-00175
St

W

CLECTE
JAN 0T 1932

A

|
I

i

I

|

\
\

_A244 177 —
A[\i\‘x\\li\i\\\\\\\‘l\\\\ﬁ Hiut:

DTIC

D

This document has been approved
for qublic telease and sule'.'nt,trs
distribution {s unlimited.

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Farce Base, Ohio

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK
AND WHITE MICROFICHE.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Pubhic reporting burden for this collection of information 1y estimated 10 average 1 hour per respunse, including the time fOr reviewing INstructions, searching existing data sources,
Jathenng and mantaining the data needed. and cOmpleting and reviewing the collection of infarmation Send comments . :
collection ot intormation. .ncluding suggestions tor reduding this burden. 10 Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefterson
Davis Highway. Suite 1204, Aclington, VA 22202-4302 and to the Otfice of Management and Budget. Paperwork Reduction Project (0704-0188), washington, DC 20503.

arding this burden estimate or any other aspect of this

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 1991

Master's Thesis

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Analysis

Separation of Cloud/No-Cloud Regions in Satellite
Imagery Using a Variation of Hierarchical Clustering

6. AUTHOR(S)

Charles J. Martin, Jr., Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology,
WPAFB OH 45433-6583

AF

8. PERFORMING ORGANIZATION
REPORT NUMBER

IT/GSO/ENS/91D-12

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release;
distribution unlimited

12b. DISTRIBUTION CODE

Satellite.

computer.

APT imagery.

Air Force Institute of Technology.

13. ABSTRACT (Maximum 200 words)
This study investigated the usefulness of personal-computer-based software
applying hierarchical clustering theory to try to separate cloud-covered regions
from clear regions using Automated Picture Transmission imagery from the National
Oceanographic and Atmospheric Administration's Television Infrared Observation
The algorithms were developed in Turbo Pascal, Version 6, and are part
of the Training Software Image Processing program developed by a professor at the
The goal of the project was to see if
hierarchical clustering could provide better separation of cloud/no-cloud regions
than an existing technique, histogram thresholding, while running on a personal

Results of the research indicated that it was possible to use a centroid
based clustering algorithm to separate cloud-covered regions from clear regions in
Seed points were used to start the clustering process.
seed point was chosen to be the brightest pixel in the clustering area.
results showed that the automated clustering approach provided results within
15 to 20 percent of those obtained from the histogram threshold method.

The cloud
Typical

14. SUBJECT TERMS

Clustering, Image Dissection, Clouds, Classification
Cloud Identification, Image Processing, Weather Imagery

15. NUMBER OF PAGES
93

16. PRICE COOE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std 239-'8
298-102

AFIT/GSO/ENS/91D-12

e \11 ’:' ’ ‘

B T

e T RO
L ELELCTE
PR

. hF M
T JANQ7 D7, v
;j».}] 7.‘: £ .
K

-

Separation Of Cloud/No-Cloud Regions In
Satellitc Imagery Using a Variation
Of Hierarchical Clustering Analysis
THESIS
Charles J. Martin, Jr., Captain, USAF

AFIT/GSO/ENS/91D-12

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: Charles J. Martin, Jr., Captain, USAF

CLASS: GSO-91D

THESIS TITLE: Separation of Cloud/No-cloud Regions in Satellite Imagery Using
a Variation of Hierarchical Clustering Analysis

DEFENSE DATE: 26 November 1991

"y

GRADE:
COMMITTEE NAME/DEPT SIGNATURE
Advisor: Major Thomas S. Kelso/ENS

v

Reader: Lt Col Martin R. Styz/ENC g Aan A % P
7>

["A-cesion for (
NTIS CRA&I v
DG TAB]

U nwmcunced
Jostif:cation

o

By S
Di tapoton!

P e

o - i — e

Avaiatatity O¢

AFIT/GSO/ENS/91D-12

Separation Of Cloud/No-Cloud Regions In Satellitc Imagery

Using a Variation of Hicrarchical Clustering Analysis

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Space Operations

Charles J. Martin, Jr., B.S.

Captain, USAF

December 1991

Approved for public release; distribution unlimited

Preface

The purpose of this study was to develop a personal-computer-based program that utilized
agglomerative clustering theory to try o scparate weather features from non-weather features on
Automated Picture Transmission (APT) imagery collected from the National Oceanographic and
Atmospheric Administration’s (NOAA) Television Infrared Observation Satellite (TIROS-N).
Programming was done in Version 6.0 of the Turbo Pascal language, and a number of sample
images were examined to explore the speed and accuracy of the program.

In rescarching and writing the algorithms contained within this report have had a great deal of
support from many individuals. I am deeply indebted to my advisor, Professor T. S. Kelso, who
developed the program within which I have created the clustering algorithms. I would also like to
thank my reader, Lt Col M. Stytz, who was very patient waiting for the first draft of this report. 1
would especially like to thank my fiancée, Susanne V. Lefebvre, whom I met while at the Air Force
Institute of Technology. Her undying support got me through many tough situations. Finally, I
would like to thank my parents for all that they have given me.

Charles J. Martin, Jr.

Table of Contents

Page

Preface ... e i
List of FIZUICSo e v
List of Tables ... oo vi
ADSITACE . . oo e vil
I Introduction e 1
Rescarch Objectiveo e e 2

Project OVEIVIEW . . o oo o e e 3

Il Background Development and Literature Review 4
APT Imagery . .. 4

Image Processing Software L 5

Weather Identification Using Computer Algorithms 7
Hicrarchical Clustering Analysis 10
Normalization of Raw Category Data 16

Application of the Agglomerative Clustering Method 18

SUMIMATY . o ottt ettt e et et e e e e et e e e 20

1. Development of Computer Algorithms i, 22
Implementation of Centroid Method with Seed Points 22

Overview of Algorithm Operation23
Assessment of Clustering Program’s Effcctiveness0 .o L. 26

SUMMATY . .. e e e 2T

IV. Examples of Program Operation L 28
Example 1 e e 28

Example 2 .. e B2

Example 3 34

SUMMATY . . ot et e e e et e e e e e e e et e et e e 36

V. Conclusions and Recommendations L L 38
Appendix A: User’s Guide for the Clustering Algorithmso o . o o o ... 41
Starting the Program e 42

Memory RequIrements ... oo o e 44

Clustering OplLIONS . . .ot e e e -

Shut-Down of the Program e 49

Appendix B: Listing of Turbo Pascal Code oo S0

List of Figures

Figure Page
1. Main TSIPS SCIrCCR . .o L e e 6
2. A Sample HIstogram 8
3. Hierarchical Clustering Techniqueso o e e 11
4. Classification of Coals e 20
5. Example Onc (User Selected Sced Pixels)o o oo 29
6. Example One (Automatic Selection of Seed Pixels) o L 31
7. Example Two (User Selected Seed Pixels) o o oo 33
8. Example Two (Automatic Sclection of Seed Pixels) 34
9. Example Three (User Selected Sced Pixels)o o i 35
10. Example Three (Automatic Sclection of Seed Pixels) 36
11. Sample TSIPS Cenfiguration File 41

List of Tables

Table Page
1. AVHRR Scnsor Channels ... oo oo 4
2. Example One Summary 28
3. Example Two Summary 32
4. Example Threc Summary 34

vi

AFIT/GSO/ENS/91D-12

Abstract

This study investigated the uscfulness of personal-computer-based softwarc applying hicrarchical
clustering theory to try to separate cloud-covered regions from clear regions. The weather data used
was Automalted Picture Transmission (APT) imagery collected from the Television Infrared
Observation Satellite (TIRQS-N) run by the National Oceanographic and Atmospheric
Administration (NOAA). The imagery was collected and displayed using a small satellite receiver
and personal computer set up by the Air Force Institute of Technology (AFIT) to study the
cffectiveness of receiving weather imagery on a relatively low-cost, and easy-to-transport system.
The algorithms were developed within the TSIPS program, written by an instructor at AFIT, which
had many of the routines necessary to support this project. In addition, the TSIPS program was
written in Turbo Pascal specifically to run en a personal computer, making it casicr to develop the
clustering algorithms within it. The goal of the project was to sce if hicrarchical clustering could
provide better separation of cloud/no-cloud regions than an existing technique, histogram
thresholding, while running on a personal computer.

Results of the rescarch indicated that it was possible to use a variation of the hicrarchical
clustering process to separate cloud-covered regions from clear regions. However, the results were
not quite as good as those obtained from the histogram thresholding method. One advantage the
awtomated clustering process has over the histogram process is that no user manipulation of a
histogram is nccessary in order (o scparate the clouds. Typical results showed that the automated
clustering approach provided results within about 15 to 20 percent of those obtained from the
histogram method. If the manual sclection of seed points is used prior to running the clustering

algorithms, the differences between the two methods virtually disappear.

Vil

Separation Of Cloud/No-Cloud Regions In Satellite Imagery

Using a Variation of Hicrarchial Clustering Analysis

I. Introduction

Buckground

Sun Tzu, a famous Chincsce tactician once wrote: "Know the ground, know the weather; your
victory will then be total” (9:129). In order to "know the weather,” it is necessary to be able to
identify cloud formations and understand what they might mean. For centuries, ground-based
observers were the only way to identify clouds, and their jobs were difficult due to their hmited
perspective of the clouds. After the invention of the weather satellite in the carly 1960s, a whole
new perspective of clouds was available that made identifying and predicting weather phenomena
much casicr. However, in the identification process it is assumed that the person looking at the sky,
or st ey s tecfacdin the ast of waather identfication. In today’s environment of
spending reductions, the aumber ol trasn 0 meteorologists 15 aimost certain’y going to be reduced
both in the civihan and military workforce, whicih means that other methods of weather identification
must be developed.

Onc alternate method of weather identification that has been under development for a few vears
uses computer analysis. Using a variety of techniques, computer algorithms will pick out weather
featurcs within an image, and provide a prediction as to what cach feature is. Up 0 now, the
majority of the work in this field has been done with mainframe computers, or workstations, because
they alone had the proc ssing power and storage capacity to run the algorithms, However, these
systems have drawbacks, such as a lack of mobility, and a high price, which prevents their
widespread use by organizations such as the armed forces which, by nature of its profession, needs
mobility, but on a limited budget. This is where the personal computer can fit in. Since the carly
1980s, when personal computers first appeared, their power and memory capacitics have grown

extensively. Computations that just a few years ago needed to be run on a mainframe computer can

today be run on a desktop system. Furthermore, advances in weather satellite technology have made
weather imagery available to just about anyone, anywhere in the world, if they have the right
equipment. Today, through the use of a simple receiver connected to a personal computer, it is
possible to obtain satellite imagery from the Television Infrared Obscrvation Satellitc (TIROS-N)
run by the National Occanographic and Atmospheric Administration (NOAA) (2:Sec 4,1-2). The
Air Force Institute of Technology (AFIT) operates such a system and can receive Automated Picture
Transmission (APT) satellite imagery directly from the NOAA satellite and display it on a personal
computer. Personal computers help solve the mobility and cost problems, but up to now there has
not been any major software developed that can analyze weather features and be run on a personal
computer.

There are a number of steps that must be accomplished to develop a program that can take
APT imagery and identify the clouds within it. This project will deal with the first of these steps, the
scparation of cloud-covered arcas from non-cloud-covered arcas. Most of the weather identification
algorithms alrcady written to run on large computers use some type of single-image histogram
manipulation to scparate cloud-covered regions from clear regions. However, this type of analysis
docs not always completely separate cloud-covered regions from clear regions. Another technique,
known as hicrarchical cluster analysis, has shown to be very useful in othe: scientific ficlds, and may

be applicable 1o this problem as well.

Research Objective
The objective of this rescarch is two-fold. First, an exploration of the viability of using a

hicrarchical-clustering-based process to analyze NOAA APT satellite imagery and separate weather
features from non-weather fcatures will be conducted. Secondly, the programs implementing the
clustering process will be written to run on a personal computer in order to determine if personal
computers can be used for such a task. To achicve these objectives, the TSIPS package created by
Professor T. 8. Kelso will be used as the framework within which the clustering algorithms will be
written. Ultimately, the work in this projcet could form the basis for a software package to analyze

weather features on a personal computer.

tv

Project Overview

The work done in an attempt to complete the project’s objectives is discussed i the next four
chapters. Chapter IT provides background information in four key areas: NOAA APT imagery,
TSIPS image processing software, current weather identification rescarch with a specific focus on
how cloud-covered regions are distinguished from clear regions, and hierarchical clustering theory.
This background information helps build the foundation upon which the rescarch in this project is
based. Chapter HI wall examine how the hicrarchical clustering theory was modified and turned into
usable computer code, while Chapter IV discusses some examples of the finished algorithms at work.
Chapter V will summarize the results of this research and provide some recommendations for future
work. Finally, a user’s manual for the computer algorithms, as well as the complete computer code

for the clustering program can be found in the two appendices.

I. Background Development and Literature Review

The first step in accomplishing the objectives of this project is to develop some background
information in four key arcas. First, how the APT imagery is created will be examined. Sccond, the
operation and hardware requirements of the TSIPS image processing program will be examined.
Third, some current work in automated weather identification will be presented with a special focus
put on how clouds are separated from everything clse within an image. Finally, the basic theories of
hicrarchical clustering analysis will be presented, and to better understand how this process can be

used, an application of its use to a real-world problem will be presented.

APT Imagery

The NOAA TIROS-N weather satellite has four different sensor packages onboard: Advanced
Very High Resolution Radiometer (AVHRR), Operational Vertical Sounder (TOVS), Data
Collection System (DCS), and the Space Environment Monitor (SEM) (2:2-1). The AVHRR sensor
is used to image weather patterns in the carth’s atmosphere and operates on four or five different
channels, cach of which monitors a specific band of wavelengths (2:Sec 2,1-3). The wavelength band

and primary purpose of cach channcl is shown in Table 1.

Table 1. AVHRR Scnsor Channels (Adapted from 2:2-3)

Sensor Wavelengths (micrometers) Primary Use
Channel
1 55 - .90 Daytime cloud and surface
mapping
2 J25 -1 Surface water delincation
3 3.55-3.03 Sca surface temperature, nighttime

cloud mapping

4 105 - 11.5 Sca surface temperature, day/night
cloud mapping

5 11.5-125 Sea surface temperature

The collected AVHRR imagery is transmitted to ground stations in two separate signals. The
first signal, High-Resolution Picture Transmission (HRPT), is a direct readout of all channels of
AVHRR data (2:2-1). Thc HRPT signal has a high data transmission ratc (663.4 kilobits per
sccond) due to the large amount of information that is being relayed (2:4-2). This high data rare
requires that very sophisticated and expensive reccivers be used to collect the data, The cost and
complexity of HRPT receivers preclude many individuals and organizations from having access to the
data, so a sccond data signal, Automated Picture Transmission (APT), is broadcast. To achieve
slower data rates, the APT signal contains information from only two AVHRR channels, visible and
infrared, and in cach channel only every third line of the HRPT data is transmitted (10:134). The
rcduction in data allows the APT signal to broadcast at a rate of 8 kilobits per second which is
accessible by less sophisticated reccivers (2:4-2). The reduction in transmitted data also means a
decrease in image resolution from 1.1 kilometers (HRPT) to 4 kilometers (APT) (2:2-1,10:134).

The APT signal starts off in a digital format onboard the satelhite and is converted to an analog
signal for transmission (7:38). The ground recciver digitally samples the analog signal 9600 times
cach sccond and assigns an integer value between 0 and 255 to cach sample (6). The integer value
corresponds to a specific gray-shade that can be used to display the sample on the computer
monitor. The displayed image will be slightly degraded in resolution due to a smoothing process
which results from the APT data being converted (o an analog format, and then back to a digital
format (7:39). However, the degradation is not e¢nough to cause problems with the algorithms
developed in this project, or with the identification of most weather phenomena due to their large-

scale features.

Image Processing Software

The TSIPS image processing program was written by Professor T. S, Kelso, at the AFIT School
of Enginccring, for a class on the analysis of spatial and temporal modeling. The program is written
in Turbo Pascal, Version 6.0, and can be uscd to carry out a variety of image analysis tcchniques
upon satellitc imagery including filtering, histogram manipulation, and contouring. The softwarc

requires an IBM-compatible computer system running the Microsoft'™ Disk Opcrating System (MS-

DOS) with 4 Video Graphies Array (VGA) card and momtor. In order to get usable graphics
images on the sereen. the VGA adapter should be capable of displaving a minimum of 64) x 4X)
pixcls in 236 possible colors. Tt s also recommended that the computer being used to run this
software have at least 640 Kilobytes of memory. In additon, for the clustering algorithms developed
within this project to work efficiently, the computer system should have at least two megabytes of
extended memoryv. A hard disk 1s also recommended for storage of APT images which are cach
aboutl one megabyvie i size.

Once started, TSEPS divides the monitor's sereen into four equal-sized windows. Windows One
through Three, which are numbcered clockwise starting in the upper left. are used to display satellite
imagery and perform operations on satellite imagery such as zooming or filtering. Window Four 1s
uscd to display menus and supplementary information, such as histograms. Figure 1 shows what the
main TSIPS screen looks like after having an APT image placed in Windows One and Two. The

main TSIPS menu 1s visible in Window Fou-.

e Y i
|| EIE By REM3S e 1mace

!n\.';' UTLY T IV u;.bﬂlon

»u

Figure 1. Muain TSIPS Screen

Onc option within the TSIPS program that is used extensively in this project is the GROUP

IMAGES option. This option alfows the user o displav the corresponding arca from the visible and

O

infrared channcls of the APT imagery in separate windows on the display. For instance, if a section
of a visible APT image is being viewed in Window One, the user can sclect the GROUP IMAGES
option and have the infrared image corresponding to the same section displayed in Window Two or
Three. For the TSIPS program to accomplish this, preprocessing of the APT imagery is required to
translate the visible and infrared images into a common coordinate frame. The screen shown in
Figurce 1 has a visible APT image in Window One, and its corresponding infrared image in Window
Two. The color palette used to display the imagery is an option the user can select using the TSIPS
program. Further information on the TSIPS package can be found in Appendix A, and copies of the

software, along with full documentation, are available from Professor Kelso.

