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Preface

The purpose of this study was to develop a personal-computer-based program that utilized

agglomerativc clustering theory to try to separate weather features from non-weather features on

Automated Picture Transmission (APT) imagery collected from the National Oceanographic and

Atmospheric Administration's (NOAA) Television Infrared Observation Satellite (TIROS-N).

Programming was done in Version 6.0 of the Turbo Pascal language, and a number of sample

images were examined to ,-xplore the speed and accuracy of the program.

In researching and writing the algorithms contained within this report I have had a great deal of

support from many individuals. I am deeply indebted to my advisor, Professor T. S. Kelso, who

developed the program within which I have created the clustering algorithms. I would also like to

thank my reader, Lt Col M. Stytz, who was very patient waiting for the first draft of this report. I

would especially like to thank my fianc&e, Susanne V. Lefebvre, whom I met while at the Air Force

Institute of Technology. Her undying support got me through many tough situations. Finally, I

would like to thank my parents for all that they have given me.

Charles J. Martin, Jr.
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Abstract

This study investigated thc usefulness of personal-com puter-based softwarc applying hierarchical

clustering theory to try to separate cloud-covered regions from clear regions. The weather data used

was Automated Picture Transmission (APT) imagery collected from the Television Infrared

Observation Satellite (TIROS-N) run by the National Oceanographic and Atmospheric

Administration (NOAA). The imagery was collected and displayed using a small satellite receiver

and personal computer set up by the Air Force Institute of Technology (AFIT) to study the

effectiveness of receiving weather imagery on a relatively low-cost, and easy-to-transport system.

The algorithms were developed within the TSIPS program, written by an instructor at AFIT, which

had many of the routines necessary to support this project. In addition, the TSIPS program was

written in Turbo Pascal specifically to run on a personal computer, making it easier to develop the

clustering algorithms within it. The goal of the project was to see if hierarchical clustering could

provide better separation of cloud/no-cloud regions than an existing technique, histogram

thresholding. while running on a personal computer.

Results of the research indicated that it was possible to use a variation of the hierarchical

clustering process to separate cloud-covered regions fiom clear regions. However, the results were

not quite as good as those obtained from the histogram thresholding method. One advantage the

automated clustering process has over the histogram process is that no user manipulation of a

histogram is necessary in order to separate the clouds. Typical results showed that the automated

clustering approach provided results within about 15 to 20 percent of those obtained from the

histogram method. If the manual selection of seed points is used prior to running the clustering

algorithms, the differences between the two methods virtually disappear.

vii



Separation Of Cloud/No-Cloud Regions In Satellite Imagery

Using a Variation of Hicrarchial Clustering Analysis

1. Introduction

Background

Sun Tzu, a famous Chinese tactician once wrote: "Know the ground, know the weather; your

victory will then be total" (9:129). In order to "know the weather," it is necessary to be able to

identifY cloud formations and understand what they might mean. For centuries, ground-bascd

observers were the only way to identify clouds, anu their jobs were difficult due to their limited

perspective of the clouds. After the invention of the weather satellite in the early 1960s. a whole

new perspective of clouds was available that made identifying and predicting weather phenomena

much easier. However, in the idcntificaion process it is assumed that the person looking at the sky,

Or I - ., I !,, .r,, 1. t, ; n.. "M dxc t it of., at r identification. In today's environment of

spending reductions, the iiumbcr of Ir-;i t ' r ,-nctcorolog~sts i., r'.mot certainly going to be reduc,'d

both in the civilian and military workforce, which means that other methods of weather identification

must be developed.

One alternate method of weather identification that has been under development for a few years

uses computer analysis. Using a variety of techniques, computer algorithms will pick out weather

features within an image, and provide a prediction as to what each feature is. Up Lo now, the

majority of the work in this field has been done with mainframe computers, or workstations, because

they alone had the proc ssing power and storage capacity to run the algorithms. However, these

systems have drawbacks, such as a lack of mobility, and a high price, which prevents their

widespread use by organizations such as the armed forces which, by nature of its profession, needs

mobility, but on a limited budget. This is where the person-l computer can fit in. Since the early

1980s, when personal computers first appeared, their power and memory capacities have grown

extensively. ('omputations that just a few years ago needed to be run on a mainframe computer can



today be run on a desktop system. Furthermore, advances in weather satellite technology have made

weather imagery available to just about anyone, anywhere in the world, if they have the right

equipment. Today, through the use of a simple receiver connected to a personal computer, it is

possible to obtain satellite imagery from the Television Infrared Observation Satellite (TIROS-N)

run by the National Oceanographic and Atmospheric Administration (NOAA) (2:Sec 4,1-2). The

Air Force Institute of Technology (AFIT) operates such a system and can receive Automated Picture

Transmission (APT) satellite imagery directly from the NOAA satellite and display it on a personal

computer. Personal computers help solve the mobility and cost problems, but up to now there has

not been any major software developed that can analyze weather features and be run on a personal

computer.

There are a number of steps that must be accomplished to develop a program that can take

APT imagery and identify the clouds within it. This project will deal with the first of these steps, the

separation of cloud-covered areas from non-cloud-covered areas. Most of the weather identification

algorithms already written to run on large computers use some type of single-image histogram

manipulation to separate cloud-covcred regions from clear regions. However, this type of analysis

does not always completely separate cloud-covered reg;ons from clear regions. Another technique,

known as hierarchical cluster analysis, has shown to be very useful in othe; scientific fields, and may

be applicable to this problem as well.

Research Objective

The objective of this research is two-fold. First, an exploration of the viability of using a

hierarchical-clustering-based process to analyze NOAA APT satellite imagery and separate weather

features from non-weather features will be conducted. Secondly, the programs implcmcnting the

clustering process will be written to run on a personal computer in order to determine if personal

computers can be used for such a task. To achieve these objectives, the TSIPS package created by

Professor T. S. Kelso will be used as the framework within which the clustering algorithms will be

written. Ultimately, the work in this project could form the basis for a software package to analyzc

weather features on a personal computer.



Project Overview

The work done in an attempt to complete the project's objectives is discussed ;n the next four

chapters. Chapter II provides background information in four key areas: NOAA APT imagery,

TSIPS image processing software, current weather identification research with a specific focus on

how cloud-covered regions are distinguished from clear regions, and hierarchical clustering theory.

This background information helps build the foundation upon which the research in this project is

based. Chapter III will examine how the hierarchical clustering theory was modified and turned into

usable computer code, while Chapter IV discusses some examples of the finished algorithms at work.

Chapter V will summarize the results of this research and provide some recommendations for future

work. Finally. a user's manual for the computer algorithms, as well as the complete computer code

for the clustering program can be found in the two appendices.
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11. Background Development and Literature Review

The first step in accomplishing the objectives of this project is to develop some background

information in four key areas. First, how the APT imagery is created will be examined. Second, the

operation and hardware requirements of the TSIPS image processing program will be examined.

Third, some current work in automated weather identification will be presented with a special focus

put on how clouds are separated from everything else within an image. Finally, the basic theories of

hierarchical clustering analysis will be presented, and to better understand how this process can be

used, an application of its use to a real-world problem will be presented.

APT Inager3'

The NOAA TIROS-N weather satellite has four different sensor packages onboard: Advanced

Very High Resolution Radiometer (AVHRR), Operational Vertical Sounder (TOVS), Data

Collection System (DCS), and the Space Environment Monitor (SEM) (2:2-1). The AVHRR sensor

is used to image weather patterns in the earth's atmosphere and operates on four or five different

channels, each of which monitors a specific band of wavelengths (2:Sec 2,1-3). The wavelength band

and primary purpose of each channel is shown in Table 1.

Table 1. AVHRR Sensor Channels (Adapted from 2:2-3)

Sensor Wavelengths (micrometers) Primary Use
Channel

1 .55 - .90 Daytime cloud and surface
mapping

2 .725 - 1.1 Surface water delineation

3 3.55 - 3.93 Sea surface temperature, nighttime
cloud mapping

4 10.5 - 11.5 Sea surface temperature, day/night
cloud mapping

5 11.5 - 12.5 Sea surface temperature

4



The collected AVHRR imagery is transmitted to ground stations in two separate signals. The

first signal, High-Resolution Picture Transmission (HRPT), is a direct readout of all channels of

AVHRR data (2:2-1). The HRPT signal has a high data transmission rate (665.4 kilobits per

second) due to the large amount of information that is being relayed (2:4-2). This high data raec

requires that very sophisticated and expensive receivers be used to collect the data. The cost and

complexity of HRPT receivers preclude many individuals and organizations from having access to the

data, so a second data signal, Automated Picture Transmission (APT), is broadcast. To achieve

slower data rates, the APT signal contains information from only two AVHRR channels, visible and

infrared, and in each channel only every third line of the HRPT data is transmitted (10:134). The

reduction in data allows the APT signal to broadcast at a rate of 8 kilobits per second which is

accessible by less sophisticated receivers (2:4-2). The reduction in transmitted data also means a

decrease in image resolution from 1.1 kilometers (HRPT) to 4 kilometers (APT) (2:2-1,10:134).

The APT signal starts off in a digital format onboard the satellite and is converted to an analog

signal for transmission (7:38). The ground receiver digitally samples the analog signal 9600 times

each second and assigns an integer value between 0 and 255 to each sample (6). The integer value

corresponds to a specific gray-shade that can be used to display the sample on the computer

monitor. The displayed image will be slightly degraded in resolution due to a smoothing process

which results from the APT data being converted to an analog format, and then back to a digital

format (7:39). However, the degradation is not enough to cause problems with the algorithms

developed in this project, or with the identification of most weather phenomena due to their large-

scale features.

Inage Processing Software

The TSIPS image processing program was written by Professor T. S. Kelso, at the AFIT School

of Engineering, for a class on the analysis of spatial and temporal modeling. The program is written

in Turbo Pascal, Version 6.0, and can be used to carry out a variety of image analysis techniques

upon satellite imagery including filtering, histogram manipulation, and contouring. The software

requires an IBM-compatible computer system running the Microsoft'M Disk Operating System (MS-

5



M) )S) with a Video ('graphic,, Arrax (%'(PA) card and monitor. In order to get usable graphics

mnatzes on the: ,crccn, the N, GA adapter should be: capable of displaying a minimum ot (A4) x 44K)

pixels in 25(1 possible colors. It is also recommended that the computer being used to run this

'~Otv~arc have at Icast 0-4) kiob t ol mero. In addition, for the clustering algorithms developed

skithin this, p~rojLee to %%ork cfllcientl'.. the computer system should have at least two megabytes of"

eXielndle' nieiiior\. A hard disk Is also recommended for storage of APT images, which arc each

about one meciabvte in si/c.

Once started. ISIPS divides the monitors, screen into four equal-sized windows. Windows One

1hrough Three. \khieh are numbered clockwise starting in the upper left. arc used to display satellite

lrnager\ and perfornm operations, on satellite imagery such as /ooming or iltering. Window Four is

used to displaN it mnus and supplementary inlormiation. such as histograms. Figure I shows what the

main TSIPS screen looks like after having an APT image placed in Windows One and Two. The

main ISIPS menu is visible in Window% Fotv-.

Fjiure 1. Main TSIPS Screen

)ne opt on %k.it hin the: TS511' prorrm that is used extensive'l\y in this p~roj'ct- is the GROU P

M-161 ,.-N option. 1,11s option allows the user to displa\ the corresponding area from the x isible and

0)



infrared channels of the APT imagery in separate windows on the display. For instance, if a section

of a visible APT image is being viewed in Window One, the user can select the GROUP IMAGES

option and have the infrared image corresponding to the same section displayed in Window Two or

Three. For the TSIPS program to accomplish this, preprocessing of the APT imagery is required to

translate the visible and infrared images into a common coordinate frame. The screen shown in

Figure 1 has a visible APT image in Window One, and its corresponding infrared image in Window

Two. The color palette used to display the imagery is an option the user can select using the TSIPS

program. Further information on the TSIPS package can be found in Appendix A, and copies of the

software, along with full documentation, are available from Professor Kelso.

Weather Identification Using Computer Algorithms

In this section, a review of two articles that discuss the development of automated weather

identification packages will be presented. The focus of these reviews will be on how the articles

discussed separating the cloud-covered regions from everything else within an image. The first

article to be reviewed discusses the feasibility of a project known as Short-range Expert Analysis and

forcCAST, or SEACAST.

SEACAST. The primary purpose of this project is to provide aircraft-carrier-based

meteorologists an artificial-intelligencc-bascd computer program to help identify weather patterns

(4:13). The satellite imagery being used in this project is received from the Gcostationary

Operational Environmental Satellite (GOES), which provides four-kilometer resolution visual

imagery and eight-kilometer resolution infrared imagery (4:14). Predominately, the authors used the

visible imagery as the initial indicator of cloud/no-cloud regions as it provides the best contrast

between clout loud regions. In cases where this image is not available, mainly at night, the

infrared image was used, but with less confidence. The article focused on the initial stages of the

project where the authors chose to focus on the identification of stratus and stratocumulus clouds in

the Pacific Ocean between California and Hawaii (4:13). This region frequently exhibits large

amounts of both types of clouds.

7



The first --ep in the identification process is to create a histogram of the pixel values within an

image. A histogram simply shows the number of pixels that exhibit each of the possible brightness

values contained within an image. The researchers found that when trying to identify stratus or

stratocumulus clouds over an ocean, the histogram of the visible image normally contained two

dominant peaks. One of the peaks corresponds to the large number of pixels that have brightness

values denoting them as ocean surface, while the other peak represents pixels with brightness values

corresponding to clouds. An example of a histogram was not presented in the article, however,

Figure 2 shows a histogram that would look a lot like the one described. The y-axis in Figure 2 is

unlabeled, but represents the number of pixels.

CLOUD

SURFAE

BRIGHTNESS VALUE

Figure 2. A Sample Histogram (Reprinted from 3:43)

To separate the clouds from the ocean surface, the authors simply set the minimum brightness

threshold of the image at the minimum point between the two peaks on the histogram. Thus, all the

pixels that had brightness values associated with the ocean surface were effectively turned off, and

only the pixels corresponding mainly to clouds were left on. The next step in the identification

8



process involved using the infrared image to determine temperatures of different regions within the

image. Only regions that had an infrared image corresponding to a temperature of 269 Kelvins or

greater were used, as this was the temperature threshold that the authors determined could separate

stratus/stratocumulus from other types of clouds (4:15). Finally, using a technique known as

morphological filtering, the authors were able to get a good identification of areas within an image

that corresponded to stratus or stratocumulus clouds. The authors concluded that their technique

showed the promise of being able to be expanded to include the identification of other types of

meteorological phenomena such as turbulencc-formed clouds, and tropical systems (4:16).

No mention was made in the article about what type of computei system was being used to

develop the algorithms, however, it seems that the techniques discussed would need to run on at a

minimum, a fast personal computer, with a workstation being the most likely choice. The next

article to be reviewed deals with the development of fast algorithms for the analysis of cloud data.

Ultrafast Algorinthms for Cloud Data Analysis. In this article, the authors discuss some of the

theoretical framework needed for developing software and hardware for the quick identification of

clouds using satellite images. No specific examples arc presented, however, as in the previously

discu-wd Project, the authors describe how a single-image histogram can he used to establish a

threshold that can be used to separate clouds from other objects within an image. The drawback of

this technique, however, is that the data from a single image does not always allow for the totally

accurate identification of cloud-covcrcd regions (3:38). The authors briefly address the use of multi-

spectral data, but only to the extent of saying that if this type of data were being used, the

al rithms and hardware would have to be modified to take into account multiple histograms.

Furthermore, if the histograms created have more than one local minimum, unlike Figure 2, multiple

thrcsholds will hac tlo be csablishcd. One technique the authors mention to deal with multiple

thrc,holds i,, s ,oomcnt the original image by the ranges of brightness values between threshold

points on the hislogfam. A relatively simple histogram, like Figure 2, exhibits only one local

minimum, thus, onl,* one thrc,hold is needed. The image can be broken into two pieces by taking

all the pixel,, with brightncss values below the minimum and separating them from the pixels with

I)



values above the minimum. This is exactly what was done in the SEACAST project. Another

technique mentioned by the authors that could possibly be used for the separation and identification

of clouds is called the nearest-neighbor method. This technique is more computationally intense

than the histogram approach, but may yield better results. As will be shown in the next section.

nearest neighbor is another name for the single-linkage hierarchical clustering process.

