E efforts/systems. Musa et al. [64]
identifies the characteristics of several models that allow for dealing with these categories. Of these
models, those of both the exponential class and geometric family apply well, as initial parameters
can be derived from data that exists prior to program testing (such as software size, machine
execution rate, etc.) [64]. These parameters could then be further refined through data collected

on any evaluation. such as software maturity, done prior to the start of IOT&E.
315 Smmplicity of Design. Simplicity should be present in three areas [39]:

e It must be sumple and inexpensive to collect the required data.
e The model itself should be simple in concept.

o The model must be implementable as both a useful management and engineering tool.

The Musa Execution Time model was found easy to use; however, would generally “under-
estimate the number of errors™ [89:9]. In addition to this model, the Musa-Okumoto Logarithmic
Poisson Execution Time model was also identified as one of the easiest to use models [64:398]. In
contrast. the Goel-Okumoto NHPP and Jelinski-Moranda models were found to have such “pumer-

ical difficulties™ that

The issues concerning starting points for the iterative procedures, uniqueness of the
parameter estimates, and even alternative estimation techniques must be studied and
such problems solved hefore these models can be used by acquisition managers [3:273].

The Littlewood-Verrall model is very complex. very difficult to understand. and very difficult
to apply on a computer [64:32]. Markov models, in general, were also found to have a “great deal
of added complexity™ with “much research still nceded in this area™ [27:4-116]. In contrast, the
Poisson type models (of the exponential class) and the Musa-Okumoto Logarithmic Poisson Time

model (of the geometric family) are the two simplest models to implement [34, 64, 89].

3.1.6 Daversity and Applicability of Output. The ability to express data and results in differ-

ent formats is desirable considering the diversity of software systems that undergo IOT&E. Allowing




the data to be presented in different formats will allow the software engineers/analysts to better

convey the meaning of reliability measurements.

While all models possess the capability to provide meaningful data to the decision makers,
the Poisson type and basic execution time models have the potential to encompass more than
Just the raw data. Of all the models evaluated, only the Musa Execution Time model and the
Musa-Okumoto Logarithmic Poisson Time model have derived equations to compute current fail-
ure intensity as a function of either failures experienced or elapsed test time. No other models
have straightforward equations to determine both the number of failures or amount of time that
is expected to occur before reaching a desired failure intensity. Additionally, of the models evalu-
ated, only these two had equations to relate system characteristics to the determination of initial
parameters. Such equations allow for evaluation of a system where previous or similar failure data
do not exist. These. and the other equations, also enable presentation of data ranging in form from

engineering units vs. specific system parameters to overall trends of failures vs. system time.

3.1.7 Capability to Use Ezristing Inttial Data. The criteria of simplicity of design addresses
the ease and cost of collecting data for the reliability model. In contrast. the capability to use
existing initial data evaluates a model’s flexibility to be mapped to an existing database. HQ
AFOTEC is developing a database of software failure data to analyze and determine the software
maturity for different weapon systems. A software reliability model should then be able to use this
initial data as a baseline for estimating parameters. Such estimation is knportant, and using initial

data can reduce errors from the use of data from other “similar” systems.

Some Poisson process models use cumulative failures per test period [34]; however, the use of
time of failure occurrence and not time between failure occurrence allows for modeling the failure
occurrence as a random arrival event for those data points collected without time information. This
process has been demonstrated in [64], and can be useful for using existing maturity data where

failures per test time are the only available data.

1.2 Choice of a Reliability Model

Based on the criteria and discussions above, the following models can he dismissed as possible

candidates for the following reasons:

o Mill's Hypergeometric Model. This and any other fault seeding models are not viable for
IOT&E as the introduction of faults this late in software testing would adversely impact

system delivery. Seeding such faults in a manner to he representative of the innate faults is




very difficult. and is not practical for IOT&LE of programs with extensive amounts of software.

Also, the model does not support the use of execution times for failure rates.

o Ramamoorthy-Bastani Model. Input domain models are not workable due to the high cost of
determining equivalence classes. Also, the model does not support the use of execution times

for failure rates.

o Jelinski-Moranda Model. Parameter estimation was found to be difficult. The model does not
support IOT&E assumptions of imperfect debugging for fault removal or errors not corrected

immediately after a test interval. It is one of the more difficult models (numerically) to use.

¢ Littlewood-Verrall Model. The model does not support IOT&E assumptions of imperfect
debugging for fault removal or errors not corrected immediately after a test interval. This

model is also very complex and difficult to understand and apply on a computer.

e Schick-Wolverton Model. Parameter estimation was found to be difficult. The model does not
support IOT&E assumptions of imperfect debugging for fault removal or errors not corrected

immediately after a test interval.

o Goel-Okumoto NHPP Model. With respect to obtaining parameter estimates, it is one of the
more difficult models to use. Also, this model does not support the IOT&E assumption of

imperfect debugging.

e Shooman Exponential Model. This model does not support the IOT&E assumption of im-

rorfect debugging. The model also relies on calendar time and not execution time.

e Yamada-Ohba-Osaki Power Model. Accuracy of parameter estimation not acceptable until
approximately 60% into testing. The model does not support IOT&E assumptions of imper-

fect debugging for fault removal or errors not corrected immediately after a test interval.

Therefore. only two models from the failure count category were selected as candidate models

for evaluation:

e Musa-Okumoto Logarithmic Poisson Execution Time Model. This model was found to have
the best initial predictive validity for parameter estimation. as well as the best capability
to be used 1o make software assessments. The model supports all IOT&E assumptions and
easily accommodates diverse output. It can also use existing program data to determine

initial model parameters.

o Musa Execution Time Model. This model was found to be one of the models having the best

capability to be used to make software assessments. The model also supports all I0OTAE




assumptions and easily accommodates diverse output. This model can also use existing

program data to determine initial model parameters.

Although the Musa Execution Time mode! does not support adequate parameter estimation
until 60% of testing is complete, this assessment is based on accumulated failure data and not
existing program data. As the model is one of the simpler ones to implement, it is hoped that the
simplicity and capability to use existing program statistics will enable closer parameter determina-
tion than is possible with using failure data alone. The Musa Execution Time nmiodel also contains
the salient points from other models, such as the Goel-Okumoto NHPP model, Jelinski-Moranda
model, and Shooman Exponential model [64:32]. One comparison even stated the Musa Execution
Time model and Jelinski-Moranda model were equivalent, with the Musa Execution Time model
considered to be “better developed™ of the two [6:15]. Similarly, the Musa-Okumoto Logarithinic
Poisson Execution Time model is considered a combination of the Musa Execution Time model’s
execution time characteristic and the “analytical ease™ of the Goel-Okumoto NHPP model [58:83].
Other failure count models are similar to the candidate models, either being more generalized or

more refined for specific applications [34, 64, 88, 96].

The final two selection criteria have additional impact on the implementation of these can-
didate mnodels. Several tools exist which can assess software reliability with respect to different
models [28, 83]: however. the thrust of these tools (and hence the model implementation) is to pre-
dict software reliability [83:1}. To fully examine the current assessment capability of the candidate
models. a fresh implementation must be considered. This implementation is discussed in the next

chapter.

3.3 Summary

This chapter took the models described in Chapter 2 and compared them against specific
model selection criteria, with the goal of selecting one candidate model and methodology appro-
priate for use in the IOT&E phase of software test and evaluation. The model selection criteria
were defined. and models were either vindicated or eliminated during the discussion of each cri-
terion. The results were two, instead of a single one, software reliability niodels that should be
appropriate for software IOT&E: the Musa Execution Time model; and the Musa-Okumoto Log-
arithmic Poisson Execution Time model. The implementation of these models is described in the

next chapter.




1V. Software Reliability Model Implementation

This chapter contains the method and actual implementation of the candidate models identi-
fied in the previous chapter. Several software reliability implementation methodologies have been
presented, including [34, 41, 64, 71]. The salient points of each have been extracted and are used

as a basis for implcmentation of the candidate models:

e Plan a strategy [41:33-35].

e Determine software reliability goals [41:35)].

e Assess existing data [34:1420].

e Select candidate model(s) [34:1420].

o Derive fitted model [34:1420],{71:50].

e Assess the model [34:1420],[71:50].

e Define and implement data collection procedures [41:35],[64:215-220).

e Assess the software reliability [34:1421],[41:36],[71:50].

A discussion of each follows.

4.1 Plan a Strategy

This step is defined as “initiate a planning process” [41:33], and will be performed at two
levels. First, software reliability needs to be incorporated into the IOT&E test planning strategy.

After that, the design and implementation of the candidate models will follow.

4.1.1 TOTEE Test Planning Sirategy. With respect to the overall OTLE test planning

strategy,

Operational Test and Evaluation (OT&E) is conducted to estimate the system’s opera-
tional cffectiveness, operational suitability (including reliability, availability, maintain-
ability. logistics supportability, and training requirements) and identify needed modifi-
cation [21:3-4].

As the premise of this thesis is that software maturity data can be used as a basis for imtial
parameters of the software reliability measurement. the candidate models must be implemented.

where possible. affer software maturity data has been collected.
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Figure 4.1. Software T&E with Software Reliability Assessment

Figure 4.1 indicates one possible method for integrating software reliability measurement into
the IOT&E test effort. This figure identifies a possible relationship of software T&E during both
the developmental TCE (DT&E) and OT&E phases. This method integrates software reliability
evaluation with current HQ AFOTEC operational suitability assessments (software maintainability,
usability, maturity, and support resources), and makes use of historical data for the same weapon
svstem collected by software evaluation personnel prior to the start of IOT&E. Such a combined
approach should provide a quantifiable way of assessing whether or not the soon-to-be operational

system has “good code.”

4.1.2  Program Design Strategy. The development plan for this software effort involved an
analysis of the problem, specification of requirements. and development of a design based on the
requirenients. After this. code development and testing followed. While the waterfall model pro-
vides the structure for this type of effort, an iterative waterfall (or “waterfountain”) approach was

used 1o enable further refinement of the specifications prior to generation of data sets [84].

Structured analysis techniques were used for the nitial analysis. The resultant data flow
diagrams (DFDs) were used for an object-oriented design of the software. As part of the high-
level design of the system, the possibility of using an abstract data type (ADT) to implement the
software was considered. Program coding was done in the Clipper programming language, which is
a dBASE compiler for any computer capable of running at least PC/MS-DOS version 2.0 [66:1-4].

The Clipper language was chosen for compatibility, as the current software maturity data base and




supporting software were all previously developed using Clipper. Testing of the code was performed
throughout the software life-cycle effort. Specific details on the analysis and design are discussed

in Appendix C.

4.2 Determine Soflware Reliability Goals

The software reliability goals of this thesis are not to predict software reliability at any time
in the future. Instead, the goal is to be able to define a current measure of the software such that
a decision maker (the Test Director for IOT&E testing) may be able to assess how much longer
it will take or how many more failures will be discovered to reach a failure intensity objective of
his/her choosing. Typical values for operational reliability of critical software systems (such as air
traffic control systems, nuclear power plants, and space systems) have ranged from 10~ failures
per CPU hour to 10~° failures per CPU hour [64:93]. Another suggested value is a reliability of
0.999999 for a mission duration of 5 hours [71:50]. Therefore, the suggested reliability goals will be
0.999999, 0.9999, 0.99, 0.95, 0.90, 0.85, and 0.80, all of which are within the range [0,1].

In order to determine which of these is the optimum reliability goal, there are two concepts
that must be considered: failure intensity at the end of IOT&E is the same as that for beginning
of the software’s operational life; and given an unchanging failure intensity during operations,
different reliability values for operational periods can be used to assess the software reliability at
end of IOT&E. While this might seem like a back-door method, it does have some merit given
that engineers can not determine (with any degree of accuracy) the future reliability of software
in major weapon systems. Thus. the decision maker should be able to pick a desired operational
reliability (with respect to failure intensity), with the engineer then assessing the cost to reach that
goal. This follows the concept that an acceptable range of reliability values should be established,

given the user’s requirements and needs [41:35].

In specifving the user’s requirements, we will start with the basic reliability function. R(1).
which is given by [38:524]
oc
R)=1-F({t) = / f(r)dx
1

where { is the time of reliability assessment, F'(7) ts the cumulative distribution function for failures.
and f(r) is the probability density function for failures [38:54,56,524]. Assuming only random
failures are used (this gives an exponential time to the failure density). the reliability function is

described in terms of a Poisson distribution with a mean occurrence rate A by {38:524,526]

R(t) = e~




Musa et al. applies this to software reliability, resulting in a similar reliability function R(r) given
by [64:50]
R(r) = e (4.1)

The major assumption for this is a constant failure intensity A for the execution time period 7
{64:50]. However, this works to the advantage of the decision maker. Taking the natural logarithm
of Equation 4.1 gives

In(R(T)) = —Ar (4.2)

Equation 4.2 can then be used for decision support alternatives. For example, assuming a
weapon system is projected to operate for (an average) of 500 hours per each calendar year, the
Test Director would pick the reliability goal and the required failure intensity from the range of
values derived for various A values specified above (see Table 4.1). The reliability would be defined
by the Test Director as a success criterion, and the implemented model should be able to support
analysis based on current operational assessment as well as a potentially changing success criterion.
In this case, the additional test time needed to reach the desired failure intensity (determined from

the reliability defined by the Test Director) would then be calculated.

Table 4.1. Range of Software Reliability Goals for » = 500 Hours

r 5y [R(500) ]
2.00 x 10" Failures/Hr | 0.999999
2.00 x 10~ * Failures/Hr [ 0.9999
2.01 x 107> Failures/Hr | 0.99
1.03 x 10~? Failures/Hr | 0.95
2.11 x 10~% Failures/Hr | 0.90
3.25 x 10~7 Failures/Hr | 0.85
4.46 x 10~ Failures/Hr | 0.80

This is supported by the candidate models, as predicted and measured quantities (number
of failures remaining and mean time to fail, respectively) at the start of operations “are constant
and equal to those at the end of the last test phase (unless errors are corrected. in which case the
operational phase should be considered as a ‘test’ phase or phase of reliability growth)” [60:313].
Thus. the desired final reliability value (Ar) is determined from Equation 4.2, and the present
failure intensity during IOT&E testing (Ap) is determined from either Equations 2.9 and 2.10 or

Equations 2.12 and 2.13. The amount of additional test time (Ar) necessary to reach the desired
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software reliability level is then determined by the Musa Execution Time model from [64:45]

14¢] Ap
Ar=—In— .
AT o n Py (4.3)
and by the Musa-Okumoto Logarithmic Poisson Execution Time model from [64:45]
1 /1 1
Ar= (L _ L 4.4
i (/\F /\P> (44

Therefore, if the test time needed to reach a desired failure intensity objective was deemed
to be too much by the Test Director, he/she would then have to choose a lower reliability goal.
obtain additional test time, or alter some other aspect of the software development process to
compensate. Thus, the actual software reliability goals will be determined by the deciston maker.
and are subject to change based on the availability of test resources (primarily time). This means

the implementation must support some form of decision support scenario.

4.3 Assess Existing Dala.

Shaw noted

The problem in applying software metrics s to find appropriate measures and make
sense out of the data. not simply to obtain the data [75:257].

The goal of software reliability assessment is to make the data useful, thus something must be
determined from the data, even if ithat means discovering that nothing can be determined from
the data. From the HQ AFOTEC software maturity data. 17 initial data sets were available that
imcluded aircraft. connnunications, missile, radar, and space systems. For these data sets. the
number and type of record fields varied; however, there was a common set of fields across all 17

data sets. These fields are identified in Table 4.2.

None of the data in the 17 different data base files contained information about test durations
or specific descriptions of the system under test (for example, number of source lines of code or
processor execution rate). Such additional information was necessary to run the models: however,
due to the very recent incorporation of software maturity assessment in the IOT&E planning
strategy. this initial data was “fragmented and incomplete” [45]. Therefore, a data assessment

strategy was devised where candidate data sets were cliosen based on the availability of any test




Table 4.2. Common Software Maturity Data Fields

| Field Name | Description |
Date Date of Problem
CPClI Software Configuration Item
Sev_Code Severity of Problem
Date_Fix Date Problem Fixed
Title Description of Problem
Prob_Num Software Problem Number

duration data. This limited the data sets to three types of weapon svstems: aircraft (denoted
by A). space systems (denoted by S), and weapon system trainers {(denoted by W). These data
sets were then plotted with failure count indicated as a function of execution time [34:1420]. An
assessment was then made as to the applicability of the candidate models based on the initial curve
of the data. The results of this, as well as the application of the models to the data, are discussed

in the next chapter.

4.4 Selection of Candidate Models.

Assumptions for each model, evaluation of each model with respect to specific acceptance

criteria. and selection of candidate models were discussed in the previous chapter.

4.5 Derive the Filted Model

This procedure involves botii estimating the parameters for the model, and then substituting
these parameters into the model to fit the model for the data [34:1420]. An additional version
of each fitted model was derived for those models that had prior DT&E test data. A discussion
of initial parameter estimates appears in the first section. followed by a discussion of the derived

parameter estimates.

4.5.1 Modd Parawmeter Estimation. Musa et al. define equations for failure intensity and
mean value functions for both the Execution Time model and Logarithmic Poisson Execution
Time model (see Table 4.3) [64:307]. From these, the parameters 3o = vy (the total failures at time
t = x for the Execution Time model) and 3;' = # (the failure intensity decay parameter for the
Logarithmic Poisson Execution Time model) need to be determined [64:351]. Parameter 3y, as well
as other estimated values, are a function of 3, which is defined as g = Aq/vg for the Execution

Time model. and 3; = A8 for the Logarithmic Poisson Execution Time model [61:351.529]. The
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Table 4.3. Specific Model A and p Functions

[ Model T u(t;8) [ M3 |
Execution Time Bo[l — e~P1t) | BoPre P!
Logarithmic Poisson

Execution Time o In(1 + Byt) %

parameter g itself is estimated for the Execution Time model by [64:325]

N,

me mel, _
— -SNt=0 (4.5)
3 ehte — ] ; '

and is estimated for the Logarithmic Poisson Execution Time model by [64:326]

me

1

1 m,t, -0
B 1+ 8t (14 fite) In(1 + Bite)

(4.6)

4.5.1.1 Necwton-Raphson Method. One way of estimating parameters is with the Newton-

Raphson method. which has the general form [14:48]

—_ ,f(Pn—l )
Pn _])"—l_m 1I_>_ 1
This is calculated based on a simple algorithm, such as the one presented by Burden and Faires

[14:49]:

To find a solution to f(r) = 0 given an initial approximation py:

INPUT initial approximation pg; tolerance TOL; maximum number of iteration .
OUTPUT approximate solution p or message of failure.

Step L. Set i =1

Step 2. While i < N do Steps 3- 6.

Step 3. Set p = po— f(p)/ [ (po). (Compute p;.)

Step 1. If | p— po |< TOL then OUTPUT p; STOP.

Step 5. Set i =1+ 1.

Step 6. Set py = p.

Step 7. OUTPUT (‘Method failed after Ny iterations, Ny =", Ngy; STOP.
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Angus et al. note a problem with the Newton-Raphson method, and state

In the actual use of the Newton-Raphson method, convergence of the estimators to
finite values could not always be obtained. The major problem seemed to be in finding
successful starting points for the parameter estimates as inputs to the program. In
general, no real guidelines were found {4:194].

As the maximum likelihood estimation of parameters for both models is based on the single pa-
rameter 3, this requires only one initial starting point necessary for the Newton-Raphson method
[64:526]. Musa et al. suggest an initial estimate for 8; to be 171, the inverse of the total testing
time, and state that “this value almost always results in the initial convergence of the Newton-
Raphson procedure™ [64:527). Therefore, 17! will be used as the initial estimate for the parameter

_131 .

Applying the Burden and Faires algorithm to equations 4.5 and 4.6 requires the first derivative

of each. Taking the first derivative of Equation 4.5, we get

. — Bite
f'(Br) = (me) (—ﬁ;) —(met,) I:‘L—-,] (4.7)

1

and taking the first derivative of Equation 4.6 gives

o 1 me -4 m, | 1 [—(me!'g’)(l +In(1 + 341, ))]
al |:(.‘I31) (Z(l'*‘ﬁlti)?) (Z ]+»'31’:) ( ﬂl-)] [(1"'/31’6)'"(]"'.[31!(»)]2

i=] i=1
(4.8)

4.5.1.2  Additional Inttial Parameter Estimation. Equation 4.7 then is used to calcu-

fate an estimated vy = 3 for the Execution Time model [64:325]

Jo = — (4.9)

| —e=hite

Recalling that 3, = Ag/w for the Execution Time model, the estimated initial failure intensity

value Aq is then calculated as [64:351,529]

A() = 3o/ (4.10)

s
x”




Similarly, Equation 4.8 is used to calculate an estimated ! = 3, for the Logarithmic Poisson

Execution Time model [64:326]

5 m,

Po In(1 + Ait.) (10

Recalling that 3) = Ag# for the Logarithmic Poisson Execution Time model, the estimated Ay value

can also he calculated from Equation 4.10 [64:351].

4.5.1.3 Confidence Intervals. Confidence intervals for the estimated parameters were
developed based on the assumptions of a normal distribution, zero mean, unit variance, and a
desired confidence interval of 95 percent [64:316). Such an approach allows a 100(1 — a) percent
confidence interval to be calculated for the unknown mean g from the sampling distribution of X
the sample mean [38:242]. The general form of the equation for this two-sided confidence interval

is [38:242)

(4.12)

For a 95 percent confidence interval a = .05 with ¢/2 = .025. From a cumulative standard
normal distribution table, the test statistic Z g2 = 1.96 [38:243,593]. Musa et al. apply this, as
well as the unit variance assumption of ¢ = 1, to Equation 4.12 and derive the following version of

the two-sided confidence interval for the estimated parameter i [64:316]

Ni—a/f?

VI 3)

with &;_,/2 being “the appropriate normal deviate” and 1(8¢) being the “expected, or Fisher,

G % (4.13)

information™ [64:315-316]. The appropriate normal deviate equates to the test statistic
Kl-af2 = Zoas = 1.96

and the expected information for I1(;3,) can be determined for the Execution Time model from
[64:351]

1 2Pt
1(/31)—"1e{23?-m} (4.14)

with the value for the Logarithmic Poisson Execution Time model determined from [64:334]
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I($) =

2, 1 1

me {Bl(l + Bite)In(1 + Bite)  268%1In(1 + Bit,) [1 ~ O 3116)2]
__ Cln(1 4 Bite) + 1] } .-
[(1+ Bite) In(1 + Bit,)]? (4.15)

Equations 4.14 and 4.15 are then substituted into Equation 4.13 to determine the upper and lower
95 percent confidence parameters of By. All three values (Bl, Bl tow » 30d Bip;4p ) are used in Equation
4.9 to determine vy and its confidence boundary, and also in Equation 4.11 to determine 8 and its
confidence boundary. The results of these are then used in Equation 4.10 to determine Ag and its
95 percent. boundary. The different values of Ay and vy are used in Equations 2.8, 2.9, and 2.10
to evaluate the applicability of the Execution Time model. while the diflerent values of Ag and ¢
are used in Equations 2.11, 2.12, and 2.13 to evaluate the applicability of the Logarithmic Poisson

Execution Time model.