Weather Identification Using Computer Algorithms

In this section, a review of two articles that discuss the development of automated weather
identification packages will be presented. The focus of these reviews will be on how the articles
discussed scparating the cloud-covered regions from everything else within an image. The first
article to be reviewed discusses the feasibility of a project known as Short-range Expert Analysis and
forcCAST, or SEACAST.

SEACAST. The primary purpose of this project is to provide aircraft-carricr-based
meteorologists an artificial-intelligence-based computer program to help identify weather patterns
(4:13). The satellite imagery being used in this project is reccived from the Geoslationary
Operational Environmental Satellite (GOES), which provides four-kilometer resolution visual
imagery and eight-kilometer resolution infrared imagery (4:14). Predominately, the authors used the
visible imagery as the initial indicator of cloud/no-cloud regions as it provides the best contrast
between clouc loud regions. In cases where this image is not available, mainly at night, the
infrarcd image was uscd, but with less confidence. The article focused on the initial stages of the
project where the authors chose to focus on the identification of stratus and stratocumulus clouds in
the Pacific Ocean between California and Hawaii (4:13). This region frequently cxhibits large

amounts of both types of clouds.

The first v'ep in the identification process is to create a histogram of the pixel values within an
image. A histogram simply shows the number of pixels that exhibit each of the possible brightness
values contained within an image. The rescarchers found that when trying to identify stratus or
stratocumulus clouds over an ocean, the histogram of the visible image normally contained two
dominant peaks. One of the peaks corresponds to the large number of pixels that have brightness
values denoting them as ocean surface, while the other peak represents pixels with brightness values
corresponding to clouds. An example of a histogram was not presented in the article, however,
Figure 2 shows a histogram that would look a lot like the one described. The y-axis in Figure 2 is

unlabeled, but represents the number of pixels.

/—— CLOUD

SURFACE-

BRIGHTNESS
A THRESHOLD

255
BRIGHTNESS VALUE

Figure 2. A Sample Histogram (Reprinted from 3:43)

To separate the clouds from the ocean surface, the authors simply set the minimum brightness
threshold of the image at the minimum point between the two peaks on the histogram. Thus, all the
pixels that had brightness values associated with the ocean surface were effectively turned off, and

only the pixcls corresponding mainly to clouds were left on. The next step in the identification

process involved using the infrared image to determine temperatures of different regions within the
image. Only regions that had an infrared image corresponding to a temperature of 269 Kelvins or
greater were used, as this was the temperature threshold that the authors determined could scparate
stratus/stratocumulus from other types of clouds (4:15). Finally, using a technique known as
morphological filtering, the authors were able to get a good identification of areas within an image
that corresponded to stratus or stratocumulus clouds. The authors concluded that their technique
showed the promise of being able to be expanded to include the identification of other types of
metcorological phenomena such as turbulence-formed clouds, and tropical systems (4:16).

No mention was made in the article about what type of computer system was being used to
develop the algorithms, however, it scems that the techniques discussed would need to run on at a
minimum, a fast personal computer, with a workstation being the most likely choice. The next
article to be reviewed deals with the development of fast algorithms for the analysis of cloud data.

Ultrafast Algorithms for Cloud Data Analysis. In this article, the authors discuss some of the
theoretical framework nceded for developing software and hardware for the quick identification of
clouds using satcllite images. No specific examples are presented, however, as in the previously
discussed project, the authors deseribe how a single-image histogram can be used to establish a
threshold that can be used to separate clouds from other objects within an image. The drawback of
this technique, however, is that the data from a single image doces not always allow for the totally
accurate identification of cloud-covered regions (3:38). The authors briefly address the use of multi-
spectral data, but only to the extent of saying that if this type of data were being used, the
algorithms and hardware would have to be modified to take into account multiple histograms.
Furthermorc, if the histograms created have more than onc local minimum, unlike Figure 2, multiple
thresholds will have to be established. One technique the authors mention to deal with multiple
thresholds is v segment the original image by the ranges of brightness values between threshold
points on the histogram. A relatively simple histogram, like Figure 2, exhibits only once local
minimum, thus, only onc threshald is nceded. The image can be broken into two picces by taking

all the pixcl, with brightness values below the minimum and separating them from the pixcels with

values above the minimum. This is exactly what was donc in the SEACAST project. Another
technique mentioned by the authors that could possibly be used for the separation and identification
of clouds is called the nearest-neighbor method. This technique is more computationally intense
than the histogram approach, but may vicld better results. As will be shown in the next section,
ncarest neighbor is another name for the single-linkage hierarchical clustering process.

There are numerous other articles covering a wide range of attempts to idenufy clouds in
satellite imagery. Many different types of digital image processing are being looked at for the
identification of clouds, however, before the identification can be done, the clouds must be separated
from cverything else within the image. The majority of the projects reviewed use some type of
histogram analysis for the separation process. The capability to do this type of analysis on satellite
imagery is included in the program developed in this project. Tt will be used as a comparison to the

results of the clustering routines to sce which one provides better results.

Hierarchical Clustering Analysis

Hicrarchical clustering analysis is one of many different {orms of cluster analysis that
rescarchers have been using for many years to attempt to find patterns within a set of data. The
interest in clustering analysis has grown markedly over the years and it is being used in a number of
scientific fields as a research tool. These fields include life sciences, medical sciences, social
sciences, earth sciences, and even engineering sciences (1:5-6). For example, in the area of
engincering sciences, clustering analysis has been used to help identify things such as radar signals
and fingerprints (1:6).

Hicrarchical clustering analysis can be divided into two areas; agglomerative and divisive (5:44).
The agglomcrative method involves starting with n objects or clusters and grouping them two at a
time until all 7 objects are contained within a single cluster. The divisive approach is just the
opposite. Starting with one large cluster, smaller clusters are broken out until only individual objects
arc left. Figure 3 shows a simple diagram that demonstrates the two clustering techniques.

In this project, the agglomerative process would involve starting with # clusters, cach of which is

a single pixel contained within an APT image, and grouping them together into larger and larger

10

" . . . ~ = agglomeragtive

A . . - divisive
L 3 2 1 0

Figure 3. Hierarchical Clustering Techniques (Reprinted from 5:45)

clusters until the final cluster is the image on the screen. In contrast, the divisive process would
begin with the entire image, and break it apart, pixel by pixel, until, after the last step, there were n
clusters left cach representing a single pixel. Divisive processes are not widely used due to the large
amount of computations necessary to complete the process. In their books, both Kaufman and
Anderberg discuss that most divisive methods, on just the first step, need to analyze {2™!. 1}
combinations, where n represents the number of individual objects (pixels), in order to divide the
data set into two clusters. At each subsequent step, this number of calculations increases
exponentially (5:253-254,1:155). In contrast, agglomerative methods, on the first step, consider
{n(n-1)/2} combinations, and for cach subsequent step, thc number of combinations grows
quadratically with n (5:253). The result is that while both processes result in large amounts of
computations, the agglomerative method is much more feasible. Bccause the processes are going to
be developed on a personal computer, it makes sense to use the process that results in the lesser
amount of calculations. Thus, it was decided that the clustering algorithms written would be

designed around an agglomerative process.

11

In agglomerative hicrarchical clustering analysis, the determination of which two objects, or
pixels for this project, 10 cluster at any one time is frequently based upon a distance calculation

performed with some form of the Minkowski distance formula shown in Equation 1 (5:13).

p
d@i,j) = (E lxl_k_xjqu)l/q (1)
k=1

where

d(i,) is the distance between two objects

q i1s any real number greater than or equal to one

p is the number of categories uscd to calculate the distance between objects

x;, represents object i's value for the k' category

X\ represents objcct j’s value for the k™ category

The distance between two objects, which is sometimes referred to as a similarity value, is

calculated by taking the difference between both objects in a number of different categories and
combining thosc differences into one equation. For example, if a two-dimensional plot was being
used to determine the positions of objects, then the two categories of measurements could be the x
and y position of the objects. Thus, one difference in Equation 1 would be the scparation in the x
coordinates of two objects, and a sccond difference would be the separation in y coordinates. This

type of a distance calculation, used in combination with a q value of two, leads to a form of the

Minkowski formula known as the Euclidean metric shown in Equation 2.

dx,y) = \(x,;~x)*+(y,-y,)? @)

where
X;, X represents the x position of the two objects
¥ir ¥j represents the y position of the two objects
Another commonly used derivative of the Minkowski formula, where q is set to one, is known as
the Manhattan metric. However, the Euclidean formula appears to be the most popular choice

amuong rescarchers because it represents the true geometric distance between two objects (S:11).

Thesce variations of distance formulas arc the core of many hicrarchical clustering processes, and the
results obtained from these cquations directly determine which objects are placed into which cluster.

One varicty of agglomerative clustering that uscs the distance formula is known as the single-
linkage, or nearest-neighbor method (5:225-226). This process will attempt to group objects into
clusters based upon the smallest distance between objects. For example, if a process begins with five
objects, as in Figure 3, the first step would be to compute the distances between all possible
combinations of objects. This mcans a total of ten distance values would be calculated. Next, the
smallest of the ten values would be found, and the two objects associated with it would be grouped
into onc cluster. In Figurc 3, this would be represented by the cluster (a,b). The next step would be
to find the smallest distance value of the nine remaining, and put those two objects into a cluster.
This step is represented by the cluster (d.e) in Figure 3. The third step would again involve finding
the smallest distance value of the cight remaining, and grouping those two objects into a cluster. In
this example, the single object, ¢, is grouped into the cluster already containing Objects d and e.
This mcans that cither the distance between Objects ¢ and d, or ¢ and ¢, was the smallest of the
eight remaining. Now there arc two clusters, (a,b) and (c,d,¢), and the only step left is to combine
them into onc final cluster. The single-linkage method is unique in that when a cluster is formed,
the objects making up that cluster must be stored so that the distance from every other object to
cvery object within the cluster can be examined at cach step. This means that on a computer, this
type of process could require quite a bit of storage space depending on the original number of
objects. One perceived drawback to this technique is that all it takes to group two clusters together
is a single link between two objects. Thus, this technique often leads to a chaining effect where
clusters that really are not closely associated are grouped together (5:226,1:138).

Anather agglomerative clustering technique that uscs distance calculations is known as the
centroid method. Again, using Figure 3 as the example, the first step in this process is to computce
the ten distance values. The next step would see the cluster (a,b) formed, but instead of keeping
track of both objects in the cluster, an average value for the cluster in cach category would be

computed by taking the mean of the values of both objects. For example, if x and y positions were

being used to compute distances, then the newly formed cluster’s x-value would be the average of
Object a and Object b’s x-value. The same applies to the cluster’s y-value. Thus, instead of
retaining two scts of distances for the cluster, only one set is needed. However, the centroid process
requires that a number of the distance values be recalculated after cach grouping because at cach
step. two objeets or clusters are combined, and an average cluster is put in their place with a new
value in cach category. So, after the cluster (a,b) is formed, the distance calculations between
Cluster (a,b) and Objects ¢, d, and ¢ must be redone. Next, the cluster (d,¢) is formed, and an
average value in cacn category for this cluster is computed from the values of Objects d and c.
There are now only three clusters to consider; Object ¢, Cluster (a,b), and Cluster (d,¢). The three
distances between these objects are calculated, and the smallest is chosen. In this example, that
distance would be from Object ¢ to Cluster (de). A new cluster is formed, (¢,d,¢), and a new sct of
average values is calculated for this cluster. The final step in this process would be 1o combine
Clusters (a,b) and (c.d,e).

An advantage of the centroid method over the single-linkage method is in the amount of storage
nceded. In the single-linkage mcethod, every object that existed when the process began must be
kept track of throughout the cntire clustering process. In addition, the cluster that cach object is
placed into must also be tracked. In contrast, the centroid method does not require that every
object be stored, only that a running total of the values for cach category, in cach cluster, be
rctained The average for the cluster is found by simply adding the newest objcct’s values in cach
category to the cluster’s running catcgory totals, and then dividing by the total number of objects
within the cluster. Onc advantage that the single-linkage method has over the centroid method is
that with single linkage the distance values only need to be calculated one time, as opposed 1o the
centroid method where cvery time a cluster is formed some of the distance values must be
recomputed.

A third type of agglomerative clustering process that uses a distance formula is known as
complete linkage, or the furthest-neighbor method. Complete linkage could be considered the

opposite of the single-tinkage method because the similarity between two objects or clusters is

defined as the largest distance between objects, or objects and clusters (5:226,1:138). At cach step of
the clustering process, the distance calculated between a cluster or object to all other clusters or
objects within the data sct is calculated just like in the other two processes. However, instead of
looking for the smallest distance value, the largest possible distance value between two clusters or
objcets is found. Then, if the two entitics were combined, it would be known that all the distances
between objects in both the entities would be less than the maximum computed. For example, if
two clusters were combined into one, the maximum distance found would represent the diameter of
the smallest sphere which could enclose both of those clusters (1:138). Anderberg summarized the
uscfulness of complete linkage best when he wrote: "the interpretation of the clusters can be made
only in terms of the relationships within individual clusters' .uc.c 1 no particularly uscful
interpretation involving the diffcrences betv - cu clusters” (1:139). Trying to compare strengths and
weaknesses of the complete-linkage 1 “ethod to those of the single-linkage and centroid method is
difficult becausc complete linkage is not used very often and represents a different approach to the
clustering process. Suffice it to say, there probably are uses for this technique, but, for the purposes
of this project, where the distances between objects or clusters s the primary concern, it does not
apply.

After reviewing the three types of agglomerative clustering techniques, it was decided that the
algorithms developed within this project would use the centroid method as their foundation. The
decision to use the centroid process over the single-linkage process was based mainly on the fact that
cven though the single-linkage method could probably provide results faster than the centroid
method, the storage space needed for the single-linkage process far exceeded that required for the
centroid process. Storage space can be a limiting factor when dealing with personal computers,
thercefore, a method that uses the least amount of space is the most desirable. For this reason, the
centroid process was chosen. If the centroid process provides good enough results, the additional
expense of adding more storage space can be avoided.

The conversion of centroid clustering theory into usable, personal-computer-based algorithms

involved modilying the method to use sced points. Sced points force the clustering process to begin

building clusters around specific objects, ar pixels, and help eliminate the amount of caleulations and

storage nceded to complete the process. This modification is discussed in Chapter 111

Normalization of Raw Category Data

Frequently, it is desirable to normalize the raw data used to compute the distance between two
objects. This will factor out any possibility of one category of data having an undue influence on the
overall distance. The choice of normalization is usually left up to the researcher. Raw data may
inherently be weighted exactly how the rescarcher wants it, thus, the normalization process would
not be necessary. However, for the most flexibility in assessing the contribution of different
categories to the overall distances computed, normalization is the key. Once the normalization is
completed, user-defined weights can be assigned to each category to reflect the amount of influence
the user wants to place on a particular category. A common way of normalizing the raw input data
is described very nicely by Kaufman in his book Finding Groups in Data, An Introduction to Cluster
Analysis. The process he discusses is the basis for the normalization options available in this
project’s clustering algorithms.

To sce the usefulness of normalization, assume that x and y positions are being used as the
categories with which distances between objects are being computed. The distance formula would
look just like Equation 2. Now if the objects had x and y values that exhibited the same range of
values, it would not be necessary to normalize them. However, if the objects vary only slightly in
their x positions, but vary greatly in the y direction, then the distance calculated with Equation 2
could be influenced much more by the y valucs since the difference in x positions would be small
compared to the possible y differences. To keep this from happening, both the x and y values
should be normalized so that their values vary over the same range.

The first step in normalizing the raw data is to find the mean for cach category being used. In
the example being discussed, it is necessary to find the mean of all the x and v positions for all the

objects within the data set. The mean for cach category is found by using Equation 3.

16

1 n
X = - y x; 3)

where
%, is the mean of the it category
n is the number of objects in the data sct
X;j is the ' object’s value in the i category

Once the mean for both categories is found, a standard deviation, represented by Equation 4, or

a mean absolute deviation, Equation 3, is calculated (5:8).

n
1 T2)
I A E (x;~x,)
j=1
where
%, is the mean of the i'™ category
s; is the standard deviation of the ith category
n is the number of objects in the data sct
Xij is the j'™ object’s value in the ith category
n
1 -
a = —)y |x.-x| (3
gy i
n ;-
where

%, is the mean of the i category
a, is the absolute mean deviation of the i category
n is the number of objects in the data sct
Xij is the j'h object’s value in the i'™ category
The mean absolute deviation can be useful because it is less susceptible to outliers in the raw
data sct than the standard deviation since the differences are not squared (5:8). Once the mean and

the selected deviation are calculated, a normalized measurement is computed for both categories and

put in placc of the x and y values for cach object. Equation 6 shows the typical way in which the

17

normalized value, sometimes referred to as the z-value, is calculated assuming that the standard

deviation is being uced (3:9).

z. = ij i (6)

where
% is the mean value of the i category

z;j is the z-value for the ' object’s i category value

x;i is the i category value for the j'™ object

s; is the standard deviation of the i category
If the absolute mean deviation were to be used, simply use it in place of the standard deviation in
Equation 6.

As stated before, normalization will remove any inherent weights within the raw data, leaving it
up to the user to determine if any particular category should have more of an influence on the
overall distance than any other category. To place added emphasis on a particular category, the
distance cquation can be modified to use weights. Equation 7 demonstrates what Equation 2 would

look like with the addition of weight variables.

d(x,}’) = \/wx(x,’_xj)z"-wy(y,‘_yj)z 7

where
W,, W, arc the user defined weights for the x and y categories
x. x; are the x positions of the objects
Yp, ¥j are the y positions of the objects
Normalization can be a very useful tool, but it usually takes some trial and errod to determine if

it is a necessary step to complete in order to make scense out of a data set. Chapter 1T discusses

how the normalization process was implemented in the clustering algorithms.