There are numerous other articles covering a wide range of attempts to identify clouds in

satellite imagery. Many different types of digital image processing are being looked at for the

identification of clouds, however, before the identification can be done, the clouds must be separated

from everything else within the image. The majority of the projects reviewed use some type of

histogram analysis for the separation process. The capability to do this type of analysis on satellite

imagerv is included in the program developed in this project. It will be used as a comparison to the

results of the clustering routines to see which one provides better results.

Hierarchical Clustering Analysis

Hierarchical clustering analysis is one of many different forms of cluster analysis that

researchers have been using for many years to attempt to find patterns within a set of data. The

interest in clustering analysis has grown markedly over the years and it is being used in a number of

scientific fields as a research tool. These fields include life sciences, medical sciences, social

sciences, earth sciences, and even engineering sciences (1:5-6). For example, in the area of

engineering sciences, clustering analysis has been used to help identify things such as radar signals

and fingerprints (1:6).

Hierarchical clustering analysis can be divided into two areas; agglomerative and divisive (5:44).

The agglomerative method involves starting with n objects or clusters and grouping them two at a

time until all n objects are contained within a single cluster. The divisive approach is just the

opposite. Starting with one large cluster, smaller clusters are broken out until only individual objects

are left. Figure 3 shows a simple diagram that demonstrates the two clustering techniques.

In this project, the agglomerativc process would involve starting with n clusters, each of which is

a single pixel contained within an APT image, and grouping them together into larger and larger

10



0 1 2 3 4.
a agglomerative

. .. .divisive
3 2 1 0

Figure 3. Hierarchical Clustering Technique (Reprinted from 5:45)

clusters until the final cluster is the image on the screen. In contrast, the divisive process would

begin with the entire image, and break it apart, pixel by pixel, until, after the last step, there were n

clusters left each representing a single pixel. Divisive processes are not widely used due to the large

amount of computations necessary to complete the process. In their books, both Kaufman and

Anderberg discuss that most divisive methods, on just the first step, need to analyze {2f
-I - 1}

combinations, where n represents the number of individual objects (pixels), in order to divide the

data set into two clusters. At each subsequent step, this number of calculations increases

exponentially (5:253-254,1:155). In contrast, agglomerative methods, on the first step, consider

{n(n-1)/2} combinations, and for each subsequent step, the number of combinations grows

quadratically with n (5:253). The result is that while both processes result in large amounts of

computations, the agglomerative method is much more feasible. Because the processes are going to

be developed on a personal computer, it makes sense to use the process that results in the lesser

amount of calculations. Thus, it was decided that the clustering algorithms written would be

designed around an agglomerative process.

11



In agglomcrativc hierarchical clustering analysis, the determination of which two objects, or

pixels for this project, to cluster at any one time is frequently based upon a distance calculation

performed with some form of thc Minkowski distance formula shown in Equation 1 (5:13).

p
d(i,j) = x,, -xj, 1 11)q  (1)

k=1

where

d(i, j) is the distance between two objects
q is any real number greater than or equal to one
p is the number of categories used to calculate the distance between objects
xik represents object i's value for the kth category

Xjk represents object j's value for the kth category

The distance between two objects, which is sometimes referred to as a similarity value, is

calculated by taking the difference between both objects in a number of different categories and

combining those differences into one equation. For example, if a two-dimensional plot was being

used to determine the positions of objects, then the two categories of measurements could be the x

and y position of the objects. Thus, one difference in Equation I would be the separation in the x

coordinates of two objects, and a second difference would be the separation in y coordinates. This

type of a distance calculation, used in combination with a q value of two, leads to a form of the

Minkowski formula known as the Euclidean metric shown in Equation 2.

d :, y) x J)2+(y,_yJ)2 (2)

where

xi, xj represents the x position of the two objects
yi, yj represents the y position of the two objects

Another commonly used dcrivativc of the Minkowski formula, where q is set to one, is known as

the Manhattan metric. However, the Euclidean formula appears to be the most popular choice

among researchers because it represents the true geometric distance between two objects (5:11).
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These variations of distance formulas are the core of many hierarchical clustering processes, and the

results obtained from these equations directly determine which objects are placed into which cluster.

One variety of agglomerative clustering that uses the distance formula is known as the single-

linkage, or nearest-neighbor method (5:225-226). This process will attempt to group objects into

clusters based upon the smallest distance between objects. For example, if a process begins with five

objects, as in Figure 3, the first step would be to compute the distances between all possible

combinations of objects. This means a total of ten distance values would be calculated. Next, the

smallest of the ten values would be found, and the two objects associated with it would be grouped

into one cluster. In Figure 3, this would be represented by the cluster (a,b). The next step would be

to find the smallest distance value of the nine remaining, and put those two objects into a cluster.

This step is represented by the cluster (d,e) in Figure 3. The third step would again involve finding

the smallest distance value of the eight remaining, and grouping those two objects into a cluster. In

this example, the single object, c, is grouped into the cluster already containing Objects d and e.

This means that either the distance between Objects c and d, or c and e, was the smallest of the

eight remaining. Now there are two clusters, (a,b) and (c,d,e), and the only step left is to combine

them into one final cluster. The single-linkage method is unique in that when a cluster is formed,

the objects making up that cluster must be stored so that the distance from every other object to

every object within the cluster can be examined at each step. This means that on a computer, this

type of process could require quite a bit of storage space depending on the original number of

objects. One perceived drawback to this technique is that all it takes to group two clustcrs together

is a single link between two objects. Thus, this technique often leads to a chaining effect where

clusters that really are not closely associated are grouped together (5:226,1:138).

Another agglomerative clustering technique that uses distance calculations is known as the

centroid method. Again, using Figure 3 as the example, the first step in this process is to compute

the ten distance values. The next step would see the cluster (a,b) formed, but instead of keeping

track of both objects in the cluster, an average value for the cluster in each category would be

computed by taking the mean of the values of both objects. For example, if x and y positions were
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being used to compute distances, then the newly formed cluster's x-value would be the average of

Object a and Object b's x-value. The same applies to the cluster's y-valuc. Thus, instead of

retaining two sets of distances for the cluster, only one set is needed. However, the centroid process

requires that a number of the distance values be recalculated after each grouping because at each

step, two objects or clusters are combined, and an average cluster is put in their place with a new

value in each category. So, after the cluster (a,b) is formed, the distance calculations btween

Cluster (a,b) and Objects c, d, and e must be redone. Next, the cluster (d,c) is formed, and an

average value in cacn category for this cluster is computed from the values of Objects d and c.

There arc now only three clusters to consider; Object c, Cluster (a,b), and Cluster (d,c). The three

distances between these objects are calculated, and the smallest is chosen. In this example, that

distance would be from Object c to Cluster (d,c). A new cluster is formed, (c,d,c), and a new set of

average values is calculated for this cluster. The final step in this process would be to combine

Clusters (a,b) and (c,d,c).

An advantage of the centroid method over the single-linkage method is in the amount of storage

needed. In the single-linkage method, every object that existed when the process began must be

kept track of throughout the entire clustering process. In addition, the cluster that each object is

placed into must also be tracked. In contrast, the ccntroid method does not require that every

object be stored, only that a running total of the values for each category, in each cluster, be

rctainud The average for the cluster is found by simply adding the newest object's values in each

category to the cluster's running category totals, and then dividing by the total number of objects

within the cluster. One advantage that the single-linkage method has over the ccntroid method is

that with single linkage the distance va!ucs only need to be calculated one time, as opposed to the

ccntroid method where every time a cluster is formed some of the distance values must be

recomputed.

A third type of agglomcrativc clustering process that uses a distance formula is known as

complete linkage, or the furthest-neighbor method. Complete linkage could be considered the

opposite of the single-linkage method because the similarity between two objects or clusters is
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defined as the largest distance between objects, or objects and clusters (5:226,1:138). At each step of

the clustering process, the distance calculated between a cluster or object to all other clusters or

objects within tht data set is calculated just like in the other two processes. However, instead of

looking for the smallest distance valuc, the largest possible distance value between two clusters or

objects is found. Then, if the two entities were combined, it would be known that all the distances

between objects in both the entities would be less than the maximum computed. For example, if

two clusters wcrc combined into one, the maximum distance found would represent the diameter of

the smallest sphere which could enclose both of those clusters (1:138). Anderberg summarized the

usefulness of complete linkage best when he wrote: "the interpretation of the clusters can be made

only in terms of the relationships within individual clusters ,, i:z i, p,!.ticularly useful

interpretation involving the differences betN en, clusters" (1:139). Trying to compare strengths and

weaknesses of the complete-linkage ethod to those of the single-linkage and centroid method is

difficult because complete linkage is not used very often and represents a different approach to the

clustering process. Suffice it to say, there probably are uses for this technique, but, for the purposes

of this project, where the distances between objects or clusters ;s the primary concern, it does not

apply.

After reviewing the three types of agglomerativc clustering techniques, it was decided that the

algorithms developed within this project would use the centroid method as their foundation. The

decision to use the centroid process over the singlc-linkage process was bascd mainly on the fact that

even though the singlc-linkage method could probably provide results faster than the centroid

method, the storage space needed for the singlc-linkagc process far exceeded that required for the

centroid process. Storage space can be a limiting factor when dealing with personal computers,

therefore, a method that uses the least amount of space is the most desirable. For this reason, the

centroid process was chosen. If the centroid process provides good enough results, the additional

expense of adding more storage space can be avoided.

The conversion of centroid clustering theory into usable, personal-computer-based algorithms

involved modifying the method to use sccd points. Sccd points force the clustering process to begin
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building clusters around specific objects, or pixels, and help eliminate the amount of calculations and

storage needed to complete the process. This modification is discussed in Chapter IlI.

.Vormalization of Raiw Categor' Data

Frequently, it is desirable to normalize the raw data used to compute the distance between two

objects. This will factor out any possibility of one category of data having an undue influence on the

overall distance. The choice of normalization is usually left up to the researcher. Raw data may

inherently be weighted exactly how the researcher wants it, thus, the normalization process would

not be necessary. However, for the most flexibility in assessing the contribution of different

categories to the overall distances computed, normalization is the key. Once the normalization is

completed, user-defined weights can be assigned to each category to reflect the amount of influence

the user wants to place on a particular category. A common way of normalizing the raw input data

is described very nicely by Kaufman in his book Finding Groups in Data, An Introduction to Cluster

Analysis. The process he discusses is the basis for the normalization options available in this

project's clustering algorithms.

To see the usefulness of normalization, assume that x and y positions are being used as the

categories with which distances between objects are being computed. The distance formula would

look just like Equation 2. Now if the objects had x and y values that exhibited the same range of

values, it would not be necessary to normalize them. However, if the objects vary only slightly in

their x positions, but vary greatly in the y direction, then the distance calculated with Equation 2

could be influenced much more by the y values since the difference in x positions would be small

compared to the possible y differences. To keep this from happening, both the x and y values

should be normalized so that their values vary over the same range.

The first step in normalizing the raw data is to find the mean for each category being used. In

the example being discussed, it is necessary to find the mean of all the x and y positions for all the

objects within the data set. The mean for each category is found by using Equation 3.
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: xij (3)

where

' is the mean of the ith category
n is the number of objects in the data set
xij is the jth object's value in the ith category

Once the mean for both categories is found, a standard deviation, represented by Equation 4, or

a mean absolute deviation, Equation 5, is calculated (5:8).

i 1 = ( )2  (4)
n-1 j=1

where

Ri is the mean of the ith category
si is the standard deviation of the ith category
n is the number of objects in the data set
xij is the jih object's value in the ith category

1 nai E -- Xj- il  
5

where

i is the mean of the ith category
a, is the absolute mean deviation of the ith category
n is the number of objects in the data set
xiJ is the 1ih object's value in the ith category

The mean absolute deviation can be useful because it is less susceptible to outliers in the raw

data set than the standard deviation since the differences arc not squared (5:8). Once the mean and

the selected deviation are calculated, a normalized measurement is computed for both categories and

put in place of the x and y values for each object. Equation 6 shows the typical way in which the
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normalized value, sometimes referred to as the z-value, is calculated assuming that the standard

deviation is being u%,'d (5:9).

Zij - (6)
Si

where

i is the mean value of the ith category
z is the z-value for the jth object's i category value
xij is the i category value for the jth object
si is the standard deviation of the ith category

If the absolute mean deviation were to be used, simply use it in place of the standard deviation in

Equation 6.

As stated before, normalization will remove any inherent weights within the raw data, leaving it

up to the user to determine if any particular category should have more of an influence on the

overall distance than any other category. To place added emphasis on a particular category, the

distance equation can be modified to use weights. Equation 7 demonstrates what Equation 2 would

look like with the addition of weight variables.

d(x,y) = wV%(xi _ )2 +Wy (Yi_ Yj)2 (7)

where

wx, wy arc the user defined weights for the x and y categories
X: x. are the x positions of the objects
Yi, yj are the y positions of the objects

Normalization can be a very useful tool, but it usually takes some trial and errot to dctvrmine if

it is a necessary step to complete in order to make sense out of a data set. Chapter III discusses

how the normalization process was implemented in the clustering algorithms.

Application of the Agglomerative Clustering Method

To see how agglomcrativc clustering theory can be put to good use, one should read the article,

Infrared Analysis of Low Temperature Ashed Coal Ashes and Their Classification by Application of
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Clustering Theorv, in the November issue of Analytical Cihemistrv. In the article, the authors describe

how agglomerative clustering theory was used to group different types of coal into clusters based

upon their absorbance at different wavelengths of energy. The authors began by collecting samples

from 21 different types of coal that came from different locations around the world. They then

ashcd the samples through a process of grinding and oxidization. The different ashes were then

compressed into pellets, and their infrared absorbance was studied with the use of an infrared

spectrometer (8:2500). The authors documented absorbance characteristics at 40 different

wavelengths in order to distinguish between coal samples.

Once data collection was complete, the authors normalized the absorbancc values through the

use of z-values, as discussed earlier. The standard deviation was used in the calculation of z-values,

however, no reasoning was provided for this choice. Once the similarity values between all coal

samples were computed, the single-linkage method was used to group the individual samples into

clusters. Distances between objects or clusters were calculated using the Euclidean distance formula

with 40 different categories. Figure 4 is a reproduction of the results obtained from the clustering

algorithm and shows the same branching effect as seen in Figure 3. This is a typical way in which

results from this type of clustering analysis are shown and is sometimes referred to as a hierarchical

tree, or a dcndrogram.

Notice how, by stepping one level down from the final grouping, two groups form; Australian

coal, and everything else. Go down two more steps and notice how the data breaks out into four

well separated groups: South African and Canadian coal; Belgium, American, and German coal;

Australian coal; and the unknown coals. One can conclude much from looking at a diagram such as

this. For example, Canadian coal is the most closely related to South African coal of all countries

tested. In addition, Australian coal is very unique in that it isn't clustered until the last step which

indicatc., that it varies significantly from all other types of coal sampled.

The authors suggest thai more absorbance values could be used to arrive at more closely

correlated clusters. This is a reasonable statement because as the number oif ca'ceorics used to

calculale the distance between objects increases, the higher the certainty that two objects belong in
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the same cluster. For example, if only the x position was used to cluster two points on a two-

dimensional plot, objects that have very close x-values would be clustered together even though they

might have y-values that differed greatly. By including another measure, in this case y position, the

certainty that the two points are grouped together properly will increase. This concept can be

expanded to 40 dimensions in the case of the coal example, where each axis is the absorbance at a

particular wavelength. As more wavelength measurements are added, the more certain the

researcher can be that two objects are being grouped properly. No discussion was presented as to

the amount of time required to complete this clustering analysis, nor was the type of computer

system used mentioned. However, with only 21 objects, and 40 categories, this single-linkage

example could probably be done easily on a personal computer.
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Summarv

Through use of APT imagery it is now possible to use a personal computer to view and

manipulate satellite imagery. The TSIPS program written by Professor Kelso allows anyone to view

and manipulate imagery using a variety of image analysis techniques. This program provides the

ideal foundation upon which to build the clustering algorithms. The image manipulation and display

functions have already been written, so attention can be focused on writing the actual clustering

algorithms.

There has been much work in the area of weather identification using computer algorithms,

however, most of it has been done on large computers. The process that is used most commonly for

the separation of cloud-covercd regions from clear regions is histogram thresholding. This process is

quick, and relatively easy to implement, however, it is not always accurate. Another technique that

could provide better results is an agglomerative clustering method. The ccntroid clustering method

app)ears to be the best way to implement this process on a personal computer, based upon a balance

between storage space and the amount of calculations necessary. By using seed points, the amount

of storage and calculations can be reduced even further. Chapter III will discuss how the centroid

clustering theory was modified to include seed points, and turned into the algorithms used in this

project.