4.5.2 Model Parameter Derivation. Applying the techniques and equations identified in the
previous section to strictly DT&E data results in a final failure intensity that can be based either
on time of last failure (A(7)) or on the number of failures experienced at that time (A(u)) [64]. As
these values are at the end of DT&E, they also represent the failure intensity values at the start
of the next phase of testing. IOT&E. Therefore, the value of Ay is known at the start of JOTLE.
Assuming additional data are not available (either with respect to failures or svstem characteristics).

calculation of the initial parameter 3; was based on the equations used to derive Ag.

The equation for Ag for the Execution Time model is based on Equation 4.10. and in its

expanded form is {64:351]
m.

with the expanded form of the Logarithmic Poisson Execution Tiine model also based on Equation
4.10 and given by [64:351]
me 3

- M 417
° T In(l + Bite) 410

Subtracting Ao from both sides and setting these equations equal to 0 allowed the Newton-Raphson

method to be used to determine the value of 3;.




4.5.2.1 Newton-Raphson Method. Again applying the Burden and Faires algorithm,

the first derivative of Equation 4.16 is

(I - 6—[’.lte )(m,) — (meBl )(tee_ﬁ-lt‘)
(1 —e-brte)?

f(B) =

(4.18)

and taking the first derivative of Equation 4.17 gives

é (1 + Bite))ime) ~ (meBr)(7h)(te) 10
= (In(1+ Byt.))? 1

Therefore, the initial derivation of 3, was determined after Ag. While. these equations use typical
end-of-test variables, such as {. and m,, these variables are cumulative and can reflect even the
early stages of testing. For the purpose of this study, only final IOT&E data was used after initial
parameter derivation from DT&E data, as this was believed to provide a better description of the

mapped models.

4.5.2.2  Additional Initial Parameter Derivation. Once (3; was derived. other initial
values were then derived. For the Execution Time model, vy = By was derived from Equation 4.9,

while Equation 4.11 was used to derive 6! = j;.

4.5.2.3 Confidence Intervals. Confidence intervals for the derived parameters were
developed based on the assumptions and equations presented in the previous section on model
parameter estimation. Once boundary values were derived, those values along with Ao and vy were
used in Equations 2.8, 2.9, and 2.10 to evaluate the applicability of the Execution Time model,
and the different values of Ap and @ were used in Equations 2.11, 2.12, and 2.13 to evaluate the

apphcability of the Logarithmic Poisson Execution Time model.

4.6 Assess the Models

Implementation and code development was conducted in accordance with the software devel-
opment hfecycle. and documented as such. A modular approach was used with the code to facilitate
changes during the experimental process. This proved useful. as an additional module was added
during the models’ evaluation. The exact implementation details of the analysis code are included

in Appendix D. An assessment of the models and their performance follows in the next chapter.




4.7 Define and Implement Data Collection Procedures.

As failure and date data had already been collected, the only additional effort was to locate
the test duration and time information needed for the models. The results of this are given in the
following chapter. Future efforts to collect software reliability data must include such test duration

and test time as important information. This also will be discussed in the following chapters.

4.8 Assess the Software Reliabilily.

This is the next logical step, and involves actual implementation of the candidate models on
a real project with actual data. Such an assessment of the software would be based on the models
results. As the goal of this thesis is to evaluate the software reliability models and not the reliability
of the test data software, comments concerning the reliability of the test data software is limited
to discussion of the models’ applicability and not the software systems’ reliability. From this. a

proposed IOT&E software reliability methodology will be discussed in the following chapters.

4.9 Summary

This chapter identified the implementation strategy for assessing the candidate software reli-
ability models. As the integration of software reliability is new to operational test and evaluation of
weapon systems. this chapter also identified the place a software reliability inodel implementation
strategy would have in the JOT&E environment. Results and discussion of the candidate software

reliability models” implementation follow in the next chapter.




V. Findings

This chapter presents the initial data analysis findings, the findings of the fitted models with
respect to the actual failure data, a comparison of the failure intensity values for each data set, and

an evaluation of each model fitted for IOT&E failure data from historical DT&E failure data.

5.1 Initial Data Analysis

The basic data fields listed in Table 4.3 were not sufficient for use with a software reliability
measurement model, as they were lacking some sort of failure time indication. Additional informa-
tion on timing and system characteristics was identified [45, 47]; however, of the initial 17 data sets
available, only five had sufficient supplemental information to make the maturity data meaningful
in a software reliability sense. Therefore, the initial data analysis was conducted using only these
five daia sets. Line charts were plotted for each using cumulative total failures for the y-axis and
execution test time for the r-axis to visually determine the trends of each curve. The results are

shown in Figures 5.1 through 5.6 and discussed below.

5.1.1 Data Set A1. The test durations used for this data set varied from 30 to 738 minutes.
Although the IOT&E dates were from July 1984 to June 1989 and test durations and dates were
available for the entire IOT&E period, the available data from the HQ AFOTEC software maturity
database (named SYSTERR) covered nnly the dates of 27 August 1987 to 30 April 1988, inclusive,
with one lone data point on 1 October 1986 (see Appendix B) [13]. This totaled six months of data,
with a total of 1465 failures indicated. The lone data point was excluded from initial and subsequent
analysis as the test duration time span between this and the next data point was too great for the
point to be meaningful. This assumption was based on the author’s personal experience from
performing IOT&LE on this weapon system. Also. if the trend is statistically sound. the absence of

one data point on either end should not affect the overall integrity of the data.

Initial analysis of the cumulative failure data reveals an exponential-like trend with respect
to execution test time (see Figure 5.1). This is encouraging. as the software maturity data is based
on calendar time (independent of execution time or test duration). and itself has an exponential
tendency [94]. Although the exact time of each failure occurrence was not known. times were
assumed to follow a uniform distribution, and were assigned randomly to each failure event within

the total test duration for that calendar day [64:158].

There was some difficulty mapping dates of failures to the dates of actual test durations.

In some cases, dates listed for failures did not have a date of test duration, and conversely sone
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Figure 5.1. Cumulative Failures vs Execution Time for Data Set Al

test. durations did not have associated dates of failures. The software listed in Appendix D was
modified to include a special module that would compensate for this discrepancy as follows. If test
durations did not have associated failures (or dates had multiple test durations), the test times were
added to the total test duration as an offset. Failures that had no associated test durations were
then added together until an existing test duration date was reached, and all were applied against
that date. Admittedly this approach seems unfair in that failures listed between test durations
should be applied against the previous test duration (as that is likely to be where the failures were
found): however. given the seeming randommess in association between date of failure and date of
test duration the method used should not unduly skew the data. The only visible instance of this
smoothing is the rather flat slope directly in the middle of the curve. Again, as the overall curve
tended towards exponential, this smoothing should not have any aflect on the data or subsequent

calculations.

Thus, it appears initially that both the Execution Time Model and the Logarithinic Execution
Time Model should fit this data distribution; however, as HQ AFOTEC is involved wiik several

different types of weapon syvstems. additional data sets must be analyzed for model applicability.

o
v
~




3.1.2 Data Set A2. The IOT&E for this system was from December 1988 to September
1989, during which there were 512.4 hours of testing with 304 total testing periods [45]. The failure
data available ranged from 24 February 1987 through 25 July 1989. During the IOT&E timeframe,
there were eight months of testing and a total of 47 recorded failures. An initial assumption was
made that each test duration was 1.686 hours long (512.4/304=1.686): however, there were only
37 failure dates listed from the SYSTERR database for the IOT&E period which would leave 267

test durations unaccounted (see Appendix B).

Since the number of failure dates did not correspond in any way to the number of test
periods, another way to determine the failure to test duration relationship was needed. Available
information for average test durations of similar weapon systems was used as a starting point to
determine an approximate relationship. The average number of test flights per aircraft per month'
for a fighter type aircraft is 10 flights/aircraft/month, with the average number for a larger type
aircraft (such as a bomber) being 5 flights/aircraft/month [1:3],[48:144]). A similar test program
used four total aircraft for testing [45]. Therefore, an assumption was made that four aircraft were

used with each having 10 test flights per month. This gave an approximate total of

(4 aircraft)(10 flights/month)(10 months)=400 sorties (or test durations)

that would have occurred from December 1988 to September 1989. As the actual number of test
durations was less than the estimated number, and assuming a standard normal distribution. either

the assumed number of test aircraft should be reduced giving

(3 aircraft)(10 flights/month)(10 months)=300 sorties

or the number of flights per month should be reduced giving

(1 aircraft)(8 flights/month)(10 months)=320 sorties

Varving the number of test aircraft yields the closer app.oximation. with the additional time from
the last four sorties easily applied to the last month of testing (which is acceptable, as there is no
failure data for any month past July 1989). Therefore, 30 test durations of 1.686 hours each (50.58
total test hours) were assumed to occur each month, with 34 test durations of 1.686 hours each

(57.32 total test hours) assumed to occur in the last month of testing.

Cumulative total number of failures were determined for these durations based on the fol-

lowing. Assuming a normal distribution for the dates of test. each month was treated as a total
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test du-ation of 50.58 hours (57.32 for the final month). The number of failures per month were
then added, and assigned randomly within that test duration. The results are shown in Figure
5.2. By inspection, the data appears to follow some form of exponential curve. While the trend is
more S-shaped, there appears to be enough of an exponential shape to proceed with the candidate

models on this data set as well.
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Figure 5.2. Cumulative Failures vs Execution Time for Data Set A2

5.1.3 Data Sct A3. There were 219 test periods. four test aircraft. and an average test
duration of 1.5 hours for IOT&E of this svstem which lasted from 23 May 1989 to | November
1939 [45]. This gave 5.25 months of IOT&E and 50 recorded failures. Using the relationship defined

above, that gives

{4 aircraft)(10 flights/month)(5.25 months)=210 sorties

which is extremely close to the 219 actual test flights. Varying the number of flights per month

(which is itself an average) to 11 gives




(4 aircraft)(11 flights/month)(5.25 months)=231 sorties

A closer approximation was obtained by taking the 219 sorties and dividing back by the number
of months (5.25), which yields 41.7 test flights per month. At 1.5 hours each (on the average) the

total test time per month is then

(41.7 test flights)(1.5 hours/test flight)=62.55 hours

with the first month of testing having only 15.6 test hours due to only 8 days of testing occurring

in the first month.

Cumulative total number of failures were determined for these test durations based on the
same assumptions that were used with the A2 data set. A normal distribution was assumed for the
dates of test, with each month treated as having a total test duration of 62.55 hours (15.6 for the
first month). The number of failures per month were then added. and assigned randomly within
that test duration. The results are shown in Figure 5.3. This curve exhibits more dramatic changes
in the cumulative failures than the previous data sets. Even so, the general trend should permit

the use of the candidate models.

5.1.4 Data Set S1. 10T&E for this system lasted from 3 February 1988 until 6 July 1989
[45]. A total of five two-week test periods occurred at three different test sites (two two-week
periods of testing at one site, two two-week periods of testing at another site. and one two-week
period of testing at the third site), with an average of 20 hours per day of testing for 14 straight

days [47].

The use of three different test sites normally requires adjusting the test durations and times
of failure occurrences. Musa et al. provides an excellent description of how to interleave test time
and fatlure occurrence for multiple test installations [64:162-165]. Normally. one would think to use
independent failure intervals for each program. as with the hardware for a system: however, due to

the logical nature of software a failure and test time interleaving is more appropriate [64:162-165].

For this application, the exact time of each failure occurrence is not known. Therefore.
interleaving is not applicable. and it will be sufficient to take the total test duration of
(20 hours testing per system per day)(3 systems)=60 hours testing per day

and divide that by the number of failures occurring on that day. Since the five two-week test

periods were well within the start and stop dates for IOT&E. and there were failure data for other
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dates inside the IOT&E timeframe, the total IOT&E time was considered to be Y~ (60 hours per
dayj(number of days in the month) for a total of 16 months of fallure data (see Appendix B). The
exact test time, therefore, varied with the number of days in the month and totaled 27780 hours
(an average of 1736.25 test hours per month). There were 413 recorded failures. The results of
this are shown in Figure 5.4. This data set has, by far. exhibited the closest approximation to an

exponential curve. Therefore, the candidate models should work very well with this data set.

5.1.5 Data Set W1. There were no JOT&E dates nor test durations given for this system
[4:')]. The total SYSTERR database was used, resulting in an assumed 7 months of IOT&E with
450 recorded failures. Therefore. based on the author’s limited involvement with a similar system
and the frequency of failure dates, an initial assumption was made that all tests dates were valid
data points, test durations only occurred on the dates of failure identification (as determined from
the SYSTERR database), and that each test duration was six hours long. This resulted in the data

increasing in a linear fashion (see Figure 5.5).

Subsequent research indicated that actual test durations were 16 hours each, and another

assumption was made that testing was conducted for five working days cach week [46]. At an
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average of 22 working days per month (or 4.4 weeks per month), and still using all failure dates,

that results in

(22 working days per month)(16 hours testing per day)=352 hours testing per month

or 80 hours of testing per week. The resulls of this new calculation are shown in Figure 5.6, and
the data distribution is much more exponential than under the previous assumptions. This is not
an instance where the assumptions were changed to provide data that fit the models; instead, the
initial assumptions were modified as additional data became available. Based on the additional

data, the candidate models should also be applicable to this data set.

5.2 Calculated Values for Current Number of Failures Compared 10 Actual Number of Failures

After an initial model feasibility assessment of the data indicated the candidate models were
feasible for the data sets based on the data sets’' apparent exponential distributions, parameter

estimates were obtained, fitted models were derived. and goodness-of-fit tests performed for each
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model/data set combination. It is helpful at this point to redefine the goal of this thesis in terms

of a null hypothesis such that [38:280]

Hy:8 =46,
}112()#00

where @y is a parameter being assessed against an [L. U] interval with 100(1 — o) percent confidence
[38:280]. The test then leads to rejection of the nuil hypothesis Hy if the parameter 6y is outside

the 95 percent confidence interval [38:280].

The second assessment is concerned with the calculated values for “current” number of failures
compared to the actual number of failures for any given time during the entire IOT&E test period.
Therefore, 8 is the actual number of failures experienced. and the parameter 6y is expected number
of failures at time 7, or p(7). derived from Equations 2.8 and 2.11. The [L,U] boundaries are
calculated for the initial parameter 4, based on Equation 4.13 and either Equation 4.14 for the
Execution Time model or Equation 4.15 for the Logarithmic Poisson Execution Time model. The

parameter and its boundaries are then nsed in Equation 2.8 for the Execution Time model and
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Equation 2.11 for the Logarithmic Poisson Execution Time model. The results of this are shown

in Figures 5.7 through 5.16 and discussed below.

5.2.1 Data Sct A1, The results of the fitted Execution Time model application to the data
are shown in Figure 5.7. Equation 2.3 was fitted with values of the initial parameters Ay =

0.162871611 and 1y = 1628.74 to get the following equation for failures expected at time 7

R 0162871611
T)= Tl —exp| -7 5.
pr) = 16283 P 162874 (

(s
—
~—

The actual data tends outside the projected 95% confidence intervals; however, this represents
only a small part of this weapons system’s entire IOT& E effort. The tendency outside the confidence
intervals could be due to the small snapshot of data used (6 months of recorded maturity data
compared 1o alniost 5 vears of IOTLE). or to the failure time assignment process. This process
prohibits identifving exact failure times (there was no initial correlation between maturity failures
and dates of testing). and results in reporting the failures as “lump sums™ at varying time intervals

based on a calendar date relationship. Therefore, while we apparently reject the null hypothesis.
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additional test data on either end of the curve for a substantial amount of time would provide a

more accurate assessment of the Execution Time model.
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Figure 5.7. Expected Failures Using Execution Time Model for Data Set Al

This same observation holds for the Logarithmic Poisson Time model. whose results are
shown in Figure 5.8. Equation 2.11 was fitted with A = 0.322609809 and 8 = 0.001883754 as

initial parameters to get the following equation for failures expected at time 7

1

= —————  In((0.322609809)(0.00 188375 5
S ooTRRgeeg  M((0.322609809)(0.001883754)T + 1) (5.2)

p(T)

The Logarithmic Poisson Time model did provide a closer fit to the data: however, three
of the five data “lump sums” were significantly outside the confidence intervals, and we therefore
reject the null hypothesis. In this case, a more accurate determination of failure times could provide

a better representation of failure times, and possibly an even closer fit of this model.
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Figure 5.8. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set Al

5.2.2 Data Set A2. The fitted form of the Execution Time model had initial parameters

Ao = 0.003096631 and 1y = 73.24 o get the following equation for failures expected at time r

(5.3)

0.003096631 _
73.2

w(t) =73.24 [1 — exp ( _—7

There was a substantially better fit of the Execution Time model to the A2 data than the
A1l data, as can be seen in Figure 5.9. All but the two initial data points were within the 95%
confidence intervals. This trend is not uncommon for the Execution Time model, which tends to
perforin more satisfactorily after the first 60% of the test time period [64. 89]. Overall. there was

a good fit of the model to the data, and we fail to reject the null hypothesis.

Similarly, the Logarithmic Poisson Execution Time model performed better for this data set
than for the previous data set (see Figure 5.10). The model was fitted with Ay = 0.003267847 and
6 = 0.020626162 as initial parameters to get the following equation for failures expected at time 7

u(r) - In{(0.003267817)(0.020626162)7 + 1) (5.4)

= 0.020626162
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Figure 5.9. Expected Failures Using Execution Time Model for Data Set A2

One possible reason for the better fit could be the data set being complete with respect
to the amount of IOTLE test time and number of failures recorded, while the previous Al data
set contained only a portion of the overall operational testing effort. It is interesting to note the
Logarithmic Poisson Execution Time model does not fit as well to the data as does the Execution
Time model. This could be due to failures not having specific occurrence times-the combination
of using average test durations per month and assigning normally distributed random times as
failure occurrence times could produce clustering of data. While these clustered points do provide
adequate trend analysis, a more accurate representation of the failure time data could indicate a
much closer model fit. As it stands. we must reject the null hypothesis .for this candidate model

with the data set.

5.2.8 Data Set A3. The results for data set A3 are similar to those of data set A2, and are
shown in Figure 5.11. There appears to be a closer model fit for A3 than either of the previous two
data sets using the Execution Time model, leading us to fail to reject the null hypothesis. Again,
this could be due to this data set being complete with respect to the data that was available. even

though the test times per month were derived from an average. The fitted form of the Execution
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Figure 5.10. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
A2

Time model had initial parameters Ay = 0.005358151 and vy = 82.74 to get the following equation

for failures expected at time 7

(5.5)

- 0.005358151
W) =8274{l—exp| ———=——T7

82.74

The actual number of failures (¢) at any given time (7) appears to exhibit an s-shaped
tendency. This is also true for the previous data sets A2 and Al. While this might lead to the
conclusion that a model such as the Yamada-Ohba-Osaki Power model could be feasible. there is
another possible interpretation. The shift in the curve could be due to additional software releases
during the IOT&E time frame. Musa et al. present a method of adjusting failure times for evolving
programs [64:440-448]; however, the limited scope of IOT&E should not require such adjusting,

especially when the data are located within the confidence intervals.

The Logarithmic Poisson Execution Time model also fit well to the actual data on failures

experienced (see Figure 5.12). The model was fitted with Ag = 0.005505088 and # = 0.017004749
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Figure 5.11. Expected Failures Using Execution Time Model for Data Set A3
as initial parameters to get the following equation for failures expected at time 7

1
= —. .005505088)(0.01700474 5.6
w{T) 5017004749 In((0.0055 )(0.017004749)7 + 1) (5.6)

Any potential reasons for the minor deviations have been previously discussed for the data sets

Al and A2. Overall, the model appears to have a very good fit. Thus, we fail to reject the null

hypothesis.

5.2.4 Dala Set S1. The Execution Time model had a fitted form with initial parameters

Ag = 0.001173446 and vy = 417.03 which gave the following form of the equation

001173446
O——_T)] (5.7)

u(t) =417.03 [1 — exp (— 11703
.U

Figure 5.13 shows the closeness of the curve to the actual data, and while the S1 data curve
appears to be steeper than the estimated curve, the fit is still very close. One possible reason for the

steepness of the curve and tightness of the 95 percent confidence intervals could be the assumption
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Figure 5.12. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
A3

of uniform test time (60 hours per day) throughout the entire month. It is possible that actual test
times could flatten out the curve. resulting in a closer fit of the model. Even so, we fail to reject

the null hypothesis due to the closeness of the data and actual curve.

With the exception of the steepness of the actual curve. the Logarithmic Poisson Execution
Time model also fit well to the actual data (see Figure 5.14); however. there were enough data
points outside the confidence intervals that we reject the null hypothesis. The Logarithmic Poisson
Execution Time model was fitted with the initial parameters Ay = 0.001770339 and 0 = 0.007616991

to get the following form of the equation

7)) = -In((0.001770339)(0.007616991)7 + 1) (5.8)

0.007616991
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Figure 5.13. Expected Failures Using Execution Time Model for Data Set S1

5.2.5 Data Set W{1. The fitted form of the Execution Time model had initial parameters

Ap = 0.001927052 and vy = —221.00 which gave the following form of the equation

(5.9)

0.001927052
u(r) = —221.00 [1 ~ exp <_______‘__ )]

—221.00

This was by far the most interesting of the data sets to analvze. Figure 5.15 reveals an fucreasing
failure rate. Musa et al. note that if both the initial parameters 3y and g, are less than 0. the
model will exhibit an increasing failure intensity {64:310]). Such an indication does not invalidate the
model’s application. since this model is of the exponential Poisson group which “can accommodate
increasing and decreasing failure intensities.” making sure that p(f1) and A(t) are both nonnegative

[64:310].

The reason for this increasing failure intensity could be the operational tests were designed
to exercise the easier parts of the system first. and then the more critical ones later. The rapid
flattening towards the end of testing would then be indicative of a regression test where only one
or two new failures are identified. Still, the Execution Time model does provide a fairly accurate

mapping to the actual failure data for the last half of the test time. This concurs with other
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Figure 5.14. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
S1

observations of applications of this model [64. 89]. As the test for the null hypothesis is regardless

of an increasing or decreasing failure intensity, we fail to reject the null hypothesis.

The results of the Logarithmic Poisson Execution Time model are a little more dramatic.
As shown in Figure 5.16, the curve has a very steep incline and then a drastic flattening. This
could be based on the fact that this data set has an increasing failure intensity, and although
geometric Poisson group models can “accommodate decreasing and a certain type of increasing
failure intensities,” the initial model parameter 3; still diverges [64:312]. Indeed. The Logarithmic
Poisson Execution Time model was fitted with the imitial parameters Ag = 73.957034969 (which
indicates divergence in the Newton-Raphson estimation method) and 6 = 0.046383798. resulting

in the following form of the equation

p(r) = In((73.957034969)(0.046388798)T + 1) (5.10)

1
0.046388798

The level of initial parameter divergence appears to affect the slope of the curve in a pro-

portional way. One possible way to reduce the steep slope is to test the more failure-likely areas
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Figure 5.15. Expected Failures Using Execution Time Model for Data Set W1

first. before checking the least-likely failure areas of the software. With the calculated data clearly

differing from the actual data, we reject the null hypothesis.

5.3 Assessment of Failure Intensity Values

The previous two assessments established the models’ feasibility with respect to the initial
data. as well as the “fit” of the model based on parameter derivation. This section addresses the

fatlure intensity calculations of both models.