Application of the Agglomerative Clustering Method
To sce how agglomerative clustering theory can be put to good use, one should read the article,

Infrared Analysis of Low Temperature Ashed Coal Ashes and Their Classification by Application of

18

Clustering Theory, in the November issue of Analyvtical Chemistry. In the article, the authors describe
how agglomecrative clustering theory was used to group different types of coal into clusters based
upon their absorbance at different wavelengths of energy. The authors began by collecting samples
from 21 different types of coal that came from different locations around the world. They then
ashed the samples through a process of grinding and oxidization. The different ashes were then
compressed into pellets, and their infrared absorbance was studied with the use of an infrared
spectrometer (8:2506). The authors documented absorbance characteristics at 40 differcnt
wavelengths in order to distinguish between coal samples.

Once data collection was complete, the authors normalized the absorbance values through the
usc of z-values, as discussed earlier. The standard deviation was used in the calculation of z-values,
however, no reasoning was provided for this choice. Once the similarity values between all coal
samples were computed, the single-linkage method was used to group the individual samples into
clusters. Distances between objects or clusters were calculated using the Euclidean distance formula
with 40 different categories. Figure 4 is a reproduction of the results obtained from the clustering
algorithm and shows thc same branching effect as seen in Figure 3. This is a typical way in which
results from this type of clustering analysis are shown and is sometimes referred to as a hierarchical
tree, or a dendrogram.

Noticc how, by stepping one level down from the final grouping, two groups form; Australian
coal, and everything clsc. Go down two more steps and notice how the data breaks out into four
well scparated groups: South African and Canadian coal; Belgium, American, and German coal;
Australian coal; and the unknown coals. One can conclude much from looking at a diagram such as
this. For example, Canadian coal is the most closely related to South African coal of all countrics
tested. In addition, Australian coal is very unique in that it isn’t clustered until the last step which
indicates that it varies significantly from all other types of coal sampled.

The authors suggest that more absorbance values could be used to arrive at more closcly
corrclated clusters. This is a recasonable statement because as the number of caregorices used to

calculate the distance hetween objects increascs, the higher the certainty that two objects belong in

19

STL T~ AFRICA 2

SILT= AFSICA Q]——

[S R B BV I ' By
&) (y © O (O (O
¢ o OO

+ 4 4 1 L) Al
1) I 1 1 L 1
P Y p b b op o
I RS T T & B Y
By LG IS TN U
O O 0O 0 0O G
4 r P » P
S8 v - Ko oo

_____________ NS P

8220 M ZCLCER: 7

CERMANY 8

BE_GP.M ZOLDER! S

BELGIUM 'COAL TIP! 12

CIRVANY 15

CERMANY 20

SELTILM 2

BELGILM T ZCLDER: 17 m
BE_GIUM ‘COAL TiP) 15 S -
AMEIICA 5

UNKNCHN 3

AUSTRALIA L

Figure 4. Classification of Coals (Reprinted from
8:2508)

the same cluster. For example, if only the x position was used to cluster two points on a two-
dimensional plot, objects that have very close x-values would be clustered together even though they
might have y-values that differed greatly. By including another measure, in this case y position, the
certainty that the two points are grouped together properly will increase. This concept can be
expanded to 40 dimensions in the case of the coal example, where each axis is the absorbance at a
particular wavelcngth. As more wavelength measurements are added, the more certain the
rescarcher can be that two objects are being grouped properly. No discussion was presented as to
the amount of time required to complete this clustering analysis, nor was the type of computer
system used mentioned. However, with only 21 objects, and 40 categories, this single-linkage

example could probably be done casily on a personal computer.

Summary

Through usc of APT imagery it is now possible to use a personal computer to view and
manipulate satellite imagery. The TSIPS program written by Professor Kelso allows anyone to view
and manipulatc imagery using a varicty of image analysis techniques. This program provides the
idcal foundation upen which to build the clustering algorithms. The image manipulation and display
functions have alrcady been written, so attention can be focused on writing the actual clustering
algorithms.

There has been much work in the arca of weather identification using computer algorithms,
however, most of it has been done on large computers. The process that is used most commonly for
the scparation of cloud-covered regions from clear regions is histogram thresholding. This process is
quick, and relatively casy to implement, however, it is not always accurate. Another technique that
could provide better results is an agglomerative clustering method. The centroid clustering method
appears to be the best way to implement this process on a personal computer, based upon a balance
between storage space and the amount of calculations necessary. By using seed points, the amount
of storage and calculations can be reduced cven further. Chapter IT1 will discuss how the centroid
clustering theory was modified to include sced points, and turned into the algorithms used in this

project.

. Development of Computer Algorithms

As mentioned in Chapter 11, the TSIPS program was used as the framework within which the
clustering algorithms were developed. TSIPS was written in Turbo Pascal, Version 6.0, and includes
a varicety of procedures that arc used in this project. In addition, it was necessary to use the
software package, Huge Virntual Array and Numerical Analvsis Toolbox, developed by the Quinn-
Curtis company which allows for the creation and manipulation of arrays in extended memory, or on
a hard disk drive.

The computer system used in the development of these algorithms was based on an Intel™
803868X processor running at 20 megahertz. In addition, an 80387SX math coprocessor was
present. Since the monitor used for the development of this software was only able to display 640 x
480 pixcls, the largest section of an itmage that could be scen in any one window was 320 x 240. In
order to keep the algorithms relatively simple, it was decided to use square arcas of either 20 x 20
pixels, 50 x 50 pixels, 100 x 100 pixels, or 150 x 150 pixels as clustering examples. The average time
for the program to completely cluster a 20 x 20 arca of pixels was about two to three minutes. By
going to a 50 x 50 arca, the time increased to about 45 minutes for the clustering process to be
completed. A 100 x 100 arca was attempted, and the estimated time for its completion was about 40
hours. For the purpose of development and testing, the 20 x 20, and 50 x 30 arcas were used most

frequently.

Implementation of Centroid Method with Seed Points

In order to speed up the program, and to conserve additional memory, the centroid clustering
process deseribed in Chapter 1 was modified 1o include the use of seed points. Sced points are
pixcls chosen cither by the algorithm, or the user, and are points where the clusters begin to build
from.

As previously mentioned in Chapter 1, the normal centroid clustering method involves

computing all possible distances between all pixels and clusters and then scarching them to find the

M

smallest value. Once this distance is found, the two objects associated with it are grouped into a
new cluster. Average category values for the cluster are computed, then the distances between all
the pixels and the new cluster are recaleulated. This process continues until all the pixels are
contained in one large cluster. The normal centroid process uses much less storage than other
methods, but, by using sced points the amount of storage and the number of calculations needed can
be decreased ceven further.

Once two seed pixels are chosen, only calculations from all the other pixels to the seed pixels
nced to be calculated. There is no need to calculate all the possible distances between non-sced
pixels because the seed pixels tell the process where to start building the clusters. This results in
significantly fewer calculations being conducted. For example, if a 3 x 3 pixel area were being
cxamined, the total number of distances between all pixels that originally would have to be
calculated is 36. By using two sced pixels, the number of distances drops to 14. The basic
assumption this project is built on is rather simple. Clustering analysis is a way of looking for
patterns within a data set. Howcever, if a portion of a pattern is known, then clustering analysis can
be modified 1o develop and separate that pattern from other objects or patterns within a data sct.
In this project, the user or the algorithm can pick out a cloud pixel and a non-cloud pixel rather
casily given some assumptions that arc discussed below. Thus, if the right categories are used when
computing the distances between clusters and pixels, one cluster can build up the cloud-covered

areas and the other cluster will contain whatever is lcft.

Overview of Algorithm Qperation
Once the user starts the TSIPS program and loads the appropriate images into Windows One
and Two, the clustering option can be chosen. When clustering is selected, the following list of

options will appear in Window Four:

0 : Cluster Using Similarity Matrix and User-Defined Seed Points

: Cluster Using Similarity Matrix and Auvtomatic Sced Points

: Show Ranges of Similarity Values from One Uscer-Defined Sced Point
: Option 0 with Data Normalization

: Option 1 with Data Normalization

: Histogram of Clustering Arca

I R S A

Bricfly, Option Zero allows the user to select the cloud and non-cloud seed pixels before
beginning the clustering process. Option One invokes the automatic selection process. Option Two
does not involve clustering pixels, rather, it allows the user to sclect a specific pixel then display
pixels which fall within a variety of distance ranges from the chosen pixel. Options Three and Four
arc the same as Options Zero and One except that the raw category data is normalized. Finally,
Option Five allows the user to display a histogram of the clustering arca and perform a simple
histogram thresholding process. These options are fully discussed in Appendix A.

Depending on the option chosen from the main clustering menu, the user can choose two seed
pixcls, or have the program do it automatically. In the automatic process, the computer will search
all the pixels within the clustering arca to find the brightest and dimmest visible pixel. These should
correspond to a cloud-covered region and a clear region unless there is noise within the clustering
arca, or the arca does not contain both cloud-covered and clear regions. It is assumed in this
project that the images used will be absent from noise initially, or will have been preprocessed so
that the noise has been removed. Furthermore, the algorithms were tested on areas that contained
both cloudy and clear arcas. If the arca contains all clouds, then the automatic selection process will
cnd up choosing one sced point on a lower, or dimmer, cloud type and the other on a higher, or
brighter, cloud type. If no clouds arc contained within the clustering area, the algorithms simply
proceed in choosing whatcver appears brightest and darkest in the image. Users can avoid somc of
the unknowns in this process by using the options containing manual input of sced pixels. The
manual input process is discussed in the user’s guide in Appendix A.

Once the two sced pixels are chosen, two arrays are created, one for the cloud seed pixel, and
the other for the non-cloud pixel. These arrays are used to store the distance calculations from
cvery pixel within the clustering arca to cach sced pixel. Equation 8 s the Euclidean distance

formula uscd to calculate the distances between pixels, and between pixels and clusters.

d(pixel,pixel,) = J w (A Vis): +w,(AIR)* +w,(AXPos)*+w (AYPos)* B

where

W, W,, W3, w, are the user-sclected weights

aVis is the difference in visible brightness of pixels

alR is the difference in infrared brightness of pixels

aXPos is the difference in x position of pixcls

aYPos is the difference in 'y position of pixels

The program has options that will normalize the raw category data, if so desired by the user. 1If
the data is normalized, the visible, infrared, x-position, and y-position information for cach pixel is
converted to a z-value using the technique discussed in Chapter 11 The program utilizes the
standard deviation when calculating the z-values as it is assumed that any noise, or outlicrs, will have
been removed from the data prior to the clustering algorithms being run. When distances are
computed, z-values are used in »! ¢ of the raw category data in Equation 8. The use of
normalization will caus- » ght degradation in the speed of the program’s execution because of the
way in which the - values arc stored for cach pixcl. When the z-values are calculated, each category
is placed in ~ separate two-dimensional array. Thercfore, four arrays are created, each of which is
the samc size as the clustering arca chosen. For example, using a 20 x 20 clustering area, the four
arrays will be 20 x 20 in sizc, and cach will contain one of the four categorics of z-values. The
program was writlten this way because at the time of its development the two-dimensional Quinn-
Curtis arrays were thoroughly understood while the threc-dimensional, and larger arrays, needed
more research. When calculating the distances between pixels, each of the four arrays must be
accessed to obtain the z-values used in Equation 8. This results in a slow down in program
cxecution that is more obvious the larger the arrays become. The majority of the testing done in
this project was with 20 x 20 and 50 x 50 clustering arcas, and at these sizes, the normalization
procedurc hardly slows the clustering process at all. It should be possible to combine the data from
the four arrays into onc multi-dimensional array which would cut down on some of the time needed
1o access and scarch arrays. This has been left for a future version of the software package.
Oncce the two arrays corresponding to cach seed pixel are filled with distance values, the next

step is to search them for the smallest value. First, the array for the cloud sced pixel is scarched for

the smallest distance contained within it. Once found, this distance is then compared to all the

values in the non-cloud array. If there is no smaller distance value in the non-cloud array, then the
pixcl rom the cloud array is added to Cluster One, which is the cluster that builds up the cloud-
covered regions. I a smaller value was found in the non-cloud array, then the pixel corresponding
to it is added to Cluster Two. Once a pixel is assigned to a specific cluster, a value of one or two is
placed in its position in a tracking array. This tracking array is used to let the program know when
a pixel has already been acquired into a cluster. Once a pixel is acquired, it is displayed in Window
Three in the color denoting which cluster it is in. The program will no longer recalculate distance
values for that pixel. This helps speed up the clustering process as more and more pixels are
acquircd. Once the smallest distance value is found, and the appropriate cluster incremented by
onc, the new cluster values are calculated by adding the visible, infrared, x, and y positions to the
cluster’s overall totals, and dividing by the new number of pixels in the cluster. This is a slight
modification of the centroid method of clustcring described in Chapter 11,

The next step is to recompute the distance values in the array associated with the cluster that
has changed. Using the distance formula shown in Equation 8, new values are computed for cach
pixel by taking the diffcrence in the four categories between the pixel and the cluster’s mean values.
Once the array is updated, the process starts over again. The looping process continues until all the
pixcls arc acquired into a cluster, or until the number of iterations requested by the user has been

completed.

Assessment of Clustering Program’s Effectiveness

A qualitative assessment of the cffectiveness of the clustering options will be performed by
visually comparing the results of the clustering programs with a typical histogram manipulation. The
capability to sct a lower brightness threshold in the cluster area is included in Option Five of the
clustering main menu. With it, the user can decide what brightness value will be the cut-off for
displaying pixels. For cxample, if the cluster areca contains a lot of water and clouds, the histogram
should show two distinct peaks. By looking at the histogram, the user can get an idea of what
brightness value corresponds to the minimum between the two peaks. The uscr can then pick a

pixel in the cluster arca with this minimum brightness value, and all pixcls with values below it will

26

be set o a brightness of zero, while all pixels cqual to, or greater in brightness will be left alone.
Thus, the cloud pixels will remain on, and the water pixels will be cffectively turned off. The results
of this manipulation are available for the user to compare the clustering results too. This
comparison will form the basis of the qualitative assecssment presented in Chapter IV. More

information on how to usc the histogram options is available in Appendix A.

Summary

By modifying the centroid clustering process to use sced points, the amount of storage space,
and the number of computations needed to run the clustering program can be reduced significantly.
This project operates on the idea that the researcher is starting with a data set that has known
characteristics and patterns. Thus, it is not necessary to have the algorithms look for patterns, only
build upon the ones designated by the rescarcher. The effectiveness of this modified clustering
procedure will be examined in Chapter IV. A complete explanation of the six options available

within the clustering program can be found in Appendix A.

1V. Examples of Program Operation

In this chapter. three examples of the clustering program’s operation are presented, along with a
discussion of the program’s cffectiveness in separating cioud-covered regions from clear regions.
The three examples were chosen because they exhibited some extremes in the amounts of cloud-
covered and clear arca. Results of the clustering program are compared with results obtained from
using the histogram threshold method mentioned in Chapter [II. The comparisons are done
qualitatively by visually looking at the two method’s results, and estimating whether or not the

clustering algorithms did a better job separating cloud regions from non-cloud regions.

Example One

For the first example, a 50 x 50 pixel arca was chosen that had a mixture of clouds, both fow
and high, and ground featurcs. The majority of the area was made up of terrain, with the main
weather feature being a diagonal line of clouds that exhibited numerous brightness levels. The
darkest region in the clustering arca was a lake, and the brightest arcas corresponded to tops of

possible thunderstor.~ cells. The results of the four clustering methods used are summarized in

Table 2.
Table 2. Example One Summary
Clustering Option Category Weights Results (% Clouds Separated)
Histogram Mcthod N/A ~ 99%
Option Zcro All sct to one ~ 90%
Option Zcro Vis/IR =1 X/Y =0 ~ 959
Option Onc All set to one ~ 0%
Option One Vis/IR = 1 X/Y =0 ~ 75%
Option Three All set to one ~ 804
Option Three Vis/IR = 1 X/Y =0 ~ N
Option Four All set to one ~ o7
Option Four Vis/IR =1 X/Y =0 ~ 0

As seen i Figure S0 Window Four contams a histogram ot the clustering arca. The histogram
exhibits one peak contered on a brightoess value of about 750 This peak corresponds to ground
features, After the peak. there is a steady drop off in numbers of pixels as the brightness values
increase, Occasionally, cortam brightness values exhibit individual spikes that correspond to differem
cloud Liners. However, unlike Figure 2, there 1s not a definite minimum between two peaks that can
be used as an automatic cutoff point. This means a trial-and-crror process is needed m order to
find the proper threshold. To set the histogram threshold. it s first accessary to have the histogram
displaved in Window Four. Next, o pixel that has a brightness value corresponding to the desired
threshold value is identiticd i Window One using the threshold option available in Option Five of
the clustering program. This method s not exact, but alter a few tries the majority of the cloud-
covered arcas were separated from the clear arcas. The best results obtained from the histogram

method are shown in Window Two of Figure 5.

Figure 5. Example One (User Scleeted Seed Pixels)

The first clustering option run was Option One, where the program automatically selects the

brightest and darkest pixels as the two seed points, Each of the tour categories had o werght ot one

20

assigned to them in the distance cquation and data normalization was not used. The process took
about 45 minutes to run and the results were acceptable. The main line of thunderstorms was easily
identified in the cloud cluster, along with some of the middle-level clouds. However, most of the
low clouds were not placed into the cloud cluster. A visual comparison of the best histogram results
with thosc achicved with this option found that about 70 percent of the clouds were identified and
clustered properly by the program.

Next, Option Zero, where the user sclects the two seed points, was chosen. Rather than using
the brightest pixel for the cloud seed point, a pixel corresponding to one of the lower clouds was
chosen. The other seed point was placed within the dark lake region. The weights remained equal
for all categories. The results were much better than those obtained with Option One. About 90
percent of the clouds were placed into the cloud cluster.

Option Zero was again chosen, only this time only the visible and infrared categories were used
to calculate the distance values. This was accomplished by sctting the x and y-catcgory weights to
zcro in the distance equation. The results were even better then the previous trials, with about 95
percent of the clouds being clustered together. Figure 5 shows the clustering results, in Window
Three, along with the histogram results in Window Two. About 95 percent of the clouds appeared
to be clustered properly. There were only a few small discrepancies in comparison with the
histogram prcduced results.