21



Ill. Development of Computer Algorithms

As mentioned in Chapter II, the TSIPS program was used as the framework within which the

clustering algorithms were developed. TSIPS was written in Turbo Pascal, Version 6.0, and includes

a variety of procedures that are used in this project. In addition, it was necessary to use the

software package, Huge Virtual Array and Numerical Analysis Toolbox, developed by the Quinn-

Curtis company which allows for the creation and manipulation of arrays in extended memory, or on

a hard disk drive.

The computer system used in the development of these algorithms was based on an IntelTM

80386SX processor running at 20 megahertz. In addition, an 80387SX math coprocessor was

present. Since the monitor used for the development of this software was only able to display 640 x

480 pixels, the largest section of an image that could be seen in any one window was 320 x 240. In

order to keep the algorithms relatively simple, it was decided to use square areas of either 20 x 20

pixels, 50 x 50 pixels, 100 x tMO pixels, or 150 x 150 pixels as clustering examples. The average time

for the program to completely cluster a 20 x 20 area of pixels was about two to three minutes. By

going to a 50 x 50 area, the time increased to about 45 minutes for the clustering process to be

completed. A 100 x 100 area was attempted, and the estimated time for its completion was about 40

hours. For the purpose of development and testing, the 20 x 20, and 50 x 50 areas were used most

frequently.

Implementation of Centroid Method with Seed Points

In order to speed up the program, and to conserve additional memory, the ccntroid clustering

process described in Chapter II was modified to include the use of sccd points. Seed points arc

pixels chosen either by the algorithm, or the user, and arc points where the clusters begin to build

from.

As previously mentioned in Chapter II, the normal ccniroid clustering method involves

computing all possible distances between all pixels and clusters and then searching them to find the
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smallest value. Once this distance is found, the two objects associated with it are grouped into a

new cluster. Average category values for the cluster are computed, then the distances between all

the pixels and the new cluster are recalculated. This process continues until all the pixels are

contained in one large cluster. The normal centroid process uses much less storage than other

methods, but, by using seed points the amount of storage and the number of calculations needed can

be decreased even further.

Once two seed pixels arc chosen, only calculations from all the other pixels to the seed pixels

need to be calculated. There is no need to calculate all the possible distances between non-seed

pixels because the seed pixels tell the process where to start building the clusters. This results in

significantly fewer calculations being conducted. For example, if a 3 x 3 pixel area were being

examined, the total number of distances between all pixels that originally would have to be

calculated is 36. By using two seed pixels, the number of distances drops to 14. The basic

assumption this project is built on is rather simple. Clustering analysis is a way of looking for

patterns within a data set. However, if a portion of a pattern is known, then clustering analysis can

be modified to develop and separate that pattern from other objects or patterns within a data set.

In this project, the user or the algorithm can pick out a cloud pixel and a non-cloud pixel rather

easily given some assumptions that are discussed below. Thus, if the right categories are used when

computing the distances between clusters and pixels, one cluster can build up the cloud-covered

areas and the other cluster will contain whatever is left.

Overview of Algoithz Operation

Once the user starts the TSIPS program and loads the appropriate images into Windows One

and Two, the clustering option can be chosen. When clustering is selected, the following list of

options will appear in Window Four:

0 : Cluster Using Similarity Matrix and User-Defined Seed Points
I Clusier Using Similarity Matrix and Automatic Seed Points
2 : Show Ranges of Similarity Values from One User-Defined Seed Point
3 : Option 0 with Data Normaliiation
4 : Option I with Data Normalization
5 : Histogram of Clustering Area
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Briefly, Option Zero allows the user to select the cloud and non-cloud seed pixels before

beginning the clustering process. Option One invokes the automatic selection process. Option Two

does not involve clustering pixels, rather, it allows the user to select a specific pixel then display

pixels which fall within a variety of distance ranges from the chosen pixel. Options Three and Four

arc the same as Options Zero and One except that the raw category data is normalized. Finally,

Option Five allows the user to display a histogram of the clustering area and perform a simple

histogram thresholding process. These options arc fully discussed in Appendix A.

Depending on the option chosen from the main clustering menu, the user can choose two seed

pixels, or have the program do it automatically. In the automatic process, the computer will search

all the pixels within the clustering area to find the brightest and dimmest visible pixel. These should

correspond to a cloud-covcrcd region and a clear region unless there is noise within the clustering

area, or the area does not contain both cloud-covcred and clear regions. It is assumed in this

projcct that the images used will be absent from noise initially, or will have been preprocessed so

that the noise has been removed. Furthermore, the algorithms were tested on areas that contained

both cloudy and clear areas. If the area contains all clouds, then the automatic selection process will

end up choosing one seed point on a lower, or dimmer, cloud type and the other on a higher, or

brighter, cloud type. If no clouds arc contained within the clustcring area, the algorithms simply

proceed in choosing whatever appears brightest and darkest in the image. Uscrs can avoid some of

the unknowns in this process by using the options containing manual input of seed pixels. The

manual input process is discussed in the user's guide in Appendix A.

Once the two seed pixels are chosen, two arrays arc created, one for the cloud seed pixel, and

the other for the non-cloud pixel. These arrays arc used to store the distance calculations from

cvcry pixel within the clustering area to each seed pixel. Equation 8 is the Euclidean distance

formula used to calculate the distanccs between pixels, and between pixels and clusters.

d(pixel1 ,pixel) /wI(AVL) 2 +w 2 (AIR) 2 + w 3(AXPos) 2 + w4(A YPos) 2  (8)
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where

w1, w2, w3, w4 are the user-selected weights
AVis is the difference in visible brightness of pixels
AIR is the difference in infrared brightness of pixels
AXPos is the difference in x position of pixels
AYPos is the difference in y position of pixels

The program has options that will normalize the raw category data, if so desired by the user. If

the data is normalized, the visible, infrared, x-position, and y-position information for each pixel is

converted to a z-value using the technique discussed in Chapter 1I. The program utilizes the

standard deviation when calculating the z-values as it is assumed that any noise, or outliers, will have

been removed from the data prior to the clustering algorithms being run. When distances are

computed, z-values arc used in r,! .,c of the raw category data in Equation 8. The use of

normalization will caus, ., ght degradation in the speed of the program's execution because of the

way in which the : values are stored for each pixel. When the z-values are calculated, each category

is placed in " separate two-dimensional array. Therefore, four arrays are created, each of which is

the samc size as the clustering area chosen. For example, using a 20 x 20 clustering area, the four

arrays will be 20 x 20 in size, and each will contain one of the four categories of z-values. The

program was written this way because at the time !ff its development the two-dimensional Quinn-

Curtis arrays were thoroughly understood while the three-dimensional, and larger arrays, needed

more research. When calculating the distances between pixels, each of the four arrays must be

accessed to obtain the z-valucs used in Equation 8. This results in a slow down in program

execution that is more obvious the larger the arrays become. The majority of the testing done in

this project was with 20 x 20 and 50 x 50 clustering areas, and at these sizes, the normalization

procedure hardly slows the clustcrig process at all. It should be possible to combine the data from

the four arrays into one multi-dimensional array which would cut down on some of the time needed

to access and search arrays. This has been left for a future version of the software package.

Once the two arrays corresponding to each seed pixel arc filled with distance values, the next

step is to search them for the smallest value. First, the array for the cloud seed pixel is searched for

the smallest distance contained within it. Once found, this distance is then compared to all the
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values in the non-cloud array. If there is no smaller distance value in the non-cloud array, then the

pixel from the cloud array is added to Cluster One, which is the cluster that builds up the cloud-

covered regions. If a smaller value was found in the non-cloud array, then the pixel corresponding

to it is added to Cluster Two. Once a pixel is assigned to a specific cluster, a value of one or two is

placed in its position in a tracking array. This tracking array is used to let the program know when

a pixel has already been acquired into a cluster. Once a pixel is acquired, it is displayed in Window

Three in the color denoting which cluster it is in. The program will no longer recalculate distance

values for that pixel. This helps speed up the clustering process as more and more pixels are

acquired. Once the smallest distance value is found, and the appropriate cluster incremented by

one, the new cluster values arc calculated by adding the visible, infrared, x, and y positions to the

cluster's overall totals, and dividing by the new number of pixels in the cluster. This is a slight

modification of the centroid method of clu~tcring described in Chapter I1.

The next step is to recompute the distance values in the array associated with the cluster that

has changed. Using the distance formula shown in Equation 8, new values are computed for each

pixel by taking the difference in the four categories between the pixel and the cluster's mean values.

Once the array is updated, the process starts over again. The looping process continues uqtil all the

pixels arc acquired into a cluster, or until the number of iterations requested by the user has been

completed.

Assessment of Clustering Program 's Effectiveness

A qualitative assessment of the effectiveness of the clustering options will be performed by

visually comparing the results of the clustering programs with a typical histogram manipulation. The

capability to set a lower brightness threshold in the cluster area is included in Option Five of the

clustering main menu. With it, the user can decide what brightness value will be the cut-off for

displaying pixels. For example, if the cluster area contains a lot of water and clouds, the histogram

should show two distinct peaks. By looking at the histogram, the user can get an idea of what

brightness value corresponds to the minimum between the two peaks. The user can then pick a

pixel in the cluster area with this minimum brightness value, and all pixels with values below it will
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be set to a brightness of zero, while all pixels equal to, or greater in brightness will be left alone.

Thus, the cloud pixels will remain on, and the water pixels will be effectively turned off. The results

of this manipulation are available for the user to compare the clustering results too. This

comparison will form the basis of the qualitative assessment presented in Chapter IV. More

information on how to use the histogram options is available in Appendix A.

Sumnzarv

By modifying the centroid clustering process to use sced points, the amount of storage space,

and the number of computations needed to run the clustering program can be reduced significantly.

This project operates on the idea that the researcher is starting with a data set that has known

characteristics and patterns. Thus, it is not necessary to have the algorithms look for patterns, only

build upon the ones designated by the researcher. The effectiveness of this modified clustering

procedure will be examined in Chapter IV. A complete explanation of the six options available

within the clustering program can be found in Appendix A.
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IV. Exanples of Program Operation

In this chapter, three examples of the clustering program's operation are presented, along with a

discussion of the program's effectiveness in separating cioud-covered regions from clear regions.

The three examples were chosen because they exhibited some extremes in the amounts of cloud-

covered and clear area. Results of the clustering program arc compared with results obtained from

using the histogram threshold method mentioned in Chapter III. The comparisons are done

qualitatively by visually looking at the two method's results, and estimating whether or not the

clustering algorithms did a better job separating cloud regions from non-cloud regions.

Example One

For the first example, a 50 x 50 pixel area was chosen that had a mixture of clouds, both low

and high, and ground features. The majority of the area was made up of terrain, with the main

weather feature being a diagonal line of clouds that exhibited numerous brightness levels. The

darkest region in the clustering area was a lake, and the brightest areas corresponded to tops of

possible thunderstor- cells. The results of the four clustering methods used arc summarized in

Table 2.

Table 2. Example One Summary

Clustering Option Category Weights Results (% Clouds Separated)

Histogram Method N/A -99%,,

Option Zero All set to one - 90%

Option Zero Vis/IR = 1 X/Y = 0 - 95,(

Option One All set to one - 701;,%

Option One Vis/IR -- I X/Y 0 -7;

Option Three All set to one -80'71(

Option Three Vis/IR - I X/Y 0 u~ I-

Option Four All set to one 00- ;

Option Four Vis/IR I X/Y 0 -71
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the clustering program. T'his method is, not exact, but after a few tries the majority of the cloud-

co\ered areas were: sepatrated from the clear areas. The best results obtained from the histogram

method arc showkn in \Vindo\% Twko of' Figure 5.
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assigned to them in the distance equation and data normalization was not used. The process took

about 45 minutes to run and the results were acceptable. The main line of thunderstorms was easily

identified in the cloud cluster, along with some of the middle-level clouds. However, most of the

low clouds were not placed into the cloud cluster. A visual comparison of the best histogram results

with those achieved with this option found that about 70 percent of the clouds were identified and

clustered properly by the program.

Next, Option Zero, where the user selects the two seed points, was chosen. Rather than using

the brightest pixel for the cloud seed point, a pixel corresponding to one of the lower clouds was

chosen. The other seed point was placed within the dark lake region. The weights remained equal

for all categories. The results were much better than those obtained with Option One. About 90

percent of the clouds were placed into the cloud cluster.

Option Zero was again chosen, only this time only the visible and infrared categories were used

to calculate the distance values. This was accomplished by setting the x and y-category weights to

zero in the distance equation. The results were even better then the previous trials, with about 95

percent of the clouds being clustered together. Figure 5 shows the clustering results, in Window

Three, along with the histogram results in Window Two. About 95 percent of the clouds appeared

to be clustered properly. There were only a few small discrepancies in comparison with the

histogram prcduccd results.

For the next trial, Option One was again selected, but only the visible and infrared categories

were used. The results were better than those previously obtained with Option One, but not as good

as those obtained with Option Zero. Around 75 percent of the clouds were placed in the cloud

cluster. In Figure 6, the clustering results are shown in Window Three, along with the histogram

results in Window Two. The next step was to examine the effects of using data normalization on the

raw category data.

First, Option Three was chosen with all weights set to one. This option has the user select the

seed points before the normall/ation process begins. A lower cloud pixel and a lake pixel were

chosen as the two seed points. The results of this trial showed that about 80 percent of the clouds
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Figure 6. Example One (Automatic Selection of Seed Pixels)

where clustered properly. Again, Option Three was selected, only this time the x and y categories

were not used. The results improved with an estimated 90 percent of the clouds clustered properly.

It took about two minutes for the program to produce all of the z-values. After that was

accomplished, the program ran just as fast as it did without normalization.

Next, Option Four was selected. This option implements the automatic selection of seed pixels.

For the first trial, the weights were all set to one and the results were not very good. Only about 60

percent of the clouds were placed into the cloud cluster. Finally, only the visible and infrared

categories were used, and the results improved to about 70 percent of the clouds being properly

clustered. Overall, the results indicate that the best clustering option to use is Option Zero with

only the visible and infrared categories contributing to the distance equation. The reason this option

works the best seems to be based on a two things. First, by only using the visible and infrared

categories, the positions of the pixels play no role in determining the distance values. Thus, a cloud

pixel that is positioned a long way from the main cloud cluster can have a distance value comparable

to a pixel that is right next to the cluster. This has the effect of increasing the likelihood that a

cloud pixel will be placed into the cloud cluster. However, by using the x and y positions it is

31



possible to limit the growth of the clusters, thus allowing for more compact features to be attained.

Second, by picking the cloud seed pixel to be part of a lower-level cloud, a minimum threshold is

established, much like that of the histogram method, which means any pixel that has brightness

values greater than the seed pixel will be placed into the cloud cluster.

Other combinations of weights were attempted to see if their results would fall within the ranges

established by the trials shown in Table 2. No significant improvements were seen in any of the

other trials. As one final test, Option Two was used to display different ranges of distance values.

By placing the single seed point upon one of the brightest pixels, it was possible to display a number

distance ranges that, when combined, gave results just as good as those obtained with the clustering

options.

Exanple Two

For this example, another 50 x 50 area was chosen that contained one large cloud mass and a

couple of small, low-cloud covered areas, all surrounded by water. The large cloud mass was

roughly circular in shape and had two distinctive brightness levels. The smaller areas were

predominately of one brightness value that was much dimmer then the main cloud mass. The

results of the clustering options are summarized in Table 3.

Table 3. Example Two Summary

Clustering Option Category Weights Results (% Clouds Separated)

Histogram Method N/A - 99%

Option Zero All Set to One - 90%

Option Zero Vis/IR = I X/Y = 0 - 95%

Option One All Set to One - 85%

Option One Vis/IR = 1 X/Y = 0 - 90%

Option Three All Set to One - 90%

Option Three Vis/IR = I X/Y = 0 - 95"

Option Four All Set to One - 80%

Option Four Vis/IR = 1 X/Y = 0 - 85%
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As can be seen in Window Four of either Figure 7 or Figure 8, the histogram of this clustering

area exhibited a distinctive peak centered on a brightness value of about 40, with a smaller peak

centered on a brightness value of about 140. The larger peak corresponds to the water pixels, while

the smaller peak is associated with the large cloud mass. It took a couple of attempts with the

threshold method to separate the majority of the cloud pixels from the water pixels. The histogram

threshold results arc shown in Window Two of both figures.