The initial failure intensity (Ay) and final failure intensities for each data set are shown in
Table 5-1. The final failure intensity values are listed for both time (A(7); from Equations 2.9
and 2.12) and failures experienced (A(y¢); from Equations 2.10 and 2.13). The values for data set
W1 are very much skewed based on the increasing failure intensity charactenstic of the data, and
provide no insight into any relationship between the failure intensities. Data set Al does not cover
its final IOT&E testing time. Therefore, the final failure intensities can not be used to determine
any operational reliability; however, it is interesting to note the closeness of values between the

two different. models’ final failure intensity calculations. While there is considerable disagreement
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Figure 5.16. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
Wi

between the Execution Time model and the Logarithmic Poisson Execution Time model concerning
the final failure intensities for the test period. the basis of calculation (time vs. experienced failures)

does not seem to impact the specific calculations for each model.

Similarly, data sets A2 and A3 have final failure intensity values for each model that are
relatively close to each other regardiess of calculation basis (i.e-A(7); = A(p)s). There is a
substantial difference between the two candidate models for each data set. Within each data set

the models yvield close results regardless of the input parameter (time or fatlures).

Data set S1 seems to exhibit a more ideal failure intensity trend. The values for each model
are almost identical regardiess of the input parameter (time or failures) and appear to decrease to
a more favorable level. Taking one of the final failure intensities. such as A(r); = 0.000011327 for

the Execution Time model, the operating assumption can be extended to

(60 hours per day)(365 days per vear) = 21900 hours of operations per year



Table 5.1. Comparison of Software Reliability Failure Intensities

Data Set Initial Failure Final Failure Final Failure
and Model Intensity Aq | Intensity A(7); | Intensity A(u),
Al (Exec) 0.162871611 0.010574044 0.010573845
A1l (Log) 0.322609809 0.018310707 0.018310712
A2 (Exec) 0.003096631 0.001138657 0.001109443
A2 (Log) 0.003267847 0.001259321 0.001239492
A3 (Exec) 0.005358151 0.002120178 0.002120206
A3 (Log) 0.005505088 0.002352398 0.002352398
S1 (Exec) 0.001173446 0.000011327 0.000011340
S1 (Log) 0.001770339 0.000076181 0.000076181
W1 (Exec) 0.001927052 0.005850893 0.005850914
W1 (Log) 73.957034969 0.000169250 0.000000064

which can then be applied to Equation 4.1 to give a reliability assessment of

R(21900) = ¢—(0.000011327)(21900)

0.780312109

5.4 Calculaled Values for Current Number of Failures (Based on DT&E Data) Compared to Actual

Number of Failures

A fourth model feasibility assessment was made of the candidate models based on the available
DT&E data. Parameter estimates were obtained and fitted models were derived for DT&E, from
which the final failure intensity values were determined. These values then served as initial inputs
to the models, and another evaluation similar to the second assessment was conducted. The same
null hypothesis criterta and goals apply, only the data set has been expanded to provide more
realistic values of the initial parameters. Only data sets A2, A3 and S1 had identifiable DT&LE
failures as well as some measure of test durations for the DT&LE timeframe. The results are given

helow, and shown in Figures 5.17 through 5.22.

5.4.1
was made that DT&E had the same test times per month as IOT&E (50.58 hrs). The final DTLE

Data Set A2, In order to determine the final DT&E failure intensities, the assumption

failure intensities for both A(7) and A(y) of the Execution Time model were identical, providing

the IOT&E initial parameter Ag = 0.001687372. From this, the fitted model was derived as

(5.11)

0.00168737
u(r) = —125.65 [1 — exp (————‘—'—2 )]

—125.65
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The data were, for the most part, within the 95 percent confidence intervals (see Figure 5.17).
The interesting shape of this curve could be due to the initial Ay value derived from the DT&E
data. The resulting negative value for pg is an indication of an increasing failure intensity. Since
the first two assessments demonstrated data set A2 as having a decreasing failure intensity, the only
conclusion is the curve is affected by the initial Ag parameter. This, in turn, could be a function of
the assumptions used to determine the test times for the DT&E assessment. Thus, while there was
a good fit of the model to the data, the shape of the curve makes the initial parameters suspect;

however, we still fail to reject the null hypothesis based on the coverage the model provided.
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Figure 5.17. Expected Failures Using Execution Time Model for Data Set A2

The Logarithmic Poisson Execution Time model also exhibited an increasing failure intensity
trend (see Figure 5.18). The initial DT&E (ailure intensity estimate was Ay, = 15.504426266.
indicating divergence. Therefore, the model was not able to calculate a final value of either A(7)
or AM(u) for DT&LE. Instead, the IOT&LE model was fitted with same initial failure intensity as the
Execution Time model: Ay = 0.001687372. The corresponding # = —0.007139135 was derived, and

the equation for failures expected at time 7 was

1
=— . 001687372)(—0.00713913"
H(r) = —gommraores - In((0.001687372)(~0.007139135)7 + 1) (5.12)




Again, the same factors that affected the Execution Time model could also have affected the
Logarithmic Poisson Execution Time model, especially since both models used the same initial Ag
parameter; however, in this case the model does not fit the data, and we reject the null hypothesis.
Accurate values for test times and failure times of occurrence could indicate a much closer fit of

model and data.
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Figure 5.18. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
A2

5.4.2 Dala Set A3. The DT&LE version of the fitted model had Ay = 0.002136669. and
the resultant fitted form of the Execution Time model for IOT&E data had imitial parameters

Ao = 0.005729161 and vy = 75.42. Tlhis gave the following equation for failures expected at time 7

(5.13)

0.0057
p(r) = 75.42 [1 —exp (—MT>]

¥5.42

Data set A3 had a closer fit of the Execution Time model to data than did data set A2 (see
Figure 5.19). The results were very similar to those shown in Figure 5.11. This closeness could be

due to a closer approximation of DT&E final failure intensity values based on a hetter test time




approximation (even though the time used was an average). Therefore, the model maps well to the

failure data, and we fail to reject the null hypothesis.
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Figure 5.19. tixpected Failures Using Execution Time Model for Data Set A3

The Logarithmic Poisson Execution Time model was able to calculate a final DTLE A value

for both time and failures experienced. Both numbers were identical. with a value of 0.000173741;

however, when this nuimber was used as the initial parameter estimate for the JOT&E data, the

software encountered a math overflow due to the ratio of the small initial value compared to the

TOT&LE data set. Thus, the IOT&E initial failure intensity parameter was taken from DTLE

final faillure intensity calculations for the Execution Time model. The mitial parameter was then

Ao = 0.005729161, fromi which 0 = 0.018397759 was calculated. This gave the following equation

for failures expected at time 7

#(7) = 5018397750

- In((0.005729161)(0.018397759)7 + 1) (5.14)

The results are shown in Figure 520, and appear to be identical to the second assessment

(see Figure 5.12). The model fit is sufficiently close that we fail to reject the null hyvpothesis. The




closeness of both the Execution Time model and the Logarithmic Poisson Execution Time model

indicate that using DT&E data to derive the initial parameters could he a feasible method.

Failures (Cumulative)

60 ;

O' L L L 1 L L
o 2 4 6 8 10 12 14

Execution Time (Thousands of Minutes)

—— mu —+—  mu(tau)

——  Upper Bound —£— Lower Bound

Figure 5.20. Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
Al

5.4.3 Data Set S1. The Execution Time model used the DT&E final failure intensity value
Ao = 0.001850621 as the initial parameter to calculate vg = 413.26 and give the following form of
the equation

5.15
113.26 (5.15)

0.001850621
(7)) =413.26 [l — exp (————————r)]
In contrast to Figure 5.13, Figure 5.21 shows the data lagging behind the model throughout
the entire IOTLE period. The unifornity of the models curve and closeness of the estimated and 95
percent confidence values could be due to the assumption of uniform test time during each month
of testing. As with the second assessment, it is possible that actual test times could flatten out the

curve, resulting in a closer fit of the model; however, as it stands now there is no fit hetween the

model and the data, and we reject the null hypothesis.

As the initial failure intensity calculation for the DTLE version of the Logarithmic Poisson

Execution Time model diverged, the IOT&E version was fitted with the initial parameter Ag =
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Figure 5.21. Expected Failures Using Execution Time Model for Data Set Sl

0.001850621, from which 0 = 0.007764353 was derived to get the following form of the equation

i
= ——— . In({0.001850621)(0.007764353)7 + | 5.16
u(r) 000701353 n{( 1850621 )( o v+ 1) (5.16)

The Logarithmic Poisson Execution Time model had a closer fit to the data then did the
Execution Time niodel (see Figure 5.22). This trend is very similar to the one found during the
second assessment (see Figure 5.14). While the model does somewhat approximate the actual data,
there is a sufficient number of data points ontside the 95 percent confidence interval to reject the

null hypothesis.

5.5 Summary

This chapter presented an initial assessment of the apphicability of each candidate model to
the available data sets. Next, the results of the fitted models were discussed, with a comparison
inade between actual and estimated failures. The failure intensity values ... - ves were assessed

for any sort of trend data. Finally. for those sets with sufficient failure and time data, the models
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Figure 5.22.  Expected Failures Using Logarithmic Poisson Execution Time Model for Data Set
S1

were run on DTLE data to determitne the initial parameters for IOT&E, and a fourth assessment

was petformed to see if the models were affected by previously existing failure data. The next

chapter contains conclusions and recommendations concerning these evaluations.
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VI. Conclusions and Recommendations

Current operational test and evaluation of weapon system software by HQ AFOTEC pri-
marily emphasizes the operational suitability of the software. There is no current measure of the
operational effectiveness of the software. In order to provide some assessment of a weapons system'’s
software, this thesis proposed that a software reliability model could provide the needed level of

operational effectiveness assessment.

Only existing software reliability models were considered-no new models were proposed. A
hierarchy of software reliability models was defined, with emphasis on product vs. process models.

Within this overall grouping. four categories of software reliability models were identified:

Fault seeding

Input domain

Times-between-failures

Failure count.

Software reliability model evaluation criteria were established that included:

Predictive validity

Capability

Quality of Assumptions

Applicability to the Finite-Time Environment

e Diversity and Applicability of Output

Capability to Use Existing Data

Potential software reliability models from the four categories were evaluated against these
criterin. A final selection was made of two candidate models: the Musa Execution Time model.

and the Musa-Okumoto Logarithmic Poisson Execution Time model.

Implementation of the candidate models was performed. and five test data sets were run to
assess tne models’ fit and applicability. Analysis was conducted both on the initial test data sets and
calculated values for nummber of failures and confidence intervals. An analysis was also performed
on the calculated failure intensity values. Finally, three test data sets were run on historical DT&E
data to determine initial parameter estimates. which were then used for OTLE assessment of the

models’ fit and applicability.
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6.1 Conclustons

The sumnary results of the null hypothesis test for each candidate model are shown in Table
6.1. There is a generally good mapping of the Execution Time model to the actual failure data, while
the Logarithmic Poisson Execution Time model did not map as well. The deviations outside the 95
percent. confidence intervals could be attributed to the manner in which unknown time parameters
were estimated for the failure data. While the data (failure and times) were not exactly accurate
and complete on all accounts, this variation did give a chance to evaluate both candidate models’
robustness with respect to missing or incomplete data. With both models, there was sufficient
parameter estitnation available to compensate for the lack of exact failure and time data; however,
the lack of data appears to have a significant impact on the Logarithmic Poisson Execution Time

model.

Table 6.1. Summary Analysis of Hgy Test

Data Set | Musa Execution | Musa-Okumoto
Time Model Log Model
Al Reject Reject
A2 Fail to Reject Reject
Al Fail to Reject Fail to Reject
S1 Fail to Reject Reject
Wl Fail to Reject Reject

There is nothing definitive that can be concluded from the comparison of failure intensity
values. Possibly, after gathering enough information from different weapon systems, it might be
possible to identify a trend in reduction of the failure intensities from start of IOT&LE to end of
IOT&E, or it might be possible to identify target values for final failure intensity based solely on the
category and type of weapon system (e.g.-fighter aircraft could have the same operational profile.
and. therefore, flv roughly the same number of hours per sortie or per year). Another potential
application is in determining release time for the software; however, that requires prediction of the

software’s reliability, and is left to future research for validation.

The two previous analyses were preliminary. and led to the final assessment of using DT&E
data as the hasis for parameter estimation, which was then used with the models on IOTLE data.
The results of this assessment are shown in Table 6.2. Again, the Execution Time model appears
to perform better than the Logarithmic Poisson Execution Time model; however, on data set
A3 where the execution time data was mote accurate, both models performed well. This could

be due to the use of the Execution Time model DT&E final failure intensity value A{7), as the




Logarithmic Poisson Execution Time model IOT&E initial failure intensity parameter Ag. Another
possible explanation is the execution time data available being more complete than time data for
the other data sets. A combination of the two is also possible. The closeness of the fit does indicate
the merit of using DT&E maturity data as the basis for parameter estimation of the models for
IOT&E reliability measurement; however, additional analysis with complete test data is necessary

to state this conclusively.

Table 6.2. Summary Analysis of Hg Test for Data Sets With DT&E Based Initial Parameters

Data Set | Musa Execution { Musa-Okumoto
Time Model Log Model
A2 Fail to Reject Reject
A3 Fail to Reject Fail to Reject
51 Reject Reject

An extra evaluation criterion discussed by Mr Siefert in the recent American Sociely for Qual-
1y Control Ist International Conference on Software Quality was a more subjective assessment of a
software reliability model, namely “is it good” [79]. The candidate models presented in this thesis

&

exhibit a definite “goodness™ about them, which stems from their straightforward implementation
as well as capability to use existing initial failure intensity data or derive this information from

svstem characteristics. These capabilities were not found in any of the other models.

6.2 Recommendalions

There are three other aspects of IOT&E software reliability models that should be investi-
gated: data needed for software reliability evaluation: additional analvsis of the candidate models:

and applicability of software reliability. These are described in the following sections.

6.2.1 Data Needed for Software Reliability Evaluation. The most important aspect of soft-
ware reliability models that appeared throughout the literature was that of collecting enough accu-
rate and complete data. Unfortunately. the data sets used for this study were not that accurate nor
complete. The AFOTECP 800-2 Vol 6, Software Maturity Evaluation Guide, does include a field
for total operating time in minutes, which is the time of failure from the very beginning of IOT&E
[23, 46]. While such a measure is good to have (time of failure is needed), multiple testing that
can occur with weapon systems such as aircraft require a simpler approach to collecting test and
failure times. One way to simplify this is to require tracking test duration (or test start and stop

times), as well as local time of failure ([ailure time with respect to that test, e.g -failure 1 occurs
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Table 6.3. Proposed Software Maturity Data

Description Variable Name Format
Software Problem Number PROB_.NUM Character 10
Software Configuration Item CPCl Character 10
Severity of Problem SEV_CODE Character 1
Date Problem Discovered DATE Date
Date Problem Fixed DATE Date
Description of Problem TITLE Character 42
Test ldentification Number TEST.ID Character 10
Date Test Planned TESTPLAN Date
Date Test Completed TESTCOMP Date

Start Time (minutes)

START_TIME

Character 10

Finish (End) Time (minutes)

END_TIME

Character 10

Time of Failure Occurrence

TIME_OCCUR

Character 10

at +2.00 minutes). The software model implementation can then calculate cumulative test times,

cumulative failure times, and any other needed statistics.

In general, the data necessary to applying software reliability models to IOT&E would include
the current software maturity fields. with the exception of replacing the one field for total operating

time with the specific time fields described above (see Table 6.3).

In support of data persistence, an object-oriented database (OODB) should be implemented;
however. due to the newness and complexity of OODBs. a transitional approach is acceptable where
the database is described by an object-based semantic data model (SDM) and then transformed
mto an entity-relationship diagram (ERD) for implementation at the physical level. This imple-
mentation can then be carried out with an existing relational database model. such as the one used

by Clipper. with virtually no loss to the data meaning or relationships.

The complete description of these models and their interrelationships is given in Appendix
E. along with the SDM description for aircraft reliability data. This description can easily be
expanded into a superclass that would iuclude aircraft. radar, missiles, and any other categories of
weapon systems. The SDM description includes not only the failure data needed for the weapon
system. but also the data that will be calculated by the software reliability models. From this, the
entity-relationship (E-R) diagram shown in Figure 6.1 was derived. This diagram would then be

the basis for implementing the relational model to track software reliability.

6.2.2  Additional Analysis of the Candidate Models. Additional analysis of the candidate

models is needed in the following areas: additional different weapon systems: use of system char-
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acteristics to determine initial parameters; evaluation of model adequacy based on goodness-of-fit

tests; impact of failure classification and weighting; sources of additional test time.

Additional Different Weapon Systems. First, as sufficient data is accumulated on
different weapon systems, the same tests performed in this thesis should be applied to see if there

1s agreement on the results.

Use of System Characteristics lo Determine Inttial Parameters. Next, the ca-
pability to use system characteristics instead of failure data to determine initial parameter values
should also be done and compared to the results of the other tests. If there is a high correlation
between the three model implementations (using parameters determined from actual IOT&E fail-
ure data, parameters determined from previous DT&E failure data, and parameters derived from
svstem characteristics). then the models should be implemented for all IOT&E test teams. The
viability of the Musa-Okumoto Logarithmic Poisson Execution Time model has already been es-
tablished by an American Institute of Astronautics and Aeronautics (AIAA) independent study.
The study was conducted by a special “Blue Ribbon Panel” consisting of such software reliability
professionals as Dr Farr, Dr Hecht, Mr Musa, Dr Shooman, Mr Siefert, and others. The AIAA
panel identified the Musa-Okumoto Logarithmic Poisson Execution Time model as the best software

reliability model in the time domain category, non-exponential class [80:186].

Evaluation of Model Adequacy Based on Goodness-of-Fit Tests.  Finally, as data
on failure counts per time interval becomes more thorough, it will be possible to group the failure
data by number of sample observations. Trends could emerge that would provide an indication of
the expected number of observations for time intervals throughout IOT&E. This would then allow

\? and other goodness-of-fit tests to be used to test the candidate models’ adequacy [95).

Impact of Farlure Classification and Weighting.  This study did not progress to
the point of analyvzing the individual categories of software failures. Research should continue
in that direction to see if there is some relationship between the severity of the failure and the
cumulative test time. Also. potential acceptability thresholds could be established that allow some

categories of failures while requiring others to be corrected prior to the end of IOTLE.

Sources of Additional Test Trme. Should the Test Director begin to run out of
test time before reaching his/her desired failure intensity, alternative methods of testing might
increase the test time. For example. Adolph and Montgomery identified the Integration Facility

for Avionics System Test (IFAST), which was essentially a hot-mock-up of some of the aircrafi
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undergoing test and evaluation at Edwards AFB, CA [1]. The use of the IFAST facility provided
additional test time, without requiring additional sorties from the aircraft and crew. An installation
such as this would be included as a multiple installation, and the additional test time could help
reduce the failure intensity without creating additional operational test costs. Methods of including

such additional test time and data should be considered for integration into the model databases.

6.2.3 Applicability of Software Reliability. The candidate software reliability models can
potentially be used together with system capability assessments, combined with hardware reliability
models, applied to theoretical hardware designs, integrated with other software reliability models.

or applied to cost estimation.

Seftware System Effectivencss. Software reliability provides one way of measur-
ing the operational effectiveness of the weapon system software; however, a measure of the impact
of software reliability on the total weapon system effectiveness could be determined as follows. The
ratio of software up-time to total software “mission” or test time would be determined, and this
value would be the Software System Effectiveness (SSE) [8]. This number would then be mul-
tiplied against the desired Mission Capable (MC) rate of the overall weapon system, giving the
Total Weapon System Effectiveness (TWSE) [8]. This result is actually an adjusted MC rate that
takes into account the current effectiveness of the software. In support of this, software failure
data that indicates mean-time-to-recover software (MTTRS) should also be collected, and could
be included as an additional field of either UP_TIME (time the software was available during the

test) or DOWN_TIME (time the software was not available during the test).

Combined Hardware and Software Reltability Modcls. The concept of SSE was
somewhat suggested in [42] as part of a comnbined hardware/software reliability model. A combined
model must consider such “randoni phenomena™ as the “software ‘repair’ process™ where the system
is restored “to an operational state without correcting the software fault™ [42:1-1]. Therefore, even
if a combined model is not available in the near future, MTTRS and SSE data should be collected
and calculated now to provide both an initial assessment of mission capability and also provide a

historical database for a future integrated hardware/software reliability model.

Applicability to Hardware Design Reliability. With the growing use of hardware
modeling techniques such as VHDL (Very High-Speed Integrated Circuit (VHSIC) Hardware De-
scription Language), the possibility exists that software reliability measurement (with its focus on
the design as opposed to the physical aspect) might one day be necessarily applied to hardware

designs that exist only in the memory of a computer. Toward this end, software reliability models

06-7




for IOT&E could provide the foundation for determining the 1OT&E logical design reliability of

hardware from components to systems.

Integrated Software Reliabililty Tools. One of the current trends in software reli-
ability is to have many different reliability models integrated into one tool. Many different tools
are being identified to perform software reliability prediction, measurement, and analysis, and it
is possible that not all software reliability models are applicable to all phases of the software life-
cvcle. Indeed, it may be possible or even desirable to implement a different software reliability
model during each phase of the software life-cycle [69]. This would require standardization of data
to be used between models. By having many diflerent models in one tool, the software evaluator in
the field can become overburdened with understanding the intricacies of each model and when they
apply, as well as possibly collecting data that could vary from one model to the next. An example
of this is the SMERFS tool, which has two different sets of models selectable from the main menu,
and requires different types of data for each set {29]. Clearly. having one standardized model (or at
least set) with one basic database will make software reliability evaluation easier for the software
evaluator in the field, as well as making the data collection job easier for the data point of contact

at HQ AFOTEC.

Cost Estimation. This thesis proposes using the candidate models to determine
the time needed to reach a desired failure intensity objective given a current failure intensity
value. A recent paper ties this to actual testing cost [90]. The paper demonstrated that, due
to the dependency of testing costs on software failure behavior. a quantitative cost model can be
incorporated with the Logarithmic Poisson Execution Time model to determine marginal costs
[90:423-424]. Additional research into the area of combining software cost models and software

reliability models could then provide a more useful tool to hoth engineer and manager.

6.3 Summary

This evaluation reached important conclusions about the application of software reliability to
IOT&E of weapon systems. It is clear that candidate models exist which can work with some degree
of certainty in evaluating the software reliability, and hence. the operational effectiveness of weapon
system software. The applicability of these models extends far beyond the IOT&E of software, and
as the software evaluation process matures a better understanding and assessment of both software
and the overall weapon system will be gained. To what ever extent software reliability is pursued,

the fact that it is being considered is just one step closer to obtaining “good code” for the user.




Appendix A. Software Definitions

The following definitions were taken from multiple sources, and are included here as additional

information.

Error. Human action that results in software containing a fault. Examples include: omission
or misinterpretation of user requirements in a software specification, and incorrect translation or

omission of a requirement in the design specification.

Fault. A manifestation of an error in software. A fault, if encountered, may cause a failure.

Synonym - Bug.