For the next trial, Option One was again sclected, but only the visible and infrared categories
were used. The results were better than those previously obtained with Option One, but not as good
as those obtained with Option Zero. Around 75 percent of the clouds were placed in the cloud
cluster. In Figure 6, the clustering results are shown in Window Three, along with the histogram
results in Window Two. The next step was to examine the effects of using data normalization on the
raw category data.

First, Option Three was chosen with all weights set to one. This option has the user sclect the
seed points before the normalization process begins, A lower cloud pixel and a lake pixel were

chosen as the two seed points. The results of this trial showed that about 8) percent of the clouds

30

Figure 6. Example One (Automatic Selection of Seed Pixels)

where clustered properly. Again, Option Three was selected, only this time the x and y categories
were not used. The results improved with an estimated 90 percent of the clouds clustered properly.
It took about two minutes for the program to produce all of the z-values. After that was
accomplished, the program ran just as fast as it did without normalization.

Next., Option Four was sclected. This option implements the automatic selection of seed pixels.
For the first trial, the weights were all sct to one and the results were not very good. Only about 60
percent of the clouds were placed into the cloud cluster. Finally, only the visible and infrared
catcgories were used, and the results improved to about 70 percent of the clouds being properly
clustered. Overall, the results indicate that the best clustering option to use is Option Zero with
only the visible and infrared categories contributing to the distance equation. The reason this option
works the best seems 1o be based on a two things. First, by only using the visible and infrared
categories, the positions of the pixels play no role in determining the distance values. Thus, a cloud
pixel that is positioned a long way from the main cloud cluster can have a distance value comparable
1o a pixcl that is right next 1o the cluster. This has the effect of increasing the likelihood that a

cloud pixcl will be placed into the cloud cluster. However, by using the x and y positions it is

31

possible 1o limit the growth of the clusters, thus allowing for more compact features to be attained.
Second, by picking the cloud seed pixel to be part of a lower-level cloud, a minimum threshold is
established, much like that of the histogram method, which mcans any pixel that has brightness
values greater than the sced pixel will be placed into the cloud cluster.

Other combinations of weights were attempted to sce if their results would fall within the ranges
established by the trials shown in Table 2. No significant improvements were seen in any of the
other trials. As one final test, Option Two was used to display different ranges of distance values.
By placing the single seed point upon one of the brightest pixels, it was possible to display a number
distance ranges that, when combined, gave results just as good as those obtained with the clustering

oplions.

Example Two

For this example, another 50 x 50 area was chosen that contained one large cloud mass and a
couple of small, low-cloud covered areas, all surrounded by water. The large cloud mass was
roughly circular in shapc and had two distinctive brightness levels. The smaller arcas were
predominately of one brightness value that was much dimmer then the main cloud mass. The

results of the clustering options arc summarized in Table 3.

Table 3. Example Two Summary

Clustering Option Category Weights Results (% Clouds Separated)
Histogram Method N/A ~ 9%
Option Zero All Set to One ~ N%
Option Zero Vis/IR =1 X/Y=0 ~ 95%
Option One All Set to One ~ 85%
Option One Vis/IR =1 X/Y =0 ~ 9%
Option Three All Set to One ~ 9%
Option Three Vis/IR =1 X/Y =0 ~ 957
Option Four All Set to One ~ 80%
Option Four Vis/IR =1 X/Y =0 ~ 85%

32

As can be seen in Window Four of cither Figure 7 or Figure 8, the histogram of this clustering
arca cxhibited a distinctive peak centered on a brightness value of about 40, with a smaller peak
centered on a brightness value of about 140. The larger peak corresponds to the water pixels, while
the smaller peak is associated with the large cloud mass. It took a couple of attempts with the
threshold method to scparate the majority of the cloud pixels from the water pixels. The histogram
threshold results are shown in Window Two of both figures.

All of the clustering options provided roughly the same results. Figure 7 shows the results of
using Option Zero with only the visible and infrared categories contributing to the distance equation.
This was the best of all the options and shows that the program did a good job of clustering most of

the cloud pixels. Only small portions of the low-cloud areas were missed.

Figure 7. Example Two (User Sclected Seed Pixels)

Figurce 8 shows the results of using Option Once with just the visible and infrared catcgories.
This option provided the best results of all the automatic seed pixcel options. The program clustered

the large cloud mass, along with a portion of the lower cloud arcas.

33

Figurc 8. Example Two (Automatic Selection of Seed Pixels)

The simple cloud arrangement in this cxample, along with the distinctive brightness contrast between

the cloud and non-cloud pixels, madce practically any clustering option a viable onc.

Example Three

The third example consisted of 2 50 x 50 arca composed mainly of clouds with just a small area

of watcr visible. The cloug,

arc summarized below.

-cloud ratio was about opposite that in the first example. The results

Table 4. Examplc Three Summary

Clustering Option Category Weights Results (% Clouds Separated)
Histogram Mcthod N/A ~ 9%
Option Zcro All Set to Onc ~ N%
Option Zero Vis/IR -1 X/Y =10 ~ 95%
Option One All Sct to One ~ 80%
Option One Vis/IR =1 X/Y =10 ~ 85%
Option Three All Set to One ~ 80%
Option Thrce Vis/IR =1 X/Y =0 ~ 85%.

34

Clustering Option Catcgory Weights Results (% Clouds Separated)

Option Four All Set to One ~ 0%

Option Four Vis/IR =1 X/Y =0 ~ 5%

As can be scen in Window Four of either Figure 9 or Figure 10, this example’s histogram shows
one definite peak around a brightness of 130, with smaller pcaks at brightness values of about 30
and 80. It took multiple attempts using the histogram threshold method to pick the best threshold
valuc.

The results of the clustering options again indicate that Option Zero is the best one to use.
Once again, the best categories to use were only the visible and infrared, however, by including the x
and y categories the results were not that much worse. The results of Option Zero using only the

visible and infrared categories are shown in Figure 9.

Figurc 9. Example Three (User Selected Sced Pixels)

Figurce 10 shows the results of Option One using only the visible and infrared categories to calculate

the distance values.

a5

Figure 10. Example Three (Automatic Selection of Seed Pixels)

The options using automatic sclection of sced pixels were unable to acquire a portion of the lowest

cloud layer duc to its closeness in visual and infrared values to the water pixels.

Summanrv

All the examples scem to have one thing in common, and that is they all indicate the best option
1o usc is Option Zero with only the visible and infrared categories contributing to the distance
cquations. The x and y catcgorics do not appear to add any additional help when trying to separate
clouds that arc scattered throughout the clustering arca. The only time these categories could be
useful is if the user is trying to isolate a particular arca of clouds within an image. The x and y
categories tend to impose a confining influcnce on how far away pixels can be and still be added to
the cloud clustcr. In addition, the use of data normalization did not appear to improve the
clustering algorithms performance in any of the examples.

The histogram process was able to provide such good results for each example because the user
took the time to find the brightness value corresponding to the lowest level of clouds and used it as

the threshold. The key point here is that the histogram process worked because the user knew what

36

10 look for. It is rather casy to tell if clouds exist in a satellite image just by looking at shapes and
brightness values because large cloud masses rarely look like ground features. However, it is much
more difficult to go pixel by pixel and identify which are cloud, and which are not. Thus, if someone
traincd to do the identification is not available, then an automatic process will have to be used.

If an automatic process is used, Option One with only the visible and infrared categories
cnabled is the best choice. For arcas that had cloud regions scattered throughout, this process was
able to separate about 75 10 90 percent of the clouds. The clouds that normally were not included
were the lowest level clouds that had visible and infrared values very close to those of the terrain.
The amount of low cloud included in the cloud cluster is dependent on the brightness difference
between the cloud seed pixel and the lower-cloud pixels. If the difference is great, than the lower
clouds will most likely be included in the non-cloud cluster. In cach example, the amount of clouds
identificd was enough to provide an idea of the structure of the cloud mass. This means that

identification of the cloud masses should be possible using some type of shape identification.

37

V. Conclusions and Recommendations

The goal of this project was to develop a personal-computer-based program that would use a
variation of the centroid method of agglomerative hicrarchical clustering to separate cloud regions
from non-cloud regions in a satellite image. The results indicate that the process is possible, and
can separate a large portion of the cloud features from the non-cloud features. However, in
comparison to the histogram approach, the clustering approach did not provide quite as good results.
However, the results obtained were good cnough to determine the general shape and most of the
substance of the clouds which means that it should be ecnough for a chance at identifying the clouds.

The choice of whether to use the histogram approach or the clustering approach depends on the
needs of the program’s user. If the user has the time to sit down and manipulate the histogram
threshold to produce the best results, then the histogram approach is the best choice. However, if
an automated process is desired, the histogram threshold technique may not work very well when
there is no definite minimum in the histogram. For the three examples discussed in Chapter TV,
only Example Two exhibited a histogram that had two well-defined peaks. However, it took a few
attempts to find the best threshold value because the minimum between the peaks was not easy to
locate. When there is no definite minimum, there is really no easy way a computer program can
find the best threshold value unless somconc is looking at the output and making the final decision.
By using the program’s automatic approach, where the brightest and dimmest pixels within the
clustering arca are chosen, the algorithms are able to scparate about 75 to 90 percent of the clouds.
Pcrhaps, rather than using the brightest pixel, it could be possible to obtain a better cloud sced pixel,
(c.g., a lower cloud), by using a statistical analysis of the pixels within the clustering arca. The
examples show that if the cloud sced pixel is placed on a lower-cloud mass, the percentage of clouds
properly clustered increases significantly. The automatic process was very good at identifying cloud
arcas that had a small range of brightness values, however, if the cloud cluster contained both very

bright, and very dim pixcls, the clustering process had a harder time identifying the lower clouds.

38

In terms of speed, the clustering algorithms are not nearly as fast as the histogram approach,
however, whether or not speed is important depends upon the needs of the user. The speed of the
program developed in this project depends on the processor being used, and the size of the |
clustering arca. State of the art in personal computers is changing on a yearly basis, with speed
being the feature that is increasing all the time. As far as the clustering area size 1s concerned, a 50
x 50 pixel arca in an APT image covers an arca of about 40,000 squarc kilometers. This is large
cnough to encompass practically any size military unit or formation. The intent is not to use the
program to cxamine weather on a global scale, only to he able to let a field unit get an idea of what
is over a projected target, or possibly in the arca of the unit. The results obtained from the
clustering algorithms should provide cnough information for the identification of the major cloud
masses.

A few arcas could be looked at for further improving the algorithms developed in this project.
First, implementing the single-linkage clustering method described in Chapter I1 might allow the
clustering routines to provide better results. This technique looks at a loi more distance values when
making a decision on which cluster to place a pixel in. Depending on the size of the cluster arca
being examined, it might be necessary to add more memory to the computer running the program.
If the memory requirements become so large thai only a hard disk drive provides enough storage for
the arrays, then this method will be significantly slower than the centroid process due to the
numerous disk reads nceded. Sccond, an examination of alternate approaches to choosing the cloud
sced pixel can be explored. Perhaps a method can be developed that uses the mean and standard
deviation values of the histogram brightness values. For example, by selecting the brightness of the
cloud sced pixel to be one or two standard deviations above the mean brightness level, a better
choice of sced pixels may be made that would allow morce of the lower cloud pixels to be put in the
proper cluster. The examples discussed in Chapter IV indicate that choosing a lower cloud pixel as
the seed point provides better results. Finally, it would be interesting to explore using more than
two sced pixels in the clustering process. This would require a major modification to the software,

but could allow morc discrimination between cloud types or layers.

39

This project has shown that clustering can provide good resuits when trying o separate cloud-
covered regions from clear regions in satellite imagery. The characteristic that makes this technique
attractive is the lack of a need for a trained person to manipulate the image’s histogram. The
clustering technique, combined with a shape-identification algorithm, could provide an excellent tool
for identifying clouds in satellite imagery. The next step is to explore the possibility of creating a
personal-computer-based program to implement some type of shape-identification algorithm. If this
1s possible, then a personal-computer-based software package for identifying clouds i satetiite

imagery can become a reality.

40

Appendix A: User's Guide for the Clustering Algorithms

The first thing that must be done in order to run the clustering algorithms is to make sure that
the conliguration file for the TSIPS program is in the proper place and format. For TSIPS to run
properly, make sure that it is located in a directory along with a configuration file entitled
TS-1P.CFG. Whcn the TSIPS program starts, it looks for the configuration file and reads it to
determine where the image files are located as well as what palette to use upon starting. The
configuration file can be created with a simple text editor. An example of a configuration file is

shown in Figurc 11.

2 ; 640 x 480 at 256 colors
d: ; image _drive

\project ; image directory

d: ; work_arivc

\project ; work_dircctory
bgry.pal ; default palette

Figure 11. Sample TSIPS Configuration File

The first linc informs the TSIPS program which graphics resolution to use when displaying
output on the computer monitor. There are five options represented by the numbers zero through
four. Option Zero represents standard VGA with a resolution of 320 x 200 pixels in 256 colors.
Option One has a resolution of 640 x 400 pixels in 256 colors. Option Two has a resolution of 640 x
480 pixels in 256 colors. Option Three has a 800 x 600 pixel resolution in 256 colors. Finally,
Option Four has a resolution of 1024 x 768 pixels in 256 colors. Choose the option that corresponds
to the graphics card and monitor being used to run the softwarc.

The sccond and third lines tell TSIPS what disk drive and directory the satellite images are
located in. The fourth and fifth lines are for locating the work drive and directorics. The version of
TSIPS uscd for this project did not use the work_drive or work_directory variables, however, they
must be in the configuration file. The final line tells TSIPS what color palette to use upon starting.
There arc a number of different palettes available and they can be distinguished by the “.pal” suffix.

Make sure that the paletie files are located in the same directory as the TSIPS software.

41

Starting the Program

To start the program, enter TS-IP at the MS-DOS prompt and press ENTER. The first thing
that will be seen is a title screen giving the name of the program along with the antt Lund version
date. Press any key to proceed to the main program screen. The screen will now be divided into
four windows and the fourth window will have the main program menu displayed within it. The
colors displayed will depend upon the startup palette the user placed in the TSIPS configuration file.

In order to usc the clustering programs, a visible APT image must be in Window One, and the
corresponding infrared image in Window Two. The program begins with Window One being the
active window, so to load a visible image into this window, select the LOAD option from the main
menu. A sub-menu will appear with a list of all the images available in the image directory specified
in the configuration file.

The file names for cach image give information on the date of the image, the NOAA satellite
uscd, and what pass the image was taken on during the day. A complete description of the filename
structure can be found in the TSIPS uscr’s guide. Scleet a visible image file, which is distinguishable
by a ".RSA" suffix, and prcss ENTER. The image wili begin to load into Window One, going from
iop to vottom. If the image appears to be inverted, select the INVERT IMAGE option from the
main menu. Reload the image and it will now be oriented in the proper manner. The inverted
image comes from the fact that some of the weather satellites make North-to-South passes, while
others make South-to-North passes over the carth’s surface. If the image was taken during a South-
to-North pass, the file will contain the information from the southern portion of the image first, thus,
this is what will load first. Using the INVERT IMAGE option forces the images to load upside-
down in the window, which means they will appear oriented the proper way. Once INVERT IMAGE
is scleeted, all subsequent images will load from bottom to top in a window until INVERT IMAGE is
chosen again.

Diffcrent portions of the visible image can be displayed in the window by using the arrow keys
to move the image around. Once the chosen section of the visible image is displayed in Window

Onc, scleet the GROUP IMAGES option from the main menu. A small box will appear in the

center of the screen with the number 1 highlighted within its upper left corner. This box is a
representation of the active windows and is being displayed by the program because it is waiting for
the user 1o seleet which window the infrared image should go into. Press the number 2 on the
kcyboard and then press ENTER. The second number will be highlighted briefly in the center box
before disappearing. The infrared image corresponding to the visible image in Window Onc will
now begin o load into Window Two. If the program stops exccuting, it will be because there is no
corresponding infrarcd image. If this happens, start the program over and make sure when sclecting
the visible image that there is an infrared image associated with it. Infrared images will have the
same file name as their corresponding visible image except for a ".RSB” suffix.

Now there should be a visible image in Window One and an infrared image in Window Two. It
is time (o start the clustering algorithms. Select CLUSTERING from the main menu and a second
menu will appear asking the user what size of clustering arca they wish to use. The version of the
software usced in this project has four options: 20 x 20 pixels, 50 x 50 pixels, 100 x 100 pixels, and 150
x 150 pixels. If the user wants to see the program in action but only take a small amount of time,
sclect the 20 x 20 option. This option takes no more than two or three minutes to complete. The
other options can take anywhere from about 45 minutes to over two days to complete, depending on
the speed of the computer used. Once the area is selected, a box of the chosen size will appear in
Window Onc¢. Move the box, using the arrow keys, over the area of the image that the user wishes
to run the algorithms on. The distance the box moves for cach press of an arrow key can be
changed by using the PAGE UP and PAGE DOWN keys. For every press of the PAGE UP or
PAGE DOWN kcy, the amount of the box movement for cach press of the arrow keys will increase
or decrease by roughly a factor of two. When the box is over the desired area of the image, press
ENTER and that scction of the visible and infrarcd image will be read into an array eatitled Parrav.
The code for the reading process can be found on pages 58 and 59. For a 20 x 20 pixel arca, the
array will be 20 x 20 x 2 in size. The two values entered in the third dimension of the array are the

visible and infrarcd values for cach pixel.

43

After Parray is filled, another list of options will appear in Window Four. These options are as
follows:

0 : Cluster Using Similarity Matrix and User-Defined Secd Points

1 : Cluster Using Similarity Matrix and Automatic Sced Points

2 : Show Ranges of Similarity Values From One User-Defined Sceed Point
3 : Option 0 with Data Normalization

4 : Option 1 with Data Normalization

5 : Histogram of Clustering Arca

If the user selects Option Zero, Two, or Three, it is up to the them to tell the computer where the
sced pixels will be located within the clustering area. If Option One or Four is chosen, then the
program will sclect the seed points automatically. As can be surmised from the option list, Options

Zero, One, Three, and Four are all roughly the same, while Options Two and Five are different.