All of the clustering options provided roughly the same results. Figure 7 shows the results of

using Option Zero with only the visible and infrared categories contributing to the distance equation.

This was the best of all the options and shows that the program did a good job of clustering most of

the cloud pixels. Only small portions of the low-cloud areas were missed.

Figure 7. Example Two (User Selected Seed Pixels)

Figurc 8 shows the results of using Option One with just the visible and infrared categories.

This option provided the best results of all the automatic seed pixel options. The program clustered

the large cloud ma. along with a portion of the lower cloud areas.
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Figure 8. Example Two (Automatic Selection of Seed Pixels)

The simple cloud arrangement in this cxamplc, along with the distinctive brightness contrast between

the cloud and non-cloud pixels, made practically any clustering option a viable one.

Example Three

The third example consisted of a 50 x 50 area composed mainly of clouds with just a small area

of water visible. The clouu, -cloud ratio was about opposite that in the first example. The results

are summarized below.

Table 4. Example Three Summary

Clustering Option Category Weights Results (% Clouds Separated)

Histogram Method N/A - 99%

Option Zero All Set to One - 90%

Option Zero Vis/IR - 1 X/Y = 0 - 95%

Option One All Set to One - 80%

Option One Vis/IR = I X/Y =0 - 85%

Option Three All Set to One - 80%

Option Three Vis/IR = I X/Y = 0 - 85%
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Clustering Option Category Weights Results (% Clouds Separated)

Option Four All Set to One - 70%

Option Four Vis/IR = I X/Y = 0 - 75%

As can be seen in Window Four of either Figure 9 or Figure 10, this example's histogram shows

one definite peak around a brightness of 1-0, with smaller peaks at brightness values of about 30

and 80. It took multiple attempts using the histogram threshold method to pick the best threshold

value.

The results of the clustering options again indicate that Option Zero is the best one to use.

Once again, the best categories to use were only the visible and infrared, however, by including the x

and y categories the results were not that much worse. The results of Option Zero using only the

visible and infrared categories are shown in Figure 9.

Figure 9. Example Three (User Selected Seed Pixels)

Figure I0 shows the results of Option One using only (he visible and infrared categories to calculate

the distance values.
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Figure 10. Example Three (Automatic Selection of Seed Pixels)

The options using automatic selection of seed pixels were unable to acquire a portion of the lowest

cloud layer due to its closeness in visual and infrared values to the water pixels.

Sumniary

All the examples seem to have one thing in common, and that is they all indicate the best option

to use is Option Zero with only the visible and infrared categories contributing to the distance

equations. The x and y categories do not appear to add any additional help when trying to separate

clouds that are scattered throughout the clustering area. The only time these categories could be

useful is if the user is trying to isolate a particular area of clouds within an image. The x and y

categories tend to impose a confining influence on how far away pixels can be and still be added to

the cloud clust ,r. In addition, the use of data normalization did not appear to improve the

clustering algorithms performance in any of the examples.

The histogram process was able to provide such good results for each example because the user

took the time to find the brightness value corresponding to the lowest level of clouds and used it as

the threshold. The key point here is that the histogram process worked because the user knew what
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to look for. It is rather easy to tell if clouds exist in a satellite image just by looking at shapes and

brightness values because large cloud masses rarely look like ground features. However, it is much

more difficult to go pixel by pixel and identify which arc cloud, and which are not. Thus, if someone

trained to do the identification is not available, then an automatic process will have to be used.

If an automatic process is used, Option One with only the visible and infrared categories

enabled is the best choice. For areas that had cloud regions scattered throughout, this process was

able to separate about 75 to 90 percent of the clouds. The clouds that normally were not included

were the lowest level clouds that had visible and infrared values very close to those of the terrain.

The amount of low cloud included in the cloud cluster is dependent on the brightness difference

between the cloud seed pixel and the lower-cloud pixels. If the difference is great, than the lower

clouds will most likely be included in the non-cloud cluster. In each example, the amount of clouds

identified was enough to provide an idea of the structure of the cloud mass. This means that

identification of the cloud masses should be possible using some type of shape identification.
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V. Conchsions and Recommendations

The goal of this project was to develop a personal-computer-based program that would use a

variation of the ccntroid method of agglomerative hierarchical clustering to separate cloud regions

from non-cloud regions in a satellite image. The results indicate that the process is possible, and

can separate a large portion of the cloud features from the non-cloud features. However, in

comparison to the histogram approach, the clustering approach did not provide quite as good results.

However, the results obtained were good enough to determine the general shape and most of the

substance of the clouds which means that it should be enough for a chance at identifying the clouds.

The choice of whether to use the histogram approach or the clustering approach depends on the

needs of the program's user. If the user has the time to sit down and manipulate the histogram

threshold to produce the best results, then the histogram approach is the best choice. However, if

an automated process is desired, the histogram threshold technique may not work very well when

there is no definite minimum in the histogram. For the three examples discussed in Chapter IV,

only Example Two exhibited a histogram that had two well-defined peaks. However, it took a few

attempts to find the best threshold value because the minimum between the peaks was not easy to

locate. When there is no definite minimum, there is really no easy way a computer program can

find the best threshold value unless someone is looking at the output and making the final decision.

By using the program's automatic approach, where the brightest and dimmest pixels within the

clustering area are chosen, the algorithms are able to separate about 75 to 90 percent of the clouds.

Perhaps, rather than using the brightest pixel, it could be possible to obtain a better cloud seed pixel,

(e.g., a lower cloud), by using a statistical analysis of the pixels within the clustering area. The

examples show that if the cloud seed pixel is placed on a lower-cloud mass, the percentage of clouds

properly clustered increases significantly. The automatic process was very good at identifying cloud

areas that had a small range of brightness values, however, if the cloud cluster contained both very

bright, and very dim pixels, the clustering process had a harder time idcntifying the lower clouds.
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In terms of speed, the clustering algorithms arc not nearly as fast as the histogram approach,

however, whether or not speed is important depends upon the needs of the user. The speed of the

program developed in this project depends on the processor being used, and the size of the

clustering area. State of the art in personal computers is changing on a yearly basis, with speed

being the feature that is increasing all the time. As far as the clustering area size is concerned, a 50

x 50 pixel area in an APT image covers an area of about 40,000 square kilometers. This is large

enough to encompass practically any size military unit or formation. The intent is not to use the

program to examine weather on a global scale, only to he able to let a field unit get an idea of what

is over a projected target, or possibly in the area of the unit. The results obtained from the

clustering algorithms should provide enough information for the identification of the major cloud

masses.

A few areas could be looked at for further improving the algorithms developed in this project.

First, implementing the single-linkage clustering method described in Chapter II might allow the

clustering routines to provide better results. This technique looks at a loi more distance values when

making a decision on which cluster to place a pixel in. Depending on the size of the cluster area

being examined, it might be necessary to add more memory to the computer running the program.

If the memory requirements become so large thai only a hard disk drive provides enough storage for

the arrays, then this method will be significantly slower than the centroid process due to the

numerous disk reads needed. Second, an examination of alternate approaches to choosing the cloud

seed pixel can be cxplored. Perhaps a method can be developed that uses the mean and standard

deviation values of the histogram brightness values. For example, by selecting the brightness of the

cloud seed pixel to be one or two standard deviations above the mean brightness level, a better

choice of seed pixels may be made that would allow more of the lower cloud pixels to be put in the

proper cluster. The examples discussed in Chapter IV indicate that choosing a lower cloud pixel as

the seed point provides better results. Finally, it would be interesting to explore using more than

two seed pixels in the clustering process. This would require a major modification to the software,

but could allow moi,: discrimination between cloud types or layers.
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This project has shown that clustering can provide good results when trying to separate cloud-

covered regions from clear regions in satellite imagery. The characteristic that makes this technique

attractive is the lack of a need for a trained person to manipulate the image's histogram. The

clustering technique, combined with a shape-identification algorithm, could provide an excellent tool

for identifying clouds in satellite imdgery. The next step is to explore the possibility of creating a

personal-computer-based program to implement some type of shape-identification algorithm. If this

is possible, then a personal-computer-based software package for identifying clouds L.1 satellite

imagery can become a reality.
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AppendL ,A: User's Guide for the Clustering Algorithms

The first thing that must be done in order to run the clustering algorithms is to make sure that

the configuration file for the TSIPS program is in the proper place and format. For TSIPS to run

properly, make sure that it is located in a directory along with a configuration file entitled

TS-IP.CFG. When the TSIPS program starts, it looks for the configuration file and reads it to

determine where the image files are located as well as what palette to use upon starting. The

configuration file can be created with a simple text editor. An example of a configuration file is

shown in Figure 11.

2 ; 640 x 480 at 256 colors
d: ; imagedrive
\project ; image_directory
d: ;work drive
\project ; work-directory
bgry.pal ; default palette

Figure 11. Sample TSIPS Configuration File

The first line informs the TSIPS program which graphics resolution to use when displaying

output on the computer monitor. There are five options represented by the numbers zero through

four. Option Zero represents standard VGA with a resolution of 320 x 200 pixels in 256 colors.

Option One has a resolution of 640 x 400 pixels in 256 colors. Option Two has a resolution of 640 x

480 pixels in 256 colors. Option Three has a 8() x 600 pixel resolution in 256 colors. Finally,

Option Four has a resolution of 1024 x 768 pixels in 256 colors. Choose the option that corresponds

to the graphics card and monitor being used to run the software.

The second and third lines tell TSIPS what disk drive and directory the satellite images arc

located in. The fourth and fifth lines arc for locating the work drive and directories. The version of

TSIPS used for this project did not use the work-drive or work directory variables, however, they

must he in the configuration file. The final line tells TSIPS what color palette to use upon starting.

There arc a number of different palettes available and they can be distinguished by the ".pal" suffix.

Make sure that the palette files arc located in the same directory as the TSIPS software.
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Starting the Prograin

To start the program, enter TS-IP at the MS-DOS prompt and press ENTER. The first thing

that will be seen is a title screen giving the name of the program along with the ai-ft ,I'd version

date. Press any key to proceed to the main program screen. The screen will now be divided into

four windows and the fourth window will have the main program menu displayed within it. The

colors displayed will depend upon the startup palette the user placed in the TSIPS configuration file.

In order to use the clustering programs, a visible APT image must be in Window One, and the

corresponding infrared image in Window Two. The program begins with Window One being the

active window, so to load a visible image into this window, select the LOAD option from the main

menu. A sub-mcnu will appear with a list of all the images available in the image directory specified

in the configuration file.

The file names for each image give information on the date of the image, the NOAA satellite

used, and what pass the image was taken on during the day. A complete description of the filename

structure can be found in the TSIPS user's guide. Sclect a visible image file, which is distinguishable

by a ".RSA" suffix, and press ENTER. The image will begin to load into Window One, going from

iop to oottom. If the image appears to be inverted, select the INVERT IMAGE option from the

main menu. Reload the image and it will now be oriented in the proper manncr. The inverted

image comes from the fact that some of the weather satellites make North-to-South passes, while

others make South-to-North passes over the earth's surface. If the image was taken during a South-

to-North pass, the file will contain the information from the southern portion of the image first, thus,

this is what will load first. Using the INVERT IMAGE option forces the images to load upside-

down in the window, which means they will appear oriented the proper way. Once INVERT IMAGE

is selected, all subsequent images will load from bottom to top in a window until INVERT IMAGE is

chosen again.

Different portions of the visible image can be displayed in the window by using the arrow keys

1 move the image around. Once the chosen section of the visible image is displayed in Window

One, select the GROUP IMAGES option from the main menu. A small box will appcar in the
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center of the screen with the number I highlighted within its upper left corner. This box is a

representation of the active windows and is being displayed by the program because it is waiting for

the user to sclect which window the infrared image should go into. Press the number 2 on the

keyboard and then press ENTER. The second number will be highlighted briefly in the center box

before disappearing. The infrared image corresponding to the visible image in Window One will

now begin to load into Window Two. If the program stops executing, it will be because there is no

corresponding infrared image. If this happens, start the program over and make sure when selecting

the visible image that there is an infrared image associated with it. Infrared images will have the

same file name as their corresponding visible image except for a ".RSB" suffix.

Now there should be a visible image in Window One and an infrared image in Window Two. It

is time to start the clustering algorithms. Select CLUSTERING from the main menu and a second

menu will appear asking the user what size of clustering area they wish to use. The version of the

software used in this project has four options: 20 x 20 pixels, 50 x 50 pixels, 100 x 100 pixels, and 150

x 150 pixels. If the user wants to see the program in action but only take a small amount of time,

select the 20 x 2C option. This option takes no more than two or three minutes to complete. The

other options can take anywhere from about 45 minutes to over two days to complete, depending on

the speed of the computer used. Once the area is selected, a box of the chosen size will appear in

Window One. Move the box, using the arrow keys, over :he area of the image that the user wishes

to run the algorithms on. The distance the box moves for each press of an arrow key can be

changed by using the PAGE UP and PAGE DOWN keys. For every press of the PAGE UP or

PAGE DOWN key, (he amount of the box movement for each press of the arrow keys will increase

or decrease by roughly a factor of two. When the box is over the desired area of the image, press

ENTER and that section of the visible and infrared image will be read into an array entitled Parrav.

The code for the reading process can be found on pages 58 and 59. For a 20 x 20 pixel area, the

array will be 21 x 20 x 2 in size. The two values entered in the third dimension of the array arc the

visible and infrared values for each pixel.

43



After Panuv is filled, another list of options will appear in Window Four. These options are as

follows:

0 : Cluster Using Similarity Matrix and User-Defined Seed Points
1: Cluster Using Similarity Matrix and Automatic Seed Points
2 : Show Ranges of Similarity Values From One User-Defined Seed Point
3 Option 0 with Data Normalization
4 : Option 1 with Data Normalization
5 : Histogram of Clustering Area

If the user selects Option Zero, Two, or Three, it is up to the them to tell the computer where the

seed pixels will be located within the clustering area. If Option One or Four is chosen, then the

program will select the seed points automatically. As can be surmised from the option list, Options

Zero, One, Three, and Four are all roughly the same, while Options Two and Five are different.

Memno , Requirements

Before getting into how to use each option in the program, a special note about memory

requirements is in order. The Quinn-Curtis routines used in this project will automatically create

matrices and arrays in extended memory, if enough memory is available. If there isn't enough, the

runtines will then use the active hard disk drive as storage space. The computer being used to run

these algorithms must have one or the other, otherwise the program will not work. Memory

requirements for each of the clustering options vary depending on the option and the size of the

clustering area chosen. For example, if a 20 x 20 area is chosen to be clustered and Option Zero or

One is selected, then the following memory requirements are established. The distance arrays for

each seed point will be 20 x 20 in size, with each value in the array being eight bytes in length.

Thus, the required storage for these two arrays is 6400 bytes. In addition, the tracking array will be

20 x 20 in size and is filled with cight-byte values for an additional 3200 bytes of needed storage.

The use of cight-bytc values in these arrays is the default for the Quinn-Curtis routines. The option

to change them is available to the user if a copy of the Quinn-Curtis software is obtained. The only

array stored in the computers conventional memory is Patmv. This array is used to store the visible

and infrared values for each pixel in the clustering area. For a 20 x 20 area, Parrav will by 20 x 20 x

2 in size with each of the two values being a byte in length. Thus, for a 20 x 20 area, the needed
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storage space is 800 bytes. The largest clustering area possible within these routines is 150 x 150.

This limit was set because Turbo Pascal imposes a limit of 64 kilobytes on any one array, so that if

someone wanted to cluster an area bigger than about 180 x 180 pixels it would not fit into the

memory Turbo Pascal allocates for it. To use larger arrays, the code could be modified to use the

Ouinn-Curtis routines to create the array in extended memory or on a hard disk drive.

The clustering options where normalization is conducted require an additional amount of space

for each of the four z-value arrays. For a 20 x 20 area, each of these arrays will be 20 x 20 in size

with each value in the array being eight bytes in length. Thus, all four arrays will require 12,800

bytes of storage space. The larger the clustering area chosen, the more space needed for each array.

Clustering Options

This section will describe each of the six options available in the clustering program. Option

Five and Option Two are presented first because they stand apart from the other four options in

that they provide a supporting role and do not actually cluster pixels. These two options provide

additional information about the clustering area to the program user. The page references noted

can be found in Appendix B.