Failure. The inability of a system or system component to perform a required function

within specified limits. A failure may be produced when a fauit is encountered.

Failure Intensity. The numiber of failures per unit time. Failure intensity can be identified
for average number of software failures per flight hour (SF/FH) and average number of software

failures per mission (SF/M).

Maintainability. The ease with which software can be maintained. The extent to which a

component facilitates updating to satisfy new requirements or to correct deficiencies.

Maturity. The extent to which a component has been used in the development of deliverable
software by typical users and to which feedback from that use has been reflected in modifications

to the component.

Mean Time to Recover Software. The amount of time required to recover from a software
failure and restore operational capability of the software. This could be the time necessary to
“reboot” the system, or the amount of time spent by an operator clearing an error display and

selecting an alternate menu option.
Model. A representation of a real world process, device, or concept.

Requirement. A condition or capability that must be met or possessed by a system or syvstem

component to satisfy a contract, standard, specification or other formally imposed document.

Software Maintenance. Modification of a software product after delivery to correct faults,

to improve performance or other attributes, or to adapt the product to a changed environment.

Software Maturity. An assessment of the software based on the number of faults in a
computer program. This includes known and undiscovered (latent) faults. Latent faults might

not be discovered until several years after {ull scale production, if at all. Emphasis here is on




development activitres. A measure of the software’s progress in its evolution toward satisfaction of

all documented user requirements.

Software Reliability. The probability of failure-free operation of a computer program for
a specified period of time. The emphasis here is on operational activities. If the software fails, then
there could be faults that must be corrected; however, not all faults result in failures. Software

Reliability Evaluation can be divided into three distinct parts:

e Measurement. Software reliability measurement determines the present failure intensity,
additional failures that would be experienced before reaching an identified failure intensity
objective, and additional execution time necessary to reach an identified failure ntensity

objective.

e Prediction. Software reliability prediction attempts to determine what the reliability of

software will be at some time t from a present software reliability measurement. .

e Threshold. The level of software reliability identified or desired by the decision maker. This
can be expressed as a reliability number (which can be translated with respect to execution

time) or a failure intensity threshold or objective.

Software System Effectiveness. A measure of the percentage of time the software system
operates correctly (no failures) versus the total attempted operational time. The SSE can be
multiplied by the Mission Capable (MC) rate to give the effect of software on Total Weapon

System Effectiveness (TWSE).

Total Weapon System Effectiveness. The Mission Capable (MC) rate for a weapon
svstem adjusted to account for the effectiveness of the software. The Software System Effectiveness

(SSE) can he multiplied by the MC rate to determine the TWSE.
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Appendix B. Software Maturity Data
This appendix contains the reduced data set from the initial software maturity data provided

by HQ AFOTEC/LGS. -

B.1 Data Set Al

Database for AIRCRFT1

Date #1 #2 #3 #4 #5 NKSC Total Cum Total
10/01/86 0 0 0 0 6 0 6 6
08/27/87 1 1 0 0 2 0 4 10
08/28/8T 0 2 0 0 29 0 31 41
08/29/87 0 1 0 0 37 0 38 79
08/31/87 1 0 0 0 16 0 17 96
09/02/87 0 2 0 0 25 0 27 123
09/03/87 0 0 0 0 49 0 49 172
09/04/87 0 0 0 0 58 0 58 230
08/05/87 0 2 0 1 38 0 41 271
09/08/87 0 7 0 0 69 0 76 347
09/09/87 0 0 0 0 28 0 28 375
09/10/87 0 1 0 0 24 0 25 400
09/11/87 0 0 0 0 27 0 27 427
09/12/87 0 0 0 0 32 0 32 459
09/14/87 (o} 10 (o} 0 42 0 52 511
09/15/87 0 0 0 0 16 0 16 527
09/16/87 0 2 0 0 20 o 22 549
09/17/87 0 0 (o} 0 27 o 27 5876
09/18/87 0 0 0 0 10 0 10 586
09/19/87 (o} 1 0 0 50 0 51 637
09/21/87 0 2 0 0 37 0 39 676
09/22/87 0 1 0 0 35 0 36 712
09/23/87 0 0 0 o 27 o 27 739
09/24/87 0 3 (o} 0 29 0o 32 771
09/25/87 0 1 0 0 58 0 659 830
09/26/87 0 0 0 0 41 0 41 871
09/28/87 0 1 0 0 30 0 31 902
10/19/87 0 0 0 0 14 0 14 916
10/20/87 0 0 0 0 71 o 71 987
10/21/87 0 0 0 0 30 0 30 1017
10/22/87 0 0 0 0 18 0 18 1035
10/23/87 0 0 0 0 81 0 81 1116
10/24/87 0 0 0 0 9 0 9 1125
11/09/87 0 0 0 0 13 0 13 1138
03/05/88 0 0 1 0 0 0 1 1139
03/08/88 0 0 1 0 21 0o 22 1161
03/09/88 0 0 1 0o 21 0 22 1183
03/10/88 0 0 3 0 8 0 11 1194
03/11/88 0 0 1 0 5 0 6 1200
03/12/88 v} 0 2 0 31 0 33 1233
03/14/88 0 0 4 0 17 o 21 1254
03/15/88 0 0 ] 0 5 0 5 1259
03/16/88 0 0 b 0 22 0 23 1282
03/17/88 0 0 2 0 13 0 15 1297
03/18/88 (o] 0 0 0 13 0 13 1310
03/19/88 0 0 0 0 9 0 9 1319
03/21/88 0 0 1 0 14 0 15 1334
03/22/88 (o} 0 2 0 13 0 15 1349
03/23/88 0 0 (v} 0 5 0 5 1354
03/24/88 0 0 0 0 6 0 6 1360
03/25/88 0 0 0 0 6 0 6 1366
03/28/88 0 1 1 0 36 0 38 1404
03/29/88 0 0 2 0 28 0 30 1434
03/30/88 0 0 2 0 34 0 36 1470
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B.2 Data Set A2

Database for AIRCRFT2

9355 #1 #2 #3 #4 #5 NSC Total Cum Total
02/24/87 0 0 1 0 0 0 1 1
03/04/87 0 1 0 0 0 0 1 2
05/20/87 0 0 0 1 0 0 1 3
06/10/87 0 0 3 0 0 0 3 6
06/25/87 0 0 1 0 0 0 1 7
07/01/87 0 0 1 0 0 0 1 8
08/03/87 0 0 3 0 0 0 3 11
09/01/87 0 0 1 0 0 0 1 12
09/03/87 0 0 0 1 (v} 0 1 13
09/11/87 0 1 1 0 (o} 0 2 15
09/17/87 4] 1 0 0 0 0 1 16
09/21/87 0 0 3 0 0 o] 3 19
11/04/87 0 0 2 0 0 0 2 21
11/05/87 0 0 0 1 0 0 1 22
11/12/87 0 0 2 0 0 0 2 24
11/19/87 0 0 1 0 0 0 1 25
11/20/87 0 1 2 0 0 0 3 28
12/08/87 0 0 0 1 0 0 1 29
12/09/87 0 0 2 0 (o} 0 2 31
12/14/87 0 0 1 1 0 0 2 33
01/04/88 0 0 2 0 0 0 2 35
01/05/88 0 0 2 0 0 0 2 37
01/14/88 0 1 0 0 0 0 1 38
02/01/88 0 0 1 0 0 0 1 39
02/23/88 0 0 2 0 0 0 2 41
03/04/88 0 0 1 0 (o} 0 1 42
03/10/88 0 0 1 0 0 0 b 43
03/16/88 0 0 0 1 0 0 1 44
03/17/88 0 0 1 0 0 0 1 45
03/29/88 0 0 1 0 0 0 1 46
04/12/88 0 0 1 0 0 0 1 47
04/28/88 (o] 0 1 0 0 o] 1 48
05/03/88 0 0 1 0 0 0 1 49
05/04/88 0 0 2 1 [} 0 3 52
05/06/88 0 0 3 0 0 0 3 55
05/10/88 0 0 1 0 0 0 b 56
05/12/88 0 0 1 0 0 0 1 57
05/13/88 0 0 1 0 0 0 1 58
05/16/88 0 1 0 0 0 0 1 59
05/20/88 0 0 1 0 0 0 1 60
05/23/88 0 0 1 0 0 0 1 61
05/30/88 0 0 0 1 0 0 1 62
06/03/88 (o} (o} 1 0 0 0 1 63
06/10/88 0 0 2 0 0 0 2 65
06/13/88 (o} 0 1 (] 0 0 1 66
06/30/88 0 (] 1 1 0 0 2 68
07/01/88 0 2 0 0 0 0 2 70
07/05/88 0 0 (v} 1 0 0 1 71
07/11/88 0 0 1 0 0 0 1 72
07/20/88 (o} 0 1 0 0 0 1 73
09/16/88 0 0 1 0 0 0 1 74
09/23/88 0 0 0 1 0 0 1 75
09/27/88 0 0 1 0 0 (o] 1 76
10/31/88 (o} 0 1 0 0 0 1 77
11/14/88 0 1 0 0 (o} 0 1 78
11/15/88 0 0 1 0 0 0 1 79
12/01/88 0 1 1 0 0 0 2 81
12/12/88 0 1 0 0 0 0 1 82
12/23/88 (o} 1 0 0 0 0 1 83
01/03/89 0 0 2 (v} 0 0 2 85
01/05/89 0 1 0 0 0 0 1 86
01/13/89 0 0 0 1 0 0 1 87
01/18/89 0 2 0 0 0 0 2 89
01/19/89 0 1 0 0 0 0 1 90
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B.3 Data Set A3

Database for AIRCRFT3

Date #1 #2 #3 #4 #5 NSC Total Cum Totgl
12/29/87 0 1 0 0 0 0 1 1
01/12/88 0 1 1 1 0 0 3 4
02/25/88 3 2 1 0 0 0 6 10
03/17/88 4 3 1 0 0 0 8 18
03/22/88 0 1 0 0 0 0 1 19
04/06/88 0 0 0 1 0 0 1 20
04/11/88 1 0 0 0 0 0 1 21
04/20/88 2 1 0 0 0 0 3 24
04/21/88 2 0 0 0 0 0 2 26
04/26/88 0 (o} 1 0 0 0 1 27
04/28/88 1 2 0 0 0 0 3 30
05/25/88 0 1 0 0 0 (o} 1 31
06/01/88 0 3 0 0 0 0 3 34
06/02/88 0 1 0 0 0 0 1 3as
06/13/88 1 1 0 0 0 0 2 37
07/01/88 1 3 0 0 0 0 4 41
07/14/88 1 0 0 0 0 0 1 42
07/20/88 1 (v} (o} 0 0 0 1 43
07/21/88 0 3 0 0 0 0 3 46
07/28/88 1 2 0 0 0 0 3 49
08/04/88 0 1 0 0 0 0 1 50
08/05/88 2 5 1 0 0 0 8 58
08/10/88 3 3 0 0 0 0 6 64
08/12/88 0 1 (o} 0 0 0 1 65
08/15/88 1 1 1 0 0 0 3 68
08/17/88 2 2 0 0 0 0 4 72
08/18/88 0 0 1 0 0 (] 1 73
08/24/88 1 1 0 0 0 0 2 75
08/25/88 0 2 0 0 0 (o} 2 77
08/26/88 2 2 0 0 (o} 0 4 81
08/30/88 2 7 0 0 0 0 9 90
08/31/88 1 1 0 0 0 0 2 92
09/01/88 4 (o} 0 0 0 0 4 96
09/02/88 2 3 0 0 0 0 5 101
09/06/88 0 2 0 0 0 0 2 103
09/09/88 1 3 0 0 0 0 4 107
09/12/88 0 1 0 0 0 0 1 108
09/13/88 4 0 0 0 0 0 4 112
09/14/88 0 3 0 0 0 0 3 115
09/15/88 1 4 2 0 0 0 7 122
09/16/88 2 2 (o} 0 (o} 0 4 126
09/19/88 1 0 0 0 0 0 1 127
09/20/88 0 1 0 0 0 0 1 128
09/21/88 0 2 0 0 (o} 0 2 130
09/27/88 2 0 0 0 0 0 2 132
09/29/88 0 1 1 0 0 0 2 134
10/04/88 0 2 (o} 0 0 0 2 136
10/07/88 2 1 0 0 0 0 3 139
11/02/88 0 2 (o} 0 0 0 2 141
11/03/88 1 1 0 0 0 0 2 143
11/07/88 0 0 1 0 0 0 1 144
11/15/88 1 0 (o} 0 0 0 1 145
11/21/88 0 1 0 0 0 0 1 146
11/22/88 1 1 0 0 0 0 2 148
11/28/88 2 0 0 0 0 0 2 150
11/29/88 1 3 0 0 0 0 4 154
12/02/88 1 1 0 0 (¢} 0 2 156
12/05/88 0 2 1 0 0 (¢} 3 159
12/06/88 0 2 0 0 0 (o} 2 161
12/12/88 4 0 0 0 0 0 4 165
12/20/88 1 3 0 0 0 0 4 169
12/22/88 0 1 1 0 0 0 2 171
12/27/88 1 0 0 0 0 0 1 172
12/28/88 6 10 1 0 0 0 17 189
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B.4 Data Set S1

Database for SPACE1

Date # #2 #3 #4 #5 NSC Total Cum Total
01/10/86 0 1 0 0 0 0 b 1
01/15/86 0 1 0 0 0 0 b 2
01/30/86 0 1 0 0 0 0 1 3
02/10/86 0 1 0 0 0 0 1 4
02/20/86 0 1 0 0 0 0 1 5
03/03/86 0 1 0 0 0 0 1 6
03/05/86 0 4 0 0 0 0 4 10
03/11/86 0 1 0 0 0 (o} 1 11
03/24/86 0 1 0 0 0 0 1 12
03/26/86 0 1 0 0 0 0 1 13
03/28/86 0 1 0 0 0 (o} 1 14
03/31/86 0 1 0 0 0 0 1 15
04/02/86 0 1 0 0 0 (v} 1 16
04/07/86 0 1 0 0 0 0 1 17
04/08/86 0 2 0 0 0 0 2 19
04/09/86 0 1 0 0 0 (o} 1 20
04/10/86 0 1 0 0 0 0 1 21
04/11/86 0 1 0 0 0 0 1 22
04/12/86 0 2 0 0 0 0 2 24
04/14/86 0 1 0 0 (o} 0 1 25
04/17/86 0 1 0 0 0 (o} 1 26
04/22/86 0 1 0 0 0 0 1 27
04/28/86 0 2 0 0 0 0 2 29
04/30/86 0 1 0 0 0 0 1 30
05/06/86 0 1 0 0 0 0 1 31
05/07/86 0 1 0 0 0 0 1 32
05/08/86 0 1 0 0 0 0 1 a3
05/12/86 0 3 0 0 0 0 3 36
05/13/86 0 2 0 0 0 0 2 38
05/18/86 0 4 0 0 0 0 4 42
05/19/86 0 1 0 0 0 0 1 43
05/20/86 0 2 0 0 0 0 2 45
05/21/86 0 1 0 0 0 (o} 1 46
05/28/86 0 1 0 0 0 (o} 1 47
05/29/86 0 1 0 0 0 0 1 48
05/30/86 0 1 0 0 0 0 1 49
06/02/86 0 3 0 0 0 0 3 52
06/04/86 0 1 0 0 0 0 1 53
06/05/86 0 1 0 0 (o} 0 1 54
06/06/86 0 1 0 0 0 0 1 55
06/11/86 0 2 0 0 0 0 2 57
06/13/86 0 1 0 0 0 0 1 58
06/14/86 0 9 0 0 0 0 9 67
06/18/86 0 1 0 0 0 0 1 68
06/24/86 (v} S 0 0 0 (o} 5 73
06/25/86 0 2 0 0 0 0 2 75
06/29/86 0 2 0 0 0 0 2 77
07/03/86 (v} 1 0 0 0 0 1 78
07/07/86 0 4 0 0 0 0 4 82
07/08/86 0 1 0 ~ 0 0 1 83
07/09/86 0 1 0 0 0 0 1 84
07/10/86 (v} 1 0 0 0 0 1 85
07/11/86 0 5 0 0 0 0 5 90
07/14/86 0 1 0 0 0 0 1 91
07/15/86 0 2 0 0 0 0 2 93
07/16/86 (o} 7 0 0 0 0 7 100
07/18/86 0 1 0 (o} 0 0 1 101
07/22/86 0 2 0 0 0 0 2 103
07/23/86 0 1 0 0 0 0 1 104
07/29/86 0 3 0 0 0 0 3 107
08/01/86 0 2 0 0 0 0 2 109
08/02/86 0 1 0 0 0 0 1 110
08/04/86 0 11 0 0 0 0 11 121
08/05/86 0 3 0 0 (o} 0 3 124




08/06/86
08/07/86
08/09/86
08/12/86
08/13/86
08/14/86
08/15/86
08/19/86
08/20/86
08/21/86
08/22/86
08/25/86
08/26/86
09/02/86
09/03/86
09/04/86
09/05/86
09/08/86
09/09/86
09/10/86
09/11/86
09/12/86
09/15/86
09/16/86
09/17/86
09/18/86
09/19/86
09/22/86
09/23/86
09/25/86
09/26/86
09/29/86
09/30/86
10/01/86
10/02/86
10/03/86
10/05/86
10/06/86
10/07/86
10/09/86
10/13/86
10/14/86
10/15/86
10/16/86
10/20/86
10/21/86
10/22/86
10/23/86
10/24/86
10/27/86
10/28/86
10/29/86
10/30/86
11/03/86
11/04/86
11/05/86
11/06/86
11/07/86
11/08/86
11/10/86
11/11/86
11/12/86
11/13/86
11/14/86
11/17/86
11/18/86
11/19/86
11/20/86
11/21/86
11/24/86
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11/25/86 0 6 o 0 0 0 6 375
11/26/86 0 1 0 0 0 0 1 376
12/02/86 0 3 0 0 o} 0 3 379
12/03/86 0 4 0 0 0 0 4 383
12/04/86 0 3 0 0 0 0 3 386
12/05/86 0 1 0 0 0 0 1 387
12/08/86 0 4 0 0 o} 0 4 391
12/09/86 0 6 0 0 0 0 6 397
12/10/86 0 2 0 0 0 0 2 399
12/11/86 0 5 0 0 o} 0 5 404
12/12/86 0 2 0 0 0 0 2 406
12/15/86 0 8 0 0 0 0 8 414
12/16/86 0 3 0 0 o} 0 3 417
12/17/86 0 4 0 0 0 0 4 421
12/19/86 0 3 0 0 0 0 3 424
12/22/86 0 6 0 0 0 0 6 430
12/23/86 0 8 0 0 0 0 8 438
01/05/87 0 4 0 0 0 0 4 442
01/07/87 0 4 0 0 0 0 4 446
01/09/87 0 7 0 0 0 ) 7 453
01/12/87 0 2 0 0 0 0 2 455
01/13/87 0 2 0 0 0 0 2 457
01/16/87 0 2 0 0 0 0 2 459
01/19/87 0 4 0 0 o} 0 4 463
01/20/87 0 1 0 0 0 0 1 464
01/21/87 0 4 0 0 0 0 4 468
01/22/87 0 5 0 0 0 0 5 473
01/23/87 0 5 0 0 0 0 5 478
01/25/87 0 1 0 ¢ 0 0 1 479
01/26/87 0 12 0 0 0 0 12 491
01/27/87 0 2 0 0 0 0 2 493
01/28/87 0 5 (o} 0 0 0 5 498
01/29/87 0 6 o 0 0 0 6 504
01/30/87 0 5 0 0 0 0 5 509
02/01/87 0 1 0 0 0 0 1 510
02/02/87 0 6 0 0 0 0 6 516
02/03/87 0 12 0 0 0 0 12 528
02/04/87 0 5 0 0 0 0 5 533
02/05/87 o 17 0 0 0 o 17 550
02/06/87 0 9 o} 0 o} 0 9 559
02/10/87 0 3 0 0 0 0 3 562
02/11/87 0 5 0 0 o} 0 5 567
02/12/87 0 11 0 0 0 0 11 578
02/13/87 0 4 0 0 0 0 4 582
02/15/87 0 1 0 0 0 0 1 583
02/16/87 0 1 0 0 0 0 1 584
02/17/87 0 10 0 0 0 0 10 594
02/18/87 0 3 0 0 0 0 3 597
02/19/87 0 4 0 0 0 0 4 601
02/20/87 0 6 o] 0 0 0 6 607
02/22/87 0 2 0 0 0 0 2 609
02/23/87 0 7 0 0 0 0 7 616
02/24/87 0 6 0 0 0 0 6 622
02/25/87 0 5 0 0 0 0 [ 627
02/26/87 0 2 0 0 0 0 2 629
02/27/87 0 5 0 0 0 0 5 634
03/01/87 0 4 0 0 0 0 4 638
03/02/87 0 6 0 0 0 0 6 644
03/03/87 0 8 0 0 0 o 8 652
03/04/87 0 11 0 0 0 o 1 663
03/05/87 0 4 0 0 0 0 4 667
03/06/87 0 5 0 0 0 0 5 672
03/09/87 o 11 0 0 0 o 11 683
03/10/87 0 8 0 0 0 0 8 691
03/11/87 0 8 0 0 0 0 8 699
03/12/87 0 2 0 0 0 0 2 701
03/13/87 0 8 0 0 0 0 8 709
03/16/87 0 5 0 0 0 0 5 714
03/17/87 0 6 0 0 0 0 6 720
03/18/87 0 2 0 0 0 0 2 722
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03/19/87
03/20/87
03/23/87
03/24/87
03/25/87
03/26/87
03/27/87
03/30/87
03/31/87
04/01/87
04/02/87
04/03/87
04/05/87
04/06/87
04/07/87
04/08/87
04/09/87
04/10/87
04/13/87
04/14/87
04/15/87
04/16/87
04/17/87
04/20/87
04/21/87
04/22/87
04/24/87
04/27/87
04/28/87
04/30/87
05/01/87
05/02/87
05/04/87
05/05/87
05/06/87
05/07/87
05/08/87
05/09/87
05/11/87
05/12/87
05/13/87
05/14/87
05/15/87
05/18/87
05/19/87
05/20/87
05/21/87
05/22/87
05/24/87
05/26/87
05/27/87
05/28/87
05/29/87
06/01/87
06/02/87
06/04/87
06/05/87
06/08/87
06/09/87
06/10/87
06/11/87
06/12/87
06/13/87
06/15/87
06/16/87
06/17/87
06/18/87
06/19/87
06/21/87
06/22/87
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06/23/87
06/24/87
06/25/87
06/26/87
06/27/87
06/28/87
06/29/87
06/30/87
07/01/87
07/02/87
07/06/87
07/07/87
07/08/87
07/09/87
07/10/87
07/13/87
07/14/87
07/15/87
07/16/87
07/17/87
07/20/87
07/21/87
07/22/87
07/23/87
07/24/87
07/27/87
07/28/87
07/29/87
07/30/87
07/31/87
08/03/87
08/04/87
08/05/87
08/06/87
08/07/87
08/08/87
08/10/87
08/11/87
08/12/87
08/13/87
08/14/87
08/17/87
08/18/87
08/19/87
08/20/87
08/21/87
08/22/87
08/24/87
08/25/87
08/26/87
08/27/87
08/28/87
08/29/87
08/30/87
08/31/87
09/01/87
09/02/87
09/03/87
09/04/87
09/07/87
09/08/87
09/09/87
09/10/87
09/11/87
09/13/87
09/14/87
09/15/87
09/16/87
09/17/87
09/18/87
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1214
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1235
1249
1262
1271
1273
1278
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1319
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1402
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1409
1412
1425
1431
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15839
1546
15660
1570
1673
1574
1577
1579
1583
1696
1604
1606
1623
1636
1655
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1658
1663
1690
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1704
1716