Memory Requirements

Before getting into how to use each option in the program, a special note about memory
requirements is in order. The Quinn-Curtis routines used in this project will automatically create
matrices and arrays in extended memory, if enough memory is available. If there isn’t enough, the
routines will then use the active hard disk drive as storage space. The computer being used to run
these algorithms must have one or the other, otherwise the program will not work. Memory
requirements for cach of the clustering options vary depending on the option and the size of the
clustering arca chosen. For example, if a 20 x 20 area is chosen to be clustered and Option Zero or
One is selected, then the following memory requirements are established. The distance arrays for
cach sced point will be 20 x 20 in size, with cach value in the array being eight bytes in length.
Thus, the required storage for these two arrays is 6400 bytes. In addition, the tracking array will be
20 x 20 in size and is filled with cight-byte values for an additional 3200 bytes of needed storage.
The use of cight-bvte values in these arrays is the default for the Quinn-Curtis routines. The option
to change them is available to the user if a copy of the Quinn-Curtis software is obtained. The only
array stored in the computers conventional memory is Parray. This array is used to store the visible
and infrarcd values for cach pixel in the clustering arca. For a 20 x 20 arca, Parrav will by 20 x 20 x

2 in size with cach of the two values being a byte in Iength. Thus, for a 20 x 20 arca, the nceded

storage space is 800 bytes. The largest clustering area possible within these routines is 150 x 150.
This limit was set because Turbo Pascal imposes a limit of 64 kilobytes on any one array, so that if
someconc wanted to cluster an area bigger than about 180 x 180 pixels it would not fit into the
mcmory Turbo Pascal allocates for it. To use larger arrays, the code could be modified to use the
Quinn-Curtis routines to create the array in extended memory or on a hard disk drive.

The clustering options where normalization is conducted require an additional amount of space
for cach of the four z-value arrays. For a 20 x 20 arca, cach of these arrays will be 20 x 20 in size
with cach value in the array being cight bytes in length. Thus, all four arrays will require 12,800

bytes of storage space. The larger the clustering area chosen, the more space needed for each array.

Clustering Options

This section will describe each of the six options available in the clustering program. Option
Five and Option Two are presented first because they stand apart from the other four options in
that they provide a supporting role and do not actually cluster pixels. These two options provide
additional information about the clustesing area to the program user. The page references noted
can be found in Appendix B.

Option Five. This option allows the user to sce a histogram of the selected clustering area. The
histogram will appear in Window Four and consists of 256 vertical bars, each in a different
brightness value. The heights of the bars give the user an indication of the numbers of pixels that
have the different brightness values. Once the histogram is displayed, Window Two will be cleared
and a message will appear asking the user if he wishes to set a threshold for the clustering area. 1f
yes 1s sclected, a cross-hair will appear in Window One. The user can then use the arrow keys to
move the cross-hair over a pixcl with the desired threshold brightness value. The position of the
cross-hair, in addition to the brightness value of the pixel it is over will be displayed in Window
Four. The distance the cross-hair moves for cach press of an arrow key can be increased or
decrcased by pushing the PAGE UP or PAGE DOWN keys. Once the user has sclected the
threshold value, the message in Window Two will disappear and the modified cluster arca will take

its placc. The uscr can then compare the histogram threshold results with the clustering program

45

results shown in Window Three. When the user is finished with the histogram option, press the
ESC key to return to the main TSIPS menu.

The histogram threshold process makes use of Window Two, which is also necessary for
displaying the infrared APT image for the clustering algorithms to use. Once the visible and
infrarcd valucs for the cluster area have been placed into the array Parray, it is not necessary 1o have
the infrared image in Window Two. Thus, when this option replaces the infrared image, it is not
going to affect the program. However, if any future clustering options are to be run, the infrared
image must be placed back in Window Two before selecting the cluster option from the main TSIPS
menu.

Option Two. This option allows the user to select a seed pixel within the clustering area, and
have all the distance values for the other pixels displayed in specific, user selected ranges. To do
this, press 2 on the keyboard and another menu will appear asking for the weights the user wishes to
place on each of the four measures used in the distance calculation (see Equation 8). There are
cleven preset options to choose from, or the user can sclect the letter # which allows them to enter
their own choices for the weights. It they choose to do so, another displa; will appear in Window
Four with the order and instructions on how to enter their chosen weights. This section of code can
be found on pages 60 through 62. Once the weights have been chosen, the user will be asked to
select the seed pixel they wish to use. A box will surround the clustering area in Window One, and
a small cross-hair will appear in the center of the window. The cross-hair is moved with the arrow
keys in the same manner described in Option Five. The PAGE UP and PAGE DOWN keys are
available for increasing and decreasing the movement distance. A three-line display will appear in
the upper-left corner of Window Four showing the cross-hair’s x and y position, as well as the
brightness of the pixel it is currently over. Place the cross-hair over the pixel within the clustering
box chosen 10 be the sced point. Make surc that the pixel chosen is within the box or the program
will not function properly. When the pixel is positioned properly, press ENTER. The code for the

moving and sclection of the seed point can be found on pages 51 and 52.

46

After the sced point is chosen, a list of options will appear in Window Four that represent the
ranges of distance values the user can have displayed. The seed point chosen in Window One will
be turned on in Window Three at this time. Sclect the range of distance values wanted by entering
the appropriate number or letter on the keyboard. All the pixels within the clustering area that have
a distance value from the seed pixel within the range chosen will be displayed in Window Three.
The uscr can scquentially show more and more values in Window Three or has the option of
changing palettes, clearing Window Three, or changing weights. When the user is finished displaying
ranges of distance values, select ESC from keyboard and the main TSIPS menu will be displayed in
Window Four. The code responsible for doing all of the calculations, as well as displaying of the
distance values, can be found on pages 65 through 68. Comments in the code will explain what is
going on at different points.

Options Zero and One. These two options differ only in the way the two seed points are
selected within the algorithm. Option Zero allows the user to input his own seed pixels, while
Option One has the computer automatically select the sced pixels. If Option Zero is selected, the
uscr will first be prompted to sclect the desired weights for each of the four variables within the
distance equation. The weight selection is identical to the method described in the previous section.
Next, the user will be prompted to sclect the first sced pixel. When the cross-hair is over the
desired sced pixel, press ENTER and then move the cross-hair to the second seed pixel. When
properly positioned, again press ENTER. The code for the selection of seed pixels can be found on
pages 51 and 52.

If Option One is sclected, the program will look for the dimmest and brightest pixel within the
image and usc them as seed points. If more than one pixel is the dimmest or brightest, the first one
encountered by the algorithm will be used. Once the two sced pixels are selected, the program will
display them in Window Three and create the necessary distance and tracking arrays. The arrays
arc created cither within extended memory or on the hard disk drive, depending on what is
avatlable, by using the HMatDef procedure available in the Quinn-Curtis softwarce package. Each

array is referenced by a pointer variable, so that when a read or a write is to be done 10 an array,

47

the programmer must simply specify the appropriate pointer in the read or write statement. The
two arrays of distance values have the pointers simptr, and simptr2 as their reference, while the
tracking array has the pointer per2.

Once the arrays are created, the program will fill them with values by calculating the distance
from cach pixel to each seed point. Once both arrays arc filled, the average values in the four
categories for cach cluster are set equal to the two sced pixels values (sce page 70). The user is
now prompted by a menu in Window Four to select the number of iteretions the program is to
complete before stopping. The number sclected will be the total number of pixels added to the two
clusters during the run of the program. If a 20 x 20 area is selected and the user wants all 400 pixels
to be placed into clusters, then select 398 iterations, The two seed pixels start out in clusters,
therefore, only 398 iterations nced to be completed to place all pixels in a cluster. After the number
of iterations is chosen, the program will begin to run through a looping sequence where the smallest
distance value is found and then the pixel corresponding to it is placed with the appropriate cluster.
After the pixel is added, the cluster’s mean category values are updated, and the appropriate
distance array is recalculated. Finally, a value of one or two is placed in the tracking array to keep
track of which pixel was acquired and into which cluster it was placed. This loop will continue for
the selected number of iterations, and each time the loop is completed, the itcration number will be
updated in Window Four to show the user that the program is working. The complete code for
these options can be found on pages 69 through 74,

Options Three and Four. These two options are almost the same as Options Zero and One
except for an additional process that is added between the point where the user sclects the seed
pixcls and the looping process begins. After the sced pixels have been chosen, either manually or
automatically, the program will normalize the raw data in cach of the four categories by computing
7-values. To do this, the average value for cach of the four categories is computed. For example, all
400 visible values for a 20 x 20 clustering arca are added together and divided by 400 to compute a
mcan. Then a standard deviation is calculated using a formula like Equation 4. After the mean and

standard deviation are computed, cach pixel has its raw category valucs replaced with a 7-value

computed from a formula like Equation 6. This process is done for the visible, infrared, x, and y
values for cach pixel. Each z-value has a specific array created for it, so when the normalization is
complete, there are four 20 x 20 arrays filled with cither visible z-values, infrared z-values, x-position
z-values, or y-position z-values. Once the normalization is completed, the two distance arrays are
then filled, only this time z-values are used in place of the raw data in Equation 8. When the arrays
have been filled, the user is prompted to select the number of iterations the program is to complete.
Then, both arrays are searched for the smallest value and the looping process described in the
previous section is carricd out. The code that is responsible for the computations described here can

be found on pages 74 through 82.

Shut-Down of the Program

Once the selected clustering option has finished, the clustering program will free any memory
associated with the arrays used in the process, remove any clustering boxes from Windows One and
Two, and redisplay the main TSIPS menu in Window Four. The results of whatever clustering
option sclected remain tn Window Three so the user can use other TSIPS options on the results, if
so desired. At many points throughout cach clustering option, the user has the ability to terminate
the program’s operation by selecting the ESC key. When this option is available, it will appear on a
menu in Window Four. The code for the shut-down and housekeeping of the clustering algorithms

is on pages 82 through 84.

49

Appendix B. Listing of Turbo Pascal Code

The following is the complete Turbo Pascal code for the clustering algorithms located within the

TSIPS software. Comments are included to help the reader follow what is going on.

{*# The following procedure displays the size of the cluster box the ¥*)
(* user requests from the main Cluster menu in Window One. The box %)

(* is displayed using the SetWriteMode (XORPUT) command. This *)
(* procedure is a modification of the Mark Cut Box procedure located %)
(* in the TSIPS program. *)

Procedure Mark Cluster_Box(sx, sy : integer;
sz : byte);
VAR

sz2 : byte;

begin
sz2 = sz div 2;
SetWindow(active);
SetWriteMode (XORPUT);
Rectangle(sx-sz2,sy-sz2,sx+sz2-1,sy+sz2-1);
end; {Procedure Mark_ Cluster_Box}

(* This procedure allows the user to move the cluster box around *)
(* Window One so that the user can select the clustering area. This %)
(* procedure is a modification of the Set_Cut_Block procedure *)
(* located in the TSIPS program. *)

Procedure Select Cluster Box(sz : byte;
VAR choice : char);

LABEL
interrupt;
VAR
sz? : byte;
1x, 1y : integer;
begin
sz2 = sz div ?7;
Ik 1= -1:
ly = -1;
choice := ReadKey;
repeat

if choice = ESC then
Goto interrupt;

if (1x <> xx[active]) or (ly <> xy[active]) then

Mark Cluster Box(xx[active],xy[active], sz);
1x := xx[active];
ly := xylactive];
choice := Readkey;
if choice = #00 then
begin
choice := ReadKey;
if choice in [Up,Dn,Rt,Lt] then
begin
case choice of
Up : xylactive]
Dn : xy[active]
Rt : xxlactive]
Lt : xx{active]
end; {case)

[

= IMax(sz2,xyfactive]-step);
IMin(xy[active]+step, cy-sz2);
IMin(xx|active]+step,cx-sz2);
IMax(sz2,xx[active]-step);

if (1x <> xx[active]) or (ly <> xyl[active]) then

Mark Cluster_Box(lx,ly,sz);
end [(if}
else if choice in [PgUp,PgDn] then
case choice of
Pglp : step
Pgbn : step
end; {case}

IMin(64,step shl 1);
IMax(1l,step shr 1);

end; {if}
until choice in ["M,ESC];
interrupt:

end; {Procedure Select_Cluster_Box}

(* This procedure allows the user to select specific pixels which

(* are used as seed points for the clustering algorithms.

(* program to work properly, the pixels chosen as seed points MUST
(* be within the clustering area. This procedure is a modification

(* of the Examine procedure located in the TSIPS program.

Procedure Set_Cluster Point(xs,ys : integer;
arg @ byte;
VAR xcoord,ycoord : integer);
VAR
choice : char;
winl,win2,pixel : byte;
X,V,Z : string{3];

Procedure Show Coordinates;
begin
SetWindow(4);
Str(ex[activel:3 ,x);
Str(eylactive]:3,y);
Str(pixel:3,z);
SetColor(0);

For the

*)

&
w

*)

Left_Text(l,’ i)
Left_Text(2,’ DN
Left_Text(3,’ ")
SetColor(255);
Left_Text(l,'X '+R);
Left Text(2,’Y = '+y);
Left Text(3,’Z = '+z);
end; {Procedure Show Coordinates)

begin
SetWindow(1l);
SetWriteMode (XORPut);
Rectangle(xs,ys,xs+arg-1,ys+arg-1);
SaveWorkSection(1,0,0,8%1lw,5%1h);
SetFillStyle(SolidFill,0);
Bar(0,0,8%1w,5%1h);
SetWindow(active);
pixel := GetPixel(ex[active],ey[active]);
Mark Point(ex[active],ey[active],3,pixel);
Show_Coordinates;
repeat
choice := Upcase(ReadKey);
if choice = #00 then
begin
choice := ReadKey;
if choice in [Up,Dn,Rt,Lt] then
begin
Unmark_Point(ex{active],ey[active],b3);
case choice of
Up : eylactive]
Dn : eylactive]
]
]

IMax(0,ey[active]-step);
IMin(ey(active]+step,cy-1);
:= IMax(0,ex[active]-step);
IMin(ex[active]+step,cx-1);

It

Lt : ex[active
Rt : exlactive
end; {case)
pixel := GetPixel(ex[active],ey[activel);
Mark_Point(ex[active],ey[active],3,pixel);
Show_Coordinates;
end {if}
else if choice in [PgUp,PgDn] then
case choice of
PgUp : step
Pghn : step
end; {case}
end; {else}
until choice = CR;
xcoord := exf{active];
ycoord := eylactive];
Unmark_Point(ex[active],ey[active], K3);
RestoreWorkSection(1,0,0,8%1w,5%1h);
SetWindow(1l) ;
end; {Procedure Set Cluster_Point}

[

IMin(64,step shl 1);
IMax(1l,step shr 1);

I

N
[39)

(¥ This procedure moves the cursor on the text screen down into the

(* area of Window Four so that when an option is chosen that has the
(* user input values with the keyboard, the values will not

(* overwrite the image in Window One.
(* visible in Window Four if the active palette has a bright enough
(* color at its low end.

Procedure MoveCursor;

VAR
MyRegs

begin
MyRegs

MyRegs.
MyRegs.

MyRegs

.AH
DH
DL
.BH

Registers;

= §2;

1= 20;
= 0;

= 0;

Intr($10,MyRegs),
end; {Procedure MoveCursor}

(* This procedure moves the cursor back up to the top of the text

(* screen.

Procedure MoveCursor Top;

VAR
MyRegs

begin

MyRegs.
MyRegs.

MyRegs
MyRegs

Intr($10,My

AH
DH
.DL
.BH

Registers;

= 0;

= $2;

’

:= 0;

= 0

Regs);

end; {Procedure MoveCursor_ Top)

P

>3

area.

b

TN SN TN AN N N
PR

b

area in Window Two.

Procedure Cluster Histogram(xs,ys

LABEL

arg

interruptl,interrupt?;

integer;

The user entered values are

. byte);

This procedure allows the user to see a histogram of the cluster
It also allows the user to set a minumum threshold and
have all pixels below this threshold effectively turned off.
* histogram is displayed in Window Four, and the modified cluster
This procedure is a modification of the
Histogram procedure located in the TSIPS program.

The

*)

*)
*)

w

N

VAR

k : byte;

i,j : integer;

value : word;

Multiplier: integer;

pix : byte;

¥,¥,Z : string{3];

pixel : byte;

choice : char;
(* This small procedure is copied over from the Set_Cluster_Point *)
{(* procedure. It has been slightly modified. *)
Procedure Show_Coordinates;

begin

SetWindow(4);

Str(ex[active]:3,x);
Str(ey[active]:3,y);
Str(pixel:3,z);
SetColor(0);
Left Text(l,' "
Left Text(2,’ Y
Left Text(3,' "
SetColor(255);
Left Text(l,'X '+x);
Left Text(2,'Y "+y);
Left Text(3,'Z = '+z);
end; {Procedure Show_Coordinates})

I

(*¥ Main histogram routine begins here. *

begin
hmin := 255;
hmax 0;
for k := 0 to 255 do
histogram{k] := 0;
SetWindow(1);
for i := 0 to arg-1 do
for j := 0 to arg-1 do
begin
value := GetPixel(xs+]j,ys+i);
if value < hmin then hmin := value;
if value > hmax then hmax := value;
histogram{value] := histogram{value] + 1;
end; {for j)
SetWriteMode (XORPut) ;
Rectangle(xs,ys,xs+arg,ys+arg);
SetWindow(4);
ClearViewPort;

(* These multipliers are used to scale the heights of the bars *)
(* representing the number o1 pixels with a specific brightness value.¥)

54

if (.rg = 20) then
Multiplier := 3;
if (arg = 50) then
Multiplier := 2;
if (arg = 100) then
Multiplier := 1;
if (arg = 150) then
Multiplier := 1;
for k := 0 to 255 do
begin
SetColor(k);
Line(start+k,cy-01,start+k,cy-(histogram[k] * Multiplier)-01);
end; {for k}

(* This information appears in Window Two and will clear away
(* anything already displayed in the window.