Option Five. This option allows the user to see a histogram of the selected clustering area. The

histogram will appear in Window Four and consists of 256 vertical bars, each in a different

brightness value. The heights of the bars give the user an indication of the numbers of pixels that

have the different brightness values. Once the histogram is displayed, Window Two will be cleared

and a message will appear asking the user if he wishes to set a threshold for the clustering area. If

yes is selected, a cross-hair will appear in Window One. The user can then use the arrow keys to

move the cross-hair over a pixel with the desired threshold brightness value. The position of the

cross-hair, in addition to the brightness value of the pixel it is over will be displayed in Window

Four. The distance the cross-hair moves for each press of an arrow key can be increased or

decreased by pushing the PAGE UP or PAGE DOWN keys. Once the user has selected the

threshold value, the message in Window Two will disappear and the modified cluster area will take

its place. The user can then compare the histogram threshold results with the clustering program
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results shown in Window Three. When the user is finished with the histogram option, press the

ESC key to return to the main TSIPS menu.

The histogram threshold process makes use of Window Two, which is also necessary for

displaying the infrared APT image for the clustering algorithms to use. Once the visible and

infrared values for the cluster area have been placed into the array Parray, it is not necessary to have

the infrared image in Window Two. Thus, when this option replaces the infrared image, it is not

going to affect the program. However, if any future clustering options are to be run, the infrared

image must be placed back in Window Two before selecting the cluster option from the main TSIPS

menu.

Option Two. This option allows the user to select a seed pixel within the clustering area, and

have all the distance values for the other pixels displayed in specific, user selected ranges. To do

this, press 2 on the keyboard and another menu will appear asking for the weights the user wishes to

place on each of the four measures used in the distance calculation (see Equation 8). There are

eleven preset options to choose from, or the user can select the letter u which allows them to enter

their own choices for the weights. If they choose to do so, another displa- will appear in Window

Four with the order and instructions on how to enter their chosen weights. This section of code can

be found on pages 60 through 62. Once the weights have been chosen, the user will be asked to

select the seed pixel they wish to use. A box will surround the clustering area in Window One, and

a small cross-hair will appear in the center of the window. The cross-hair is moved with the arrow

keys in the same manner described in Option Five. The PAGE UP and PAGE DOWN keys are

available for increasing and decreasing the movement distance. A three-line display will appear in

the upper-left corner of Window Four showing the cross-hair's x and y position, as well as the

brightness of the pixel it is currently over. Place the cross-hair over the pixel within the clustering

box chosen to be the seed point. Make sure that the pixel chosen is within the box or the program

will not function properly. When the pixel is positioned properly, press ENTER. The code for the

moving and selection of the seed point can be found on pages 51 and 52.
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After the seed point is chosen, a list of options will appear in Window Four that represent the

ranges of distance values the user can have displayed. The seed point chosen in Window One will

be turned on in Window Three at this time. Select the range of distance values wanted by entering

the appropriate number or letter on the keyboard. All the pixels within the clustering area that have

a distance value from the seed pixel within the range chosen will be displayed in Window Three.

The user can sequentially show more and more values in Window Three or has the option of

changing palettes, clearing Window Three, or changing weights. When the user is finished displaying

ranges of distance values, select ESC from keyboard and the main TSIPS menu will be displayed in

Window Four. The code responsible for doing all of the calculations, as well as displaying of the

distance values, can be found on pages 65 through 68. Comments in the code will explain what is

going on at different points.

Options Zero and One. These two options differ only in the way the two seed points are

selected within the algorithm. Option Zero allows the user to input his own seed pixels, while

Option One has the computer automatically select the seed pixels. If Option Zero is selected, the

user will first be prompted to select the desired weights for each of the four variables within the

distance equation. The weight selection is identical to the method described in the previous section.

Next, the user will be prompted to select the first seed pixel. When the cross-hair is over the

desired seed pixel, press ENTER and then move the cross-hair to the second seed pixel. When

properly positioned, again press ENTER. The code for the selection of seed pixels can be found on

pages 51 and 52.

If Option One is selected, the program will look for the dimmest and brightest pixel within the

image and use them as seed points. If more than one pixel is the dimmest or brightest, the first one

encountered by the algorithm will be used. Once the two seed pixels are selected, the program will

display them in Window Three and create the necessary distance and tracking arrays. The arrays

are created either within extended memory or on the hard disk drive, depending on what is

available, by using the HMatDef procedure available in the Quinn-Curtis software package. Each

array is referenced by a pointer variable, so that when a read or a write is to be done to an array,
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the programmer must simply specify the appropriate pointer in the read or write statement. The

two arrays of distance values have the pointers siniptr, and simnptr2 as their reference, while the

tracking array has the pointer ptr2.

Once the arrays arc created, the program will fill them with values by calculating the distance

from each pixel to each seed point. Once both arrays arc filled, the average values in the four

categories for each cluster are set equal to the two seed pixels values (see page 70). The user is

now prompted by a menu in Window Four to select the number of itcrrtions the program is to

complete before stopping. The number selected will be the total number of pixels added to the two

clusters during the run of the program. If a 20 x 20 area is selected and the user wants all 400 pixels

to be placed into clusters, then select 398 iterations. The two seed pixels start out in clusters,

therefore, only 398 iterations need to be completed to place all pixels in a cluster. After the number

of iterations is chosen, the program will begin to run through a looping sequence where the smallest

distance value is found and then the pixel corresponding to it is placed with the appropriate cluster.

After the pixel is added, the cluster's mean category values are updated, and the appropriate

distance array is recalculated. Finally, a value of one or two is placed in the tracking array to keep

track of which pixel was acquired and into which cluster it was placed. This loop will continue for

the selected number of iterations, and each time the loop is completed, the iteration number will be

updated in Window Four to show the user that the program is working. The complete code for

these options can be found on pages 69 through 74.

Options Three and Four. These two options are almost the same as Options Zero and One

except for an additional process that is added between the point where the user selects the seed

pixels and the looping process begins. After the seed pixels have been chosen, either manually or

automatically, the program will normalize the raw data in each of the four categories by computing

i-values. To do this, the average value for each of the four categories is computed. For example, all

4Th) visible values for a 20 x 20 clustering area are added together and divided by 40) to compute a

mean. Then a standard deviation is calculated using a formula like Equation 4. Alter the mean and

standard deviation are computed, each pixel has its raw category values replaced with a i-value
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computed from a formula like Equation 6. This process is done for the visible, infrared, x, and y

values for each pixel. Each z-value has a specific array created for it, so when the normalization is

complete, there are four 20 x 20 arrays filled with either visible z-values, infrared z-values, x-position

z-values, or y-position z-values. Once the normalization is completed, the two distance arrays are

then filled, only this time z-values are used in place of the raw data in Equation 8. When the arrays

have been filled, the user is prompted to select the number of iterations the program is to complete.

Then, both arrays are searched for the smallest value and the looping process described in the

previous section is carried out. The code that is responsible for the computations described here can

be found on pages 74 through 82.

Shut-Down of the Program

Once the selected clustering option has finished, the clustering program will free any memory

associated with the arrays used in the process, remove any clustering boxes from Windows One and

Two, and redisplay the main TSIPS menu in Window Four. The results of whatever clustering

option selected remain in Window Three so the user can use other TSIPS options on the results, if

so desired. At many points throughout each clustering option, the user has the ability to terminate

the program's operation by selecting the ESC key. When this option is available, it will appear on a

menu in Window Four. The code for the shut-down and housekeeping of the clustering algorithms

is on pages 82 through 84.
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Appendix B. Listing of Turbo Pascal Code

The following is the complete Turbo Pascal code for the clustering algorithms located within the

TSIPS software. Comments arc included to help the reader follow what is going on.

(k The following procedure displays the size of the cluster box the *)

(* user requests from the main Cluster menu in Window One. The box *)

(* is displayed using the SetWriteMode (XORPUT) command. This
(* procedure is a modification of the MarkCutBox procedure located *)

(* in the TSIPS program.

Procedure Mark ClusterBox(sx, sy integer;

sz byte);

VAR

sz2 : byte;

begin

sz2 := sz div 2;

SetWindow(active);
SetWriteMode(XORPUT);

Rectangle(sx-sz2,sy-sz2,sx+sz2-l,sy+sz2-1);
end; (Procedure MarkClusterBox)

(* This procedure allows the user to move the cluster box around
(* Window One so that the user can select the clustering area. This *)

(* procedure is a modification of the SetCutBlock procedure

(* located in the TSIPS program.

Procedure SelectClusterBox(sz byte;
VAR choice char);

LABEL

interrupt;

VAR

sz2 : byte;

Ix, ly : integer;

begin

sz2 sz div 2;
ix -I:

lV -1;
choice := ReadKey;

repeat

if choice = ESC then
Goto interrupt;
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if (lx <> xx[active]) or (ly <> xy[active]) then
MarkCluster Box(xx[active],xy[active],sz);

ix xx[activel;
ly "= xy[active];
choice := Readkey;
if choice #00 then

begin

choice "= ReadKey;

if choice in [Up,Dn,Rt,Lt] then

begin
case choice of

Up xy[active] IMax(sz2,xy[active]-step);

Dn " xy[active] IMin(xy[active]+step, cy-sz2);
Rt xx[active] IMin(xx[active]+step,cx-sz2);

Lt xx[active] := IMax(sz2,xx[active]-step);
end; (case)

if (Ix <> xx[active]) or (ly <> xy[active]) then
MarkClusterBox(lx,ly,sz);

end 'if)
else if choice in [PgUp,PgDn] then

case choice of
PgUp step IMin(64,step shl 1);

PgDn step IMax(l,step shr 1);
end; (casel

end; (if)

until choice in [^M,ESC];

interrupt:

end: (Procedure SelectClusterBoxi

(* This procedure allows the user to select specific pixels which *)
are used as seed points for the clustering algorithms. For the *)

(* program to work properly, the pixels chosen as seed points MUST *)
(* be within the clustering area. This procedure is a modification *)

(* of the Examine procedure located in the TSIPS program.

Procedure SetClusterPoint(xs,ys " integer;
arg • byte;

VAR xcoord,ycoord " integer);

VAR

choice " char;

winl,win2,pixel " byte;

x,y,z " string[3];

Procedure ShowCoordinates;

begin

SetWindow(4);
Str(ex[active]:3,x);
Str(ey[activej:3,y);

Str(pixel:3,z);

SetColor(O);
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LeftText(1,'
LeftText(2,'
LeftText(3,'
SetColor(255);
LeftText(1,'X = +)
LeftText(2,'Y = y)
LeftText(3,'Z 'z)

end; (Procedure ShowCoordinates)

begin
SetWindow(1);
SetWriteMode(XORPuz);
Rectangle(xs,ys,xs~arg-1,ys+arg-1);
SaveWorkSection( 1,0,0, 8*lw,5*lh);
SetFillStyle(SolidFill ,0)
Bar (0, 0 ,8*1w ,5*lh);

SetWindow(active);
pixel := GetPixel(ex[active],ey[active]);
MarkPoint(exiactivel ,ey[active] ,3,pixel);
ShowCoordinates;
repeat
choice :=Upcase(ReadKey);
if choice =#00 then
begin
choice ReadKey;
if choice in [Up,Dn,Rt,Lt] then
begin
Unrnark_Point(extactivel,ey[active],3);
case choice of
Up ey[active] :=IMax(0,ey[active]-step);

Dn ey[active] IMin(ey[active]+step,cy-l);
Lt ex[active] IMax(0,ex[active]-step);
Rt ex~active] : IMin(ex~active]+step,cx-1);
end; (case)

pixel := CetPixel(ex~active] ,ey~active]);
Mark Point(ex[active],ey[active],3,pixel);
ShowCoordinates;
end (if)

else if choice in [PgUp,PgDn] then
case choice of

PgUp step :=IMin(64,step shi 1);
PgDn step :=IMax(1,step shr 1);
end; (case)

end; (else)
until choice CR;
xcoord ex[active];
ycoord :=ey[active];

Unmark_-Point(ex[activel,ey[active],3);
RestoreWorkSection(l,0,0,8*lw,5*lh);
SetWindow(1);

end; {Procedure Set Cluster Point)
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(* This procedure moves the cursor on the text screen down into the *)
(* area of Window Four so that when an option is chosen that has the *)

(* user input values with the keyboard, the values will not
(* overwrite the image in Window One. The user entered values are *)

(* visible in Window Four if the active palette has a bright enough *)

(* color at its low end.

Procedure MoveCursor;

VAR

MyRegs : Registers;

begin
MyRegs.AH $2;
MyRegs.DH 20;

MyRegs.DL 0;
MyRegs.BH 0;

Intr($10,MyRegs),

end; {Procedure MoveCursor)

(* This procedure moves the cursor back up to the top of the text *)
(* screen.

Procedure MoveCursor_Top;

VAR

MyRegs : Registers;

begin

MyRegs.AH $2;

MyRegs.DH 0;

MyRegs.DL 0;
MyRegs.BH 0;

Intr($10,MyRegs);

end; (Procedure MoveCursorTop)

(* This procedure allows the user to see a histogram of the cluster *)

(* area. It also allows the user to set a minumum threshold and

(* have all pixels below this threshold effectively turned off. The *)
(* histogram is displayed in Window Four, and the modified cluster *)

(* area in Window Two. This procedure is a moditication of the

(* Histogram procedure located in the TSIPS program.

Procedure Cluster_Histogram(xs,ys : integer,

arg : byte);
LABEL

interruptl,interrupt2;
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VAR

k byte;
i,j integer;
value word;
Multiplier: integer;
pix : byte;
x,y,z string[31;

pixel : byte;
choice : char;

(* This small procedure is copied over from the Set Cluster Point
(* procedure. It has been slightly modified.

Procedure ShowCoordinates;

begin
SetWindow(4);
Str(ex[active]:3,x);

Str(ey[active]: 3 ,y);
Str(pixel:3,z);

SetColor(O);
LeftText(l,'
LeftText(2,'

Left Text(3,'
SetColor(255);
LeftText(l,'X = '+x);

LeftText(2,'Y = '+y);

LeftText(3,'Z = '+z);
end; {Procedure ShowCoordinates)

(* Main histogram routine begins here.

begin

hmin := 255;
hmax := 0;
for k := 0 to 255 do
histogram[k] := 0;

SetWindow(l);
for i := 0 to arg-l do

for j := 0 to arg-l do
begin
value := GetPixel(xs+j,ys+i);

if value < hmin then hmin := value;
if value > hmax then hmax := value;
histogram[value] := histogram[value] + 1;
end; (for j)

SetWriteMode(XORPut);
Rectangle(xs,ys,xs+arg,ys+arg);

SetWindow(4);

ClearViewPort:

(* These multipliers are used to scale the heights of the bars
(* representing the number ot pixels with a specific brightness value.*)
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if (.rg = 20) then

Multiplier := 3;

if (arg = 50) then
Multiplier := 2;

if (arg = 100) then
Multiplier = ;

if (arg = 150) then

Multiplier := 1;
for k := 0 to 255 do
begin
SetColor(k);
Line(start+k,cy-Ol,start+k,cy-(histogram[k] * Multiplier)-01);
end; {for k)

(* This information appears in Window Two and will clear away
(* anything already displayed in the window.