09/20/87
09/21/87
09/22/87
09/23/87
09/24/87
09/25/87
09/28/87
09/29/87
09/30/87
10/01/87
10/02/87
10/03/87
10/04/87
10/05/87
10/06/87
10/07/87
10/08/87
10/09/87
10/12/87
10/13/87
10/14/87
10/15/87
10/16/87
10/19/87
10/20/87
10/21/87
10/22/87
10/23/87
10/26/87
10/27/87
10/28/87
10/29/87
10/30/87
11/02/87
11/03/87
11/04/87
11/05/87
11/06/87
11/09/87
11/10/87
11/11/87
11/12/87
11/13/87
11/16/87
11/17/87
11/18/87
11/19/87
11/20/87
11/23/87
11/24/87
11/25/87
11/30/87
12/01/87
12/02/87
12/03/87
12/04/87
12/07/87
12/08/87
12/09/87
12/10/87
12/11/87
12/12/87
12/14/87
12/16/87
12/17/87
12/18/87
12/19/87
12/21/87
12/22/87
12/23/87
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1729
1736
1743
1747
1749
1751
1753
1761
1763
1771
1773
1774
1776
1787
1795
1800
1806
1809
1815
1820
1823
1835
1836
1839
1845
1850
1855
1861
1875
1877
1880
1882
1885
1887
1894
1899
1902
1908
1914
1919
1925
1927
1928
1934
1940
1941
1955
1959
1966
1967
1971
1978
1985
1986
1991
1992
1998
1999
2002
2008
2011
2013
2018
2020
2021
2022
2023
2024
2029
2031




01/01/88
01/04/88
01/05/88
01/06/88
01/07/88
01/08/88
01/09/88
01/11/88
01/12/88
01/13/88
01/14/88
01/15/88
01/18/88
01/19/88
01/20/88
01/22/88
01/23/88
01/25/88
01/26/88
01/27/88
01/28/88
01/29/88
01/31/88
02/03/88
02/05/88
02/09/88
02/10/88
02/11/88
02/12/88
02/15/88
02/16/88
02/17/88
02/18/88
02/19/88
02/21/88
02/22/88
02/23/88
02/24/88
02/25/88
02/26/88
02/29/88
03/01/88
03/02/88
03/03/88
03/04/88
03/05/88
03/07/88
03/08/88
03/09/88
03/10/88
03/11/88
03/12/88
03/15/88
03/16/88
03/17/88
03/18/88
03/19/88
03/20/88
03/21/88
03/22/88
03/23/88
03/24/88
03/25/88
03/28/88
03/30/88
03/31/88
04/01/88
04/05/88
04/06/88
04/07/88
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2067
2073
2074
2076
2077
2081
2083
2086
2088
2090
2097
2099
2102
2111
2112
2117
2127
2142
2143
2183
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2175
2177
2182
2185
2188
2189
2191
2193
2197
2199
2202
2206
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2211
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2220
2221
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2224
2229
2232
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2240
2249
2262
2265
2266
2269
2271
2272
2278
2278
2280
2281
2285
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2294
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04/08/88
04/11/88
04/12/88
04/13/88
04/14/88
04/15/88
04/16/88
04/17/88
04/19/88
04/21/88
04/22/88
04/25/88
04/26/88
04/27/88
04/28/88
04/29/88
05/01/88
05/02/88
05/03/88
05/05/88
05/06/88
05/07/88
05/09/88
05/11/88
05/13/88
05/15/88
05/19/88
05/20/88
05/25/88
05/26/88
05/27/88
06/01/88
06/02/88
06/06/88
06/09/88
06/10/88
06/14/88
06/15/88
06/16/88
06/17/88
06/20/88
06/21/88
06/22/88
06/24/88
06/27/88
06/28/88
06/29/88
07/01/88
07/04/88
07/05/88
07/06/88
07/07/88
07/08/88
07/11/88
07/12/88
07/14/88
07/15/88
07/18/88
07/20/88
07/21/88
07/22/88
07/25/88
07/26/88
07/27/88
07/29/88
08/03/88
08/05/88
08/09/88
08/12/88
08/15/88
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2371
2374
2377
2378
2379
2383
2384
2386
2388
2390
2393
2395
2399
2400
2401
2403
2404
2406
2407
2409
2410
2412
2413
2417
2424
2427
2428
2430
2431
2432
2434
2435
2438
2441
2445
2449
2451
2453
2455
2456
2459
246u
2462
2464
2467
2468
2469
2470
2471




08/17/88
08/18/88
08/19/88
08/24/88
08/25/88
08/26/88
08/29/88
08/30/88
09/01/88
09/02/88
09/08/88
09/11/88
09/12/88
09/13/88
09/14/88
09/15/88
09/16/88
09/19/88
09/20/88
09/21/88
09/23/88
09/28/88
10/05/88
10/11/88
10/14/88
10/18/88
11/08/88
11/16/88
11/17/88
11/22/88
12/12/88
12/13/88
01/30/89
02/06/89
02/13/89
04/01/89
04/18/89
05/10/89
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2472
2474
2476
2478
2480
2481
2482
2486
2487
2489
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2502
2503
2506
2507
2508
2509
2510
2512
2513
2514
2515
2516
2517
2518
2521
2522
2523
2525




B.5 Data Set W1

Database for WST1

Date #1 #2 23 #4 #5 NSC_Total Cum Total
02/12/90 0 0 ©0 2 0 0 2 2
03/26/90 0 0 35 0 0 0 35 37
03/29/90 0 o0 ©0 1 2 0 3 40
03/30/90 0 O O 2 & O 6 46
04/02/90 0 o0 ©O0 3 0 0 3 49
04/03/90 0 0 0 7 0 0 7 56
04/05/90 0 o0 O 5 0 0 5 61
04/10/90 0 0 ©0 7 0 0 7T 68
04/11/90 0 0 © 1 0 0 1 69
04/12/90 0 0 0 1 0 0 1 70
04/18/90 0 0 0 15 0 0 15 85
04/19/90 0 0 0 10 0 0 10 95
04/20/90 0 0 2 10 0 0 12 107
04/23/90 0o o0 3 3 1 0 7 114
04/24/90 0 0 O 6 0 0 6 120
04/25/90 0 0 O 14 0 0 14 134
04/26/90 0 0 0 3 0 0 3 137
04/27/90 0 0 O 3 0 0 140
04/30/90 0 o0 0 7 0 0 7 147
05/01/90 0 0 0 1 0 O 1 148
05/02/90 0 ©O0 O 9 1 0 10 158
05/03/90 0 0 1 20 0 0 21 179
05/04/90 0 0 © 3 0 0 3 182
05/08/90 0 0 O 8 0 0 8 190
05/09/90 0 0 2 9 0 0 11 201
05/22/90 0 O 1 7 O O 8 209
05/23/90 0 0 O 7 O 0 7 216
05/29/90 0 ©0 1 0 0 0 1 217
05/30/90 0 0 0 21 0 O =21 238
05/31/90 0 0 O 5 0 0 5 243
06/01/90 0 ©0 O &5 0 0 5 248
06/04/90 0 ©0 ©0 9 0 0 9 257
06/05/90 0 0 O 6 0 0 6 263
06/06/90 0 0 0 12 0 0 12 275
06/07/90 0 0 0 12 0 0 12 287
06/14/90 0 1 3 15 1 0 20 307
06/15/90 0 0 0 22 3 0 25 332
06/18/90 0 0 0 19 2 0 21 353
06/19/90 0 0 1 2 0 O 3 356
06/21/90 0 0 3 31 4 0 38 394
06/22/90 0 © 1 06 0 O 1 395
06/27/90 0 0 O 6 0 O 6 401
06/28/90 0 0 3 7 0 0 10 411
06/29/90 0 0 2 28 6 0 36 447
07/31/90 0 0 1 0 0 0 1 448
08/01/90 0 0 2 0 0 0 2 450
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Appendix C. Detailed Analysis and Design

This appendix contains the detailed analysis and design of software to implement the candi-

date software reliability models.

C.1 Background

Five categories of software failures exist, ranging from critical to noncritical, each one de-

o

scribed in terms of mission success [86:8-2]. These categories have been applied to IOT&E, with

the following software failure severity levels applied [23:14):

e System Abort. Severity Level 1. Software or firmware problem that results in a
system abort.

e System Degraded No Workaround. Severity Level 2. Software or firmware
problem that degrades the system and no alternative workaround exists (program
restarts not acceptable).

o System Degraded Workaround. Severity Level 3. Software or firmware prob-
lem that degrades the system and there exists an alternative workaround (e.g.,
system rerouting through operator switchology. program restart not acceptable).

e System Not Degraded. Severity Level 4. An indicated software or firmware
problem that does not degrade the system or any essential system function.

e Minor Fault. Severity Level 5. All other minor nonfunctional software deficien-
cles.

Currently, most software reliability models assunie either all errors have the same weight (or
severity level) or the weighting is based on ohservations with respect to time, e.g.—the most current
observations will have more weight than older ones [34, 64, 89]. This thesis effort focuses on the use
of constant weighting for all software failures; however, the implementation design must be such

that a weighting scheme based on severity levels can be implemented in the future.

C.2 Requircments Analysis

Structured analysis techniques were used to determine requirements. The initial requirements

definition was then expressed as a requirements specification through the use of a context diagram
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Test_Times

Software _

Reliability _
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. Analysis_
Reliability _ (SRSAS)

Statistics

Figure C.1. Level 0 Context Diagram for SRSAS

and data flow diagrams (DFDs) [82). Although a classical requirements analysis approach was used,
the resulting specification can be applied to either structured design (with functional decomposition)
or Object Oriented Design (OOD) [13]. The initial context diagram for the Software Reliability
Statistical Analysis System (SRSAS) is shown in Figure C.1. The HQ AFOTEC software maturity
data base, SYSTERR, provides the initial input into the SRSAS, with additional test tiines and
durations input as necessary. The output is the Software_Reliability Statistics, in terms of failures.
failure intensities, and confidence intervals, that are necessary to assess the candidate models. The

SRSAS is further refined in the breakout of lower level DFDs.

C.2.1 Level 1 DFD. The Level 1 DFD is shown in Figure (.2. The SRSAS was decom-
posed into the four functions Reduce_Data, Assign_Times. Determine_Execution_Time_Data, and
Determine_Logarithmic_Time_Data. Reduce_Data uses the incoming SYSTERR data base to gen-
erate a reduced set of failure count data. Assign_Times uses this data output (as well as any

additional time duration data from the user) to assign execution times to failures and calcu-
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Figure (2. Level 1| DFD for SRSAS

late time statistics. such as total test time. This information is used by the other two functions
Determine_Execution_Time_Data and Determine_Logarithmic_Time_Data. The functions Deter-
mine_Execution_Time_Data and Determine_Logarithmic_Time_Data are based on examples and
equations in Musa et al.; however, no further decomposition of the functions Reduce_Data and

Assign_Times is possible without making design decisions.

C.2.1.1 Level 2 DFD: Dectermine_Ezecution.Time_Data. The Level 2 DFD for Deter-
mine_Execution_Time_Data is shown in Figure C.3. The time and failure information is taken

and applied against the program structure identified in Musa et al. for a tabular software re-
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Figure C.3. Level 2 DFD for Determine_Execution_Time_Data

liability program [64:588-589]). The output of this then goes to the user in the form of Soft-

ware_Reliability Statistics.

C.2.1.2 Level 2 DFD: Determine_Logarithmic.Time_Data. The Level 2 DFD for De-
termine_Logarithmic_Time_Data is shown in Figure C.4. As with the Determine_Execution_Time_Data
module, time and failure information is taken and applied against the program structure identified
in Musa et al. for a tabular software reliability program [64:588-589]. The output of this also goes

to the user in the form of Software_Reliability Statistics.

C.3  Requirancnis Specificalion

Specification of the initial requirements was performed based on the Level 0 Context Dia-
gram, and the lower level DFDs, which defined the objects and functions of the system. These

specifications formed the baseline for the software design. .
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Figure C 4. Level 2 DFD for Determine_Logarithmic_Time_Data
C.4 Software Design

The software design effort was at two levels: high-level design effort {which included transition
from structured analysis to OOD). and abstract data type (ADT) selection and low-level design
effort. The waterfountain approach allowed a chance to revisit the different design levels. as well as
the initial analysis, throughout the design process [84]. The discussion in the following paragraphs

reflects that iterative nature, and will present the design effort.

The front end of the analysis was based on structured analysis techniques; however, there
is a need to establish historical data from previous software reliability analysis to enable future
validation efforts of other software reliability models [26:200]. Toward this end. the concept of
data persistence will be encorporated into the design effort, specifically in the development of data
stores for the different functions to use. In order to optimize the design and iniplementation of the
data base and the accompanying software, a selection of the most appropriate data model must be
made. The model itself is simply a collection of conceptual tools that can be used to describe the
actual data, data semantics, data relationships, and existing consistency constraints between data

[49:6].




While there have been many data models proposed and implemented for databases, they fall
into four basic categories: physical data models; record-based logical models; object-based logical
models: and object-oriented models [49:6],[97:7]. Of the first three, object-based logical models are
the best suited for the logical and external schemas of describing data at both the conceptual and
view levels [49:6]. The physical design of the data base would then be done in a relational model
for the internal schema. Object-oriented models include the aspects of object-based models (object
identity and type hierarchy), as well as data abstraction and user defined operations [97:92]. This
makes the object-oriented models better suited for schema description at all three levels (internal.
logical. and external); however, the Clipper programming language supports a more relational
implementation of the data base at the internal schema level [66:3-7]. This requires at least an
object-based model, if not an object-oriented model. In support of this, a transformation to the

method of OOD was done using the following steps [12:17]:

ldentify objects and their attributes from all sources and destinations of data as well as data

stores.

ldentify all operations suffered by and required of each object.

Establish visibility among objects.

Establish interfaces of objects.

C. 4.1 Hdentification of Objects and Their Attributes. The initial Level 1 DFD was revised,
taking into account the design decision to incorporate data persistence (Figure C.5). From this

final DFD, the following objects and attributes were identified:

o SYSTERR Data. with attributes Date, Severity Level, Software Problem Report Number.
and Description.

e Failure.Count, with attributes of Date and Number of Failures for each Severity Level.

e Test_Time. with attributes of Test_Duration. Time_Grouping,

C-6
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Figure C.5. Revised Level 1 DFD for SRSAS

e Failure_Time, with attributes of Date, Local_Time_Of_Occurrence. Test._Puration, Total_Time,

and Total_Time_Of_Occurrence.
e Software_Reliability Statistics. with attributes of Time, Number_Of_Failures_Experienced,

Number_Of_Failures_Expected, and Failure_Intensity.

C.4.2 Operations Suffered by and Required of Each Object. Operations that identify the

behavior of each ohject were identified as follows:




SYSTERR Data: none.
Failure_Count: add up data common to the same Date, sort the data in chronological order.
Test_Time: none.

Failure_Time: determine Local_Time_Of_Occurrence. Test_Duration, Total Time. and To-

tal_Time_Of_Occurrence.

Software_Reliability Statistics: determine Number.Of_Failures_Experienced. Fallure_Intensity.

and Number_Of_Failures_Expected.

Operations that are required of each object were identified as follows:

SYSTERR Data: provide Date and Severity Level.
Fatlure_Count: provide Date and Total Failures_to_Date.
Test_Time: provide Test_Duration and Time_Grouping.

Failure_Time: provide Local_Time_Of_Occurrence. Test_Duration. Total_Time_Of_Occurrence,

and Total_Time.

Software_Reliability Statistics: provide Number_Of_Failures_Experienced, FailureIntensity.

and Number_Of_Failures_Expected.

C. 4.3 Establish Vistbility Among Objects. ‘The visibility among objects is based on the re-

lationships between the databases, and is shown in Figure C.6. The module diagram is the basis
for transformation of the design information into an implementation (in this case, Clipper code).
The objects come directly from those identified above. As naming conventions for an MS-DOS en-
vironment are limited to eight characters, with Clipper supplying the .PRG extension, and Clipper
is more functional than object-oriented, the objects were broken out into program modules and

databases with a basic naming convention (see Table C.1).
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Figure C.6. Visibility Among SRSAS Objects

C.4.4  Establish Interfaces of Objects. The interfaces of the objects are normally written as
part of the code. such as the package specification in Ada. This also was performed for Clipper.

which is a more functional than object-oriented programming language (see Appendix D).

C.5 Determine Need for Abstract Data Type

Based on the requirements provided and the availability of the Clipper progranuming envi-
ronment, a data base implementation was chosen over the development and implementation of a

specialized ADT. This further simplified the low-level design process, as the software was required
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Table C.1. Listing of Objects and Implementation Name

[ Object | Program Module |  Database |
FAILURE_COUNT COUNT.PRG COUNT.DBF
FAILURE_TIME SRTIME.PRG

SRTBUILD PRG TIME.DBF
SRTDATE.PRG TIME.DBF

SRTBI1.PRG B1DATA .DBF

COUNT.DBF
TIME.DBF

SRTEST.PRG COUNT.DBF
TIME.DBF

TIMEDTE.DBF
SOFTWARE_RELIABILITY_ SREXEC.PRG TIME.DBF

STATISTICS

SRLOG .PRG TIME.DBF

only to manipulate the data in the database, and not perform the database implementation it-
self. Thus, no specific ADT was necessary or would provide additional capabilities for software

development.
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Appendix D. Candidate Software Reliability Model Implementation Code

This appendix contains the code that was developed in order to perform evaluation of the

candidate software reliability models.

D.1  Software Reliability Statistical Analysis Software (SRSAS)

Aok okak ok kR ok kR ok kR ok ok ok Rk kR Rk kR Rk kk ok ok kR kR kb kkkkk kR ko kxR kkkk kR Rk kR Rk kK Rk k

Title : Software Reliability Statistical Analysis System (SRSAS)
Version 3.3

Date : 15 Oct 91

Author : Capt Joseph J. Stanko

Security : Unclassified

Purpose : This program does three things:

1.) Calculate initial statistics from existing SYSTERR
software maturity database for use in software reliability

model evaluation . .
2.) Generate a database of failure times based on average test

times, actual test time times, or estimated test times.
3.) Perform calculations on data to determined goodness-of-fit
for each candidate software reliab“? ity model.

Theory : 1.) The program checks for the ex.stence of a summary database
and if one does not exist, one is constructed solely from
the SYSTERR fields of the software maturity database

2.) Next, the program prompts for data not in the SYSTERR
database (such as total test time or test durations) and
generates a database of failure t.mes.

3.) Finally, the program takes the failure time information
and calculates estimates of model parameters and their
confidence intervals. Outputs are given (in tabular form)
of actual and estimated data.

NOTE:

This is the initial transition from existing SYSTERR databases

to the software reliability database for the Reliability

Analysis System (RAS). Future SYSTERR database configuration

based on the 1 Oct 1990 AFQTECP 800-2 Vol 6 will have
fields that will be handled by RAS itself as an integrated

package.
Database : This program uses three databases:

SYSTERR.DBF - There were several different "versions" of this
database done by each test team. The following

are the fields found common to each that might
be useful for software reliability analysis:

Name Type Length Decimal Description
DATE Date o Date of occurrence of failure
CPCI C 10 CPCI associated with failure
SEV_CODE c 1 Severity Code (1-5) of failure
DATE_FIX Date Date failure fixed
TITLE c 42 Description of failure
PROB_NUM (o 10 Software Problem Number (SPR)

While this data is available from the existing SYSTERR database
it does not include the time values necessary for reliability
evaluation. This data must be prompted for from the user.

COUNT.DBF - This is an intermediate summary database of
dates and number of failures:

L X BE R SR R R R IR BRI B R X B K I B B R I R N B KBRS EE R R X B B A R I R SR B R B N R B CEE IR ONE R WE R X R K
X BE N S NE R R R R N RN AR I N AR E XN I A R B AR R R X N I N I N N BE N K R R K I K R R AR R R X B R




* Name Type Length Decimal Description *
I e - - - *
* CAL_DATE Date Date of occurrence of failure *
* SEV_CODE_1 XN 4 # of Severity Code 1 failures *
* SEV_CODE_2 X 4 # of Severity Code 2 failures *
* SEV_CODE_3 X 4 # of Severity Code 3 failures #*
* SEV_CODE_ 4 ¥ 4 # of Severity Code 4 failures *
* SEV_CODE_S KX 4 # of Severity Code 5 failures *
* NO_SEV_CODE N 4 # of failures not coded *
* TOT_NUM N 4 Total Number for this date *
* TOTAL N 4 Overal total of failures *
* TIME.DBF - This is a _final database of dates and estimated *
: failure tlmes and test durations: :
* Name Type Length Decimal Description *
*x  mem—ee—- - - %
* CAL_DATE Date Date of occurrence of failure *
* L_TIME_OCC N 10 2 "Local" time of failure occur *
* (wrt to start of that test) =*
* TEST_DUR N 10 2 Duration of test for that day *
* T_TIM%_0OCC N 10 2 "Total" time of failure occur *
* (wrt to all total test time) *
* TOTAL N 4 Total failures to that point #*
* *
* Modules : Calls the following modules for operation: *
* SRCOUNT.PRG - Initializes the database COUNT.DBF, reduces *
* the SYSTERR.DBF entries into a count summary *
* form, and puts in ascending chronological order.=*
* SRPRINT.PRG - Pr1nts the COUNT.DBF. *
* SRTIME.PRG - Initializes and generates the database TIME.DBF.=*
* SREXEC.PRG - Perform calc¢ulations on the TIME.DBF data with =
* Musa Execution Time Model. *
* SRLOG.PRG - Perform calculations on the TIME.DBF data with *
* Musa-Okumoto Logarithmic Exection Time Model. =
:*##***************##****#********#***#******#t******#*#**t*t***##*t#*t******t:

clear screen

* Variable Section:

option = "C" &% memvar for main menu

I e e i e e e ot O S > P . e S o o o o o o e - - v - o . 2 1
* Set Section:

set decimal to 9 &% set decimal length beyond default (2)

T e e e i e o o e e e e . e e i S e e . T . e T o . S ot T ————_———————— ——
* Main Loop:

do while upper(option) <> "Xx"

set color to w+/b,g/n
0,0 clear
3,12 say "Software Reliability Statistical Analysis System (SRSAS)"
4,12 say " Version 3.3, Oct 1991"
6,20 say "C - Create Count Data Base"
8,20 say "P - Print Count Data Base"
10,20 say "T - Create Time Data Base”
12,20 say "E - Execution Time Model"
14,20 say "L - Logarithmic Poisson Execution Time Model’
16,20 say "X - Exit"
20,20 say "Please Enter Option:";

get option picture "@K !" valid(option$"CPTELX")

6606060600006

do case && Call sr programs based on menu input:
case upper(option)="C"
do srcount
case upper(option)="P"
do srprint
case upper(option)="T"
do srtime
case upper(option)="E"
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do srexec
case upper(option)="L"
do srlog
case upper(option)="X"
@ 24,20 say "Exiting This Program ..."
otherwise && standard exception handlin
© 23,20 say "Invalid Entry - Please Use C,P,T,E,L, or X"
endcase

enddo

clear all

clear screen

quit

ok kR kR Rk kR Rk Kk kA ko ko ko kR ok ko Rk ke k kR ko Kk kK kR Rk kR ok kR Rk
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D.2 Software Reliability COUNT.DBF Module

KRR ERERRE Rk R Rk R Rk kR Rk Rk ko kR ko kSRR Rk Rk k ok kkkk kR KRR R kR Rk kkkF khkk k%
* *

Title

Version
Date
Author

Security :
Purpose

Theory

Database :

L X R IR B BE R B AR I N IR B X B N NE N R IR N R R R I ORE I B N R R R AKX B R B R X N R IR NE A R R A )

Modules

T Ty L T T R P P T T Y

: Software Reliability COUNT.DBF Module (SRCOUNT.PRG)

1 3.3
: 2 Oct 91
: Capt Joseph J. Stanko

Unclassified

: This program:

1.) Calculates initial summary statistics from the SYSTERR
software maturity databases for use in software reliability
model evaluation.