SetWindow(2);
ClearViewPort;
Center Text(2,'Do you wish to set a threshold’);
Center Text(3,’'for the cluster area? (y/n) ');
interrupt?2:
Choice := Readkey;
if (Choice =#110) then
begin
SetWindow(1l);
Rectangle(xs,ys,xs+arg,ys+arg);
Goto interruptl;
end;

(* If yes is selected, these routines go to work. Most of these are
(* copied from the Set_Cluster Point procedure with some changes.

if (Choice = #121) then

begin
SetWindow(2);
Center_Text(8,'Place the cross-hair over the');
Center Text(9,’pixel with the desired "y

Center Text(10,’threshold value and press)
Center_Text(11l,'ENTER. The altered cluster ');
Center_Text(1?,’'area will appear in this)
Center Text(1l3,'window.)
SaveWorkSection(1l,0,0,8%1w,5%1h);
SetFillStyle(SolidFill,0);

Bar(0,0,8%1w,5%1h);

SetWindow(1l);

pixel := GetPixel(ex[active],ey[active]);

Mark Point(ex[active],ey[active],b3,pixel);
Show_Coordinates;

repeat

choice := Upcase(ReadKey);

if choice = #00 then

begin

choice := ReadKey;

55

N N

(*
€
(*

if choice in [Up,Dn,Rt,Lt] then
begin
Unmark Point(ex[active], ey[active],3);
case choice of
Up : eylactive]
Dn : eylactive]
]
]

I

IMax(0,ey[active]-step);
IMin(eylactive]+step,cy-1);

i

Lt ex[actlve = IMax(0,ex[active]-step);
Rt : exfact’ve = IMin(ex[active]+step,cx-1);
end: lcase)

pixel := GetPixel(ex[active],eylactive]);

Mark Point(ex{active],ey[active],3,pixel);
Show_Coordinates;
end {if)
else if choice in [PgUp,PgDhn] then
case choice of
PgUp : step := IMin(64,step shl 1);
Pgbhn : step IMax(l,step shr 1);
end; {case}
end;{else}
until choice =
SetWindow(2) :
ClearViewPort;
SetWindow(1l);
SetWriteMode (XORPut);
Rectangle(xs,ys,xs+arg,ys+arg);
Unmark Point(ex[active],eylactive],3);

it

CR;

After the threshold pixel is set, these routines will take the

value of the threshold pixel and use it to determine which pixels
within the cluster area will be set to a brightness of zero. The
altered cluster area will appear in Window Two so it can be used

* to compare with the results of the clustering routines in Window
* Three.

fo: j := 0 to arg-1 do
tor i := 0 to arg-1 do
begin
pix := GetPixel(xs+i,ys+j);
if (pix < pixel) then
begin
SetWindow(2);
PutPixel(xs+i,ys+j,0);
SetWindow(1l);
end
else
begin
SetWindow(2) ;
PutPixel (xs+i,ys+j,pix);
SetWindow(1l);
end
end; {for i}
RestoreWorkSection(1,0, 0, 81w, 5+x1h);
SetWindow(1l);
Goto interruptl;

end;

Beep(500) ;
Goto interrupt?;

interruptl:
menu_active := false;

submenu_active := false;
end, {Cluster Histogram)

(* This is the main procedure of the clustering program.

From this

* procedure, all other procedures necessary to run the clustering

* algorithms are called.

Procedure Cluster Analysis (arg

LABEL

byce);

ExitProg,interrupt2, interrupt3, intercuptéd,interrupt5, interruptsb,
interrupt?/,interrupt8,interrupt9,interruptlQ, interruptll,
interruptl?,interruptl3, ExitProgl,Finish;

VAR

simptr,simptr?2
Xptr,Yptr
ptr2,Visptr, IRptr
nrows,ncols
Simval

err

pixell,pixel?
argZ,m,n
i,j,xs,vs,a,b
xpos,ypos,c,d,e, f
xpos2,ypos?2
VisWeight, IRWeight
XWeight, YWeight
VisPart, IRPart
choice,choicel,choice?
choicel, ch
Counter,chce?3
Result

DiffX, DiffyY
TempResul t
minvalue maxvalue
Flag,Flag?
MatRows ,MatCols
ComRows ,CoanCols
ITter, Numiter

Cur _Col_Pos
Cur_Row_Pos
Cur_Sim Val

Next Sim val

At RDESP;
ARRDESP;
ARRDESP;
Longint;
Realtype;
integer;
byte;
byte;
integer;
integer;
integer;
real;
real;
realtype;
char;
char;
string[5];
real;
realtype;
real;
integer;
integer;
longint;
longint;
longint;
integer;
integer;
realtype;
realtype;

57

Last _Sim Val . realtype;

ClusterNum : integer;

Current_Val, Next Val : integer,

Mean_X,Mean Y 1 realtype;

Total _Vis,Total IR : integer;

Number Pixels : realtype;

Mean_Vis,Mean_ IR : realtype;

Total StandDev Vis : realtype;

Total_StandDev_ IR : realtype;

StandDev_X,StandDev_Y 1 realtype;

tandDev_Vis,StandDev IR . realtype;

Z Vis,Z IR,Z X,Z Y : realtype;

Done : Boolean;

Parray © array{0..149,0..149,0..1}) of byte;

Cluster_One_IR,Cluster_Two_IR ! realtype;

Cluster One VlS ,Cluster Two _Vis : realtype;

Cluster_One X Cluster One Y, Cluster _Two_X,Cluster Two Y : realtype;

IR _ Cluster One _Val, IR Cluster Two_Val : realtype;

Vis Cluster One _Val ,Vis Cluster Two Val . realtype;

X_Cluster_One_Val X_Cluster_Two_Val : realtype;

Y Cluster_One_Val,Y Cluster_ Two Val . realtype;

Cluster_One_Size,Cluster_Two_ Size : longint;
begin
arg? := arg div 2;
xylactive] := IMax(argZ xy[active]); (* Set the positioning *)
xyfactive] = IMin(xylactive),cy-arg?); (% variables used to locate ¥%)
xx{active] := IMin(xx[active],cx-arg2); (* keep track of the *)
xx[active] := IMax(arg?,xx[active]); (* clusteing area. *)

MoveCursor Top,

Select Cluster Box(arg,choice); (* Call to procedure to allow user *)
if choice <> ESC then (* to choose where the clustering *
begin (* area will be. *)
a = 0;
b := 0;
xs = xxlactive] - arg?; (* Upper left, and lower right corner %)
ys := xylactive] - arg2; (* of the clustering area. *)

Mark_Cluster_Box(xx{active],xy[active],arg);
for m := 0 to 149 do (* Set all values in Parray to zero *)
for n := 0 to 149 do
begin
Parray[m,n,0] := 0;
Parray[m,n,1] := 0
end: {for n}
for j := vs to ys + arg - 1 do (*¥ Read visible pixel values *)
for i := xs to xs + arg - 1 do (% into Parray. *)
begin
pivell = GetPixel(i.j);:
PutPixel(i,j,255);
a = 1 - xs;
b = j - ys;
Parray[a,b,0] := pixell;

PutPixel(i,j,pixell);
SetWindow(2);

pixel2 := GetPixel(i,j);

PutPixel(i,j,255);

Parray{a,b,1] := pixel2;

PutPixel(i,j,pixel2);
SetWindow(1l);

end; {for i)

end {if}
else

Goto ExitProg;

SetWindow(4) ;
interrupté:
ClearViewPort;

Center Text(l,
Center Text(2, '
Center_Text(3, ‘0
Center_Text(4,’
Center_ Text(5, '
Center_Text(6, ’'1
Center Text(7, '
Center Text(8,
Center Text(9, '2
Center_Text (10, '
Center_Text(1ll, '
Center Text(12, '3
Center_Text(13, '
Center_Text(l4, '4
Center_Text(1l5, '
Center Text(l6, ’'5

")

")

"5

"
"
"

Center Text(1l7,’ "
Center Text(18, 'ESC Exit
Choice := Readkey;
if choice = #48 then
begin
Flag := 0,
Flag? := 0O;
Goto interrupt?;
end
else if choice = #49 then
begin
Flag := 1;
Flag?2 := 0;
Goto interrupt?;
end
else if choice = #50 then
begin
Flag := 2;
Flag? := 2;
Goto interrupt?;
end

‘Select which option you wish

Histogram of Clustering Area

(* Read infrared pixel values *

(* into Parray.

(* This section of code displays the main clustering menu.

Cluster using Similarity Matrix ');
and User-Defined Seed Points

s

Cluster Using Similarity Matrix ');
and Automatic Seed Points

")

Show Ranges of Similarity Values');
from One User-Defined Seed Point’);

Option O With Data Normalization ');

Option 1 With Data Normalization ');

D
");

b
N

w

else if choice = #51 then

begin
Flag := 0;
Flag? := 1;
Goto interrupt?;
end
else if choice = #52 then
begin
Flag := 1;
Flag?2 := 1;
end
else if choice = #53 then
begin
SetWindow(1l);
Cluster_Histogram(xs,ys,arg); (% Call to histogram procedure %)
Repeat
ch := ReadKey;
Case Ch of

#27 : Done := True;
end {Case}
Until Done = True;
Goto Finish;

end
else if choice = ESC then (* If ESC selected, goto end of program *)
begin
Goto Finish;
end
else
begin
Beep (500);
Goto interruptb;
end;
(* The next section of code allows the user to select the weights *)
(* for each of the categories in the distance equation. *)
interrupt2:

VisWeight := 0.0;
IRWeight := 0.0;
XWeight := 0.0;
YWeight := 0.0;

SetWindow(4) ;

ClearViewPort;
Center_Text(l, ’'Select the weights you wish to give to’):
Center Text(2, ’'the variables used to calculate the "
Center Text(3, 'similarity values D
Center Text(4, ' "
Center Text(5, ’'0 : Vis/IRPart =1 Diff X/Yy =1 ');
Center Text(6, 'l : Vis/IRPart =1 Diff X/Y = .5 ')
Center_Text(7, '2 : Vis/IRPart =1 Diff X/Y = .25");
Center Text(8, '3 : Vis/IRPart = 1 Diff X/Y = .10");
Center Text(9, '4 : Vis/IRPart = 1 Diff X/Y =0 ')

Center Text (10, '
Center Text(1ll, '5 : Vis/IRPart = .5 Diff X/Y = 1

N N e

o)

Center_Text(1l2, ’'6 : Vis/IRPart = .25 Diff X/Y = 1

Center Text(13, '7 : Vis/IRPart = .1 Diff X/Y =1
Center Text(l4, '8 : Vis/IRPart = 0 Diff X/Y =1
Center Text(1l5, '’

Center_Text(l6, '9 : Vis/IRPart =1 X=.1 Y=1
Center_Text(l7, 'a : Vis/IRPart =1 X =1 Y = .
Center_ Text (18, '

Center Text(1l9, ’'u : Input specific values

choicel := ReadKey;
if choicel = #117 then
begin
ClearViewPort;
Center Text(l, 'Enter the values for each variable
Center Text(2, 'in the following order. Press ENTER

Center_Text(3, 'after entering each number.
Center_Text (4, '

Center Text(5, 'Visible Weight (0 - 1.0)
Center_Text(6, 'Infrared Weight (0 - 1.0)
Center Text(7, 'X Position Weight (0 - 1.0)
Center Text(8, 'Y Position Weight (0O - 1.0)

OutTextXY(40,86,'= Visible Weight'’);
OutTextXY (40,101, '= IR Weight');
OutTextXY(40,116,'= X Weight');
OuttextXY(40,131,'= Y Weight');
MoveCursor;
ReadLn(VisWeight,IRWeight ,XWeight,K YWeight);
MoveCursor_Top;
end
else if choicel = #48 then
begin
VisWeight 1
IRWeight 1
XWeight = 1;
YWeight =1
end
else if choicel
begin
VisWeight
IRWeight
XWeight
YWeight 1=
end
else if choicel
begin
VisWeight
IRWeight
XWeight
YWeight i=
end
else if choicel
begin
VisWeight :=
IRWeight =
XWeight

i

i
*
~
O
o
=
0
]

I
OO

I
=
o
o
o
o
o
o]

it

It
OO

Il

.25;
.25

s

#51 then

R

I

61

- -
R N S W P g g

YWeight
end
else if choicel
begin
VisWeight
IRWeight
XWeight
YWeight
end
else if choicel
begin
VisWeight
IRWeight
XWeight
YWeight
end
else if choicel
begin
VisWeight
IRWeight
XWeight
YWeight
end
else if choicel
begin
VisWeight
IRWeight
XWeight
YWeight
end
else if choicel
begin
VisWeight
IRWeight
XWeight
YWeight
end
else if choicel
begin
VisWeight
IRWeight
XWeight
YWeight
end
else if choicel
begin
VisWeight
IRWeight
XWeight
YWeight
end
else
begin
Beep(500);

i

il

0.1;

#52 then

#54 then

.25;
.25

>

Goto interrupt?2;
end;

(* This section of code determines which of the clustering options
(* was selected by the setting of the Flag variables. Depending on
(* the option, the appropriate calls to the seed point selection

(* procedures are executed.

if (Flag = 0) and (Flag2 = 0) then

begin
SetWindow(4) ;
ClearViewPort;
Center_Text(7,'Select the first seed point to be '’
Center Text(8, a pixel within a cloud region. !
SetWindow(1l);
Set_Cluster_ Point(xs,ys,arg,Xpos,ypos);
Mark Cluster_Box(xx[lactive] xylactive],arg);
Se-Window(4);
ClearViewport;
Center_Text(7,’Select the second seed point to !
Center Text(8,'be a pixel in a non-cloud region. '
Se .Window(1l);
Se : Cluster Point(xs,ys,arg,xpos2,ypos2);
GeZo interrupt?;

end” {(if}

if (Fiag = 1) and (Flag2 = 0) then

begin

C.rrent_Val := -1;

)
).

’

)5
)

>

*)
*)
*)
*)

frr b := 0 to arg-1 do (* Automatic selection of brightest *)

or a = 0 to arg-1 do (* pixel in clustering area.
begin
Next Val := Parrayla,b,0];
if (Next Val > Current Val) then
begin
Current _Val := Nexi Val;
Xpos = atxs;
ypos = b+ys;
end
end; {for a)
Current _Val := 300;
for b:= 0 to arg-1 do (* Automatic selection of dimmest
for a := 0 to arg-1 do (* pixel ip clustering area.
begin
Next Val := Parrayla,b,0}];
if (Next_Val < Current_Val) then
begin
Current_Val := Next_Val;
Xpos2 = atxs;
ypos2 := b+ys;
end
end; {for a)
Goto interrupt/;
end; {if)
if (Flag = 0) and (Flag2 = 1) then

63

L
Py

%)
%)

begin

SetWindow(4);

ClearViewPort;

Center_Text(7,'Select the first seed point to be a ');
Center_Text(8,'pixel within a cloud region. 'Y
SetWindow(1);

Set_Cluster_Point(xs,ys,arg,xpos,ypos);
Mark cluster_Box(xx[active],xylactive], arg);
SetWindow(4) ;
ClearViewport;
Center _Text(7,’'Select the second seed point to be ');
Center_Text(8,'a pixel in a non-cloud region.)
SetWindow(1);
Set Cluster Point(xs,ys,arg,xpos2,ypos?);
Goto interruptl2;
end; {if)
if (Flag = 1) and (Flag2 = 1) then
begin
Current_Val := -1;
for b := 0 to arg-1 do (* Automatic selection of brightest %)
for a := 0 to arg-1 do (* pixel in clustering area. *)
begin
Next Val := Parray[a,b,0];
if (Next Val > Current Val) then
begin
Current Val := Next Val;
Xpos = a+xs;
ypos := b+ys;
end
end; {for a}
Current _Val := 300;
for b:= 0 to arg-1 do (* Automatic selection of dimmest *)
for a := 0 to arg-1 do (* pixel in clustering area. *)
begin
Next Val := Parrayla,b,0];
if (Next Val < Current_Val) then
begin
Current Val := Next Val;
Xpos2 := a+xs;
ypos2 := b+ys;
end
end; {for a}
Goto interruptl2;
end; {if}
if (Flag = 2) and (Flag2 = 2) then
begin
SetWindow(4)
ClearViewPort;
Center Text(/,’Select the seed point’);
SetWindow(1l);
Set Cluster Point(xs.ys,arg,xpos,ypos);
end;

’

’

64

(* This section of code is
(* display when Option Two

SetWindow(3);
ClearViewPort;
interrupté:
SetWindow(4)
DiffX
DiffyY
VisPart
IRPart
TempResult :=
Result 0.0;
ClearViewPort;
Center Text(1,
Center_Text(2,
Center_Text(3,
Center Text(4,
Center Text(5,
Center Text(6,
Center Text(7,'3
Center_Text(8,'4
Center Text(9,’'5
Center Text(10,’6
Center_Text(ll,’'7
Center_Text(12,'8
Center_ Text(13,’'9
Center_Text(1l4,’
Center_Text (15,
Center_Text (16,
Center Text(1l7,
Center_Text(18,' TAB
Center_Text(19,’ ');
Center_Text(20,’' ESC
choice? ReadKey;
SetWindow(3);
if choice2 = #9 then
begin
ClearViewPort;
GeTo interrupté;
end
else if choice? = ESC the
begin
Goto ExitProg;
end
else if choice?
begin
Palettes;
GoTo interrupté;
end
else it choice?2
begin
GoTo interrupt?;
end

)

’

.0;
0.0;

o o-

.0
.0
0

0.0;

’

Select
value

'0
"1
'2

0
10
20
30
1 40
: 50

. 60
70
80
90

’

¥

P
w

!
’

’

#112 th

#119 th

used to determine what range of values to ¥%)
is selected from the main clustering menu. %)

the range for the similarity ');
(S) you wish to display "
")
<=§ <10 a: 100 <= § < 110");
<=8 <20 b : 110 <= § < 120');
<= S <30 ¢ : 120 <= S < 130");
<= S <40 d : 130 <= S < 140');
<= S <50 e : 140 <= S < 150");
<=5 <60 f : 150 <= S < 160');
<=8 <70 g : 160 <= S < 170");
<= S <80 h 170 <= S < 180");
<= S <90 i 180 <= S < 190');
<= § < 100 j 190 <= S < 200");
k : 200 <= § < 210');
")
Change Palette ")
Change the Weights "
Blank Window 3 'Y
Quit ")
(* Select TAB to clear window 3 %)
n (* Select ESC to exit the routine *
en (* Select p to change the palette *)
en (* Select w to change the weights *)

65

else if choice?2 = #48

begin
minvalue := 0;
maxvalue := 10;

Goto interrupt5;
end
else if choice?2 = #49

begin
minvalue := 10;
maxvalue := 20;

Goto interrupt5;
end
else if choice2 = #50

begin
minvalue := 20;
maxvalue := 30;

Goto interrupt);
end
else if choice2 = #51

begin
minvalue := 30;
maxvalue := 40;

Goto interrupt5;
end
else if choice?2 = #52

begin
minvalue := 40;
maxvalue := 50;
Goto interrupt)5;
end
else if choice2 = #53
begin
minvalue := 50;
maxvalue := 60;

Goto interrupt5;
end
else if choice?2 = #5¢4

begin
minvalue := 60;
maxvalue := 70;

Goto interrupt5;
end
else if choice?2 = #55

begin
minvalue := 70;
maxvalue := 80;

Goto interrupt5;
end

else if choice?2 = #56
begin
minvalue := 80;
maxvalue := 90;

Goto interrupt5;
end

then

then

then

then

then

then

then

then

then

(* Set weights based upon menu
(* selection.