SetWindow(2);
ClearViewPort;
CenterText(2,'Do you wish to set a threshold');
CenterText(3,'for the cluster area? (y/n) ');

interrupt2:
Choice := Readkey;
if (Choice =#110) then
begin

SetWindow(l);
Rectangle(xs,ys,xs+arg,ys+arg);
Coto interruptl;

end;

(* If yes is selected, these routines go to work. Most of these are *)
(* copied from the SetClusterPoint procedure with some changes.

if (Choice = #121) then

begin
SetWindow(2);
Center Text(8,'Place the cross-hair over the');
Center Text(9,'pixel with the desired
Center Text(10,'threshold value and press
Center Text(ll,'ENTER. The altered cluster ');
Center Text(12,'area will appear in this
Center Text(13,'window.
SaveWorkSection(l,0,0,8*lw,5*lh);
SetFillStyle(SolidFill,0);
Bar(0,0,8*lw,5*lh);
SetWindow(1);
pixel := GetPixel(ex[activej,ey[active]);
MarkPoint(ex[active],ey[active],3,pixel);
ShowCoordinates;
repeat
choice := Upcase(ReadKey);
if choice = #00 then

begin
choice := ReadKey;
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if choice in [Up.,Dn,Rt,Ltj then
begin
UnmarkPoint(ex[active],ey~activeJ,3);
case choice of
Up :ey[active] = IMax(O,ey[active]-step);
Dn :ey~activel : IMin(ey[active]+step,cy-l):
Lt :ex[activeJ : IMax(O,ex[active]-step);
Rt Ex~act've] IMin(ex~active]+step,cx-l);
end: case)

pixel := GetPixel(ex~active],ey~active]);
Mark Point(exl'activej,ey~active],3,pixel);
ShowCoordinates;
end (if)

else if choice in [PgUp,PgDn] then
case choice of

PgUp :step :~IMin(64,step shi 1);
PgDn :step :~IMax(I,step shr 1);
end; (case)

end; {elsej
until choice = CR;
SetWindow(2);
ClearViewPort;
SetWindow(l);
SetWriteMode(XORPut);
Rectangle(xs ,ys ,xs+arg,ys+arg);
Unmark Point(ex[active1,eyIactive],3);

(After the threshold pixel is set, these routines will take the
(value of the threshold pixel and use it to determine which pixels *
(within the cluster area will be set to a brightness of zero. The *
(altered cluster area will appear in Window Two so it can be used *
(to compare with the results of the clustering routines in Window ~
(*Three.

fo- j := 0 to arg-l do
for i := 0 to arg-l do
begin

pix := GetPixel(xs~i,ys+j);
if (pix < pixel) then
begin

SetWindow(2);
PutPixel(xs+i,ys+j ,0)
SetWindow(l);

end
else

begin
SetWindow(2);
PutPixel(xs+i ,ys+j ,pix);
SetWindow(l):

end
end; for 1)

Restore JorkSection(1.0,0,S--lw,5-1h);
SetWindow(l);
Coto intErrLupti



end;

Beep( 500):
Goto interrupt2;

interrupti:
menu active : false;
submenu active :=false;
end, {Cluster Histograml

(This is the main procedure of the clustering program. From this *
(procedure, all othei procedures nec -ssary to run the clustering *
(algorithms are called.

Procedure Cluster_Analysis (arg :byce);

LAB EL

ExitProg, interrupt2, interrupt3, inte~ upt4, interrupt5, interrupt6,
interrupt?, interrupt8, interrupt9, interruptlO, interruptll,
interruptl2, interruptl3 ,ExitProgl ,Finish;

VAR

simptr,simptr2 .AIRDESP;

Xptr,Yptr .ARRDESP;

ptr2,Visptr,IRptr ARRDESP;
nrows,ncols .Longint;

:;imval .Realtype;

err .integer;

pixeil,pixel2 .byte;

arg2,m,n .byte;

i,j,xs,vs,a,b integer;
xpos,ypos,c,d,e,f :integer;
xpos2,ypos2 .integer;

VisWeight,IRWeight real:
Xt~eight,YWeight .real;

VisPart,IRPart realtype;
choice,choicel,choice2 ;char;

choice3",ch .char;

Counter~chce3 string[5];
Result .real;

DiffX, Diff-Y .realtype;

TempResult .real;

iinvalue,max-value .integer;

Fiag,Flag2 integer;
MatRows,MatCols longint;
ComRows,Cc~mCols longint;
Iter, Numiter longint;-
CurColPos .integer;

Cur Row Pos integer;
CurSimnVal realtype;
Next Simn kal realtype;
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Last SimVal .realtype;

ClusterNum .integer;

Current_-Val,Next Val :integer;
MeanX,MeanY .realtype;

TotalVisTotalIR :integer;
Number_Pixels .realtype;

MeanVis,MeanI R realtype;
TotalStandDevVis realtype;
TotalStandDevIR .realtype;

StandDevX,StandDev_-Y realtype;
StandDev Vis,StandDev IR realtype;
ZVis,ZIR,ZX,ZY realtype;
Done .Boolean;

Parray array'O. .149,0. 149,0.11 of byte;

Cluster_-One_-IR,Cluster_-TwoIR :realtype;
Cluster_-One_-Vis,ClusterTwo_-Vis realtype;
Cluster -One -X,Cluster -One -Y,Cluster_-Two X,Cluster Two Y :realtype;
IR_-Cluster_-OneVal,IR ClusterTwoVal realtype;
Vis -ClusterOneVal,VisClusterTwoVal realtype;
XclusterOne_-Val,X_-Cluster_-Two_-Val realtype;
Y ClusterOneVal,Y ClusterTwo Val realtype;
ClusterOneSize,ClusterTwoSize longint;

begin
arg2 := arg div 2;
xy[active] IMax(arg2,xy[active]); (*Set the positioning
xylactive) lMin(xyjactivej,cy-arg2); (*variables used to locate *
xx[activel' :lMin(xx[active],cx-arg2); (*keep track of the
xxjjactive] : IMax(arg2,xx[active]); (*clusteing area.
MoveCursorTop;
Select_-Cluster_-Box(arg,choice); (*Call to procedure to allow user
if choice <> ESC then (*to choose where the clustering *

begin (*area will be.
a 0;
b :=0;
xs xx[active] - arg2; (*Upper left, and lower right corner *

ys xy~activej - arg2; (*of the clustering area.

MarkCluster_-Box(xx[active],xy[active],arg);
for m :=0 to 149 do (*Set all values in Parray to zero
for n :=0 to 149 do
begin

Parrayfm,n1,0l 0;

Parray[m,n,1] 0;
end: (for n)

for j :y s to ys ±- arg - 1 do (*Read visible pixel values *
for i :-xs to xs + arg - 1 do (*into Parray.

becgin
pixeli elxlij
PutPixel(i,j ,255);
a i- xs;

b : j - ys;
Parray[a~b,O] : pixeli;
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PutPixel(i,j,pixell);
SetWindow(2); (* Read infrared pixel values *)

pixel2 : GetPixel(i,j); (* into Parray.

PutPixel(i,j,255);

Parray[a,b,l] := pixel2;
PutPixel(i,j,pixel2);

SetWindow(l);
end; tfor i)

end (if)

else
Coto ExitProg;

(* This section of code displays the main clustering menu.

SetWindow(4);

interrupt6:

ClearViewPort;
CenterText(l, 'Select which option you wish ....... .
CenterText(2, '

Center Text(3, '0 Cluster using Similarity Matrix ');

CenterText(4,' and User-Defined Seed Points
CenterText(5, '

CenterText(6, 'I Cluster Using Similarity Matrix ');

CenterText(7, ' and Automatic Seed Points
CenterText(8, '

CenterText(9, '2 Show Ranges of Similarity Values');

CenterText(10, ' from One User-Defined Seed Point');
CenterText(ll, ');

CenterText(12, '3 Option 0 With Data Normalization ');

CenterText(13, ' ');
CenterText(14, '4 Option 1 With Data Normalization ');

CenterText(15, ' ');

CenterText(16, '5 Histogram of Clustering Area

CenterText(17,' ');

CenterText(18, 'ESC : Exit

Choice := Readkey;

if choice =#48 then

begin
Flag 0;

Flag2 0;
Coto interrupt2;

end

else if choice = #49 then

begin
Flag 1;
Flag2 := 0;
Coto interrupt2;

end
else if choice #50 then

begin
Flag 2;
Flag2 2;

Coto interrupt2;

end
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else if choice = #51 then
begin

Flag 0;
Flag2 1;
Goto interrupt2;

end
else if choice = #52 then

begin
Flag 1;
Flag2 = I;

end
else if choice = #53 then

begin
SetWindow(l);
ClusterHistogram(xs,ys,arg); (* Call to histogram procedure *)
Repeat

ch := ReadKey;

Case Ch of
#27 : Done := True;

end (Case)
Until Done = True;

Goto Finish;
end

else if choice = ESC then (* If ESC selected, goto end of program *)
begin

Goto Finish;
end

else
begin

Beep(500);
Goto interrupt6;

end;

(* The next section of code allows the user to select the weights
(* for each of the categories in the distance equation.

interrupt2:
VisWeight "= 0.0;

IRWeight 0.0;
XWeight 0.0;
YWeight := 0.0;
SetWindow(4);
ClearViewPort;

CenterText(l, 'Select the weights you wish to give to');
CenterText(2, 'the variables used to calculate the ')"

Center Text(3, 'similarity values
CenterText(4, '

CenterText(5, '0 Vis/IRPart = 1 Diff X/Y = 1 ');
CenterText(6, 'I Vis/IRPart = 1 Diff X/Y = .5 ');
CenterText(7, '2 Vis/IRPart = 1 Diff X/Y = .25');
CenterText(8, '3 Vis/IRPart = I Diff X/Y = .10');
CenterText(9, '4 Vis/IRPart = 1 Diff X/Y = 0 ');
CenterText(10, '

CenterText(If, '5 Vis/IRPart = .5 Diff X/Y = I ');
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Center Text(12, '6 Vis/IRPart = .25 Diff X/Y =1 ;

Center Text(13, '7 Vis/IRPart = .1 Diff X/Y =1 ;

Center Text(14, '8 Vis/IRPart = 0 Diff X/Y I );

Center Text(15,
Center Text(16, '9 Vis/IRPart = 1 X = .1 Y = 1 

Center Text(17, 'a Vis/IRPart = 1 X = 1 Y = .1');
Center Text(18,
Center Text(19, 'u Input specific values

choicel ReadKey;

if choicel #117 then

begin
ClearViewPort;
Center Text(l, 'Enter the values for each variable

CenterText(2, 'in the following order. Press ENTER ;

Center Text(3, 'after entering each number.
Center Text(4,
CenterText(5, 'Visible Weight (0 - 1.0)

Center Text(6, 'Infrared Weight (0 - 1.0)

CenterText(7, 'X Position Weight (0 - 1.0)
Center Text(8, 'Y Position Weight (0 - 1.0)

OutTextXY(40,86,'= Visible Weight');

OutTextXY(40,101,'= IR Weight');
OutTextXY(40,116,'= X Weight');

OuttextXY(40,131,'= Y Weight');

MoveCursor;

ReadLn(VisWeight,IRWeight,XWeight,YWeight);
MoveCursorTop;
end

else if choicel = #48 then

begin
VisWeight = 1;
IRWeight "= 1;
XWeight 1;

YWeight "= 1;
end

else if choicel = #49 then

begin

VisWeight = ;
IRWeight 1;
XWeight "= 0.5;

YWeight "= 0.5;

end

else if choicel #50 then

begin
VisWeight 1;

IRWeight 1;
XWeight 0.25;

YWeight 0.25;

end
else if choicel #51 then

begin
VisWeight i

IRWeight 1;

XWeight 0.1;
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YWeight 0.1;

end

else if choicel #52 then
begin

VisWeight 1;

IRWeight 1;
XWeight 0;

YWeight 0;
end

else if choicel #53 then
begin
VisWeight 0.5;

IRWeight 0.5;
XWeight " ;

YWeight 1;

end

else if choicel #54 then
begin

VisWeight 0.25;
IRWeight 0.25;

XWeight 1;

YWeight 1;
end

else if choicel #55 then
begin

VisWeight 0.1;
IRWeight 0.1;
XWeight 1;
YWeight 1:

end
else if choicel = #56 then

begin
VisWeight 0;

IRWeight 0;

XWeight =;

YWeight =;

end

else if choicel = #57 then

begin
VisWeight := 1;
IRWeight 1;

XWeight = i;
YWeight "= 0.1;

end

else if choicel = #97 then
begin

VisWeight 1;

iRWeight 1;

XWeight 0.1;

YWeight I;
end

else
begin

Beep(500);
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Goto interrupt2;

end;

(* This section of code determines which of the clustering options *)

(* was selected by the setting of the Flag variables. Depending on

(* the option, the appropriate calls to the seed point selection
(* procedures are executed.

if (Flag = 0) and (Flag2 = 0) then

begin

SetWindow(4);
ClearViewPort;
CenterText(7,'Select the first seed point to be ');

CenterText(8, a pixel within a cloud region.

SetWindow(1);
Set Cluster Point(xs,ys,arg,xpos,ypos);

Mark _Cluster Box(xx active ,xy[active],arg)"
Se-Window(4);

ClearViewport;

CeiterText(7,'Select the second seed point to ');

CeoterText(8,'be a pixel in a non-cloud region. ')

SeWindow(l);

Se-_ClusterPoint(xs,ys,arg,xpos2,ypos2);

Cc-o interrupt7"
end- (if)

if (Flig = 1) and (Flag2 = 0) then

begIn
Crrent Val := -1;

f-r b := 0 to arg-i do (* Automatic selection of brightest *)

,or a := 0 to arg-l do (* pixel in clustering area.

begin

NextVal := Parray[a,b,0];
if (NextVal > CurrentVal) then

begin

Current Val := NexcVal;
xpos := a+xs;

ypos b+ys;

end
Pnd; (for a)

Cu.rent Val := 300;
for b:= 0 to arg-l do (* Automatic selection of dimmest *

for a := 0 to arg-l do (* pixel ir clustering area.
begin

Next Val := Parray[a,b,0];

if (NextVal < CurrentVal) then
begin

Current Val := Next Val:

xpos2 a~xs;
ypos2 := b+ys;

end

end: (for a)
Goto interrupt7;

end; ) ifI

if (Flag = 0) and (Flag2 = 1) then
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begin
SetWindow(4);
ClearViewPort;
Center Text(7,'Select the first seed point to be a
Center Text(8,'pixel within a cloud region.
SetWindow(1);
Set ClusterPoint(xs,ys,arg,xpos,ypos);
Mark cluster Box(xx[active,xy[active],arg);
SetWindow(4);
ClearViewport;
Center Text(7,'Select the second seed point to be ')"

CenterText(8,'a pixel in a non-cloud region.
SetWindow(l);
SetClusterPoint(xs,ys,arg,xpos2,ypos2);
Coto interruptl2;

end; (if)

if (Flag = 1) and (Flag2 1 1) then
begin

Current Val := -1;

for b := 0 to arg-l do (* Automatic selection of brightest *)
for a := 0 to arg-l do (* pixel in clustering area.
begin
NextVal := Parray[a,b,0];
if (Next Val > Current-Val) then
begin

Current Val := Next Val;
xpos a+xs;
ypos "= b+ys;

end
end; tfor a)

Current Val := 300;

for b:= 0 to arg-i do (* Automatic selection of dimmest *)
for a "= 0 to arg-I do (* pixel in clustering area.

begin
NextVal "= Parray[a,b,01;
if (Next Val < Current-Val) then
begin

Current Val "= Next Val;

xpos2 a+xs;
ypos2 "= b+ys;

end
end; (for a)

Coto interruptl2;
end: )if}

if (Flag = 2) and (Flag2 = 2) then
begin

SetWindow(4);
ClearViewPort;
Center Text(7,'Select the seed point');
SetWindow(1);
SetClusterPoint(xsys,arg,xpos,ypos);

end;
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(* This section of code is used to determine what range of values to *)
(* display when Option Two is selected from the main clustering menu. *)

SetWindow(3);
ClearViewPort;

interrupt4:
SetWindow(4);

DiffX 0.0;

DiffY 0.0;
VisPart 0.0;

IRPart 0.0;

TempResult := 0.0;
Result := 0.0;

ClearViewPort;
CenterText(l,' Select the range for the similarity ');

CenterText(2,' value (S) you wish to display
Center Text(3,'
Center Text(4,'0 0 <= S < 10 a 100 <= S < 110');
Center Text(5,'l 10 <= S < 20 b 110 <= S < 120');
Center Text(6,'2 20 <= S < 30 c 120 <= S < 130');

Center Text(7,'3 30 <= S < 40 d 130 <= S < 140');

Center Text(8,'4 40 <= S < 50 e 140 <= S < 150');
Center Text(9,'5 50 <= S < 60 f 150 <= S < 160');
Center Text(l0,'6 60 <= S < 70 g 160 <= S < 170');

CenterText(ll,'7 70 <= S < 80 h 170 <= S < 180');
Center Text(12,'8 80 <= S < 90 i 180 <= S < 190');
CenterText(13,'9 90 <= S < 100 j 190 <= S < 200');

CenterText(14,' k 200 <= S < 210');

Center Text(15,'
Center Text(16,' p Change Palette

CenterText(17,' w Change the Weights

CenterText(18,' TAB Blank Window 3
CenterText(19,' ');
CenterText(20,' ESC Quit

choice2 ReadKey;

SetWindow(3)"
if choice2 = #9 then (* Select TAB to clear window 3 *)

begin
ClearViewPort;