: One pass module. The program checks for the existence of a

summary database and if one does not exist, one is constructed
solely from the SYSTERR fields of the software maturity
database.

This program uses two databases:

SYSTERR.DBF - There were several different "versions' of this
database done by each test team. The following

are the fields found common to each that might
be useful for software reliability analysis:

Name Type Length Decimal Description
DATE Date Date of occurrence of failure
CPCI C 10 CPCI associated with failure
SEV_CODE c 1 Severity Code (1-5) of failure
DATE_FIX Date Date failure fixed
TITLE C 42 Description of failure
PROB_NUM c 10 Software Problem Number (SPR)

While this data is available from the existing SYSTERR database
it does not include the time values necessary for reliability
evaluation. This data must be prompted for from the user.

COUNT.DBF - This is an intermediate summary database of
dates and number of failures:
Name Type Length Decimal Description
CAL_NATE Date Date of occurrence of failure
SEV_CODE_1 N 4 # of Severity Code 1 failures
SEV_CODE_2 N 4 # of Severity Code 2 failures
SEV_CODE. 3 N 4 # of Severity Code 3 failures
SEV_CODE_4 N 4 # of Severity Code 4 failures
SEV_CODE_5 N 4 # of Severity Code 5 failures
NO_SEV_CODE N 4 # of failures not coded
TOT_NUM N 4 Total Number for this date
TOTAL N 4 Overal total of failures
: None.

* Check fo
if .not. file(
@ 23,20 say

create templ
use template
append blank
replace fiel
append blank
replace fiel

fiel
append blank
replace fiel

r COUNT.DBF or create if it does not exist:
"COUNT.DBF")
"Building COUNT.DBF Database ..."

ate

d_name with "Cal_Date", field_type with “DATE"

d_name with "Sev_Code_1", field_type with "N", ;
d_len with 4

d_name with "Sev_Code_2", field_type with "N", ;

field_len with 4

append blank
replace fiel

d_name with "Sev_Code_3", field_type with "N", H
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field_len with 4

append blank

replace field_name with "Sev_Code_4", field_type with "N", ;
field_len with 4

append blank

replace field_name with "Sev_Code_ 5", field_type with "N", :
field_len with 4

append blank

replace field_name with "No_Sev_Code"”, field type with "N", ;
field_len with 4

append blank

replace field_name with "Tot_Num", field_type with "N", ;
field_len with 4

append blank

replace field_name with "Total®, field_type with "N", ;
field_len with 4

go top

clos

all
f11e = "COUNT.DBF"
create &file. from template

erase template.dbf

Now reduce the SYSTERR.DBF data into the COUNT. DBF database:

use COUNT alias COUNT & Aliases sure do help disambiguate vars:
select 2

use SYSTERR alias MATURITY

store 0 to mtot & Initialize counts for total and all
store 0 to mscl & severity codes (sc’s 1-5

store 0 to msc2

store 0 to msc3

store Q0 to msc4

store 0 to msch . .

store 0 to mnsc &k Just in case some are "no severity code”
store DATE to mdate

© 0,0 clear
© 5,20 say "Tabulating Count Data ..."

do while .not. eof() &k Since each entry in the SYSTERR database
mtot = mtot + 1 &k is a single and separate failure, all
store SEV_CODE to msevcode && must be added up by date with summary
do case &% information on all severity codes
case msevcode nye
mscil = mscl 1
case msevcode n2n
msc2 = msc2 1
case msevcode "3
msc3 = msc3 1
case msevcode nqn
msc4 = msc4 1
case msevcode "s"
mscS = msc 1
otherwise
mns¢ = mnsc 1

+ +H+UN+H+N+0

endcase
skip

if DATE <> mdate &% Check to see if we’ve moved to another date
select COUNT & If ve have, save off the summary data

append blank

replace CAL_DATE with mdate
replace SEV_CODE_1 with mscl
replace SEV_CODE_2 with msc2
replace SEV_CODE_3 with msc3
replace SEV_CODE_4 with msc4
replace SEV_CODE_5 with mscS
replace NO_SEV_CODE with mmsc
replace TOT_NUM with mtot
replace TOTAL with O

store 0 to msci && reinitialize the summary variables
store Q0 to msc2
store Q to msc3
store 0 to mscé¢
store 0 to msch




store O to mnsc
store O to mtot

select MATURITY && and do it again for the new date
store DATE to mdate
endif
enddo
I s e —— -
* Since many of the entries in the SYSTERR database were not
* in straight chronological order, the data needs to be sorted
* and then compressed so that only one entry exists for any given date:

Q@ 7,20 say "Sorting the Tabulated Data ..."
select COQUNT

sort on CAL_DATE to tempi

select 3

use templ

@ 9,20 say "Compressing Tabulated Data ..."
store 1 to rec_num

store CAL_DATE to mdate
store SEV_CODE_1 to mscl
store SEV_CODE_2 to msc2
store SEV_CODE_3 to msc3
store SEV_CODE_4 to msc4d
store SEV_CODE_5 to msch
store NO_SEV_CODE to mnsc
store TOT_NUM to mtot
skip

do while .not. eof()

rec_num = rec_num + 1

if CAL_DATE = mdate
mscl = SEV_CODE_1 + mscl
msc2 = SEV_CODE_2 + msc2
msc3 = SEV_CODE_3 + msc3
msc4 = SEV_CODE_4 + msc4
mscS = SEV_CODE_S5 + msch
mnsc = NQ_SEV_CODE + mnsc
mtot = TOT_NUM + mtot

replace SEV_CODE_1 with msci
replace SEV_CODE_2 with msc2
replace SEV_CODE_3 with msc3
replace SEV_CODE_4 with msc4
replace SEV_CODE_5 with mscS
replace NO_SEV_CODE with mnsc
replace TOT_NUM with mtot
goto rec_num - 1
delete
goto rec_num

endif

store CAL_DATE to mdate

store SEV_CODE_1 to msci

store SEV_CODE_2 to msc?2

store SEV_CODE_3 to msc3

store SEV_CODE_4 to msc4

store SEV_CODE_S5 to mscS

store NO_SEV_CODE to mnsc

store TOT_NUM to mtot

skip

enddo

* Now sum the totals and include in the COUNT.DBF:

go top

mtot = 0

do while .not. eof()
store TOT_NUM + mtot to mtot
replace TOTAL with mtot
skip

enddo




close all
erase COUNT.DBF
rename templ.dbf to COUNT.DBF

else
© 23,20 say "COUNT.DBF Database Already Exists ..."
wait "Hit any key to continue ..."

endif

o ——————— -

return && to SRSAS main menu
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D.3 Software Reliability Print Module
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Title : Software Reliability Print Module (SRPRINT.PRG)
Version : 3.3

Date : 2 O0ct 91

Author : Capt Joseph J. Stanko

Security : Unclassified

Purpose : This program:

Prints the contents of the COUNT.DBF to either a screen,
printer, or data file.

Currently only the COUNT.DBF is useful for output--the TIME.DBF
has one entry for each failure recorded, and that would use

a lot of paper to print. However, it would be simple to modify
this program to print the TIME.DBF information to a file if
needed.

Theory : User is given option of where to print the COUNT.DBF database.
It’s a one pass, with default values initialized for screen
output (saves on paper!).

Database : This program uses one database:

COUNT.DBF - This is an intermediate summary database of
dates and number of failures:

Rame Type Length Decimal Description
CAL_DATE Date Date of occurrence of failure
SEV_CODE_.1 N 4 # of Severity Code 1 failures
SEV_CODE_2 N 4 # of Severity Code 2 failures
SEV_CODE_3 N 4 # of Severity Code 3 failures
SEV_.CODE_4 N 4 # of Severity Code 4 failures
SEV_CODE_5 N 4 # of Severity Code 5 failures
NO_SEV_CODE N 4 # of failures not coded
TOT_NUM N 4 Total Number for this date
TOTAL N 4 Overall total of failures

Modules : N/A
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* Variable Section:

prvar = "S" && Variadble for print option

store 1 to LOC &% Line of Code--used for printing information
store " " to dbname && Name of database for output header

* ———r— e ————— ~— -

* First, see if COUNT.DBF exists:

* If it does then do print, etc.

Q@ 23,10 say "Print Data to (S)creen, (P)rinter, (F)ile, or (R)eturn:";
get prvar picture "@K !" valid(prvar$"SPFR")

read
Q@ 23,10 clear .
if upper{prvar) <> "R" && Make sure we don’t want to return to SRSAS

@ 0,0 clear
use_ COUNT .
replace TOTAL with TOT_NUM

@ 5,20 say "Data Base Name for Header:" get dbname picture "!!t1titi
read

if upper(prvar) = "F" && Specific parameters for file output

© 7,20 say "Sending Data to File SRCOUNT.PRK ..."

set printer to SRCOUNT.PRN

set device to print

pagelength = 4000 2 Pagelength large so header info used once
elseif upper(prvar) = "P" && Specific parameters for printer output




@ 7,20 say "Printing Results ..."
set device to print
pagelength = 56
else &8¢ Specific parameters for screen output
clear
pagelength = 20
endif

do while
if LOC &¢ Output header information

@ LOC,20 say "Database for "
@ LOC,33 say dbname
store LOC+2 to LOC

LOC,1

.n?t. eof ()

[} say "Date"
© LOC,10 say "# 1"
@ LOC,15 say "# 2"
@ LOC,20 say "# 3"
© LOC,25 say "# 4"
@ LOC,30 say "# 5"
@ LOC,35 say "NSC"
@ LOC,40 say "Total"
© LOC,50 say "Cum Total"
@ LOC+1,1 say "---- e e "
store LOC + 2 to LOC
endif
LOC,1 say CAL_DATE &% Output summary database information

LOC,10 say SEV_CODE_t1
LOC,15 say SEV_CODE_2
LOC,20 say SEV_CODE_3
LOC,25 say SEV_CODE_4
LOC,30 say SEV_CODE_S
LOC,35 say NO_SEV_CODE
LOC,40 say TOT_NUM
LOC,50 say TOTAL

store LOC + 1 to LOC

if LOC = pagelength && Reset for beginning of new page
store 1 to LOC
if upper(prvar) = "S"
wait "Hit any key to continue ..."
clear
endaf
endif
skip
enddo
if upper(prvar) = "Pp" && Reset all parameters for printer and file
eject
set device to screen
elseif upper(prvar) = "F"
set device to screen

60006066 HO6

set printer to &% reset if used for file output
else &% If screen output, pause for one last look
wait "Hit any key to continue ..."
endif
close all
endif
YO pIpR UV L " ——— e e o e = — — —— —— -
* If COUNT.DBF did not exist:

else
© 23,10 say "COUNT.DBF Does Not Exist."
wait "Hit any key to continue ..."
endif

Y e T - ——— - [ Uy p——

return && to SRSAS.PRG main menu
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D.4 Software Reliability TIME.DBF Module
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Title : Software Reliability TIME.DBF Module (SRTIME.PRG)
Version .3

Date : 2 Oct 91

Author : Capt Joseph J. Stanko

Security : Unclassified

Purpose : This program:

Creates a TIME.DBF data base if needed.
Determines the initial time statistics from the summary

COUNT.DBF and either average test durations, actual test
durations, or estimated test duratioms.

Theory : This module allows the user to create the time database, if it
does not exist, from both COUNT.DBF and other user/file input
information.

Database : This module uses two databases (see note below):

LR R X BE R IR X B I N R N K B B IR A N

COUNT.DBF - This is an intermediate summary database of
dates and number of failures:
Name Type Length Decimal Description
CAL DATE Date Date of occurrence of failure *
SEV_CODE_1 N 4 # of Severity Code 1 failures *
SEV_CODE_2 N 4 # of Severity Code 2 failures *
SEV_CODE_3 & 4 # of Severity Code 3 failures *
SEV_CODE_4 N 4 # of Severity Code 4 failures *
SEV_CODE_5 N 4 # of Severity Code 5 failures *
NO_SEV_CODE N 4 # of failures not coded *
TOT_NUM N 4 Total Number for this date *
TOTAL N 4 Overal total of failures *
TIME.DBF - This is a final database of dates and estimated *
failure t1mes and test durations: *
Name Type Length Decimal Description *
________ ——— —————— m——————— ————
CAL_DATE Date Date of occurrence of failure =*
L_TIME_OCC N 10 2 “Local"” time of failure occur *
(vrt to start of that test) *
TEST_DUR N 10 2 Duration of test for that day =
T_TIME_OCC N 10 2 “Total” time of failure occur *
(wrt to all total test time) *
TOTAL N 4 Total failures to that point =
E ]
Note: An additional database is used to input the B-1B flight =
test data: :
B1DATA.DBF - This is a summary database of B-1B flight test =
hours and dates: :
Name Type Length Dec1mal Descrlptlon *
———————— —-———— —— - — - -— '
DATE Date Date of mission flown
FLT_HRS N 7 2 Mission duration in hours
FLT C 6 Mission identifier
Modules: This program calls the following modules:

SRTBUILD.PRG - Creates the structure for the TIME.DBF if one
does not already exist.

*
*
*
*
*
*
*
SRTDATE.PRG - Generates the TIME.DBF based on the assumption =*
that failure dates from COUNT.DBF are the only +#

test dates, and uses an average test duration *

input from the user. *

SRTB1.PRG - Generates the TIME.DBF from specific B-1B *
flight test data and the COUNT.DBF. *

*

*

L 3

*

SRTEST.PRG -~ Generates the TIME.DBF from estimates of total
test time per month and the COUNT.DBF.
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clear screen
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* Variable Section:

timeoption = "C" &% memvar for main menu
* ————— e e e — e - ———————— e ———
* Main Loop:
do while upper(timeoption) <> "R"
] . clear
€ 3,12 say "Software Reliability Statistical Analysis System (SRSAS)"
© 4,12 say " Generate TIME.DBF Module"
@ 6,20 say "C - Create Time Data Base Structure”
@ 8,20 say "D - Use Failure Dates & Average Test Duration for Data"
@ 10,20 say "B - Use B~1B Flight Test Data for Data"
@ 12,20 say "E - Use Estimated Test Time per Month for Data"
@ 14,20 say "R - Return"
@ 20,20 say "Please Enter Option:";
get timeoption picture "OK !" valid(timeoption$"CDBER")
read
do case &4 Call srt programs based on menu input:

case upper(timeoption)="C"
do srtbuild
case upper(timeoption)="D"

do srtdate

case upper(timeoption)="B"
do srtbl

case upper(timeoption)="E"

do srtest
case upper(timeopti~ ) 'R"
note : returning to main program ...
otherwise && stardard exception handling
© 23,20 say "Invalid Entry - Please Use C,D,B,E, or R"
endcase
enddo
B o e e e e e e e e o e e e e e e e e e e e e e e e e e e o e e e 4 e e e e o o e

return
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D.5 Software Reliability TIME.DBF Build Module
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Title
Version

Security :
Purpose

Theory

Database :

Modules

IR R R E R EENEEENEZIERELIEEINEINR I XTI B I KR NN

: Software Reliability TIME.DBF Build Module (SRTBUILD.PRG)

3.3
: 25 Oct 91
: Capt Joseph J. Stanko

Unclassified

: This program:

Creates the structure for both TIME.DBF and TIMEDTE.DBF.

: The program creates the necessary database structure if it does

not already exist.
This program creates the following database structure:

TIMEDTE.DBF - This is the DTE version of TIME.DBF to find the
initial failure intensity for OTZE calculation.

It has the identical structure to TIME.DBF.

TIME.DBF - This is a_final database of dates and estimated
failure times and test durations:

Name Type Length Decimal Description

CAL_DATE Date Date of occurrence of failure

L_TIME_OCC N 10 2 "Local” time of failure occur
(vrt to start of that test)

TEST_DUR N 10 2 Duration of test for that day

T_TIME_OCC N 10 2 "Total" time of failure occur
(vrt to all total test time)

TOTAL N 4 Total failures to that point

: Calls procedure DBBUILD (see below).
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store "0" to dbvar

© 23,20 say "(D)T&E or (0)T&E Database?" ;
get dbvar picture "OK !" valid(dbvar$"DO")

read

if upper(dbvar) = "D"
if .not. file("TIMEDTE.DBF")
@ 23,20 say "Building DT&E TIME Database ... "

do_dbbuild
file = "TIMEDTE.DBF"
create &file. from template

delete file template.dbt

endif
else

if .not. file("TIME.DBF")
@ 23,20 say "Building TIME Database ... "
do_dbbuild
file = "TIME.DBF"
create &file. from template

delete file template.dbf

endif
endif

return

Procedure:
Version
Date

Author
Security :
Purpose

LR L BE B B R R IR N 2 I R

Database :

Dagabase Build Procedure (DBBUILD)

3.
: 23 Oct 91
: Capt Joseph J. Stanko

Unclassified

: This module has the implementation code for creating

the structure for either TIMEDTE.DBF or TIME.DBF
This program creates the following database structure:

D-12
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Procedure Section:
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Modules : N/A
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* *
* TIME.DBF - This is a final database of dztes and estimated *
: failure times and test durations: :
* Name Type Length Decimal Description *
* 0 memme———— T i *
* CAL_DATE Date Date of occurrence of failure *
* L_TIME_OCC N 10 2 “Local" time of failure occur »*
* (wrt to start of that test) *
* TEST_DUR N 10 2 Duration of test for that day =*
* T_TIME_OCC N 10 2 "Total" time of failure occur *
* (wrt to all total test time) *
* TOTAL N 4 Total failures to that point =
* *
* *
* *

*

procedure dbbuild

create template
use template
append blank

replace field_name with "Cal_Date", field_type with "DATE"

append blank

replace field_name with "L_Time_Occur”, field_type with "N", ;
field_len with 10, field_dec with 2

append blank

replace field_name with "Test_Dur", field_type with "K", ;
field_len with 10, field_dec with 2

append blank

replace field_name with "T_Time_Occur"”, field_type with "N", ;
field_len with 10, field_dec with 2

append blank

replace field_name with "Total", field_type with "N", ;
field_len with 4

go top

close all

return && to procedure SRTBUILD
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D.6 Software Reliability TIME.DBF Date Module
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Title : Software Reliability TIME.DBF Date Module (SRTDATE.PRG)

Version : 3.3

Date : 2 Oct 91

Author : Capt Joseph J. Stanko

Security : Unclassified

Purpose : This program:
Generates the data for the TIME.DBF database from average test
times.

Theory : The program generates TIME.DBF data from the use of average test

times assumed to occur ONLY ON THE DATES OF FAILURES as found
in the COUNT.DBF and SYSTERR.DBF databases. This assumption is

valid if testing occurred only on the dates that failures were
identified; however, as failures are often "boarded" by a panel
and recognized at dates that could be different than actual
test dates, another option should be used.

This module was used for initial analysis of data until more
definitive test times and durations were available.

Database : This program uses the following database:

TIME.DBF -~ This is a final database of dates and estimated
failure times and test durations:
Name Type Length Decimal Descrlptlon

CAL_DATE Date Date of occurrence of failure

L_TIME_OCC N 10 2 "Local" time of failure occur
(wrt to start of that test)

TEST_DUR N 10 2 Duration of test for that day

T_TIME_0OCC N 10 2 "Total" time of failure occur
(wrt to all total test time)

TOTAL N 4 Total failures to that point
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Modules : N/A
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* First, check to see if the TIME.DBF exists:
if file("TIME.DBF")

* Variable Section:

usi C%UNT alias CQUNT &% Database of failure COUNT data

selec

use TIME alias TIME && Database of failure TIME data

select COUNT

store 0 to d_offset && Day offset to determine total test time
store 3600 to day_val &% Day value for test duration (minutes)
store 0 to m_e && Total number of failures

store 0 to max_dur &% Max partition for assigning failure times
store 0 to mtestdur && Local value for test duration

store 0 to my_tot &% Local total number of failures

store 0 to num_sec && Number of seconds from system clock
store 0 to p_offset &t Partition offset for local failure times
store CAL_DATE to mdate &% Local date for failure occurrence

store CAL_DATE to strtdate && Starting date for data analysis

go bottom

store CAL_DATE to enddate &¢ Ending date for data analysis
go top

* Data Entry Section:

set confirm on

® 0, clear

© 3,10 say "Enter Starting Date for Data :" get strtdate picture "99/99/99"
© 5,10 say "Enter Ending Date for Data :" get enddate picture "99/99/99"
@ 7,10 say "Enter Daily Test Duration (min):" get day_val picture "999999"




read .
set confirm off

*
* Data Calculation Section:

locate for CAL_DATE = strtdate
do while (.not. eof()) .and. (CAL_DATE <= enddate)

@ 9,10 say "Generating data ..."

store CAL_DATE to mdate
store TOT_NUM to my_tot

store 0 to p_offset
store day_val to mtestdur
max_dur = (mtestdur) / my_tot

select TIME
for loop_var = 1 to my_tot

@ 15,10 say "Data Point # "

@ 15,24 say loop_var

append blank

replace CAL_DATE with mdate

replace TEST_DUR with mtestdur

K ——— -—————

* My version of a random number generator.

* Takes the system time and finds a value for
*

*

the local offset of failure occurrence within
a time "window" by using sqrt() and modulo:

num_sec = seconds()
do while num_sec > max_dur

num_sec = num_sec % sqrt(num_sec) &% 7 is the modulus operator
enddo

* Estimate time of failure from number of partitions, duration
* of partitions, and time offset:

failtime = (p_offset*max_dur) + (num_sec)
replace L_TIME_OCCUR with failtime &% Local Time of Occurrence

replace T_TIME_OCCUR with failtime + d_offset && Total Time of Occurrence

me=me+1
replace TOTAL with m_e && Total Failures

p_offset = p_offset +1 && Move to next partition

next
d_offset = d_offset + day_val && Move to next test period
select COUNT
skip
enddo
close all

else
@ 23,10 say "TIME.DBF Does Not Exist."
wait "Hit any key to continue ..."
endif
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return &% to srtime.prg module.
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D.7 Software Reliability TIME.DBF B-1B Module
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Security : Unclassified
Purpose : This program:

B1DATA.DBF.

with the other.

actual test durations.