6t

*)
*)

else if choice?2 = {#57
begin
minvalue = 90Q;
maxvalue = 100;

Goto interrupt5;
end

else if choice2 = #97
begin
minvalue := 100;
maxvalue := 110;

Goto interrupt)5;
end

else if choice2 = #98
begin
minvalue := 110;
maxvalue := 120;

Goto interrupt)h;
end

else if choice2 = #99
begin
minvalue := 120;
maxvalue := 130;

Goto interrupt5;
end

else if choice2 = #100
begin
minvalue := 130;
maxvalue := 140;

Goto interrupt5;
end

else if choice2 = #101
begin
minvalue := 140;
maxvalue := 150;

Goto interrupt5;
end

else if choice2 = {#102
begin
minvalue := 150;
maxvalue := 160;

Goto interrupt5;
end

else if choice2 = #103
begin
minvalue := 160;
maxvalue := 170;

Goto interrupt);
end

else if choice2 = #104
begin
minvalue = 170;
maxvalue =]80;

Goto interruptb;
end

then

then

then

then

then

then

then

then

then

67

else if choice?2 = #105 then

begin
minvalue := 180;
maxvalue := 190;
Goto interrupt5;
end
else if choice?2 = #106 then
begin
minvalue := 190;
maxvalue := 200;
Goto interrupth;
end
else if choice2 = #107 then
begin
minvalue := 200;
maxvalue := 210;
Goto interrupt5;
end
else
begin
Beep(500);
Goto interrupté;
end;
(* This section of code does the actual calculations to determine *)
(* which pixels have distance values within the range selected to be *)
(* displayed. *)
interrupt5:

PutPixel (xpos,ypos,255);
for j := ys to ys+arg-1 do
for i := xs to xstarg-1l do
begin
a =1 - xs;
=3 - ys;
:= Xpos - Xs; (* ¢ : x position of seed pixel %)
ypos - ys; (¥ d : y position of seed pixel *)

i

a0 o
Il

(* This code is the implementation of the distance formula. *)

Diffx
Diffy :

XWeight * SQR(c - a);
YWeight * SQR(d - b);
VisPart VisWeight * SQR(Parray[c,d,0} - Parray[a,b,0]);
IRPart IRWeight * SQR(Parray(c,d,l] - Parrayla,b,1]);
TempResult := (VisPart + IRPart + DiffX + DiffY);
Result := SQRT(TempResult);
if (minvalue <= Result) and (Result < maxvalue) then
begin
PutPixel (a+xs,b+ys,Parray(a,b,0]);
end; {if)
end; {for a)
GoTo interrupté; (* Loop back to select next range to display . %)

Il

i

08

(* This is the start of the routines used to cluster the pixels from %)

(* two seed points using the centroid method without data *)
(* normalization. *
interrupt?/:
SetWindow(3);
ClearViewPort;
PutPix 1 (xpos,ypos,255); (* Turn on the two seed pixels in Window *)
PutPiel (xpos?,ypos2,150); (* Three. *)
if (arg = 20) then (* These statements set the number of rows %)
begin (* and columns used by the similarity and %)
nrows := 20; (* tracking matrix. *)
ncols := 20;
end
else if (arg = 50) then
begin
nrows := 50;
ncols := 50;
end
else if (arg = 100) then
begin
nrows := 100;
ncols := 100;
end
else
begin
nrows := 150;
ncols := 150;
end;
simptr := HMatDef(nrows,ncols); * Create the similarity matrix ¥*)
if (simptr = nil) then (* for the first seed point. *)
begin
Writeln (’'Cannot Create Matrix');
EXIT;
end;
simptr2 := HMatDef(nrows,ncols); (* Create the similarity matrix *)
if (simptr = nil) then (* for the second seed point. *)
begin
Writeln {’Cannot Create Matrix’);
EXIT;
end;
ptr2 := HMatDef(nrows,ncols); (* Create the trackii:g matrix *)
if (ptr2 = nil) then
begin
Writeln (’'Cannot Create Comparison Matrix');
EXIT;
end;

(* Fill Matrix with Similarity Values *%)

69

for b := 0 to arg-1 do

for a := 0 to arg-1 do
begin
Cc = XpoOs - XS; (* ¢ x position of first seed pixel %)
d := ypos - ys; (* d y position of first seed pixel %)
e = Xpos2 - xs8; (* e ®x position of second seed pixel *)
f := ypos2 - ys; (¥ f : y position of second seed pixel %)

(* Similarity value calculations using Euclidean distance formula.

(* This section is the distaiice calculations to the first seed pixel.

DiffX := XWeight * SQR(c - a);
DiffY := YWeight * SQR(d - b);
VisPart := VisWeight * SQR(Parray[c,d,J] - Parray{a,b,0]);

fl

IRPart IRWeight * SQR(Parray[c,d,l] - Parray(a,b,1]);
TempResult := (VisPart + IRPart + DiffX + DiffY);
SimVal := SQRT(TempResult);

HMatWrtEl (simptr,a,b,SimVal,err);

*)
)

(* This section is the distance calculations to the second seed pixel.*)

DiffX := XWeight * SQR(e - a);
DiffY := YWeight * SQR(f - b);
VisPart := VisWeight * SQR(Parray[e,f,0] - Parray[a,b,0]);
IRPart IRWeight * SQR(Parrayle,f,1] - Parrayia,b,l]);
TempResult := (VisPart + IRPart + DiffX + DiffY);
SimVal := SQRT(TempResult);
HMatWrtEl (simptr?,a,b,SimVal,err);
end; {for a}

(* Initialize the cluster values with the seed pixel’s values *)

Cluster_One_IR := Parray[xpos-xs,ypos-ys,l];
Cluster_One Vis := Parray[xpos-xs,ypos-ys,0];
Cluster_One X := Xpos-Xs;

Cluster One Y := ypos-ys;
IR _Cluster One_Val := Parray{xpos-xs,ypos-ys,l];

Vis _Cluster One Val := Parrav[xpos-xs,ypos-ys,0];
X Cluster One Val := xpos-xs;

Y _Cluster One_Val := ypos-ys;

Cluster_Two_IR := Parray[xpos2-xs,ypos2-ys,l];
Cluster_Two Vis := Parray|[xpos2-xs,ypos2-ys,0}];
Cluster_Two X := xpos2-xs;

Cluster Two Y .= ypos2-ys;

IR _Cluster_Two_Val := Cluster_ Two_IR;
Vis_Cluster_Two_Val := Cluster_ Two Vis;

X Cluster_Two_Val := Cluster_Two_X;

Y _Cluster_Two_Val := Cluster_Two_Y;

(* This section of code determines how many iterations the looping
(* process will complete.

70

*)

*)

SetWindow(4)

interrupt8:

ClearViewPort;

Center Text(l, 'Select the number of iterations’);

Center Text(2, '’ ")
Center Text (3, ' "
Center Text(4, '0 : > 3 : 100 ")
Center Text(5, 'l : 10 4 : 398 "y
Center Text(6, "2 : 50 5 1 2498 ')
Center Text(/, ' "y
Center Text(8, 'u : Enter # of iterations D
Center Text(9, ' D
Center Text (10, '"ESC : exit DI
Choice3 := ReadKey;
if choice3 = #48 then

Numiter := 5
else if choice3 = #49 then

Numiter := 10
else 1f choiced = #50 then

Numiter := 50
clse if choice3 = #51 then

Numiter := 100
else if choiced = #52 then

Numiter := 398
¢lse if choice3 - #53 then

Numicer := 2498

else if choice3 = ESC then
goto interrupt?l
c¢lse 1f choicel3 = #117 then
hegin
ClearViewPort;
Center Text(l, 'Enter the number of iterations');
Center Text(2, 'Press ENTER when complete Y
MoveCursor;
Readln(Numiter) ;
MoveCursor Top;
end
else
bopin
Beep(H00)
poto interrupt§;:
end;
Str(Numiter,chcel):
OutTextXY (35,110, 'Number of iterations =');
Ot TextXY (218,110, chcel);
SetWindow(3);
Cluster One Size - 1; (* Each cluster initially
Cluster Two Size @ 1;: (* has one pixel.
HMatWrtEl (ptr?2,xpos-xs,vpos-ys, 1.0 err);
HMatWrtEl (ptr?,xpos?-xs,ypos?2-ys, 2.0, err);

(# This is where the looping process begins.

For Tter 1 to Numiter do

71

(* First thing to do is search for tl.e smallest distance value. *)
begin
Cur_Sim Val := 1000.0;
for b := 0 to arg-1 do (* Search the first distance array. %)
for a := 0 to arg-1 do
begin
if (HMatReadFl(ptr2,a,b,err) < 1.0) then
begin
Next Sim Val := HMatReadEl (simptr,a,b,err);
if (Next Sim Val < Cur_Sim Val) then
begin
Cur_Sim Val .- Next Sim Val;
Cur_Col Pos := a;
Cur_Row Pos := b;
ClusterNum := 1;
end
end
end; {for a}
for b := 0 to arg-1 do (* Search the second distance array.¥*)
for a := 0 to arg-1 do
begin
1f (HMatReadEl(ptr2,a,b,err) < 1.0) then
begin
Next Sim Val := HMatReadEl (simptr2,a,b,err);
if (Next_Sim Val < Cur_Sim Val) then
begin
Cur_Sim_Val := Next_Sim Val,;
Cur_Col_Pos := a;
Cur Row_Pos := b;
ClusterNum := 2;
end
end
end: {for a}

{(* The cluster corresponding to the array with the smallest value is *%)

(* incremented by one. The pixel is turned on in Window Three in the *)
(* appropriate brightness. 1If it is a cloud, it will use the same *)
(* value as in the visible image. If it isn’t a cloud, it will be *)
(* set to a brightness of 50. %)

if ClusterNum = 1 then

begin
HMatWrtEL (ptr2,Cur Col Pos, Cur_Row Pos,1.0,err);
Cluster One Size := Cluster_One_Size + 1;

PutPixel(Cur_Col Pos+xs,Cur_Row_Pos+ys,
Parray[Cur_Col Pos,Cur_Row_Pos,0]);
end;

if ClusterNum - 2 then

begin
HMatWrtEl (ptr2,Cur_Col Pos,Cur_Row_Pos,?.0,err);
Cluster Two Size := Cluster_Two_Size + 1,

72

PutPixel (Cur_Col_Pos+xs,Cur_Row_Pos+ys,50);
end;

(* Display the iteration number currently underway in Window Four. *)

Str(Iter, Counter);

SetWindow(4)

OutTextXY (35,130, 'Iterations Completed =');
SetColor(0);

OQutTextXY(218,130,4#219);
OutTextXY(225,130,4#219);
OQutTextXY(232,130,4#219);
OutTextXY(239,130,4#219);
OutTextXY(246,130,4#219);
OutTextXY(253,130,#219);

SetColor(255);
OQutTextXY (218,130, Counter) ;
SetWindow(3);
(* Compute the new values for the clusters. *)

if ClusterNum = 1 then

begin
Cluster_One_IR := Cluster_One_IR + Parray[Cur_Col Pos,Cur_Row Pos,1];
Cluster_One Vis :=Cluster_One_ Vis+ Parray[Cur_Col Pos,Cur_Row_Pos,0];
Cluster One X := Cluster_One_X + Cur Col Pos;
Cluster One Y := Cluster_One_Y + Cur Row Pos;
IR_Cluster One_Val := Cluster One_IR/Cluster One_Size;
Vis Cluster One_Val := Cluster_One_Vis/Cluster One Size;
X Cluster One_Va := Cluster_One_X/Cluster_ One_Size;
Y Cluster One Val := Cluster_One_Y/Cluster One Size;

end;

if ClusterNum = 2 then

begin
Cluster_Two_IR := Cluster_Two_IR + Parray[Cur Col Pos,Cur Row Pos,1];
Cluster_Two_Vis :=Cluster_Two_Vis + Parray([Cur_Col_Pos,Cur_Row_Pos,0]:
Clu~voi Two X := Cluster_Two_X + Cur Col Pos;
Cluster Two Y := Cluster_Two_Y + Cur Row_Pos;
IR_Cluster_Two_Val := Cluster_Two_IR/Cluster_Two_Size;
Vis_Cluster_Two_Val := Cluster_Two_Vis/Cluster_Two_Size;

i

X Cluster_Two_Val
Y Cluster Two_Val
end;

Cluster_Two_X/Cluster_Two_Size;
Cluster_Two_Y/Cluster Two_Size;

(* Begin the loop to fill the similarity matrices with updated values %)

if ClusterNum = 1 then

begin
for b 1= 0 to arg-1 do
for a := 0 to arg-1 do
begin

73

if (HMatReadEl(ptr2,a,b,err) < 0.0) then
begin
DiffX := XWeight * SQR(X_Cluster One_Val - a);
DiffY := YWeight * SQR(Y_Cluster One Val - b);
VisPart := VisWeight * SQR(Vis_Cluster_One_Val -
Parray[a,b,0]);
IRPart := IRWeight * SQR(IR_Cluster One Val -
Parray(a,b,1]);
TempResult := (VisPart + IRPart + DiffX + DiffY);
SimVal := SQRT(TempResult);
HMatWrtEl (simptr,a,b,SimVal,err);
end
end; {for r}
end; {if)

(* Second similarity matrix %)

if ClusterNum = 2 then

begin
for b := 0 to arg-1 do
for a := 0 to arg-1 do
begin
if (HMatReadEl(ptr2,a,b,err) < 0.0) then
begin

DiffX := XWeight * SQR(X Cluster Two Val - a);

DiffyY := YWeight * SQR(Y_Cluster Two Val - b);

VisPart := VisWeight * SQR(Vis_Cluster Two Val -

Parray{a,b,0});
IRPart := IRWeight * SQR(IR Cluster Two Val -
Parray([a,b,1]);
TempResult := (VisPart + IRPart + DiffX + DiffY);
SimVal := SQRT(TempResult);
HMatWrtEl (simptr?2,a,b,SimVal,err);
end
end; {for a}
end; {if}
(* This routine lets the user get out of the looping process by *)
(* pressing the ESC key on the keyboard. *)

if (keypressed = TRUE) then
begin
Choice := Readkey;
if (Choice = ESC) then
Goto interrupt3;

end
end; titer loop) (* This is the end of the looping routines *)
Goto interrupt3; (* Proceed to housekeeping routines *)
(* This is the start of the routines which are used to do the *)

(* the clustering from two seed points using the centroid method with %)
(* data normalization. %)

74

interruptl2:

SetWindow(3);
ClearViewPort;
PutPixel (xpos,ypos,255); (* Turn on the seed pixels in Window *)
PutPixel (xpos?2,ypos2,150); (* Three. *)
if (arg = 20) then (* These statements set the number of rows %)
begin (* and columns used by the similarity and %)
nrows 1= 20; (* tracking matrix. *)
ncols := 20;
end
else if (arg = 50) then
begin
nrows = 50;
ncols := 50;
end
else if (arg = 100) then
begin
nrows = 100;
ncols := 100;
end
else
begin
nrows = 150;
ncols := 150;
end;
simptr := HMatDef(nrows,ncols); (*# Create the similarity matrix %)
if (simptr = nil) then
begin
Writeln (’Cannot Create Matrix’);
EXIT,;
end;
simptr?2 := HMatDef(nrows,ncols}): (* Create the second similarity =)
if (simptr = nil) then (* matrix. *)
begin
Writeln (’Cannot Create Matrik’);:
EXIT;
end;
ptr2 := HMatDef(nrows,ncols); (* Create the tracking matrix *)
if (ptr2 = nil) then
begin
Writeln (’'Cannot Create Comparison Matrix’);
EXIT;
end;
Visptr := HMatDef(nrows,ncols); (* Create the matrix to store the %)
if (Visptr=nil) then (* z-values for the visible data %)
begin
Writeln (’'Cannot create Visptr');
Exit;
end;

IRptr := HMatDef(nrows,ncols); (* Create the matrix to store the =
if (IRptr=nil) then (* z-values for the infrared data *

begin
Writeln ('Cannot create IRptr');
Exit;

end;

Xptr := lIMatDef(nrows,ncols’ ; (* Create the matrix to store the %

if (Xptr=nil) then (* z-values for the x positions
begin
Writeln (’'Cannot create Xptr');
Exit;
end;

’

Yptr := HMatDef(nrows,ncols); (* Create the matrix to store the

if (Yptr=nil) then (* z-values for the y positions
begin
Writeln ('Cannot create Yptr');
Exit;
end;
(* Normalize tte raw category data using the standard deviation.
(* First calculate the means of the four categories.