CoTo interrupt4;

end

else if choice2 ESC then (* Select ESC to exit the routine *)

begin

Coto ExitProg;

end
else if choice2 #112 then (* Select p to change the palette *)

begin

Palettes;
GoTo interrupt4;

end

else if choice2 #11.9 then (* Select w to change the weights *)
begin

GoTo interrupt2;

end
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else if choice2 = #48 then (* Set weights based upon menu *)
begin (* selection.

minvalue := 0;
maxvalue 10;
Goto interrupt5;

end
else if choice2 = #49 then
begin

minvalue := 10;
maxvalue := 20;
Goto interrupt5;

end
else if choice2 = #50 then
begin

minvalue 20;
maxvalue 30;
Goto interrupt5;

end
else if choice2 = #51 then
begin

minvalue 30;

maxvalue .= 40,
Goto interrupt5;

end
else if choice2 = #52 then
begin

minvalue 40;
maxvalue 50;
Goto interrupt5;

end
else if choice2 = #53 then
begin

minvalue 50;
maxvalue 60;
Goto interrupt5,

end

else if choice2 #54 then
begin

minvalue 60;
maxvalue 70;
Goto interrupt5;

end
else if choice2 = #55 then
begin

minvalue 70;
maxvalue := 80;
Goto interrupt5;

end
else if choice2 = #56 then
begin

minvalue 80;
maxvalue := 90;
Goto interruptS;

end
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else if choice2 #57 then
begin

minvalue 90;
mxvalue 100;
Goto interrupt5:

end
else if choice2 #97 then

begin

minvalue 100;

maxvalue 110;
Goto interrupt5;

end
else if choice2 #98 then
begin

minvalue 110;
maxvalue := 120;

Goto interrupt5;
end
else if choice2 = #99 then

begin

minvalue 120;

maxvalue 130;
Goto interrupt5;

end
else if choice2 = #100 then

begin

minvalue 130;

maxvalue := 140;
Goto interrupt5;

end
else if choice2 = #101 then

begin
minvalue 140;

maxvalue 150;
Goto interrupt5;

end
else if choice2 = #102 then

begin

minvalue 150;

maxvalue :- 160;
Coto interrupt5;

end
else if choice2 = #103 then

begin
minvalue:- 160:

maxvalue>: 170;
Goto interrupt5;

end
else if choic2 -#10 4 then

h) E' g in
minvalue : 170;
imnxva lue - 180-
C;oto interrupt5
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else if choice2 = #f105 then
begin

minvalue 180;
maxvalue :=190;

Goto interrupt5;
end

else if choice2 = #f106 then
begin

minvalue :=190;

rnaxvalue 200;
Coto interrupt5;

end
else if choice2 = #107 then
begin

minvalue 200;
maxvalue :=210;
Goto interrupt5;

end
else
begin

Beep(500);
Goto interrupt4;

end;

(This section of code does th-e actual calculations to determine *
(which pixels have distance values within the range selected to be *
(*displayed. k

interrupt5:
PutPixel(xpos,ypos,255);
for j :=ys to ys~arg-l do

for i xs to xs+arg-l do
begin
a i -xs;

b :=j -ys;

c :=xpos - xs; (*c :x position of seed pixel *
d :=ypos - ys; (*d y position of seed pixel *

(* his code is the implementation of the distance formula.

DiffX : XWeight *SQR(c -a);

DiffY : YWeight *SQR(d -b);

VisPart := VisWeight *SQR(Parray[c,d,0] -Parray[a,b,01);

IRPart :=IRWeight *SQR(Parray[c,d,l] -Parray[a,b,l]);

TempResuit := (VisPart + IRPart + DiffX + Diff Y);
Result := SQRT(TempResult);
if (minvalue <= Result) and (Result < maxvalue) then
begin

PutPixel(a+xs,b+ys,Parray[a,b,0]);
end; hif)

end; (for a)
GoTo interrupt4; (*Loop back to select next range to display
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(* This is the start of the routines used to cluster the pixels from *)
(* two seed points using the centroid method without data

(* normalization.

interrupt7:
SetWindow(3);

ClearVicwPort;
PutPix 1(xpos,ypos,255); (* Turn on the two seed pixels in Window *)

PutPixel(xpos2,ypos2,l50); (* Three.

if (arg = 20) then (* These statements set the number of rows *)
begin (* and columns used by the similarity and *)
nrows:= 20; (* tracking matrix.

ncols := 20;
end

else if (arg 50) then

begin

nrows := 50;

ncols := 50;

end
else if (arg = 100) then

begin

nrows := 100;
ncols := 100;

end

else

begin

nrows := 150;
ncols := 150;

end;

simptr := HMatDef(nrows,ncols); (* Create the similarity matrix *)

if (simptr = nil) then (* for the first seed point.

begin

Writeln ('Cannot Create Matrix');

EXIT;
end;

simptr2 := HMatDef(nrows,ncols); (* Create the similarity matrix *)

if (simptr = nil) then (* for the second seed point. *)

begin

Writeln ('Cannot Create Matrix');

EXIT;

end;

ptr2 := HMatDef(nrows,ncols); (* Create the trackii~g matrix *)

if (ptr2 = nil) then

begin
Writeln ('Cannot Create Comparison Matrix');

EXIT;

end;

(* Fill Matrix with Similarity Values *)



for b : 0 to arg-l do
for a :=0 to arg-l do
begin
c xpos - xs; (*c x position of first seed pixel *
d ypos - ys; (*d y position of first seed pixel *
e xpos2 - xs; (*e x position of second seed pixel *
f ypos2 - ys; (*f y position of second seed pixel *

(Similarity value calculations using Euclidean distance formula. *
(This section is the distance calculations to the first seed pixel. *

DiffX XWeight * SQR(c - a);
DiffY YWeight * SQR(d - b);
VisPart VisWeight* SQR(Parray[c,d,'i]- Parray[a,b,0]);
IRPart IRWeight *SQR(Parray~c,d,l] -Parray[a,b,l]);

TempResult :=(VisPart + IRPart - DiffX + DiffY);
SimVal :=SQRT(TempResult);
HMatWrtEl (simptr,a,b,SimVal,err);

(This section is the distance calculations to the second seed pixel.*)

DiffX XWeight * SQR(e - a);
DiffY Weight * SQR(f - b);
VisPart VisWeight *SQR(Parray[e,f,01 Parray[a,b,0J)-,
IRPart IRWeight *SQR(Parray~e,f,l] -Parrayla,b,l]);

TempResult :=(VisPart + IRPart + DiffX + DiffY);
SimVal :=SQRT(TempResult);
HMatWrtEl (simptr2,a,b,SimVal,err);

end; (for a)

(Initialize the cluster values with the seed pixel's values *

Cluster_-One -IR : Parray[xpos-xs,ypos-ys,l];
ClusterOne Vis :=Parray[xpos-xs,ypos-ys,O};
ClusterOne X xpos-xs;
ClusterOne Y ypos-ys;
IR -Cluster One Val :=Parray~jxpos-xs,ypos-ys,l];
Vis_-ClusterOneVal :=Parrav[xpos-xs,ypos-ys,O];
X_-ClusterOneVal xpos-xs;
YClusterOneVal ypos-ys;

ClusterTwo IR :=Parray[xpos2-xs,ypos2-ys,l];
Cluster Two Vis : Parray[xpos2-xs,ypos2-ys,01;
ClusterTwo X xpos2-xs;
ClusterTwoY .- ypos2-ys;
IR_-Cluster_-Two_-Val :=ClusterTwoIR;
VisCluster_-Two_-Val :=ClusterTwo Vis;
X Cluster Two Val Cluster Two X;
YClusterTwoVal ClusterTwoY;

(This section of code dletermines how many iterations the looping *
(process will comnplete.

70)



Sett~iiidow(/O
interrupt 8:
ClearViewPort;
CenterText(I, 'Select the number of iterations');
CenterText(2,'
CenterText(3,'
Center Text (4 ' 0 : 3 :100
Ceniter Text(5 '1 :10 4 :398 ')

Center Text(6, '2 5 0 5:2498')
Center Text(7,'
Cente r Text (8, 'u: Enter # of iteratilons
Center TIext(9,'
Center Text(10, 'ESC :exit')
Choice3 : ReadKey;
if- choice3 #I48 then

Numiter :=

else if choice3 - p 49 then
Numiter := 10

elIse if choice3 #750 then

"Numiter :- 50
else if choice.3 - # /51 the n

Numinirer : -100
else if choice3 - #52 then

Numiter :- 398
elIse if cho ice3 -- 15 3 then

Numicer .-- 2498
else if' choice3 --ESC then

gotD interrupt3
else if choice3 - Ill 7 then

I-cgin
Cl earViewPort;
Cent erText(1, 'Enter the number of i terat ion--')
CenterText(2, 'Press ENTER when complete
M-ove Cur -soI
Re adLn (Num ter)
MoveCuirsorTop;

end
else

Beep(A )0
~ inuerrupt8:

end:

Oui Tex LXY( 31 10. Number of i teraition.,;'

SetiWijdo.;(3):
ClIustc,(r 0ne Sizf' - I( Each cluster initially *

luhst~ TI i:( has one pixel.
f MIt V rt ElI (p tr 2 ,xp os -xs vpo s -vs .1 .0,r r)
IiMat rt El(p 2 po2-s po2v,.er)

(- Tis is wher che loopinig process beginis.

For It er :I to Niimier dto
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(* First thing to do is search for L1e smallest distance value.

begin
Cur Sir Val := 1000.0;

for b := 0 to arg-l do (* Search the first distance array. *)

for a "- 0 to arg-l do

begin

if (HMatReadEl(ptr2,a,b,err) < 1.0) then

begin

Next Sim Val ": -atReadEl (simptr,a,b,err);
if (NextSimVal < CurSimVal) then

begin

Cur Sim Val :-- Next Sim Val;
Cur Col Pos := a

Cur Row Pos b;
ClusterNm 1:

end
end

end; Ifor a!

for b := 0 to arg-l do (* Search the second distance array.*)

for a :' 0 to arg-l do

begin
if (HMatReadEl(ptr2,a,b,err) < 1.0) then

begin
Next Sim Val := HMatReadEl (simptr2,a,b,err);

if (NextSimVal < CurSimVal) then

begin

Cur Sim Val := Next SimVal;

Cur Col Pos a;

Cur Row Pos := b;

ClusterNum 2;

end
end

end" for a)

(* The cluster corresponding to the array with the smallest value is *)

(* incremented by one. The pixel is turned on in Window Three in the *)

(* appropriate brightness. If it is a cloud, it will use the same
(* value as in the visible image. If it isn't a cloud, it will be *)

(* set to a brightness of 50.

if ClusterNum =- 1 then
beg in

HMatWrtEl (ptr2,Cur ColPo5, Cur Row Pos,l.0,err)"
Cluster One Size :- Cluster One Size + 1;

PutPixel(Cur Col Pos+xs,Cur Row Pos+ys,
Parray[Cu rCal _Pos,CurRowPosO0]),

end:

if ClusterNum - 2 then
beg i n

EMatWrtEl (ptr2 ,Cur Col Pos,CurRowPos,2.0,err);

Cluster Two Size := Cluster Two Size + 1;
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PutPixel(CurColPos+xs,CurRow Pos+ys,50);

end;

(Display the iteration number currently underway in Window Four.

Str(Iter, Counter);

SetV~indow(4);
OutTextXY(35,130, 'Iterations Completed ~)
SetColor (0)

OutTextXY(218,13O,#219);
OutTextXY(225, 130 ,#219);

OutTextXY(232,130,#219);
OutTextXY(239, 130,#1219);
OutTextXY(246,130,/L219);
OutTextXY(253, 130 ,#219);

SetColor(255);

OutTextXY(218,130,Counter)
Sett~indow(3);

(Compute the new values for the clusters.

if ClusterNum 1 then
begin
ClusterOneIR :=ClusterOneIR + Parray[Cur ColPos,CurRowPos,l];

Cluster One Vis : Cluster One Vis+ Parray[Cur ColPos,Cur Row Pos,01;
ClusterOne X ClusterOneX + CurColPos;
ClusterOne Y ClusterOneY + CurRowPos;

IR_-Cluster_-One_-Val : ClusterOneIR/ClusterOne Size;

VisClusterOne_-Val :=ClusterOne Vis/ClusterOne Size;

X_-Cluster_-One_-Va' ClusterOneX/Cluster_-One_-Size;

YClusterOneVal ClusterOne Y/ClusterOneSize;

end;

if ClusterNum = 2 then

begin
Cluster_-Two_-IR := ClusterTwo_-IR + Parray[CurCol Pos,CurRowPos,l};

ClusterTwo Vis :=Cluster Two Vis + Parray[Cur Col PosCur Row Pos01
iz T:-.,-io A ClusterTwoX + CurCol Pos;

ClusterTwo Y ClusterTwoY + CurRow Pos;

IR_-Cluster -Two -Val CIluster TwoIR/ClusterTwoSize;
VisClusterTwo_-Val := ClusterTwoVis/ClusterTwoSize;

XClusterTwoVal ClusterTwoX/ClusterTwoSize;
YClusterTwoVal ClusterTwoY/ClusterTwoSize;

end;

(*^ Begin the ioop to fill the similarity matrices with updated values *

if ClusterNum 1 then

begin

for b :=0 to arg-1 do

for a :=0 to aig-l do

begin
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if (HMatReadEl(ptr2,a,b,err) < 0.0) then

begin
DiffX XWeight * SQR(XClusterOneVal - a);

DiffY YWeight * SQR(YCluster OneVal - b);
VisPart VisWeight * SQR(VisClusterOneVal -

Parray[a,b,0]);
IRPart IRWeight * SQR(IRClusterOneVal

Parray[a,b,l]);
TempResult := (VisPart + IRPart + DiffX + DiffY);
SimVal "= SQRT(TempResult);
HMatWrtEl (simptr,a,b,SimVal,err);

end
end; {for r}

end; tif)

(* Second similarity matrix *)

if ClusterNum = 2 then
begin
for b := 0 to arg-i do

for a : 0 to arg-l do
begin

if (HMatReadEl(ptr2,a,b,err) < 0.0) then
begin

DiffX XWeight * SQR(X ClusterTwoVal - a);

DiffY YWeight * SQR(Y Cluster Two Val - b);
VisPart VisWeight * SQR(Vis_ClusterTwoVal

Parrayla,b,01);

IRPart IRWeight * SQR(IR ClusterTwoVal -

Parray[a,b,l]);
TempResult := (VisPart + IRPart + DiffX + DiffY);

SimVal := SQRT(TempResult);

HMatWrtEl (simptr2,ab,SimVal,err);
end

end; {for a)
end; (if)

(* This routine lets the user get out of the looping process by
(* pressing the ESC key on the keyboard.

if (keypressed = TRUE) then
begin

Choice "= Readkey;

if (Choice = ESC) then

Coto interrupt3:
end

end; titer loop) (* This is the end of the looping routines *)
Goto interrupt3; (* Proceed to housekeeping routines

(* This is the start of the routines which are used to do the
(* the clustering from two seed points using the centroid method with *)

(* data normalization.
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interruptl2:
SetWindow(3);

ClearViewPort;
PutPixel(xpos,ypos,255); (* Turn on the seed pixels in Window

PutPixel(xpos2,ypos2,150); (* Three.

if (arg = 20) then (* These statements set the number of rows *)

begin (* and columns used by the similarity and *)
nrows := 20; (* tracking matrix.

ncols :- 20;
end

else if (arg - 50) then

begin

nrows 50;

ncols 50;

end
else if (arg = 100) then

begin

nro s : 1 00;
ncols : 100;

end

else
begin

nrows := 150;
ncols:= 150;

end;

simptr "= HMatDef(nrows,ncols); (* Create the similarity matrix *)

if (simptr - nil) then

begin
Writeln ('Cannot Create Matrix');

EXIT;

end:

simptr2 := HMatDef(nrows,ncols); (* Create the second similarity *)

if (simptr nil) then (* matrix.

begin
Writeln ('Cannot Create Matriv');

EXIT;

end:

ptr2 := HMatDef(nrows,ncols); (* Create the tracking matrix *
if (ptr2 = nil) then

begin

Writeln ('Cannot Create Comparison Matrix');

EXIT;

end;

Visptr := HMatDef(nrows,ncols); (* Create the matrix to store the *
if (Visptr=nil) then (* z-values for the visible data *

begin
Writeln ('Cannot create Visptr');

Exit;
end;
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IRptr := HMatDef(nrows,ncols); (* Create the matrix to store the *)

if (IRptr=nil) then (* z-values for the infrared data *)

begin
Writeln ('Cannot create IRptr');