Title : Software Reliability TIME.DBF B-1B Module (SRTB1.PRG)
Version 3.3

Date : 2 Oct 91

Author : Capt Joseph J. Stanko

Generates TIME.DBF data from the summary COUNT.DBF database
and the specific B-1B flight test database B1DATA.DBF.

As this uses a specific database, it also allows the user to
print the B1SDATA.DBF (sorted version of BiDATA.DBF).

Theory : This is a one pass program that generates failure times from

It was a little involved, as there were
instances of COUNT.DBF dates that had no corresponding flight
test times, as well as BiDATA.DBF dates that had no
corresponding failure occurrences.
summation" of either failures or test times until one caught up

This required a "running

Once dates for both failures and times were

.

Database : This program uses three databases:

the same, that was considered the date of failure (for this
database only) with the time of failure assigned within the
total test time for that date.
account the possibility that failures were discovered on

previous flights, it does preserve the relationship of test
durations and intervals to occurrence of failures (in a

relative manner)

While this might not take into
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b 3
* Modules : N/A
*

*x

B1DATA.DBF - This is z summary database of B-1B flight test
hours and dates:
Name Type Length Decimal Description
DATE Date Date of mission flown
FLT_HRS N 7 2 Duration of mission (in hours)
FLT (o 6 Mission identifier
COUNT.DBF - This is an intermediate summary database of
dates and number of failures:
Name Type Length Decimal Description
CAL_DATE Date Date of occurrence of failure
SEV_CODE_1 N 4 # of Severity Code 1 failures
SEV_CODE_2 N 4 # of Severity Code 2 failures
SEV_CODE_3 N 4 # of Severity Code 3 failures
SEV_CODE_4 N 4 # of Severity Code 4 failures
SEV_CODE_S N 4 # of Severity Code 5 failures
NO_SEV_CODE N 4 # of failures not coded
TOT_NUM N 4 Total Number for this date
TOTAL N 4 Overal total of failures
TIME.DBF - This is a final database of dates and estimated
failure times and test durations:
Name Type Length Decimal Description
CAL_DATE Date Date of occurrence of failure
L_TIME_OCC N 10 “Local" time of failure occur
(wrt to start of that test)
TEST_DUR N 10 2 Duration of test for that day
T_TIME_OCC N 10 2 “Total" time of failure occur
(wrt to all total test time)
TOTAL N 4 Total failures to that point
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*
* First, make sure the data is sorted:
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clear screen

if .not. file("B1SDATA.DBF")
€@ 3,10 say "Sorting the Bi Data ..."
use B1DATA
sort on DATE to tempil

close all
rename templ.dbf to B1SDATA.dbf

endif

* ————————————— e —————————— —-—

* Then, check to see if user wants the data printed:

store "N" to prvar
@ 5,10 say "Would you like to print sorted B-1B data (Y/N)?" ;
get prvar picture "@K !" valid(prvar$"¥YnN")
read
if upper(prvar) = "y"
use B1SDATA
store 1 to LOC

store " " to dbname
store "s" to printvar

@ 9,10 say "What is DB name?" get dbname picture "tt1ititrn
read
@ 11,10 say "Send to (S)creen, (P)rinter, or (F)ile?" ;
get printvar picture “@K !" valid(printvar$"SPF")
read
if upper(printvar) = "P"
set device to print
pagelength = 56
elseif upper(printvar) = "F"
set printer to SRBIDATA.PRN
set device to print
pagelength = 4000
else
clear
pagelength = 20
endif

@ 13,10 say "Printing results ..."
do while .not. eof()
if LOC = 1
® LOC,20 say "Database for "
@ LOC,33 say dbname

store LOC+2 to LOC
© LOC,10 say "Date”

@ LOC,21 say "Flt Hrs"

@ LOC,30 say "Flt Num"

@ LO0C+1,10 say "- - "
store LOC + 2 to LOC

dif

en

@ LOC,10 say DATE

@ LOC,21 say FLT_HRS
© LOC,30 say FLIGHT
store LOC + 1 to LOC

if LOC = pagelength
store 1 to LOC
if upper(printvar) = "s"
wait "Hit any key to continue ..."
clear
endif
endif
skip
enddo

it upper(printvar) = "p"
set device to screen
elseif upper(printvar) = "F"
set device to screen
set printer to




else . .
wait "Hit any key to continue ...

endif
close all

endif

*—— - -
* Now generate TIME.DBF data:

clear screen

* First, check to see if the TIME.DBF exists:
if file("TIME.DBF")

—— —_——— - - -_—
* Variable Section:

usi CEUNT alias COUNT && Database of failure COUNT data

selec

usi T%H% alias TIME &% Database of failure TIME data

selec

use B1SDATA alias B1 && Database of test time and duration data
select COUNT

store 0 to d_offset &% Day offset to determine total test time
store 0 to m_e && Total number of failures

store 0 to max_fail && Test var for failures with no test times
store 0 to mtestdur && Local value for test duration

store 0 to my_tot &% Local total number of failures

store 0 to num_sec &% System time (sec) for random failure times
store 0 to p_offset && Partition offset for failure times

store CAL_DATE to mbldate && Local date for flt test occurrence

store CAL_DATE to mdate &% Local date for failure occurrence

store CAL_DATE to strtdate && Starting date for data analysis

go bottom

store CAL_DATE to enddate && Ending date for data analysis
go top

* Data Entry Section:
set confirm on

@ 3,10 say "Enter Starting Date for Data :" get strtdate picture "99/99/99"
@ 4,10 say "Enter Ending Date for Data :" get enddate picture "99/99/99"
read

set confirm off

* Data Calculation Section:

locate for CAL_DATE >= strtdate
select B1
locate for DATE >= strtdate

select COUNT
do while (.not. eof()) .and. (CAL_DATE <= enddate)

@ 7,10 say "Generating data ..."
store CAL_DATE to mdate
store TOT_NUM to my_tot

select B1
store 0 to mtestdur
store O to max_fail

* The order of these next conditionals acts like a filter to
* synch the test dates and failure dates.

B e e e e o e

* First, check to see if there is a flt record for corresponding
* failure date. If not, then add up total failures until we

* get to or pass the next flt record:

if (DATE > mdate)
store DATE to mbldate
select COUNT
do :hile (CAL_DATE < mbidate) .and. (.not. eof())
skip

store (TOT_NUM + my_tot) to my_tot




enddo
store CAL_DATE to mdate
select Bl

endif

* - —_—

* Then, check to see if the failure date is past the flt record.
* If so, add up flight times for interval offset value until

* we get to or pass the next failure date record:

do while (DATE < mdate) .and. (.not. eof())
store (FLT_HRS#*60)+d_offset to d_offset
skip

enddo

*

* If we pass the failure date again, use the previous flt record
* test time for test duration (must decrement the day offset
* by the test duration so it’s not used twice):

if (DATE > mdate)
skip -1
store (d_offset - (FLT_HRS*60)) to d_offset
store (FLT_HRS*60)+mtestdur to mtestdur
skip

endif

If we did not pass the failure date again, than the dates
must be equal.

Add up multiple test durations for the same day to make sure
the entire same day test duration is used for failure times:

do while (DATE = mdate) .and. (.not. eof())
store (FLT_HRS*60)+mtestdur to mtestdur
skip

enddo

rm—— -

* This is_an error check to make sure there are test times for
* the failures:

* * * #R

max_fail = (mtestdur) / my_tot
if max_fail = 0
© 20,10 say "#x#x*x** TEST DURATION = O #x#xxxx"
endif
* Now that we’ve made it this far, assign the failure times randomly
* (assuming a normal distribution for ease of calculation) within
* the test duration:
select TIME
store 0 to p_offset
for loop_var = 1 to my_tot
© 15,10 say "Making Entry "
@ 15,24 say loop_var picture "99"
@ 15,27 say "of "
@ 15,31 say my_tot
append blank
if mdate =" / [/ "
replace CAL_DATE with enddate && We exceeded the end of file

se
replace CAL_DATE with mdate
endif .

replace TEST_DUR with mtestdur

el

*+ My random number generator:

num_sec = seconds()
do while (num_sec/60) > max_fail

num_sec = num_se< % sqrt(num_sec) &% J, is the modulus operator
enddo

failtime = (p_offset*max_fail) + (num_sec/60)
replace L_TIME_OCCUR with failtime && Local Occurrence Time
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replace T_TIME_OCCUR with failtime + d_offset && Total Occurrence Time

me=me+1 .
replace TOTAL with m_e && Total Failures
p-offset = p_offset +1

nex

t
d_offset = d_offset + mtestdur
select COUNT
skip

enddo

*
* If TIME.DBF does not exist:

else
@ 23,10 say "TIME.DBF Does Not Exist."
wait "Hit any key to continue ..."
endif

o — - - ———

return && to srtime.prg module.
Rk kkkkkkok ok dokkkok ko kkk ek kok ko kokk ko kR kR ke ko ko k kR k ko kR Rk kokk kK
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D.8 Software Reliability TIME.DBF Estimale Module

REEEERRRR R AR R KRRk Rk R Rk kR kR bk hhhkh ko kg kg ok ko kxR kR ko ok ok ok ko sk ik ok
* %=
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Title

Version
Date
Author

Purpose

Theory

Database :

Modules

: Software Reliability TIME.DBF Estimate Module (SRTEST.PRG)
: 3.3

1 25 Oct 91

: Capt Joseph J. Stanko

Security :
: This program:

Unclassified

Generates TIME.DBF data from the summary COUNT.DBF database
and estimated test times for monthly periods. Generates
TIMEDTE.DBF data the same way (used to determine the failure
intensity at end of DT&E/start of OTRE).

: This is a one pass program that generates failure times from

estimated test durations. The user is prompted for number of
months, then the program iterates for each month asking the
user for the estimated test time for that month. The program
then accesses the COUNT.DBF database, and locates the records
for failures occurring during that month. The estimated test
time is divided by the number of days in the month, and the
times are summed up to each date of failure data for local
values of test duration. For example, if there were 30 hrs
estimated for September, that would be (assuming the standard
normal distribution again) an average of 1 hr a day testing.
While this is probably not that accurate, taking the COUNT.DBF
data of failures and summing up to the failure dates (in this
case, they could be 09/11/89, 09/15/89, and 09/22/89) that
would give us 3 test durations of 11 hours, 4 hours, and

7 hours, with the additional 8 hours rounded into the offset
for the following month’s first test duration.

This is the best I can do as I am working with summary data.
Praise the Lord Jesus Christ!

This program uses two databases:

COUNT.DBF - This is an intermediate summary database of
dates and number of failures:

Name Type Length Decimal Description
CAL_DATE Date Date of occurrence of failure
SEV_CODE_1 N 4 # of Severity Code 1 failures
SEV_CODE_2 N 4 # of Severity Code 2 failures
SEV_CODE_3 N 4 # of Severity Code 3 failures
SEV_CODE_ 4 N 4 # of Severity Code 4 failures
SEV_CODE_S N 4 # of Severity Code 5 failures
NO_SEV_CODE X 4 # of failures not coded
TOT_NUM N 4 Total Number for this date
TOTAL N 4 Overal total of failures

TIMEDTE.DBF This is DT&E database of failure time. Used
as basis for OT&(E failure intensity. Same

structure as TIME.DBF.

TIME.DBF - This is a final database of dates and estimated
failure times and test durations:
Name Type Length Decimal Description
CAL_DATE Date Date of occurrence of failure
L_TIME_OCC | 10 2 "Local" time of failure occur

(wrt to start of that test)

TEST_DUR N 10 2 Duration of test for that day
T_TIME_OCC N 10 2 “Total" time of failure occur
(wrt to all total test time)
TOTAL N 4 Total failures to that point
: N/A
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* Determine the TIME.DBF needed:

store "0" to d

€@ 23,20 say "(D)T&E or (0)T&E Database?" ;
get dbvar picture “¢K !" valid(dbvar$"D0")

read
© 23,20 say "

r———

* First,

if (file("TIME.DBF")

check to see if either TIME.DBF or TIMEDTE.DBF exists:

.and. upper(dbvar)="0") .or. ;

(file("TIMEDTE.DBF") .and. upper(dbvar)="D")
B o - ——— — -
* Variable Section:

use COUNT alias COUNT

select 2

if upper(dbvar)="0"
use TIME alias TIME

else

use TIMEDTE alias TIME

endif

select COUNT

store
store
store

store
store

store
store
store
store
store
store
store
store

store
store

store

[

>

TO00O000 OO0

(o oloNoRolele

to
to
to

to
to

tom

to
to
to
to
to
to
to
to
to
to

avg_time
d_offset
day_val

hour
last_month

e
m_offset
max_dur
mode_var
month_end
mtestdur
my_tot
num_days
num_month
num_sec
p_offset

store CAL_DATE to mdate

store CAL_DATE to strtdate

go bottom

store CAL_DATE to enddate

go top

e e ——— — e ———————————————— - —-———

* Data Entry Section:
clear screen

set confirm

&2

4
&&

[ ¢4

Database of failure COUNT data

Database of OT&E failure TIME data
upper (dbvar)="p"

Database of DT&E failure TIME data

Average test time per month for OT&E (hrs)
Day offset to determine total test time
Day value for test duration (minutes)

Number of minutes in an hour
Carry over time from previous test month

Total number of failures

Month offset to determine total test time
Max partition for assigning failure times
Mode for diagnostic write output

Last day of month (varies from 28 to 31)
Local value for test duration (min)

Local total number of failures

Number of days used to calculate mtestdur

Total number of months for OTZE test
Number of seconds from system clock

Partition offset for local failure times

Local date for failure occurrence
Starting date for data analysis

Ending date for data analysis

@ 3,10 say "Enter Number of Months for Test:" get num_month picture "99"

© 4,10 say "Enter Starting Date for Data
€@ 5,10 say "Enter Ending Date for Data

:" get strtdate picture "99/99/99"
oo get enddate picture *"99/99/99"

read
€ 6,10 say "(A)uto or (S)ingle Step Mode?" get mode_var picture "!*

read

set confirm off

*+ Data Calculation Section:
locate for CAL_DATE =

store CAL_DATE to mdate
for loop_var = 1 to num_month

¢ 10,10 say
€@ 7,10 say "Working on Test Month #"
€ 7,33 say loop_var

if loop_var < num_month

set confirm on
€ 8,10 say "Enter Avg Test Time/Month (hrs):“;
get avg_time picture "9999.99"

read

strtdate

&& Go to the first applicable record
&& Update mdate to match strtdate
&% I assume the first month is in COUNT.DBF

&& Get appropriate input
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set confirm off && Put this inside both or get 2 in fields
© 8,8 clear to 8,78

1se
clear gets && Remove get from above

set confirm on
© 8,10 say "Enter Final Month’s Test Time (hrs):";

get avg_time picture ''9999.99"

read .
set confirm off
endif .
@ 10,10 say "Generating data ..."

m_
i

Check to see if the next month in COUNT.DBF is a consecutive
month of testing, including wrap-around (0 is reset condition):

offset = month(CAL_DATE)-month(mdate)
f (m_offset=0) .or. (m_offset=1) .or. ;
((month(CAL_DATE)=1) .and. (month(mdate) 12))

e ————————— ————

* Determine the average daily test time and perform all
* calculations for the TIME.DBF database:
do case && Assign daily average test time

case (month(CAL_DATE)=4) .or. (month(CAL_DATE)=6) ;
.or. {month(CAL_DATE)=9) .or. (month(CAL_DATE)=11)

month_end = 30 && April, June, September, and November
case {month(CAL_DATE)=2)
if (year(CAL_DATE)%4)=0 && Check for Leap Year
month_end = 29 &&  February has 29 days
else
month_end = 28 &k  February has 28 days
endif
otherwise
month_end = 31 && All the others have 31 days
endcase
day_val = (avg_time*hour)/month_end
€@ 16,10 say "Daily Test Time = " && Echo the information
© 16,28 say day_val
P g e ot v s e ot e e e o o Bt e
* For each entry in COUNT.DBF within the same month:
store day(CAL_DATE) to num_days && Number days used for mtestdur
store CAL_DATE to mdate && Reset date for failure occurrence
store 0 to prev_days &% 1Initialize each month

do while (month(CAL_DATE) = month(mdate));
.and. (.not. eof())

if ((day(CAL_DATE)-num_days)<>0) && Determine # of days of test
num_days = day(CAL_DATE)-prev_days

endif

store day(CAL_DATE) to prev_days

mtestdur = (day_val * num_days) &&+ last_month

store CAL_DATE to mdate && Update for change in day

store TOT_NUM to my_tot

max_dur = mtestdur / my_tot && Set maximum partition time duration

17,10 say "Num Days = " &% DOutput the calculation data
17,21 say num_days &t to verify that it works
18,10 say "Prev Days= "

18,21 say prev_days

19,10 say "MTESTDUR = "

19,21 say mtestdur
20,10 say "Max Dur
20,21 say max_dur
21,10 say " "

if mode_var = "S" .
wait "Hit any key to continue ..."

endif

00O HOHOO
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* Now that we’ve got the test duration and number of failures,
* assign times (assuming normal distribution for ease of calculation)
* within the test duration:
select TIME
store 0 to p_offset
for loop2_var = 1 to my_tot

@ 15,10 say "Making Entry "

@ 15,24 say loop2_var picture 99"

@ 15,27 say "of "

@ 15,31 say my_tot

append blank

replace CAL_DATE with mdate

replace TEST_DUR with mtestdur

* ———— ———

* My random number generator:

num_sec = seconds()
do while (num_sec/60) > max_dur

num_sec = num_sec % sqrt(num_sec) &% / is the modulus operator
enddo
1f num_sec = 0 && Check for 0 time interval
num_sec = 60 &% and set to a min value
endif
failtime = (p_offset*max_dur) + (num_sec/60)
replace L_TIME_OCCUR with failtime && Local Occurrence Time
replace T_TIME_OCCUR with failtime+d_offset && Total Occurrence Time
m_.e =m_e + 1
replace TOTAL with m_e && Total Failures
p_offset = p_offset +1
next

d_offset = d_offset + mtestdur
select COUNT
skip

enddo
—— -—

* Check f;r time at end of month after last COUNT entry:

if .not. eof()
skip -1
if (day(CAL_DATE) < month_end)

num_days = month_end - day(CAL_DATE)
d_offset = (num_days*day_val) + d_offset
endif
skip
endif
T e o o i A e e o o e e e
* If the months are not consecutive, then include the "between-test"
* time as part of the offset:
else
if (month(CAL_DATE)>month{mdate)) & ie, 11 > 9
m_offset=month(CAL_DATE)-month(mdate)-1
else &y ie, 2 /> 12
gfgffset=(12—month(mdate))+(month(CAL_DATE)—1)
endi
d_offset = (m_offset*avg_timerhour) + d_offset
loop_var = loop_var+m_offset-1
store CAL_DATE to mdate &% Reset for new month’s data
endif
© 21,10 say "D_Offset = " && Echo the information
€ 21,21 say d_offset
if mode_var = "S"
wait "Hit any key to continue ..."
endif
next
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close all && Saves off the database data

*—— -
* Else, neither TIME.DBF nor TIMEDTE.DBF does not exist:
else
@ 23,20 say "TIME Database Does Not Exist. "
wait "Hit any key to continue ..."

endif

return && to srtime.prg module.

kkkkokkkkok kR kkokkokkkkkkkkkkkkkkkkkkkkk ok k ko k ok ko kkkkkokk ok kkkkkk ok k ko ko k kKRR Rk Rk kK Kk
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D.9 Software Reliability Exzecution Time Module

Rk Rk kR Rk kR ke Rk kR Rk kR ko k kR ko ko Rk kR Rk kR kR Rk ok ko k kR kR kK

Title : Software Reliability Execution Time Module (SREXEC.PRG)
Version 3.3

Date : 25 Oct 91

Author : Capt Joseph J. Stanko

Security : Unclassified

Purpose : This program:

1.) Performs calculations on data to determine initial
parameters for the fitted model.

2.) Performs calculations on data to determine goodness-of-fit
for the Execution Time model.

Theory : In order to apply the Execution Time model to the failure data,
initial parameter estimation must be accomplished from the
overall data. Once the parameters are calculated, they are
then used in the model to calculate estimated values (such as
current number of failures and failure intensity) along with the
95, percent confidence intervals. These estimations are then
compared against the actual data to determine the
goodness-of-fit.

Database : This program uses one database:

TIME.DBF - This is a final database of dates and estimated
failure tlmes and test durations:
Name Type Length Decimal Descrlptlon
CAL_DATE Date Date of occurrence of failure
L_TIME_OCC N 10 2 "Local" time of failure occur
(wrt to start of that test)
TEST_DUR N 10 2 Duration of test for that day
T_TIME_OCC N 10 2 "“Total" time of failure occur

(wrt to all total test time)
TOTAL N 4 Total failures to that point

Modules : Calls internal procedures BHATOTE and BEATDTE.

REFERER Rk kR kR Rk Rk Rk kR Rk kR kR kkkk ke kk ok ko k Rk kR k kxR kR kR kk kK
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store 0" to
@ 23,20 say "(D)T&E or (D)T&E Database?" ;

get dbvar picture "@K !'" valid(dbvar$"D0")

read
€@ 23,20 clear

if upper(dbvar) = "0"
use TIME alias TIME

else .
use TIMEDTE alias TIME
dif

en
B e e e o 0 e e - —————— s et o o o e
* Variable Section (Note: mu’s and lambda’s are defined later on):

go bottom

store "  to dbname && Name of database for output headers

store 0.0000001 to delta && Accuracy difference for parameters

store "M" to intervar && Data output intervals (monthly or daily)
store 0.000 to lambda_O && Initial failure intensity value

store TOTAL to m_e &% Total number of failures

store 30 to max_iter && Max iterations to perform Newton-Raphson
store 1 to num_iter && Current iteration number for Newton-Raphson
store "S" to printvar && Default print option (screen)

store T_TIME_OCCUR to t_e &% Total test time

B e e rr e ———————— e, e ———
* Data Entry Section:

Q@ 0,0 clear

set confirm on

© 3,10 say "Enter Total Test Time:" get t_e picture "9999999.99"

© 4,10 say "Enter Max # Iteration:" get max_iter picture "999"
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@ 5,10 say "Enter MLE Delta :" get delta picture '9.99999999"
if upper(dbvar)="0"

© 6,10 say "Enter Initial Failure "

© 7,10 say "Intensity (0 for nome):" get lambda_O picture "9.999999999"
endif

read

set confirm off .