Mean X := (arg-1)/2;
Mean Y := Mean Y;

Total Vis := 0;

Total IR := O;

Number Pixels := arg*arg;

for b := 0 to arg-1 do

for a := 0 to arg-1 do
begin
Total Vis := Total Vis+Parrav|a.,b,0];
Total IR := Total IR +Parrayia.b,l]:
end: {for b}
Mean_Vis := Total Vis/Number Pixels:
Mean IR := Total IR/Number Pixels;

(# Now calculate the standard deviations. *)

Total StandDev Vis := 0.0;
Total StandDev_ IR := 0.0;
if arg = 20 then
begin
StandDev X := 5.9160/9/83;
StandDev_Y := StandDev X;
end
else if arg = 50 then
begin
StandDev X := 14.57737974;
StandDev_Y := StandDev_X;
end

76

*)
%)

else if arg = 100 then
begin
StandDev X := 29.01149198;
StandDev_Y :- StandDev_X;

end
else if arg = 150 then
begin
StandDev_X := 43 44536799,
StandDev_Y := StandDev_X;
end
else
begin
Goto interrupt3;
end;

for b := 0 to arg-1 do
for a := 0 to arg-1 do
begin
Total StandDev Vis
Total StandDev_IR
end; {for b}

i

Total StandDev Vis+SQR(Parray(a,b,0]-Mean_Vis);
Total StandDev IR +SQR(Parray(a,b,l]-Mean_IR);

I

StandDev_Vis
StandDev_ IR

i

SQRT(Total_StandDev_Vis/(Number_Pixels-1));
SQRT(Total_StandDev_IR/(Number_ Pixels-1));

i

(* Calculate the z-values and fill in the matrices. %)

for b := 0 to arg-1 do

for a := 0 to arg-1 do

begin
Z Vis := (Parrayla,b,0]-Mean Vis)/StandDev_Vis;
Z IR = (Parrayla,b,1l]-Mean_IR)/StandDev_ IR;

Z X (a-Mean_X)/StandDev_X;
ZY := (b-Mean Y)/StandDev_Y;
HMatWrtEl(Visptr,a,b,Z Vis,err);
HMatWrtEl (IRptr,a,b,Z_IR,err);
HMatWrtEl (Xptr,a,b,Z_X,err);
HMatWrtEl(Yptr,a,b,Z Y,erry);
end; {for a)

Il

(* Initialize the two clusters with the seed pixel’s values. *)

Cluster_One_ IR := HMatReadEl(IRptr,Xpos-xs,ypos-ys,err);
Cluster_One _Vis := HMatReadEl(Visptr,xpos-xs,ypos-ys,err);
Cluster_One X HMatReadEl (Xptr,xXpos-xs,ypos-ys,err);
Cluster_One_ Y := HMatReadEl (Yptr,xpos-xs,ypos-ys,err);

IR _Cluster One_Val := Cluster One_IR;

Vis_Cluster One_Val := Cluster_One_Vis;

X Cluster One Val Cluster_One_X;

Y_Cluster One Val Cluster One_Y;

]

Cluster_Two_IR := HMatReadEl (IRptr,xpos2-xs,ypos2-ys,err);
Cluster_Two Vis := HMatReadEl(Visptr,xpos2-xs,ypos2-ys,err);
Cluster_Two_X := HMatReadEl(Xptr,xpos2-xs,ypos2-ys,err);

77

Cluster_Two_Y := HMatReadEl(Yptr,xpos2-xs,ypos2-ys,err);
IR Cluster Two Val := Cluster_Two_IR;

Vis Cluster_Two _Val := Cluster_Two_Vis;

X Cluster Two Val Cluster Two_X;

Y:Cluster:Two_Val Cluster Two_Y;

i

i

(¥ Fill Matrices with Similarity Values. *)

for b := 0 to arg-1 do

for a := 0 to arg-1 do
begin

Cc :=Xpos - X5;

d :=ypos - ys,;

e :=Xpos?2 - Xs;

f :=ypos2 - ys;
DiffX := XWeight * SQR(HMatReadEl(Xptr,c,d,err) -
HMatReadEl (Xptr,a,b,err));
Diffy := YWeight * SQR(HMatReadEl(Yptr,c,d,err) -
HMatReadEl(Yptr,a,b,err));
VisPart := VisWeight * SQR(HMatReadEl(Visptr,c,d,err) -
HMatReadEl(Visptr,a,b,err));
IRPart := IRWeight * SQR(HMatReadEl(IRptr,c,d,err) -
HMatReadEl (IRptr,a,b,err));
TempResult := (VisPart+IRPart+DiffX+DiffY);
SimVal := SQRT(TempResult);
HMatWrtEl(simptr,a,b,SimVal,err);

DiffX := XWeight * SQR(HMatReadEl(Xptr,e,f,err) -
HMatReadEl (Xptr,a,b,err));
DiffY := YWeight * SQR(HMatReadEl(Yptr,e,f,err) -
HMatReadEl (Yptr,a,b,err));
VisPart := VisWeight #* SQR(HMatReadEl(Visptr,e,f,err) -
HMatReadEl (Visptr,a,b,err));
IRPart := IRWeight * SQR(HMatReadEl(IRptr,e,f,err) -
HMatReadEl1 (IRPtr,a,b,err));
TempResult := (Vi=zPart+IRPart+DiffX+Diff7Y);
SimVal := SQRT (TempResult);
HMatWrtEl(simptr2,a,b,SimVal err);
end; {for a)

(* This section of code allows the user to select the number of
(* iterations the loop will go through before stopping.

SetWindow(4)
interruptl3:
ClearViewPort;

Center_Text(l, ’'Select the number of iterations’);
Center Text(2, ' Y
Center_Text (3, '’ "y
Center Text(4, 'O : 5 3 : 100)
Center Text(5, ‘1 : 10 4 @ 398 ",
Center_Text(6, '2 : 50 5 : 2498 ')
Center_Text (7, ' ")

78

Center Text(8, ’'u : Enter # of iterations '
Center Text(9, ' DN
Center Text(l0, 'ESC : exit ")
Choice3 := ReadKey;
if choice3 = #48 then
Numiter := 5
else if choice3 = #49 then
Numiter := 10
else if choice3 = #50 then
Numiter := 50
else if choiceld = #51 then
Numiter := 100
else if choiced = #52 then
Numiter := 398
else if choice3 = §#53 then
Numiter := 2498
else if choice3 = ESC then
goto interrupt3
else if choiceld = #117 then
begin
ClearViewPort;
Center Text(l, 'Enter the number of iterations’);
Center Text(2, 'Press ENTER when complete)
MoveCursor;

ReadLn(Numiter) ;
MoveCursor Top;
end
else
begin
Beep(500);
goto interruptl3;
end;
Str(Numiter,chce3);
OutTextXY (35,110, 'Number of iteraticns =');
OutTextXY(218,110,chce3);

SetWindow(3);

Cluster One_Size := 1; (* Each cluster starts out with %)
Cluster Two_Size := 1; (* one pixel in it. *)
HMatWrtEl (ptr2,xpos-xs.ypos-ys,l1.0,err);

HMatWrtEl (ptr2,xpos2-xs,ypos2-ys,2.0,err);

(* This is where the looping process begins. *)
for Iter := 1 to Numiter do

(* The first thing ~o do is search for the smallest distance value *)
(* in both distance arrays. *)

begin
Cur_Sim_Val := 1000.0;
for b := 0 to arg-1 do (* Search the first array %)
for a := 0 to arg-1 do
begin

79

if (HMatReadEl(ptr2,a,b,err) < 1.0) then
begin
Next Sim Val := HMatReadEl (simptr,a,b,err);
if (Next_Sim_Val < Cur_Sim_Val) then

begin
Cur_Sim Val := Next_Sim Val;
Cur_Col Pos := a;
Cur_Row Pos := b;
ClusterNum := 1;
end
end
end; {for a}
for b := 0 to arg-1 do (* Search the second array *)
for a := 0 to arg-1 do
begin
if (HMatReadEl(ptr2,a,b,err) < 1.0) then
begin
Next_Sim_Val := HMatReadEl (simptr2,a,b,err);
if (Next_Sim _Val < Cur_Sim _Val) then
begin
Cur_Sim Val := Next_Sim Val;
Cur_Col Pos := a;
Cur_Row _Pos := b;
ClusterNum := 2;
end
end
end; {for a}

(* The cluster corresponding to the array with the smallest distance %)
* value is incremented by one. The pixel associated with the *)
* distance 1s turned on in Window Three in the appropriate color for %)
(* the cluster it is in. The first cluster is the cloud cluster, and %)
(* will be displayed in the same colors as in the visible image. The %)
* second cluster is non-cloud, and will be displayed at a brightness %)

(* of 50. *)
if ClusterNum = 1 then
begin
HMatWrtEl (ptr2,Cur_Col_Pos, Cur Row_Pos,1.0,err);
Cluster_One_Size := Cluster_One_Size + 1,

PutPixel(Cur_Col Pos+xs,Cur_Row Pos+ys,
Parray[Cur_Col_Pos,Cur_Row_Pos,O]);
end;

if ClusterNum = 2 then
begin
HMatWrtEl (ptr2,Cur_Col_Pos,Cur_Row_Pos,2.0,err);
Cluster Two_Size := Cluster Two_Size + 1;
PutPixel (Cur_Col_Pos+xs,Cur Row Pos+ys,50);
end;

L

(* Display the iteration number currently underway in Window Four. *)

Str(Iter, Counter);

80

SetWindow(4);

OutTextXY (35,130, 'Iterations Completed =');
SetColor(0);
OutTextXY(218,130,#219);
OutTextXY(225,130,#219);
OutTextXY(232,130,#219);
OutTextXY(239,130,#219);
OutTextXY(246,130,#219);
OutTextXY(253,130,4#219);
SetColor(255);

OutTextXY (218,130, Counter) ;
SetWindow(3);

(8

* Compute the average values for the new clusters. %)

if ClusterNum = 1 then

begin
Cluster One_ IR := Cluscer One_ IR + Parray[Cur_Col_Pos,Cur Row Pos,1];
Cluster One Vis := Cluster One Vis+ Parray[Cur_Col Pos,Cur Row Pos,0];
Cluster One_X := Cluster_One X + Cur_Col_Pos;
Cluster One Y := Cluster_One_Y + Cur_Row_Pos;
IR_Cluster One_Val := Cluster_One_IR/Cluster_ One_Size;
Vis Cluster_One_Val := Cluster One Vis/Cluster One_Size;

X_Cluster_One_Val
Y Cluster One Val
end;

Cluster_One_X/Cluster One Size;
Cluster_One_Y/Cluster One_Size;

i

if ClusterNum = 2 then

begin
Cluster_Two_IR := Cluster_Two_IR + Parray([Cur_Col Pos,Cur_Row_Pos,1];
Cluster_Two_Vis := Cluster_Two Vis+ Parray{Cur_Col Pos,Cur_Row_Pos, 0];
Cluster_Two_X := Cluster Two_X + Cur_Col_Pos;

Cluster Two Y Cluster Two Y + Cur_ Row Pos;

IR _Cluster_ Two_Val := Cluster_Two_IR/Cluster_Two_Size;
Vis_Cluster_Two_Val := Cluster_Two_Vis/Cluster_Two_Size;
X Cluster_Two_Val := Cluster_Two_X/Cluster_Two_Size;

Y:Cluster_Two_Val
end;

Cluster_Two_Y/Cluster Two_Size;

(* Begin the loop to fill the similarity matrices with updated values %)

if ClusterNum = 1 then

begin
for b := 0 to arg-1 do
for a := 0 to arg-1 do
begin
if (HMatReadEl(ptr?,a,b,err) < 0.0) then
begin
DiffX := XWeight * SOR(X Cluster One Val -
HMatReadEl(Xptr,a,b,err));
DiffY := YWeight * SQR(Y Cluster One Val -

HMatReadEl(Yptr,a,b,err));

81

VisPart := VisWeight * SQR(Vis_Cluster_One Val -
HMatReadEl (Visptr,a,b,err));
IRPart := IRWeight * SQR(IR Cluster One_ Val -
HMatReadEl(IRptr,a,b,err));
TempResult := (VisPart+IRPart+D.ffX+DiffY);
SimVal := SQRT(TempResult);
HMatWrtEl (simptr,a,b,SimVal, err);
end
end; {for r})
end; {if)}

(* Second similarity matrix *)

if ClusterNum = 2 then
begin
for b := 0 to arg-1 de
for a := 0 to arg-1 do
begin
if (HMatReadEl(ptr2,a,b,err) < 0.0) then
begin
DiffX

XWeight * SQR(X Cluster_Two_Val -
HMatReadEl (Xptr,a,b,err));
YWeight * SQR(Y Cluster_Two_Val -
HMatReadEl (Yptr,a,b,err));
VisPart := VisWeight*SQR(Vis_Cluster_ Two_Val -
HMatReadEl (Visptr,a,b,err));
IRPart := IRWeight * SQR(IR_Cluster_Two_Val -
HMatReadEl (IRptr,a,b,erxr));
TempResult := (VisPart+IRPart+DiffX+DiffY);
SimVal := SQRT(TempResult);
HMatWrtEl (simptr2,a,b,SimVal,err);
end
end; {(for a}
end; {if}

Diffy

(* This routine lets the user get out of the looping process by
(* pressing ESC on the keyboard.

if (keypressed = TRUE) then
begin
Choice := Readkey:
if (Choice = ESC) then
Goto interrupt3;
end

end; {iter loop) (* This is the end of the looping process *

(* Housekeeping routines to shut down the clustering program.
(* The appropriate routines will be executed based upon which option
(* was selected from the main clustering menu.

interrupt3:

if (flag=0) and (flag2=0) then
begin

82

HArrFree(simptr); (* Free up the memory space allocated
HArrFree(simptr2); (* for the arrays.
HArrFree(ptr2);
HArrFree(Visptr);
HArrFree (IRptr);
HArrFree (Xptr);
HArrFree(Yptr);
SetWindow(1l);
Mark_Cluster_Box(xx[active],xy[active],arg); (* Remove box from
SetWindow(1l); (* Window One.
Goto Finish;
end;

if (flag=1) and (flag?=0) then

begin
HArrFree(simptr); (* Free up the memory space allocated
HArrFree(simptr2); (* for the arrays.
HArrFree(ptr2);
HArrFree(Visptr);
HArrFree (IRptr);
HArrFree(Xptr);
HArrFree(Yptr);
Goto Finish;

end;

if (flag=0) and (flag2=1) then
begin
HArrFree simptr); (* Free up the memory space allocated
HArrFree(simptr?2); (* for the arrays.
HArrFree(ptr2);
HArrFree(Visptr);
HArrFree (IRptr);
HArrFree (Xptr);
HArrFree(Yptr);
SetWindow(1l);
Mark Cluster_Box(xx[active] xylactive],arg); (* Remove box from
Goto Finish; (* Window One.
end;

if (flag=1) and (flag2=1) then
begin

HArrFree(simptr); (* Free up the memory space allocated
HArrFree(simptr2); (* for the arrays.
HArrFree(ptr2);
HArrFree(Vigptr);
HArrFree(IRptr);
HArrFree (Xptr);
HArrFree(Yptr);
Coto Finish;
end;
ExitProg:
SetWindow(l);

83

s

% ok

N

o

3%

N N

M
G

Fin
S
C

ark Cluster Box(xx[active],xylactive],arg); (* Remove box from *)
oto Finish; (* Window One. *)

ish:
etWindow(4) ;
learViewPort; (* Clear Window Four and redisplay the main *)

MoveCursor Top; (* TSIPS menu. *)

S
S

end;

etWindow(l);
howHe lpMenu;

{Procedure Cluster Analysis) (* End of program %)

)

(* This procedure is the first to execute when the clustering option *)
* is chosen from the main TSIPS menu. This procedure allows the *)
(* user to select the size of the clustering area he wishes to work ¥)
(* with. *)
Procedure Pick_Cluster_Size;
LABEL

interrupt;
VAR

choice : char;

xsize : byte;

begin

end;

DisplaySubMenu(’'Y’', choice, 4);
if (choice='1') or (choice='2") or (choice='3') or (choice='0') then

begin
case choice of
'0' : xsize = 20;
1" @ xsize := 50;
'2' : xsize := 100;
'3 xsize = 150;
end; {case)
end
else

Goto interrupt;

Cluster Analysis(xsize); (% Proceed to the main clustering routine *)
interrupt:

ResetSubMenu(?2) ;

{Procedure Pick Cluster Size)

84

to

4

9.

Bibliography

Anderberg, Michacl R. Cluster Analysis For Applications. New York: Academic Press, 1973.

Barncs, James C. and Michael D. Smallwood, TTIROS-N Series Direct Readout Services User's
Guide. Washington: U.S. Department of Commerce, NOAA/NESDIS, March 1982.

Brubaker, Thomas A. and others. "Ultrafast Algorithms for Cloud Data Analysis,” Digital
Image Processing and Visual Communications Technologies in Meteorology, edited by Paul
Janota, Proc. SPIE 846: 38-46 (1987).

Chance, Barbara A. and others. "Automated Meteorological Satellite Image Interpretation:
An Aid to Short-Range Weather Forecasting," Digital Image Processing and Visual
Communications Technologies in Meteorology, edited by Paul Janota, Proc. SPIE 846: 13-17
(1987).

Kaufman, Leonard, and Peter J. Rousseeuw, Finding Groups in Data, An Introduction to
Cluster Analysis. New York: John Wiley & Sons, Inc., 1990.

Kelso, Thomas S., Instructor, Personal Correspondence. Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH, 26 May 1991.

Larcomb, Capt Charlcs H. Irmage Navigation of TIROS-N Weather Satellite Data. MS Thesis,
AFIT/GSO/ENS/89D-10. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1989 {A216 041).

Platbrood, Gérard, and Henri Barten. “Infrarcd Analysis of Low Temperature Ashed Coal Ashes
and Their Classification by Application of Clustering Theory,” Analytical Chemistry, 57:
2504-2510 (November 1985).

Tzu, Sun. The Art of War. Translation by Samucl B. Griffith. Foreword by B. H. Liddell
Hart. New York: Oxford University Press, 1971.

10. Wannamaker, Brian, "An Evaluation of Digitized APT Data From the TIROS-N/NOAA-A, -J

Scrics of Meteorological Satellites,” International Journal of Remote Sensing, 5: 133-144 (1984).

85