Exit;
end;

Xptr " I[MatDef(nrows,ncols ; (* Create the matrix to store the *)
if (Xptr=nil) then (* z-values for the x positions *)
begin
Writeln ('Cannot create Xptr');

Exit;
end;

Yptr : HMatOef(nrows,ncols); (* Create the matrix to store the *)
if (Yptr-nil) then (* z-values for the y positions *)

begin

Writeln ('Cannot create Yptr');

Exit;
end;

(* Normalize the raw category data using the standard deviation.
(* First calculate the means of the four categories. *)

MeanX "= (arg-l)/2;

Mean Y Mean Y;
Total Vis 0:

Total IR : ;

Number Pixels arg*arg;

for b : 0 to arg-i do

for a := 0 to arg-l do
begin

Total Vis "= TotalVis+Parray[a,b,O]"

Total IR '= TotalIR +Parray~a,b,li"
end: (for b)

MeanVis TotalVis/NumberPixels:
MeanIR : Total IR/NumberPixels;

(* Now calculate the standard deviations. *)

Total StandDev Vis "= 0.0;
TotalStandDev IR 0. 0

if arg = 20 then
begin

StandDev X "= 5.916079783;

StandDev Y '= StandDevX;
end

else if arg = 50 then
begin

StandDev X := 14.57737974;

StandDev Y "= StandDev X;

end
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else if arg = 100 then

begin
StandDev X 29.01149198;

StandDev Y StandDevX;

end
else if arg = 150 then

begin
StandDev X 43.44536799;

StandDev Y :=StandDevX;

end
else

begin
Coto interrUpt3;

end;

for b 0 to arg-l do

for a 0 to arg-l do
begin

TotalStandDev Vis :=Total -StandDev Vis+SQR(Parray[a,b,O]-MeanVis);
TotalStandDevIR TotalStandDevIR +SQR(Parrayta,b,l]-MeanIR);

end; (for b)

StandDev_-Vis SQRT(Total_StandDev -Vis/(Number_-Pixels-i));

StandDevIR SQRT(Total_StandDev IR/(NumberPixel-s-i));

(*,' Calculate the z-values and fill in the matrices. *

for b 0 to arg-l do
for a 0 to arg-l do

begin

Z -Vis (Parrayla,b,0J-Mean -Vis)/StandDevVis:

Z_-IR (Parrayta,b,l]-IMean -IR)/StandDev IR;

Z -X (a-Mear _X)/StandDev_-X;

Z -Y (b-MeanY)/StandDevY;
HiMatWrtEl(Visptr,a,b,Z Vis,err);

fHMatWrtEl(IRptr,a,b,Z_-IR,err);

1HMatWrtEl(Xptr,a,b,Z_-X,err);
HMat ;rtEl(Yptr,a,b,Z Y,err);

end; ifor a)

(Initialize the two clusters with the seed pixel's values.,*

ClusterOne IR := RatReadEI(IRptr,xpos-xs,ypos-ys,err);

ClusterOne Vis := H~atReadEI(Visptr,xpos-xs,vpos-ys,err);
ClusterOne X HMatReadEl(Xptr,xpos-xs,ypos-ys,err);
Cluster -One Y H~atReadEI(Yptr,xpos-xs,ypos-ys,err);

IR_-Cluster_-One_-Val := ClusterOneIR;
VisCluster_-One_-Val := ClusterOneVis;

XClusterOneVal ClusterOneX;

Y ClusterOneVal :=ClusterOneY;

ClusterTwo -IR := HMatReadEI(IRptr,xpos2-xs,ypos2-ys,err);
ClusterTwo -Vis :1-MatReadE(Visptr,xpos2-xs,ypos2-ys,err);

Cluster Two X :=HMatReadEl(Xptr,xpos2-xs,ypos2-ys,err):
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Cluster_-Two Y : HMatReadEl(Yptr,xpos2-xs,ypos2-ys,err);

IR_-Cluster_-Two_-Val : ClusterTwo_1W;

VisCluster_-Two_-Val : ClusterTwoVis;
X ClusterTwoVal ClusterTwoX;
Y-ClusterTwoVal ClusterTwoY;

(* Fill Matrices with Similarity Values. *

for b 0 to arg-l do
for a 0 to arg-l do

begin

c :-xpos - xs;

d := ypos - ys;

e :- xpos2 -xs;

f : ypos2 -ys;

DiffX XWeight * SQR(R-MatReadEl(Xptr,c,d,err) -

HMatReadEl(Xptr,a,b,err)):

DiffY YWeight * SQR(HMitReadEl(Yptr,c,d,err) -

HMatReadEl(Yptr,a,b,err));
VisPart VisWeight * SQR(HMatReadEl(Visptr,c,d,err)-

H-IatReadEl(Visptr,a,b,err));

IRPart IRWeight * SQR(HMatReadEl(IRptr,c,d,err) -

HMatReadEl(IRptr,a,b,err));
TempResult :=(VisPart+IRPart±DiffX+DiffY);

SimVai : SQRT(TempResult);
HMatWrtEl(simptr,a,b,SimVal ,err);

DiffX XWeight * SQR(HMatReadEl(Xptr,e,f,err)-

HiMatReadEI(Xptr,a,b,err));
Diff-Y YWeight * SQR(H~atReadEl(Yptr,e,f,err)-

HMatReadEl(Yptr,a,b,err));
VisPart VisWeight * SQR(HMatReadEl(Visptr,e,f,err)-

HMatReadEI(Visptr,a,b,err));
IRParz IRWeight * SQR(HMatReadEl(IRptr,e,f,err) -

W-LatReadE (IRPtr, a, b,err)) ;
TempResult :=(Vi,-Part+IRPart+DiffX+DiffY );

SimVal : SQRT (TempResult);
HMatWrtEl(simptr2,a,b,SinVal~err);

end; (for al

(This section of code allows the user to select the number of

(iterations the loop will go through before stopping.

SetWindow(4);
interruptl.3:
ClearViewPort;
CenterText(l, 'Select the number of iterations');

Center Text(2,'

CenterText(3,'
CenterText(+, '0 5 3 100 ')

CenterText(5, '1 10 4 398 )
CenterText(6, '2 50 5 2498')
Center Text(7,
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CenterText(8, 'u : Enter # of iterations

CenterText(9,

Center Text(l0, 'ESC : exit

Choice3 := ReadKey;

if choice3 =#48 then

Numiter := 5
else if choice3 = #49 then

Numiter := 10
else if choice3 = #50 then

Numiter := 50
else if choice3 = #51 then

Numiter := 100
else if choice3 = #52 then

Numiter := 398
else if choice3 = #53 then

Numiter := 2498
else if choice3 = ESC then

goto interrupt3
else if choice3 = #117 then

begin
ClearViewPort;
Center Text(l, 'Enter the number of iterations');
Center Text(2, 'Press ENTER when coimplete

MoveCursor;
ReadLn(Numiter);

MoveCursor Top;

end

else

begin

Beep(500);
goto interruptl3;

end;

Str(Numiter,chce3);

OutTextXY(35,110,'Number of iterations =');

OutTextXY(218,110,chce3);

SetWindow(3);

Cluster One Size 1; (* Each cluster starts out with *)

Cluster Two Size 1; one pixel in it.

HMatWrtEl (ptr2,xpos-xsypos-ys,l.0,err);

HMatWrtEI (ptr2,xpos2-xs,vpos2-ys,2.0,err);

(* This is where the looping process begins.

for Iter :I I to Numiter do

(T The first thing -o do is search for the smallest distance value *)

(* in both distance arrays.

begin

Cur Sim Val := 1000.0;
for b := 0 to arg-i do (* Search the first array *)

for a : 0 to arg-l do

begin
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if (HMatReadEl(ptr2,a,b,err) < 1.0) then

begin

Next Sim Val := HMatReadEl (simptr,a,b,err);
if (NextSimVal < CurSimVal) then
begin

Cur Sim Val Next_ SimVal;
Cur Cal Pos a;

Cur Row Pos b;
ClusterNun" 1;

end

end
end; Ifor a)

for b := 0 to arg-i do (* Search the second array *)

for a := 0 to arg-l do

begin

if (HMatReadEl(ptr2,a,b,err) < 1.0) then

begin
Next Sim Val := HMatReadEl (simptr2,a,b,err);

if (NextSimVal < CurSimVal) then

begin
Cur Sim Val Next SimVal;

Cur Col Pos a;

Cur Row Pos b;
ClusterNum 2;

end

end
end; Ifor a)

(* The cluster corresponding to the array with the smallest distance *)
(* value is incremented by one. The pixel associated with the

(* distance is turned on in Window Three in the appropriate color for *)
(* the cluster it is in. The first cluster is the cloud cluster, and *)
(* will be displayed in the same colors as in the visible image. The *)
(* second cluster is non-cloud, and will be displayed at a brightness *)

(* of 50.

if ClusterNum I then

begin
HMatWrtEl (ptr2,Cur Col Pos, Cur Row Pos,l.O,err);

ClusterOneSize :=-ClusterOneSize + 1;
PutPixel(CurColPos+xs,Cur Row Pos+ys,

Parray[CurColPos,CurRowPos,0]);

end;

if ClusterNum 2 then
begin

HMatWrtEl (ptr2,CurCol Pos,CurRowPos,2.0,err);
Cluster Two Size := ClusterTwo Size + I;

PutPixel(CurColPos+xs,Cur Row Pos+ys,50);

end;

(* Display the iteration number currently underway in Window Four. *)

Str(Iter, Counter);

80)



SetWindow(4);
OutTextXY(35,130, 'Iterations Completed =)

SetColor(O);
OutTextXY(218, 130,#1219);
OutTextX'Y(225,130,#219);
OutTextXY(232, 130 j1219);
OutTextXY(239 ,130 ,1219);
OutTextXY(246, 130,4219);
OutTextXY(253,130,J/219);
SetColor(255);
OutTextXY(218,130 ,Counter);
Sett~indow(3);

(Compute the average values for the new clusters. *

if ClusterNun = 1 then
begin
Cluster One IR :=ClusLer One IR + Parray[Cur -ColPos,CurRowPos,l1;
Cluster OneVis Cluster One Vis+ Parray[Cur-Col Pos,Cur Row Pos,O];
ClusterOne X ClusterOneX + CurColPos;
ClusterOne Y ClusterOneY + CurRowPos;

IR_-Cluster_-One_-Val : ClusterOne IR/ClusterOneSize;
VisClusterOne_-Val : ClusterOne Vis/ClusterOneSize;
XCluster -One -Val :=Cluster-One_X/Cluster -One -Size;
YClusterOneVal :=ClusterOneY/ClhsterOneSize;

end:,

if ClusterNum 2 then
begin
Cluster_-Two_- IR :=Cluster_-Two_-IR + Parray[Cur-Col PosCurRowPos,lj;
Cluster -Two_-Vis :=Cluster -Two -Vis+ Parray[Cur -Col Pos,Cur Row Pos,01;
ClusterTwo X :=ClusterTwoX + CurCol Pos;
Cluster Two Y :=ClusterTwoY + CurRow Pos;

IR_-Cluster_-Two_-Val : ClusterTwoIR/ClusterTwo Size;
Vis ClusterTwo_-Val := Cluster_-Two_-Vis/ClusterTwoSize;
X_-Cluster_-Two_-Val :~ClusterTwoX/Cluster_-Two_-Size;
Y_-ClusterTwoVal :=CluisterTwoY/ClusterTwoSize;

end;

(* Begin the loop to fill the similarity matrices with updated values *

if ClusterNum = 1 then
begin
for b :=0 to arg-l do
for a :=0 to arg-l do
begin
if (H-MatReadE(ptr2,a,b,err) < 0.0) then
begin
DiffX :~XWeight * SQR(X_-ClusterOne Val-

H~atReadEl(Xptrla,b,err));
DiffY :=Weight * SQR(Y_-Cluster __One -Val-

H-MatReadE(Yptr,a,b,err));
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VisPart :=VisWeight * SQR(VisClusterOneVal-
L-iatReadE(Visptr,a,b,err));

IRPart : IRWeight *SQR(IRClusterOneVal -

HMatReadEl(IRptr,a,b,err));,
TempResult : (VisPart+IRPart+DiLffX+DiffY);
SimVal :=SQRT(TempResult);
HMatWrtEl (simptr,a,bSimVal,err);

end
end; ifor r)

end; jif)

(* Second similarity matrix *

if ClusterNum = 2 then
begin
for b 0 to arg-l do
for a 0 to arg-l do
begin
if (HMatReadEl(ptr2,a,b,err) < 0.0) then
begin
DiffX XWeight * SQR(XCluster_-TwoVal -

HMatReadEl(Xptr a,b,err));
Diff-Y :YWeight * SQR(YCluster_-TwoVal -

HMatReadEl(Yptr a,b,err));
VisPart >-VisWeight*SQR(Vis_-ClusterTwoVal-

HMatReadEl(Visptr a,b,err));
IRPart IRWeight * SQR(IRC lusterTwoVal-

HMatReadEl(IRptr,a,b,err));
TempResult :=(VisPart+IRParti-DiffX+DiffY);
SimVal :=SQRT(TempResult);
H-MatWrtEl (simptr2,a,b,SimVal,err);

end
end; (for a)

end; (if)

(This routine lets the user get out of the looping process by
(pressing ESC on the keyboard.

if (keypressed = TRUE) then
begin

Choice := Readkey;
if (Choice = ESC) then
Coto interrupt3;

end
end; liter loop) (*This is the end of the looping process *

(Housekeeping routines to shut down the clustering program.
(The appropriqte routines will he executed based upon which option *
was selected from the main clustering menu.

interrupt3:
if (flag=O) and (flag2=0) then
begin



HArrFree(simptr); (*Free up the memory space allocated *
HArrFree(simptr2); (*for the arrays.
H-ArrFree(ptr2);
HArrFree(Visptr);
HArrFree(IRptr);
HArrFree(Xptr);
HArrFree(Yptr);
SetWindow(l);
MarkTCluster_-Box(xxtactivej ,xy[activel ,arg); (*Remove box from *
SetWindow(l); (*Window One.
Goto Finish;

end;

if (flag~l) and (flag2=0~) then
begin

HArrFree(simptr); (*Free up the memory space allocated *
H-ArrFree(simptr2); (*for the arrays.
HArrFree(ptr2);
HArrFree(Visptr);
HArrFree(IRptr);
HArrFree(Xptr);
HArrFree(Yptr);
Goto Finish;

end;

if (flag=O) and (flag2=l) then
begin

HArrFree~simptr); (*Free up the memory space allocated *
HArrFree(simptr2); (*for the arrays.
HArrFree(ptr2);
HArrFree(Visptr);
HArrFree(IRptr);
H-ArrFree(Xptr);
HArrFree(Yptr);
SetWindow(l);
Mark_-Cluster_-Box(xxfactive],xy~active,',arg); (*Remove box from *
Goto Finish; (*Window One.

end;

if (flag~l) and (flag2=l) then
begin

HArrFree(simptr); (*Free up the memory space allorated *

HArrFree(simptr2); (*for the arrays.
HArrFree(ptr2);
HArrFree(Visptr);
HArrFree(IRptr);
HArrFree(Xptr);
HArrFree(Yptr);
Coto Finish;

end;

ExitProg:
SetWindow(l);
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MarkClusterBox(xx[active],xy[active],arg); (* Remove box from

Goto Finish; (* Window One.

Finish:

SetWindow(4);
ClearViewPort; (* Clear Window Four and redisplay the main *)

MoveCursor Top; (* TSIPS menu.

SetWindow(l);
ShowHelpMenu;

end; (Procedure ClusterAnalysis) (* End of program *)

(* This procedure is the first to execute when the clustering option *)
(* is chosen from the main TSIPS menu. This procedure allows the

(* user to select the size of the clustering area he wishes to work k)

(* with.

Procedure Pick Cluster Size;

LABEL

interrupt;

VAR

choice : char;

xsize : byte;

begin

DisplaySubMenu('Y', choice, 4);

if (choice='l') or (choice='2') or (choice='3') or (choice='0') then
begin

case choice of
'0' : xsize := 20;
'I' : xsize := 50;

'2' : xsize : 1 100;

'3' : xsize :- 150;
end; )casej

end

else

Coto interrupt;
ClusterAnalysis(xsize); (* Proceed to the main clustering routine *)

interrupt:
ResetSubMenu(2);

end; IProcedure Pick Cluster Size)
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