© 11,10 say "Data Output Interval: (M)onthly or (D)aily:" ;
get intervar picture "@K !" valid(intervar$"MD")

read

@ 13,10 say "Send Data to (S)creen, (P)rinter, or (F)ile:" ;

get printvar picture "0K !" valid{printvar$"SPF")

* Data Direction Section:

if upper(printvar) = "F"
if upper(dbvar) = “O"
@ 15,10 say "Sending Data to File SREXEC.PRN ..."
set printer to SREXEC.PRN
else  && upper(dbvar) = "D"
@ 15,10 say "Sending Data to File SREXECD.PRN ..."
set printer to SREXECD.PRN

endif .
set device to print

pagelength = 4000
elseif upper(printvar) = "p"
@ 15,10 say "Printing Data ..."
set device to print
pagelength = 55

else
© 0,0 cleax
pagelength = 20

endif

T —_——

* Data Calculation Section: Maximum Likelihood Estimation

© 3,7 say "MLE Calculations for"

@ 3,31 say dbname

@ 3,40 say "using Musa Execution Time Model:"

* - —— -—

* Make initial model parameter estimation, and sum failure occurance
* times to make calculations easier:

b_hat = 1/(t_e)

@ 5,10 say "Total Failures: m_e ="
@ 5,43 say m_e picture "99999.99"

© 6,10 say "Failure Data End Time: t_e
@ 6,43 say t_e picture "99999999.99"
Q
Q
*
*
*

7,10 say "Initial Model Param Est: b_hat
7,43 say b_hat picture "99.999999999"

Determine a better estimation for b_hat by making f_stat as close
as possible to 0 (uses Newton-Raphson method):

if upper(printvar) = "P"
set_device to screen . .
@ 17,10 say "Refining b_hat Estimate, Please Wait ..."

set device to print

elseif upper(printvar) = "S*
© 8,10 say "Refining b_hat Estimate, Please Wait ..."
endif
 J PRy RSy —————
* Iterate while out of tolerance or within allotted looping time:

num_iter = 1
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not_in_tol = .T.
do while (not_in_tol) .and. (num_iter <= max_iter)

* Determine the f(b_hat) and f’(b_hat) for Newton-Raphson method

* based on known initial value of failure intensity (lambda_0):

if upper(dbvar) = "0" .and. ; &t Different equation set for OT&E using
lambda_0 <> 0.0 && previous DT&E failure intensity #

f_stat = ({m_e*b_hat)/(1-exp(-b_hat*t_e))) ~ lambda_0

fp_stat = (((1-exp(-b_hat*t_e))*m_e)-((m_e*b_hat)*{t_e*exp(-b_hat*t_e))));
/ ((1-exp(-b_hat*t_e))"2)

* Determine the f(b_hat) and f’(b_hat) for Newton-Raphson method
* with no clues at all:
else && We’re either looking at DT&E data
&& or OT&E data without a priori info
go top
t_i=0 && Summation of failure occur times

do while .not. eof()
t_i = t_i + T_TIME_OCCUR
skip

enddo

f_stat = (m_e/b_hat) - ((m_e*t e)/(exp(b_hat*t_e)-l)) -t i

fp_stat = {(m_e * (-1/b_hat~2)) -
(m_e*t_e)*((-1*t_e*exp(b_ hat*t_ e))/(exp(b_hat*t_e)-1)"2)

* The rest is the same for both cases from above:
bp_hat = b_hat - (f_stat/fp_stat) && Burden and Faires Step #3

if abs(bp_hat-b_hat) < delta &% Check for within tolerance delta
not_in_tol = .F.
endif

if upper(printvar) = "P" && Output the data as it is calculated
set device to screen && to verify convergence
19,0 <clear
19,10 say “b_hat
19,20 say b_hat
20,10 say "bp_hat
20,20 say bp_hat
21,10 say "F_Stat
21,20 say f_stat
22,10 say "Fp_Stat
22,20 say fp_stat
17,10 say "Refining b_hat Estimate, Please Wait ..."
set device to print
elseif upper(printvar) = "S" &% Same thing here, but must use
9,0 clear && different screen output positionms.
9,10 say "b_hat
9,20 say b_hat
10,10 say "bp_hat
10,20 say bp_hat
11,10 say "F_Stat
11,20 say f_stat
12,10 say "Fp_Stat
12,20 say fp_stat
8,10 say "Refining b_hat Estimate, Please Wait ..."
endif

b_hat = bp_hat
num_iter = num_iter + 1

enddo
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* Output additional data on refined values:

if upper(printvar) =

IIPII

set device to screen

9,0

clear

@ 19,10 say "Printing Data ..."
set device to print

elseif upper(printvar) = "S"
@ 9,0 clear
endif

if num_iter > max_iter
@ 9,10 say "Method Failed After "
@ 9,30 say max_iter picture "999"
@ 9,34 say "Iterations."

nu_0, lambda_O, and 95th Percentile:"

Initial model parameter
From Z statistic

Derived model parameter
Calculated from parameter
b_hat.

Total Failures at t=infinity
By Definition

Initial Failure Intensity

If we don’t have a user
input, calculate it

Varying b_hat effects both

b_hat and b_0, etc.

endif

@ 10,10 say "Final Model Param Est: b_hat = "

@ 10,43 say b_hat picture '99.999999999"

¢ 11,10 say " "

B o o e o o o o o e o e 2 o e

* Data Calculation Section: Parameters and Confidence Intervals

* Determine the Expected (Fisher) Information, and then

* Calculate 95/ Confidence Intervals:

© 12,10 say "Parameter Calculations:

fisher = m_e * ( (1/b_hat"2) - ( (t_e"2*exp(b_hat*t_e)) ;
/ (exp(b_hat*t_e)-1)"2 ))

&&
b_hat_low = b_hat - (1.96/sqrt(fisher)) &&
b_hat_hi = b_hat + (1.96/sqrt(fisher))

&g
b_0 = (m_e) / (1-exp(-(b_hat*t_e))) L&
b_0_low = (m_e) / (1-exp(-(b_hat_low*t_e))) &&
b_O_hi = (m_e) / (1-exp(-(b_hat_hi*t_e)))

&%
nu_O = b_0 12 ;
nu_O_low = b_0_low
nu_O_hi = b_O_hi

&&
if lambda_0 = &&

lambda_0 = b_0 * b_hat &&
endif
lambda_O_low = b_O_low * b_hat_low &&
lambda_O_hi = b_O_hi * b_hat_hi &&
© 14,10 say "Expected (or Fisher) Value
© 14,48 say fisher picture ''9999999999. 999999999"
Q@ 16,10 say "95) Boundary: nu_0_low
@ 16,48 say nu_O_low picture "99999999.99"
@ 17,10 say "Total Estimated Failures: nu_0
€ 17,48 say nu_O picture "99999999.99"
@ 18,10 say "95% Boundary: nu_O_hi
© 18,48 say nu_O_hi picture "99999999.99"
© 20,10 say "95% Boundary: lambda_0O_low
© 20,48 say lambda_0_low picture "99.999999999"
Q@ 21,10 say "Initial Failure Intensity: lambda_0 =
© 21,48 say lambda_O picture "99.999999999"
© 22,10 say "95% Boundary: lambda_0_hi
Q@ 22,48 say lambda_O_hi picture "99.999999999"
€ 23,10 say " "
B e e e e e e 4 o o 2 2 v e e
* Output of Model Results:
if upper(printvar) = "pP"
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set print on
eject
set print off
elseif upper(printvar) = "S"
wait "Hit any key to continue ...

clear
endif

.not. eof()

if LOC = 1 . && Header information:
@ LOC,10 say "Generating Plot Data for"

@ LOC,35 say dbname

@ LOC+1,5 say "----- - - "
@ LOC+1,51 say " ———="
LOC = LOC + 3
endif
store CAL_DATE to mdate
store T_TIME_QCCUR to tau
store TOTAL to mu
R e ————
* Calculate this info for each pass in the loop:
* Failures Experienced at time t=tau
mu_tau = nu 0 * (1 - exp(-(lambda_0/nu_0)*taun))
mu_tau_low = nu_0_low * (1 - exp(-(lambda_0/nu_O0_low)*tau))
mu_tau_hi = nu_O_hi * (1 - exp(-(lambda_0/nu_O_hi)*tau))
* Failure Intensity at time t=tau

lambda_tau
lambda_t_low
lambda_t_hi

lambda_0 * exp(-(lambda_0/nu_0)*tau)
lambda_0_low * exp(-(lambda_O_low/nu_0_low)*taun)
lambda_0_hi * exp(-(lambda_O_hi/nu_O_hi)=*tau)

* Failure Intensity at mu failures experienced

lambda_mu
lambda_m_low
lambda_m_hi

———

lambda_0 * (1-(mu/nu_0))
lambda_0O_low * (1-(mu/nu_0_low))
lambda_O_hi * (1-(mu/nu_O_hi))

H 1t

* Now output the info for each pass in the loop:

© LOC,10
@ LOC,16
@ LOC,30
@ LOC,44

LOC=L0C+1
@ LOC,10 say

© LOC,16 say
© LOC,30 say
© LOC,44 say

LOC=L0OC+1

@ LOC,10 say
© LOC,16 say
© LOC,30 say
@ L0OC,44 say
LOC=L0OC+1

@ LOC,10 say
© LOC,28 say
@ LOC,43 say
© LOC,60 say
LOC=L0OC+1

© LOC,10 say
© LOC,28 say
© 10C,43 say
€ LOC,60 say
LOC=L0C+1

© LOC,10 say
© LOC,28 say
© LOC,43 say

say
say
say
say

HDay : ”

mdate

"mu(taun) low = "

mu_tau_low picture "9999.99"

"m“ ="

mu picture '9999.99"
"mu(taun)
mu_tau picture *9999.99"

Iltau - "

tau picture "9999999.99"
"mu(tau) hi ="

mu_tau_hi picture "9999.99"

"lambda(tau) low = *
lambda_t_low picture '"99.999999999"
"lambda(mu) low = "
lambda_m_low picture "99.999999999"

"lambda(tau)
lambda_tau picture '99.999999999"

"lambda(mu) ="
lambda_mu picture "99.999999999"

"lambda(tau) hi = "
lambda_t_hi picture "99.999999999"
“lambda(mu) hi ="
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© LOC,60 say lambda_m_hi picture '99.999999999"
LOC=LOC+2
-if LOC > pagelength
LoC = 1
if upper(printvar) = "S"
wait "Hit any key to continue ..."

clear
endif
endif

———— - _ —_———

* Skip for either every entry or for first entry of each month:
skip
if upper(intervar)="M"

do while (month(CAL_DATE)
skip
enddo
endif

enddo

*— - -

month(mdate)) .and. (.not. eof())

if upper(printvar) = "F"
set device to screen
set printer to

? chx(7) && Wake me up when done!
elseif upper(printvar) = "F"

set device to screen
set print on

eject
set print off

else . X
wait "Hit any key to continue ..."
endif
*_— ————— - ————————————— ———————— —— . " " S i ok Y . e S S
close all
return &% to SRSAS

dopkkkkk kb kok ok kkok ek kR Rk kR Rk kR ko ko k ok ko Rk kR kR Rk
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store

Title : Software Reliability Logarithmic Poisson Module (SRLOG.PRG)
Version : 3.3

Date : 15 Oct 91

Author : Capt Joseph J. Stanko

Security : Unclassified

Purpose : This program:

Theory : In order to apply the Logarithmic Execution Time model to the

Database : This program uses one database:

Modules : N/A
Wk kg kokkok ok ok kR ko ko k ok k ok ko kR Rk ok ko kR kR ko kkkokkkkkkkk Rk kR kk k%

Software Reliability Logarithmic Poisson Ezecution Ttme Module

RERR R ERER AR R R E RN RN E R R Rk kR kR Rk k kR kR kR
*

1.) Performs calculations on data to determine initial
parameters for the fitted model.

2.) Performs calculations on data to determine goodness-of-fit
for the Logarithmic Execution Time model.

failure data, initial parameter estimation must be
accomplished from the overall data. Once the parameters

are calculated, they are then used in the model to calculate
estimated values (such as current number of failures and
failure intensity) along with the 95% confidence intervals.
These estimations are then compared against the actual data to
determine the goodness-of-fit.

TIME.DBF - This is a _final database of dates and estimated
failure t1mes and test durations:
Name Type Length Decimal Description

CAL_DATE Date Date of occurrence of failure

L_TIME_OCC N 10 2 "Local" time of failure occur
(vrt to start of that test)

TEST_DUR N 10 2 Duration of test for that day

T_TIME_OCC N 10 2 “Total" time of failure occur
(vrt to all total test time)

TOTAL N 4 Total failures to that point

*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

"0" tO

© 23,20 say "(D)T&E or (0)T&E Database?" ;

get dbvar picture "@K !" valid(dbvar$"D0O")

read
@ 23,20 clear
if upper(dbvar) = "0" && Use OT&E version of time database
1use TIME alias TIME
else
gse TIMEDTE alias TIME && Use DT&E version of time database
endi
T o o e o e e e et e e e e e e e 4
* Variable Section (Note: mu’s and lambda’s are defined later on):
go bottom
store " " to dbname && Name of database for output header
store 0.0000001 to delta && Accuracy difference of parameters
store "M" to intervar && Data output intervals (monthly or daily)
store 0.000 to lambda_0 && Initial failure intensity value
store TOTAL to m_e && Total number of failures
store 30 to max_iter && Max iterations to perform Newton-Raphson
store "S" to printvar && Default print option (screen)
store T_TIME_OCCUR to t_e && Total test time
e —— —_ T A S ——
* Data Entry Section:
¢ 0,0 clear
set confirm .
@ 3,10 say "Enter Total Test Time:" get t_e picture "9999999.99"
© 4,10 say "Enter Max # Iteration:" get max_iter picture "999"
© 5,10 say "Enter MLE Delta 1" get delta picture "9.99999999"
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if upper(dbvar) = "Q"

© 6,10 say "Enter Initial Failure "

© 7,10 say "Intensity (0 for none):" get lambda_O picture "9.999999999"
endif

read
Q@ 9,10 say "What is DB Name for Output?" get dbname picture "!tt!tt1ts®
read
set confirm off
© 11,10 say "Data Output Interval: (M)onthly or (D)aily:" ;
get intervar picture "@K !" valid(intervar$"MD")
read
© 13,10 say "Send Data to (S)creen, (P)rinter, or (F)ile:" ;
get printvar picture "@K !" valid(printvar$"SPF")

* Data Direction Section:

if upper(printvar) = "F"
if upper(dbvar) = "O"
@ 15,10 say "Sending Data to File SRLOG.PRN ..."
set printer to SRLOG.PRN
else && upper(dbvar) = "D"
@ 15,10 say "Sending Data to File SRLOGD.PRN ..."
set printer to SRLOGD.PRN

endif .
set device to print

pagelength = 4000
elseif upper(printvar) = "p*
€@ 15,10 say "Printing Data ..."
set device to print
pagelength = 55
else
@ 0,0 clear
pagelength = 20
endif

Data Calculation Section: Maximum Likelihood Estimation

*

*

@ 3,7 say "MLE Calculations for"

@ 3,31 say dbname

€@ 3,40 say "using Logarithmic Poisson Model:"

e e e
* Make initial model parameter estimation, and sum failure occurrance
* times to make calcuations easier:

b_hat = 1/(t_e) &% Musa’s recommended guess

go top

© 5,10 say "Total Failures: m_e ="

@ 5,43 say m_e picture "99999.99"

@ 6,10 say "Failure Data End Time: t_e ="

@ 6,43 say t_e picture "99999999.99"

@ 7,10 say "Initial Model Param Est: b_hat

Q@ 7,43 say b_hat picture "99.999999999"
Determine a better estimation for b_hat by making f_stat as close

* as possible to 0 (uses Newton-Raphson method):

num_iter = 1

not_in_tol = .T.

* *

if upper(printvar) = "P"
set_device to screen . .
@ 17,10 say "Refining b_hat Estimate, Please Wait ..."
set device to print

elseif upper(printvar) = "S"
@ 8,10 say "Refining b_hat Estimate, Please Wait ..."
endif
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* Iterate while out of tolerance or within alloted looping time:
do while (not_in_tol) .and. (num_iter <= max_iter)

* Determine the f(b_hat) and f’(b_hat) for Newton-Raphson Method
* based on a known initial value of failure intensity (lambda_0):
if upper(dbvar)="0" .and. ; &% Different equation set for OT&E using
lambda_0 <> 0.0 &% previous DT&E failure intensity #
b_one = (1 + (b_hat#*t_e)) && Shortens equation notation

f_stat = ((m_e¥b_hat) / log(b_one)) - lambda_O
fp_stat = (((log(b_one))+*m_e)-((m_e*b_hat)*(t_e/b_one))) / ((log(b_one))"2)

* Determine the f(b_hat) and f’(b_hat) for Newton-Raphson Method
* with no initial clues at all:
else && We'’re either looking at DTEE data
2.4 or OT&E data without a priori info
go top && Requires looping thru database again
t_i_sum =0 && Summation of failure occur times (ti)
t_i2_sum = 0 && Sum of square of fail occur times (ti)
do while .not. eof()
t_i_sum = t_i_sum + (1/ (1+ (b_hat*T_TIME_OCCUR)))
tii2_sum = t_i2_sum + (-T_TIME_OCCUR / (1 + (b_hat*T_TIME_OCCUR))"2)
skip
enddo
b_one = (1 + (b_hat*t_e)) && Shortens equation notation
f_stat = (1/b_hat)*(t_i_sum) - ((m_e*t_e)/(b_one * log(b_one)))
fp.stat = ((1/b_hat) * t_i2_sum) + ((t_i_sum) * (-1/b_hat~2)) ;
- ( (-(m_e*t_e~2) * (1+ log(b_one))) ;
/ (b_one * log(b_one))"2 )
endif
M 55;—;;;€~;f this is the same for either case from above:
bp_hat = b_hat - (f_stat/fp_stat) && Burden & Faires Step #3
if abs(bp_hat-b_hat)<delta && Check for within tolerance delta
not_in_tol = .F.
endif
if upper(printvar) = "P" &€& Output the data as it is calculated
set device to screen &t to verify convergence.
© 19,0 clear
@ 19,10 say "b_hat ="
@ 19,20 say b_hat
@ 20,10 say "bp_hat ="
@ 20,20 say bp_hat
@ 21,10 say "F_Stat ="
@ 21,20 say f_stat
@ 22,10 say “Fp_Stat = "
@ 22,20 say fp_stat
@ 17,10 say "Refining b_hat Estimate, Please Wait ..."

set device to print
elseif upper(printvar) = "S" && Same thing here, but must use
9,0 clear && different screen position for output.
9,10 say "b_hat ="
9,20 say b_hat
10,10 say "bp_hat ="
10,20 say bp_hat
11,10 say "F_Stat
11,20 say f_stat
12,10 say "Fp_Stat
12,20 say fp_stat
8,10 say "Refining b_hat Estimate, Please Wait ..."

08000000600
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endif

b_hat = abs(bp_hat)
num_iter = num_iter + 1

enddo
- -

* Output additional data on refined values:

if upper(printvar) = "P"
set device to screen
9,0 clear
© 19,10 say "Printing Data ..."
set device to print

elseif upper(printvar) = "S"
€ 9,0 clear
endif

if num_iter > max_iter
? 9,10 say "Method Ended After "
© 9,29 say max_iter picture "999"
® 9,33 say "Iterations."

endif

@ 10,10 say "Final Model Param Est: b_hat = *
@ 10,43 say b_hat picture "99.999999999"

® 11,10 say " "

——

* Data Calculation Section: Parameters and Confidence Intervals
* Determine the Expected (Fisher) information, and then

* Calculate 95% Confidence Intervals:

@ 12,10 say "Parameter Calculations: theta, lambda_0, and 95th Percentile:"
b_one = (1 + (b_hat*t_e))

fisher = m_e * ( ((2*t_e)/(b_hat*b_one*log(b_one)))
- ( (1/(2*b_hat~2+log(b_one)))
* (1 - (1/b_one~2)))
- ( (t_e"2#(log(b_omne)+1))
/ ((b_one*log(b_one))~2))

)
b_hat_low = b_hat - (1.96/sqrt(fisher)) #% From Z statistic.
b_hat_hi = b_hat + (1.96/sqrt(fisher)})
b_0 = (m_e) / log(1+(b_hat*t_e)) &¢ Calculated from parameter
b_0_low = (m_e) / log(1+(b_hat_lowxt_e)) &k b_hat.
b_O_hi = (m_e) / log(1+(b_hat_hi*t_e))
theta = 1/b_0 &% By definition.
theta_low = 1/b_0_low
theta_hi = 1/b_0_hi
lambda_0 = b_0 * b_hat && Varying b_hat affects both
lambda_O_low = b_0_low * b_hat_low && b_hat and b_0, etc.
lambda_O_hi = b_O_hi * b_hat_hi
Q@ 14,10 say "Expected (or Fisher) Value "
Q@ 14,48 say fisher picture '9999999999. 999999999"
Q@ 16,10 say "95% Boundary: theta_low = "
@ 16,48 say theta_low picture "99.999999999"
© 17,10 say "Failure Intensity Decay: theta = "
© 17,48 say theta picture "99.999999999"
© 18,10 say “95% Boundary: theta_hi = "
Q@ 18,48 say theta_hi picture "99.999999999"
© 20,10 say "95% Boundary: lambda_O_low = "
€ 20,48 say lambda_0_low picture '99.999999999"
© 21,10 say "Initial Failure Intensity: lambda_0 = "
© 21,48 say lambda_0 picture "99.999999999"
Q@ 22,10 say "95% Boundary: lambda_O_hi = "
Q@ 22,48 say lambda_O_hi picture "99.999999999"
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@ 23,10 say " "
B s e o e e e e e e e o e e S i o T . e = = . e e e o

* Output of Model Results:

if upper(printvar) = "P"
set print on
eject
set print off
elseif upper(printvar) = "S"
wait "Hit any key to continue ...

clear
endif

go top
Loc = 1
do while .not. eof()
if LOC = 1 .
@ LOC,10 say "Generating Plot Data for"
@ LOC,35 say dbname
@ LOC+1,5 say "---—-=----ssoo-o-—-
© LOC+1,51 say "-~--——so-mmso e mm e "
LOC = LOC + 3
endif
store CAL_DATE to mdate

store T_TIME_OCCUR to tau
store TOTAL to mu

* -
* Calculate this info for each pass in the loop:

mu_tau (1/theta) * log((lambda_O*theta*tan)+1)
mu_tau_hi (1/theta_hi) * log((lambda_O*theta_hi*tau)+1)
if ((lambda_O*theta_lows*tau)+1) > 0

mu_tau_low = (1/theta_low) * log((lambda_O*theta_low*tau)+1)

&& Header information:

brackets = .F.
else
mu_tau_low = abs(mu_tau_hi - mu_tau) + mu_tau
brackets = .T.
endif
lambda_tau = lambda_0 / ((lambda_O*thetastau)+1)
lambda_t_low = lambda_O_low / ((lambda_0_lows*theta_low#tau)+1)
lambda_t_hi = lambda_O_hi / ((lambda_O_hi*theta_hi*tau)+1)
lambda_mu = lambda_0 * exp(-theta*mu)
lambda_m_low = lambda_0_low * exp(-theta_low#mu)
lambda_m_hi = lambda_O_hi #* exp(-theta_hi*mu)
pr— - o
* Now output the info for each pass in the loop:
@ LOC,10 say "Day : "
@ LOC,16 say mdate
© LOC,30 say "mu(tau) low = "
¢ L0C,44 say mu_tau_low picture "9999.99"
LOC=L0C+1
@ LOC,10 say "mu = "
Q@ LOC,16 say mu picture "9999.99"
Q@ L0C,30 say “"mu(tau) ="

© LOC,44 say
LOC=L0OC+1
@ LOC,10 say

Q@ LOC,16 say
© LOC,30 say
@ L0C,44 say
LOC=L0OC+1

€@ LOC,10 